ALSA: opl4 - Fix a wrong argument in proc write callback
[safe/jmp/linux-2.6] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27
28 #include "xhci.h"
29
30 /*
31  * Allocates a generic ring segment from the ring pool, sets the dma address,
32  * initializes the segment to zero, and sets the private next pointer to NULL.
33  *
34  * Section 4.11.1.1:
35  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36  */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38 {
39         struct xhci_segment *seg;
40         dma_addr_t      dma;
41
42         seg = kzalloc(sizeof *seg, flags);
43         if (!seg)
44                 return 0;
45         xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46
47         seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48         if (!seg->trbs) {
49                 kfree(seg);
50                 return 0;
51         }
52         xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53                         seg->trbs, (unsigned long long)dma);
54
55         memset(seg->trbs, 0, SEGMENT_SIZE);
56         seg->dma = dma;
57         seg->next = NULL;
58
59         return seg;
60 }
61
62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63 {
64         if (!seg)
65                 return;
66         if (seg->trbs) {
67                 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68                                 seg->trbs, (unsigned long long)seg->dma);
69                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70                 seg->trbs = NULL;
71         }
72         xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73         kfree(seg);
74 }
75
76 /*
77  * Make the prev segment point to the next segment.
78  *
79  * Change the last TRB in the prev segment to be a Link TRB which points to the
80  * DMA address of the next segment.  The caller needs to set any Link TRB
81  * related flags, such as End TRB, Toggle Cycle, and no snoop.
82  */
83 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84                 struct xhci_segment *next, bool link_trbs)
85 {
86         u32 val;
87
88         if (!prev || !next)
89                 return;
90         prev->next = next;
91         if (link_trbs) {
92                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
93
94                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
95                 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
96                 val &= ~TRB_TYPE_BITMASK;
97                 val |= TRB_TYPE(TRB_LINK);
98                 /* Always set the chain bit with 0.95 hardware */
99                 if (xhci_link_trb_quirk(xhci))
100                         val |= TRB_CHAIN;
101                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
102         }
103         xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
104                         (unsigned long long)prev->dma,
105                         (unsigned long long)next->dma);
106 }
107
108 /* XXX: Do we need the hcd structure in all these functions? */
109 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
110 {
111         struct xhci_segment *seg;
112         struct xhci_segment *first_seg;
113
114         if (!ring || !ring->first_seg)
115                 return;
116         first_seg = ring->first_seg;
117         seg = first_seg->next;
118         xhci_dbg(xhci, "Freeing ring at %p\n", ring);
119         while (seg != first_seg) {
120                 struct xhci_segment *next = seg->next;
121                 xhci_segment_free(xhci, seg);
122                 seg = next;
123         }
124         xhci_segment_free(xhci, first_seg);
125         ring->first_seg = NULL;
126         kfree(ring);
127 }
128
129 static void xhci_initialize_ring_info(struct xhci_ring *ring)
130 {
131         /* The ring is empty, so the enqueue pointer == dequeue pointer */
132         ring->enqueue = ring->first_seg->trbs;
133         ring->enq_seg = ring->first_seg;
134         ring->dequeue = ring->enqueue;
135         ring->deq_seg = ring->first_seg;
136         /* The ring is initialized to 0. The producer must write 1 to the cycle
137          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
138          * compare CCS to the cycle bit to check ownership, so CCS = 1.
139          */
140         ring->cycle_state = 1;
141         /* Not necessary for new rings, but needed for re-initialized rings */
142         ring->enq_updates = 0;
143         ring->deq_updates = 0;
144 }
145
146 /**
147  * Create a new ring with zero or more segments.
148  *
149  * Link each segment together into a ring.
150  * Set the end flag and the cycle toggle bit on the last segment.
151  * See section 4.9.1 and figures 15 and 16.
152  */
153 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
154                 unsigned int num_segs, bool link_trbs, gfp_t flags)
155 {
156         struct xhci_ring        *ring;
157         struct xhci_segment     *prev;
158
159         ring = kzalloc(sizeof *(ring), flags);
160         xhci_dbg(xhci, "Allocating ring at %p\n", ring);
161         if (!ring)
162                 return 0;
163
164         INIT_LIST_HEAD(&ring->td_list);
165         if (num_segs == 0)
166                 return ring;
167
168         ring->first_seg = xhci_segment_alloc(xhci, flags);
169         if (!ring->first_seg)
170                 goto fail;
171         num_segs--;
172
173         prev = ring->first_seg;
174         while (num_segs > 0) {
175                 struct xhci_segment     *next;
176
177                 next = xhci_segment_alloc(xhci, flags);
178                 if (!next)
179                         goto fail;
180                 xhci_link_segments(xhci, prev, next, link_trbs);
181
182                 prev = next;
183                 num_segs--;
184         }
185         xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
186
187         if (link_trbs) {
188                 /* See section 4.9.2.1 and 6.4.4.1 */
189                 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
190                 xhci_dbg(xhci, "Wrote link toggle flag to"
191                                 " segment %p (virtual), 0x%llx (DMA)\n",
192                                 prev, (unsigned long long)prev->dma);
193         }
194         xhci_initialize_ring_info(ring);
195         return ring;
196
197 fail:
198         xhci_ring_free(xhci, ring);
199         return 0;
200 }
201
202 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
203                 struct xhci_virt_device *virt_dev,
204                 unsigned int ep_index)
205 {
206         int rings_cached;
207
208         rings_cached = virt_dev->num_rings_cached;
209         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
210                 virt_dev->num_rings_cached++;
211                 rings_cached = virt_dev->num_rings_cached;
212                 virt_dev->ring_cache[rings_cached] =
213                         virt_dev->eps[ep_index].ring;
214                 xhci_dbg(xhci, "Cached old ring, "
215                                 "%d ring%s cached\n",
216                                 rings_cached,
217                                 (rings_cached > 1) ? "s" : "");
218         } else {
219                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
220                 xhci_dbg(xhci, "Ring cache full (%d rings), "
221                                 "freeing ring\n",
222                                 virt_dev->num_rings_cached);
223         }
224         virt_dev->eps[ep_index].ring = NULL;
225 }
226
227 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
228  * pointers to the beginning of the ring.
229  */
230 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
231                 struct xhci_ring *ring)
232 {
233         struct xhci_segment     *seg = ring->first_seg;
234         do {
235                 memset(seg->trbs, 0,
236                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
237                 /* All endpoint rings have link TRBs */
238                 xhci_link_segments(xhci, seg, seg->next, 1);
239                 seg = seg->next;
240         } while (seg != ring->first_seg);
241         xhci_initialize_ring_info(ring);
242         /* td list should be empty since all URBs have been cancelled,
243          * but just in case...
244          */
245         INIT_LIST_HEAD(&ring->td_list);
246 }
247
248 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
249
250 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
251                                                     int type, gfp_t flags)
252 {
253         struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
254         if (!ctx)
255                 return NULL;
256
257         BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
258         ctx->type = type;
259         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
260         if (type == XHCI_CTX_TYPE_INPUT)
261                 ctx->size += CTX_SIZE(xhci->hcc_params);
262
263         ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
264         memset(ctx->bytes, 0, ctx->size);
265         return ctx;
266 }
267
268 void xhci_free_container_ctx(struct xhci_hcd *xhci,
269                              struct xhci_container_ctx *ctx)
270 {
271         if (!ctx)
272                 return;
273         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
274         kfree(ctx);
275 }
276
277 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
278                                               struct xhci_container_ctx *ctx)
279 {
280         BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
281         return (struct xhci_input_control_ctx *)ctx->bytes;
282 }
283
284 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
285                                         struct xhci_container_ctx *ctx)
286 {
287         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
288                 return (struct xhci_slot_ctx *)ctx->bytes;
289
290         return (struct xhci_slot_ctx *)
291                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
292 }
293
294 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
295                                     struct xhci_container_ctx *ctx,
296                                     unsigned int ep_index)
297 {
298         /* increment ep index by offset of start of ep ctx array */
299         ep_index++;
300         if (ctx->type == XHCI_CTX_TYPE_INPUT)
301                 ep_index++;
302
303         return (struct xhci_ep_ctx *)
304                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
305 }
306
307 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
308                 struct xhci_virt_ep *ep)
309 {
310         init_timer(&ep->stop_cmd_timer);
311         ep->stop_cmd_timer.data = (unsigned long) ep;
312         ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
313         ep->xhci = xhci;
314 }
315
316 /* All the xhci_tds in the ring's TD list should be freed at this point */
317 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
318 {
319         struct xhci_virt_device *dev;
320         int i;
321
322         /* Slot ID 0 is reserved */
323         if (slot_id == 0 || !xhci->devs[slot_id])
324                 return;
325
326         dev = xhci->devs[slot_id];
327         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
328         if (!dev)
329                 return;
330
331         for (i = 0; i < 31; ++i)
332                 if (dev->eps[i].ring)
333                         xhci_ring_free(xhci, dev->eps[i].ring);
334
335         if (dev->ring_cache) {
336                 for (i = 0; i < dev->num_rings_cached; i++)
337                         xhci_ring_free(xhci, dev->ring_cache[i]);
338                 kfree(dev->ring_cache);
339         }
340
341         if (dev->in_ctx)
342                 xhci_free_container_ctx(xhci, dev->in_ctx);
343         if (dev->out_ctx)
344                 xhci_free_container_ctx(xhci, dev->out_ctx);
345
346         kfree(xhci->devs[slot_id]);
347         xhci->devs[slot_id] = 0;
348 }
349
350 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
351                 struct usb_device *udev, gfp_t flags)
352 {
353         struct xhci_virt_device *dev;
354         int i;
355
356         /* Slot ID 0 is reserved */
357         if (slot_id == 0 || xhci->devs[slot_id]) {
358                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
359                 return 0;
360         }
361
362         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
363         if (!xhci->devs[slot_id])
364                 return 0;
365         dev = xhci->devs[slot_id];
366
367         /* Allocate the (output) device context that will be used in the HC. */
368         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
369         if (!dev->out_ctx)
370                 goto fail;
371
372         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
373                         (unsigned long long)dev->out_ctx->dma);
374
375         /* Allocate the (input) device context for address device command */
376         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
377         if (!dev->in_ctx)
378                 goto fail;
379
380         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
381                         (unsigned long long)dev->in_ctx->dma);
382
383         /* Initialize the cancellation list and watchdog timers for each ep */
384         for (i = 0; i < 31; i++) {
385                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
386                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
387         }
388
389         /* Allocate endpoint 0 ring */
390         dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
391         if (!dev->eps[0].ring)
392                 goto fail;
393
394         /* Allocate pointers to the ring cache */
395         dev->ring_cache = kzalloc(
396                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
397                         flags);
398         if (!dev->ring_cache)
399                 goto fail;
400         dev->num_rings_cached = 0;
401
402         init_completion(&dev->cmd_completion);
403         INIT_LIST_HEAD(&dev->cmd_list);
404
405         /* Point to output device context in dcbaa. */
406         xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
407         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
408                         slot_id,
409                         &xhci->dcbaa->dev_context_ptrs[slot_id],
410                         (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
411
412         return 1;
413 fail:
414         xhci_free_virt_device(xhci, slot_id);
415         return 0;
416 }
417
418 /* Setup an xHCI virtual device for a Set Address command */
419 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
420 {
421         struct xhci_virt_device *dev;
422         struct xhci_ep_ctx      *ep0_ctx;
423         struct usb_device       *top_dev;
424         struct xhci_slot_ctx    *slot_ctx;
425         struct xhci_input_control_ctx *ctrl_ctx;
426
427         dev = xhci->devs[udev->slot_id];
428         /* Slot ID 0 is reserved */
429         if (udev->slot_id == 0 || !dev) {
430                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
431                                 udev->slot_id);
432                 return -EINVAL;
433         }
434         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
435         ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
436         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
437
438         /* 2) New slot context and endpoint 0 context are valid*/
439         ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
440
441         /* 3) Only the control endpoint is valid - one endpoint context */
442         slot_ctx->dev_info |= LAST_CTX(1);
443
444         slot_ctx->dev_info |= (u32) udev->route;
445         switch (udev->speed) {
446         case USB_SPEED_SUPER:
447                 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
448                 break;
449         case USB_SPEED_HIGH:
450                 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
451                 break;
452         case USB_SPEED_FULL:
453                 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
454                 break;
455         case USB_SPEED_LOW:
456                 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
457                 break;
458         case USB_SPEED_WIRELESS:
459                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
460                 return -EINVAL;
461                 break;
462         default:
463                 /* Speed was set earlier, this shouldn't happen. */
464                 BUG();
465         }
466         /* Find the root hub port this device is under */
467         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
468                         top_dev = top_dev->parent)
469                 /* Found device below root hub */;
470         slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
471         xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
472
473         /* Is this a LS/FS device under a HS hub? */
474         if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
475                         udev->tt) {
476                 slot_ctx->tt_info = udev->tt->hub->slot_id;
477                 slot_ctx->tt_info |= udev->ttport << 8;
478                 if (udev->tt->multi)
479                         slot_ctx->dev_info |= DEV_MTT;
480         }
481         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
482         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
483
484         /* Step 4 - ring already allocated */
485         /* Step 5 */
486         ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
487         /*
488          * XXX: Not sure about wireless USB devices.
489          */
490         switch (udev->speed) {
491         case USB_SPEED_SUPER:
492                 ep0_ctx->ep_info2 |= MAX_PACKET(512);
493                 break;
494         case USB_SPEED_HIGH:
495         /* USB core guesses at a 64-byte max packet first for FS devices */
496         case USB_SPEED_FULL:
497                 ep0_ctx->ep_info2 |= MAX_PACKET(64);
498                 break;
499         case USB_SPEED_LOW:
500                 ep0_ctx->ep_info2 |= MAX_PACKET(8);
501                 break;
502         case USB_SPEED_WIRELESS:
503                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
504                 return -EINVAL;
505                 break;
506         default:
507                 /* New speed? */
508                 BUG();
509         }
510         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
511         ep0_ctx->ep_info2 |= MAX_BURST(0);
512         ep0_ctx->ep_info2 |= ERROR_COUNT(3);
513
514         ep0_ctx->deq =
515                 dev->eps[0].ring->first_seg->dma;
516         ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
517
518         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
519
520         return 0;
521 }
522
523 /* Return the polling or NAK interval.
524  *
525  * The polling interval is expressed in "microframes".  If xHCI's Interval field
526  * is set to N, it will service the endpoint every 2^(Interval)*125us.
527  *
528  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
529  * is set to 0.
530  */
531 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
532                 struct usb_host_endpoint *ep)
533 {
534         unsigned int interval = 0;
535
536         switch (udev->speed) {
537         case USB_SPEED_HIGH:
538                 /* Max NAK rate */
539                 if (usb_endpoint_xfer_control(&ep->desc) ||
540                                 usb_endpoint_xfer_bulk(&ep->desc))
541                         interval = ep->desc.bInterval;
542                 /* Fall through - SS and HS isoc/int have same decoding */
543         case USB_SPEED_SUPER:
544                 if (usb_endpoint_xfer_int(&ep->desc) ||
545                                 usb_endpoint_xfer_isoc(&ep->desc)) {
546                         if (ep->desc.bInterval == 0)
547                                 interval = 0;
548                         else
549                                 interval = ep->desc.bInterval - 1;
550                         if (interval > 15)
551                                 interval = 15;
552                         if (interval != ep->desc.bInterval + 1)
553                                 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
554                                                 ep->desc.bEndpointAddress, 1 << interval);
555                 }
556                 break;
557         /* Convert bInterval (in 1-255 frames) to microframes and round down to
558          * nearest power of 2.
559          */
560         case USB_SPEED_FULL:
561         case USB_SPEED_LOW:
562                 if (usb_endpoint_xfer_int(&ep->desc) ||
563                                 usb_endpoint_xfer_isoc(&ep->desc)) {
564                         interval = fls(8*ep->desc.bInterval) - 1;
565                         if (interval > 10)
566                                 interval = 10;
567                         if (interval < 3)
568                                 interval = 3;
569                         if ((1 << interval) != 8*ep->desc.bInterval)
570                                 dev_warn(&udev->dev,
571                                                 "ep %#x - rounding interval"
572                                                 " to %d microframes, "
573                                                 "ep desc says %d microframes\n",
574                                                 ep->desc.bEndpointAddress,
575                                                 1 << interval,
576                                                 8*ep->desc.bInterval);
577                 }
578                 break;
579         default:
580                 BUG();
581         }
582         return EP_INTERVAL(interval);
583 }
584
585 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
586                 struct usb_host_endpoint *ep)
587 {
588         int in;
589         u32 type;
590
591         in = usb_endpoint_dir_in(&ep->desc);
592         if (usb_endpoint_xfer_control(&ep->desc)) {
593                 type = EP_TYPE(CTRL_EP);
594         } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
595                 if (in)
596                         type = EP_TYPE(BULK_IN_EP);
597                 else
598                         type = EP_TYPE(BULK_OUT_EP);
599         } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
600                 if (in)
601                         type = EP_TYPE(ISOC_IN_EP);
602                 else
603                         type = EP_TYPE(ISOC_OUT_EP);
604         } else if (usb_endpoint_xfer_int(&ep->desc)) {
605                 if (in)
606                         type = EP_TYPE(INT_IN_EP);
607                 else
608                         type = EP_TYPE(INT_OUT_EP);
609         } else {
610                 BUG();
611         }
612         return type;
613 }
614
615 int xhci_endpoint_init(struct xhci_hcd *xhci,
616                 struct xhci_virt_device *virt_dev,
617                 struct usb_device *udev,
618                 struct usb_host_endpoint *ep,
619                 gfp_t mem_flags)
620 {
621         unsigned int ep_index;
622         struct xhci_ep_ctx *ep_ctx;
623         struct xhci_ring *ep_ring;
624         unsigned int max_packet;
625         unsigned int max_burst;
626
627         ep_index = xhci_get_endpoint_index(&ep->desc);
628         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
629
630         /* Set up the endpoint ring */
631         virt_dev->eps[ep_index].new_ring =
632                 xhci_ring_alloc(xhci, 1, true, mem_flags);
633         if (!virt_dev->eps[ep_index].new_ring) {
634                 /* Attempt to use the ring cache */
635                 if (virt_dev->num_rings_cached == 0)
636                         return -ENOMEM;
637                 virt_dev->eps[ep_index].new_ring =
638                         virt_dev->ring_cache[virt_dev->num_rings_cached];
639                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
640                 virt_dev->num_rings_cached--;
641                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
642         }
643         ep_ring = virt_dev->eps[ep_index].new_ring;
644         ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
645
646         ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
647
648         /* FIXME dig Mult and streams info out of ep companion desc */
649
650         /* Allow 3 retries for everything but isoc;
651          * error count = 0 means infinite retries.
652          */
653         if (!usb_endpoint_xfer_isoc(&ep->desc))
654                 ep_ctx->ep_info2 = ERROR_COUNT(3);
655         else
656                 ep_ctx->ep_info2 = ERROR_COUNT(1);
657
658         ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
659
660         /* Set the max packet size and max burst */
661         switch (udev->speed) {
662         case USB_SPEED_SUPER:
663                 max_packet = ep->desc.wMaxPacketSize;
664                 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
665                 /* dig out max burst from ep companion desc */
666                 if (!ep->ss_ep_comp) {
667                         xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
668                         max_packet = 0;
669                 } else {
670                         max_packet = ep->ss_ep_comp->desc.bMaxBurst;
671                 }
672                 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
673                 break;
674         case USB_SPEED_HIGH:
675                 /* bits 11:12 specify the number of additional transaction
676                  * opportunities per microframe (USB 2.0, section 9.6.6)
677                  */
678                 if (usb_endpoint_xfer_isoc(&ep->desc) ||
679                                 usb_endpoint_xfer_int(&ep->desc)) {
680                         max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
681                         ep_ctx->ep_info2 |= MAX_BURST(max_burst);
682                 }
683                 /* Fall through */
684         case USB_SPEED_FULL:
685         case USB_SPEED_LOW:
686                 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
687                 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
688                 break;
689         default:
690                 BUG();
691         }
692         /* FIXME Debug endpoint context */
693         return 0;
694 }
695
696 void xhci_endpoint_zero(struct xhci_hcd *xhci,
697                 struct xhci_virt_device *virt_dev,
698                 struct usb_host_endpoint *ep)
699 {
700         unsigned int ep_index;
701         struct xhci_ep_ctx *ep_ctx;
702
703         ep_index = xhci_get_endpoint_index(&ep->desc);
704         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
705
706         ep_ctx->ep_info = 0;
707         ep_ctx->ep_info2 = 0;
708         ep_ctx->deq = 0;
709         ep_ctx->tx_info = 0;
710         /* Don't free the endpoint ring until the set interface or configuration
711          * request succeeds.
712          */
713 }
714
715 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
716  * Useful when you want to change one particular aspect of the endpoint and then
717  * issue a configure endpoint command.
718  */
719 void xhci_endpoint_copy(struct xhci_hcd *xhci,
720                 struct xhci_container_ctx *in_ctx,
721                 struct xhci_container_ctx *out_ctx,
722                 unsigned int ep_index)
723 {
724         struct xhci_ep_ctx *out_ep_ctx;
725         struct xhci_ep_ctx *in_ep_ctx;
726
727         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
728         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
729
730         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
731         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
732         in_ep_ctx->deq = out_ep_ctx->deq;
733         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
734 }
735
736 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
737  * Useful when you want to change one particular aspect of the endpoint and then
738  * issue a configure endpoint command.  Only the context entries field matters,
739  * but we'll copy the whole thing anyway.
740  */
741 void xhci_slot_copy(struct xhci_hcd *xhci,
742                 struct xhci_container_ctx *in_ctx,
743                 struct xhci_container_ctx *out_ctx)
744 {
745         struct xhci_slot_ctx *in_slot_ctx;
746         struct xhci_slot_ctx *out_slot_ctx;
747
748         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
749         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
750
751         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
752         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
753         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
754         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
755 }
756
757 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
758 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
759 {
760         int i;
761         struct device *dev = xhci_to_hcd(xhci)->self.controller;
762         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
763
764         xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
765
766         if (!num_sp)
767                 return 0;
768
769         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
770         if (!xhci->scratchpad)
771                 goto fail_sp;
772
773         xhci->scratchpad->sp_array =
774                 pci_alloc_consistent(to_pci_dev(dev),
775                                      num_sp * sizeof(u64),
776                                      &xhci->scratchpad->sp_dma);
777         if (!xhci->scratchpad->sp_array)
778                 goto fail_sp2;
779
780         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
781         if (!xhci->scratchpad->sp_buffers)
782                 goto fail_sp3;
783
784         xhci->scratchpad->sp_dma_buffers =
785                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
786
787         if (!xhci->scratchpad->sp_dma_buffers)
788                 goto fail_sp4;
789
790         xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
791         for (i = 0; i < num_sp; i++) {
792                 dma_addr_t dma;
793                 void *buf = pci_alloc_consistent(to_pci_dev(dev),
794                                                  xhci->page_size, &dma);
795                 if (!buf)
796                         goto fail_sp5;
797
798                 xhci->scratchpad->sp_array[i] = dma;
799                 xhci->scratchpad->sp_buffers[i] = buf;
800                 xhci->scratchpad->sp_dma_buffers[i] = dma;
801         }
802
803         return 0;
804
805  fail_sp5:
806         for (i = i - 1; i >= 0; i--) {
807                 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
808                                     xhci->scratchpad->sp_buffers[i],
809                                     xhci->scratchpad->sp_dma_buffers[i]);
810         }
811         kfree(xhci->scratchpad->sp_dma_buffers);
812
813  fail_sp4:
814         kfree(xhci->scratchpad->sp_buffers);
815
816  fail_sp3:
817         pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
818                             xhci->scratchpad->sp_array,
819                             xhci->scratchpad->sp_dma);
820
821  fail_sp2:
822         kfree(xhci->scratchpad);
823         xhci->scratchpad = NULL;
824
825  fail_sp:
826         return -ENOMEM;
827 }
828
829 static void scratchpad_free(struct xhci_hcd *xhci)
830 {
831         int num_sp;
832         int i;
833         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
834
835         if (!xhci->scratchpad)
836                 return;
837
838         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
839
840         for (i = 0; i < num_sp; i++) {
841                 pci_free_consistent(pdev, xhci->page_size,
842                                     xhci->scratchpad->sp_buffers[i],
843                                     xhci->scratchpad->sp_dma_buffers[i]);
844         }
845         kfree(xhci->scratchpad->sp_dma_buffers);
846         kfree(xhci->scratchpad->sp_buffers);
847         pci_free_consistent(pdev, num_sp * sizeof(u64),
848                             xhci->scratchpad->sp_array,
849                             xhci->scratchpad->sp_dma);
850         kfree(xhci->scratchpad);
851         xhci->scratchpad = NULL;
852 }
853
854 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
855                 bool allocate_in_ctx, bool allocate_completion,
856                 gfp_t mem_flags)
857 {
858         struct xhci_command *command;
859
860         command = kzalloc(sizeof(*command), mem_flags);
861         if (!command)
862                 return NULL;
863
864         if (allocate_in_ctx) {
865                 command->in_ctx =
866                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
867                                         mem_flags);
868                 if (!command->in_ctx) {
869                         kfree(command);
870                         return NULL;
871                 }
872         }
873
874         if (allocate_completion) {
875                 command->completion =
876                         kzalloc(sizeof(struct completion), mem_flags);
877                 if (!command->completion) {
878                         xhci_free_container_ctx(xhci, command->in_ctx);
879                         kfree(command);
880                         return NULL;
881                 }
882                 init_completion(command->completion);
883         }
884
885         command->status = 0;
886         INIT_LIST_HEAD(&command->cmd_list);
887         return command;
888 }
889
890 void xhci_free_command(struct xhci_hcd *xhci,
891                 struct xhci_command *command)
892 {
893         xhci_free_container_ctx(xhci,
894                         command->in_ctx);
895         kfree(command->completion);
896         kfree(command);
897 }
898
899 void xhci_mem_cleanup(struct xhci_hcd *xhci)
900 {
901         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
902         int size;
903         int i;
904
905         /* Free the Event Ring Segment Table and the actual Event Ring */
906         if (xhci->ir_set) {
907                 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
908                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
909                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
910         }
911         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
912         if (xhci->erst.entries)
913                 pci_free_consistent(pdev, size,
914                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
915         xhci->erst.entries = NULL;
916         xhci_dbg(xhci, "Freed ERST\n");
917         if (xhci->event_ring)
918                 xhci_ring_free(xhci, xhci->event_ring);
919         xhci->event_ring = NULL;
920         xhci_dbg(xhci, "Freed event ring\n");
921
922         xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
923         if (xhci->cmd_ring)
924                 xhci_ring_free(xhci, xhci->cmd_ring);
925         xhci->cmd_ring = NULL;
926         xhci_dbg(xhci, "Freed command ring\n");
927
928         for (i = 1; i < MAX_HC_SLOTS; ++i)
929                 xhci_free_virt_device(xhci, i);
930
931         if (xhci->segment_pool)
932                 dma_pool_destroy(xhci->segment_pool);
933         xhci->segment_pool = NULL;
934         xhci_dbg(xhci, "Freed segment pool\n");
935
936         if (xhci->device_pool)
937                 dma_pool_destroy(xhci->device_pool);
938         xhci->device_pool = NULL;
939         xhci_dbg(xhci, "Freed device context pool\n");
940
941         xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
942         if (xhci->dcbaa)
943                 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
944                                 xhci->dcbaa, xhci->dcbaa->dma);
945         xhci->dcbaa = NULL;
946
947         scratchpad_free(xhci);
948         xhci->page_size = 0;
949         xhci->page_shift = 0;
950 }
951
952 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
953                 struct xhci_segment *input_seg,
954                 union xhci_trb *start_trb,
955                 union xhci_trb *end_trb,
956                 dma_addr_t input_dma,
957                 struct xhci_segment *result_seg,
958                 char *test_name, int test_number)
959 {
960         unsigned long long start_dma;
961         unsigned long long end_dma;
962         struct xhci_segment *seg;
963
964         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
965         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
966
967         seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
968         if (seg != result_seg) {
969                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
970                                 test_name, test_number);
971                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
972                                 "input DMA 0x%llx\n",
973                                 input_seg,
974                                 (unsigned long long) input_dma);
975                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
976                                 "ending TRB %p (0x%llx DMA)\n",
977                                 start_trb, start_dma,
978                                 end_trb, end_dma);
979                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
980                                 result_seg, seg);
981                 return -1;
982         }
983         return 0;
984 }
985
986 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
987 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
988 {
989         struct {
990                 dma_addr_t              input_dma;
991                 struct xhci_segment     *result_seg;
992         } simple_test_vector [] = {
993                 /* A zeroed DMA field should fail */
994                 { 0, NULL },
995                 /* One TRB before the ring start should fail */
996                 { xhci->event_ring->first_seg->dma - 16, NULL },
997                 /* One byte before the ring start should fail */
998                 { xhci->event_ring->first_seg->dma - 1, NULL },
999                 /* Starting TRB should succeed */
1000                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1001                 /* Ending TRB should succeed */
1002                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1003                         xhci->event_ring->first_seg },
1004                 /* One byte after the ring end should fail */
1005                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1006                 /* One TRB after the ring end should fail */
1007                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1008                 /* An address of all ones should fail */
1009                 { (dma_addr_t) (~0), NULL },
1010         };
1011         struct {
1012                 struct xhci_segment     *input_seg;
1013                 union xhci_trb          *start_trb;
1014                 union xhci_trb          *end_trb;
1015                 dma_addr_t              input_dma;
1016                 struct xhci_segment     *result_seg;
1017         } complex_test_vector [] = {
1018                 /* Test feeding a valid DMA address from a different ring */
1019                 {       .input_seg = xhci->event_ring->first_seg,
1020                         .start_trb = xhci->event_ring->first_seg->trbs,
1021                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1022                         .input_dma = xhci->cmd_ring->first_seg->dma,
1023                         .result_seg = NULL,
1024                 },
1025                 /* Test feeding a valid end TRB from a different ring */
1026                 {       .input_seg = xhci->event_ring->first_seg,
1027                         .start_trb = xhci->event_ring->first_seg->trbs,
1028                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1029                         .input_dma = xhci->cmd_ring->first_seg->dma,
1030                         .result_seg = NULL,
1031                 },
1032                 /* Test feeding a valid start and end TRB from a different ring */
1033                 {       .input_seg = xhci->event_ring->first_seg,
1034                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1035                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1036                         .input_dma = xhci->cmd_ring->first_seg->dma,
1037                         .result_seg = NULL,
1038                 },
1039                 /* TRB in this ring, but after this TD */
1040                 {       .input_seg = xhci->event_ring->first_seg,
1041                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1042                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1043                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1044                         .result_seg = NULL,
1045                 },
1046                 /* TRB in this ring, but before this TD */
1047                 {       .input_seg = xhci->event_ring->first_seg,
1048                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1049                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1050                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1051                         .result_seg = NULL,
1052                 },
1053                 /* TRB in this ring, but after this wrapped TD */
1054                 {       .input_seg = xhci->event_ring->first_seg,
1055                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1056                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1057                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1058                         .result_seg = NULL,
1059                 },
1060                 /* TRB in this ring, but before this wrapped TD */
1061                 {       .input_seg = xhci->event_ring->first_seg,
1062                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1063                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1064                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1065                         .result_seg = NULL,
1066                 },
1067                 /* TRB not in this ring, and we have a wrapped TD */
1068                 {       .input_seg = xhci->event_ring->first_seg,
1069                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1070                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1071                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1072                         .result_seg = NULL,
1073                 },
1074         };
1075
1076         unsigned int num_tests;
1077         int i, ret;
1078
1079         num_tests = sizeof(simple_test_vector) / sizeof(simple_test_vector[0]);
1080         for (i = 0; i < num_tests; i++) {
1081                 ret = xhci_test_trb_in_td(xhci,
1082                                 xhci->event_ring->first_seg,
1083                                 xhci->event_ring->first_seg->trbs,
1084                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1085                                 simple_test_vector[i].input_dma,
1086                                 simple_test_vector[i].result_seg,
1087                                 "Simple", i);
1088                 if (ret < 0)
1089                         return ret;
1090         }
1091
1092         num_tests = sizeof(complex_test_vector) / sizeof(complex_test_vector[0]);
1093         for (i = 0; i < num_tests; i++) {
1094                 ret = xhci_test_trb_in_td(xhci,
1095                                 complex_test_vector[i].input_seg,
1096                                 complex_test_vector[i].start_trb,
1097                                 complex_test_vector[i].end_trb,
1098                                 complex_test_vector[i].input_dma,
1099                                 complex_test_vector[i].result_seg,
1100                                 "Complex", i);
1101                 if (ret < 0)
1102                         return ret;
1103         }
1104         xhci_dbg(xhci, "TRB math tests passed.\n");
1105         return 0;
1106 }
1107
1108
1109 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1110 {
1111         dma_addr_t      dma;
1112         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
1113         unsigned int    val, val2;
1114         u64             val_64;
1115         struct xhci_segment     *seg;
1116         u32 page_size;
1117         int i;
1118
1119         page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1120         xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1121         for (i = 0; i < 16; i++) {
1122                 if ((0x1 & page_size) != 0)
1123                         break;
1124                 page_size = page_size >> 1;
1125         }
1126         if (i < 16)
1127                 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1128         else
1129                 xhci_warn(xhci, "WARN: no supported page size\n");
1130         /* Use 4K pages, since that's common and the minimum the HC supports */
1131         xhci->page_shift = 12;
1132         xhci->page_size = 1 << xhci->page_shift;
1133         xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1134
1135         /*
1136          * Program the Number of Device Slots Enabled field in the CONFIG
1137          * register with the max value of slots the HC can handle.
1138          */
1139         val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1140         xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1141                         (unsigned int) val);
1142         val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1143         val |= (val2 & ~HCS_SLOTS_MASK);
1144         xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1145                         (unsigned int) val);
1146         xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1147
1148         /*
1149          * Section 5.4.8 - doorbell array must be
1150          * "physically contiguous and 64-byte (cache line) aligned".
1151          */
1152         xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1153                         sizeof(*xhci->dcbaa), &dma);
1154         if (!xhci->dcbaa)
1155                 goto fail;
1156         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1157         xhci->dcbaa->dma = dma;
1158         xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1159                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1160         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1161
1162         /*
1163          * Initialize the ring segment pool.  The ring must be a contiguous
1164          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1165          * however, the command ring segment needs 64-byte aligned segments,
1166          * so we pick the greater alignment need.
1167          */
1168         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1169                         SEGMENT_SIZE, 64, xhci->page_size);
1170
1171         /* See Table 46 and Note on Figure 55 */
1172         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1173                         2112, 64, xhci->page_size);
1174         if (!xhci->segment_pool || !xhci->device_pool)
1175                 goto fail;
1176
1177         /* Set up the command ring to have one segments for now. */
1178         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1179         if (!xhci->cmd_ring)
1180                 goto fail;
1181         xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1182         xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1183                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
1184
1185         /* Set the address in the Command Ring Control register */
1186         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1187         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
1188                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
1189                 xhci->cmd_ring->cycle_state;
1190         xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
1191         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
1192         xhci_dbg_cmd_ptrs(xhci);
1193
1194         val = xhci_readl(xhci, &xhci->cap_regs->db_off);
1195         val &= DBOFF_MASK;
1196         xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
1197                         " from cap regs base addr\n", val);
1198         xhci->dba = (void *) xhci->cap_regs + val;
1199         xhci_dbg_regs(xhci);
1200         xhci_print_run_regs(xhci);
1201         /* Set ir_set to interrupt register set 0 */
1202         xhci->ir_set = (void *) xhci->run_regs->ir_set;
1203
1204         /*
1205          * Event ring setup: Allocate a normal ring, but also setup
1206          * the event ring segment table (ERST).  Section 4.9.3.
1207          */
1208         xhci_dbg(xhci, "// Allocating event ring\n");
1209         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
1210         if (!xhci->event_ring)
1211                 goto fail;
1212         if (xhci_check_trb_in_td_math(xhci, flags) < 0)
1213                 goto fail;
1214
1215         xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
1216                         sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
1217         if (!xhci->erst.entries)
1218                 goto fail;
1219         xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
1220                         (unsigned long long)dma);
1221
1222         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
1223         xhci->erst.num_entries = ERST_NUM_SEGS;
1224         xhci->erst.erst_dma_addr = dma;
1225         xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
1226                         xhci->erst.num_entries,
1227                         xhci->erst.entries,
1228                         (unsigned long long)xhci->erst.erst_dma_addr);
1229
1230         /* set ring base address and size for each segment table entry */
1231         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
1232                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
1233                 entry->seg_addr = seg->dma;
1234                 entry->seg_size = TRBS_PER_SEGMENT;
1235                 entry->rsvd = 0;
1236                 seg = seg->next;
1237         }
1238
1239         /* set ERST count with the number of entries in the segment table */
1240         val = xhci_readl(xhci, &xhci->ir_set->erst_size);
1241         val &= ERST_SIZE_MASK;
1242         val |= ERST_NUM_SEGS;
1243         xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
1244                         val);
1245         xhci_writel(xhci, val, &xhci->ir_set->erst_size);
1246
1247         xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
1248         /* set the segment table base address */
1249         xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
1250                         (unsigned long long)xhci->erst.erst_dma_addr);
1251         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
1252         val_64 &= ERST_PTR_MASK;
1253         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
1254         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
1255
1256         /* Set the event ring dequeue address */
1257         xhci_set_hc_event_deq(xhci);
1258         xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
1259         xhci_print_ir_set(xhci, xhci->ir_set, 0);
1260
1261         /*
1262          * XXX: Might need to set the Interrupter Moderation Register to
1263          * something other than the default (~1ms minimum between interrupts).
1264          * See section 5.5.1.2.
1265          */
1266         init_completion(&xhci->addr_dev);
1267         for (i = 0; i < MAX_HC_SLOTS; ++i)
1268                 xhci->devs[i] = 0;
1269
1270         if (scratchpad_alloc(xhci, flags))
1271                 goto fail;
1272
1273         return 0;
1274
1275 fail:
1276         xhci_warn(xhci, "Couldn't initialize memory\n");
1277         xhci_mem_cleanup(xhci);
1278         return -ENOMEM;
1279 }