usb: convert endpoint devices to bus-less childs of the usb interface
[safe/jmp/linux-2.6] / drivers / usb / core / usb.c
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/mutex.h>
36 #include <linux/workqueue.h>
37 #include <linux/debugfs.h>
38
39 #include <asm/io.h>
40 #include <linux/scatterlist.h>
41 #include <linux/mm.h>
42 #include <linux/dma-mapping.h>
43
44 #include "hcd.h"
45 #include "usb.h"
46
47
48 const char *usbcore_name = "usbcore";
49
50 static int nousb;       /* Disable USB when built into kernel image */
51
52 /* Workqueue for autosuspend and for remote wakeup of root hubs */
53 struct workqueue_struct *ksuspend_usb_wq;
54
55 #ifdef  CONFIG_USB_SUSPEND
56 static int usb_autosuspend_delay = 2;           /* Default delay value,
57                                                  * in seconds */
58 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
59 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
60
61 #else
62 #define usb_autosuspend_delay           0
63 #endif
64
65
66 /**
67  * usb_ifnum_to_if - get the interface object with a given interface number
68  * @dev: the device whose current configuration is considered
69  * @ifnum: the desired interface
70  *
71  * This walks the device descriptor for the currently active configuration
72  * and returns a pointer to the interface with that particular interface
73  * number, or null.
74  *
75  * Note that configuration descriptors are not required to assign interface
76  * numbers sequentially, so that it would be incorrect to assume that
77  * the first interface in that descriptor corresponds to interface zero.
78  * This routine helps device drivers avoid such mistakes.
79  * However, you should make sure that you do the right thing with any
80  * alternate settings available for this interfaces.
81  *
82  * Don't call this function unless you are bound to one of the interfaces
83  * on this device or you have locked the device!
84  */
85 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
86                                       unsigned ifnum)
87 {
88         struct usb_host_config *config = dev->actconfig;
89         int i;
90
91         if (!config)
92                 return NULL;
93         for (i = 0; i < config->desc.bNumInterfaces; i++)
94                 if (config->interface[i]->altsetting[0]
95                                 .desc.bInterfaceNumber == ifnum)
96                         return config->interface[i];
97
98         return NULL;
99 }
100 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
101
102 /**
103  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
104  * @intf: the interface containing the altsetting in question
105  * @altnum: the desired alternate setting number
106  *
107  * This searches the altsetting array of the specified interface for
108  * an entry with the correct bAlternateSetting value and returns a pointer
109  * to that entry, or null.
110  *
111  * Note that altsettings need not be stored sequentially by number, so
112  * it would be incorrect to assume that the first altsetting entry in
113  * the array corresponds to altsetting zero.  This routine helps device
114  * drivers avoid such mistakes.
115  *
116  * Don't call this function unless you are bound to the intf interface
117  * or you have locked the device!
118  */
119 struct usb_host_interface *usb_altnum_to_altsetting(
120                                         const struct usb_interface *intf,
121                                         unsigned int altnum)
122 {
123         int i;
124
125         for (i = 0; i < intf->num_altsetting; i++) {
126                 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
127                         return &intf->altsetting[i];
128         }
129         return NULL;
130 }
131 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
132
133 struct find_interface_arg {
134         int minor;
135         struct usb_interface *interface;
136 };
137
138 static int __find_interface(struct device *dev, void *data)
139 {
140         struct find_interface_arg *arg = data;
141         struct usb_interface *intf;
142
143         if (!is_usb_interface(dev))
144                 return 0;
145
146         intf = to_usb_interface(dev);
147         if (intf->minor != -1 && intf->minor == arg->minor) {
148                 arg->interface = intf;
149                 return 1;
150         }
151         return 0;
152 }
153
154 /**
155  * usb_find_interface - find usb_interface pointer for driver and device
156  * @drv: the driver whose current configuration is considered
157  * @minor: the minor number of the desired device
158  *
159  * This walks the driver device list and returns a pointer to the interface
160  * with the matching minor.  Note, this only works for devices that share the
161  * USB major number.
162  */
163 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
164 {
165         struct find_interface_arg argb;
166         int retval;
167
168         argb.minor = minor;
169         argb.interface = NULL;
170         /* eat the error, it will be in argb.interface */
171         retval = driver_for_each_device(&drv->drvwrap.driver, NULL, &argb,
172                                         __find_interface);
173         return argb.interface;
174 }
175 EXPORT_SYMBOL_GPL(usb_find_interface);
176
177 /**
178  * usb_release_dev - free a usb device structure when all users of it are finished.
179  * @dev: device that's been disconnected
180  *
181  * Will be called only by the device core when all users of this usb device are
182  * done.
183  */
184 static void usb_release_dev(struct device *dev)
185 {
186         struct usb_device *udev;
187
188         udev = to_usb_device(dev);
189
190         usb_destroy_configuration(udev);
191         usb_put_hcd(bus_to_hcd(udev->bus));
192         kfree(udev->product);
193         kfree(udev->manufacturer);
194         kfree(udev->serial);
195         kfree(udev);
196 }
197
198 #ifdef  CONFIG_HOTPLUG
199 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
200 {
201         struct usb_device *usb_dev;
202
203         usb_dev = to_usb_device(dev);
204
205         if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
206                 return -ENOMEM;
207
208         if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
209                 return -ENOMEM;
210
211         return 0;
212 }
213
214 #else
215
216 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
217 {
218         return -ENODEV;
219 }
220 #endif  /* CONFIG_HOTPLUG */
221
222 #ifdef  CONFIG_PM
223
224 static int ksuspend_usb_init(void)
225 {
226         /* This workqueue is supposed to be both freezable and
227          * singlethreaded.  Its job doesn't justify running on more
228          * than one CPU.
229          */
230         ksuspend_usb_wq = create_freezeable_workqueue("ksuspend_usbd");
231         if (!ksuspend_usb_wq)
232                 return -ENOMEM;
233         return 0;
234 }
235
236 static void ksuspend_usb_cleanup(void)
237 {
238         destroy_workqueue(ksuspend_usb_wq);
239 }
240
241 /* USB device Power-Management thunks.
242  * There's no need to distinguish here between quiescing a USB device
243  * and powering it down; the generic_suspend() routine takes care of
244  * it by skipping the usb_port_suspend() call for a quiesce.  And for
245  * USB interfaces there's no difference at all.
246  */
247
248 static int usb_dev_prepare(struct device *dev)
249 {
250         return 0;               /* Implement eventually? */
251 }
252
253 static void usb_dev_complete(struct device *dev)
254 {
255         /* Currently used only for rebinding interfaces */
256         usb_resume(dev, PMSG_RESUME);   /* Message event is meaningless */
257 }
258
259 static int usb_dev_suspend(struct device *dev)
260 {
261         return usb_suspend(dev, PMSG_SUSPEND);
262 }
263
264 static int usb_dev_resume(struct device *dev)
265 {
266         return usb_resume(dev, PMSG_RESUME);
267 }
268
269 static int usb_dev_freeze(struct device *dev)
270 {
271         return usb_suspend(dev, PMSG_FREEZE);
272 }
273
274 static int usb_dev_thaw(struct device *dev)
275 {
276         return usb_resume(dev, PMSG_THAW);
277 }
278
279 static int usb_dev_poweroff(struct device *dev)
280 {
281         return usb_suspend(dev, PMSG_HIBERNATE);
282 }
283
284 static int usb_dev_restore(struct device *dev)
285 {
286         return usb_resume(dev, PMSG_RESTORE);
287 }
288
289 static struct dev_pm_ops usb_device_pm_ops = {
290         .prepare =      usb_dev_prepare,
291         .complete =     usb_dev_complete,
292         .suspend =      usb_dev_suspend,
293         .resume =       usb_dev_resume,
294         .freeze =       usb_dev_freeze,
295         .thaw =         usb_dev_thaw,
296         .poweroff =     usb_dev_poweroff,
297         .restore =      usb_dev_restore,
298 };
299
300 #else
301
302 #define ksuspend_usb_init()     0
303 #define ksuspend_usb_cleanup()  do {} while (0)
304 #define usb_device_pm_ops       (*(struct dev_pm_ops *)0)
305
306 #endif  /* CONFIG_PM */
307
308 struct device_type usb_device_type = {
309         .name =         "usb_device",
310         .release =      usb_release_dev,
311         .uevent =       usb_dev_uevent,
312         .pm =           &usb_device_pm_ops,
313 };
314
315
316 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
317 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
318 {
319         struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
320         return hcd->wireless;
321 }
322
323
324 /**
325  * usb_alloc_dev - usb device constructor (usbcore-internal)
326  * @parent: hub to which device is connected; null to allocate a root hub
327  * @bus: bus used to access the device
328  * @port1: one-based index of port; ignored for root hubs
329  * Context: !in_interrupt()
330  *
331  * Only hub drivers (including virtual root hub drivers for host
332  * controllers) should ever call this.
333  *
334  * This call may not be used in a non-sleeping context.
335  */
336 struct usb_device *usb_alloc_dev(struct usb_device *parent,
337                                  struct usb_bus *bus, unsigned port1)
338 {
339         struct usb_device *dev;
340         struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
341         unsigned root_hub = 0;
342
343         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
344         if (!dev)
345                 return NULL;
346
347         if (!usb_get_hcd(bus_to_hcd(bus))) {
348                 kfree(dev);
349                 return NULL;
350         }
351
352         device_initialize(&dev->dev);
353         dev->dev.bus = &usb_bus_type;
354         dev->dev.type = &usb_device_type;
355         dev->dev.groups = usb_device_groups;
356         dev->dev.dma_mask = bus->controller->dma_mask;
357         set_dev_node(&dev->dev, dev_to_node(bus->controller));
358         dev->state = USB_STATE_ATTACHED;
359         atomic_set(&dev->urbnum, 0);
360
361         INIT_LIST_HEAD(&dev->ep0.urb_list);
362         dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
363         dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
364         /* ep0 maxpacket comes later, from device descriptor */
365         usb_enable_endpoint(dev, &dev->ep0, false);
366         dev->can_submit = 1;
367
368         /* Save readable and stable topology id, distinguishing devices
369          * by location for diagnostics, tools, driver model, etc.  The
370          * string is a path along hub ports, from the root.  Each device's
371          * dev->devpath will be stable until USB is re-cabled, and hubs
372          * are often labeled with these port numbers.  The name isn't
373          * as stable:  bus->busnum changes easily from modprobe order,
374          * cardbus or pci hotplugging, and so on.
375          */
376         if (unlikely(!parent)) {
377                 dev->devpath[0] = '0';
378
379                 dev->dev.parent = bus->controller;
380                 dev_set_name(&dev->dev, "usb%d", bus->busnum);
381                 root_hub = 1;
382         } else {
383                 /* match any labeling on the hubs; it's one-based */
384                 if (parent->devpath[0] == '0')
385                         snprintf(dev->devpath, sizeof dev->devpath,
386                                 "%d", port1);
387                 else
388                         snprintf(dev->devpath, sizeof dev->devpath,
389                                 "%s.%d", parent->devpath, port1);
390
391                 dev->dev.parent = &parent->dev;
392                 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
393
394                 /* hub driver sets up TT records */
395         }
396
397         dev->portnum = port1;
398         dev->bus = bus;
399         dev->parent = parent;
400         INIT_LIST_HEAD(&dev->filelist);
401
402 #ifdef  CONFIG_PM
403         mutex_init(&dev->pm_mutex);
404         INIT_DELAYED_WORK(&dev->autosuspend, usb_autosuspend_work);
405         INIT_WORK(&dev->autoresume, usb_autoresume_work);
406         dev->autosuspend_delay = usb_autosuspend_delay * HZ;
407         dev->connect_time = jiffies;
408         dev->active_duration = -jiffies;
409 #endif
410         if (root_hub)   /* Root hub always ok [and always wired] */
411                 dev->authorized = 1;
412         else {
413                 dev->authorized = usb_hcd->authorized_default;
414                 dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
415         }
416         return dev;
417 }
418
419 /**
420  * usb_get_dev - increments the reference count of the usb device structure
421  * @dev: the device being referenced
422  *
423  * Each live reference to a device should be refcounted.
424  *
425  * Drivers for USB interfaces should normally record such references in
426  * their probe() methods, when they bind to an interface, and release
427  * them by calling usb_put_dev(), in their disconnect() methods.
428  *
429  * A pointer to the device with the incremented reference counter is returned.
430  */
431 struct usb_device *usb_get_dev(struct usb_device *dev)
432 {
433         if (dev)
434                 get_device(&dev->dev);
435         return dev;
436 }
437 EXPORT_SYMBOL_GPL(usb_get_dev);
438
439 /**
440  * usb_put_dev - release a use of the usb device structure
441  * @dev: device that's been disconnected
442  *
443  * Must be called when a user of a device is finished with it.  When the last
444  * user of the device calls this function, the memory of the device is freed.
445  */
446 void usb_put_dev(struct usb_device *dev)
447 {
448         if (dev)
449                 put_device(&dev->dev);
450 }
451 EXPORT_SYMBOL_GPL(usb_put_dev);
452
453 /**
454  * usb_get_intf - increments the reference count of the usb interface structure
455  * @intf: the interface being referenced
456  *
457  * Each live reference to a interface must be refcounted.
458  *
459  * Drivers for USB interfaces should normally record such references in
460  * their probe() methods, when they bind to an interface, and release
461  * them by calling usb_put_intf(), in their disconnect() methods.
462  *
463  * A pointer to the interface with the incremented reference counter is
464  * returned.
465  */
466 struct usb_interface *usb_get_intf(struct usb_interface *intf)
467 {
468         if (intf)
469                 get_device(&intf->dev);
470         return intf;
471 }
472 EXPORT_SYMBOL_GPL(usb_get_intf);
473
474 /**
475  * usb_put_intf - release a use of the usb interface structure
476  * @intf: interface that's been decremented
477  *
478  * Must be called when a user of an interface is finished with it.  When the
479  * last user of the interface calls this function, the memory of the interface
480  * is freed.
481  */
482 void usb_put_intf(struct usb_interface *intf)
483 {
484         if (intf)
485                 put_device(&intf->dev);
486 }
487 EXPORT_SYMBOL_GPL(usb_put_intf);
488
489 /*                      USB device locking
490  *
491  * USB devices and interfaces are locked using the semaphore in their
492  * embedded struct device.  The hub driver guarantees that whenever a
493  * device is connected or disconnected, drivers are called with the
494  * USB device locked as well as their particular interface.
495  *
496  * Complications arise when several devices are to be locked at the same
497  * time.  Only hub-aware drivers that are part of usbcore ever have to
498  * do this; nobody else needs to worry about it.  The rule for locking
499  * is simple:
500  *
501  *      When locking both a device and its parent, always lock the
502  *      the parent first.
503  */
504
505 /**
506  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
507  * @udev: device that's being locked
508  * @iface: interface bound to the driver making the request (optional)
509  *
510  * Attempts to acquire the device lock, but fails if the device is
511  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
512  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
513  * lock, the routine polls repeatedly.  This is to prevent deadlock with
514  * disconnect; in some drivers (such as usb-storage) the disconnect()
515  * or suspend() method will block waiting for a device reset to complete.
516  *
517  * Returns a negative error code for failure, otherwise 0.
518  */
519 int usb_lock_device_for_reset(struct usb_device *udev,
520                               const struct usb_interface *iface)
521 {
522         unsigned long jiffies_expire = jiffies + HZ;
523
524         if (udev->state == USB_STATE_NOTATTACHED)
525                 return -ENODEV;
526         if (udev->state == USB_STATE_SUSPENDED)
527                 return -EHOSTUNREACH;
528         if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
529                         iface->condition == USB_INTERFACE_UNBOUND))
530                 return -EINTR;
531
532         while (usb_trylock_device(udev) != 0) {
533
534                 /* If we can't acquire the lock after waiting one second,
535                  * we're probably deadlocked */
536                 if (time_after(jiffies, jiffies_expire))
537                         return -EBUSY;
538
539                 msleep(15);
540                 if (udev->state == USB_STATE_NOTATTACHED)
541                         return -ENODEV;
542                 if (udev->state == USB_STATE_SUSPENDED)
543                         return -EHOSTUNREACH;
544                 if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
545                                 iface->condition == USB_INTERFACE_UNBOUND))
546                         return -EINTR;
547         }
548         return 0;
549 }
550 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
551
552 static struct usb_device *match_device(struct usb_device *dev,
553                                        u16 vendor_id, u16 product_id)
554 {
555         struct usb_device *ret_dev = NULL;
556         int child;
557
558         dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
559             le16_to_cpu(dev->descriptor.idVendor),
560             le16_to_cpu(dev->descriptor.idProduct));
561
562         /* see if this device matches */
563         if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
564             (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
565                 dev_dbg(&dev->dev, "matched this device!\n");
566                 ret_dev = usb_get_dev(dev);
567                 goto exit;
568         }
569
570         /* look through all of the children of this device */
571         for (child = 0; child < dev->maxchild; ++child) {
572                 if (dev->children[child]) {
573                         usb_lock_device(dev->children[child]);
574                         ret_dev = match_device(dev->children[child],
575                                                vendor_id, product_id);
576                         usb_unlock_device(dev->children[child]);
577                         if (ret_dev)
578                                 goto exit;
579                 }
580         }
581 exit:
582         return ret_dev;
583 }
584
585 /**
586  * usb_find_device - find a specific usb device in the system
587  * @vendor_id: the vendor id of the device to find
588  * @product_id: the product id of the device to find
589  *
590  * Returns a pointer to a struct usb_device if such a specified usb
591  * device is present in the system currently.  The usage count of the
592  * device will be incremented if a device is found.  Make sure to call
593  * usb_put_dev() when the caller is finished with the device.
594  *
595  * If a device with the specified vendor and product id is not found,
596  * NULL is returned.
597  */
598 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
599 {
600         struct list_head *buslist;
601         struct usb_bus *bus;
602         struct usb_device *dev = NULL;
603
604         mutex_lock(&usb_bus_list_lock);
605         for (buslist = usb_bus_list.next;
606              buslist != &usb_bus_list;
607              buslist = buslist->next) {
608                 bus = container_of(buslist, struct usb_bus, bus_list);
609                 if (!bus->root_hub)
610                         continue;
611                 usb_lock_device(bus->root_hub);
612                 dev = match_device(bus->root_hub, vendor_id, product_id);
613                 usb_unlock_device(bus->root_hub);
614                 if (dev)
615                         goto exit;
616         }
617 exit:
618         mutex_unlock(&usb_bus_list_lock);
619         return dev;
620 }
621
622 /**
623  * usb_get_current_frame_number - return current bus frame number
624  * @dev: the device whose bus is being queried
625  *
626  * Returns the current frame number for the USB host controller
627  * used with the given USB device.  This can be used when scheduling
628  * isochronous requests.
629  *
630  * Note that different kinds of host controller have different
631  * "scheduling horizons".  While one type might support scheduling only
632  * 32 frames into the future, others could support scheduling up to
633  * 1024 frames into the future.
634  */
635 int usb_get_current_frame_number(struct usb_device *dev)
636 {
637         return usb_hcd_get_frame_number(dev);
638 }
639 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
640
641 /*-------------------------------------------------------------------*/
642 /*
643  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
644  * extra field of the interface and endpoint descriptor structs.
645  */
646
647 int __usb_get_extra_descriptor(char *buffer, unsigned size,
648                                unsigned char type, void **ptr)
649 {
650         struct usb_descriptor_header *header;
651
652         while (size >= sizeof(struct usb_descriptor_header)) {
653                 header = (struct usb_descriptor_header *)buffer;
654
655                 if (header->bLength < 2) {
656                         printk(KERN_ERR
657                                 "%s: bogus descriptor, type %d length %d\n",
658                                 usbcore_name,
659                                 header->bDescriptorType,
660                                 header->bLength);
661                         return -1;
662                 }
663
664                 if (header->bDescriptorType == type) {
665                         *ptr = header;
666                         return 0;
667                 }
668
669                 buffer += header->bLength;
670                 size -= header->bLength;
671         }
672         return -1;
673 }
674 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
675
676 /**
677  * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
678  * @dev: device the buffer will be used with
679  * @size: requested buffer size
680  * @mem_flags: affect whether allocation may block
681  * @dma: used to return DMA address of buffer
682  *
683  * Return value is either null (indicating no buffer could be allocated), or
684  * the cpu-space pointer to a buffer that may be used to perform DMA to the
685  * specified device.  Such cpu-space buffers are returned along with the DMA
686  * address (through the pointer provided).
687  *
688  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
689  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
690  * hardware during URB completion/resubmit.  The implementation varies between
691  * platforms, depending on details of how DMA will work to this device.
692  * Using these buffers also eliminates cacheline sharing problems on
693  * architectures where CPU caches are not DMA-coherent.  On systems without
694  * bus-snooping caches, these buffers are uncached.
695  *
696  * When the buffer is no longer used, free it with usb_buffer_free().
697  */
698 void *usb_buffer_alloc(struct usb_device *dev, size_t size, gfp_t mem_flags,
699                        dma_addr_t *dma)
700 {
701         if (!dev || !dev->bus)
702                 return NULL;
703         return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
704 }
705 EXPORT_SYMBOL_GPL(usb_buffer_alloc);
706
707 /**
708  * usb_buffer_free - free memory allocated with usb_buffer_alloc()
709  * @dev: device the buffer was used with
710  * @size: requested buffer size
711  * @addr: CPU address of buffer
712  * @dma: DMA address of buffer
713  *
714  * This reclaims an I/O buffer, letting it be reused.  The memory must have
715  * been allocated using usb_buffer_alloc(), and the parameters must match
716  * those provided in that allocation request.
717  */
718 void usb_buffer_free(struct usb_device *dev, size_t size, void *addr,
719                      dma_addr_t dma)
720 {
721         if (!dev || !dev->bus)
722                 return;
723         if (!addr)
724                 return;
725         hcd_buffer_free(dev->bus, size, addr, dma);
726 }
727 EXPORT_SYMBOL_GPL(usb_buffer_free);
728
729 /**
730  * usb_buffer_map - create DMA mapping(s) for an urb
731  * @urb: urb whose transfer_buffer/setup_packet will be mapped
732  *
733  * Return value is either null (indicating no buffer could be mapped), or
734  * the parameter.  URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
735  * added to urb->transfer_flags if the operation succeeds.  If the device
736  * is connected to this system through a non-DMA controller, this operation
737  * always succeeds.
738  *
739  * This call would normally be used for an urb which is reused, perhaps
740  * as the target of a large periodic transfer, with usb_buffer_dmasync()
741  * calls to synchronize memory and dma state.
742  *
743  * Reverse the effect of this call with usb_buffer_unmap().
744  */
745 #if 0
746 struct urb *usb_buffer_map(struct urb *urb)
747 {
748         struct usb_bus          *bus;
749         struct device           *controller;
750
751         if (!urb
752                         || !urb->dev
753                         || !(bus = urb->dev->bus)
754                         || !(controller = bus->controller))
755                 return NULL;
756
757         if (controller->dma_mask) {
758                 urb->transfer_dma = dma_map_single(controller,
759                         urb->transfer_buffer, urb->transfer_buffer_length,
760                         usb_pipein(urb->pipe)
761                                 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
762                 if (usb_pipecontrol(urb->pipe))
763                         urb->setup_dma = dma_map_single(controller,
764                                         urb->setup_packet,
765                                         sizeof(struct usb_ctrlrequest),
766                                         DMA_TO_DEVICE);
767         /* FIXME generic api broken like pci, can't report errors */
768         /* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
769         } else
770                 urb->transfer_dma = ~0;
771         urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
772                                 | URB_NO_SETUP_DMA_MAP);
773         return urb;
774 }
775 EXPORT_SYMBOL_GPL(usb_buffer_map);
776 #endif  /*  0  */
777
778 /* XXX DISABLED, no users currently.  If you wish to re-enable this
779  * XXX please determine whether the sync is to transfer ownership of
780  * XXX the buffer from device to cpu or vice verse, and thusly use the
781  * XXX appropriate _for_{cpu,device}() method.  -DaveM
782  */
783 #if 0
784
785 /**
786  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
787  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
788  */
789 void usb_buffer_dmasync(struct urb *urb)
790 {
791         struct usb_bus          *bus;
792         struct device           *controller;
793
794         if (!urb
795                         || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
796                         || !urb->dev
797                         || !(bus = urb->dev->bus)
798                         || !(controller = bus->controller))
799                 return;
800
801         if (controller->dma_mask) {
802                 dma_sync_single(controller,
803                         urb->transfer_dma, urb->transfer_buffer_length,
804                         usb_pipein(urb->pipe)
805                                 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
806                 if (usb_pipecontrol(urb->pipe))
807                         dma_sync_single(controller,
808                                         urb->setup_dma,
809                                         sizeof(struct usb_ctrlrequest),
810                                         DMA_TO_DEVICE);
811         }
812 }
813 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
814 #endif
815
816 /**
817  * usb_buffer_unmap - free DMA mapping(s) for an urb
818  * @urb: urb whose transfer_buffer will be unmapped
819  *
820  * Reverses the effect of usb_buffer_map().
821  */
822 #if 0
823 void usb_buffer_unmap(struct urb *urb)
824 {
825         struct usb_bus          *bus;
826         struct device           *controller;
827
828         if (!urb
829                         || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
830                         || !urb->dev
831                         || !(bus = urb->dev->bus)
832                         || !(controller = bus->controller))
833                 return;
834
835         if (controller->dma_mask) {
836                 dma_unmap_single(controller,
837                         urb->transfer_dma, urb->transfer_buffer_length,
838                         usb_pipein(urb->pipe)
839                                 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
840                 if (usb_pipecontrol(urb->pipe))
841                         dma_unmap_single(controller,
842                                         urb->setup_dma,
843                                         sizeof(struct usb_ctrlrequest),
844                                         DMA_TO_DEVICE);
845         }
846         urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
847                                 | URB_NO_SETUP_DMA_MAP);
848 }
849 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
850 #endif  /*  0  */
851
852 /**
853  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
854  * @dev: device to which the scatterlist will be mapped
855  * @is_in: mapping transfer direction
856  * @sg: the scatterlist to map
857  * @nents: the number of entries in the scatterlist
858  *
859  * Return value is either < 0 (indicating no buffers could be mapped), or
860  * the number of DMA mapping array entries in the scatterlist.
861  *
862  * The caller is responsible for placing the resulting DMA addresses from
863  * the scatterlist into URB transfer buffer pointers, and for setting the
864  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
865  *
866  * Top I/O rates come from queuing URBs, instead of waiting for each one
867  * to complete before starting the next I/O.   This is particularly easy
868  * to do with scatterlists.  Just allocate and submit one URB for each DMA
869  * mapping entry returned, stopping on the first error or when all succeed.
870  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
871  *
872  * This call would normally be used when translating scatterlist requests,
873  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
874  * may be able to coalesce mappings for improved I/O efficiency.
875  *
876  * Reverse the effect of this call with usb_buffer_unmap_sg().
877  */
878 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
879                       struct scatterlist *sg, int nents)
880 {
881         struct usb_bus          *bus;
882         struct device           *controller;
883
884         if (!dev
885                         || !(bus = dev->bus)
886                         || !(controller = bus->controller)
887                         || !controller->dma_mask)
888                 return -1;
889
890         /* FIXME generic api broken like pci, can't report errors */
891         return dma_map_sg(controller, sg, nents,
892                         is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
893 }
894 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
895
896 /* XXX DISABLED, no users currently.  If you wish to re-enable this
897  * XXX please determine whether the sync is to transfer ownership of
898  * XXX the buffer from device to cpu or vice verse, and thusly use the
899  * XXX appropriate _for_{cpu,device}() method.  -DaveM
900  */
901 #if 0
902
903 /**
904  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
905  * @dev: device to which the scatterlist will be mapped
906  * @is_in: mapping transfer direction
907  * @sg: the scatterlist to synchronize
908  * @n_hw_ents: the positive return value from usb_buffer_map_sg
909  *
910  * Use this when you are re-using a scatterlist's data buffers for
911  * another USB request.
912  */
913 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
914                            struct scatterlist *sg, int n_hw_ents)
915 {
916         struct usb_bus          *bus;
917         struct device           *controller;
918
919         if (!dev
920                         || !(bus = dev->bus)
921                         || !(controller = bus->controller)
922                         || !controller->dma_mask)
923                 return;
924
925         dma_sync_sg(controller, sg, n_hw_ents,
926                         is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
927 }
928 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
929 #endif
930
931 /**
932  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
933  * @dev: device to which the scatterlist will be mapped
934  * @is_in: mapping transfer direction
935  * @sg: the scatterlist to unmap
936  * @n_hw_ents: the positive return value from usb_buffer_map_sg
937  *
938  * Reverses the effect of usb_buffer_map_sg().
939  */
940 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
941                          struct scatterlist *sg, int n_hw_ents)
942 {
943         struct usb_bus          *bus;
944         struct device           *controller;
945
946         if (!dev
947                         || !(bus = dev->bus)
948                         || !(controller = bus->controller)
949                         || !controller->dma_mask)
950                 return;
951
952         dma_unmap_sg(controller, sg, n_hw_ents,
953                         is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
954 }
955 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
956
957 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
958 #ifdef MODULE
959 module_param(nousb, bool, 0444);
960 #else
961 core_param(nousb, nousb, bool, 0444);
962 #endif
963
964 /*
965  * for external read access to <nousb>
966  */
967 int usb_disabled(void)
968 {
969         return nousb;
970 }
971 EXPORT_SYMBOL_GPL(usb_disabled);
972
973 /*
974  * Notifications of device and interface registration
975  */
976 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
977                 void *data)
978 {
979         struct device *dev = data;
980
981         switch (action) {
982         case BUS_NOTIFY_ADD_DEVICE:
983                 if (dev->type == &usb_device_type)
984                         (void) usb_create_sysfs_dev_files(to_usb_device(dev));
985                 else if (dev->type == &usb_if_device_type)
986                         (void) usb_create_sysfs_intf_files(
987                                         to_usb_interface(dev));
988                 break;
989
990         case BUS_NOTIFY_DEL_DEVICE:
991                 if (dev->type == &usb_device_type)
992                         usb_remove_sysfs_dev_files(to_usb_device(dev));
993                 else if (dev->type == &usb_if_device_type)
994                         usb_remove_sysfs_intf_files(to_usb_interface(dev));
995                 break;
996         }
997         return 0;
998 }
999
1000 static struct notifier_block usb_bus_nb = {
1001         .notifier_call = usb_bus_notify,
1002 };
1003
1004 struct dentry *usb_debug_root;
1005 EXPORT_SYMBOL_GPL(usb_debug_root);
1006
1007 struct dentry *usb_debug_devices;
1008
1009 static int usb_debugfs_init(void)
1010 {
1011         usb_debug_root = debugfs_create_dir("usb", NULL);
1012         if (!usb_debug_root)
1013                 return -ENOENT;
1014
1015         usb_debug_devices = debugfs_create_file("devices", 0444,
1016                                                 usb_debug_root, NULL,
1017                                                 &usbfs_devices_fops);
1018         if (!usb_debug_devices) {
1019                 debugfs_remove(usb_debug_root);
1020                 usb_debug_root = NULL;
1021                 return -ENOENT;
1022         }
1023
1024         return 0;
1025 }
1026
1027 static void usb_debugfs_cleanup(void)
1028 {
1029         debugfs_remove(usb_debug_devices);
1030         debugfs_remove(usb_debug_root);
1031 }
1032
1033 /*
1034  * Init
1035  */
1036 static int __init usb_init(void)
1037 {
1038         int retval;
1039         if (nousb) {
1040                 pr_info("%s: USB support disabled\n", usbcore_name);
1041                 return 0;
1042         }
1043
1044         retval = usb_debugfs_init();
1045         if (retval)
1046                 goto out;
1047
1048         retval = ksuspend_usb_init();
1049         if (retval)
1050                 goto out;
1051         retval = bus_register(&usb_bus_type);
1052         if (retval)
1053                 goto bus_register_failed;
1054         retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1055         if (retval)
1056                 goto bus_notifier_failed;
1057         retval = usb_major_init();
1058         if (retval)
1059                 goto major_init_failed;
1060         retval = usb_register(&usbfs_driver);
1061         if (retval)
1062                 goto driver_register_failed;
1063         retval = usb_devio_init();
1064         if (retval)
1065                 goto usb_devio_init_failed;
1066         retval = usbfs_init();
1067         if (retval)
1068                 goto fs_init_failed;
1069         retval = usb_hub_init();
1070         if (retval)
1071                 goto hub_init_failed;
1072         retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1073         if (!retval)
1074                 goto out;
1075
1076         usb_hub_cleanup();
1077 hub_init_failed:
1078         usbfs_cleanup();
1079 fs_init_failed:
1080         usb_devio_cleanup();
1081 usb_devio_init_failed:
1082         usb_deregister(&usbfs_driver);
1083 driver_register_failed:
1084         usb_major_cleanup();
1085 major_init_failed:
1086         bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1087 bus_notifier_failed:
1088         bus_unregister(&usb_bus_type);
1089 bus_register_failed:
1090         ksuspend_usb_cleanup();
1091 out:
1092         return retval;
1093 }
1094
1095 /*
1096  * Cleanup
1097  */
1098 static void __exit usb_exit(void)
1099 {
1100         /* This will matter if shutdown/reboot does exitcalls. */
1101         if (nousb)
1102                 return;
1103
1104         usb_deregister_device_driver(&usb_generic_driver);
1105         usb_major_cleanup();
1106         usbfs_cleanup();
1107         usb_deregister(&usbfs_driver);
1108         usb_devio_cleanup();
1109         usb_hub_cleanup();
1110         bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1111         bus_unregister(&usb_bus_type);
1112         ksuspend_usb_cleanup();
1113         usb_debugfs_cleanup();
1114 }
1115
1116 subsys_initcall(usb_init);
1117 module_exit(usb_exit);
1118 MODULE_LICENSE("GPL");