ALSA: opl4 - Fix a wrong argument in proc write callback
[safe/jmp/linux-2.6] / drivers / spi / spi.c
1 /*
2  * spi.c - SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/cache.h>
25 #include <linux/mutex.h>
26 #include <linux/slab.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/spi/spi.h>
29
30
31 /* SPI bustype and spi_master class are registered after board init code
32  * provides the SPI device tables, ensuring that both are present by the
33  * time controller driver registration causes spi_devices to "enumerate".
34  */
35 static void spidev_release(struct device *dev)
36 {
37         struct spi_device       *spi = to_spi_device(dev);
38
39         /* spi masters may cleanup for released devices */
40         if (spi->master->cleanup)
41                 spi->master->cleanup(spi);
42
43         spi_master_put(spi->master);
44         kfree(dev);
45 }
46
47 static ssize_t
48 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
49 {
50         const struct spi_device *spi = to_spi_device(dev);
51
52         return sprintf(buf, "%s\n", spi->modalias);
53 }
54
55 static struct device_attribute spi_dev_attrs[] = {
56         __ATTR_RO(modalias),
57         __ATTR_NULL,
58 };
59
60 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
61  * and the sysfs version makes coldplug work too.
62  */
63
64 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
65                                                 const struct spi_device *sdev)
66 {
67         while (id->name[0]) {
68                 if (!strcmp(sdev->modalias, id->name))
69                         return id;
70                 id++;
71         }
72         return NULL;
73 }
74
75 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
76 {
77         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
78
79         return spi_match_id(sdrv->id_table, sdev);
80 }
81 EXPORT_SYMBOL_GPL(spi_get_device_id);
82
83 static int spi_match_device(struct device *dev, struct device_driver *drv)
84 {
85         const struct spi_device *spi = to_spi_device(dev);
86         const struct spi_driver *sdrv = to_spi_driver(drv);
87
88         if (sdrv->id_table)
89                 return !!spi_match_id(sdrv->id_table, spi);
90
91         return strcmp(spi->modalias, drv->name) == 0;
92 }
93
94 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
95 {
96         const struct spi_device         *spi = to_spi_device(dev);
97
98         add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
99         return 0;
100 }
101
102 #ifdef  CONFIG_PM
103
104 static int spi_suspend(struct device *dev, pm_message_t message)
105 {
106         int                     value = 0;
107         struct spi_driver       *drv = to_spi_driver(dev->driver);
108
109         /* suspend will stop irqs and dma; no more i/o */
110         if (drv) {
111                 if (drv->suspend)
112                         value = drv->suspend(to_spi_device(dev), message);
113                 else
114                         dev_dbg(dev, "... can't suspend\n");
115         }
116         return value;
117 }
118
119 static int spi_resume(struct device *dev)
120 {
121         int                     value = 0;
122         struct spi_driver       *drv = to_spi_driver(dev->driver);
123
124         /* resume may restart the i/o queue */
125         if (drv) {
126                 if (drv->resume)
127                         value = drv->resume(to_spi_device(dev));
128                 else
129                         dev_dbg(dev, "... can't resume\n");
130         }
131         return value;
132 }
133
134 #else
135 #define spi_suspend     NULL
136 #define spi_resume      NULL
137 #endif
138
139 struct bus_type spi_bus_type = {
140         .name           = "spi",
141         .dev_attrs      = spi_dev_attrs,
142         .match          = spi_match_device,
143         .uevent         = spi_uevent,
144         .suspend        = spi_suspend,
145         .resume         = spi_resume,
146 };
147 EXPORT_SYMBOL_GPL(spi_bus_type);
148
149
150 static int spi_drv_probe(struct device *dev)
151 {
152         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
153
154         return sdrv->probe(to_spi_device(dev));
155 }
156
157 static int spi_drv_remove(struct device *dev)
158 {
159         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
160
161         return sdrv->remove(to_spi_device(dev));
162 }
163
164 static void spi_drv_shutdown(struct device *dev)
165 {
166         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
167
168         sdrv->shutdown(to_spi_device(dev));
169 }
170
171 /**
172  * spi_register_driver - register a SPI driver
173  * @sdrv: the driver to register
174  * Context: can sleep
175  */
176 int spi_register_driver(struct spi_driver *sdrv)
177 {
178         sdrv->driver.bus = &spi_bus_type;
179         if (sdrv->probe)
180                 sdrv->driver.probe = spi_drv_probe;
181         if (sdrv->remove)
182                 sdrv->driver.remove = spi_drv_remove;
183         if (sdrv->shutdown)
184                 sdrv->driver.shutdown = spi_drv_shutdown;
185         return driver_register(&sdrv->driver);
186 }
187 EXPORT_SYMBOL_GPL(spi_register_driver);
188
189 /*-------------------------------------------------------------------------*/
190
191 /* SPI devices should normally not be created by SPI device drivers; that
192  * would make them board-specific.  Similarly with SPI master drivers.
193  * Device registration normally goes into like arch/.../mach.../board-YYY.c
194  * with other readonly (flashable) information about mainboard devices.
195  */
196
197 struct boardinfo {
198         struct list_head        list;
199         unsigned                n_board_info;
200         struct spi_board_info   board_info[0];
201 };
202
203 static LIST_HEAD(board_list);
204 static DEFINE_MUTEX(board_lock);
205
206 /**
207  * spi_alloc_device - Allocate a new SPI device
208  * @master: Controller to which device is connected
209  * Context: can sleep
210  *
211  * Allows a driver to allocate and initialize a spi_device without
212  * registering it immediately.  This allows a driver to directly
213  * fill the spi_device with device parameters before calling
214  * spi_add_device() on it.
215  *
216  * Caller is responsible to call spi_add_device() on the returned
217  * spi_device structure to add it to the SPI master.  If the caller
218  * needs to discard the spi_device without adding it, then it should
219  * call spi_dev_put() on it.
220  *
221  * Returns a pointer to the new device, or NULL.
222  */
223 struct spi_device *spi_alloc_device(struct spi_master *master)
224 {
225         struct spi_device       *spi;
226         struct device           *dev = master->dev.parent;
227
228         if (!spi_master_get(master))
229                 return NULL;
230
231         spi = kzalloc(sizeof *spi, GFP_KERNEL);
232         if (!spi) {
233                 dev_err(dev, "cannot alloc spi_device\n");
234                 spi_master_put(master);
235                 return NULL;
236         }
237
238         spi->master = master;
239         spi->dev.parent = dev;
240         spi->dev.bus = &spi_bus_type;
241         spi->dev.release = spidev_release;
242         device_initialize(&spi->dev);
243         return spi;
244 }
245 EXPORT_SYMBOL_GPL(spi_alloc_device);
246
247 /**
248  * spi_add_device - Add spi_device allocated with spi_alloc_device
249  * @spi: spi_device to register
250  *
251  * Companion function to spi_alloc_device.  Devices allocated with
252  * spi_alloc_device can be added onto the spi bus with this function.
253  *
254  * Returns 0 on success; negative errno on failure
255  */
256 int spi_add_device(struct spi_device *spi)
257 {
258         static DEFINE_MUTEX(spi_add_lock);
259         struct device *dev = spi->master->dev.parent;
260         int status;
261
262         /* Chipselects are numbered 0..max; validate. */
263         if (spi->chip_select >= spi->master->num_chipselect) {
264                 dev_err(dev, "cs%d >= max %d\n",
265                         spi->chip_select,
266                         spi->master->num_chipselect);
267                 return -EINVAL;
268         }
269
270         /* Set the bus ID string */
271         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
272                         spi->chip_select);
273
274
275         /* We need to make sure there's no other device with this
276          * chipselect **BEFORE** we call setup(), else we'll trash
277          * its configuration.  Lock against concurrent add() calls.
278          */
279         mutex_lock(&spi_add_lock);
280
281         if (bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev))
282                         != NULL) {
283                 dev_err(dev, "chipselect %d already in use\n",
284                                 spi->chip_select);
285                 status = -EBUSY;
286                 goto done;
287         }
288
289         /* Drivers may modify this initial i/o setup, but will
290          * normally rely on the device being setup.  Devices
291          * using SPI_CS_HIGH can't coexist well otherwise...
292          */
293         status = spi_setup(spi);
294         if (status < 0) {
295                 dev_err(dev, "can't %s %s, status %d\n",
296                                 "setup", dev_name(&spi->dev), status);
297                 goto done;
298         }
299
300         /* Device may be bound to an active driver when this returns */
301         status = device_add(&spi->dev);
302         if (status < 0)
303                 dev_err(dev, "can't %s %s, status %d\n",
304                                 "add", dev_name(&spi->dev), status);
305         else
306                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
307
308 done:
309         mutex_unlock(&spi_add_lock);
310         return status;
311 }
312 EXPORT_SYMBOL_GPL(spi_add_device);
313
314 /**
315  * spi_new_device - instantiate one new SPI device
316  * @master: Controller to which device is connected
317  * @chip: Describes the SPI device
318  * Context: can sleep
319  *
320  * On typical mainboards, this is purely internal; and it's not needed
321  * after board init creates the hard-wired devices.  Some development
322  * platforms may not be able to use spi_register_board_info though, and
323  * this is exported so that for example a USB or parport based adapter
324  * driver could add devices (which it would learn about out-of-band).
325  *
326  * Returns the new device, or NULL.
327  */
328 struct spi_device *spi_new_device(struct spi_master *master,
329                                   struct spi_board_info *chip)
330 {
331         struct spi_device       *proxy;
332         int                     status;
333
334         /* NOTE:  caller did any chip->bus_num checks necessary.
335          *
336          * Also, unless we change the return value convention to use
337          * error-or-pointer (not NULL-or-pointer), troubleshootability
338          * suggests syslogged diagnostics are best here (ugh).
339          */
340
341         proxy = spi_alloc_device(master);
342         if (!proxy)
343                 return NULL;
344
345         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
346
347         proxy->chip_select = chip->chip_select;
348         proxy->max_speed_hz = chip->max_speed_hz;
349         proxy->mode = chip->mode;
350         proxy->irq = chip->irq;
351         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
352         proxy->dev.platform_data = (void *) chip->platform_data;
353         proxy->controller_data = chip->controller_data;
354         proxy->controller_state = NULL;
355
356         status = spi_add_device(proxy);
357         if (status < 0) {
358                 spi_dev_put(proxy);
359                 return NULL;
360         }
361
362         return proxy;
363 }
364 EXPORT_SYMBOL_GPL(spi_new_device);
365
366 /**
367  * spi_register_board_info - register SPI devices for a given board
368  * @info: array of chip descriptors
369  * @n: how many descriptors are provided
370  * Context: can sleep
371  *
372  * Board-specific early init code calls this (probably during arch_initcall)
373  * with segments of the SPI device table.  Any device nodes are created later,
374  * after the relevant parent SPI controller (bus_num) is defined.  We keep
375  * this table of devices forever, so that reloading a controller driver will
376  * not make Linux forget about these hard-wired devices.
377  *
378  * Other code can also call this, e.g. a particular add-on board might provide
379  * SPI devices through its expansion connector, so code initializing that board
380  * would naturally declare its SPI devices.
381  *
382  * The board info passed can safely be __initdata ... but be careful of
383  * any embedded pointers (platform_data, etc), they're copied as-is.
384  */
385 int __init
386 spi_register_board_info(struct spi_board_info const *info, unsigned n)
387 {
388         struct boardinfo        *bi;
389
390         bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
391         if (!bi)
392                 return -ENOMEM;
393         bi->n_board_info = n;
394         memcpy(bi->board_info, info, n * sizeof *info);
395
396         mutex_lock(&board_lock);
397         list_add_tail(&bi->list, &board_list);
398         mutex_unlock(&board_lock);
399         return 0;
400 }
401
402 /* FIXME someone should add support for a __setup("spi", ...) that
403  * creates board info from kernel command lines
404  */
405
406 static void scan_boardinfo(struct spi_master *master)
407 {
408         struct boardinfo        *bi;
409
410         mutex_lock(&board_lock);
411         list_for_each_entry(bi, &board_list, list) {
412                 struct spi_board_info   *chip = bi->board_info;
413                 unsigned                n;
414
415                 for (n = bi->n_board_info; n > 0; n--, chip++) {
416                         if (chip->bus_num != master->bus_num)
417                                 continue;
418                         /* NOTE: this relies on spi_new_device to
419                          * issue diagnostics when given bogus inputs
420                          */
421                         (void) spi_new_device(master, chip);
422                 }
423         }
424         mutex_unlock(&board_lock);
425 }
426
427 /*-------------------------------------------------------------------------*/
428
429 static void spi_master_release(struct device *dev)
430 {
431         struct spi_master *master;
432
433         master = container_of(dev, struct spi_master, dev);
434         kfree(master);
435 }
436
437 static struct class spi_master_class = {
438         .name           = "spi_master",
439         .owner          = THIS_MODULE,
440         .dev_release    = spi_master_release,
441 };
442
443
444 /**
445  * spi_alloc_master - allocate SPI master controller
446  * @dev: the controller, possibly using the platform_bus
447  * @size: how much zeroed driver-private data to allocate; the pointer to this
448  *      memory is in the driver_data field of the returned device,
449  *      accessible with spi_master_get_devdata().
450  * Context: can sleep
451  *
452  * This call is used only by SPI master controller drivers, which are the
453  * only ones directly touching chip registers.  It's how they allocate
454  * an spi_master structure, prior to calling spi_register_master().
455  *
456  * This must be called from context that can sleep.  It returns the SPI
457  * master structure on success, else NULL.
458  *
459  * The caller is responsible for assigning the bus number and initializing
460  * the master's methods before calling spi_register_master(); and (after errors
461  * adding the device) calling spi_master_put() to prevent a memory leak.
462  */
463 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
464 {
465         struct spi_master       *master;
466
467         if (!dev)
468                 return NULL;
469
470         master = kzalloc(size + sizeof *master, GFP_KERNEL);
471         if (!master)
472                 return NULL;
473
474         device_initialize(&master->dev);
475         master->dev.class = &spi_master_class;
476         master->dev.parent = get_device(dev);
477         spi_master_set_devdata(master, &master[1]);
478
479         return master;
480 }
481 EXPORT_SYMBOL_GPL(spi_alloc_master);
482
483 /**
484  * spi_register_master - register SPI master controller
485  * @master: initialized master, originally from spi_alloc_master()
486  * Context: can sleep
487  *
488  * SPI master controllers connect to their drivers using some non-SPI bus,
489  * such as the platform bus.  The final stage of probe() in that code
490  * includes calling spi_register_master() to hook up to this SPI bus glue.
491  *
492  * SPI controllers use board specific (often SOC specific) bus numbers,
493  * and board-specific addressing for SPI devices combines those numbers
494  * with chip select numbers.  Since SPI does not directly support dynamic
495  * device identification, boards need configuration tables telling which
496  * chip is at which address.
497  *
498  * This must be called from context that can sleep.  It returns zero on
499  * success, else a negative error code (dropping the master's refcount).
500  * After a successful return, the caller is responsible for calling
501  * spi_unregister_master().
502  */
503 int spi_register_master(struct spi_master *master)
504 {
505         static atomic_t         dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
506         struct device           *dev = master->dev.parent;
507         int                     status = -ENODEV;
508         int                     dynamic = 0;
509
510         if (!dev)
511                 return -ENODEV;
512
513         /* even if it's just one always-selected device, there must
514          * be at least one chipselect
515          */
516         if (master->num_chipselect == 0)
517                 return -EINVAL;
518
519         /* convention:  dynamically assigned bus IDs count down from the max */
520         if (master->bus_num < 0) {
521                 /* FIXME switch to an IDR based scheme, something like
522                  * I2C now uses, so we can't run out of "dynamic" IDs
523                  */
524                 master->bus_num = atomic_dec_return(&dyn_bus_id);
525                 dynamic = 1;
526         }
527
528         /* register the device, then userspace will see it.
529          * registration fails if the bus ID is in use.
530          */
531         dev_set_name(&master->dev, "spi%u", master->bus_num);
532         status = device_add(&master->dev);
533         if (status < 0)
534                 goto done;
535         dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
536                         dynamic ? " (dynamic)" : "");
537
538         /* populate children from any spi device tables */
539         scan_boardinfo(master);
540         status = 0;
541 done:
542         return status;
543 }
544 EXPORT_SYMBOL_GPL(spi_register_master);
545
546
547 static int __unregister(struct device *dev, void *master_dev)
548 {
549         /* note: before about 2.6.14-rc1 this would corrupt memory: */
550         if (dev != master_dev)
551                 spi_unregister_device(to_spi_device(dev));
552         return 0;
553 }
554
555 /**
556  * spi_unregister_master - unregister SPI master controller
557  * @master: the master being unregistered
558  * Context: can sleep
559  *
560  * This call is used only by SPI master controller drivers, which are the
561  * only ones directly touching chip registers.
562  *
563  * This must be called from context that can sleep.
564  */
565 void spi_unregister_master(struct spi_master *master)
566 {
567         int dummy;
568
569         dummy = device_for_each_child(master->dev.parent, &master->dev,
570                                         __unregister);
571         device_unregister(&master->dev);
572 }
573 EXPORT_SYMBOL_GPL(spi_unregister_master);
574
575 static int __spi_master_match(struct device *dev, void *data)
576 {
577         struct spi_master *m;
578         u16 *bus_num = data;
579
580         m = container_of(dev, struct spi_master, dev);
581         return m->bus_num == *bus_num;
582 }
583
584 /**
585  * spi_busnum_to_master - look up master associated with bus_num
586  * @bus_num: the master's bus number
587  * Context: can sleep
588  *
589  * This call may be used with devices that are registered after
590  * arch init time.  It returns a refcounted pointer to the relevant
591  * spi_master (which the caller must release), or NULL if there is
592  * no such master registered.
593  */
594 struct spi_master *spi_busnum_to_master(u16 bus_num)
595 {
596         struct device           *dev;
597         struct spi_master       *master = NULL;
598
599         dev = class_find_device(&spi_master_class, NULL, &bus_num,
600                                 __spi_master_match);
601         if (dev)
602                 master = container_of(dev, struct spi_master, dev);
603         /* reference got in class_find_device */
604         return master;
605 }
606 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
607
608
609 /*-------------------------------------------------------------------------*/
610
611 /* Core methods for SPI master protocol drivers.  Some of the
612  * other core methods are currently defined as inline functions.
613  */
614
615 /**
616  * spi_setup - setup SPI mode and clock rate
617  * @spi: the device whose settings are being modified
618  * Context: can sleep, and no requests are queued to the device
619  *
620  * SPI protocol drivers may need to update the transfer mode if the
621  * device doesn't work with its default.  They may likewise need
622  * to update clock rates or word sizes from initial values.  This function
623  * changes those settings, and must be called from a context that can sleep.
624  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
625  * effect the next time the device is selected and data is transferred to
626  * or from it.  When this function returns, the spi device is deselected.
627  *
628  * Note that this call will fail if the protocol driver specifies an option
629  * that the underlying controller or its driver does not support.  For
630  * example, not all hardware supports wire transfers using nine bit words,
631  * LSB-first wire encoding, or active-high chipselects.
632  */
633 int spi_setup(struct spi_device *spi)
634 {
635         unsigned        bad_bits;
636         int             status;
637
638         /* help drivers fail *cleanly* when they need options
639          * that aren't supported with their current master
640          */
641         bad_bits = spi->mode & ~spi->master->mode_bits;
642         if (bad_bits) {
643                 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
644                         bad_bits);
645                 return -EINVAL;
646         }
647
648         if (!spi->bits_per_word)
649                 spi->bits_per_word = 8;
650
651         status = spi->master->setup(spi);
652
653         dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
654                                 "%u bits/w, %u Hz max --> %d\n",
655                         (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
656                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
657                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
658                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
659                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
660                         spi->bits_per_word, spi->max_speed_hz,
661                         status);
662
663         return status;
664 }
665 EXPORT_SYMBOL_GPL(spi_setup);
666
667 /**
668  * spi_async - asynchronous SPI transfer
669  * @spi: device with which data will be exchanged
670  * @message: describes the data transfers, including completion callback
671  * Context: any (irqs may be blocked, etc)
672  *
673  * This call may be used in_irq and other contexts which can't sleep,
674  * as well as from task contexts which can sleep.
675  *
676  * The completion callback is invoked in a context which can't sleep.
677  * Before that invocation, the value of message->status is undefined.
678  * When the callback is issued, message->status holds either zero (to
679  * indicate complete success) or a negative error code.  After that
680  * callback returns, the driver which issued the transfer request may
681  * deallocate the associated memory; it's no longer in use by any SPI
682  * core or controller driver code.
683  *
684  * Note that although all messages to a spi_device are handled in
685  * FIFO order, messages may go to different devices in other orders.
686  * Some device might be higher priority, or have various "hard" access
687  * time requirements, for example.
688  *
689  * On detection of any fault during the transfer, processing of
690  * the entire message is aborted, and the device is deselected.
691  * Until returning from the associated message completion callback,
692  * no other spi_message queued to that device will be processed.
693  * (This rule applies equally to all the synchronous transfer calls,
694  * which are wrappers around this core asynchronous primitive.)
695  */
696 int spi_async(struct spi_device *spi, struct spi_message *message)
697 {
698         struct spi_master *master = spi->master;
699
700         /* Half-duplex links include original MicroWire, and ones with
701          * only one data pin like SPI_3WIRE (switches direction) or where
702          * either MOSI or MISO is missing.  They can also be caused by
703          * software limitations.
704          */
705         if ((master->flags & SPI_MASTER_HALF_DUPLEX)
706                         || (spi->mode & SPI_3WIRE)) {
707                 struct spi_transfer *xfer;
708                 unsigned flags = master->flags;
709
710                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
711                         if (xfer->rx_buf && xfer->tx_buf)
712                                 return -EINVAL;
713                         if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
714                                 return -EINVAL;
715                         if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
716                                 return -EINVAL;
717                 }
718         }
719
720         message->spi = spi;
721         message->status = -EINPROGRESS;
722         return master->transfer(spi, message);
723 }
724 EXPORT_SYMBOL_GPL(spi_async);
725
726
727 /*-------------------------------------------------------------------------*/
728
729 /* Utility methods for SPI master protocol drivers, layered on
730  * top of the core.  Some other utility methods are defined as
731  * inline functions.
732  */
733
734 static void spi_complete(void *arg)
735 {
736         complete(arg);
737 }
738
739 /**
740  * spi_sync - blocking/synchronous SPI data transfers
741  * @spi: device with which data will be exchanged
742  * @message: describes the data transfers
743  * Context: can sleep
744  *
745  * This call may only be used from a context that may sleep.  The sleep
746  * is non-interruptible, and has no timeout.  Low-overhead controller
747  * drivers may DMA directly into and out of the message buffers.
748  *
749  * Note that the SPI device's chip select is active during the message,
750  * and then is normally disabled between messages.  Drivers for some
751  * frequently-used devices may want to minimize costs of selecting a chip,
752  * by leaving it selected in anticipation that the next message will go
753  * to the same chip.  (That may increase power usage.)
754  *
755  * Also, the caller is guaranteeing that the memory associated with the
756  * message will not be freed before this call returns.
757  *
758  * It returns zero on success, else a negative error code.
759  */
760 int spi_sync(struct spi_device *spi, struct spi_message *message)
761 {
762         DECLARE_COMPLETION_ONSTACK(done);
763         int status;
764
765         message->complete = spi_complete;
766         message->context = &done;
767         status = spi_async(spi, message);
768         if (status == 0) {
769                 wait_for_completion(&done);
770                 status = message->status;
771         }
772         message->context = NULL;
773         return status;
774 }
775 EXPORT_SYMBOL_GPL(spi_sync);
776
777 /* portable code must never pass more than 32 bytes */
778 #define SPI_BUFSIZ      max(32,SMP_CACHE_BYTES)
779
780 static u8       *buf;
781
782 /**
783  * spi_write_then_read - SPI synchronous write followed by read
784  * @spi: device with which data will be exchanged
785  * @txbuf: data to be written (need not be dma-safe)
786  * @n_tx: size of txbuf, in bytes
787  * @rxbuf: buffer into which data will be read (need not be dma-safe)
788  * @n_rx: size of rxbuf, in bytes
789  * Context: can sleep
790  *
791  * This performs a half duplex MicroWire style transaction with the
792  * device, sending txbuf and then reading rxbuf.  The return value
793  * is zero for success, else a negative errno status code.
794  * This call may only be used from a context that may sleep.
795  *
796  * Parameters to this routine are always copied using a small buffer;
797  * portable code should never use this for more than 32 bytes.
798  * Performance-sensitive or bulk transfer code should instead use
799  * spi_{async,sync}() calls with dma-safe buffers.
800  */
801 int spi_write_then_read(struct spi_device *spi,
802                 const u8 *txbuf, unsigned n_tx,
803                 u8 *rxbuf, unsigned n_rx)
804 {
805         static DEFINE_MUTEX(lock);
806
807         int                     status;
808         struct spi_message      message;
809         struct spi_transfer     x[2];
810         u8                      *local_buf;
811
812         /* Use preallocated DMA-safe buffer.  We can't avoid copying here,
813          * (as a pure convenience thing), but we can keep heap costs
814          * out of the hot path ...
815          */
816         if ((n_tx + n_rx) > SPI_BUFSIZ)
817                 return -EINVAL;
818
819         spi_message_init(&message);
820         memset(x, 0, sizeof x);
821         if (n_tx) {
822                 x[0].len = n_tx;
823                 spi_message_add_tail(&x[0], &message);
824         }
825         if (n_rx) {
826                 x[1].len = n_rx;
827                 spi_message_add_tail(&x[1], &message);
828         }
829
830         /* ... unless someone else is using the pre-allocated buffer */
831         if (!mutex_trylock(&lock)) {
832                 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
833                 if (!local_buf)
834                         return -ENOMEM;
835         } else
836                 local_buf = buf;
837
838         memcpy(local_buf, txbuf, n_tx);
839         x[0].tx_buf = local_buf;
840         x[1].rx_buf = local_buf + n_tx;
841
842         /* do the i/o */
843         status = spi_sync(spi, &message);
844         if (status == 0)
845                 memcpy(rxbuf, x[1].rx_buf, n_rx);
846
847         if (x[0].tx_buf == buf)
848                 mutex_unlock(&lock);
849         else
850                 kfree(local_buf);
851
852         return status;
853 }
854 EXPORT_SYMBOL_GPL(spi_write_then_read);
855
856 /*-------------------------------------------------------------------------*/
857
858 static int __init spi_init(void)
859 {
860         int     status;
861
862         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
863         if (!buf) {
864                 status = -ENOMEM;
865                 goto err0;
866         }
867
868         status = bus_register(&spi_bus_type);
869         if (status < 0)
870                 goto err1;
871
872         status = class_register(&spi_master_class);
873         if (status < 0)
874                 goto err2;
875         return 0;
876
877 err2:
878         bus_unregister(&spi_bus_type);
879 err1:
880         kfree(buf);
881         buf = NULL;
882 err0:
883         return status;
884 }
885
886 /* board_info is normally registered in arch_initcall(),
887  * but even essential drivers wait till later
888  *
889  * REVISIT only boardinfo really needs static linking. the rest (device and
890  * driver registration) _could_ be dynamically linked (modular) ... costs
891  * include needing to have boardinfo data structures be much more public.
892  */
893 postcore_initcall(spi_init);
894