atmel_spi: clean up baud rate divisor calculation
[safe/jmp/linux-2.6] / drivers / spi / atmel_spi.c
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21
22 #include <asm/io.h>
23 #include <asm/arch/board.h>
24 #include <asm/arch/gpio.h>
25 #include <asm/arch/cpu.h>
26
27 #include "atmel_spi.h"
28
29 /*
30  * The core SPI transfer engine just talks to a register bank to set up
31  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
32  * framework provides the base clock, subdivided for each spi_device.
33  *
34  * Newer controllers, marked with "new_1" flag, have:
35  *  - CR.LASTXFER
36  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
37  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
38  *  - SPI_CSRx.CSAAT
39  *  - SPI_CSRx.SBCR allows faster clocking
40  */
41 struct atmel_spi {
42         spinlock_t              lock;
43
44         void __iomem            *regs;
45         int                     irq;
46         struct clk              *clk;
47         struct platform_device  *pdev;
48         unsigned                new_1:1;
49         struct spi_device       *stay;
50
51         u8                      stopping;
52         struct list_head        queue;
53         struct spi_transfer     *current_transfer;
54         unsigned long           current_remaining_bytes;
55         struct spi_transfer     *next_transfer;
56         unsigned long           next_remaining_bytes;
57
58         void                    *buffer;
59         dma_addr_t              buffer_dma;
60 };
61
62 #define BUFFER_SIZE             PAGE_SIZE
63 #define INVALID_DMA_ADDRESS     0xffffffff
64
65 /*
66  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
67  * they assume that spi slave device state will not change on deselect, so
68  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
69  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
70  * controllers have CSAAT and friends.
71  *
72  * Since the CSAAT functionality is a bit weird on newer controllers as
73  * well, we use GPIO to control nCSx pins on all controllers, updating
74  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
75  * support active-high chipselects despite the controller's belief that
76  * only active-low devices/systems exists.
77  *
78  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
79  * right when driven with GPIO.  ("Mode Fault does not allow more than one
80  * Master on Chip Select 0.")  No workaround exists for that ... so for
81  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
82  * and (c) will trigger that first erratum in some cases.
83  */
84
85 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
86 {
87         unsigned gpio = (unsigned) spi->controller_data;
88         unsigned active = spi->mode & SPI_CS_HIGH;
89         u32 mr;
90         int i;
91         u32 csr;
92         u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
93
94         /* Make sure clock polarity is correct */
95         for (i = 0; i < spi->master->num_chipselect; i++) {
96                 csr = spi_readl(as, CSR0 + 4 * i);
97                 if ((csr ^ cpol) & SPI_BIT(CPOL))
98                         spi_writel(as, CSR0 + 4 * i, csr ^ SPI_BIT(CPOL));
99         }
100
101         mr = spi_readl(as, MR);
102         mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
103
104         dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
105                         gpio, active ? " (high)" : "",
106                         mr);
107
108         if (!(cpu_is_at91rm9200() && spi->chip_select == 0))
109                 gpio_set_value(gpio, active);
110         spi_writel(as, MR, mr);
111 }
112
113 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
114 {
115         unsigned gpio = (unsigned) spi->controller_data;
116         unsigned active = spi->mode & SPI_CS_HIGH;
117         u32 mr;
118
119         /* only deactivate *this* device; sometimes transfers to
120          * another device may be active when this routine is called.
121          */
122         mr = spi_readl(as, MR);
123         if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
124                 mr = SPI_BFINS(PCS, 0xf, mr);
125                 spi_writel(as, MR, mr);
126         }
127
128         dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
129                         gpio, active ? " (low)" : "",
130                         mr);
131
132         if (!(cpu_is_at91rm9200() && spi->chip_select == 0))
133                 gpio_set_value(gpio, !active);
134 }
135
136 static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
137                                         struct spi_transfer *xfer)
138 {
139         return msg->transfers.prev == &xfer->transfer_list;
140 }
141
142 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
143 {
144         return xfer->delay_usecs == 0 && !xfer->cs_change;
145 }
146
147 static void atmel_spi_next_xfer_data(struct spi_master *master,
148                                 struct spi_transfer *xfer,
149                                 dma_addr_t *tx_dma,
150                                 dma_addr_t *rx_dma,
151                                 u32 *plen)
152 {
153         struct atmel_spi        *as = spi_master_get_devdata(master);
154         u32                     len = *plen;
155
156         /* use scratch buffer only when rx or tx data is unspecified */
157         if (xfer->rx_buf)
158                 *rx_dma = xfer->rx_dma + xfer->len - len;
159         else {
160                 *rx_dma = as->buffer_dma;
161                 if (len > BUFFER_SIZE)
162                         len = BUFFER_SIZE;
163         }
164         if (xfer->tx_buf)
165                 *tx_dma = xfer->tx_dma + xfer->len - len;
166         else {
167                 *tx_dma = as->buffer_dma;
168                 if (len > BUFFER_SIZE)
169                         len = BUFFER_SIZE;
170                 memset(as->buffer, 0, len);
171                 dma_sync_single_for_device(&as->pdev->dev,
172                                 as->buffer_dma, len, DMA_TO_DEVICE);
173         }
174
175         *plen = len;
176 }
177
178 /*
179  * Submit next transfer for DMA.
180  * lock is held, spi irq is blocked
181  */
182 static void atmel_spi_next_xfer(struct spi_master *master,
183                                 struct spi_message *msg)
184 {
185         struct atmel_spi        *as = spi_master_get_devdata(master);
186         struct spi_transfer     *xfer;
187         u32                     len, remaining, total;
188         dma_addr_t              tx_dma, rx_dma;
189
190         if (!as->current_transfer)
191                 xfer = list_entry(msg->transfers.next,
192                                 struct spi_transfer, transfer_list);
193         else if (!as->next_transfer)
194                 xfer = list_entry(as->current_transfer->transfer_list.next,
195                                 struct spi_transfer, transfer_list);
196         else
197                 xfer = NULL;
198
199         if (xfer) {
200                 len = xfer->len;
201                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
202                 remaining = xfer->len - len;
203
204                 spi_writel(as, RPR, rx_dma);
205                 spi_writel(as, TPR, tx_dma);
206
207                 if (msg->spi->bits_per_word > 8)
208                         len >>= 1;
209                 spi_writel(as, RCR, len);
210                 spi_writel(as, TCR, len);
211
212                 dev_dbg(&msg->spi->dev,
213                         "  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
214                         xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
215                         xfer->rx_buf, xfer->rx_dma);
216         } else {
217                 xfer = as->next_transfer;
218                 remaining = as->next_remaining_bytes;
219         }
220
221         as->current_transfer = xfer;
222         as->current_remaining_bytes = remaining;
223
224         if (remaining > 0)
225                 len = remaining;
226         else if (!atmel_spi_xfer_is_last(msg, xfer)
227                         && atmel_spi_xfer_can_be_chained(xfer)) {
228                 xfer = list_entry(xfer->transfer_list.next,
229                                 struct spi_transfer, transfer_list);
230                 len = xfer->len;
231         } else
232                 xfer = NULL;
233
234         as->next_transfer = xfer;
235
236         if (xfer) {
237                 total = len;
238                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
239                 as->next_remaining_bytes = total - len;
240
241                 spi_writel(as, RNPR, rx_dma);
242                 spi_writel(as, TNPR, tx_dma);
243
244                 if (msg->spi->bits_per_word > 8)
245                         len >>= 1;
246                 spi_writel(as, RNCR, len);
247                 spi_writel(as, TNCR, len);
248
249                 dev_dbg(&msg->spi->dev,
250                         "  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
251                         xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
252                         xfer->rx_buf, xfer->rx_dma);
253         } else {
254                 spi_writel(as, RNCR, 0);
255                 spi_writel(as, TNCR, 0);
256         }
257
258         /* REVISIT: We're waiting for ENDRX before we start the next
259          * transfer because we need to handle some difficult timing
260          * issues otherwise. If we wait for ENDTX in one transfer and
261          * then starts waiting for ENDRX in the next, it's difficult
262          * to tell the difference between the ENDRX interrupt we're
263          * actually waiting for and the ENDRX interrupt of the
264          * previous transfer.
265          *
266          * It should be doable, though. Just not now...
267          */
268         spi_writel(as, IER, SPI_BIT(ENDRX) | SPI_BIT(OVRES));
269         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
270 }
271
272 static void atmel_spi_next_message(struct spi_master *master)
273 {
274         struct atmel_spi        *as = spi_master_get_devdata(master);
275         struct spi_message      *msg;
276         struct spi_device       *spi;
277
278         BUG_ON(as->current_transfer);
279
280         msg = list_entry(as->queue.next, struct spi_message, queue);
281         spi = msg->spi;
282
283         dev_dbg(master->dev.parent, "start message %p for %s\n",
284                         msg, spi->dev.bus_id);
285
286         /* select chip if it's not still active */
287         if (as->stay) {
288                 if (as->stay != spi) {
289                         cs_deactivate(as, as->stay);
290                         cs_activate(as, spi);
291                 }
292                 as->stay = NULL;
293         } else
294                 cs_activate(as, spi);
295
296         atmel_spi_next_xfer(master, msg);
297 }
298
299 /*
300  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
301  *  - The buffer is either valid for CPU access, else NULL
302  *  - If the buffer is valid, so is its DMA addresss
303  *
304  * This driver manages the dma addresss unless message->is_dma_mapped.
305  */
306 static int
307 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
308 {
309         struct device   *dev = &as->pdev->dev;
310
311         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
312         if (xfer->tx_buf) {
313                 xfer->tx_dma = dma_map_single(dev,
314                                 (void *) xfer->tx_buf, xfer->len,
315                                 DMA_TO_DEVICE);
316                 if (dma_mapping_error(xfer->tx_dma))
317                         return -ENOMEM;
318         }
319         if (xfer->rx_buf) {
320                 xfer->rx_dma = dma_map_single(dev,
321                                 xfer->rx_buf, xfer->len,
322                                 DMA_FROM_DEVICE);
323                 if (dma_mapping_error(xfer->rx_dma)) {
324                         if (xfer->tx_buf)
325                                 dma_unmap_single(dev,
326                                                 xfer->tx_dma, xfer->len,
327                                                 DMA_TO_DEVICE);
328                         return -ENOMEM;
329                 }
330         }
331         return 0;
332 }
333
334 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
335                                      struct spi_transfer *xfer)
336 {
337         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
338                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
339                                  xfer->len, DMA_TO_DEVICE);
340         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
341                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
342                                  xfer->len, DMA_FROM_DEVICE);
343 }
344
345 static void
346 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
347                 struct spi_message *msg, int status, int stay)
348 {
349         if (!stay || status < 0)
350                 cs_deactivate(as, msg->spi);
351         else
352                 as->stay = msg->spi;
353
354         list_del(&msg->queue);
355         msg->status = status;
356
357         dev_dbg(master->dev.parent,
358                 "xfer complete: %u bytes transferred\n",
359                 msg->actual_length);
360
361         spin_unlock(&as->lock);
362         msg->complete(msg->context);
363         spin_lock(&as->lock);
364
365         as->current_transfer = NULL;
366         as->next_transfer = NULL;
367
368         /* continue if needed */
369         if (list_empty(&as->queue) || as->stopping)
370                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
371         else
372                 atmel_spi_next_message(master);
373 }
374
375 static irqreturn_t
376 atmel_spi_interrupt(int irq, void *dev_id)
377 {
378         struct spi_master       *master = dev_id;
379         struct atmel_spi        *as = spi_master_get_devdata(master);
380         struct spi_message      *msg;
381         struct spi_transfer     *xfer;
382         u32                     status, pending, imr;
383         int                     ret = IRQ_NONE;
384
385         spin_lock(&as->lock);
386
387         xfer = as->current_transfer;
388         msg = list_entry(as->queue.next, struct spi_message, queue);
389
390         imr = spi_readl(as, IMR);
391         status = spi_readl(as, SR);
392         pending = status & imr;
393
394         if (pending & SPI_BIT(OVRES)) {
395                 int timeout;
396
397                 ret = IRQ_HANDLED;
398
399                 spi_writel(as, IDR, (SPI_BIT(ENDTX) | SPI_BIT(ENDRX)
400                                      | SPI_BIT(OVRES)));
401
402                 /*
403                  * When we get an overrun, we disregard the current
404                  * transfer. Data will not be copied back from any
405                  * bounce buffer and msg->actual_len will not be
406                  * updated with the last xfer.
407                  *
408                  * We will also not process any remaning transfers in
409                  * the message.
410                  *
411                  * First, stop the transfer and unmap the DMA buffers.
412                  */
413                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
414                 if (!msg->is_dma_mapped)
415                         atmel_spi_dma_unmap_xfer(master, xfer);
416
417                 /* REVISIT: udelay in irq is unfriendly */
418                 if (xfer->delay_usecs)
419                         udelay(xfer->delay_usecs);
420
421                 dev_warn(master->dev.parent, "fifo overrun (%u/%u remaining)\n",
422                          spi_readl(as, TCR), spi_readl(as, RCR));
423
424                 /*
425                  * Clean up DMA registers and make sure the data
426                  * registers are empty.
427                  */
428                 spi_writel(as, RNCR, 0);
429                 spi_writel(as, TNCR, 0);
430                 spi_writel(as, RCR, 0);
431                 spi_writel(as, TCR, 0);
432                 for (timeout = 1000; timeout; timeout--)
433                         if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
434                                 break;
435                 if (!timeout)
436                         dev_warn(master->dev.parent,
437                                  "timeout waiting for TXEMPTY");
438                 while (spi_readl(as, SR) & SPI_BIT(RDRF))
439                         spi_readl(as, RDR);
440
441                 /* Clear any overrun happening while cleaning up */
442                 spi_readl(as, SR);
443
444                 atmel_spi_msg_done(master, as, msg, -EIO, 0);
445         } else if (pending & SPI_BIT(ENDRX)) {
446                 ret = IRQ_HANDLED;
447
448                 spi_writel(as, IDR, pending);
449
450                 if (as->current_remaining_bytes == 0) {
451                         msg->actual_length += xfer->len;
452
453                         if (!msg->is_dma_mapped)
454                                 atmel_spi_dma_unmap_xfer(master, xfer);
455
456                         /* REVISIT: udelay in irq is unfriendly */
457                         if (xfer->delay_usecs)
458                                 udelay(xfer->delay_usecs);
459
460                         if (atmel_spi_xfer_is_last(msg, xfer)) {
461                                 /* report completed message */
462                                 atmel_spi_msg_done(master, as, msg, 0,
463                                                 xfer->cs_change);
464                         } else {
465                                 if (xfer->cs_change) {
466                                         cs_deactivate(as, msg->spi);
467                                         udelay(1);
468                                         cs_activate(as, msg->spi);
469                                 }
470
471                                 /*
472                                  * Not done yet. Submit the next transfer.
473                                  *
474                                  * FIXME handle protocol options for xfer
475                                  */
476                                 atmel_spi_next_xfer(master, msg);
477                         }
478                 } else {
479                         /*
480                          * Keep going, we still have data to send in
481                          * the current transfer.
482                          */
483                         atmel_spi_next_xfer(master, msg);
484                 }
485         }
486
487         spin_unlock(&as->lock);
488
489         return ret;
490 }
491
492 /* the spi->mode bits understood by this driver: */
493 #define MODEBITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH)
494
495 static int atmel_spi_setup(struct spi_device *spi)
496 {
497         struct atmel_spi        *as;
498         u32                     scbr, csr;
499         unsigned int            bits = spi->bits_per_word;
500         unsigned long           bus_hz;
501         unsigned int            npcs_pin;
502         int                     ret;
503
504         as = spi_master_get_devdata(spi->master);
505
506         if (as->stopping)
507                 return -ESHUTDOWN;
508
509         if (spi->chip_select > spi->master->num_chipselect) {
510                 dev_dbg(&spi->dev,
511                                 "setup: invalid chipselect %u (%u defined)\n",
512                                 spi->chip_select, spi->master->num_chipselect);
513                 return -EINVAL;
514         }
515
516         if (bits == 0)
517                 bits = 8;
518         if (bits < 8 || bits > 16) {
519                 dev_dbg(&spi->dev,
520                                 "setup: invalid bits_per_word %u (8 to 16)\n",
521                                 bits);
522                 return -EINVAL;
523         }
524
525         if (spi->mode & ~MODEBITS) {
526                 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
527                         spi->mode & ~MODEBITS);
528                 return -EINVAL;
529         }
530
531         /* see notes above re chipselect */
532         if (cpu_is_at91rm9200()
533                         && spi->chip_select == 0
534                         && (spi->mode & SPI_CS_HIGH)) {
535                 dev_dbg(&spi->dev, "setup: can't be active-high\n");
536                 return -EINVAL;
537         }
538
539         /*
540          * Pre-new_1 chips start out at half the peripheral
541          * bus speed.
542          */
543         bus_hz = clk_get_rate(as->clk);
544         if (!as->new_1)
545                 bus_hz /= 2;
546
547         if (spi->max_speed_hz) {
548                 /*
549                  * Calculate the lowest divider that satisfies the
550                  * constraint, assuming div32/fdiv/mbz == 0.
551                  */
552                 scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
553
554                 /*
555                  * If the resulting divider doesn't fit into the
556                  * register bitfield, we can't satisfy the constraint.
557                  */
558                 if (scbr >= (1 << SPI_SCBR_SIZE)) {
559                         dev_dbg(&spi->dev,
560                                 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
561                                 spi->max_speed_hz, scbr, bus_hz/255);
562                         return -EINVAL;
563                 }
564         } else
565                 /* speed zero means "as slow as possible" */
566                 scbr = 0xff;
567
568         csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
569         if (spi->mode & SPI_CPOL)
570                 csr |= SPI_BIT(CPOL);
571         if (!(spi->mode & SPI_CPHA))
572                 csr |= SPI_BIT(NCPHA);
573
574         /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
575          *
576          * DLYBCT would add delays between words, slowing down transfers.
577          * It could potentially be useful to cope with DMA bottlenecks, but
578          * in those cases it's probably best to just use a lower bitrate.
579          */
580         csr |= SPI_BF(DLYBS, 0);
581         csr |= SPI_BF(DLYBCT, 0);
582
583         /* chipselect must have been muxed as GPIO (e.g. in board setup) */
584         npcs_pin = (unsigned int)spi->controller_data;
585         if (!spi->controller_state) {
586                 ret = gpio_request(npcs_pin, spi->dev.bus_id);
587                 if (ret)
588                         return ret;
589                 spi->controller_state = (void *)npcs_pin;
590                 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
591         } else {
592                 unsigned long           flags;
593
594                 spin_lock_irqsave(&as->lock, flags);
595                 if (as->stay == spi)
596                         as->stay = NULL;
597                 cs_deactivate(as, spi);
598                 spin_unlock_irqrestore(&as->lock, flags);
599         }
600
601         dev_dbg(&spi->dev,
602                 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
603                 bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
604
605         spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
606
607         return 0;
608 }
609
610 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
611 {
612         struct atmel_spi        *as;
613         struct spi_transfer     *xfer;
614         unsigned long           flags;
615         struct device           *controller = spi->master->dev.parent;
616
617         as = spi_master_get_devdata(spi->master);
618
619         dev_dbg(controller, "new message %p submitted for %s\n",
620                         msg, spi->dev.bus_id);
621
622         if (unlikely(list_empty(&msg->transfers)
623                         || !spi->max_speed_hz))
624                 return -EINVAL;
625
626         if (as->stopping)
627                 return -ESHUTDOWN;
628
629         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
630                 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
631                         dev_dbg(&spi->dev, "missing rx or tx buf\n");
632                         return -EINVAL;
633                 }
634
635                 /* FIXME implement these protocol options!! */
636                 if (xfer->bits_per_word || xfer->speed_hz) {
637                         dev_dbg(&spi->dev, "no protocol options yet\n");
638                         return -ENOPROTOOPT;
639                 }
640
641                 /*
642                  * DMA map early, for performance (empties dcache ASAP) and
643                  * better fault reporting.  This is a DMA-only driver.
644                  *
645                  * NOTE that if dma_unmap_single() ever starts to do work on
646                  * platforms supported by this driver, we would need to clean
647                  * up mappings for previously-mapped transfers.
648                  */
649                 if (!msg->is_dma_mapped) {
650                         if (atmel_spi_dma_map_xfer(as, xfer) < 0)
651                                 return -ENOMEM;
652                 }
653         }
654
655 #ifdef VERBOSE
656         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
657                 dev_dbg(controller,
658                         "  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
659                         xfer, xfer->len,
660                         xfer->tx_buf, xfer->tx_dma,
661                         xfer->rx_buf, xfer->rx_dma);
662         }
663 #endif
664
665         msg->status = -EINPROGRESS;
666         msg->actual_length = 0;
667
668         spin_lock_irqsave(&as->lock, flags);
669         list_add_tail(&msg->queue, &as->queue);
670         if (!as->current_transfer)
671                 atmel_spi_next_message(spi->master);
672         spin_unlock_irqrestore(&as->lock, flags);
673
674         return 0;
675 }
676
677 static void atmel_spi_cleanup(struct spi_device *spi)
678 {
679         struct atmel_spi        *as = spi_master_get_devdata(spi->master);
680         unsigned                gpio = (unsigned) spi->controller_data;
681         unsigned long           flags;
682
683         if (!spi->controller_state)
684                 return;
685
686         spin_lock_irqsave(&as->lock, flags);
687         if (as->stay == spi) {
688                 as->stay = NULL;
689                 cs_deactivate(as, spi);
690         }
691         spin_unlock_irqrestore(&as->lock, flags);
692
693         gpio_free(gpio);
694 }
695
696 /*-------------------------------------------------------------------------*/
697
698 static int __init atmel_spi_probe(struct platform_device *pdev)
699 {
700         struct resource         *regs;
701         int                     irq;
702         struct clk              *clk;
703         int                     ret;
704         struct spi_master       *master;
705         struct atmel_spi        *as;
706
707         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
708         if (!regs)
709                 return -ENXIO;
710
711         irq = platform_get_irq(pdev, 0);
712         if (irq < 0)
713                 return irq;
714
715         clk = clk_get(&pdev->dev, "spi_clk");
716         if (IS_ERR(clk))
717                 return PTR_ERR(clk);
718
719         /* setup spi core then atmel-specific driver state */
720         ret = -ENOMEM;
721         master = spi_alloc_master(&pdev->dev, sizeof *as);
722         if (!master)
723                 goto out_free;
724
725         master->bus_num = pdev->id;
726         master->num_chipselect = 4;
727         master->setup = atmel_spi_setup;
728         master->transfer = atmel_spi_transfer;
729         master->cleanup = atmel_spi_cleanup;
730         platform_set_drvdata(pdev, master);
731
732         as = spi_master_get_devdata(master);
733
734         /*
735          * Scratch buffer is used for throwaway rx and tx data.
736          * It's coherent to minimize dcache pollution.
737          */
738         as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
739                                         &as->buffer_dma, GFP_KERNEL);
740         if (!as->buffer)
741                 goto out_free;
742
743         spin_lock_init(&as->lock);
744         INIT_LIST_HEAD(&as->queue);
745         as->pdev = pdev;
746         as->regs = ioremap(regs->start, (regs->end - regs->start) + 1);
747         if (!as->regs)
748                 goto out_free_buffer;
749         as->irq = irq;
750         as->clk = clk;
751         if (!cpu_is_at91rm9200())
752                 as->new_1 = 1;
753
754         ret = request_irq(irq, atmel_spi_interrupt, 0,
755                         pdev->dev.bus_id, master);
756         if (ret)
757                 goto out_unmap_regs;
758
759         /* Initialize the hardware */
760         clk_enable(clk);
761         spi_writel(as, CR, SPI_BIT(SWRST));
762         spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
763         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
764         spi_writel(as, CR, SPI_BIT(SPIEN));
765
766         /* go! */
767         dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
768                         (unsigned long)regs->start, irq);
769
770         ret = spi_register_master(master);
771         if (ret)
772                 goto out_reset_hw;
773
774         return 0;
775
776 out_reset_hw:
777         spi_writel(as, CR, SPI_BIT(SWRST));
778         clk_disable(clk);
779         free_irq(irq, master);
780 out_unmap_regs:
781         iounmap(as->regs);
782 out_free_buffer:
783         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
784                         as->buffer_dma);
785 out_free:
786         clk_put(clk);
787         spi_master_put(master);
788         return ret;
789 }
790
791 static int __exit atmel_spi_remove(struct platform_device *pdev)
792 {
793         struct spi_master       *master = platform_get_drvdata(pdev);
794         struct atmel_spi        *as = spi_master_get_devdata(master);
795         struct spi_message      *msg;
796
797         /* reset the hardware and block queue progress */
798         spin_lock_irq(&as->lock);
799         as->stopping = 1;
800         spi_writel(as, CR, SPI_BIT(SWRST));
801         spi_readl(as, SR);
802         spin_unlock_irq(&as->lock);
803
804         /* Terminate remaining queued transfers */
805         list_for_each_entry(msg, &as->queue, queue) {
806                 /* REVISIT unmapping the dma is a NOP on ARM and AVR32
807                  * but we shouldn't depend on that...
808                  */
809                 msg->status = -ESHUTDOWN;
810                 msg->complete(msg->context);
811         }
812
813         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
814                         as->buffer_dma);
815
816         clk_disable(as->clk);
817         clk_put(as->clk);
818         free_irq(as->irq, master);
819         iounmap(as->regs);
820
821         spi_unregister_master(master);
822
823         return 0;
824 }
825
826 #ifdef  CONFIG_PM
827
828 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
829 {
830         struct spi_master       *master = platform_get_drvdata(pdev);
831         struct atmel_spi        *as = spi_master_get_devdata(master);
832
833         clk_disable(as->clk);
834         return 0;
835 }
836
837 static int atmel_spi_resume(struct platform_device *pdev)
838 {
839         struct spi_master       *master = platform_get_drvdata(pdev);
840         struct atmel_spi        *as = spi_master_get_devdata(master);
841
842         clk_enable(as->clk);
843         return 0;
844 }
845
846 #else
847 #define atmel_spi_suspend       NULL
848 #define atmel_spi_resume        NULL
849 #endif
850
851
852 static struct platform_driver atmel_spi_driver = {
853         .driver         = {
854                 .name   = "atmel_spi",
855                 .owner  = THIS_MODULE,
856         },
857         .suspend        = atmel_spi_suspend,
858         .resume         = atmel_spi_resume,
859         .remove         = __exit_p(atmel_spi_remove),
860 };
861
862 static int __init atmel_spi_init(void)
863 {
864         return platform_driver_probe(&atmel_spi_driver, atmel_spi_probe);
865 }
866 module_init(atmel_spi_init);
867
868 static void __exit atmel_spi_exit(void)
869 {
870         platform_driver_unregister(&atmel_spi_driver);
871 }
872 module_exit(atmel_spi_exit);
873
874 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
875 MODULE_AUTHOR("Haavard Skinnemoen <hskinnemoen@atmel.com>");
876 MODULE_LICENSE("GPL");
877 MODULE_ALIAS("platform:atmel_spi");