serial: kill off uart_info
[safe/jmp/linux-2.6] / drivers / serial / serial_core.c
1 /*
2  *  linux/drivers/char/core.c
3  *
4  *  Driver core for serial ports
5  *
6  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
7  *
8  *  Copyright 1999 ARM Limited
9  *  Copyright (C) 2000-2001 Deep Blue Solutions Ltd.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
24  */
25 #include <linux/module.h>
26 #include <linux/tty.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/console.h>
30 #include <linux/proc_fs.h>
31 #include <linux/seq_file.h>
32 #include <linux/serial_core.h>
33 #include <linux/smp_lock.h>
34 #include <linux/device.h>
35 #include <linux/serial.h> /* for serial_state and serial_icounter_struct */
36 #include <linux/delay.h>
37 #include <linux/mutex.h>
38
39 #include <asm/irq.h>
40 #include <asm/uaccess.h>
41
42 /*
43  * This is used to lock changes in serial line configuration.
44  */
45 static DEFINE_MUTEX(port_mutex);
46
47 /*
48  * lockdep: port->lock is initialized in two places, but we
49  *          want only one lock-class:
50  */
51 static struct lock_class_key port_lock_key;
52
53 #define HIGH_BITS_OFFSET        ((sizeof(long)-sizeof(int))*8)
54
55 #define uart_users(state)       ((state)->count + (state)->port.blocked_open)
56
57 #ifdef CONFIG_SERIAL_CORE_CONSOLE
58 #define uart_console(port)      ((port)->cons && (port)->cons->index == (port)->line)
59 #else
60 #define uart_console(port)      (0)
61 #endif
62
63 static void uart_change_speed(struct uart_state *state,
64                                         struct ktermios *old_termios);
65 static void uart_wait_until_sent(struct tty_struct *tty, int timeout);
66 static void uart_change_pm(struct uart_state *state, int pm_state);
67
68 /*
69  * This routine is used by the interrupt handler to schedule processing in
70  * the software interrupt portion of the driver.
71  */
72 void uart_write_wakeup(struct uart_port *port)
73 {
74         struct uart_state *state = port->state;
75         /*
76          * This means you called this function _after_ the port was
77          * closed.  No cookie for you.
78          */
79         BUG_ON(!state);
80         tasklet_schedule(&state->tlet);
81 }
82
83 static void uart_stop(struct tty_struct *tty)
84 {
85         struct uart_state *state = tty->driver_data;
86         struct uart_port *port = state->uart_port;
87         unsigned long flags;
88
89         spin_lock_irqsave(&port->lock, flags);
90         port->ops->stop_tx(port);
91         spin_unlock_irqrestore(&port->lock, flags);
92 }
93
94 static void __uart_start(struct tty_struct *tty)
95 {
96         struct uart_state *state = tty->driver_data;
97         struct uart_port *port = state->uart_port;
98
99         if (!uart_circ_empty(&state->xmit) && state->xmit.buf &&
100             !tty->stopped && !tty->hw_stopped)
101                 port->ops->start_tx(port);
102 }
103
104 static void uart_start(struct tty_struct *tty)
105 {
106         struct uart_state *state = tty->driver_data;
107         struct uart_port *port = state->uart_port;
108         unsigned long flags;
109
110         spin_lock_irqsave(&port->lock, flags);
111         __uart_start(tty);
112         spin_unlock_irqrestore(&port->lock, flags);
113 }
114
115 static void uart_tasklet_action(unsigned long data)
116 {
117         struct uart_state *state = (struct uart_state *)data;
118         tty_wakeup(state->port.tty);
119 }
120
121 static inline void
122 uart_update_mctrl(struct uart_port *port, unsigned int set, unsigned int clear)
123 {
124         unsigned long flags;
125         unsigned int old;
126
127         spin_lock_irqsave(&port->lock, flags);
128         old = port->mctrl;
129         port->mctrl = (old & ~clear) | set;
130         if (old != port->mctrl)
131                 port->ops->set_mctrl(port, port->mctrl);
132         spin_unlock_irqrestore(&port->lock, flags);
133 }
134
135 #define uart_set_mctrl(port, set)       uart_update_mctrl(port, set, 0)
136 #define uart_clear_mctrl(port, clear)   uart_update_mctrl(port, 0, clear)
137
138 /*
139  * Startup the port.  This will be called once per open.  All calls
140  * will be serialised by the per-port mutex.
141  */
142 static int uart_startup(struct uart_state *state, int init_hw)
143 {
144         struct uart_port *port = state->uart_port;
145         unsigned long page;
146         int retval = 0;
147
148         if (state->flags & UIF_INITIALIZED)
149                 return 0;
150
151         /*
152          * Set the TTY IO error marker - we will only clear this
153          * once we have successfully opened the port.  Also set
154          * up the tty->alt_speed kludge
155          */
156         set_bit(TTY_IO_ERROR, &state->port.tty->flags);
157
158         if (port->type == PORT_UNKNOWN)
159                 return 0;
160
161         /*
162          * Initialise and allocate the transmit and temporary
163          * buffer.
164          */
165         if (!state->xmit.buf) {
166                 /* This is protected by the per port mutex */
167                 page = get_zeroed_page(GFP_KERNEL);
168                 if (!page)
169                         return -ENOMEM;
170
171                 state->xmit.buf = (unsigned char *) page;
172                 uart_circ_clear(&state->xmit);
173         }
174
175         retval = port->ops->startup(port);
176         if (retval == 0) {
177                 if (init_hw) {
178                         /*
179                          * Initialise the hardware port settings.
180                          */
181                         uart_change_speed(state, NULL);
182
183                         /*
184                          * Setup the RTS and DTR signals once the
185                          * port is open and ready to respond.
186                          */
187                         if (state->port.tty->termios->c_cflag & CBAUD)
188                                 uart_set_mctrl(port, TIOCM_RTS | TIOCM_DTR);
189                 }
190
191                 if (state->flags & UIF_CTS_FLOW) {
192                         spin_lock_irq(&port->lock);
193                         if (!(port->ops->get_mctrl(port) & TIOCM_CTS))
194                                 state->port.tty->hw_stopped = 1;
195                         spin_unlock_irq(&port->lock);
196                 }
197
198                 state->flags |= UIF_INITIALIZED;
199
200                 clear_bit(TTY_IO_ERROR, &state->port.tty->flags);
201         }
202
203         if (retval && capable(CAP_SYS_ADMIN))
204                 retval = 0;
205
206         return retval;
207 }
208
209 /*
210  * This routine will shutdown a serial port; interrupts are disabled, and
211  * DTR is dropped if the hangup on close termio flag is on.  Calls to
212  * uart_shutdown are serialised by the per-port semaphore.
213  */
214 static void uart_shutdown(struct uart_state *state)
215 {
216         struct uart_port *port = state->uart_port;
217         struct tty_struct *tty = state->port.tty;
218
219         /*
220          * Set the TTY IO error marker
221          */
222         if (tty)
223                 set_bit(TTY_IO_ERROR, &tty->flags);
224
225         if (state->flags & UIF_INITIALIZED) {
226                 state->flags &= ~UIF_INITIALIZED;
227
228                 /*
229                  * Turn off DTR and RTS early.
230                  */
231                 if (!tty || (tty->termios->c_cflag & HUPCL))
232                         uart_clear_mctrl(port, TIOCM_DTR | TIOCM_RTS);
233
234                 /*
235                  * clear delta_msr_wait queue to avoid mem leaks: we may free
236                  * the irq here so the queue might never be woken up.  Note
237                  * that we won't end up waiting on delta_msr_wait again since
238                  * any outstanding file descriptors should be pointing at
239                  * hung_up_tty_fops now.
240                  */
241                 wake_up_interruptible(&state->delta_msr_wait);
242
243                 /*
244                  * Free the IRQ and disable the port.
245                  */
246                 port->ops->shutdown(port);
247
248                 /*
249                  * Ensure that the IRQ handler isn't running on another CPU.
250                  */
251                 synchronize_irq(port->irq);
252         }
253
254         /*
255          * kill off our tasklet
256          */
257         tasklet_kill(&state->tlet);
258
259         /*
260          * Free the transmit buffer page.
261          */
262         if (state->xmit.buf) {
263                 free_page((unsigned long)state->xmit.buf);
264                 state->xmit.buf = NULL;
265         }
266 }
267
268 /**
269  *      uart_update_timeout - update per-port FIFO timeout.
270  *      @port:  uart_port structure describing the port
271  *      @cflag: termios cflag value
272  *      @baud:  speed of the port
273  *
274  *      Set the port FIFO timeout value.  The @cflag value should
275  *      reflect the actual hardware settings.
276  */
277 void
278 uart_update_timeout(struct uart_port *port, unsigned int cflag,
279                     unsigned int baud)
280 {
281         unsigned int bits;
282
283         /* byte size and parity */
284         switch (cflag & CSIZE) {
285         case CS5:
286                 bits = 7;
287                 break;
288         case CS6:
289                 bits = 8;
290                 break;
291         case CS7:
292                 bits = 9;
293                 break;
294         default:
295                 bits = 10;
296                 break; /* CS8 */
297         }
298
299         if (cflag & CSTOPB)
300                 bits++;
301         if (cflag & PARENB)
302                 bits++;
303
304         /*
305          * The total number of bits to be transmitted in the fifo.
306          */
307         bits = bits * port->fifosize;
308
309         /*
310          * Figure the timeout to send the above number of bits.
311          * Add .02 seconds of slop
312          */
313         port->timeout = (HZ * bits) / baud + HZ/50;
314 }
315
316 EXPORT_SYMBOL(uart_update_timeout);
317
318 /**
319  *      uart_get_baud_rate - return baud rate for a particular port
320  *      @port: uart_port structure describing the port in question.
321  *      @termios: desired termios settings.
322  *      @old: old termios (or NULL)
323  *      @min: minimum acceptable baud rate
324  *      @max: maximum acceptable baud rate
325  *
326  *      Decode the termios structure into a numeric baud rate,
327  *      taking account of the magic 38400 baud rate (with spd_*
328  *      flags), and mapping the %B0 rate to 9600 baud.
329  *
330  *      If the new baud rate is invalid, try the old termios setting.
331  *      If it's still invalid, we try 9600 baud.
332  *
333  *      Update the @termios structure to reflect the baud rate
334  *      we're actually going to be using. Don't do this for the case
335  *      where B0 is requested ("hang up").
336  */
337 unsigned int
338 uart_get_baud_rate(struct uart_port *port, struct ktermios *termios,
339                    struct ktermios *old, unsigned int min, unsigned int max)
340 {
341         unsigned int try, baud, altbaud = 38400;
342         int hung_up = 0;
343         upf_t flags = port->flags & UPF_SPD_MASK;
344
345         if (flags == UPF_SPD_HI)
346                 altbaud = 57600;
347         if (flags == UPF_SPD_VHI)
348                 altbaud = 115200;
349         if (flags == UPF_SPD_SHI)
350                 altbaud = 230400;
351         if (flags == UPF_SPD_WARP)
352                 altbaud = 460800;
353
354         for (try = 0; try < 2; try++) {
355                 baud = tty_termios_baud_rate(termios);
356
357                 /*
358                  * The spd_hi, spd_vhi, spd_shi, spd_warp kludge...
359                  * Die! Die! Die!
360                  */
361                 if (baud == 38400)
362                         baud = altbaud;
363
364                 /*
365                  * Special case: B0 rate.
366                  */
367                 if (baud == 0) {
368                         hung_up = 1;
369                         baud = 9600;
370                 }
371
372                 if (baud >= min && baud <= max)
373                         return baud;
374
375                 /*
376                  * Oops, the quotient was zero.  Try again with
377                  * the old baud rate if possible.
378                  */
379                 termios->c_cflag &= ~CBAUD;
380                 if (old) {
381                         baud = tty_termios_baud_rate(old);
382                         if (!hung_up)
383                                 tty_termios_encode_baud_rate(termios,
384                                                                 baud, baud);
385                         old = NULL;
386                         continue;
387                 }
388
389                 /*
390                  * As a last resort, if the quotient is zero,
391                  * default to 9600 bps
392                  */
393                 if (!hung_up)
394                         tty_termios_encode_baud_rate(termios, 9600, 9600);
395         }
396
397         return 0;
398 }
399
400 EXPORT_SYMBOL(uart_get_baud_rate);
401
402 /**
403  *      uart_get_divisor - return uart clock divisor
404  *      @port: uart_port structure describing the port.
405  *      @baud: desired baud rate
406  *
407  *      Calculate the uart clock divisor for the port.
408  */
409 unsigned int
410 uart_get_divisor(struct uart_port *port, unsigned int baud)
411 {
412         unsigned int quot;
413
414         /*
415          * Old custom speed handling.
416          */
417         if (baud == 38400 && (port->flags & UPF_SPD_MASK) == UPF_SPD_CUST)
418                 quot = port->custom_divisor;
419         else
420                 quot = (port->uartclk + (8 * baud)) / (16 * baud);
421
422         return quot;
423 }
424
425 EXPORT_SYMBOL(uart_get_divisor);
426
427 /* FIXME: Consistent locking policy */
428 static void
429 uart_change_speed(struct uart_state *state, struct ktermios *old_termios)
430 {
431         struct tty_struct *tty = state->port.tty;
432         struct uart_port *port = state->uart_port;
433         struct ktermios *termios;
434
435         /*
436          * If we have no tty, termios, or the port does not exist,
437          * then we can't set the parameters for this port.
438          */
439         if (!tty || !tty->termios || port->type == PORT_UNKNOWN)
440                 return;
441
442         termios = tty->termios;
443
444         /*
445          * Set flags based on termios cflag
446          */
447         if (termios->c_cflag & CRTSCTS)
448                 state->flags |= UIF_CTS_FLOW;
449         else
450                 state->flags &= ~UIF_CTS_FLOW;
451
452         if (termios->c_cflag & CLOCAL)
453                 state->flags &= ~UIF_CHECK_CD;
454         else
455                 state->flags |= UIF_CHECK_CD;
456
457         port->ops->set_termios(port, termios, old_termios);
458 }
459
460 static inline int
461 __uart_put_char(struct uart_port *port, struct circ_buf *circ, unsigned char c)
462 {
463         unsigned long flags;
464         int ret = 0;
465
466         if (!circ->buf)
467                 return 0;
468
469         spin_lock_irqsave(&port->lock, flags);
470         if (uart_circ_chars_free(circ) != 0) {
471                 circ->buf[circ->head] = c;
472                 circ->head = (circ->head + 1) & (UART_XMIT_SIZE - 1);
473                 ret = 1;
474         }
475         spin_unlock_irqrestore(&port->lock, flags);
476         return ret;
477 }
478
479 static int uart_put_char(struct tty_struct *tty, unsigned char ch)
480 {
481         struct uart_state *state = tty->driver_data;
482
483         return __uart_put_char(state->uart_port, &state->xmit, ch);
484 }
485
486 static void uart_flush_chars(struct tty_struct *tty)
487 {
488         uart_start(tty);
489 }
490
491 static int
492 uart_write(struct tty_struct *tty, const unsigned char *buf, int count)
493 {
494         struct uart_state *state = tty->driver_data;
495         struct uart_port *port;
496         struct circ_buf *circ;
497         unsigned long flags;
498         int c, ret = 0;
499
500         /*
501          * This means you called this function _after_ the port was
502          * closed.  No cookie for you.
503          */
504         if (!state) {
505                 WARN_ON(1);
506                 return -EL3HLT;
507         }
508
509         port = state->uart_port;
510         circ = &state->xmit;
511
512         if (!circ->buf)
513                 return 0;
514
515         spin_lock_irqsave(&port->lock, flags);
516         while (1) {
517                 c = CIRC_SPACE_TO_END(circ->head, circ->tail, UART_XMIT_SIZE);
518                 if (count < c)
519                         c = count;
520                 if (c <= 0)
521                         break;
522                 memcpy(circ->buf + circ->head, buf, c);
523                 circ->head = (circ->head + c) & (UART_XMIT_SIZE - 1);
524                 buf += c;
525                 count -= c;
526                 ret += c;
527         }
528         spin_unlock_irqrestore(&port->lock, flags);
529
530         uart_start(tty);
531         return ret;
532 }
533
534 static int uart_write_room(struct tty_struct *tty)
535 {
536         struct uart_state *state = tty->driver_data;
537         unsigned long flags;
538         int ret;
539
540         spin_lock_irqsave(&state->uart_port->lock, flags);
541         ret = uart_circ_chars_free(&state->xmit);
542         spin_unlock_irqrestore(&state->uart_port->lock, flags);
543         return ret;
544 }
545
546 static int uart_chars_in_buffer(struct tty_struct *tty)
547 {
548         struct uart_state *state = tty->driver_data;
549         unsigned long flags;
550         int ret;
551
552         spin_lock_irqsave(&state->uart_port->lock, flags);
553         ret = uart_circ_chars_pending(&state->xmit);
554         spin_unlock_irqrestore(&state->uart_port->lock, flags);
555         return ret;
556 }
557
558 static void uart_flush_buffer(struct tty_struct *tty)
559 {
560         struct uart_state *state = tty->driver_data;
561         struct uart_port *port;
562         unsigned long flags;
563
564         /*
565          * This means you called this function _after_ the port was
566          * closed.  No cookie for you.
567          */
568         if (!state) {
569                 WARN_ON(1);
570                 return;
571         }
572
573         port = state->uart_port;
574         pr_debug("uart_flush_buffer(%d) called\n", tty->index);
575
576         spin_lock_irqsave(&port->lock, flags);
577         uart_circ_clear(&state->xmit);
578         if (port->ops->flush_buffer)
579                 port->ops->flush_buffer(port);
580         spin_unlock_irqrestore(&port->lock, flags);
581         tty_wakeup(tty);
582 }
583
584 /*
585  * This function is used to send a high-priority XON/XOFF character to
586  * the device
587  */
588 static void uart_send_xchar(struct tty_struct *tty, char ch)
589 {
590         struct uart_state *state = tty->driver_data;
591         struct uart_port *port = state->uart_port;
592         unsigned long flags;
593
594         if (port->ops->send_xchar)
595                 port->ops->send_xchar(port, ch);
596         else {
597                 port->x_char = ch;
598                 if (ch) {
599                         spin_lock_irqsave(&port->lock, flags);
600                         port->ops->start_tx(port);
601                         spin_unlock_irqrestore(&port->lock, flags);
602                 }
603         }
604 }
605
606 static void uart_throttle(struct tty_struct *tty)
607 {
608         struct uart_state *state = tty->driver_data;
609
610         if (I_IXOFF(tty))
611                 uart_send_xchar(tty, STOP_CHAR(tty));
612
613         if (tty->termios->c_cflag & CRTSCTS)
614                 uart_clear_mctrl(state->uart_port, TIOCM_RTS);
615 }
616
617 static void uart_unthrottle(struct tty_struct *tty)
618 {
619         struct uart_state *state = tty->driver_data;
620         struct uart_port *port = state->uart_port;
621
622         if (I_IXOFF(tty)) {
623                 if (port->x_char)
624                         port->x_char = 0;
625                 else
626                         uart_send_xchar(tty, START_CHAR(tty));
627         }
628
629         if (tty->termios->c_cflag & CRTSCTS)
630                 uart_set_mctrl(port, TIOCM_RTS);
631 }
632
633 static int uart_get_info(struct uart_state *state,
634                          struct serial_struct __user *retinfo)
635 {
636         struct uart_port *port = state->uart_port;
637         struct serial_struct tmp;
638
639         memset(&tmp, 0, sizeof(tmp));
640
641         /* Ensure the state we copy is consistent and no hardware changes
642            occur as we go */
643         mutex_lock(&state->mutex);
644
645         tmp.type            = port->type;
646         tmp.line            = port->line;
647         tmp.port            = port->iobase;
648         if (HIGH_BITS_OFFSET)
649                 tmp.port_high = (long) port->iobase >> HIGH_BITS_OFFSET;
650         tmp.irq             = port->irq;
651         tmp.flags           = port->flags;
652         tmp.xmit_fifo_size  = port->fifosize;
653         tmp.baud_base       = port->uartclk / 16;
654         tmp.close_delay     = state->close_delay / 10;
655         tmp.closing_wait    = state->closing_wait == USF_CLOSING_WAIT_NONE ?
656                                 ASYNC_CLOSING_WAIT_NONE :
657                                 state->closing_wait / 10;
658         tmp.custom_divisor  = port->custom_divisor;
659         tmp.hub6            = port->hub6;
660         tmp.io_type         = port->iotype;
661         tmp.iomem_reg_shift = port->regshift;
662         tmp.iomem_base      = (void *)(unsigned long)port->mapbase;
663
664         mutex_unlock(&state->mutex);
665
666         if (copy_to_user(retinfo, &tmp, sizeof(*retinfo)))
667                 return -EFAULT;
668         return 0;
669 }
670
671 static int uart_set_info(struct uart_state *state,
672                          struct serial_struct __user *newinfo)
673 {
674         struct serial_struct new_serial;
675         struct uart_port *port = state->uart_port;
676         unsigned long new_port;
677         unsigned int change_irq, change_port, closing_wait;
678         unsigned int old_custom_divisor, close_delay;
679         upf_t old_flags, new_flags;
680         int retval = 0;
681
682         if (copy_from_user(&new_serial, newinfo, sizeof(new_serial)))
683                 return -EFAULT;
684
685         new_port = new_serial.port;
686         if (HIGH_BITS_OFFSET)
687                 new_port += (unsigned long) new_serial.port_high << HIGH_BITS_OFFSET;
688
689         new_serial.irq = irq_canonicalize(new_serial.irq);
690         close_delay = new_serial.close_delay * 10;
691         closing_wait = new_serial.closing_wait == ASYNC_CLOSING_WAIT_NONE ?
692                         USF_CLOSING_WAIT_NONE : new_serial.closing_wait * 10;
693
694         /*
695          * This semaphore protects state->count.  It is also
696          * very useful to prevent opens.  Also, take the
697          * port configuration semaphore to make sure that a
698          * module insertion/removal doesn't change anything
699          * under us.
700          */
701         mutex_lock(&state->mutex);
702
703         change_irq  = !(port->flags & UPF_FIXED_PORT)
704                 && new_serial.irq != port->irq;
705
706         /*
707          * Since changing the 'type' of the port changes its resource
708          * allocations, we should treat type changes the same as
709          * IO port changes.
710          */
711         change_port = !(port->flags & UPF_FIXED_PORT)
712                 && (new_port != port->iobase ||
713                     (unsigned long)new_serial.iomem_base != port->mapbase ||
714                     new_serial.hub6 != port->hub6 ||
715                     new_serial.io_type != port->iotype ||
716                     new_serial.iomem_reg_shift != port->regshift ||
717                     new_serial.type != port->type);
718
719         old_flags = port->flags;
720         new_flags = new_serial.flags;
721         old_custom_divisor = port->custom_divisor;
722
723         if (!capable(CAP_SYS_ADMIN)) {
724                 retval = -EPERM;
725                 if (change_irq || change_port ||
726                     (new_serial.baud_base != port->uartclk / 16) ||
727                     (close_delay != state->close_delay) ||
728                     (closing_wait != state->closing_wait) ||
729                     (new_serial.xmit_fifo_size &&
730                      new_serial.xmit_fifo_size != port->fifosize) ||
731                     (((new_flags ^ old_flags) & ~UPF_USR_MASK) != 0))
732                         goto exit;
733                 port->flags = ((port->flags & ~UPF_USR_MASK) |
734                                (new_flags & UPF_USR_MASK));
735                 port->custom_divisor = new_serial.custom_divisor;
736                 goto check_and_exit;
737         }
738
739         /*
740          * Ask the low level driver to verify the settings.
741          */
742         if (port->ops->verify_port)
743                 retval = port->ops->verify_port(port, &new_serial);
744
745         if ((new_serial.irq >= nr_irqs) || (new_serial.irq < 0) ||
746             (new_serial.baud_base < 9600))
747                 retval = -EINVAL;
748
749         if (retval)
750                 goto exit;
751
752         if (change_port || change_irq) {
753                 retval = -EBUSY;
754
755                 /*
756                  * Make sure that we are the sole user of this port.
757                  */
758                 if (uart_users(state) > 1)
759                         goto exit;
760
761                 /*
762                  * We need to shutdown the serial port at the old
763                  * port/type/irq combination.
764                  */
765                 uart_shutdown(state);
766         }
767
768         if (change_port) {
769                 unsigned long old_iobase, old_mapbase;
770                 unsigned int old_type, old_iotype, old_hub6, old_shift;
771
772                 old_iobase = port->iobase;
773                 old_mapbase = port->mapbase;
774                 old_type = port->type;
775                 old_hub6 = port->hub6;
776                 old_iotype = port->iotype;
777                 old_shift = port->regshift;
778
779                 /*
780                  * Free and release old regions
781                  */
782                 if (old_type != PORT_UNKNOWN)
783                         port->ops->release_port(port);
784
785                 port->iobase = new_port;
786                 port->type = new_serial.type;
787                 port->hub6 = new_serial.hub6;
788                 port->iotype = new_serial.io_type;
789                 port->regshift = new_serial.iomem_reg_shift;
790                 port->mapbase = (unsigned long)new_serial.iomem_base;
791
792                 /*
793                  * Claim and map the new regions
794                  */
795                 if (port->type != PORT_UNKNOWN) {
796                         retval = port->ops->request_port(port);
797                 } else {
798                         /* Always success - Jean II */
799                         retval = 0;
800                 }
801
802                 /*
803                  * If we fail to request resources for the
804                  * new port, try to restore the old settings.
805                  */
806                 if (retval && old_type != PORT_UNKNOWN) {
807                         port->iobase = old_iobase;
808                         port->type = old_type;
809                         port->hub6 = old_hub6;
810                         port->iotype = old_iotype;
811                         port->regshift = old_shift;
812                         port->mapbase = old_mapbase;
813                         retval = port->ops->request_port(port);
814                         /*
815                          * If we failed to restore the old settings,
816                          * we fail like this.
817                          */
818                         if (retval)
819                                 port->type = PORT_UNKNOWN;
820
821                         /*
822                          * We failed anyway.
823                          */
824                         retval = -EBUSY;
825                         /* Added to return the correct error -Ram Gupta */
826                         goto exit;
827                 }
828         }
829
830         if (change_irq)
831                 port->irq      = new_serial.irq;
832         if (!(port->flags & UPF_FIXED_PORT))
833                 port->uartclk  = new_serial.baud_base * 16;
834         port->flags            = (port->flags & ~UPF_CHANGE_MASK) |
835                                  (new_flags & UPF_CHANGE_MASK);
836         port->custom_divisor   = new_serial.custom_divisor;
837         state->close_delay     = close_delay;
838         state->closing_wait    = closing_wait;
839         if (new_serial.xmit_fifo_size)
840                 port->fifosize = new_serial.xmit_fifo_size;
841         if (state->port.tty)
842                 state->port.tty->low_latency =
843                         (port->flags & UPF_LOW_LATENCY) ? 1 : 0;
844
845  check_and_exit:
846         retval = 0;
847         if (port->type == PORT_UNKNOWN)
848                 goto exit;
849         if (state->flags & UIF_INITIALIZED) {
850                 if (((old_flags ^ port->flags) & UPF_SPD_MASK) ||
851                     old_custom_divisor != port->custom_divisor) {
852                         /*
853                          * If they're setting up a custom divisor or speed,
854                          * instead of clearing it, then bitch about it. No
855                          * need to rate-limit; it's CAP_SYS_ADMIN only.
856                          */
857                         if (port->flags & UPF_SPD_MASK) {
858                                 char buf[64];
859                                 printk(KERN_NOTICE
860                                        "%s sets custom speed on %s. This "
861                                        "is deprecated.\n", current->comm,
862                                        tty_name(state->port.tty, buf));
863                         }
864                         uart_change_speed(state, NULL);
865                 }
866         } else
867                 retval = uart_startup(state, 1);
868  exit:
869         mutex_unlock(&state->mutex);
870         return retval;
871 }
872
873
874 /*
875  * uart_get_lsr_info - get line status register info.
876  * Note: uart_ioctl protects us against hangups.
877  */
878 static int uart_get_lsr_info(struct uart_state *state,
879                              unsigned int __user *value)
880 {
881         struct uart_port *port = state->uart_port;
882         unsigned int result;
883
884         result = port->ops->tx_empty(port);
885
886         /*
887          * If we're about to load something into the transmit
888          * register, we'll pretend the transmitter isn't empty to
889          * avoid a race condition (depending on when the transmit
890          * interrupt happens).
891          */
892         if (port->x_char ||
893             ((uart_circ_chars_pending(&state->xmit) > 0) &&
894              !state->port.tty->stopped && !state->port.tty->hw_stopped))
895                 result &= ~TIOCSER_TEMT;
896
897         return put_user(result, value);
898 }
899
900 static int uart_tiocmget(struct tty_struct *tty, struct file *file)
901 {
902         struct uart_state *state = tty->driver_data;
903         struct uart_port *port = state->uart_port;
904         int result = -EIO;
905
906         mutex_lock(&state->mutex);
907         if ((!file || !tty_hung_up_p(file)) &&
908             !(tty->flags & (1 << TTY_IO_ERROR))) {
909                 result = port->mctrl;
910
911                 spin_lock_irq(&port->lock);
912                 result |= port->ops->get_mctrl(port);
913                 spin_unlock_irq(&port->lock);
914         }
915         mutex_unlock(&state->mutex);
916
917         return result;
918 }
919
920 static int
921 uart_tiocmset(struct tty_struct *tty, struct file *file,
922               unsigned int set, unsigned int clear)
923 {
924         struct uart_state *state = tty->driver_data;
925         struct uart_port *port = state->uart_port;
926         int ret = -EIO;
927
928         mutex_lock(&state->mutex);
929         if ((!file || !tty_hung_up_p(file)) &&
930             !(tty->flags & (1 << TTY_IO_ERROR))) {
931                 uart_update_mctrl(port, set, clear);
932                 ret = 0;
933         }
934         mutex_unlock(&state->mutex);
935         return ret;
936 }
937
938 static int uart_break_ctl(struct tty_struct *tty, int break_state)
939 {
940         struct uart_state *state = tty->driver_data;
941         struct uart_port *port = state->uart_port;
942
943         mutex_lock(&state->mutex);
944
945         if (port->type != PORT_UNKNOWN)
946                 port->ops->break_ctl(port, break_state);
947
948         mutex_unlock(&state->mutex);
949         return 0;
950 }
951
952 static int uart_do_autoconfig(struct uart_state *state)
953 {
954         struct uart_port *port = state->uart_port;
955         int flags, ret;
956
957         if (!capable(CAP_SYS_ADMIN))
958                 return -EPERM;
959
960         /*
961          * Take the per-port semaphore.  This prevents count from
962          * changing, and hence any extra opens of the port while
963          * we're auto-configuring.
964          */
965         if (mutex_lock_interruptible(&state->mutex))
966                 return -ERESTARTSYS;
967
968         ret = -EBUSY;
969         if (uart_users(state) == 1) {
970                 uart_shutdown(state);
971
972                 /*
973                  * If we already have a port type configured,
974                  * we must release its resources.
975                  */
976                 if (port->type != PORT_UNKNOWN)
977                         port->ops->release_port(port);
978
979                 flags = UART_CONFIG_TYPE;
980                 if (port->flags & UPF_AUTO_IRQ)
981                         flags |= UART_CONFIG_IRQ;
982
983                 /*
984                  * This will claim the ports resources if
985                  * a port is found.
986                  */
987                 port->ops->config_port(port, flags);
988
989                 ret = uart_startup(state, 1);
990         }
991         mutex_unlock(&state->mutex);
992         return ret;
993 }
994
995 /*
996  * Wait for any of the 4 modem inputs (DCD,RI,DSR,CTS) to change
997  * - mask passed in arg for lines of interest
998  *   (use |'ed TIOCM_RNG/DSR/CD/CTS for masking)
999  * Caller should use TIOCGICOUNT to see which one it was
1000  */
1001 static int
1002 uart_wait_modem_status(struct uart_state *state, unsigned long arg)
1003 {
1004         struct uart_port *port = state->uart_port;
1005         DECLARE_WAITQUEUE(wait, current);
1006         struct uart_icount cprev, cnow;
1007         int ret;
1008
1009         /*
1010          * note the counters on entry
1011          */
1012         spin_lock_irq(&port->lock);
1013         memcpy(&cprev, &port->icount, sizeof(struct uart_icount));
1014
1015         /*
1016          * Force modem status interrupts on
1017          */
1018         port->ops->enable_ms(port);
1019         spin_unlock_irq(&port->lock);
1020
1021         add_wait_queue(&state->delta_msr_wait, &wait);
1022         for (;;) {
1023                 spin_lock_irq(&port->lock);
1024                 memcpy(&cnow, &port->icount, sizeof(struct uart_icount));
1025                 spin_unlock_irq(&port->lock);
1026
1027                 set_current_state(TASK_INTERRUPTIBLE);
1028
1029                 if (((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) ||
1030                     ((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) ||
1031                     ((arg & TIOCM_CD)  && (cnow.dcd != cprev.dcd)) ||
1032                     ((arg & TIOCM_CTS) && (cnow.cts != cprev.cts))) {
1033                         ret = 0;
1034                         break;
1035                 }
1036
1037                 schedule();
1038
1039                 /* see if a signal did it */
1040                 if (signal_pending(current)) {
1041                         ret = -ERESTARTSYS;
1042                         break;
1043                 }
1044
1045                 cprev = cnow;
1046         }
1047
1048         current->state = TASK_RUNNING;
1049         remove_wait_queue(&state->delta_msr_wait, &wait);
1050
1051         return ret;
1052 }
1053
1054 /*
1055  * Get counter of input serial line interrupts (DCD,RI,DSR,CTS)
1056  * Return: write counters to the user passed counter struct
1057  * NB: both 1->0 and 0->1 transitions are counted except for
1058  *     RI where only 0->1 is counted.
1059  */
1060 static int uart_get_count(struct uart_state *state,
1061                           struct serial_icounter_struct __user *icnt)
1062 {
1063         struct serial_icounter_struct icount;
1064         struct uart_icount cnow;
1065         struct uart_port *port = state->uart_port;
1066
1067         spin_lock_irq(&port->lock);
1068         memcpy(&cnow, &port->icount, sizeof(struct uart_icount));
1069         spin_unlock_irq(&port->lock);
1070
1071         icount.cts         = cnow.cts;
1072         icount.dsr         = cnow.dsr;
1073         icount.rng         = cnow.rng;
1074         icount.dcd         = cnow.dcd;
1075         icount.rx          = cnow.rx;
1076         icount.tx          = cnow.tx;
1077         icount.frame       = cnow.frame;
1078         icount.overrun     = cnow.overrun;
1079         icount.parity      = cnow.parity;
1080         icount.brk         = cnow.brk;
1081         icount.buf_overrun = cnow.buf_overrun;
1082
1083         return copy_to_user(icnt, &icount, sizeof(icount)) ? -EFAULT : 0;
1084 }
1085
1086 /*
1087  * Called via sys_ioctl.  We can use spin_lock_irq() here.
1088  */
1089 static int
1090 uart_ioctl(struct tty_struct *tty, struct file *filp, unsigned int cmd,
1091            unsigned long arg)
1092 {
1093         struct uart_state *state = tty->driver_data;
1094         void __user *uarg = (void __user *)arg;
1095         int ret = -ENOIOCTLCMD;
1096
1097
1098         /*
1099          * These ioctls don't rely on the hardware to be present.
1100          */
1101         switch (cmd) {
1102         case TIOCGSERIAL:
1103                 ret = uart_get_info(state, uarg);
1104                 break;
1105
1106         case TIOCSSERIAL:
1107                 ret = uart_set_info(state, uarg);
1108                 break;
1109
1110         case TIOCSERCONFIG:
1111                 ret = uart_do_autoconfig(state);
1112                 break;
1113
1114         case TIOCSERGWILD: /* obsolete */
1115         case TIOCSERSWILD: /* obsolete */
1116                 ret = 0;
1117                 break;
1118         }
1119
1120         if (ret != -ENOIOCTLCMD)
1121                 goto out;
1122
1123         if (tty->flags & (1 << TTY_IO_ERROR)) {
1124                 ret = -EIO;
1125                 goto out;
1126         }
1127
1128         /*
1129          * The following should only be used when hardware is present.
1130          */
1131         switch (cmd) {
1132         case TIOCMIWAIT:
1133                 ret = uart_wait_modem_status(state, arg);
1134                 break;
1135
1136         case TIOCGICOUNT:
1137                 ret = uart_get_count(state, uarg);
1138                 break;
1139         }
1140
1141         if (ret != -ENOIOCTLCMD)
1142                 goto out;
1143
1144         mutex_lock(&state->mutex);
1145
1146         if (tty_hung_up_p(filp)) {
1147                 ret = -EIO;
1148                 goto out_up;
1149         }
1150
1151         /*
1152          * All these rely on hardware being present and need to be
1153          * protected against the tty being hung up.
1154          */
1155         switch (cmd) {
1156         case TIOCSERGETLSR: /* Get line status register */
1157                 ret = uart_get_lsr_info(state, uarg);
1158                 break;
1159
1160         default: {
1161                 struct uart_port *port = state->uart_port;
1162                 if (port->ops->ioctl)
1163                         ret = port->ops->ioctl(port, cmd, arg);
1164                 break;
1165         }
1166         }
1167 out_up:
1168         mutex_unlock(&state->mutex);
1169 out:
1170         return ret;
1171 }
1172
1173 static void uart_set_ldisc(struct tty_struct *tty)
1174 {
1175         struct uart_state *state = tty->driver_data;
1176         struct uart_port *port = state->uart_port;
1177
1178         if (port->ops->set_ldisc)
1179                 port->ops->set_ldisc(port);
1180 }
1181
1182 static void uart_set_termios(struct tty_struct *tty,
1183                                                 struct ktermios *old_termios)
1184 {
1185         struct uart_state *state = tty->driver_data;
1186         unsigned long flags;
1187         unsigned int cflag = tty->termios->c_cflag;
1188
1189
1190         /*
1191          * These are the bits that are used to setup various
1192          * flags in the low level driver. We can ignore the Bfoo
1193          * bits in c_cflag; c_[io]speed will always be set
1194          * appropriately by set_termios() in tty_ioctl.c
1195          */
1196 #define RELEVANT_IFLAG(iflag)   ((iflag) & (IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK))
1197         if ((cflag ^ old_termios->c_cflag) == 0 &&
1198             tty->termios->c_ospeed == old_termios->c_ospeed &&
1199             tty->termios->c_ispeed == old_termios->c_ispeed &&
1200             RELEVANT_IFLAG(tty->termios->c_iflag ^ old_termios->c_iflag) == 0) {
1201                 return;
1202         }
1203
1204         uart_change_speed(state, old_termios);
1205
1206         /* Handle transition to B0 status */
1207         if ((old_termios->c_cflag & CBAUD) && !(cflag & CBAUD))
1208                 uart_clear_mctrl(state->uart_port, TIOCM_RTS | TIOCM_DTR);
1209
1210         /* Handle transition away from B0 status */
1211         if (!(old_termios->c_cflag & CBAUD) && (cflag & CBAUD)) {
1212                 unsigned int mask = TIOCM_DTR;
1213                 if (!(cflag & CRTSCTS) ||
1214                     !test_bit(TTY_THROTTLED, &tty->flags))
1215                         mask |= TIOCM_RTS;
1216                 uart_set_mctrl(state->uart_port, mask);
1217         }
1218
1219         /* Handle turning off CRTSCTS */
1220         if ((old_termios->c_cflag & CRTSCTS) && !(cflag & CRTSCTS)) {
1221                 spin_lock_irqsave(&state->uart_port->lock, flags);
1222                 tty->hw_stopped = 0;
1223                 __uart_start(tty);
1224                 spin_unlock_irqrestore(&state->uart_port->lock, flags);
1225         }
1226
1227         /* Handle turning on CRTSCTS */
1228         if (!(old_termios->c_cflag & CRTSCTS) && (cflag & CRTSCTS)) {
1229                 spin_lock_irqsave(&state->uart_port->lock, flags);
1230                 if (!(state->uart_port->ops->get_mctrl(state->uart_port) & TIOCM_CTS)) {
1231                         tty->hw_stopped = 1;
1232                         state->uart_port->ops->stop_tx(state->uart_port);
1233                 }
1234                 spin_unlock_irqrestore(&state->uart_port->lock, flags);
1235         }
1236 #if 0
1237         /*
1238          * No need to wake up processes in open wait, since they
1239          * sample the CLOCAL flag once, and don't recheck it.
1240          * XXX  It's not clear whether the current behavior is correct
1241          * or not.  Hence, this may change.....
1242          */
1243         if (!(old_termios->c_cflag & CLOCAL) &&
1244             (tty->termios->c_cflag & CLOCAL))
1245                 wake_up_interruptible(&state->uart_port.open_wait);
1246 #endif
1247 }
1248
1249 /*
1250  * In 2.4.5, calls to this will be serialized via the BKL in
1251  *  linux/drivers/char/tty_io.c:tty_release()
1252  *  linux/drivers/char/tty_io.c:do_tty_handup()
1253  */
1254 static void uart_close(struct tty_struct *tty, struct file *filp)
1255 {
1256         struct uart_state *state = tty->driver_data;
1257         struct uart_port *port;
1258
1259         BUG_ON(!kernel_locked());
1260
1261         if (!state || !state->uart_port)
1262                 return;
1263
1264         port = state->uart_port;
1265
1266         pr_debug("uart_close(%d) called\n", port->line);
1267
1268         mutex_lock(&state->mutex);
1269
1270         if (tty_hung_up_p(filp))
1271                 goto done;
1272
1273         if ((tty->count == 1) && (state->count != 1)) {
1274                 /*
1275                  * Uh, oh.  tty->count is 1, which means that the tty
1276                  * structure will be freed.  state->count should always
1277                  * be one in these conditions.  If it's greater than
1278                  * one, we've got real problems, since it means the
1279                  * serial port won't be shutdown.
1280                  */
1281                 printk(KERN_ERR "uart_close: bad serial port count; tty->count is 1, "
1282                        "state->count is %d\n", state->count);
1283                 state->count = 1;
1284         }
1285         if (--state->count < 0) {
1286                 printk(KERN_ERR "uart_close: bad serial port count for %s: %d\n",
1287                        tty->name, state->count);
1288                 state->count = 0;
1289         }
1290         if (state->count)
1291                 goto done;
1292
1293         /*
1294          * Now we wait for the transmit buffer to clear; and we notify
1295          * the line discipline to only process XON/XOFF characters by
1296          * setting tty->closing.
1297          */
1298         tty->closing = 1;
1299
1300         if (state->closing_wait != USF_CLOSING_WAIT_NONE)
1301                 tty_wait_until_sent(tty, msecs_to_jiffies(state->closing_wait));
1302
1303         /*
1304          * At this point, we stop accepting input.  To do this, we
1305          * disable the receive line status interrupts.
1306          */
1307         if (state->flags & UIF_INITIALIZED) {
1308                 unsigned long flags;
1309                 spin_lock_irqsave(&port->lock, flags);
1310                 port->ops->stop_rx(port);
1311                 spin_unlock_irqrestore(&port->lock, flags);
1312                 /*
1313                  * Before we drop DTR, make sure the UART transmitter
1314                  * has completely drained; this is especially
1315                  * important if there is a transmit FIFO!
1316                  */
1317                 uart_wait_until_sent(tty, port->timeout);
1318         }
1319
1320         uart_shutdown(state);
1321         uart_flush_buffer(tty);
1322
1323         tty_ldisc_flush(tty);
1324
1325         tty->closing = 0;
1326         state->port.tty = NULL;
1327
1328         if (state->port.blocked_open) {
1329                 if (state->close_delay)
1330                         msleep_interruptible(state->close_delay);
1331         } else if (!uart_console(port)) {
1332                 uart_change_pm(state, 3);
1333         }
1334
1335         /*
1336          * Wake up anyone trying to open this port.
1337          */
1338         state->flags &= ~UIF_NORMAL_ACTIVE;
1339         wake_up_interruptible(&state->port.open_wait);
1340
1341  done:
1342         mutex_unlock(&state->mutex);
1343 }
1344
1345 static void uart_wait_until_sent(struct tty_struct *tty, int timeout)
1346 {
1347         struct uart_state *state = tty->driver_data;
1348         struct uart_port *port = state->uart_port;
1349         unsigned long char_time, expire;
1350
1351         if (port->type == PORT_UNKNOWN || port->fifosize == 0)
1352                 return;
1353
1354         lock_kernel();
1355
1356         /*
1357          * Set the check interval to be 1/5 of the estimated time to
1358          * send a single character, and make it at least 1.  The check
1359          * interval should also be less than the timeout.
1360          *
1361          * Note: we have to use pretty tight timings here to satisfy
1362          * the NIST-PCTS.
1363          */
1364         char_time = (port->timeout - HZ/50) / port->fifosize;
1365         char_time = char_time / 5;
1366         if (char_time == 0)
1367                 char_time = 1;
1368         if (timeout && timeout < char_time)
1369                 char_time = timeout;
1370
1371         /*
1372          * If the transmitter hasn't cleared in twice the approximate
1373          * amount of time to send the entire FIFO, it probably won't
1374          * ever clear.  This assumes the UART isn't doing flow
1375          * control, which is currently the case.  Hence, if it ever
1376          * takes longer than port->timeout, this is probably due to a
1377          * UART bug of some kind.  So, we clamp the timeout parameter at
1378          * 2*port->timeout.
1379          */
1380         if (timeout == 0 || timeout > 2 * port->timeout)
1381                 timeout = 2 * port->timeout;
1382
1383         expire = jiffies + timeout;
1384
1385         pr_debug("uart_wait_until_sent(%d), jiffies=%lu, expire=%lu...\n",
1386                 port->line, jiffies, expire);
1387
1388         /*
1389          * Check whether the transmitter is empty every 'char_time'.
1390          * 'timeout' / 'expire' give us the maximum amount of time
1391          * we wait.
1392          */
1393         while (!port->ops->tx_empty(port)) {
1394                 msleep_interruptible(jiffies_to_msecs(char_time));
1395                 if (signal_pending(current))
1396                         break;
1397                 if (time_after(jiffies, expire))
1398                         break;
1399         }
1400         set_current_state(TASK_RUNNING); /* might not be needed */
1401         unlock_kernel();
1402 }
1403
1404 /*
1405  * This is called with the BKL held in
1406  *  linux/drivers/char/tty_io.c:do_tty_hangup()
1407  * We're called from the eventd thread, so we can sleep for
1408  * a _short_ time only.
1409  */
1410 static void uart_hangup(struct tty_struct *tty)
1411 {
1412         struct uart_state *state = tty->driver_data;
1413
1414         BUG_ON(!kernel_locked());
1415         pr_debug("uart_hangup(%d)\n", state->uart_port->line);
1416
1417         mutex_lock(&state->mutex);
1418         if (state->flags & UIF_NORMAL_ACTIVE) {
1419                 uart_flush_buffer(tty);
1420                 uart_shutdown(state);
1421                 state->count = 0;
1422                 state->flags &= ~UIF_NORMAL_ACTIVE;
1423                 state->port.tty = NULL;
1424                 wake_up_interruptible(&state->port.open_wait);
1425                 wake_up_interruptible(&state->delta_msr_wait);
1426         }
1427         mutex_unlock(&state->mutex);
1428 }
1429
1430 /*
1431  * Copy across the serial console cflag setting into the termios settings
1432  * for the initial open of the port.  This allows continuity between the
1433  * kernel settings, and the settings init adopts when it opens the port
1434  * for the first time.
1435  */
1436 static void uart_update_termios(struct uart_state *state)
1437 {
1438         struct tty_struct *tty = state->port.tty;
1439         struct uart_port *port = state->uart_port;
1440
1441         if (uart_console(port) && port->cons->cflag) {
1442                 tty->termios->c_cflag = port->cons->cflag;
1443                 port->cons->cflag = 0;
1444         }
1445
1446         /*
1447          * If the device failed to grab its irq resources,
1448          * or some other error occurred, don't try to talk
1449          * to the port hardware.
1450          */
1451         if (!(tty->flags & (1 << TTY_IO_ERROR))) {
1452                 /*
1453                  * Make termios settings take effect.
1454                  */
1455                 uart_change_speed(state, NULL);
1456
1457                 /*
1458                  * And finally enable the RTS and DTR signals.
1459                  */
1460                 if (tty->termios->c_cflag & CBAUD)
1461                         uart_set_mctrl(port, TIOCM_DTR | TIOCM_RTS);
1462         }
1463 }
1464
1465 /*
1466  * Block the open until the port is ready.  We must be called with
1467  * the per-port semaphore held.
1468  */
1469 static int
1470 uart_block_til_ready(struct file *filp, struct uart_state *state)
1471 {
1472         DECLARE_WAITQUEUE(wait, current);
1473         struct uart_port *port = state->uart_port;
1474         unsigned int mctrl;
1475
1476         state->port.blocked_open++;
1477         state->count--;
1478
1479         add_wait_queue(&state->port.open_wait, &wait);
1480         while (1) {
1481                 set_current_state(TASK_INTERRUPTIBLE);
1482
1483                 /*
1484                  * If we have been hung up, tell userspace/restart open.
1485                  */
1486                 if (tty_hung_up_p(filp) || state->port.tty == NULL)
1487                         break;
1488
1489                 /*
1490                  * If the port has been closed, tell userspace/restart open.
1491                  */
1492                 if (!(state->flags & UIF_INITIALIZED))
1493                         break;
1494
1495                 /*
1496                  * If non-blocking mode is set, or CLOCAL mode is set,
1497                  * we don't want to wait for the modem status lines to
1498                  * indicate that the port is ready.
1499                  *
1500                  * Also, if the port is not enabled/configured, we want
1501                  * to allow the open to succeed here.  Note that we will
1502                  * have set TTY_IO_ERROR for a non-existant port.
1503                  */
1504                 if ((filp->f_flags & O_NONBLOCK) ||
1505                     (state->port.tty->termios->c_cflag & CLOCAL) ||
1506                     (state->port.tty->flags & (1 << TTY_IO_ERROR)))
1507                         break;
1508
1509                 /*
1510                  * Set DTR to allow modem to know we're waiting.  Do
1511                  * not set RTS here - we want to make sure we catch
1512                  * the data from the modem.
1513                  */
1514                 if (state->port.tty->termios->c_cflag & CBAUD)
1515                         uart_set_mctrl(port, TIOCM_DTR);
1516
1517                 /*
1518                  * and wait for the carrier to indicate that the
1519                  * modem is ready for us.
1520                  */
1521                 spin_lock_irq(&port->lock);
1522                 port->ops->enable_ms(port);
1523                 mctrl = port->ops->get_mctrl(port);
1524                 spin_unlock_irq(&port->lock);
1525                 if (mctrl & TIOCM_CAR)
1526                         break;
1527
1528                 mutex_unlock(&state->mutex);
1529                 schedule();
1530                 mutex_lock(&state->mutex);
1531
1532                 if (signal_pending(current))
1533                         break;
1534         }
1535         set_current_state(TASK_RUNNING);
1536         remove_wait_queue(&state->port.open_wait, &wait);
1537
1538         state->count++;
1539         state->port.blocked_open--;
1540
1541         if (signal_pending(current))
1542                 return -ERESTARTSYS;
1543
1544         if (!state->port.tty || tty_hung_up_p(filp))
1545                 return -EAGAIN;
1546
1547         return 0;
1548 }
1549
1550 static struct uart_state *uart_get(struct uart_driver *drv, int line)
1551 {
1552         struct uart_state *state;
1553         int ret = 0;
1554
1555         state = drv->state + line;
1556         if (mutex_lock_interruptible(&state->mutex)) {
1557                 ret = -ERESTARTSYS;
1558                 goto err;
1559         }
1560
1561         state->count++;
1562         if (!state->uart_port || state->uart_port->flags & UPF_DEAD) {
1563                 ret = -ENXIO;
1564                 goto err_unlock;
1565         }
1566         return state;
1567
1568  err_unlock:
1569         state->count--;
1570         mutex_unlock(&state->mutex);
1571  err:
1572         return ERR_PTR(ret);
1573 }
1574
1575 /*
1576  * calls to uart_open are serialised by the BKL in
1577  *   fs/char_dev.c:chrdev_open()
1578  * Note that if this fails, then uart_close() _will_ be called.
1579  *
1580  * In time, we want to scrap the "opening nonpresent ports"
1581  * behaviour and implement an alternative way for setserial
1582  * to set base addresses/ports/types.  This will allow us to
1583  * get rid of a certain amount of extra tests.
1584  */
1585 static int uart_open(struct tty_struct *tty, struct file *filp)
1586 {
1587         struct uart_driver *drv = (struct uart_driver *)tty->driver->driver_state;
1588         struct uart_state *state;
1589         int retval, line = tty->index;
1590
1591         BUG_ON(!kernel_locked());
1592         pr_debug("uart_open(%d) called\n", line);
1593
1594         /*
1595          * tty->driver->num won't change, so we won't fail here with
1596          * tty->driver_data set to something non-NULL (and therefore
1597          * we won't get caught by uart_close()).
1598          */
1599         retval = -ENODEV;
1600         if (line >= tty->driver->num)
1601                 goto fail;
1602
1603         /*
1604          * We take the semaphore inside uart_get to guarantee that we won't
1605          * be re-entered while allocating the state structure, or while we
1606          * request any IRQs that the driver may need.  This also has the nice
1607          * side-effect that it delays the action of uart_hangup, so we can
1608          * guarantee that state->port.tty will always contain something
1609          * reasonable.
1610          */
1611         state = uart_get(drv, line);
1612         if (IS_ERR(state)) {
1613                 retval = PTR_ERR(state);
1614                 goto fail;
1615         }
1616
1617         /*
1618          * Once we set tty->driver_data here, we are guaranteed that
1619          * uart_close() will decrement the driver module use count.
1620          * Any failures from here onwards should not touch the count.
1621          */
1622         tty->driver_data = state;
1623         state->uart_port->state = state;
1624         tty->low_latency = (state->uart_port->flags & UPF_LOW_LATENCY) ? 1 : 0;
1625         tty->alt_speed = 0;
1626         state->port.tty = tty;
1627
1628         /*
1629          * If the port is in the middle of closing, bail out now.
1630          */
1631         if (tty_hung_up_p(filp)) {
1632                 retval = -EAGAIN;
1633                 state->count--;
1634                 mutex_unlock(&state->mutex);
1635                 goto fail;
1636         }
1637
1638         /*
1639          * Make sure the device is in D0 state.
1640          */
1641         if (state->count == 1)
1642                 uart_change_pm(state, 0);
1643
1644         /*
1645          * Start up the serial port.
1646          */
1647         retval = uart_startup(state, 0);
1648
1649         /*
1650          * If we succeeded, wait until the port is ready.
1651          */
1652         if (retval == 0)
1653                 retval = uart_block_til_ready(filp, state);
1654         mutex_unlock(&state->mutex);
1655
1656         /*
1657          * If this is the first open to succeed, adjust things to suit.
1658          */
1659         if (retval == 0 && !(state->flags & UIF_NORMAL_ACTIVE)) {
1660                 state->flags |= UIF_NORMAL_ACTIVE;
1661
1662                 uart_update_termios(state);
1663         }
1664
1665  fail:
1666         return retval;
1667 }
1668
1669 static const char *uart_type(struct uart_port *port)
1670 {
1671         const char *str = NULL;
1672
1673         if (port->ops->type)
1674                 str = port->ops->type(port);
1675
1676         if (!str)
1677                 str = "unknown";
1678
1679         return str;
1680 }
1681
1682 #ifdef CONFIG_PROC_FS
1683
1684 static void uart_line_info(struct seq_file *m, struct uart_driver *drv, int i)
1685 {
1686         struct uart_state *state = drv->state + i;
1687         int pm_state;
1688         struct uart_port *port = state->uart_port;
1689         char stat_buf[32];
1690         unsigned int status;
1691         int mmio;
1692
1693         if (!port)
1694                 return;
1695
1696         mmio = port->iotype >= UPIO_MEM;
1697         seq_printf(m, "%d: uart:%s %s%08llX irq:%d",
1698                         port->line, uart_type(port),
1699                         mmio ? "mmio:0x" : "port:",
1700                         mmio ? (unsigned long long)port->mapbase
1701                              : (unsigned long long) port->iobase,
1702                         port->irq);
1703
1704         if (port->type == PORT_UNKNOWN) {
1705                 seq_putc(m, '\n');
1706                 return;
1707         }
1708
1709         if (capable(CAP_SYS_ADMIN)) {
1710                 mutex_lock(&state->mutex);
1711                 pm_state = state->pm_state;
1712                 if (pm_state)
1713                         uart_change_pm(state, 0);
1714                 spin_lock_irq(&port->lock);
1715                 status = port->ops->get_mctrl(port);
1716                 spin_unlock_irq(&port->lock);
1717                 if (pm_state)
1718                         uart_change_pm(state, pm_state);
1719                 mutex_unlock(&state->mutex);
1720
1721                 seq_printf(m, " tx:%d rx:%d",
1722                                 port->icount.tx, port->icount.rx);
1723                 if (port->icount.frame)
1724                         seq_printf(m, " fe:%d",
1725                                 port->icount.frame);
1726                 if (port->icount.parity)
1727                         seq_printf(m, " pe:%d",
1728                                 port->icount.parity);
1729                 if (port->icount.brk)
1730                         seq_printf(m, " brk:%d",
1731                                 port->icount.brk);
1732                 if (port->icount.overrun)
1733                         seq_printf(m, " oe:%d",
1734                                 port->icount.overrun);
1735
1736 #define INFOBIT(bit, str) \
1737         if (port->mctrl & (bit)) \
1738                 strncat(stat_buf, (str), sizeof(stat_buf) - \
1739                         strlen(stat_buf) - 2)
1740 #define STATBIT(bit, str) \
1741         if (status & (bit)) \
1742                 strncat(stat_buf, (str), sizeof(stat_buf) - \
1743                        strlen(stat_buf) - 2)
1744
1745                 stat_buf[0] = '\0';
1746                 stat_buf[1] = '\0';
1747                 INFOBIT(TIOCM_RTS, "|RTS");
1748                 STATBIT(TIOCM_CTS, "|CTS");
1749                 INFOBIT(TIOCM_DTR, "|DTR");
1750                 STATBIT(TIOCM_DSR, "|DSR");
1751                 STATBIT(TIOCM_CAR, "|CD");
1752                 STATBIT(TIOCM_RNG, "|RI");
1753                 if (stat_buf[0])
1754                         stat_buf[0] = ' ';
1755
1756                 seq_puts(m, stat_buf);
1757         }
1758         seq_putc(m, '\n');
1759 #undef STATBIT
1760 #undef INFOBIT
1761 }
1762
1763 static int uart_proc_show(struct seq_file *m, void *v)
1764 {
1765         struct tty_driver *ttydrv = m->private;
1766         struct uart_driver *drv = ttydrv->driver_state;
1767         int i;
1768
1769         seq_printf(m, "serinfo:1.0 driver%s%s revision:%s\n",
1770                         "", "", "");
1771         for (i = 0; i < drv->nr; i++)
1772                 uart_line_info(m, drv, i);
1773         return 0;
1774 }
1775
1776 static int uart_proc_open(struct inode *inode, struct file *file)
1777 {
1778         return single_open(file, uart_proc_show, PDE(inode)->data);
1779 }
1780
1781 static const struct file_operations uart_proc_fops = {
1782         .owner          = THIS_MODULE,
1783         .open           = uart_proc_open,
1784         .read           = seq_read,
1785         .llseek         = seq_lseek,
1786         .release        = single_release,
1787 };
1788 #endif
1789
1790 #if defined(CONFIG_SERIAL_CORE_CONSOLE) || defined(CONFIG_CONSOLE_POLL)
1791 /*
1792  *      uart_console_write - write a console message to a serial port
1793  *      @port: the port to write the message
1794  *      @s: array of characters
1795  *      @count: number of characters in string to write
1796  *      @write: function to write character to port
1797  */
1798 void uart_console_write(struct uart_port *port, const char *s,
1799                         unsigned int count,
1800                         void (*putchar)(struct uart_port *, int))
1801 {
1802         unsigned int i;
1803
1804         for (i = 0; i < count; i++, s++) {
1805                 if (*s == '\n')
1806                         putchar(port, '\r');
1807                 putchar(port, *s);
1808         }
1809 }
1810 EXPORT_SYMBOL_GPL(uart_console_write);
1811
1812 /*
1813  *      Check whether an invalid uart number has been specified, and
1814  *      if so, search for the first available port that does have
1815  *      console support.
1816  */
1817 struct uart_port * __init
1818 uart_get_console(struct uart_port *ports, int nr, struct console *co)
1819 {
1820         int idx = co->index;
1821
1822         if (idx < 0 || idx >= nr || (ports[idx].iobase == 0 &&
1823                                      ports[idx].membase == NULL))
1824                 for (idx = 0; idx < nr; idx++)
1825                         if (ports[idx].iobase != 0 ||
1826                             ports[idx].membase != NULL)
1827                                 break;
1828
1829         co->index = idx;
1830
1831         return ports + idx;
1832 }
1833
1834 /**
1835  *      uart_parse_options - Parse serial port baud/parity/bits/flow contro.
1836  *      @options: pointer to option string
1837  *      @baud: pointer to an 'int' variable for the baud rate.
1838  *      @parity: pointer to an 'int' variable for the parity.
1839  *      @bits: pointer to an 'int' variable for the number of data bits.
1840  *      @flow: pointer to an 'int' variable for the flow control character.
1841  *
1842  *      uart_parse_options decodes a string containing the serial console
1843  *      options.  The format of the string is <baud><parity><bits><flow>,
1844  *      eg: 115200n8r
1845  */
1846 void
1847 uart_parse_options(char *options, int *baud, int *parity, int *bits, int *flow)
1848 {
1849         char *s = options;
1850
1851         *baud = simple_strtoul(s, NULL, 10);
1852         while (*s >= '0' && *s <= '9')
1853                 s++;
1854         if (*s)
1855                 *parity = *s++;
1856         if (*s)
1857                 *bits = *s++ - '0';
1858         if (*s)
1859                 *flow = *s;
1860 }
1861 EXPORT_SYMBOL_GPL(uart_parse_options);
1862
1863 struct baud_rates {
1864         unsigned int rate;
1865         unsigned int cflag;
1866 };
1867
1868 static const struct baud_rates baud_rates[] = {
1869         { 921600, B921600 },
1870         { 460800, B460800 },
1871         { 230400, B230400 },
1872         { 115200, B115200 },
1873         {  57600, B57600  },
1874         {  38400, B38400  },
1875         {  19200, B19200  },
1876         {   9600, B9600   },
1877         {   4800, B4800   },
1878         {   2400, B2400   },
1879         {   1200, B1200   },
1880         {      0, B38400  }
1881 };
1882
1883 /**
1884  *      uart_set_options - setup the serial console parameters
1885  *      @port: pointer to the serial ports uart_port structure
1886  *      @co: console pointer
1887  *      @baud: baud rate
1888  *      @parity: parity character - 'n' (none), 'o' (odd), 'e' (even)
1889  *      @bits: number of data bits
1890  *      @flow: flow control character - 'r' (rts)
1891  */
1892 int
1893 uart_set_options(struct uart_port *port, struct console *co,
1894                  int baud, int parity, int bits, int flow)
1895 {
1896         struct ktermios termios;
1897         static struct ktermios dummy;
1898         int i;
1899
1900         /*
1901          * Ensure that the serial console lock is initialised
1902          * early.
1903          */
1904         spin_lock_init(&port->lock);
1905         lockdep_set_class(&port->lock, &port_lock_key);
1906
1907         memset(&termios, 0, sizeof(struct ktermios));
1908
1909         termios.c_cflag = CREAD | HUPCL | CLOCAL;
1910
1911         /*
1912          * Construct a cflag setting.
1913          */
1914         for (i = 0; baud_rates[i].rate; i++)
1915                 if (baud_rates[i].rate <= baud)
1916                         break;
1917
1918         termios.c_cflag |= baud_rates[i].cflag;
1919
1920         if (bits == 7)
1921                 termios.c_cflag |= CS7;
1922         else
1923                 termios.c_cflag |= CS8;
1924
1925         switch (parity) {
1926         case 'o': case 'O':
1927                 termios.c_cflag |= PARODD;
1928                 /*fall through*/
1929         case 'e': case 'E':
1930                 termios.c_cflag |= PARENB;
1931                 break;
1932         }
1933
1934         if (flow == 'r')
1935                 termios.c_cflag |= CRTSCTS;
1936
1937         /*
1938          * some uarts on other side don't support no flow control.
1939          * So we set * DTR in host uart to make them happy
1940          */
1941         port->mctrl |= TIOCM_DTR;
1942
1943         port->ops->set_termios(port, &termios, &dummy);
1944         /*
1945          * Allow the setting of the UART parameters with a NULL console
1946          * too:
1947          */
1948         if (co)
1949                 co->cflag = termios.c_cflag;
1950
1951         return 0;
1952 }
1953 EXPORT_SYMBOL_GPL(uart_set_options);
1954 #endif /* CONFIG_SERIAL_CORE_CONSOLE */
1955
1956 static void uart_change_pm(struct uart_state *state, int pm_state)
1957 {
1958         struct uart_port *port = state->uart_port;
1959
1960         if (state->pm_state != pm_state) {
1961                 if (port->ops->pm)
1962                         port->ops->pm(port, pm_state, state->pm_state);
1963                 state->pm_state = pm_state;
1964         }
1965 }
1966
1967 struct uart_match {
1968         struct uart_port *port;
1969         struct uart_driver *driver;
1970 };
1971
1972 static int serial_match_port(struct device *dev, void *data)
1973 {
1974         struct uart_match *match = data;
1975         struct tty_driver *tty_drv = match->driver->tty_driver;
1976         dev_t devt = MKDEV(tty_drv->major, tty_drv->minor_start) +
1977                 match->port->line;
1978
1979         return dev->devt == devt; /* Actually, only one tty per port */
1980 }
1981
1982 int uart_suspend_port(struct uart_driver *drv, struct uart_port *port)
1983 {
1984         struct uart_state *state = drv->state + port->line;
1985         struct device *tty_dev;
1986         struct uart_match match = {port, drv};
1987
1988         mutex_lock(&state->mutex);
1989
1990         if (!console_suspend_enabled && uart_console(port)) {
1991                 /* we're going to avoid suspending serial console */
1992                 mutex_unlock(&state->mutex);
1993                 return 0;
1994         }
1995
1996         tty_dev = device_find_child(port->dev, &match, serial_match_port);
1997         if (device_may_wakeup(tty_dev)) {
1998                 enable_irq_wake(port->irq);
1999                 put_device(tty_dev);
2000                 mutex_unlock(&state->mutex);
2001                 return 0;
2002         }
2003         port->suspended = 1;
2004
2005         if (state->flags & UIF_INITIALIZED) {
2006                 const struct uart_ops *ops = port->ops;
2007                 int tries;
2008
2009                 state->flags = (state->flags & ~UIF_INITIALIZED)
2010                                      | UIF_SUSPENDED;
2011
2012                 spin_lock_irq(&port->lock);
2013                 ops->stop_tx(port);
2014                 ops->set_mctrl(port, 0);
2015                 ops->stop_rx(port);
2016                 spin_unlock_irq(&port->lock);
2017
2018                 /*
2019                  * Wait for the transmitter to empty.
2020                  */
2021                 for (tries = 3; !ops->tx_empty(port) && tries; tries--)
2022                         msleep(10);
2023                 if (!tries)
2024                         printk(KERN_ERR "%s%s%s%d: Unable to drain "
2025                                         "transmitter\n",
2026                                port->dev ? dev_name(port->dev) : "",
2027                                port->dev ? ": " : "",
2028                                drv->dev_name,
2029                                drv->tty_driver->name_base + port->line);
2030
2031                 ops->shutdown(port);
2032         }
2033
2034         /*
2035          * Disable the console device before suspending.
2036          */
2037         if (uart_console(port))
2038                 console_stop(port->cons);
2039
2040         uart_change_pm(state, 3);
2041
2042         mutex_unlock(&state->mutex);
2043
2044         return 0;
2045 }
2046
2047 int uart_resume_port(struct uart_driver *drv, struct uart_port *port)
2048 {
2049         struct uart_state *state = drv->state + port->line;
2050         struct device *tty_dev;
2051         struct uart_match match = {port, drv};
2052
2053         mutex_lock(&state->mutex);
2054
2055         if (!console_suspend_enabled && uart_console(port)) {
2056                 /* no need to resume serial console, it wasn't suspended */
2057                 mutex_unlock(&state->mutex);
2058                 return 0;
2059         }
2060
2061         tty_dev = device_find_child(port->dev, &match, serial_match_port);
2062         if (!port->suspended && device_may_wakeup(tty_dev)) {
2063                 disable_irq_wake(port->irq);
2064                 mutex_unlock(&state->mutex);
2065                 return 0;
2066         }
2067         port->suspended = 0;
2068
2069         /*
2070          * Re-enable the console device after suspending.
2071          */
2072         if (uart_console(port)) {
2073                 struct ktermios termios;
2074
2075                 /*
2076                  * First try to use the console cflag setting.
2077                  */
2078                 memset(&termios, 0, sizeof(struct ktermios));
2079                 termios.c_cflag = port->cons->cflag;
2080
2081                 /*
2082                  * If that's unset, use the tty termios setting.
2083                  */
2084                 if (state->port.tty && termios.c_cflag == 0)
2085                         termios = *state->port.tty->termios;
2086
2087                 uart_change_pm(state, 0);
2088                 port->ops->set_termios(port, &termios, NULL);
2089                 console_start(port->cons);
2090         }
2091
2092         if (state->flags & UIF_SUSPENDED) {
2093                 const struct uart_ops *ops = port->ops;
2094                 int ret;
2095
2096                 uart_change_pm(state, 0);
2097                 spin_lock_irq(&port->lock);
2098                 ops->set_mctrl(port, 0);
2099                 spin_unlock_irq(&port->lock);
2100                 ret = ops->startup(port);
2101                 if (ret == 0) {
2102                         uart_change_speed(state, NULL);
2103                         spin_lock_irq(&port->lock);
2104                         ops->set_mctrl(port, port->mctrl);
2105                         ops->start_tx(port);
2106                         spin_unlock_irq(&port->lock);
2107                         state->flags |= UIF_INITIALIZED;
2108                 } else {
2109                         /*
2110                          * Failed to resume - maybe hardware went away?
2111                          * Clear the "initialized" flag so we won't try
2112                          * to call the low level drivers shutdown method.
2113                          */
2114                         uart_shutdown(state);
2115                 }
2116
2117                 state->flags &= ~UIF_SUSPENDED;
2118         }
2119
2120         mutex_unlock(&state->mutex);
2121
2122         return 0;
2123 }
2124
2125 static inline void
2126 uart_report_port(struct uart_driver *drv, struct uart_port *port)
2127 {
2128         char address[64];
2129
2130         switch (port->iotype) {
2131         case UPIO_PORT:
2132                 snprintf(address, sizeof(address), "I/O 0x%lx", port->iobase);
2133                 break;
2134         case UPIO_HUB6:
2135                 snprintf(address, sizeof(address),
2136                          "I/O 0x%lx offset 0x%x", port->iobase, port->hub6);
2137                 break;
2138         case UPIO_MEM:
2139         case UPIO_MEM32:
2140         case UPIO_AU:
2141         case UPIO_TSI:
2142         case UPIO_DWAPB:
2143                 snprintf(address, sizeof(address),
2144                          "MMIO 0x%llx", (unsigned long long)port->mapbase);
2145                 break;
2146         default:
2147                 strlcpy(address, "*unknown*", sizeof(address));
2148                 break;
2149         }
2150
2151         printk(KERN_INFO "%s%s%s%d at %s (irq = %d) is a %s\n",
2152                port->dev ? dev_name(port->dev) : "",
2153                port->dev ? ": " : "",
2154                drv->dev_name,
2155                drv->tty_driver->name_base + port->line,
2156                address, port->irq, uart_type(port));
2157 }
2158
2159 static void
2160 uart_configure_port(struct uart_driver *drv, struct uart_state *state,
2161                     struct uart_port *port)
2162 {
2163         unsigned int flags;
2164
2165         /*
2166          * If there isn't a port here, don't do anything further.
2167          */
2168         if (!port->iobase && !port->mapbase && !port->membase)
2169                 return;
2170
2171         /*
2172          * Now do the auto configuration stuff.  Note that config_port
2173          * is expected to claim the resources and map the port for us.
2174          */
2175         flags = 0;
2176         if (port->flags & UPF_AUTO_IRQ)
2177                 flags |= UART_CONFIG_IRQ;
2178         if (port->flags & UPF_BOOT_AUTOCONF) {
2179                 if (!(port->flags & UPF_FIXED_TYPE)) {
2180                         port->type = PORT_UNKNOWN;
2181                         flags |= UART_CONFIG_TYPE;
2182                 }
2183                 port->ops->config_port(port, flags);
2184         }
2185
2186         if (port->type != PORT_UNKNOWN) {
2187                 unsigned long flags;
2188
2189                 uart_report_port(drv, port);
2190
2191                 /* Power up port for set_mctrl() */
2192                 uart_change_pm(state, 0);
2193
2194                 /*
2195                  * Ensure that the modem control lines are de-activated.
2196                  * keep the DTR setting that is set in uart_set_options()
2197                  * We probably don't need a spinlock around this, but
2198                  */
2199                 spin_lock_irqsave(&port->lock, flags);
2200                 port->ops->set_mctrl(port, port->mctrl & TIOCM_DTR);
2201                 spin_unlock_irqrestore(&port->lock, flags);
2202
2203                 /*
2204                  * If this driver supports console, and it hasn't been
2205                  * successfully registered yet, try to re-register it.
2206                  * It may be that the port was not available.
2207                  */
2208                 if (port->cons && !(port->cons->flags & CON_ENABLED))
2209                         register_console(port->cons);
2210
2211                 /*
2212                  * Power down all ports by default, except the
2213                  * console if we have one.
2214                  */
2215                 if (!uart_console(port))
2216                         uart_change_pm(state, 3);
2217         }
2218 }
2219
2220 #ifdef CONFIG_CONSOLE_POLL
2221
2222 static int uart_poll_init(struct tty_driver *driver, int line, char *options)
2223 {
2224         struct uart_driver *drv = driver->driver_state;
2225         struct uart_state *state = drv->state + line;
2226         struct uart_port *port;
2227         int baud = 9600;
2228         int bits = 8;
2229         int parity = 'n';
2230         int flow = 'n';
2231
2232         if (!state || !state->uart_port)
2233                 return -1;
2234
2235         port = state->uart_port;
2236         if (!(port->ops->poll_get_char && port->ops->poll_put_char))
2237                 return -1;
2238
2239         if (options) {
2240                 uart_parse_options(options, &baud, &parity, &bits, &flow);
2241                 return uart_set_options(port, NULL, baud, parity, bits, flow);
2242         }
2243
2244         return 0;
2245 }
2246
2247 static int uart_poll_get_char(struct tty_driver *driver, int line)
2248 {
2249         struct uart_driver *drv = driver->driver_state;
2250         struct uart_state *state = drv->state + line;
2251         struct uart_port *port;
2252
2253         if (!state || !state->uart_port)
2254                 return -1;
2255
2256         port = state->uart_port;
2257         return port->ops->poll_get_char(port);
2258 }
2259
2260 static void uart_poll_put_char(struct tty_driver *driver, int line, char ch)
2261 {
2262         struct uart_driver *drv = driver->driver_state;
2263         struct uart_state *state = drv->state + line;
2264         struct uart_port *port;
2265
2266         if (!state || !state->uart_port)
2267                 return;
2268
2269         port = state->uart_port;
2270         port->ops->poll_put_char(port, ch);
2271 }
2272 #endif
2273
2274 static const struct tty_operations uart_ops = {
2275         .open           = uart_open,
2276         .close          = uart_close,
2277         .write          = uart_write,
2278         .put_char       = uart_put_char,
2279         .flush_chars    = uart_flush_chars,
2280         .write_room     = uart_write_room,
2281         .chars_in_buffer= uart_chars_in_buffer,
2282         .flush_buffer   = uart_flush_buffer,
2283         .ioctl          = uart_ioctl,
2284         .throttle       = uart_throttle,
2285         .unthrottle     = uart_unthrottle,
2286         .send_xchar     = uart_send_xchar,
2287         .set_termios    = uart_set_termios,
2288         .set_ldisc      = uart_set_ldisc,
2289         .stop           = uart_stop,
2290         .start          = uart_start,
2291         .hangup         = uart_hangup,
2292         .break_ctl      = uart_break_ctl,
2293         .wait_until_sent= uart_wait_until_sent,
2294 #ifdef CONFIG_PROC_FS
2295         .proc_fops      = &uart_proc_fops,
2296 #endif
2297         .tiocmget       = uart_tiocmget,
2298         .tiocmset       = uart_tiocmset,
2299 #ifdef CONFIG_CONSOLE_POLL
2300         .poll_init      = uart_poll_init,
2301         .poll_get_char  = uart_poll_get_char,
2302         .poll_put_char  = uart_poll_put_char,
2303 #endif
2304 };
2305
2306 /**
2307  *      uart_register_driver - register a driver with the uart core layer
2308  *      @drv: low level driver structure
2309  *
2310  *      Register a uart driver with the core driver.  We in turn register
2311  *      with the tty layer, and initialise the core driver per-port state.
2312  *
2313  *      We have a proc file in /proc/tty/driver which is named after the
2314  *      normal driver.
2315  *
2316  *      drv->port should be NULL, and the per-port structures should be
2317  *      registered using uart_add_one_port after this call has succeeded.
2318  */
2319 int uart_register_driver(struct uart_driver *drv)
2320 {
2321         struct tty_driver *normal = NULL;
2322         int i, retval;
2323
2324         BUG_ON(drv->state);
2325
2326         /*
2327          * Maybe we should be using a slab cache for this, especially if
2328          * we have a large number of ports to handle.
2329          */
2330         drv->state = kzalloc(sizeof(struct uart_state) * drv->nr, GFP_KERNEL);
2331         retval = -ENOMEM;
2332         if (!drv->state)
2333                 goto out;
2334
2335         normal  = alloc_tty_driver(drv->nr);
2336         if (!normal)
2337                 goto out;
2338
2339         drv->tty_driver = normal;
2340
2341         normal->owner           = drv->owner;
2342         normal->driver_name     = drv->driver_name;
2343         normal->name            = drv->dev_name;
2344         normal->major           = drv->major;
2345         normal->minor_start     = drv->minor;
2346         normal->type            = TTY_DRIVER_TYPE_SERIAL;
2347         normal->subtype         = SERIAL_TYPE_NORMAL;
2348         normal->init_termios    = tty_std_termios;
2349         normal->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2350         normal->init_termios.c_ispeed = normal->init_termios.c_ospeed = 9600;
2351         normal->flags           = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
2352         normal->driver_state    = drv;
2353         tty_set_operations(normal, &uart_ops);
2354
2355         /*
2356          * Initialise the UART state(s).
2357          */
2358         for (i = 0; i < drv->nr; i++) {
2359                 struct uart_state *state = drv->state + i;
2360
2361                 state->close_delay     = 500;   /* .5 seconds */
2362                 state->closing_wait    = 30000; /* 30 seconds */
2363                 mutex_init(&state->mutex);
2364
2365                 tty_port_init(&state->port);
2366                 init_waitqueue_head(&state->delta_msr_wait);
2367                 tasklet_init(&state->tlet, uart_tasklet_action,
2368                              (unsigned long)state);
2369         }
2370
2371         retval = tty_register_driver(normal);
2372  out:
2373         if (retval < 0) {
2374                 put_tty_driver(normal);
2375                 kfree(drv->state);
2376         }
2377         return retval;
2378 }
2379
2380 /**
2381  *      uart_unregister_driver - remove a driver from the uart core layer
2382  *      @drv: low level driver structure
2383  *
2384  *      Remove all references to a driver from the core driver.  The low
2385  *      level driver must have removed all its ports via the
2386  *      uart_remove_one_port() if it registered them with uart_add_one_port().
2387  *      (ie, drv->port == NULL)
2388  */
2389 void uart_unregister_driver(struct uart_driver *drv)
2390 {
2391         struct tty_driver *p = drv->tty_driver;
2392         tty_unregister_driver(p);
2393         put_tty_driver(p);
2394         kfree(drv->state);
2395         drv->tty_driver = NULL;
2396 }
2397
2398 struct tty_driver *uart_console_device(struct console *co, int *index)
2399 {
2400         struct uart_driver *p = co->data;
2401         *index = co->index;
2402         return p->tty_driver;
2403 }
2404
2405 /**
2406  *      uart_add_one_port - attach a driver-defined port structure
2407  *      @drv: pointer to the uart low level driver structure for this port
2408  *      @port: uart port structure to use for this port.
2409  *
2410  *      This allows the driver to register its own uart_port structure
2411  *      with the core driver.  The main purpose is to allow the low
2412  *      level uart drivers to expand uart_port, rather than having yet
2413  *      more levels of structures.
2414  */
2415 int uart_add_one_port(struct uart_driver *drv, struct uart_port *port)
2416 {
2417         struct uart_state *state;
2418         int ret = 0;
2419         struct device *tty_dev;
2420
2421         BUG_ON(in_interrupt());
2422
2423         if (port->line >= drv->nr)
2424                 return -EINVAL;
2425
2426         state = drv->state + port->line;
2427
2428         mutex_lock(&port_mutex);
2429         mutex_lock(&state->mutex);
2430         if (state->uart_port) {
2431                 ret = -EINVAL;
2432                 goto out;
2433         }
2434
2435         state->uart_port = port;
2436         state->pm_state = -1;
2437
2438         port->cons = drv->cons;
2439         port->state = state;
2440
2441         /*
2442          * If this port is a console, then the spinlock is already
2443          * initialised.
2444          */
2445         if (!(uart_console(port) && (port->cons->flags & CON_ENABLED))) {
2446                 spin_lock_init(&port->lock);
2447                 lockdep_set_class(&port->lock, &port_lock_key);
2448         }
2449
2450         uart_configure_port(drv, state, port);
2451
2452         /*
2453          * Register the port whether it's detected or not.  This allows
2454          * setserial to be used to alter this ports parameters.
2455          */
2456         tty_dev = tty_register_device(drv->tty_driver, port->line, port->dev);
2457         if (likely(!IS_ERR(tty_dev))) {
2458                 device_init_wakeup(tty_dev, 1);
2459                 device_set_wakeup_enable(tty_dev, 0);
2460         } else
2461                 printk(KERN_ERR "Cannot register tty device on line %d\n",
2462                        port->line);
2463
2464         /*
2465          * Ensure UPF_DEAD is not set.
2466          */
2467         port->flags &= ~UPF_DEAD;
2468
2469  out:
2470         mutex_unlock(&state->mutex);
2471         mutex_unlock(&port_mutex);
2472
2473         return ret;
2474 }
2475
2476 /**
2477  *      uart_remove_one_port - detach a driver defined port structure
2478  *      @drv: pointer to the uart low level driver structure for this port
2479  *      @port: uart port structure for this port
2480  *
2481  *      This unhooks (and hangs up) the specified port structure from the
2482  *      core driver.  No further calls will be made to the low-level code
2483  *      for this port.
2484  */
2485 int uart_remove_one_port(struct uart_driver *drv, struct uart_port *port)
2486 {
2487         struct uart_state *state = drv->state + port->line;
2488
2489         BUG_ON(in_interrupt());
2490
2491         if (state->uart_port != port)
2492                 printk(KERN_ALERT "Removing wrong port: %p != %p\n",
2493                         state->uart_port, port);
2494
2495         mutex_lock(&port_mutex);
2496
2497         /*
2498          * Mark the port "dead" - this prevents any opens from
2499          * succeeding while we shut down the port.
2500          */
2501         mutex_lock(&state->mutex);
2502         port->flags |= UPF_DEAD;
2503         mutex_unlock(&state->mutex);
2504
2505         /*
2506          * Remove the devices from the tty layer
2507          */
2508         tty_unregister_device(drv->tty_driver, port->line);
2509
2510         if (state->port.tty)
2511                 tty_vhangup(state->port.tty);
2512
2513         /*
2514          * Free the port IO and memory resources, if any.
2515          */
2516         if (port->type != PORT_UNKNOWN)
2517                 port->ops->release_port(port);
2518
2519         /*
2520          * Indicate that there isn't a port here anymore.
2521          */
2522         port->type = PORT_UNKNOWN;
2523
2524         /*
2525          * Kill the tasklet, and free resources.
2526          */
2527         tasklet_kill(&state->tlet);
2528
2529         state->uart_port = NULL;
2530         mutex_unlock(&port_mutex);
2531
2532         return 0;
2533 }
2534
2535 /*
2536  *      Are the two ports equivalent?
2537  */
2538 int uart_match_port(struct uart_port *port1, struct uart_port *port2)
2539 {
2540         if (port1->iotype != port2->iotype)
2541                 return 0;
2542
2543         switch (port1->iotype) {
2544         case UPIO_PORT:
2545                 return (port1->iobase == port2->iobase);
2546         case UPIO_HUB6:
2547                 return (port1->iobase == port2->iobase) &&
2548                        (port1->hub6   == port2->hub6);
2549         case UPIO_MEM:
2550         case UPIO_MEM32:
2551         case UPIO_AU:
2552         case UPIO_TSI:
2553         case UPIO_DWAPB:
2554                 return (port1->mapbase == port2->mapbase);
2555         }
2556         return 0;
2557 }
2558 EXPORT_SYMBOL(uart_match_port);
2559
2560 EXPORT_SYMBOL(uart_write_wakeup);
2561 EXPORT_SYMBOL(uart_register_driver);
2562 EXPORT_SYMBOL(uart_unregister_driver);
2563 EXPORT_SYMBOL(uart_suspend_port);
2564 EXPORT_SYMBOL(uart_resume_port);
2565 EXPORT_SYMBOL(uart_add_one_port);
2566 EXPORT_SYMBOL(uart_remove_one_port);
2567
2568 MODULE_DESCRIPTION("Serial driver core");
2569 MODULE_LICENSE("GPL");