block: implement and enforce request peek/start/fetch
[safe/jmp/linux-2.6] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33
34
35 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE         2
37
38 struct scsi_host_sg_pool {
39         size_t          size;
40         char            *name;
41         struct kmem_cache       *slab;
42         mempool_t       *pool;
43 };
44
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50         SP(8),
51         SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53         SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55         SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57         SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64         SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67
68 struct kmem_cache *scsi_sdb_cache;
69
70 static void scsi_run_queue(struct request_queue *q);
71
72 /*
73  * Function:    scsi_unprep_request()
74  *
75  * Purpose:     Remove all preparation done for a request, including its
76  *              associated scsi_cmnd, so that it can be requeued.
77  *
78  * Arguments:   req     - request to unprepare
79  *
80  * Lock status: Assumed that no locks are held upon entry.
81  *
82  * Returns:     Nothing.
83  */
84 static void scsi_unprep_request(struct request *req)
85 {
86         struct scsi_cmnd *cmd = req->special;
87
88         req->cmd_flags &= ~REQ_DONTPREP;
89         req->special = NULL;
90
91         scsi_put_command(cmd);
92 }
93
94 /**
95  * __scsi_queue_insert - private queue insertion
96  * @cmd: The SCSI command being requeued
97  * @reason:  The reason for the requeue
98  * @unbusy: Whether the queue should be unbusied
99  *
100  * This is a private queue insertion.  The public interface
101  * scsi_queue_insert() always assumes the queue should be unbusied
102  * because it's always called before the completion.  This function is
103  * for a requeue after completion, which should only occur in this
104  * file.
105  */
106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107 {
108         struct Scsi_Host *host = cmd->device->host;
109         struct scsi_device *device = cmd->device;
110         struct scsi_target *starget = scsi_target(device);
111         struct request_queue *q = device->request_queue;
112         unsigned long flags;
113
114         SCSI_LOG_MLQUEUE(1,
115                  printk("Inserting command %p into mlqueue\n", cmd));
116
117         /*
118          * Set the appropriate busy bit for the device/host.
119          *
120          * If the host/device isn't busy, assume that something actually
121          * completed, and that we should be able to queue a command now.
122          *
123          * Note that the prior mid-layer assumption that any host could
124          * always queue at least one command is now broken.  The mid-layer
125          * will implement a user specifiable stall (see
126          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127          * if a command is requeued with no other commands outstanding
128          * either for the device or for the host.
129          */
130         switch (reason) {
131         case SCSI_MLQUEUE_HOST_BUSY:
132                 host->host_blocked = host->max_host_blocked;
133                 break;
134         case SCSI_MLQUEUE_DEVICE_BUSY:
135                 device->device_blocked = device->max_device_blocked;
136                 break;
137         case SCSI_MLQUEUE_TARGET_BUSY:
138                 starget->target_blocked = starget->max_target_blocked;
139                 break;
140         }
141
142         /*
143          * Decrement the counters, since these commands are no longer
144          * active on the host/device.
145          */
146         if (unbusy)
147                 scsi_device_unbusy(device);
148
149         /*
150          * Requeue this command.  It will go before all other commands
151          * that are already in the queue.
152          *
153          * NOTE: there is magic here about the way the queue is plugged if
154          * we have no outstanding commands.
155          * 
156          * Although we *don't* plug the queue, we call the request
157          * function.  The SCSI request function detects the blocked condition
158          * and plugs the queue appropriately.
159          */
160         spin_lock_irqsave(q->queue_lock, flags);
161         blk_requeue_request(q, cmd->request);
162         spin_unlock_irqrestore(q->queue_lock, flags);
163
164         scsi_run_queue(q);
165
166         return 0;
167 }
168
169 /*
170  * Function:    scsi_queue_insert()
171  *
172  * Purpose:     Insert a command in the midlevel queue.
173  *
174  * Arguments:   cmd    - command that we are adding to queue.
175  *              reason - why we are inserting command to queue.
176  *
177  * Lock status: Assumed that lock is not held upon entry.
178  *
179  * Returns:     Nothing.
180  *
181  * Notes:       We do this for one of two cases.  Either the host is busy
182  *              and it cannot accept any more commands for the time being,
183  *              or the device returned QUEUE_FULL and can accept no more
184  *              commands.
185  * Notes:       This could be called either from an interrupt context or a
186  *              normal process context.
187  */
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 {
190         return __scsi_queue_insert(cmd, reason, 1);
191 }
192 /**
193  * scsi_execute - insert request and wait for the result
194  * @sdev:       scsi device
195  * @cmd:        scsi command
196  * @data_direction: data direction
197  * @buffer:     data buffer
198  * @bufflen:    len of buffer
199  * @sense:      optional sense buffer
200  * @timeout:    request timeout in seconds
201  * @retries:    number of times to retry request
202  * @flags:      or into request flags;
203  * @resid:      optional residual length
204  *
205  * returns the req->errors value which is the scsi_cmnd result
206  * field.
207  */
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209                  int data_direction, void *buffer, unsigned bufflen,
210                  unsigned char *sense, int timeout, int retries, int flags,
211                  int *resid)
212 {
213         struct request *req;
214         int write = (data_direction == DMA_TO_DEVICE);
215         int ret = DRIVER_ERROR << 24;
216
217         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218
219         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
220                                         buffer, bufflen, __GFP_WAIT))
221                 goto out;
222
223         req->cmd_len = COMMAND_SIZE(cmd[0]);
224         memcpy(req->cmd, cmd, req->cmd_len);
225         req->sense = sense;
226         req->sense_len = 0;
227         req->retries = retries;
228         req->timeout = timeout;
229         req->cmd_type = REQ_TYPE_BLOCK_PC;
230         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
231
232         /*
233          * head injection *required* here otherwise quiesce won't work
234          */
235         blk_execute_rq(req->q, NULL, req, 1);
236
237         /*
238          * Some devices (USB mass-storage in particular) may transfer
239          * garbage data together with a residue indicating that the data
240          * is invalid.  Prevent the garbage from being misinterpreted
241          * and prevent security leaks by zeroing out the excess data.
242          */
243         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
245
246         if (resid)
247                 *resid = req->resid_len;
248         ret = req->errors;
249  out:
250         blk_put_request(req);
251
252         return ret;
253 }
254 EXPORT_SYMBOL(scsi_execute);
255
256
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258                      int data_direction, void *buffer, unsigned bufflen,
259                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
260                      int *resid)
261 {
262         char *sense = NULL;
263         int result;
264         
265         if (sshdr) {
266                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267                 if (!sense)
268                         return DRIVER_ERROR << 24;
269         }
270         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271                               sense, timeout, retries, 0, resid);
272         if (sshdr)
273                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
274
275         kfree(sense);
276         return result;
277 }
278 EXPORT_SYMBOL(scsi_execute_req);
279
280 /*
281  * Function:    scsi_init_cmd_errh()
282  *
283  * Purpose:     Initialize cmd fields related to error handling.
284  *
285  * Arguments:   cmd     - command that is ready to be queued.
286  *
287  * Notes:       This function has the job of initializing a number of
288  *              fields related to error handling.   Typically this will
289  *              be called once for each command, as required.
290  */
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
292 {
293         cmd->serial_number = 0;
294         scsi_set_resid(cmd, 0);
295         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296         if (cmd->cmd_len == 0)
297                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
298 }
299
300 void scsi_device_unbusy(struct scsi_device *sdev)
301 {
302         struct Scsi_Host *shost = sdev->host;
303         struct scsi_target *starget = scsi_target(sdev);
304         unsigned long flags;
305
306         spin_lock_irqsave(shost->host_lock, flags);
307         shost->host_busy--;
308         starget->target_busy--;
309         if (unlikely(scsi_host_in_recovery(shost) &&
310                      (shost->host_failed || shost->host_eh_scheduled)))
311                 scsi_eh_wakeup(shost);
312         spin_unlock(shost->host_lock);
313         spin_lock(sdev->request_queue->queue_lock);
314         sdev->device_busy--;
315         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
316 }
317
318 /*
319  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320  * and call blk_run_queue for all the scsi_devices on the target -
321  * including current_sdev first.
322  *
323  * Called with *no* scsi locks held.
324  */
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
326 {
327         struct Scsi_Host *shost = current_sdev->host;
328         struct scsi_device *sdev, *tmp;
329         struct scsi_target *starget = scsi_target(current_sdev);
330         unsigned long flags;
331
332         spin_lock_irqsave(shost->host_lock, flags);
333         starget->starget_sdev_user = NULL;
334         spin_unlock_irqrestore(shost->host_lock, flags);
335
336         /*
337          * Call blk_run_queue for all LUNs on the target, starting with
338          * current_sdev. We race with others (to set starget_sdev_user),
339          * but in most cases, we will be first. Ideally, each LU on the
340          * target would get some limited time or requests on the target.
341          */
342         blk_run_queue(current_sdev->request_queue);
343
344         spin_lock_irqsave(shost->host_lock, flags);
345         if (starget->starget_sdev_user)
346                 goto out;
347         list_for_each_entry_safe(sdev, tmp, &starget->devices,
348                         same_target_siblings) {
349                 if (sdev == current_sdev)
350                         continue;
351                 if (scsi_device_get(sdev))
352                         continue;
353
354                 spin_unlock_irqrestore(shost->host_lock, flags);
355                 blk_run_queue(sdev->request_queue);
356                 spin_lock_irqsave(shost->host_lock, flags);
357         
358                 scsi_device_put(sdev);
359         }
360  out:
361         spin_unlock_irqrestore(shost->host_lock, flags);
362 }
363
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
365 {
366         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367                 return 1;
368
369         return 0;
370 }
371
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
373 {
374         return ((starget->can_queue > 0 &&
375                  starget->target_busy >= starget->can_queue) ||
376                  starget->target_blocked);
377 }
378
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
380 {
381         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382             shost->host_blocked || shost->host_self_blocked)
383                 return 1;
384
385         return 0;
386 }
387
388 /*
389  * Function:    scsi_run_queue()
390  *
391  * Purpose:     Select a proper request queue to serve next
392  *
393  * Arguments:   q       - last request's queue
394  *
395  * Returns:     Nothing
396  *
397  * Notes:       The previous command was completely finished, start
398  *              a new one if possible.
399  */
400 static void scsi_run_queue(struct request_queue *q)
401 {
402         struct scsi_device *sdev = q->queuedata;
403         struct Scsi_Host *shost = sdev->host;
404         LIST_HEAD(starved_list);
405         unsigned long flags;
406
407         if (scsi_target(sdev)->single_lun)
408                 scsi_single_lun_run(sdev);
409
410         spin_lock_irqsave(shost->host_lock, flags);
411         list_splice_init(&shost->starved_list, &starved_list);
412
413         while (!list_empty(&starved_list)) {
414                 int flagset;
415
416                 /*
417                  * As long as shost is accepting commands and we have
418                  * starved queues, call blk_run_queue. scsi_request_fn
419                  * drops the queue_lock and can add us back to the
420                  * starved_list.
421                  *
422                  * host_lock protects the starved_list and starved_entry.
423                  * scsi_request_fn must get the host_lock before checking
424                  * or modifying starved_list or starved_entry.
425                  */
426                 if (scsi_host_is_busy(shost))
427                         break;
428
429                 sdev = list_entry(starved_list.next,
430                                   struct scsi_device, starved_entry);
431                 list_del_init(&sdev->starved_entry);
432                 if (scsi_target_is_busy(scsi_target(sdev))) {
433                         list_move_tail(&sdev->starved_entry,
434                                        &shost->starved_list);
435                         continue;
436                 }
437
438                 spin_unlock(shost->host_lock);
439
440                 spin_lock(sdev->request_queue->queue_lock);
441                 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442                                 !test_bit(QUEUE_FLAG_REENTER,
443                                         &sdev->request_queue->queue_flags);
444                 if (flagset)
445                         queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446                 __blk_run_queue(sdev->request_queue);
447                 if (flagset)
448                         queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449                 spin_unlock(sdev->request_queue->queue_lock);
450
451                 spin_lock(shost->host_lock);
452         }
453         /* put any unprocessed entries back */
454         list_splice(&starved_list, &shost->starved_list);
455         spin_unlock_irqrestore(shost->host_lock, flags);
456
457         blk_run_queue(q);
458 }
459
460 /*
461  * Function:    scsi_requeue_command()
462  *
463  * Purpose:     Handle post-processing of completed commands.
464  *
465  * Arguments:   q       - queue to operate on
466  *              cmd     - command that may need to be requeued.
467  *
468  * Returns:     Nothing
469  *
470  * Notes:       After command completion, there may be blocks left
471  *              over which weren't finished by the previous command
472  *              this can be for a number of reasons - the main one is
473  *              I/O errors in the middle of the request, in which case
474  *              we need to request the blocks that come after the bad
475  *              sector.
476  * Notes:       Upon return, cmd is a stale pointer.
477  */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480         struct request *req = cmd->request;
481         unsigned long flags;
482
483         spin_lock_irqsave(q->queue_lock, flags);
484         scsi_unprep_request(req);
485         blk_requeue_request(q, req);
486         spin_unlock_irqrestore(q->queue_lock, flags);
487
488         scsi_run_queue(q);
489 }
490
491 void scsi_next_command(struct scsi_cmnd *cmd)
492 {
493         struct scsi_device *sdev = cmd->device;
494         struct request_queue *q = sdev->request_queue;
495
496         /* need to hold a reference on the device before we let go of the cmd */
497         get_device(&sdev->sdev_gendev);
498
499         scsi_put_command(cmd);
500         scsi_run_queue(q);
501
502         /* ok to remove device now */
503         put_device(&sdev->sdev_gendev);
504 }
505
506 void scsi_run_host_queues(struct Scsi_Host *shost)
507 {
508         struct scsi_device *sdev;
509
510         shost_for_each_device(sdev, shost)
511                 scsi_run_queue(sdev->request_queue);
512 }
513
514 static void __scsi_release_buffers(struct scsi_cmnd *, int);
515
516 /*
517  * Function:    scsi_end_request()
518  *
519  * Purpose:     Post-processing of completed commands (usually invoked at end
520  *              of upper level post-processing and scsi_io_completion).
521  *
522  * Arguments:   cmd      - command that is complete.
523  *              error    - 0 if I/O indicates success, < 0 for I/O error.
524  *              bytes    - number of bytes of completed I/O
525  *              requeue  - indicates whether we should requeue leftovers.
526  *
527  * Lock status: Assumed that lock is not held upon entry.
528  *
529  * Returns:     cmd if requeue required, NULL otherwise.
530  *
531  * Notes:       This is called for block device requests in order to
532  *              mark some number of sectors as complete.
533  * 
534  *              We are guaranteeing that the request queue will be goosed
535  *              at some point during this call.
536  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
537  */
538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539                                           int bytes, int requeue)
540 {
541         struct request_queue *q = cmd->device->request_queue;
542         struct request *req = cmd->request;
543
544         /*
545          * If there are blocks left over at the end, set up the command
546          * to queue the remainder of them.
547          */
548         if (blk_end_request(req, error, bytes)) {
549                 int leftover = blk_rq_bytes(req);
550
551                 if (blk_pc_request(req))
552                         leftover = req->resid_len;
553
554                 /* kill remainder if no retrys */
555                 if (error && scsi_noretry_cmd(cmd))
556                         blk_end_request(req, error, leftover);
557                 else {
558                         if (requeue) {
559                                 /*
560                                  * Bleah.  Leftovers again.  Stick the
561                                  * leftovers in the front of the
562                                  * queue, and goose the queue again.
563                                  */
564                                 scsi_release_buffers(cmd);
565                                 scsi_requeue_command(q, cmd);
566                                 cmd = NULL;
567                         }
568                         return cmd;
569                 }
570         }
571
572         /*
573          * This will goose the queue request function at the end, so we don't
574          * need to worry about launching another command.
575          */
576         __scsi_release_buffers(cmd, 0);
577         scsi_next_command(cmd);
578         return NULL;
579 }
580
581 static inline unsigned int scsi_sgtable_index(unsigned short nents)
582 {
583         unsigned int index;
584
585         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
586
587         if (nents <= 8)
588                 index = 0;
589         else
590                 index = get_count_order(nents) - 3;
591
592         return index;
593 }
594
595 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
596 {
597         struct scsi_host_sg_pool *sgp;
598
599         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
600         mempool_free(sgl, sgp->pool);
601 }
602
603 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
604 {
605         struct scsi_host_sg_pool *sgp;
606
607         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
608         return mempool_alloc(sgp->pool, gfp_mask);
609 }
610
611 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
612                               gfp_t gfp_mask)
613 {
614         int ret;
615
616         BUG_ON(!nents);
617
618         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
619                                gfp_mask, scsi_sg_alloc);
620         if (unlikely(ret))
621                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
622                                 scsi_sg_free);
623
624         return ret;
625 }
626
627 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
628 {
629         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
630 }
631
632 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
633 {
634
635         if (cmd->sdb.table.nents)
636                 scsi_free_sgtable(&cmd->sdb);
637
638         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
639
640         if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
641                 struct scsi_data_buffer *bidi_sdb =
642                         cmd->request->next_rq->special;
643                 scsi_free_sgtable(bidi_sdb);
644                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
645                 cmd->request->next_rq->special = NULL;
646         }
647
648         if (scsi_prot_sg_count(cmd))
649                 scsi_free_sgtable(cmd->prot_sdb);
650 }
651
652 /*
653  * Function:    scsi_release_buffers()
654  *
655  * Purpose:     Completion processing for block device I/O requests.
656  *
657  * Arguments:   cmd     - command that we are bailing.
658  *
659  * Lock status: Assumed that no lock is held upon entry.
660  *
661  * Returns:     Nothing
662  *
663  * Notes:       In the event that an upper level driver rejects a
664  *              command, we must release resources allocated during
665  *              the __init_io() function.  Primarily this would involve
666  *              the scatter-gather table, and potentially any bounce
667  *              buffers.
668  */
669 void scsi_release_buffers(struct scsi_cmnd *cmd)
670 {
671         __scsi_release_buffers(cmd, 1);
672 }
673 EXPORT_SYMBOL(scsi_release_buffers);
674
675 /*
676  * Bidi commands Must be complete as a whole, both sides at once.  If
677  * part of the bytes were written and lld returned scsi_in()->resid
678  * and/or scsi_out()->resid this information will be left in
679  * req->resid_len and req->next_rq->resid_len. The upper-layer driver
680  * can decide what to do with this information.
681  */
682 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
683 {
684         struct request *req = cmd->request;
685
686         req->resid_len = scsi_out(cmd)->resid;
687         req->next_rq->resid_len = scsi_in(cmd)->resid;
688
689         /* The req and req->next_rq have not been completed */
690         BUG_ON(blk_end_bidi_request(req, 0, blk_rq_bytes(req),
691                                     blk_rq_bytes(req->next_rq)));
692
693         scsi_release_buffers(cmd);
694
695         /*
696          * This will goose the queue request function at the end, so we don't
697          * need to worry about launching another command.
698          */
699         scsi_next_command(cmd);
700 }
701
702 /*
703  * Function:    scsi_io_completion()
704  *
705  * Purpose:     Completion processing for block device I/O requests.
706  *
707  * Arguments:   cmd   - command that is finished.
708  *
709  * Lock status: Assumed that no lock is held upon entry.
710  *
711  * Returns:     Nothing
712  *
713  * Notes:       This function is matched in terms of capabilities to
714  *              the function that created the scatter-gather list.
715  *              In other words, if there are no bounce buffers
716  *              (the normal case for most drivers), we don't need
717  *              the logic to deal with cleaning up afterwards.
718  *
719  *              We must call scsi_end_request().  This will finish off
720  *              the specified number of sectors.  If we are done, the
721  *              command block will be released and the queue function
722  *              will be goosed.  If we are not done then we have to
723  *              figure out what to do next:
724  *
725  *              a) We can call scsi_requeue_command().  The request
726  *                 will be unprepared and put back on the queue.  Then
727  *                 a new command will be created for it.  This should
728  *                 be used if we made forward progress, or if we want
729  *                 to switch from READ(10) to READ(6) for example.
730  *
731  *              b) We can call scsi_queue_insert().  The request will
732  *                 be put back on the queue and retried using the same
733  *                 command as before, possibly after a delay.
734  *
735  *              c) We can call blk_end_request() with -EIO to fail
736  *                 the remainder of the request.
737  */
738 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
739 {
740         int result = cmd->result;
741         int this_count;
742         struct request_queue *q = cmd->device->request_queue;
743         struct request *req = cmd->request;
744         int error = 0;
745         struct scsi_sense_hdr sshdr;
746         int sense_valid = 0;
747         int sense_deferred = 0;
748         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
749               ACTION_DELAYED_RETRY} action;
750         char *description = NULL;
751
752         if (result) {
753                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
754                 if (sense_valid)
755                         sense_deferred = scsi_sense_is_deferred(&sshdr);
756         }
757
758         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
759                 req->errors = result;
760                 if (result) {
761                         if (sense_valid && req->sense) {
762                                 /*
763                                  * SG_IO wants current and deferred errors
764                                  */
765                                 int len = 8 + cmd->sense_buffer[7];
766
767                                 if (len > SCSI_SENSE_BUFFERSIZE)
768                                         len = SCSI_SENSE_BUFFERSIZE;
769                                 memcpy(req->sense, cmd->sense_buffer,  len);
770                                 req->sense_len = len;
771                         }
772                         if (!sense_deferred)
773                                 error = -EIO;
774                 }
775                 if (scsi_bidi_cmnd(cmd)) {
776                         /* will also release_buffers */
777                         scsi_end_bidi_request(cmd);
778                         return;
779                 }
780                 req->resid_len = scsi_get_resid(cmd);
781         }
782
783         BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
784
785         /*
786          * Next deal with any sectors which we were able to correctly
787          * handle.
788          */
789         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
790                                       "%d bytes done.\n",
791                                       blk_rq_sectors(req), good_bytes));
792
793         /*
794          * Recovered errors need reporting, but they're always treated
795          * as success, so fiddle the result code here.  For BLOCK_PC
796          * we already took a copy of the original into rq->errors which
797          * is what gets returned to the user
798          */
799         if (sense_valid && sshdr.sense_key == RECOVERED_ERROR) {
800                 if (!(req->cmd_flags & REQ_QUIET))
801                         scsi_print_sense("", cmd);
802                 result = 0;
803                 /* BLOCK_PC may have set error */
804                 error = 0;
805         }
806
807         /*
808          * A number of bytes were successfully read.  If there
809          * are leftovers and there is some kind of error
810          * (result != 0), retry the rest.
811          */
812         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
813                 return;
814         this_count = blk_rq_bytes(req);
815
816         error = -EIO;
817
818         if (host_byte(result) == DID_RESET) {
819                 /* Third party bus reset or reset for error recovery
820                  * reasons.  Just retry the command and see what
821                  * happens.
822                  */
823                 action = ACTION_RETRY;
824         } else if (sense_valid && !sense_deferred) {
825                 switch (sshdr.sense_key) {
826                 case UNIT_ATTENTION:
827                         if (cmd->device->removable) {
828                                 /* Detected disc change.  Set a bit
829                                  * and quietly refuse further access.
830                                  */
831                                 cmd->device->changed = 1;
832                                 description = "Media Changed";
833                                 action = ACTION_FAIL;
834                         } else {
835                                 /* Must have been a power glitch, or a
836                                  * bus reset.  Could not have been a
837                                  * media change, so we just retry the
838                                  * command and see what happens.
839                                  */
840                                 action = ACTION_RETRY;
841                         }
842                         break;
843                 case ILLEGAL_REQUEST:
844                         /* If we had an ILLEGAL REQUEST returned, then
845                          * we may have performed an unsupported
846                          * command.  The only thing this should be
847                          * would be a ten byte read where only a six
848                          * byte read was supported.  Also, on a system
849                          * where READ CAPACITY failed, we may have
850                          * read past the end of the disk.
851                          */
852                         if ((cmd->device->use_10_for_rw &&
853                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
854                             (cmd->cmnd[0] == READ_10 ||
855                              cmd->cmnd[0] == WRITE_10)) {
856                                 /* This will issue a new 6-byte command. */
857                                 cmd->device->use_10_for_rw = 0;
858                                 action = ACTION_REPREP;
859                         } else if (sshdr.asc == 0x10) /* DIX */ {
860                                 description = "Host Data Integrity Failure";
861                                 action = ACTION_FAIL;
862                                 error = -EILSEQ;
863                         } else
864                                 action = ACTION_FAIL;
865                         break;
866                 case ABORTED_COMMAND:
867                         action = ACTION_FAIL;
868                         if (sshdr.asc == 0x10) { /* DIF */
869                                 description = "Target Data Integrity Failure";
870                                 error = -EILSEQ;
871                         }
872                         break;
873                 case NOT_READY:
874                         /* If the device is in the process of becoming
875                          * ready, or has a temporary blockage, retry.
876                          */
877                         if (sshdr.asc == 0x04) {
878                                 switch (sshdr.ascq) {
879                                 case 0x01: /* becoming ready */
880                                 case 0x04: /* format in progress */
881                                 case 0x05: /* rebuild in progress */
882                                 case 0x06: /* recalculation in progress */
883                                 case 0x07: /* operation in progress */
884                                 case 0x08: /* Long write in progress */
885                                 case 0x09: /* self test in progress */
886                                         action = ACTION_DELAYED_RETRY;
887                                         break;
888                                 default:
889                                         description = "Device not ready";
890                                         action = ACTION_FAIL;
891                                         break;
892                                 }
893                         } else {
894                                 description = "Device not ready";
895                                 action = ACTION_FAIL;
896                         }
897                         break;
898                 case VOLUME_OVERFLOW:
899                         /* See SSC3rXX or current. */
900                         action = ACTION_FAIL;
901                         break;
902                 default:
903                         description = "Unhandled sense code";
904                         action = ACTION_FAIL;
905                         break;
906                 }
907         } else {
908                 description = "Unhandled error code";
909                 action = ACTION_FAIL;
910         }
911
912         switch (action) {
913         case ACTION_FAIL:
914                 /* Give up and fail the remainder of the request */
915                 scsi_release_buffers(cmd);
916                 if (!(req->cmd_flags & REQ_QUIET)) {
917                         if (description)
918                                 scmd_printk(KERN_INFO, cmd, "%s\n",
919                                             description);
920                         scsi_print_result(cmd);
921                         if (driver_byte(result) & DRIVER_SENSE)
922                                 scsi_print_sense("", cmd);
923                 }
924                 blk_end_request_all(req, -EIO);
925                 scsi_next_command(cmd);
926                 break;
927         case ACTION_REPREP:
928                 /* Unprep the request and put it back at the head of the queue.
929                  * A new command will be prepared and issued.
930                  */
931                 scsi_release_buffers(cmd);
932                 scsi_requeue_command(q, cmd);
933                 break;
934         case ACTION_RETRY:
935                 /* Retry the same command immediately */
936                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
937                 break;
938         case ACTION_DELAYED_RETRY:
939                 /* Retry the same command after a delay */
940                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
941                 break;
942         }
943 }
944
945 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
946                              gfp_t gfp_mask)
947 {
948         int count;
949
950         /*
951          * If sg table allocation fails, requeue request later.
952          */
953         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
954                                         gfp_mask))) {
955                 return BLKPREP_DEFER;
956         }
957
958         req->buffer = NULL;
959
960         /* 
961          * Next, walk the list, and fill in the addresses and sizes of
962          * each segment.
963          */
964         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
965         BUG_ON(count > sdb->table.nents);
966         sdb->table.nents = count;
967         sdb->length = blk_rq_bytes(req);
968         return BLKPREP_OK;
969 }
970
971 /*
972  * Function:    scsi_init_io()
973  *
974  * Purpose:     SCSI I/O initialize function.
975  *
976  * Arguments:   cmd   - Command descriptor we wish to initialize
977  *
978  * Returns:     0 on success
979  *              BLKPREP_DEFER if the failure is retryable
980  *              BLKPREP_KILL if the failure is fatal
981  */
982 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
983 {
984         int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
985         if (error)
986                 goto err_exit;
987
988         if (blk_bidi_rq(cmd->request)) {
989                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
990                         scsi_sdb_cache, GFP_ATOMIC);
991                 if (!bidi_sdb) {
992                         error = BLKPREP_DEFER;
993                         goto err_exit;
994                 }
995
996                 cmd->request->next_rq->special = bidi_sdb;
997                 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
998                                                                     GFP_ATOMIC);
999                 if (error)
1000                         goto err_exit;
1001         }
1002
1003         if (blk_integrity_rq(cmd->request)) {
1004                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1005                 int ivecs, count;
1006
1007                 BUG_ON(prot_sdb == NULL);
1008                 ivecs = blk_rq_count_integrity_sg(cmd->request);
1009
1010                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1011                         error = BLKPREP_DEFER;
1012                         goto err_exit;
1013                 }
1014
1015                 count = blk_rq_map_integrity_sg(cmd->request,
1016                                                 prot_sdb->table.sgl);
1017                 BUG_ON(unlikely(count > ivecs));
1018
1019                 cmd->prot_sdb = prot_sdb;
1020                 cmd->prot_sdb->table.nents = count;
1021         }
1022
1023         return BLKPREP_OK ;
1024
1025 err_exit:
1026         scsi_release_buffers(cmd);
1027         if (error == BLKPREP_KILL)
1028                 scsi_put_command(cmd);
1029         else /* BLKPREP_DEFER */
1030                 scsi_unprep_request(cmd->request);
1031
1032         return error;
1033 }
1034 EXPORT_SYMBOL(scsi_init_io);
1035
1036 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1037                 struct request *req)
1038 {
1039         struct scsi_cmnd *cmd;
1040
1041         if (!req->special) {
1042                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1043                 if (unlikely(!cmd))
1044                         return NULL;
1045                 req->special = cmd;
1046         } else {
1047                 cmd = req->special;
1048         }
1049
1050         /* pull a tag out of the request if we have one */
1051         cmd->tag = req->tag;
1052         cmd->request = req;
1053
1054         cmd->cmnd = req->cmd;
1055
1056         return cmd;
1057 }
1058
1059 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1060 {
1061         struct scsi_cmnd *cmd;
1062         int ret = scsi_prep_state_check(sdev, req);
1063
1064         if (ret != BLKPREP_OK)
1065                 return ret;
1066
1067         cmd = scsi_get_cmd_from_req(sdev, req);
1068         if (unlikely(!cmd))
1069                 return BLKPREP_DEFER;
1070
1071         /*
1072          * BLOCK_PC requests may transfer data, in which case they must
1073          * a bio attached to them.  Or they might contain a SCSI command
1074          * that does not transfer data, in which case they may optionally
1075          * submit a request without an attached bio.
1076          */
1077         if (req->bio) {
1078                 int ret;
1079
1080                 BUG_ON(!req->nr_phys_segments);
1081
1082                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1083                 if (unlikely(ret))
1084                         return ret;
1085         } else {
1086                 BUG_ON(blk_rq_bytes(req));
1087
1088                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1089                 req->buffer = NULL;
1090         }
1091
1092         cmd->cmd_len = req->cmd_len;
1093         if (!blk_rq_bytes(req))
1094                 cmd->sc_data_direction = DMA_NONE;
1095         else if (rq_data_dir(req) == WRITE)
1096                 cmd->sc_data_direction = DMA_TO_DEVICE;
1097         else
1098                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1099         
1100         cmd->transfersize = blk_rq_bytes(req);
1101         cmd->allowed = req->retries;
1102         return BLKPREP_OK;
1103 }
1104 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1105
1106 /*
1107  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1108  * from filesystems that still need to be translated to SCSI CDBs from
1109  * the ULD.
1110  */
1111 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1112 {
1113         struct scsi_cmnd *cmd;
1114         int ret = scsi_prep_state_check(sdev, req);
1115
1116         if (ret != BLKPREP_OK)
1117                 return ret;
1118
1119         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1120                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1121                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1122                 if (ret != BLKPREP_OK)
1123                         return ret;
1124         }
1125
1126         /*
1127          * Filesystem requests must transfer data.
1128          */
1129         BUG_ON(!req->nr_phys_segments);
1130
1131         cmd = scsi_get_cmd_from_req(sdev, req);
1132         if (unlikely(!cmd))
1133                 return BLKPREP_DEFER;
1134
1135         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1136         return scsi_init_io(cmd, GFP_ATOMIC);
1137 }
1138 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1139
1140 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1141 {
1142         int ret = BLKPREP_OK;
1143
1144         /*
1145          * If the device is not in running state we will reject some
1146          * or all commands.
1147          */
1148         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1149                 switch (sdev->sdev_state) {
1150                 case SDEV_OFFLINE:
1151                         /*
1152                          * If the device is offline we refuse to process any
1153                          * commands.  The device must be brought online
1154                          * before trying any recovery commands.
1155                          */
1156                         sdev_printk(KERN_ERR, sdev,
1157                                     "rejecting I/O to offline device\n");
1158                         ret = BLKPREP_KILL;
1159                         break;
1160                 case SDEV_DEL:
1161                         /*
1162                          * If the device is fully deleted, we refuse to
1163                          * process any commands as well.
1164                          */
1165                         sdev_printk(KERN_ERR, sdev,
1166                                     "rejecting I/O to dead device\n");
1167                         ret = BLKPREP_KILL;
1168                         break;
1169                 case SDEV_QUIESCE:
1170                 case SDEV_BLOCK:
1171                 case SDEV_CREATED_BLOCK:
1172                         /*
1173                          * If the devices is blocked we defer normal commands.
1174                          */
1175                         if (!(req->cmd_flags & REQ_PREEMPT))
1176                                 ret = BLKPREP_DEFER;
1177                         break;
1178                 default:
1179                         /*
1180                          * For any other not fully online state we only allow
1181                          * special commands.  In particular any user initiated
1182                          * command is not allowed.
1183                          */
1184                         if (!(req->cmd_flags & REQ_PREEMPT))
1185                                 ret = BLKPREP_KILL;
1186                         break;
1187                 }
1188         }
1189         return ret;
1190 }
1191 EXPORT_SYMBOL(scsi_prep_state_check);
1192
1193 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1194 {
1195         struct scsi_device *sdev = q->queuedata;
1196
1197         switch (ret) {
1198         case BLKPREP_KILL:
1199                 req->errors = DID_NO_CONNECT << 16;
1200                 /* release the command and kill it */
1201                 if (req->special) {
1202                         struct scsi_cmnd *cmd = req->special;
1203                         scsi_release_buffers(cmd);
1204                         scsi_put_command(cmd);
1205                         req->special = NULL;
1206                 }
1207                 break;
1208         case BLKPREP_DEFER:
1209                 /*
1210                  * If we defer, the blk_peek_request() returns NULL, but the
1211                  * queue must be restarted, so we plug here if no returning
1212                  * command will automatically do that.
1213                  */
1214                 if (sdev->device_busy == 0)
1215                         blk_plug_device(q);
1216                 break;
1217         default:
1218                 req->cmd_flags |= REQ_DONTPREP;
1219         }
1220
1221         return ret;
1222 }
1223 EXPORT_SYMBOL(scsi_prep_return);
1224
1225 int scsi_prep_fn(struct request_queue *q, struct request *req)
1226 {
1227         struct scsi_device *sdev = q->queuedata;
1228         int ret = BLKPREP_KILL;
1229
1230         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1231                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1232         return scsi_prep_return(q, req, ret);
1233 }
1234
1235 /*
1236  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1237  * return 0.
1238  *
1239  * Called with the queue_lock held.
1240  */
1241 static inline int scsi_dev_queue_ready(struct request_queue *q,
1242                                   struct scsi_device *sdev)
1243 {
1244         if (sdev->device_busy == 0 && sdev->device_blocked) {
1245                 /*
1246                  * unblock after device_blocked iterates to zero
1247                  */
1248                 if (--sdev->device_blocked == 0) {
1249                         SCSI_LOG_MLQUEUE(3,
1250                                    sdev_printk(KERN_INFO, sdev,
1251                                    "unblocking device at zero depth\n"));
1252                 } else {
1253                         blk_plug_device(q);
1254                         return 0;
1255                 }
1256         }
1257         if (scsi_device_is_busy(sdev))
1258                 return 0;
1259
1260         return 1;
1261 }
1262
1263
1264 /*
1265  * scsi_target_queue_ready: checks if there we can send commands to target
1266  * @sdev: scsi device on starget to check.
1267  *
1268  * Called with the host lock held.
1269  */
1270 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1271                                            struct scsi_device *sdev)
1272 {
1273         struct scsi_target *starget = scsi_target(sdev);
1274
1275         if (starget->single_lun) {
1276                 if (starget->starget_sdev_user &&
1277                     starget->starget_sdev_user != sdev)
1278                         return 0;
1279                 starget->starget_sdev_user = sdev;
1280         }
1281
1282         if (starget->target_busy == 0 && starget->target_blocked) {
1283                 /*
1284                  * unblock after target_blocked iterates to zero
1285                  */
1286                 if (--starget->target_blocked == 0) {
1287                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1288                                          "unblocking target at zero depth\n"));
1289                 } else {
1290                         blk_plug_device(sdev->request_queue);
1291                         return 0;
1292                 }
1293         }
1294
1295         if (scsi_target_is_busy(starget)) {
1296                 if (list_empty(&sdev->starved_entry)) {
1297                         list_add_tail(&sdev->starved_entry,
1298                                       &shost->starved_list);
1299                         return 0;
1300                 }
1301         }
1302
1303         /* We're OK to process the command, so we can't be starved */
1304         if (!list_empty(&sdev->starved_entry))
1305                 list_del_init(&sdev->starved_entry);
1306         return 1;
1307 }
1308
1309 /*
1310  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1311  * return 0. We must end up running the queue again whenever 0 is
1312  * returned, else IO can hang.
1313  *
1314  * Called with host_lock held.
1315  */
1316 static inline int scsi_host_queue_ready(struct request_queue *q,
1317                                    struct Scsi_Host *shost,
1318                                    struct scsi_device *sdev)
1319 {
1320         if (scsi_host_in_recovery(shost))
1321                 return 0;
1322         if (shost->host_busy == 0 && shost->host_blocked) {
1323                 /*
1324                  * unblock after host_blocked iterates to zero
1325                  */
1326                 if (--shost->host_blocked == 0) {
1327                         SCSI_LOG_MLQUEUE(3,
1328                                 printk("scsi%d unblocking host at zero depth\n",
1329                                         shost->host_no));
1330                 } else {
1331                         return 0;
1332                 }
1333         }
1334         if (scsi_host_is_busy(shost)) {
1335                 if (list_empty(&sdev->starved_entry))
1336                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1337                 return 0;
1338         }
1339
1340         /* We're OK to process the command, so we can't be starved */
1341         if (!list_empty(&sdev->starved_entry))
1342                 list_del_init(&sdev->starved_entry);
1343
1344         return 1;
1345 }
1346
1347 /*
1348  * Busy state exporting function for request stacking drivers.
1349  *
1350  * For efficiency, no lock is taken to check the busy state of
1351  * shost/starget/sdev, since the returned value is not guaranteed and
1352  * may be changed after request stacking drivers call the function,
1353  * regardless of taking lock or not.
1354  *
1355  * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1356  * (e.g. !sdev), scsi needs to return 'not busy'.
1357  * Otherwise, request stacking drivers may hold requests forever.
1358  */
1359 static int scsi_lld_busy(struct request_queue *q)
1360 {
1361         struct scsi_device *sdev = q->queuedata;
1362         struct Scsi_Host *shost;
1363         struct scsi_target *starget;
1364
1365         if (!sdev)
1366                 return 0;
1367
1368         shost = sdev->host;
1369         starget = scsi_target(sdev);
1370
1371         if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1372             scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1373                 return 1;
1374
1375         return 0;
1376 }
1377
1378 /*
1379  * Kill a request for a dead device
1380  */
1381 static void scsi_kill_request(struct request *req, struct request_queue *q)
1382 {
1383         struct scsi_cmnd *cmd = req->special;
1384         struct scsi_device *sdev = cmd->device;
1385         struct scsi_target *starget = scsi_target(sdev);
1386         struct Scsi_Host *shost = sdev->host;
1387
1388         blk_start_request(req);
1389
1390         if (unlikely(cmd == NULL)) {
1391                 printk(KERN_CRIT "impossible request in %s.\n",
1392                                  __func__);
1393                 BUG();
1394         }
1395
1396         scsi_init_cmd_errh(cmd);
1397         cmd->result = DID_NO_CONNECT << 16;
1398         atomic_inc(&cmd->device->iorequest_cnt);
1399
1400         /*
1401          * SCSI request completion path will do scsi_device_unbusy(),
1402          * bump busy counts.  To bump the counters, we need to dance
1403          * with the locks as normal issue path does.
1404          */
1405         sdev->device_busy++;
1406         spin_unlock(sdev->request_queue->queue_lock);
1407         spin_lock(shost->host_lock);
1408         shost->host_busy++;
1409         starget->target_busy++;
1410         spin_unlock(shost->host_lock);
1411         spin_lock(sdev->request_queue->queue_lock);
1412
1413         blk_complete_request(req);
1414 }
1415
1416 static void scsi_softirq_done(struct request *rq)
1417 {
1418         struct scsi_cmnd *cmd = rq->special;
1419         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1420         int disposition;
1421
1422         INIT_LIST_HEAD(&cmd->eh_entry);
1423
1424         /*
1425          * Set the serial numbers back to zero
1426          */
1427         cmd->serial_number = 0;
1428
1429         atomic_inc(&cmd->device->iodone_cnt);
1430         if (cmd->result)
1431                 atomic_inc(&cmd->device->ioerr_cnt);
1432
1433         disposition = scsi_decide_disposition(cmd);
1434         if (disposition != SUCCESS &&
1435             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1436                 sdev_printk(KERN_ERR, cmd->device,
1437                             "timing out command, waited %lus\n",
1438                             wait_for/HZ);
1439                 disposition = SUCCESS;
1440         }
1441                         
1442         scsi_log_completion(cmd, disposition);
1443
1444         switch (disposition) {
1445                 case SUCCESS:
1446                         scsi_finish_command(cmd);
1447                         break;
1448                 case NEEDS_RETRY:
1449                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1450                         break;
1451                 case ADD_TO_MLQUEUE:
1452                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1453                         break;
1454                 default:
1455                         if (!scsi_eh_scmd_add(cmd, 0))
1456                                 scsi_finish_command(cmd);
1457         }
1458 }
1459
1460 /*
1461  * Function:    scsi_request_fn()
1462  *
1463  * Purpose:     Main strategy routine for SCSI.
1464  *
1465  * Arguments:   q       - Pointer to actual queue.
1466  *
1467  * Returns:     Nothing
1468  *
1469  * Lock status: IO request lock assumed to be held when called.
1470  */
1471 static void scsi_request_fn(struct request_queue *q)
1472 {
1473         struct scsi_device *sdev = q->queuedata;
1474         struct Scsi_Host *shost;
1475         struct scsi_cmnd *cmd;
1476         struct request *req;
1477
1478         if (!sdev) {
1479                 printk("scsi: killing requests for dead queue\n");
1480                 while ((req = blk_peek_request(q)) != NULL)
1481                         scsi_kill_request(req, q);
1482                 return;
1483         }
1484
1485         if(!get_device(&sdev->sdev_gendev))
1486                 /* We must be tearing the block queue down already */
1487                 return;
1488
1489         /*
1490          * To start with, we keep looping until the queue is empty, or until
1491          * the host is no longer able to accept any more requests.
1492          */
1493         shost = sdev->host;
1494         while (!blk_queue_plugged(q)) {
1495                 int rtn;
1496                 /*
1497                  * get next queueable request.  We do this early to make sure
1498                  * that the request is fully prepared even if we cannot 
1499                  * accept it.
1500                  */
1501                 req = blk_peek_request(q);
1502                 if (!req || !scsi_dev_queue_ready(q, sdev))
1503                         break;
1504
1505                 if (unlikely(!scsi_device_online(sdev))) {
1506                         sdev_printk(KERN_ERR, sdev,
1507                                     "rejecting I/O to offline device\n");
1508                         scsi_kill_request(req, q);
1509                         continue;
1510                 }
1511
1512
1513                 /*
1514                  * Remove the request from the request list.
1515                  */
1516                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1517                         blk_start_request(req);
1518                 sdev->device_busy++;
1519
1520                 spin_unlock(q->queue_lock);
1521                 cmd = req->special;
1522                 if (unlikely(cmd == NULL)) {
1523                         printk(KERN_CRIT "impossible request in %s.\n"
1524                                          "please mail a stack trace to "
1525                                          "linux-scsi@vger.kernel.org\n",
1526                                          __func__);
1527                         blk_dump_rq_flags(req, "foo");
1528                         BUG();
1529                 }
1530                 spin_lock(shost->host_lock);
1531
1532                 /*
1533                  * We hit this when the driver is using a host wide
1534                  * tag map. For device level tag maps the queue_depth check
1535                  * in the device ready fn would prevent us from trying
1536                  * to allocate a tag. Since the map is a shared host resource
1537                  * we add the dev to the starved list so it eventually gets
1538                  * a run when a tag is freed.
1539                  */
1540                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1541                         if (list_empty(&sdev->starved_entry))
1542                                 list_add_tail(&sdev->starved_entry,
1543                                               &shost->starved_list);
1544                         goto not_ready;
1545                 }
1546
1547                 if (!scsi_target_queue_ready(shost, sdev))
1548                         goto not_ready;
1549
1550                 if (!scsi_host_queue_ready(q, shost, sdev))
1551                         goto not_ready;
1552
1553                 scsi_target(sdev)->target_busy++;
1554                 shost->host_busy++;
1555
1556                 /*
1557                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1558                  *              take the lock again.
1559                  */
1560                 spin_unlock_irq(shost->host_lock);
1561
1562                 /*
1563                  * Finally, initialize any error handling parameters, and set up
1564                  * the timers for timeouts.
1565                  */
1566                 scsi_init_cmd_errh(cmd);
1567
1568                 /*
1569                  * Dispatch the command to the low-level driver.
1570                  */
1571                 rtn = scsi_dispatch_cmd(cmd);
1572                 spin_lock_irq(q->queue_lock);
1573                 if(rtn) {
1574                         /* we're refusing the command; because of
1575                          * the way locks get dropped, we need to 
1576                          * check here if plugging is required */
1577                         if(sdev->device_busy == 0)
1578                                 blk_plug_device(q);
1579
1580                         break;
1581                 }
1582         }
1583
1584         goto out;
1585
1586  not_ready:
1587         spin_unlock_irq(shost->host_lock);
1588
1589         /*
1590          * lock q, handle tag, requeue req, and decrement device_busy. We
1591          * must return with queue_lock held.
1592          *
1593          * Decrementing device_busy without checking it is OK, as all such
1594          * cases (host limits or settings) should run the queue at some
1595          * later time.
1596          */
1597         spin_lock_irq(q->queue_lock);
1598         blk_requeue_request(q, req);
1599         sdev->device_busy--;
1600         if(sdev->device_busy == 0)
1601                 blk_plug_device(q);
1602  out:
1603         /* must be careful here...if we trigger the ->remove() function
1604          * we cannot be holding the q lock */
1605         spin_unlock_irq(q->queue_lock);
1606         put_device(&sdev->sdev_gendev);
1607         spin_lock_irq(q->queue_lock);
1608 }
1609
1610 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1611 {
1612         struct device *host_dev;
1613         u64 bounce_limit = 0xffffffff;
1614
1615         if (shost->unchecked_isa_dma)
1616                 return BLK_BOUNCE_ISA;
1617         /*
1618          * Platforms with virtual-DMA translation
1619          * hardware have no practical limit.
1620          */
1621         if (!PCI_DMA_BUS_IS_PHYS)
1622                 return BLK_BOUNCE_ANY;
1623
1624         host_dev = scsi_get_device(shost);
1625         if (host_dev && host_dev->dma_mask)
1626                 bounce_limit = *host_dev->dma_mask;
1627
1628         return bounce_limit;
1629 }
1630 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1631
1632 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1633                                          request_fn_proc *request_fn)
1634 {
1635         struct request_queue *q;
1636         struct device *dev = shost->shost_gendev.parent;
1637
1638         q = blk_init_queue(request_fn, NULL);
1639         if (!q)
1640                 return NULL;
1641
1642         /*
1643          * this limit is imposed by hardware restrictions
1644          */
1645         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1646         blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1647
1648         blk_queue_max_sectors(q, shost->max_sectors);
1649         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1650         blk_queue_segment_boundary(q, shost->dma_boundary);
1651         dma_set_seg_boundary(dev, shost->dma_boundary);
1652
1653         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1654
1655         /* New queue, no concurrency on queue_flags */
1656         if (!shost->use_clustering)
1657                 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1658
1659         /*
1660          * set a reasonable default alignment on word boundaries: the
1661          * host and device may alter it using
1662          * blk_queue_update_dma_alignment() later.
1663          */
1664         blk_queue_dma_alignment(q, 0x03);
1665
1666         return q;
1667 }
1668 EXPORT_SYMBOL(__scsi_alloc_queue);
1669
1670 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1671 {
1672         struct request_queue *q;
1673
1674         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1675         if (!q)
1676                 return NULL;
1677
1678         blk_queue_prep_rq(q, scsi_prep_fn);
1679         blk_queue_softirq_done(q, scsi_softirq_done);
1680         blk_queue_rq_timed_out(q, scsi_times_out);
1681         blk_queue_lld_busy(q, scsi_lld_busy);
1682         return q;
1683 }
1684
1685 void scsi_free_queue(struct request_queue *q)
1686 {
1687         blk_cleanup_queue(q);
1688 }
1689
1690 /*
1691  * Function:    scsi_block_requests()
1692  *
1693  * Purpose:     Utility function used by low-level drivers to prevent further
1694  *              commands from being queued to the device.
1695  *
1696  * Arguments:   shost       - Host in question
1697  *
1698  * Returns:     Nothing
1699  *
1700  * Lock status: No locks are assumed held.
1701  *
1702  * Notes:       There is no timer nor any other means by which the requests
1703  *              get unblocked other than the low-level driver calling
1704  *              scsi_unblock_requests().
1705  */
1706 void scsi_block_requests(struct Scsi_Host *shost)
1707 {
1708         shost->host_self_blocked = 1;
1709 }
1710 EXPORT_SYMBOL(scsi_block_requests);
1711
1712 /*
1713  * Function:    scsi_unblock_requests()
1714  *
1715  * Purpose:     Utility function used by low-level drivers to allow further
1716  *              commands from being queued to the device.
1717  *
1718  * Arguments:   shost       - Host in question
1719  *
1720  * Returns:     Nothing
1721  *
1722  * Lock status: No locks are assumed held.
1723  *
1724  * Notes:       There is no timer nor any other means by which the requests
1725  *              get unblocked other than the low-level driver calling
1726  *              scsi_unblock_requests().
1727  *
1728  *              This is done as an API function so that changes to the
1729  *              internals of the scsi mid-layer won't require wholesale
1730  *              changes to drivers that use this feature.
1731  */
1732 void scsi_unblock_requests(struct Scsi_Host *shost)
1733 {
1734         shost->host_self_blocked = 0;
1735         scsi_run_host_queues(shost);
1736 }
1737 EXPORT_SYMBOL(scsi_unblock_requests);
1738
1739 int __init scsi_init_queue(void)
1740 {
1741         int i;
1742
1743         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1744                                            sizeof(struct scsi_data_buffer),
1745                                            0, 0, NULL);
1746         if (!scsi_sdb_cache) {
1747                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1748                 return -ENOMEM;
1749         }
1750
1751         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1752                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1753                 int size = sgp->size * sizeof(struct scatterlist);
1754
1755                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1756                                 SLAB_HWCACHE_ALIGN, NULL);
1757                 if (!sgp->slab) {
1758                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1759                                         sgp->name);
1760                         goto cleanup_sdb;
1761                 }
1762
1763                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1764                                                      sgp->slab);
1765                 if (!sgp->pool) {
1766                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1767                                         sgp->name);
1768                         goto cleanup_sdb;
1769                 }
1770         }
1771
1772         return 0;
1773
1774 cleanup_sdb:
1775         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1776                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1777                 if (sgp->pool)
1778                         mempool_destroy(sgp->pool);
1779                 if (sgp->slab)
1780                         kmem_cache_destroy(sgp->slab);
1781         }
1782         kmem_cache_destroy(scsi_sdb_cache);
1783
1784         return -ENOMEM;
1785 }
1786
1787 void scsi_exit_queue(void)
1788 {
1789         int i;
1790
1791         kmem_cache_destroy(scsi_sdb_cache);
1792
1793         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1794                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1795                 mempool_destroy(sgp->pool);
1796                 kmem_cache_destroy(sgp->slab);
1797         }
1798 }
1799
1800 /**
1801  *      scsi_mode_select - issue a mode select
1802  *      @sdev:  SCSI device to be queried
1803  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1804  *      @sp:    Save page bit (0 == don't save, 1 == save)
1805  *      @modepage: mode page being requested
1806  *      @buffer: request buffer (may not be smaller than eight bytes)
1807  *      @len:   length of request buffer.
1808  *      @timeout: command timeout
1809  *      @retries: number of retries before failing
1810  *      @data: returns a structure abstracting the mode header data
1811  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1812  *              must be SCSI_SENSE_BUFFERSIZE big.
1813  *
1814  *      Returns zero if successful; negative error number or scsi
1815  *      status on error
1816  *
1817  */
1818 int
1819 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1820                  unsigned char *buffer, int len, int timeout, int retries,
1821                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1822 {
1823         unsigned char cmd[10];
1824         unsigned char *real_buffer;
1825         int ret;
1826
1827         memset(cmd, 0, sizeof(cmd));
1828         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1829
1830         if (sdev->use_10_for_ms) {
1831                 if (len > 65535)
1832                         return -EINVAL;
1833                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1834                 if (!real_buffer)
1835                         return -ENOMEM;
1836                 memcpy(real_buffer + 8, buffer, len);
1837                 len += 8;
1838                 real_buffer[0] = 0;
1839                 real_buffer[1] = 0;
1840                 real_buffer[2] = data->medium_type;
1841                 real_buffer[3] = data->device_specific;
1842                 real_buffer[4] = data->longlba ? 0x01 : 0;
1843                 real_buffer[5] = 0;
1844                 real_buffer[6] = data->block_descriptor_length >> 8;
1845                 real_buffer[7] = data->block_descriptor_length;
1846
1847                 cmd[0] = MODE_SELECT_10;
1848                 cmd[7] = len >> 8;
1849                 cmd[8] = len;
1850         } else {
1851                 if (len > 255 || data->block_descriptor_length > 255 ||
1852                     data->longlba)
1853                         return -EINVAL;
1854
1855                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1856                 if (!real_buffer)
1857                         return -ENOMEM;
1858                 memcpy(real_buffer + 4, buffer, len);
1859                 len += 4;
1860                 real_buffer[0] = 0;
1861                 real_buffer[1] = data->medium_type;
1862                 real_buffer[2] = data->device_specific;
1863                 real_buffer[3] = data->block_descriptor_length;
1864                 
1865
1866                 cmd[0] = MODE_SELECT;
1867                 cmd[4] = len;
1868         }
1869
1870         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1871                                sshdr, timeout, retries, NULL);
1872         kfree(real_buffer);
1873         return ret;
1874 }
1875 EXPORT_SYMBOL_GPL(scsi_mode_select);
1876
1877 /**
1878  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1879  *      @sdev:  SCSI device to be queried
1880  *      @dbd:   set if mode sense will allow block descriptors to be returned
1881  *      @modepage: mode page being requested
1882  *      @buffer: request buffer (may not be smaller than eight bytes)
1883  *      @len:   length of request buffer.
1884  *      @timeout: command timeout
1885  *      @retries: number of retries before failing
1886  *      @data: returns a structure abstracting the mode header data
1887  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1888  *              must be SCSI_SENSE_BUFFERSIZE big.
1889  *
1890  *      Returns zero if unsuccessful, or the header offset (either 4
1891  *      or 8 depending on whether a six or ten byte command was
1892  *      issued) if successful.
1893  */
1894 int
1895 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1896                   unsigned char *buffer, int len, int timeout, int retries,
1897                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1898 {
1899         unsigned char cmd[12];
1900         int use_10_for_ms;
1901         int header_length;
1902         int result;
1903         struct scsi_sense_hdr my_sshdr;
1904
1905         memset(data, 0, sizeof(*data));
1906         memset(&cmd[0], 0, 12);
1907         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1908         cmd[2] = modepage;
1909
1910         /* caller might not be interested in sense, but we need it */
1911         if (!sshdr)
1912                 sshdr = &my_sshdr;
1913
1914  retry:
1915         use_10_for_ms = sdev->use_10_for_ms;
1916
1917         if (use_10_for_ms) {
1918                 if (len < 8)
1919                         len = 8;
1920
1921                 cmd[0] = MODE_SENSE_10;
1922                 cmd[8] = len;
1923                 header_length = 8;
1924         } else {
1925                 if (len < 4)
1926                         len = 4;
1927
1928                 cmd[0] = MODE_SENSE;
1929                 cmd[4] = len;
1930                 header_length = 4;
1931         }
1932
1933         memset(buffer, 0, len);
1934
1935         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1936                                   sshdr, timeout, retries, NULL);
1937
1938         /* This code looks awful: what it's doing is making sure an
1939          * ILLEGAL REQUEST sense return identifies the actual command
1940          * byte as the problem.  MODE_SENSE commands can return
1941          * ILLEGAL REQUEST if the code page isn't supported */
1942
1943         if (use_10_for_ms && !scsi_status_is_good(result) &&
1944             (driver_byte(result) & DRIVER_SENSE)) {
1945                 if (scsi_sense_valid(sshdr)) {
1946                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1947                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1948                                 /* 
1949                                  * Invalid command operation code
1950                                  */
1951                                 sdev->use_10_for_ms = 0;
1952                                 goto retry;
1953                         }
1954                 }
1955         }
1956
1957         if(scsi_status_is_good(result)) {
1958                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1959                              (modepage == 6 || modepage == 8))) {
1960                         /* Initio breakage? */
1961                         header_length = 0;
1962                         data->length = 13;
1963                         data->medium_type = 0;
1964                         data->device_specific = 0;
1965                         data->longlba = 0;
1966                         data->block_descriptor_length = 0;
1967                 } else if(use_10_for_ms) {
1968                         data->length = buffer[0]*256 + buffer[1] + 2;
1969                         data->medium_type = buffer[2];
1970                         data->device_specific = buffer[3];
1971                         data->longlba = buffer[4] & 0x01;
1972                         data->block_descriptor_length = buffer[6]*256
1973                                 + buffer[7];
1974                 } else {
1975                         data->length = buffer[0] + 1;
1976                         data->medium_type = buffer[1];
1977                         data->device_specific = buffer[2];
1978                         data->block_descriptor_length = buffer[3];
1979                 }
1980                 data->header_length = header_length;
1981         }
1982
1983         return result;
1984 }
1985 EXPORT_SYMBOL(scsi_mode_sense);
1986
1987 /**
1988  *      scsi_test_unit_ready - test if unit is ready
1989  *      @sdev:  scsi device to change the state of.
1990  *      @timeout: command timeout
1991  *      @retries: number of retries before failing
1992  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1993  *              returning sense. Make sure that this is cleared before passing
1994  *              in.
1995  *
1996  *      Returns zero if unsuccessful or an error if TUR failed.  For
1997  *      removable media, a return of NOT_READY or UNIT_ATTENTION is
1998  *      translated to success, with the ->changed flag updated.
1999  **/
2000 int
2001 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2002                      struct scsi_sense_hdr *sshdr_external)
2003 {
2004         char cmd[] = {
2005                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2006         };
2007         struct scsi_sense_hdr *sshdr;
2008         int result;
2009
2010         if (!sshdr_external)
2011                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2012         else
2013                 sshdr = sshdr_external;
2014
2015         /* try to eat the UNIT_ATTENTION if there are enough retries */
2016         do {
2017                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2018                                           timeout, retries, NULL);
2019                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2020                     sshdr->sense_key == UNIT_ATTENTION)
2021                         sdev->changed = 1;
2022         } while (scsi_sense_valid(sshdr) &&
2023                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2024
2025         if (!sshdr)
2026                 /* could not allocate sense buffer, so can't process it */
2027                 return result;
2028
2029         if (sdev->removable && scsi_sense_valid(sshdr) &&
2030             (sshdr->sense_key == UNIT_ATTENTION ||
2031              sshdr->sense_key == NOT_READY)) {
2032                 sdev->changed = 1;
2033                 result = 0;
2034         }
2035         if (!sshdr_external)
2036                 kfree(sshdr);
2037         return result;
2038 }
2039 EXPORT_SYMBOL(scsi_test_unit_ready);
2040
2041 /**
2042  *      scsi_device_set_state - Take the given device through the device state model.
2043  *      @sdev:  scsi device to change the state of.
2044  *      @state: state to change to.
2045  *
2046  *      Returns zero if unsuccessful or an error if the requested 
2047  *      transition is illegal.
2048  */
2049 int
2050 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2051 {
2052         enum scsi_device_state oldstate = sdev->sdev_state;
2053
2054         if (state == oldstate)
2055                 return 0;
2056
2057         switch (state) {
2058         case SDEV_CREATED:
2059                 switch (oldstate) {
2060                 case SDEV_CREATED_BLOCK:
2061                         break;
2062                 default:
2063                         goto illegal;
2064                 }
2065                 break;
2066                         
2067         case SDEV_RUNNING:
2068                 switch (oldstate) {
2069                 case SDEV_CREATED:
2070                 case SDEV_OFFLINE:
2071                 case SDEV_QUIESCE:
2072                 case SDEV_BLOCK:
2073                         break;
2074                 default:
2075                         goto illegal;
2076                 }
2077                 break;
2078
2079         case SDEV_QUIESCE:
2080                 switch (oldstate) {
2081                 case SDEV_RUNNING:
2082                 case SDEV_OFFLINE:
2083                         break;
2084                 default:
2085                         goto illegal;
2086                 }
2087                 break;
2088
2089         case SDEV_OFFLINE:
2090                 switch (oldstate) {
2091                 case SDEV_CREATED:
2092                 case SDEV_RUNNING:
2093                 case SDEV_QUIESCE:
2094                 case SDEV_BLOCK:
2095                         break;
2096                 default:
2097                         goto illegal;
2098                 }
2099                 break;
2100
2101         case SDEV_BLOCK:
2102                 switch (oldstate) {
2103                 case SDEV_RUNNING:
2104                 case SDEV_CREATED_BLOCK:
2105                         break;
2106                 default:
2107                         goto illegal;
2108                 }
2109                 break;
2110
2111         case SDEV_CREATED_BLOCK:
2112                 switch (oldstate) {
2113                 case SDEV_CREATED:
2114                         break;
2115                 default:
2116                         goto illegal;
2117                 }
2118                 break;
2119
2120         case SDEV_CANCEL:
2121                 switch (oldstate) {
2122                 case SDEV_CREATED:
2123                 case SDEV_RUNNING:
2124                 case SDEV_QUIESCE:
2125                 case SDEV_OFFLINE:
2126                 case SDEV_BLOCK:
2127                         break;
2128                 default:
2129                         goto illegal;
2130                 }
2131                 break;
2132
2133         case SDEV_DEL:
2134                 switch (oldstate) {
2135                 case SDEV_CREATED:
2136                 case SDEV_RUNNING:
2137                 case SDEV_OFFLINE:
2138                 case SDEV_CANCEL:
2139                         break;
2140                 default:
2141                         goto illegal;
2142                 }
2143                 break;
2144
2145         }
2146         sdev->sdev_state = state;
2147         return 0;
2148
2149  illegal:
2150         SCSI_LOG_ERROR_RECOVERY(1, 
2151                                 sdev_printk(KERN_ERR, sdev,
2152                                             "Illegal state transition %s->%s\n",
2153                                             scsi_device_state_name(oldstate),
2154                                             scsi_device_state_name(state))
2155                                 );
2156         return -EINVAL;
2157 }
2158 EXPORT_SYMBOL(scsi_device_set_state);
2159
2160 /**
2161  *      sdev_evt_emit - emit a single SCSI device uevent
2162  *      @sdev: associated SCSI device
2163  *      @evt: event to emit
2164  *
2165  *      Send a single uevent (scsi_event) to the associated scsi_device.
2166  */
2167 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2168 {
2169         int idx = 0;
2170         char *envp[3];
2171
2172         switch (evt->evt_type) {
2173         case SDEV_EVT_MEDIA_CHANGE:
2174                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2175                 break;
2176
2177         default:
2178                 /* do nothing */
2179                 break;
2180         }
2181
2182         envp[idx++] = NULL;
2183
2184         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2185 }
2186
2187 /**
2188  *      sdev_evt_thread - send a uevent for each scsi event
2189  *      @work: work struct for scsi_device
2190  *
2191  *      Dispatch queued events to their associated scsi_device kobjects
2192  *      as uevents.
2193  */
2194 void scsi_evt_thread(struct work_struct *work)
2195 {
2196         struct scsi_device *sdev;
2197         LIST_HEAD(event_list);
2198
2199         sdev = container_of(work, struct scsi_device, event_work);
2200
2201         while (1) {
2202                 struct scsi_event *evt;
2203                 struct list_head *this, *tmp;
2204                 unsigned long flags;
2205
2206                 spin_lock_irqsave(&sdev->list_lock, flags);
2207                 list_splice_init(&sdev->event_list, &event_list);
2208                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2209
2210                 if (list_empty(&event_list))
2211                         break;
2212
2213                 list_for_each_safe(this, tmp, &event_list) {
2214                         evt = list_entry(this, struct scsi_event, node);
2215                         list_del(&evt->node);
2216                         scsi_evt_emit(sdev, evt);
2217                         kfree(evt);
2218                 }
2219         }
2220 }
2221
2222 /**
2223  *      sdev_evt_send - send asserted event to uevent thread
2224  *      @sdev: scsi_device event occurred on
2225  *      @evt: event to send
2226  *
2227  *      Assert scsi device event asynchronously.
2228  */
2229 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2230 {
2231         unsigned long flags;
2232
2233 #if 0
2234         /* FIXME: currently this check eliminates all media change events
2235          * for polled devices.  Need to update to discriminate between AN
2236          * and polled events */
2237         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2238                 kfree(evt);
2239                 return;
2240         }
2241 #endif
2242
2243         spin_lock_irqsave(&sdev->list_lock, flags);
2244         list_add_tail(&evt->node, &sdev->event_list);
2245         schedule_work(&sdev->event_work);
2246         spin_unlock_irqrestore(&sdev->list_lock, flags);
2247 }
2248 EXPORT_SYMBOL_GPL(sdev_evt_send);
2249
2250 /**
2251  *      sdev_evt_alloc - allocate a new scsi event
2252  *      @evt_type: type of event to allocate
2253  *      @gfpflags: GFP flags for allocation
2254  *
2255  *      Allocates and returns a new scsi_event.
2256  */
2257 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2258                                   gfp_t gfpflags)
2259 {
2260         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2261         if (!evt)
2262                 return NULL;
2263
2264         evt->evt_type = evt_type;
2265         INIT_LIST_HEAD(&evt->node);
2266
2267         /* evt_type-specific initialization, if any */
2268         switch (evt_type) {
2269         case SDEV_EVT_MEDIA_CHANGE:
2270         default:
2271                 /* do nothing */
2272                 break;
2273         }
2274
2275         return evt;
2276 }
2277 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2278
2279 /**
2280  *      sdev_evt_send_simple - send asserted event to uevent thread
2281  *      @sdev: scsi_device event occurred on
2282  *      @evt_type: type of event to send
2283  *      @gfpflags: GFP flags for allocation
2284  *
2285  *      Assert scsi device event asynchronously, given an event type.
2286  */
2287 void sdev_evt_send_simple(struct scsi_device *sdev,
2288                           enum scsi_device_event evt_type, gfp_t gfpflags)
2289 {
2290         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2291         if (!evt) {
2292                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2293                             evt_type);
2294                 return;
2295         }
2296
2297         sdev_evt_send(sdev, evt);
2298 }
2299 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2300
2301 /**
2302  *      scsi_device_quiesce - Block user issued commands.
2303  *      @sdev:  scsi device to quiesce.
2304  *
2305  *      This works by trying to transition to the SDEV_QUIESCE state
2306  *      (which must be a legal transition).  When the device is in this
2307  *      state, only special requests will be accepted, all others will
2308  *      be deferred.  Since special requests may also be requeued requests,
2309  *      a successful return doesn't guarantee the device will be 
2310  *      totally quiescent.
2311  *
2312  *      Must be called with user context, may sleep.
2313  *
2314  *      Returns zero if unsuccessful or an error if not.
2315  */
2316 int
2317 scsi_device_quiesce(struct scsi_device *sdev)
2318 {
2319         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2320         if (err)
2321                 return err;
2322
2323         scsi_run_queue(sdev->request_queue);
2324         while (sdev->device_busy) {
2325                 msleep_interruptible(200);
2326                 scsi_run_queue(sdev->request_queue);
2327         }
2328         return 0;
2329 }
2330 EXPORT_SYMBOL(scsi_device_quiesce);
2331
2332 /**
2333  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2334  *      @sdev:  scsi device to resume.
2335  *
2336  *      Moves the device from quiesced back to running and restarts the
2337  *      queues.
2338  *
2339  *      Must be called with user context, may sleep.
2340  */
2341 void
2342 scsi_device_resume(struct scsi_device *sdev)
2343 {
2344         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2345                 return;
2346         scsi_run_queue(sdev->request_queue);
2347 }
2348 EXPORT_SYMBOL(scsi_device_resume);
2349
2350 static void
2351 device_quiesce_fn(struct scsi_device *sdev, void *data)
2352 {
2353         scsi_device_quiesce(sdev);
2354 }
2355
2356 void
2357 scsi_target_quiesce(struct scsi_target *starget)
2358 {
2359         starget_for_each_device(starget, NULL, device_quiesce_fn);
2360 }
2361 EXPORT_SYMBOL(scsi_target_quiesce);
2362
2363 static void
2364 device_resume_fn(struct scsi_device *sdev, void *data)
2365 {
2366         scsi_device_resume(sdev);
2367 }
2368
2369 void
2370 scsi_target_resume(struct scsi_target *starget)
2371 {
2372         starget_for_each_device(starget, NULL, device_resume_fn);
2373 }
2374 EXPORT_SYMBOL(scsi_target_resume);
2375
2376 /**
2377  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2378  * @sdev:       device to block
2379  *
2380  * Block request made by scsi lld's to temporarily stop all
2381  * scsi commands on the specified device.  Called from interrupt
2382  * or normal process context.
2383  *
2384  * Returns zero if successful or error if not
2385  *
2386  * Notes:       
2387  *      This routine transitions the device to the SDEV_BLOCK state
2388  *      (which must be a legal transition).  When the device is in this
2389  *      state, all commands are deferred until the scsi lld reenables
2390  *      the device with scsi_device_unblock or device_block_tmo fires.
2391  *      This routine assumes the host_lock is held on entry.
2392  */
2393 int
2394 scsi_internal_device_block(struct scsi_device *sdev)
2395 {
2396         struct request_queue *q = sdev->request_queue;
2397         unsigned long flags;
2398         int err = 0;
2399
2400         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2401         if (err) {
2402                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2403
2404                 if (err)
2405                         return err;
2406         }
2407
2408         /* 
2409          * The device has transitioned to SDEV_BLOCK.  Stop the
2410          * block layer from calling the midlayer with this device's
2411          * request queue. 
2412          */
2413         spin_lock_irqsave(q->queue_lock, flags);
2414         blk_stop_queue(q);
2415         spin_unlock_irqrestore(q->queue_lock, flags);
2416
2417         return 0;
2418 }
2419 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2420  
2421 /**
2422  * scsi_internal_device_unblock - resume a device after a block request
2423  * @sdev:       device to resume
2424  *
2425  * Called by scsi lld's or the midlayer to restart the device queue
2426  * for the previously suspended scsi device.  Called from interrupt or
2427  * normal process context.
2428  *
2429  * Returns zero if successful or error if not.
2430  *
2431  * Notes:       
2432  *      This routine transitions the device to the SDEV_RUNNING state
2433  *      (which must be a legal transition) allowing the midlayer to
2434  *      goose the queue for this device.  This routine assumes the 
2435  *      host_lock is held upon entry.
2436  */
2437 int
2438 scsi_internal_device_unblock(struct scsi_device *sdev)
2439 {
2440         struct request_queue *q = sdev->request_queue; 
2441         int err;
2442         unsigned long flags;
2443         
2444         /* 
2445          * Try to transition the scsi device to SDEV_RUNNING
2446          * and goose the device queue if successful.  
2447          */
2448         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2449         if (err) {
2450                 err = scsi_device_set_state(sdev, SDEV_CREATED);
2451
2452                 if (err)
2453                         return err;
2454         }
2455
2456         spin_lock_irqsave(q->queue_lock, flags);
2457         blk_start_queue(q);
2458         spin_unlock_irqrestore(q->queue_lock, flags);
2459
2460         return 0;
2461 }
2462 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2463
2464 static void
2465 device_block(struct scsi_device *sdev, void *data)
2466 {
2467         scsi_internal_device_block(sdev);
2468 }
2469
2470 static int
2471 target_block(struct device *dev, void *data)
2472 {
2473         if (scsi_is_target_device(dev))
2474                 starget_for_each_device(to_scsi_target(dev), NULL,
2475                                         device_block);
2476         return 0;
2477 }
2478
2479 void
2480 scsi_target_block(struct device *dev)
2481 {
2482         if (scsi_is_target_device(dev))
2483                 starget_for_each_device(to_scsi_target(dev), NULL,
2484                                         device_block);
2485         else
2486                 device_for_each_child(dev, NULL, target_block);
2487 }
2488 EXPORT_SYMBOL_GPL(scsi_target_block);
2489
2490 static void
2491 device_unblock(struct scsi_device *sdev, void *data)
2492 {
2493         scsi_internal_device_unblock(sdev);
2494 }
2495
2496 static int
2497 target_unblock(struct device *dev, void *data)
2498 {
2499         if (scsi_is_target_device(dev))
2500                 starget_for_each_device(to_scsi_target(dev), NULL,
2501                                         device_unblock);
2502         return 0;
2503 }
2504
2505 void
2506 scsi_target_unblock(struct device *dev)
2507 {
2508         if (scsi_is_target_device(dev))
2509                 starget_for_each_device(to_scsi_target(dev), NULL,
2510                                         device_unblock);
2511         else
2512                 device_for_each_child(dev, NULL, target_unblock);
2513 }
2514 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2515
2516 /**
2517  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2518  * @sgl:        scatter-gather list
2519  * @sg_count:   number of segments in sg
2520  * @offset:     offset in bytes into sg, on return offset into the mapped area
2521  * @len:        bytes to map, on return number of bytes mapped
2522  *
2523  * Returns virtual address of the start of the mapped page
2524  */
2525 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2526                           size_t *offset, size_t *len)
2527 {
2528         int i;
2529         size_t sg_len = 0, len_complete = 0;
2530         struct scatterlist *sg;
2531         struct page *page;
2532
2533         WARN_ON(!irqs_disabled());
2534
2535         for_each_sg(sgl, sg, sg_count, i) {
2536                 len_complete = sg_len; /* Complete sg-entries */
2537                 sg_len += sg->length;
2538                 if (sg_len > *offset)
2539                         break;
2540         }
2541
2542         if (unlikely(i == sg_count)) {
2543                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2544                         "elements %d\n",
2545                        __func__, sg_len, *offset, sg_count);
2546                 WARN_ON(1);
2547                 return NULL;
2548         }
2549
2550         /* Offset starting from the beginning of first page in this sg-entry */
2551         *offset = *offset - len_complete + sg->offset;
2552
2553         /* Assumption: contiguous pages can be accessed as "page + i" */
2554         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2555         *offset &= ~PAGE_MASK;
2556
2557         /* Bytes in this sg-entry from *offset to the end of the page */
2558         sg_len = PAGE_SIZE - *offset;
2559         if (*len > sg_len)
2560                 *len = sg_len;
2561
2562         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2563 }
2564 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2565
2566 /**
2567  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2568  * @virt:       virtual address to be unmapped
2569  */
2570 void scsi_kunmap_atomic_sg(void *virt)
2571 {
2572         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2573 }
2574 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);