regulator: Display actual settings with constraints
[safe/jmp/linux-2.6] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31 static int has_full_constraints;
32
33 /*
34  * struct regulator_map
35  *
36  * Used to provide symbolic supply names to devices.
37  */
38 struct regulator_map {
39         struct list_head list;
40         const char *dev_name;   /* The dev_name() for the consumer */
41         const char *supply;
42         struct regulator_dev *regulator;
43 };
44
45 /*
46  * struct regulator
47  *
48  * One for each consumer device.
49  */
50 struct regulator {
51         struct device *dev;
52         struct list_head list;
53         int uA_load;
54         int min_uV;
55         int max_uV;
56         char *supply_name;
57         struct device_attribute dev_attr;
58         struct regulator_dev *rdev;
59 };
60
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67                                   unsigned long event, void *data);
68
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
71 {
72         struct regulator *regulator = NULL;
73         struct regulator_dev *rdev;
74
75         mutex_lock(&regulator_list_mutex);
76         list_for_each_entry(rdev, &regulator_list, list) {
77                 mutex_lock(&rdev->mutex);
78                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
79                         if (regulator->dev == dev) {
80                                 mutex_unlock(&rdev->mutex);
81                                 mutex_unlock(&regulator_list_mutex);
82                                 return regulator;
83                         }
84                 }
85                 mutex_unlock(&rdev->mutex);
86         }
87         mutex_unlock(&regulator_list_mutex);
88         return NULL;
89 }
90
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93                                    int *min_uV, int *max_uV)
94 {
95         BUG_ON(*min_uV > *max_uV);
96
97         if (!rdev->constraints) {
98                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99                        rdev->desc->name);
100                 return -ENODEV;
101         }
102         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103                 printk(KERN_ERR "%s: operation not allowed for %s\n",
104                        __func__, rdev->desc->name);
105                 return -EPERM;
106         }
107
108         if (*max_uV > rdev->constraints->max_uV)
109                 *max_uV = rdev->constraints->max_uV;
110         if (*min_uV < rdev->constraints->min_uV)
111                 *min_uV = rdev->constraints->min_uV;
112
113         if (*min_uV > *max_uV)
114                 return -EINVAL;
115
116         return 0;
117 }
118
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121                                         int *min_uA, int *max_uA)
122 {
123         BUG_ON(*min_uA > *max_uA);
124
125         if (!rdev->constraints) {
126                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127                        rdev->desc->name);
128                 return -ENODEV;
129         }
130         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131                 printk(KERN_ERR "%s: operation not allowed for %s\n",
132                        __func__, rdev->desc->name);
133                 return -EPERM;
134         }
135
136         if (*max_uA > rdev->constraints->max_uA)
137                 *max_uA = rdev->constraints->max_uA;
138         if (*min_uA < rdev->constraints->min_uA)
139                 *min_uA = rdev->constraints->min_uA;
140
141         if (*min_uA > *max_uA)
142                 return -EINVAL;
143
144         return 0;
145 }
146
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149 {
150         switch (mode) {
151         case REGULATOR_MODE_FAST:
152         case REGULATOR_MODE_NORMAL:
153         case REGULATOR_MODE_IDLE:
154         case REGULATOR_MODE_STANDBY:
155                 break;
156         default:
157                 return -EINVAL;
158         }
159
160         if (!rdev->constraints) {
161                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162                        rdev->desc->name);
163                 return -ENODEV;
164         }
165         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166                 printk(KERN_ERR "%s: operation not allowed for %s\n",
167                        __func__, rdev->desc->name);
168                 return -EPERM;
169         }
170         if (!(rdev->constraints->valid_modes_mask & mode)) {
171                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
172                        __func__, mode, rdev->desc->name);
173                 return -EINVAL;
174         }
175         return 0;
176 }
177
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
180 {
181         if (!rdev->constraints) {
182                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183                        rdev->desc->name);
184                 return -ENODEV;
185         }
186         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187                 printk(KERN_ERR "%s: operation not allowed for %s\n",
188                        __func__, rdev->desc->name);
189                 return -EPERM;
190         }
191         return 0;
192 }
193
194 static ssize_t device_requested_uA_show(struct device *dev,
195                              struct device_attribute *attr, char *buf)
196 {
197         struct regulator *regulator;
198
199         regulator = get_device_regulator(dev);
200         if (regulator == NULL)
201                 return 0;
202
203         return sprintf(buf, "%d\n", regulator->uA_load);
204 }
205
206 static ssize_t regulator_uV_show(struct device *dev,
207                                 struct device_attribute *attr, char *buf)
208 {
209         struct regulator_dev *rdev = dev_get_drvdata(dev);
210         ssize_t ret;
211
212         mutex_lock(&rdev->mutex);
213         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214         mutex_unlock(&rdev->mutex);
215
216         return ret;
217 }
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220 static ssize_t regulator_uA_show(struct device *dev,
221                                 struct device_attribute *attr, char *buf)
222 {
223         struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226 }
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229 static ssize_t regulator_name_show(struct device *dev,
230                              struct device_attribute *attr, char *buf)
231 {
232         struct regulator_dev *rdev = dev_get_drvdata(dev);
233         const char *name;
234
235         if (rdev->constraints && rdev->constraints->name)
236                 name = rdev->constraints->name;
237         else if (rdev->desc->name)
238                 name = rdev->desc->name;
239         else
240                 name = "";
241
242         return sprintf(buf, "%s\n", name);
243 }
244
245 static ssize_t regulator_print_opmode(char *buf, int mode)
246 {
247         switch (mode) {
248         case REGULATOR_MODE_FAST:
249                 return sprintf(buf, "fast\n");
250         case REGULATOR_MODE_NORMAL:
251                 return sprintf(buf, "normal\n");
252         case REGULATOR_MODE_IDLE:
253                 return sprintf(buf, "idle\n");
254         case REGULATOR_MODE_STANDBY:
255                 return sprintf(buf, "standby\n");
256         }
257         return sprintf(buf, "unknown\n");
258 }
259
260 static ssize_t regulator_opmode_show(struct device *dev,
261                                     struct device_attribute *attr, char *buf)
262 {
263         struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266 }
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269 static ssize_t regulator_print_state(char *buf, int state)
270 {
271         if (state > 0)
272                 return sprintf(buf, "enabled\n");
273         else if (state == 0)
274                 return sprintf(buf, "disabled\n");
275         else
276                 return sprintf(buf, "unknown\n");
277 }
278
279 static ssize_t regulator_state_show(struct device *dev,
280                                    struct device_attribute *attr, char *buf)
281 {
282         struct regulator_dev *rdev = dev_get_drvdata(dev);
283         ssize_t ret;
284
285         mutex_lock(&rdev->mutex);
286         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
287         mutex_unlock(&rdev->mutex);
288
289         return ret;
290 }
291 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
292
293 static ssize_t regulator_status_show(struct device *dev,
294                                    struct device_attribute *attr, char *buf)
295 {
296         struct regulator_dev *rdev = dev_get_drvdata(dev);
297         int status;
298         char *label;
299
300         status = rdev->desc->ops->get_status(rdev);
301         if (status < 0)
302                 return status;
303
304         switch (status) {
305         case REGULATOR_STATUS_OFF:
306                 label = "off";
307                 break;
308         case REGULATOR_STATUS_ON:
309                 label = "on";
310                 break;
311         case REGULATOR_STATUS_ERROR:
312                 label = "error";
313                 break;
314         case REGULATOR_STATUS_FAST:
315                 label = "fast";
316                 break;
317         case REGULATOR_STATUS_NORMAL:
318                 label = "normal";
319                 break;
320         case REGULATOR_STATUS_IDLE:
321                 label = "idle";
322                 break;
323         case REGULATOR_STATUS_STANDBY:
324                 label = "standby";
325                 break;
326         default:
327                 return -ERANGE;
328         }
329
330         return sprintf(buf, "%s\n", label);
331 }
332 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
333
334 static ssize_t regulator_min_uA_show(struct device *dev,
335                                     struct device_attribute *attr, char *buf)
336 {
337         struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339         if (!rdev->constraints)
340                 return sprintf(buf, "constraint not defined\n");
341
342         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
343 }
344 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
345
346 static ssize_t regulator_max_uA_show(struct device *dev,
347                                     struct device_attribute *attr, char *buf)
348 {
349         struct regulator_dev *rdev = dev_get_drvdata(dev);
350
351         if (!rdev->constraints)
352                 return sprintf(buf, "constraint not defined\n");
353
354         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
355 }
356 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
357
358 static ssize_t regulator_min_uV_show(struct device *dev,
359                                     struct device_attribute *attr, char *buf)
360 {
361         struct regulator_dev *rdev = dev_get_drvdata(dev);
362
363         if (!rdev->constraints)
364                 return sprintf(buf, "constraint not defined\n");
365
366         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
367 }
368 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
369
370 static ssize_t regulator_max_uV_show(struct device *dev,
371                                     struct device_attribute *attr, char *buf)
372 {
373         struct regulator_dev *rdev = dev_get_drvdata(dev);
374
375         if (!rdev->constraints)
376                 return sprintf(buf, "constraint not defined\n");
377
378         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
379 }
380 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
381
382 static ssize_t regulator_total_uA_show(struct device *dev,
383                                       struct device_attribute *attr, char *buf)
384 {
385         struct regulator_dev *rdev = dev_get_drvdata(dev);
386         struct regulator *regulator;
387         int uA = 0;
388
389         mutex_lock(&rdev->mutex);
390         list_for_each_entry(regulator, &rdev->consumer_list, list)
391             uA += regulator->uA_load;
392         mutex_unlock(&rdev->mutex);
393         return sprintf(buf, "%d\n", uA);
394 }
395 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
396
397 static ssize_t regulator_num_users_show(struct device *dev,
398                                       struct device_attribute *attr, char *buf)
399 {
400         struct regulator_dev *rdev = dev_get_drvdata(dev);
401         return sprintf(buf, "%d\n", rdev->use_count);
402 }
403
404 static ssize_t regulator_type_show(struct device *dev,
405                                   struct device_attribute *attr, char *buf)
406 {
407         struct regulator_dev *rdev = dev_get_drvdata(dev);
408
409         switch (rdev->desc->type) {
410         case REGULATOR_VOLTAGE:
411                 return sprintf(buf, "voltage\n");
412         case REGULATOR_CURRENT:
413                 return sprintf(buf, "current\n");
414         }
415         return sprintf(buf, "unknown\n");
416 }
417
418 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
419                                 struct device_attribute *attr, char *buf)
420 {
421         struct regulator_dev *rdev = dev_get_drvdata(dev);
422
423         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
424 }
425 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
426                 regulator_suspend_mem_uV_show, NULL);
427
428 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
429                                 struct device_attribute *attr, char *buf)
430 {
431         struct regulator_dev *rdev = dev_get_drvdata(dev);
432
433         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
434 }
435 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
436                 regulator_suspend_disk_uV_show, NULL);
437
438 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
439                                 struct device_attribute *attr, char *buf)
440 {
441         struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
444 }
445 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
446                 regulator_suspend_standby_uV_show, NULL);
447
448 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
449                                 struct device_attribute *attr, char *buf)
450 {
451         struct regulator_dev *rdev = dev_get_drvdata(dev);
452
453         return regulator_print_opmode(buf,
454                 rdev->constraints->state_mem.mode);
455 }
456 static DEVICE_ATTR(suspend_mem_mode, 0444,
457                 regulator_suspend_mem_mode_show, NULL);
458
459 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
460                                 struct device_attribute *attr, char *buf)
461 {
462         struct regulator_dev *rdev = dev_get_drvdata(dev);
463
464         return regulator_print_opmode(buf,
465                 rdev->constraints->state_disk.mode);
466 }
467 static DEVICE_ATTR(suspend_disk_mode, 0444,
468                 regulator_suspend_disk_mode_show, NULL);
469
470 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
471                                 struct device_attribute *attr, char *buf)
472 {
473         struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475         return regulator_print_opmode(buf,
476                 rdev->constraints->state_standby.mode);
477 }
478 static DEVICE_ATTR(suspend_standby_mode, 0444,
479                 regulator_suspend_standby_mode_show, NULL);
480
481 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
482                                    struct device_attribute *attr, char *buf)
483 {
484         struct regulator_dev *rdev = dev_get_drvdata(dev);
485
486         return regulator_print_state(buf,
487                         rdev->constraints->state_mem.enabled);
488 }
489 static DEVICE_ATTR(suspend_mem_state, 0444,
490                 regulator_suspend_mem_state_show, NULL);
491
492 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
493                                    struct device_attribute *attr, char *buf)
494 {
495         struct regulator_dev *rdev = dev_get_drvdata(dev);
496
497         return regulator_print_state(buf,
498                         rdev->constraints->state_disk.enabled);
499 }
500 static DEVICE_ATTR(suspend_disk_state, 0444,
501                 regulator_suspend_disk_state_show, NULL);
502
503 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
504                                    struct device_attribute *attr, char *buf)
505 {
506         struct regulator_dev *rdev = dev_get_drvdata(dev);
507
508         return regulator_print_state(buf,
509                         rdev->constraints->state_standby.enabled);
510 }
511 static DEVICE_ATTR(suspend_standby_state, 0444,
512                 regulator_suspend_standby_state_show, NULL);
513
514
515 /*
516  * These are the only attributes are present for all regulators.
517  * Other attributes are a function of regulator functionality.
518  */
519 static struct device_attribute regulator_dev_attrs[] = {
520         __ATTR(name, 0444, regulator_name_show, NULL),
521         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
522         __ATTR(type, 0444, regulator_type_show, NULL),
523         __ATTR_NULL,
524 };
525
526 static void regulator_dev_release(struct device *dev)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529         kfree(rdev);
530 }
531
532 static struct class regulator_class = {
533         .name = "regulator",
534         .dev_release = regulator_dev_release,
535         .dev_attrs = regulator_dev_attrs,
536 };
537
538 /* Calculate the new optimum regulator operating mode based on the new total
539  * consumer load. All locks held by caller */
540 static void drms_uA_update(struct regulator_dev *rdev)
541 {
542         struct regulator *sibling;
543         int current_uA = 0, output_uV, input_uV, err;
544         unsigned int mode;
545
546         err = regulator_check_drms(rdev);
547         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
548             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
549                 return;
550
551         /* get output voltage */
552         output_uV = rdev->desc->ops->get_voltage(rdev);
553         if (output_uV <= 0)
554                 return;
555
556         /* get input voltage */
557         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
558                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
559         else
560                 input_uV = rdev->constraints->input_uV;
561         if (input_uV <= 0)
562                 return;
563
564         /* calc total requested load */
565         list_for_each_entry(sibling, &rdev->consumer_list, list)
566             current_uA += sibling->uA_load;
567
568         /* now get the optimum mode for our new total regulator load */
569         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
570                                                   output_uV, current_uA);
571
572         /* check the new mode is allowed */
573         err = regulator_check_mode(rdev, mode);
574         if (err == 0)
575                 rdev->desc->ops->set_mode(rdev, mode);
576 }
577
578 static int suspend_set_state(struct regulator_dev *rdev,
579         struct regulator_state *rstate)
580 {
581         int ret = 0;
582
583         /* enable & disable are mandatory for suspend control */
584         if (!rdev->desc->ops->set_suspend_enable ||
585                 !rdev->desc->ops->set_suspend_disable) {
586                 printk(KERN_ERR "%s: no way to set suspend state\n",
587                         __func__);
588                 return -EINVAL;
589         }
590
591         if (rstate->enabled)
592                 ret = rdev->desc->ops->set_suspend_enable(rdev);
593         else
594                 ret = rdev->desc->ops->set_suspend_disable(rdev);
595         if (ret < 0) {
596                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
597                 return ret;
598         }
599
600         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
601                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
602                 if (ret < 0) {
603                         printk(KERN_ERR "%s: failed to set voltage\n",
604                                 __func__);
605                         return ret;
606                 }
607         }
608
609         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
610                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
611                 if (ret < 0) {
612                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
613                         return ret;
614                 }
615         }
616         return ret;
617 }
618
619 /* locks held by caller */
620 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
621 {
622         if (!rdev->constraints)
623                 return -EINVAL;
624
625         switch (state) {
626         case PM_SUSPEND_STANDBY:
627                 return suspend_set_state(rdev,
628                         &rdev->constraints->state_standby);
629         case PM_SUSPEND_MEM:
630                 return suspend_set_state(rdev,
631                         &rdev->constraints->state_mem);
632         case PM_SUSPEND_MAX:
633                 return suspend_set_state(rdev,
634                         &rdev->constraints->state_disk);
635         default:
636                 return -EINVAL;
637         }
638 }
639
640 static void print_constraints(struct regulator_dev *rdev)
641 {
642         struct regulation_constraints *constraints = rdev->constraints;
643         char buf[80];
644         int count = 0;
645         int ret;
646
647         if (constraints->min_uV && constraints->max_uV) {
648                 if (constraints->min_uV == constraints->max_uV)
649                         count += sprintf(buf + count, "%d mV ",
650                                          constraints->min_uV / 1000);
651                 else
652                         count += sprintf(buf + count, "%d <--> %d mV ",
653                                          constraints->min_uV / 1000,
654                                          constraints->max_uV / 1000);
655         }
656
657         if (!constraints->min_uV ||
658             constraints->min_uV != constraints->max_uV) {
659                 ret = _regulator_get_voltage(rdev);
660                 if (ret > 0)
661                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
662         }
663
664         if (constraints->min_uA && constraints->max_uA) {
665                 if (constraints->min_uA == constraints->max_uA)
666                         count += sprintf(buf + count, "%d mA ",
667                                          constraints->min_uA / 1000);
668                 else
669                         count += sprintf(buf + count, "%d <--> %d mA ",
670                                          constraints->min_uA / 1000,
671                                          constraints->max_uA / 1000);
672         }
673
674         if (!constraints->min_uA ||
675             constraints->min_uA != constraints->max_uA) {
676                 ret = _regulator_get_current_limit(rdev);
677                 if (ret > 0)
678                         count += sprintf(buf + count, "at %d uA ", ret / 1000);
679         }
680
681         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
682                 count += sprintf(buf + count, "fast ");
683         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
684                 count += sprintf(buf + count, "normal ");
685         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
686                 count += sprintf(buf + count, "idle ");
687         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
688                 count += sprintf(buf + count, "standby");
689
690         printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
691 }
692
693 static int machine_constraints_voltage(struct regulator_dev *rdev,
694         const char *name, struct regulation_constraints *constraints)
695 {
696         struct regulator_ops *ops = rdev->desc->ops;
697         int ret;
698
699         /* do we need to apply the constraint voltage */
700         if (rdev->constraints->apply_uV &&
701                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
702                 ops->set_voltage) {
703                 ret = ops->set_voltage(rdev,
704                         rdev->constraints->min_uV, rdev->constraints->max_uV);
705                         if (ret < 0) {
706                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
707                                        __func__,
708                                        rdev->constraints->min_uV, name);
709                                 rdev->constraints = NULL;
710                                 return ret;
711                         }
712         }
713
714         /* constrain machine-level voltage specs to fit
715          * the actual range supported by this regulator.
716          */
717         if (ops->list_voltage && rdev->desc->n_voltages) {
718                 int     count = rdev->desc->n_voltages;
719                 int     i;
720                 int     min_uV = INT_MAX;
721                 int     max_uV = INT_MIN;
722                 int     cmin = constraints->min_uV;
723                 int     cmax = constraints->max_uV;
724
725                 /* it's safe to autoconfigure fixed-voltage supplies
726                    and the constraints are used by list_voltage. */
727                 if (count == 1 && !cmin) {
728                         cmin = 1;
729                         cmax = INT_MAX;
730                         constraints->min_uV = cmin;
731                         constraints->max_uV = cmax;
732                 }
733
734                 /* voltage constraints are optional */
735                 if ((cmin == 0) && (cmax == 0))
736                         return 0;
737
738                 /* else require explicit machine-level constraints */
739                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
740                         pr_err("%s: %s '%s' voltage constraints\n",
741                                        __func__, "invalid", name);
742                         return -EINVAL;
743                 }
744
745                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
746                 for (i = 0; i < count; i++) {
747                         int     value;
748
749                         value = ops->list_voltage(rdev, i);
750                         if (value <= 0)
751                                 continue;
752
753                         /* maybe adjust [min_uV..max_uV] */
754                         if (value >= cmin && value < min_uV)
755                                 min_uV = value;
756                         if (value <= cmax && value > max_uV)
757                                 max_uV = value;
758                 }
759
760                 /* final: [min_uV..max_uV] valid iff constraints valid */
761                 if (max_uV < min_uV) {
762                         pr_err("%s: %s '%s' voltage constraints\n",
763                                        __func__, "unsupportable", name);
764                         return -EINVAL;
765                 }
766
767                 /* use regulator's subset of machine constraints */
768                 if (constraints->min_uV < min_uV) {
769                         pr_debug("%s: override '%s' %s, %d -> %d\n",
770                                        __func__, name, "min_uV",
771                                         constraints->min_uV, min_uV);
772                         constraints->min_uV = min_uV;
773                 }
774                 if (constraints->max_uV > max_uV) {
775                         pr_debug("%s: override '%s' %s, %d -> %d\n",
776                                        __func__, name, "max_uV",
777                                         constraints->max_uV, max_uV);
778                         constraints->max_uV = max_uV;
779                 }
780         }
781
782         return 0;
783 }
784
785 /**
786  * set_machine_constraints - sets regulator constraints
787  * @rdev: regulator source
788  * @constraints: constraints to apply
789  *
790  * Allows platform initialisation code to define and constrain
791  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
792  * Constraints *must* be set by platform code in order for some
793  * regulator operations to proceed i.e. set_voltage, set_current_limit,
794  * set_mode.
795  */
796 static int set_machine_constraints(struct regulator_dev *rdev,
797         struct regulation_constraints *constraints)
798 {
799         int ret = 0;
800         const char *name;
801         struct regulator_ops *ops = rdev->desc->ops;
802
803         if (constraints->name)
804                 name = constraints->name;
805         else if (rdev->desc->name)
806                 name = rdev->desc->name;
807         else
808                 name = "regulator";
809
810         rdev->constraints = constraints;
811
812         ret = machine_constraints_voltage(rdev, name, constraints);
813         if (ret != 0)
814                 goto out;
815
816         /* do we need to setup our suspend state */
817         if (constraints->initial_state) {
818                 ret = suspend_prepare(rdev, constraints->initial_state);
819                 if (ret < 0) {
820                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
821                                __func__, name);
822                         rdev->constraints = NULL;
823                         goto out;
824                 }
825         }
826
827         if (constraints->initial_mode) {
828                 if (!ops->set_mode) {
829                         printk(KERN_ERR "%s: no set_mode operation for %s\n",
830                                __func__, name);
831                         ret = -EINVAL;
832                         goto out;
833                 }
834
835                 ret = ops->set_mode(rdev, constraints->initial_mode);
836                 if (ret < 0) {
837                         printk(KERN_ERR
838                                "%s: failed to set initial mode for %s: %d\n",
839                                __func__, name, ret);
840                         goto out;
841                 }
842         }
843
844         /* If the constraints say the regulator should be on at this point
845          * and we have control then make sure it is enabled.
846          */
847         if ((constraints->always_on || constraints->boot_on) && ops->enable) {
848                 ret = ops->enable(rdev);
849                 if (ret < 0) {
850                         printk(KERN_ERR "%s: failed to enable %s\n",
851                                __func__, name);
852                         rdev->constraints = NULL;
853                         goto out;
854                 }
855         }
856
857         print_constraints(rdev);
858 out:
859         return ret;
860 }
861
862 /**
863  * set_supply - set regulator supply regulator
864  * @rdev: regulator name
865  * @supply_rdev: supply regulator name
866  *
867  * Called by platform initialisation code to set the supply regulator for this
868  * regulator. This ensures that a regulators supply will also be enabled by the
869  * core if it's child is enabled.
870  */
871 static int set_supply(struct regulator_dev *rdev,
872         struct regulator_dev *supply_rdev)
873 {
874         int err;
875
876         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
877                                 "supply");
878         if (err) {
879                 printk(KERN_ERR
880                        "%s: could not add device link %s err %d\n",
881                        __func__, supply_rdev->dev.kobj.name, err);
882                        goto out;
883         }
884         rdev->supply = supply_rdev;
885         list_add(&rdev->slist, &supply_rdev->supply_list);
886 out:
887         return err;
888 }
889
890 /**
891  * set_consumer_device_supply: Bind a regulator to a symbolic supply
892  * @rdev:         regulator source
893  * @consumer_dev: device the supply applies to
894  * @consumer_dev_name: dev_name() string for device supply applies to
895  * @supply:       symbolic name for supply
896  *
897  * Allows platform initialisation code to map physical regulator
898  * sources to symbolic names for supplies for use by devices.  Devices
899  * should use these symbolic names to request regulators, avoiding the
900  * need to provide board-specific regulator names as platform data.
901  *
902  * Only one of consumer_dev and consumer_dev_name may be specified.
903  */
904 static int set_consumer_device_supply(struct regulator_dev *rdev,
905         struct device *consumer_dev, const char *consumer_dev_name,
906         const char *supply)
907 {
908         struct regulator_map *node;
909         int has_dev;
910
911         if (consumer_dev && consumer_dev_name)
912                 return -EINVAL;
913
914         if (!consumer_dev_name && consumer_dev)
915                 consumer_dev_name = dev_name(consumer_dev);
916
917         if (supply == NULL)
918                 return -EINVAL;
919
920         if (consumer_dev_name != NULL)
921                 has_dev = 1;
922         else
923                 has_dev = 0;
924
925         list_for_each_entry(node, &regulator_map_list, list) {
926                 if (consumer_dev_name != node->dev_name)
927                         continue;
928                 if (strcmp(node->supply, supply) != 0)
929                         continue;
930
931                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
932                                 dev_name(&node->regulator->dev),
933                                 node->regulator->desc->name,
934                                 supply,
935                                 dev_name(&rdev->dev), rdev->desc->name);
936                 return -EBUSY;
937         }
938
939         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
940         if (node == NULL)
941                 return -ENOMEM;
942
943         node->regulator = rdev;
944         node->supply = supply;
945
946         if (has_dev) {
947                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
948                 if (node->dev_name == NULL) {
949                         kfree(node);
950                         return -ENOMEM;
951                 }
952         }
953
954         list_add(&node->list, &regulator_map_list);
955         return 0;
956 }
957
958 static void unset_consumer_device_supply(struct regulator_dev *rdev,
959         const char *consumer_dev_name, struct device *consumer_dev)
960 {
961         struct regulator_map *node, *n;
962
963         if (consumer_dev && !consumer_dev_name)
964                 consumer_dev_name = dev_name(consumer_dev);
965
966         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
967                 if (rdev != node->regulator)
968                         continue;
969
970                 if (consumer_dev_name && node->dev_name &&
971                     strcmp(consumer_dev_name, node->dev_name))
972                         continue;
973
974                 list_del(&node->list);
975                 kfree(node->dev_name);
976                 kfree(node);
977                 return;
978         }
979 }
980
981 static void unset_regulator_supplies(struct regulator_dev *rdev)
982 {
983         struct regulator_map *node, *n;
984
985         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
986                 if (rdev == node->regulator) {
987                         list_del(&node->list);
988                         kfree(node->dev_name);
989                         kfree(node);
990                         return;
991                 }
992         }
993 }
994
995 #define REG_STR_SIZE    32
996
997 static struct regulator *create_regulator(struct regulator_dev *rdev,
998                                           struct device *dev,
999                                           const char *supply_name)
1000 {
1001         struct regulator *regulator;
1002         char buf[REG_STR_SIZE];
1003         int err, size;
1004
1005         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1006         if (regulator == NULL)
1007                 return NULL;
1008
1009         mutex_lock(&rdev->mutex);
1010         regulator->rdev = rdev;
1011         list_add(&regulator->list, &rdev->consumer_list);
1012
1013         if (dev) {
1014                 /* create a 'requested_microamps_name' sysfs entry */
1015                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1016                         supply_name);
1017                 if (size >= REG_STR_SIZE)
1018                         goto overflow_err;
1019
1020                 regulator->dev = dev;
1021                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1022                 if (regulator->dev_attr.attr.name == NULL)
1023                         goto attr_name_err;
1024
1025                 regulator->dev_attr.attr.owner = THIS_MODULE;
1026                 regulator->dev_attr.attr.mode = 0444;
1027                 regulator->dev_attr.show = device_requested_uA_show;
1028                 err = device_create_file(dev, &regulator->dev_attr);
1029                 if (err < 0) {
1030                         printk(KERN_WARNING "%s: could not add regulator_dev"
1031                                 " load sysfs\n", __func__);
1032                         goto attr_name_err;
1033                 }
1034
1035                 /* also add a link to the device sysfs entry */
1036                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1037                                  dev->kobj.name, supply_name);
1038                 if (size >= REG_STR_SIZE)
1039                         goto attr_err;
1040
1041                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1042                 if (regulator->supply_name == NULL)
1043                         goto attr_err;
1044
1045                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1046                                         buf);
1047                 if (err) {
1048                         printk(KERN_WARNING
1049                                "%s: could not add device link %s err %d\n",
1050                                __func__, dev->kobj.name, err);
1051                         device_remove_file(dev, &regulator->dev_attr);
1052                         goto link_name_err;
1053                 }
1054         }
1055         mutex_unlock(&rdev->mutex);
1056         return regulator;
1057 link_name_err:
1058         kfree(regulator->supply_name);
1059 attr_err:
1060         device_remove_file(regulator->dev, &regulator->dev_attr);
1061 attr_name_err:
1062         kfree(regulator->dev_attr.attr.name);
1063 overflow_err:
1064         list_del(&regulator->list);
1065         kfree(regulator);
1066         mutex_unlock(&rdev->mutex);
1067         return NULL;
1068 }
1069
1070 /* Internal regulator request function */
1071 static struct regulator *_regulator_get(struct device *dev, const char *id,
1072                                         int exclusive)
1073 {
1074         struct regulator_dev *rdev;
1075         struct regulator_map *map;
1076         struct regulator *regulator = ERR_PTR(-ENODEV);
1077         const char *devname = NULL;
1078         int ret;
1079
1080         if (id == NULL) {
1081                 printk(KERN_ERR "regulator: get() with no identifier\n");
1082                 return regulator;
1083         }
1084
1085         if (dev)
1086                 devname = dev_name(dev);
1087
1088         mutex_lock(&regulator_list_mutex);
1089
1090         list_for_each_entry(map, &regulator_map_list, list) {
1091                 /* If the mapping has a device set up it must match */
1092                 if (map->dev_name &&
1093                     (!devname || strcmp(map->dev_name, devname)))
1094                         continue;
1095
1096                 if (strcmp(map->supply, id) == 0) {
1097                         rdev = map->regulator;
1098                         goto found;
1099                 }
1100         }
1101         mutex_unlock(&regulator_list_mutex);
1102         return regulator;
1103
1104 found:
1105         if (rdev->exclusive) {
1106                 regulator = ERR_PTR(-EPERM);
1107                 goto out;
1108         }
1109
1110         if (exclusive && rdev->open_count) {
1111                 regulator = ERR_PTR(-EBUSY);
1112                 goto out;
1113         }
1114
1115         if (!try_module_get(rdev->owner))
1116                 goto out;
1117
1118         regulator = create_regulator(rdev, dev, id);
1119         if (regulator == NULL) {
1120                 regulator = ERR_PTR(-ENOMEM);
1121                 module_put(rdev->owner);
1122         }
1123
1124         rdev->open_count++;
1125         if (exclusive) {
1126                 rdev->exclusive = 1;
1127
1128                 ret = _regulator_is_enabled(rdev);
1129                 if (ret > 0)
1130                         rdev->use_count = 1;
1131                 else
1132                         rdev->use_count = 0;
1133         }
1134
1135 out:
1136         mutex_unlock(&regulator_list_mutex);
1137
1138         return regulator;
1139 }
1140
1141 /**
1142  * regulator_get - lookup and obtain a reference to a regulator.
1143  * @dev: device for regulator "consumer"
1144  * @id: Supply name or regulator ID.
1145  *
1146  * Returns a struct regulator corresponding to the regulator producer,
1147  * or IS_ERR() condition containing errno.
1148  *
1149  * Use of supply names configured via regulator_set_device_supply() is
1150  * strongly encouraged.  It is recommended that the supply name used
1151  * should match the name used for the supply and/or the relevant
1152  * device pins in the datasheet.
1153  */
1154 struct regulator *regulator_get(struct device *dev, const char *id)
1155 {
1156         return _regulator_get(dev, id, 0);
1157 }
1158 EXPORT_SYMBOL_GPL(regulator_get);
1159
1160 /**
1161  * regulator_get_exclusive - obtain exclusive access to a regulator.
1162  * @dev: device for regulator "consumer"
1163  * @id: Supply name or regulator ID.
1164  *
1165  * Returns a struct regulator corresponding to the regulator producer,
1166  * or IS_ERR() condition containing errno.  Other consumers will be
1167  * unable to obtain this reference is held and the use count for the
1168  * regulator will be initialised to reflect the current state of the
1169  * regulator.
1170  *
1171  * This is intended for use by consumers which cannot tolerate shared
1172  * use of the regulator such as those which need to force the
1173  * regulator off for correct operation of the hardware they are
1174  * controlling.
1175  *
1176  * Use of supply names configured via regulator_set_device_supply() is
1177  * strongly encouraged.  It is recommended that the supply name used
1178  * should match the name used for the supply and/or the relevant
1179  * device pins in the datasheet.
1180  */
1181 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1182 {
1183         return _regulator_get(dev, id, 1);
1184 }
1185 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1186
1187 /**
1188  * regulator_put - "free" the regulator source
1189  * @regulator: regulator source
1190  *
1191  * Note: drivers must ensure that all regulator_enable calls made on this
1192  * regulator source are balanced by regulator_disable calls prior to calling
1193  * this function.
1194  */
1195 void regulator_put(struct regulator *regulator)
1196 {
1197         struct regulator_dev *rdev;
1198
1199         if (regulator == NULL || IS_ERR(regulator))
1200                 return;
1201
1202         mutex_lock(&regulator_list_mutex);
1203         rdev = regulator->rdev;
1204
1205         /* remove any sysfs entries */
1206         if (regulator->dev) {
1207                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1208                 kfree(regulator->supply_name);
1209                 device_remove_file(regulator->dev, &regulator->dev_attr);
1210                 kfree(regulator->dev_attr.attr.name);
1211         }
1212         list_del(&regulator->list);
1213         kfree(regulator);
1214
1215         rdev->open_count--;
1216         rdev->exclusive = 0;
1217
1218         module_put(rdev->owner);
1219         mutex_unlock(&regulator_list_mutex);
1220 }
1221 EXPORT_SYMBOL_GPL(regulator_put);
1222
1223 static int _regulator_can_change_status(struct regulator_dev *rdev)
1224 {
1225         if (!rdev->constraints)
1226                 return 0;
1227
1228         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1229                 return 1;
1230         else
1231                 return 0;
1232 }
1233
1234 /* locks held by regulator_enable() */
1235 static int _regulator_enable(struct regulator_dev *rdev)
1236 {
1237         int ret;
1238
1239         /* do we need to enable the supply regulator first */
1240         if (rdev->supply) {
1241                 ret = _regulator_enable(rdev->supply);
1242                 if (ret < 0) {
1243                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1244                                __func__, rdev->desc->name, ret);
1245                         return ret;
1246                 }
1247         }
1248
1249         /* check voltage and requested load before enabling */
1250         if (rdev->constraints &&
1251             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1252                 drms_uA_update(rdev);
1253
1254         if (rdev->use_count == 0) {
1255                 /* The regulator may on if it's not switchable or left on */
1256                 ret = _regulator_is_enabled(rdev);
1257                 if (ret == -EINVAL || ret == 0) {
1258                         if (!_regulator_can_change_status(rdev))
1259                                 return -EPERM;
1260
1261                         if (rdev->desc->ops->enable) {
1262                                 ret = rdev->desc->ops->enable(rdev);
1263                                 if (ret < 0)
1264                                         return ret;
1265                         } else {
1266                                 return -EINVAL;
1267                         }
1268                 } else if (ret < 0) {
1269                         printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1270                                __func__, rdev->desc->name, ret);
1271                         return ret;
1272                 }
1273                 /* Fallthrough on positive return values - already enabled */
1274         }
1275
1276         rdev->use_count++;
1277
1278         return 0;
1279 }
1280
1281 /**
1282  * regulator_enable - enable regulator output
1283  * @regulator: regulator source
1284  *
1285  * Request that the regulator be enabled with the regulator output at
1286  * the predefined voltage or current value.  Calls to regulator_enable()
1287  * must be balanced with calls to regulator_disable().
1288  *
1289  * NOTE: the output value can be set by other drivers, boot loader or may be
1290  * hardwired in the regulator.
1291  */
1292 int regulator_enable(struct regulator *regulator)
1293 {
1294         struct regulator_dev *rdev = regulator->rdev;
1295         int ret = 0;
1296
1297         mutex_lock(&rdev->mutex);
1298         ret = _regulator_enable(rdev);
1299         mutex_unlock(&rdev->mutex);
1300         return ret;
1301 }
1302 EXPORT_SYMBOL_GPL(regulator_enable);
1303
1304 /* locks held by regulator_disable() */
1305 static int _regulator_disable(struct regulator_dev *rdev)
1306 {
1307         int ret = 0;
1308
1309         if (WARN(rdev->use_count <= 0,
1310                         "unbalanced disables for %s\n",
1311                         rdev->desc->name))
1312                 return -EIO;
1313
1314         /* are we the last user and permitted to disable ? */
1315         if (rdev->use_count == 1 &&
1316             (rdev->constraints && !rdev->constraints->always_on)) {
1317
1318                 /* we are last user */
1319                 if (_regulator_can_change_status(rdev) &&
1320                     rdev->desc->ops->disable) {
1321                         ret = rdev->desc->ops->disable(rdev);
1322                         if (ret < 0) {
1323                                 printk(KERN_ERR "%s: failed to disable %s\n",
1324                                        __func__, rdev->desc->name);
1325                                 return ret;
1326                         }
1327                 }
1328
1329                 /* decrease our supplies ref count and disable if required */
1330                 if (rdev->supply)
1331                         _regulator_disable(rdev->supply);
1332
1333                 rdev->use_count = 0;
1334         } else if (rdev->use_count > 1) {
1335
1336                 if (rdev->constraints &&
1337                         (rdev->constraints->valid_ops_mask &
1338                         REGULATOR_CHANGE_DRMS))
1339                         drms_uA_update(rdev);
1340
1341                 rdev->use_count--;
1342         }
1343         return ret;
1344 }
1345
1346 /**
1347  * regulator_disable - disable regulator output
1348  * @regulator: regulator source
1349  *
1350  * Disable the regulator output voltage or current.  Calls to
1351  * regulator_enable() must be balanced with calls to
1352  * regulator_disable().
1353  *
1354  * NOTE: this will only disable the regulator output if no other consumer
1355  * devices have it enabled, the regulator device supports disabling and
1356  * machine constraints permit this operation.
1357  */
1358 int regulator_disable(struct regulator *regulator)
1359 {
1360         struct regulator_dev *rdev = regulator->rdev;
1361         int ret = 0;
1362
1363         mutex_lock(&rdev->mutex);
1364         ret = _regulator_disable(rdev);
1365         mutex_unlock(&rdev->mutex);
1366         return ret;
1367 }
1368 EXPORT_SYMBOL_GPL(regulator_disable);
1369
1370 /* locks held by regulator_force_disable() */
1371 static int _regulator_force_disable(struct regulator_dev *rdev)
1372 {
1373         int ret = 0;
1374
1375         /* force disable */
1376         if (rdev->desc->ops->disable) {
1377                 /* ah well, who wants to live forever... */
1378                 ret = rdev->desc->ops->disable(rdev);
1379                 if (ret < 0) {
1380                         printk(KERN_ERR "%s: failed to force disable %s\n",
1381                                __func__, rdev->desc->name);
1382                         return ret;
1383                 }
1384                 /* notify other consumers that power has been forced off */
1385                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1386                         NULL);
1387         }
1388
1389         /* decrease our supplies ref count and disable if required */
1390         if (rdev->supply)
1391                 _regulator_disable(rdev->supply);
1392
1393         rdev->use_count = 0;
1394         return ret;
1395 }
1396
1397 /**
1398  * regulator_force_disable - force disable regulator output
1399  * @regulator: regulator source
1400  *
1401  * Forcibly disable the regulator output voltage or current.
1402  * NOTE: this *will* disable the regulator output even if other consumer
1403  * devices have it enabled. This should be used for situations when device
1404  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1405  */
1406 int regulator_force_disable(struct regulator *regulator)
1407 {
1408         int ret;
1409
1410         mutex_lock(&regulator->rdev->mutex);
1411         regulator->uA_load = 0;
1412         ret = _regulator_force_disable(regulator->rdev);
1413         mutex_unlock(&regulator->rdev->mutex);
1414         return ret;
1415 }
1416 EXPORT_SYMBOL_GPL(regulator_force_disable);
1417
1418 static int _regulator_is_enabled(struct regulator_dev *rdev)
1419 {
1420         /* sanity check */
1421         if (!rdev->desc->ops->is_enabled)
1422                 return -EINVAL;
1423
1424         return rdev->desc->ops->is_enabled(rdev);
1425 }
1426
1427 /**
1428  * regulator_is_enabled - is the regulator output enabled
1429  * @regulator: regulator source
1430  *
1431  * Returns positive if the regulator driver backing the source/client
1432  * has requested that the device be enabled, zero if it hasn't, else a
1433  * negative errno code.
1434  *
1435  * Note that the device backing this regulator handle can have multiple
1436  * users, so it might be enabled even if regulator_enable() was never
1437  * called for this particular source.
1438  */
1439 int regulator_is_enabled(struct regulator *regulator)
1440 {
1441         int ret;
1442
1443         mutex_lock(&regulator->rdev->mutex);
1444         ret = _regulator_is_enabled(regulator->rdev);
1445         mutex_unlock(&regulator->rdev->mutex);
1446
1447         return ret;
1448 }
1449 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1450
1451 /**
1452  * regulator_count_voltages - count regulator_list_voltage() selectors
1453  * @regulator: regulator source
1454  *
1455  * Returns number of selectors, or negative errno.  Selectors are
1456  * numbered starting at zero, and typically correspond to bitfields
1457  * in hardware registers.
1458  */
1459 int regulator_count_voltages(struct regulator *regulator)
1460 {
1461         struct regulator_dev    *rdev = regulator->rdev;
1462
1463         return rdev->desc->n_voltages ? : -EINVAL;
1464 }
1465 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1466
1467 /**
1468  * regulator_list_voltage - enumerate supported voltages
1469  * @regulator: regulator source
1470  * @selector: identify voltage to list
1471  * Context: can sleep
1472  *
1473  * Returns a voltage that can be passed to @regulator_set_voltage(),
1474  * zero if this selector code can't be used on this sytem, or a
1475  * negative errno.
1476  */
1477 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1478 {
1479         struct regulator_dev    *rdev = regulator->rdev;
1480         struct regulator_ops    *ops = rdev->desc->ops;
1481         int                     ret;
1482
1483         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1484                 return -EINVAL;
1485
1486         mutex_lock(&rdev->mutex);
1487         ret = ops->list_voltage(rdev, selector);
1488         mutex_unlock(&rdev->mutex);
1489
1490         if (ret > 0) {
1491                 if (ret < rdev->constraints->min_uV)
1492                         ret = 0;
1493                 else if (ret > rdev->constraints->max_uV)
1494                         ret = 0;
1495         }
1496
1497         return ret;
1498 }
1499 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1500
1501 /**
1502  * regulator_is_supported_voltage - check if a voltage range can be supported
1503  *
1504  * @regulator: Regulator to check.
1505  * @min_uV: Minimum required voltage in uV.
1506  * @max_uV: Maximum required voltage in uV.
1507  *
1508  * Returns a boolean or a negative error code.
1509  */
1510 int regulator_is_supported_voltage(struct regulator *regulator,
1511                                    int min_uV, int max_uV)
1512 {
1513         int i, voltages, ret;
1514
1515         ret = regulator_count_voltages(regulator);
1516         if (ret < 0)
1517                 return ret;
1518         voltages = ret;
1519
1520         for (i = 0; i < voltages; i++) {
1521                 ret = regulator_list_voltage(regulator, i);
1522
1523                 if (ret >= min_uV && ret <= max_uV)
1524                         return 1;
1525         }
1526
1527         return 0;
1528 }
1529
1530 /**
1531  * regulator_set_voltage - set regulator output voltage
1532  * @regulator: regulator source
1533  * @min_uV: Minimum required voltage in uV
1534  * @max_uV: Maximum acceptable voltage in uV
1535  *
1536  * Sets a voltage regulator to the desired output voltage. This can be set
1537  * during any regulator state. IOW, regulator can be disabled or enabled.
1538  *
1539  * If the regulator is enabled then the voltage will change to the new value
1540  * immediately otherwise if the regulator is disabled the regulator will
1541  * output at the new voltage when enabled.
1542  *
1543  * NOTE: If the regulator is shared between several devices then the lowest
1544  * request voltage that meets the system constraints will be used.
1545  * Regulator system constraints must be set for this regulator before
1546  * calling this function otherwise this call will fail.
1547  */
1548 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1549 {
1550         struct regulator_dev *rdev = regulator->rdev;
1551         int ret;
1552
1553         mutex_lock(&rdev->mutex);
1554
1555         /* sanity check */
1556         if (!rdev->desc->ops->set_voltage) {
1557                 ret = -EINVAL;
1558                 goto out;
1559         }
1560
1561         /* constraints check */
1562         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1563         if (ret < 0)
1564                 goto out;
1565         regulator->min_uV = min_uV;
1566         regulator->max_uV = max_uV;
1567         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1568
1569 out:
1570         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1571         mutex_unlock(&rdev->mutex);
1572         return ret;
1573 }
1574 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1575
1576 static int _regulator_get_voltage(struct regulator_dev *rdev)
1577 {
1578         /* sanity check */
1579         if (rdev->desc->ops->get_voltage)
1580                 return rdev->desc->ops->get_voltage(rdev);
1581         else
1582                 return -EINVAL;
1583 }
1584
1585 /**
1586  * regulator_get_voltage - get regulator output voltage
1587  * @regulator: regulator source
1588  *
1589  * This returns the current regulator voltage in uV.
1590  *
1591  * NOTE: If the regulator is disabled it will return the voltage value. This
1592  * function should not be used to determine regulator state.
1593  */
1594 int regulator_get_voltage(struct regulator *regulator)
1595 {
1596         int ret;
1597
1598         mutex_lock(&regulator->rdev->mutex);
1599
1600         ret = _regulator_get_voltage(regulator->rdev);
1601
1602         mutex_unlock(&regulator->rdev->mutex);
1603
1604         return ret;
1605 }
1606 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1607
1608 /**
1609  * regulator_set_current_limit - set regulator output current limit
1610  * @regulator: regulator source
1611  * @min_uA: Minimuum supported current in uA
1612  * @max_uA: Maximum supported current in uA
1613  *
1614  * Sets current sink to the desired output current. This can be set during
1615  * any regulator state. IOW, regulator can be disabled or enabled.
1616  *
1617  * If the regulator is enabled then the current will change to the new value
1618  * immediately otherwise if the regulator is disabled the regulator will
1619  * output at the new current when enabled.
1620  *
1621  * NOTE: Regulator system constraints must be set for this regulator before
1622  * calling this function otherwise this call will fail.
1623  */
1624 int regulator_set_current_limit(struct regulator *regulator,
1625                                int min_uA, int max_uA)
1626 {
1627         struct regulator_dev *rdev = regulator->rdev;
1628         int ret;
1629
1630         mutex_lock(&rdev->mutex);
1631
1632         /* sanity check */
1633         if (!rdev->desc->ops->set_current_limit) {
1634                 ret = -EINVAL;
1635                 goto out;
1636         }
1637
1638         /* constraints check */
1639         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1640         if (ret < 0)
1641                 goto out;
1642
1643         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1644 out:
1645         mutex_unlock(&rdev->mutex);
1646         return ret;
1647 }
1648 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1649
1650 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1651 {
1652         int ret;
1653
1654         mutex_lock(&rdev->mutex);
1655
1656         /* sanity check */
1657         if (!rdev->desc->ops->get_current_limit) {
1658                 ret = -EINVAL;
1659                 goto out;
1660         }
1661
1662         ret = rdev->desc->ops->get_current_limit(rdev);
1663 out:
1664         mutex_unlock(&rdev->mutex);
1665         return ret;
1666 }
1667
1668 /**
1669  * regulator_get_current_limit - get regulator output current
1670  * @regulator: regulator source
1671  *
1672  * This returns the current supplied by the specified current sink in uA.
1673  *
1674  * NOTE: If the regulator is disabled it will return the current value. This
1675  * function should not be used to determine regulator state.
1676  */
1677 int regulator_get_current_limit(struct regulator *regulator)
1678 {
1679         return _regulator_get_current_limit(regulator->rdev);
1680 }
1681 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1682
1683 /**
1684  * regulator_set_mode - set regulator operating mode
1685  * @regulator: regulator source
1686  * @mode: operating mode - one of the REGULATOR_MODE constants
1687  *
1688  * Set regulator operating mode to increase regulator efficiency or improve
1689  * regulation performance.
1690  *
1691  * NOTE: Regulator system constraints must be set for this regulator before
1692  * calling this function otherwise this call will fail.
1693  */
1694 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1695 {
1696         struct regulator_dev *rdev = regulator->rdev;
1697         int ret;
1698
1699         mutex_lock(&rdev->mutex);
1700
1701         /* sanity check */
1702         if (!rdev->desc->ops->set_mode) {
1703                 ret = -EINVAL;
1704                 goto out;
1705         }
1706
1707         /* constraints check */
1708         ret = regulator_check_mode(rdev, mode);
1709         if (ret < 0)
1710                 goto out;
1711
1712         ret = rdev->desc->ops->set_mode(rdev, mode);
1713 out:
1714         mutex_unlock(&rdev->mutex);
1715         return ret;
1716 }
1717 EXPORT_SYMBOL_GPL(regulator_set_mode);
1718
1719 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1720 {
1721         int ret;
1722
1723         mutex_lock(&rdev->mutex);
1724
1725         /* sanity check */
1726         if (!rdev->desc->ops->get_mode) {
1727                 ret = -EINVAL;
1728                 goto out;
1729         }
1730
1731         ret = rdev->desc->ops->get_mode(rdev);
1732 out:
1733         mutex_unlock(&rdev->mutex);
1734         return ret;
1735 }
1736
1737 /**
1738  * regulator_get_mode - get regulator operating mode
1739  * @regulator: regulator source
1740  *
1741  * Get the current regulator operating mode.
1742  */
1743 unsigned int regulator_get_mode(struct regulator *regulator)
1744 {
1745         return _regulator_get_mode(regulator->rdev);
1746 }
1747 EXPORT_SYMBOL_GPL(regulator_get_mode);
1748
1749 /**
1750  * regulator_set_optimum_mode - set regulator optimum operating mode
1751  * @regulator: regulator source
1752  * @uA_load: load current
1753  *
1754  * Notifies the regulator core of a new device load. This is then used by
1755  * DRMS (if enabled by constraints) to set the most efficient regulator
1756  * operating mode for the new regulator loading.
1757  *
1758  * Consumer devices notify their supply regulator of the maximum power
1759  * they will require (can be taken from device datasheet in the power
1760  * consumption tables) when they change operational status and hence power
1761  * state. Examples of operational state changes that can affect power
1762  * consumption are :-
1763  *
1764  *    o Device is opened / closed.
1765  *    o Device I/O is about to begin or has just finished.
1766  *    o Device is idling in between work.
1767  *
1768  * This information is also exported via sysfs to userspace.
1769  *
1770  * DRMS will sum the total requested load on the regulator and change
1771  * to the most efficient operating mode if platform constraints allow.
1772  *
1773  * Returns the new regulator mode or error.
1774  */
1775 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1776 {
1777         struct regulator_dev *rdev = regulator->rdev;
1778         struct regulator *consumer;
1779         int ret, output_uV, input_uV, total_uA_load = 0;
1780         unsigned int mode;
1781
1782         mutex_lock(&rdev->mutex);
1783
1784         regulator->uA_load = uA_load;
1785         ret = regulator_check_drms(rdev);
1786         if (ret < 0)
1787                 goto out;
1788         ret = -EINVAL;
1789
1790         /* sanity check */
1791         if (!rdev->desc->ops->get_optimum_mode)
1792                 goto out;
1793
1794         /* get output voltage */
1795         output_uV = rdev->desc->ops->get_voltage(rdev);
1796         if (output_uV <= 0) {
1797                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1798                         __func__, rdev->desc->name);
1799                 goto out;
1800         }
1801
1802         /* get input voltage */
1803         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1804                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1805         else
1806                 input_uV = rdev->constraints->input_uV;
1807         if (input_uV <= 0) {
1808                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1809                         __func__, rdev->desc->name);
1810                 goto out;
1811         }
1812
1813         /* calc total requested load for this regulator */
1814         list_for_each_entry(consumer, &rdev->consumer_list, list)
1815             total_uA_load += consumer->uA_load;
1816
1817         mode = rdev->desc->ops->get_optimum_mode(rdev,
1818                                                  input_uV, output_uV,
1819                                                  total_uA_load);
1820         ret = regulator_check_mode(rdev, mode);
1821         if (ret < 0) {
1822                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1823                         " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1824                         total_uA_load, input_uV, output_uV);
1825                 goto out;
1826         }
1827
1828         ret = rdev->desc->ops->set_mode(rdev, mode);
1829         if (ret < 0) {
1830                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1831                         __func__, mode, rdev->desc->name);
1832                 goto out;
1833         }
1834         ret = mode;
1835 out:
1836         mutex_unlock(&rdev->mutex);
1837         return ret;
1838 }
1839 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1840
1841 /**
1842  * regulator_register_notifier - register regulator event notifier
1843  * @regulator: regulator source
1844  * @nb: notifier block
1845  *
1846  * Register notifier block to receive regulator events.
1847  */
1848 int regulator_register_notifier(struct regulator *regulator,
1849                               struct notifier_block *nb)
1850 {
1851         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1852                                                 nb);
1853 }
1854 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1855
1856 /**
1857  * regulator_unregister_notifier - unregister regulator event notifier
1858  * @regulator: regulator source
1859  * @nb: notifier block
1860  *
1861  * Unregister regulator event notifier block.
1862  */
1863 int regulator_unregister_notifier(struct regulator *regulator,
1864                                 struct notifier_block *nb)
1865 {
1866         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1867                                                   nb);
1868 }
1869 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1870
1871 /* notify regulator consumers and downstream regulator consumers.
1872  * Note mutex must be held by caller.
1873  */
1874 static void _notifier_call_chain(struct regulator_dev *rdev,
1875                                   unsigned long event, void *data)
1876 {
1877         struct regulator_dev *_rdev;
1878
1879         /* call rdev chain first */
1880         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1881
1882         /* now notify regulator we supply */
1883         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1884           mutex_lock(&_rdev->mutex);
1885           _notifier_call_chain(_rdev, event, data);
1886           mutex_unlock(&_rdev->mutex);
1887         }
1888 }
1889
1890 /**
1891  * regulator_bulk_get - get multiple regulator consumers
1892  *
1893  * @dev:           Device to supply
1894  * @num_consumers: Number of consumers to register
1895  * @consumers:     Configuration of consumers; clients are stored here.
1896  *
1897  * @return 0 on success, an errno on failure.
1898  *
1899  * This helper function allows drivers to get several regulator
1900  * consumers in one operation.  If any of the regulators cannot be
1901  * acquired then any regulators that were allocated will be freed
1902  * before returning to the caller.
1903  */
1904 int regulator_bulk_get(struct device *dev, int num_consumers,
1905                        struct regulator_bulk_data *consumers)
1906 {
1907         int i;
1908         int ret;
1909
1910         for (i = 0; i < num_consumers; i++)
1911                 consumers[i].consumer = NULL;
1912
1913         for (i = 0; i < num_consumers; i++) {
1914                 consumers[i].consumer = regulator_get(dev,
1915                                                       consumers[i].supply);
1916                 if (IS_ERR(consumers[i].consumer)) {
1917                         ret = PTR_ERR(consumers[i].consumer);
1918                         dev_err(dev, "Failed to get supply '%s': %d\n",
1919                                 consumers[i].supply, ret);
1920                         consumers[i].consumer = NULL;
1921                         goto err;
1922                 }
1923         }
1924
1925         return 0;
1926
1927 err:
1928         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1929                 regulator_put(consumers[i].consumer);
1930
1931         return ret;
1932 }
1933 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1934
1935 /**
1936  * regulator_bulk_enable - enable multiple regulator consumers
1937  *
1938  * @num_consumers: Number of consumers
1939  * @consumers:     Consumer data; clients are stored here.
1940  * @return         0 on success, an errno on failure
1941  *
1942  * This convenience API allows consumers to enable multiple regulator
1943  * clients in a single API call.  If any consumers cannot be enabled
1944  * then any others that were enabled will be disabled again prior to
1945  * return.
1946  */
1947 int regulator_bulk_enable(int num_consumers,
1948                           struct regulator_bulk_data *consumers)
1949 {
1950         int i;
1951         int ret;
1952
1953         for (i = 0; i < num_consumers; i++) {
1954                 ret = regulator_enable(consumers[i].consumer);
1955                 if (ret != 0)
1956                         goto err;
1957         }
1958
1959         return 0;
1960
1961 err:
1962         printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
1963         for (i = 0; i < num_consumers; i++)
1964                 regulator_disable(consumers[i].consumer);
1965
1966         return ret;
1967 }
1968 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1969
1970 /**
1971  * regulator_bulk_disable - disable multiple regulator consumers
1972  *
1973  * @num_consumers: Number of consumers
1974  * @consumers:     Consumer data; clients are stored here.
1975  * @return         0 on success, an errno on failure
1976  *
1977  * This convenience API allows consumers to disable multiple regulator
1978  * clients in a single API call.  If any consumers cannot be enabled
1979  * then any others that were disabled will be disabled again prior to
1980  * return.
1981  */
1982 int regulator_bulk_disable(int num_consumers,
1983                            struct regulator_bulk_data *consumers)
1984 {
1985         int i;
1986         int ret;
1987
1988         for (i = 0; i < num_consumers; i++) {
1989                 ret = regulator_disable(consumers[i].consumer);
1990                 if (ret != 0)
1991                         goto err;
1992         }
1993
1994         return 0;
1995
1996 err:
1997         printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
1998                ret);
1999         for (i = 0; i < num_consumers; i++)
2000                 regulator_enable(consumers[i].consumer);
2001
2002         return ret;
2003 }
2004 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2005
2006 /**
2007  * regulator_bulk_free - free multiple regulator consumers
2008  *
2009  * @num_consumers: Number of consumers
2010  * @consumers:     Consumer data; clients are stored here.
2011  *
2012  * This convenience API allows consumers to free multiple regulator
2013  * clients in a single API call.
2014  */
2015 void regulator_bulk_free(int num_consumers,
2016                          struct regulator_bulk_data *consumers)
2017 {
2018         int i;
2019
2020         for (i = 0; i < num_consumers; i++) {
2021                 regulator_put(consumers[i].consumer);
2022                 consumers[i].consumer = NULL;
2023         }
2024 }
2025 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2026
2027 /**
2028  * regulator_notifier_call_chain - call regulator event notifier
2029  * @rdev: regulator source
2030  * @event: notifier block
2031  * @data: callback-specific data.
2032  *
2033  * Called by regulator drivers to notify clients a regulator event has
2034  * occurred. We also notify regulator clients downstream.
2035  * Note lock must be held by caller.
2036  */
2037 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2038                                   unsigned long event, void *data)
2039 {
2040         _notifier_call_chain(rdev, event, data);
2041         return NOTIFY_DONE;
2042
2043 }
2044 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2045
2046 /**
2047  * regulator_mode_to_status - convert a regulator mode into a status
2048  *
2049  * @mode: Mode to convert
2050  *
2051  * Convert a regulator mode into a status.
2052  */
2053 int regulator_mode_to_status(unsigned int mode)
2054 {
2055         switch (mode) {
2056         case REGULATOR_MODE_FAST:
2057                 return REGULATOR_STATUS_FAST;
2058         case REGULATOR_MODE_NORMAL:
2059                 return REGULATOR_STATUS_NORMAL;
2060         case REGULATOR_MODE_IDLE:
2061                 return REGULATOR_STATUS_IDLE;
2062         case REGULATOR_STATUS_STANDBY:
2063                 return REGULATOR_STATUS_STANDBY;
2064         default:
2065                 return 0;
2066         }
2067 }
2068 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2069
2070 /*
2071  * To avoid cluttering sysfs (and memory) with useless state, only
2072  * create attributes that can be meaningfully displayed.
2073  */
2074 static int add_regulator_attributes(struct regulator_dev *rdev)
2075 {
2076         struct device           *dev = &rdev->dev;
2077         struct regulator_ops    *ops = rdev->desc->ops;
2078         int                     status = 0;
2079
2080         /* some attributes need specific methods to be displayed */
2081         if (ops->get_voltage) {
2082                 status = device_create_file(dev, &dev_attr_microvolts);
2083                 if (status < 0)
2084                         return status;
2085         }
2086         if (ops->get_current_limit) {
2087                 status = device_create_file(dev, &dev_attr_microamps);
2088                 if (status < 0)
2089                         return status;
2090         }
2091         if (ops->get_mode) {
2092                 status = device_create_file(dev, &dev_attr_opmode);
2093                 if (status < 0)
2094                         return status;
2095         }
2096         if (ops->is_enabled) {
2097                 status = device_create_file(dev, &dev_attr_state);
2098                 if (status < 0)
2099                         return status;
2100         }
2101         if (ops->get_status) {
2102                 status = device_create_file(dev, &dev_attr_status);
2103                 if (status < 0)
2104                         return status;
2105         }
2106
2107         /* some attributes are type-specific */
2108         if (rdev->desc->type == REGULATOR_CURRENT) {
2109                 status = device_create_file(dev, &dev_attr_requested_microamps);
2110                 if (status < 0)
2111                         return status;
2112         }
2113
2114         /* all the other attributes exist to support constraints;
2115          * don't show them if there are no constraints, or if the
2116          * relevant supporting methods are missing.
2117          */
2118         if (!rdev->constraints)
2119                 return status;
2120
2121         /* constraints need specific supporting methods */
2122         if (ops->set_voltage) {
2123                 status = device_create_file(dev, &dev_attr_min_microvolts);
2124                 if (status < 0)
2125                         return status;
2126                 status = device_create_file(dev, &dev_attr_max_microvolts);
2127                 if (status < 0)
2128                         return status;
2129         }
2130         if (ops->set_current_limit) {
2131                 status = device_create_file(dev, &dev_attr_min_microamps);
2132                 if (status < 0)
2133                         return status;
2134                 status = device_create_file(dev, &dev_attr_max_microamps);
2135                 if (status < 0)
2136                         return status;
2137         }
2138
2139         /* suspend mode constraints need multiple supporting methods */
2140         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2141                 return status;
2142
2143         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2144         if (status < 0)
2145                 return status;
2146         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2147         if (status < 0)
2148                 return status;
2149         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2150         if (status < 0)
2151                 return status;
2152
2153         if (ops->set_suspend_voltage) {
2154                 status = device_create_file(dev,
2155                                 &dev_attr_suspend_standby_microvolts);
2156                 if (status < 0)
2157                         return status;
2158                 status = device_create_file(dev,
2159                                 &dev_attr_suspend_mem_microvolts);
2160                 if (status < 0)
2161                         return status;
2162                 status = device_create_file(dev,
2163                                 &dev_attr_suspend_disk_microvolts);
2164                 if (status < 0)
2165                         return status;
2166         }
2167
2168         if (ops->set_suspend_mode) {
2169                 status = device_create_file(dev,
2170                                 &dev_attr_suspend_standby_mode);
2171                 if (status < 0)
2172                         return status;
2173                 status = device_create_file(dev,
2174                                 &dev_attr_suspend_mem_mode);
2175                 if (status < 0)
2176                         return status;
2177                 status = device_create_file(dev,
2178                                 &dev_attr_suspend_disk_mode);
2179                 if (status < 0)
2180                         return status;
2181         }
2182
2183         return status;
2184 }
2185
2186 /**
2187  * regulator_register - register regulator
2188  * @regulator_desc: regulator to register
2189  * @dev: struct device for the regulator
2190  * @init_data: platform provided init data, passed through by driver
2191  * @driver_data: private regulator data
2192  *
2193  * Called by regulator drivers to register a regulator.
2194  * Returns 0 on success.
2195  */
2196 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2197         struct device *dev, struct regulator_init_data *init_data,
2198         void *driver_data)
2199 {
2200         static atomic_t regulator_no = ATOMIC_INIT(0);
2201         struct regulator_dev *rdev;
2202         int ret, i;
2203
2204         if (regulator_desc == NULL)
2205                 return ERR_PTR(-EINVAL);
2206
2207         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2208                 return ERR_PTR(-EINVAL);
2209
2210         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2211             regulator_desc->type != REGULATOR_CURRENT)
2212                 return ERR_PTR(-EINVAL);
2213
2214         if (!init_data)
2215                 return ERR_PTR(-EINVAL);
2216
2217         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2218         if (rdev == NULL)
2219                 return ERR_PTR(-ENOMEM);
2220
2221         mutex_lock(&regulator_list_mutex);
2222
2223         mutex_init(&rdev->mutex);
2224         rdev->reg_data = driver_data;
2225         rdev->owner = regulator_desc->owner;
2226         rdev->desc = regulator_desc;
2227         INIT_LIST_HEAD(&rdev->consumer_list);
2228         INIT_LIST_HEAD(&rdev->supply_list);
2229         INIT_LIST_HEAD(&rdev->list);
2230         INIT_LIST_HEAD(&rdev->slist);
2231         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2232
2233         /* preform any regulator specific init */
2234         if (init_data->regulator_init) {
2235                 ret = init_data->regulator_init(rdev->reg_data);
2236                 if (ret < 0)
2237                         goto clean;
2238         }
2239
2240         /* register with sysfs */
2241         rdev->dev.class = &regulator_class;
2242         rdev->dev.parent = dev;
2243         dev_set_name(&rdev->dev, "regulator.%d",
2244                      atomic_inc_return(&regulator_no) - 1);
2245         ret = device_register(&rdev->dev);
2246         if (ret != 0)
2247                 goto clean;
2248
2249         dev_set_drvdata(&rdev->dev, rdev);
2250
2251         /* set regulator constraints */
2252         ret = set_machine_constraints(rdev, &init_data->constraints);
2253         if (ret < 0)
2254                 goto scrub;
2255
2256         /* add attributes supported by this regulator */
2257         ret = add_regulator_attributes(rdev);
2258         if (ret < 0)
2259                 goto scrub;
2260
2261         /* set supply regulator if it exists */
2262         if (init_data->supply_regulator_dev) {
2263                 ret = set_supply(rdev,
2264                         dev_get_drvdata(init_data->supply_regulator_dev));
2265                 if (ret < 0)
2266                         goto scrub;
2267         }
2268
2269         /* add consumers devices */
2270         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2271                 ret = set_consumer_device_supply(rdev,
2272                         init_data->consumer_supplies[i].dev,
2273                         init_data->consumer_supplies[i].dev_name,
2274                         init_data->consumer_supplies[i].supply);
2275                 if (ret < 0) {
2276                         for (--i; i >= 0; i--)
2277                                 unset_consumer_device_supply(rdev,
2278                                     init_data->consumer_supplies[i].dev_name,
2279                                     init_data->consumer_supplies[i].dev);
2280                         goto scrub;
2281                 }
2282         }
2283
2284         list_add(&rdev->list, &regulator_list);
2285 out:
2286         mutex_unlock(&regulator_list_mutex);
2287         return rdev;
2288
2289 scrub:
2290         device_unregister(&rdev->dev);
2291         /* device core frees rdev */
2292         rdev = ERR_PTR(ret);
2293         goto out;
2294
2295 clean:
2296         kfree(rdev);
2297         rdev = ERR_PTR(ret);
2298         goto out;
2299 }
2300 EXPORT_SYMBOL_GPL(regulator_register);
2301
2302 /**
2303  * regulator_unregister - unregister regulator
2304  * @rdev: regulator to unregister
2305  *
2306  * Called by regulator drivers to unregister a regulator.
2307  */
2308 void regulator_unregister(struct regulator_dev *rdev)
2309 {
2310         if (rdev == NULL)
2311                 return;
2312
2313         mutex_lock(&regulator_list_mutex);
2314         WARN_ON(rdev->open_count);
2315         unset_regulator_supplies(rdev);
2316         list_del(&rdev->list);
2317         if (rdev->supply)
2318                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2319         device_unregister(&rdev->dev);
2320         mutex_unlock(&regulator_list_mutex);
2321 }
2322 EXPORT_SYMBOL_GPL(regulator_unregister);
2323
2324 /**
2325  * regulator_suspend_prepare - prepare regulators for system wide suspend
2326  * @state: system suspend state
2327  *
2328  * Configure each regulator with it's suspend operating parameters for state.
2329  * This will usually be called by machine suspend code prior to supending.
2330  */
2331 int regulator_suspend_prepare(suspend_state_t state)
2332 {
2333         struct regulator_dev *rdev;
2334         int ret = 0;
2335
2336         /* ON is handled by regulator active state */
2337         if (state == PM_SUSPEND_ON)
2338                 return -EINVAL;
2339
2340         mutex_lock(&regulator_list_mutex);
2341         list_for_each_entry(rdev, &regulator_list, list) {
2342
2343                 mutex_lock(&rdev->mutex);
2344                 ret = suspend_prepare(rdev, state);
2345                 mutex_unlock(&rdev->mutex);
2346
2347                 if (ret < 0) {
2348                         printk(KERN_ERR "%s: failed to prepare %s\n",
2349                                 __func__, rdev->desc->name);
2350                         goto out;
2351                 }
2352         }
2353 out:
2354         mutex_unlock(&regulator_list_mutex);
2355         return ret;
2356 }
2357 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2358
2359 /**
2360  * regulator_has_full_constraints - the system has fully specified constraints
2361  *
2362  * Calling this function will cause the regulator API to disable all
2363  * regulators which have a zero use count and don't have an always_on
2364  * constraint in a late_initcall.
2365  *
2366  * The intention is that this will become the default behaviour in a
2367  * future kernel release so users are encouraged to use this facility
2368  * now.
2369  */
2370 void regulator_has_full_constraints(void)
2371 {
2372         has_full_constraints = 1;
2373 }
2374 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2375
2376 /**
2377  * rdev_get_drvdata - get rdev regulator driver data
2378  * @rdev: regulator
2379  *
2380  * Get rdev regulator driver private data. This call can be used in the
2381  * regulator driver context.
2382  */
2383 void *rdev_get_drvdata(struct regulator_dev *rdev)
2384 {
2385         return rdev->reg_data;
2386 }
2387 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2388
2389 /**
2390  * regulator_get_drvdata - get regulator driver data
2391  * @regulator: regulator
2392  *
2393  * Get regulator driver private data. This call can be used in the consumer
2394  * driver context when non API regulator specific functions need to be called.
2395  */
2396 void *regulator_get_drvdata(struct regulator *regulator)
2397 {
2398         return regulator->rdev->reg_data;
2399 }
2400 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2401
2402 /**
2403  * regulator_set_drvdata - set regulator driver data
2404  * @regulator: regulator
2405  * @data: data
2406  */
2407 void regulator_set_drvdata(struct regulator *regulator, void *data)
2408 {
2409         regulator->rdev->reg_data = data;
2410 }
2411 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2412
2413 /**
2414  * regulator_get_id - get regulator ID
2415  * @rdev: regulator
2416  */
2417 int rdev_get_id(struct regulator_dev *rdev)
2418 {
2419         return rdev->desc->id;
2420 }
2421 EXPORT_SYMBOL_GPL(rdev_get_id);
2422
2423 struct device *rdev_get_dev(struct regulator_dev *rdev)
2424 {
2425         return &rdev->dev;
2426 }
2427 EXPORT_SYMBOL_GPL(rdev_get_dev);
2428
2429 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2430 {
2431         return reg_init_data->driver_data;
2432 }
2433 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2434
2435 static int __init regulator_init(void)
2436 {
2437         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2438         return class_register(&regulator_class);
2439 }
2440
2441 /* init early to allow our consumers to complete system booting */
2442 core_initcall(regulator_init);
2443
2444 static int __init regulator_init_complete(void)
2445 {
2446         struct regulator_dev *rdev;
2447         struct regulator_ops *ops;
2448         struct regulation_constraints *c;
2449         int enabled, ret;
2450         const char *name;
2451
2452         mutex_lock(&regulator_list_mutex);
2453
2454         /* If we have a full configuration then disable any regulators
2455          * which are not in use or always_on.  This will become the
2456          * default behaviour in the future.
2457          */
2458         list_for_each_entry(rdev, &regulator_list, list) {
2459                 ops = rdev->desc->ops;
2460                 c = rdev->constraints;
2461
2462                 if (c && c->name)
2463                         name = c->name;
2464                 else if (rdev->desc->name)
2465                         name = rdev->desc->name;
2466                 else
2467                         name = "regulator";
2468
2469                 if (!ops->disable || (c && c->always_on))
2470                         continue;
2471
2472                 mutex_lock(&rdev->mutex);
2473
2474                 if (rdev->use_count)
2475                         goto unlock;
2476
2477                 /* If we can't read the status assume it's on. */
2478                 if (ops->is_enabled)
2479                         enabled = ops->is_enabled(rdev);
2480                 else
2481                         enabled = 1;
2482
2483                 if (!enabled)
2484                         goto unlock;
2485
2486                 if (has_full_constraints) {
2487                         /* We log since this may kill the system if it
2488                          * goes wrong. */
2489                         printk(KERN_INFO "%s: disabling %s\n",
2490                                __func__, name);
2491                         ret = ops->disable(rdev);
2492                         if (ret != 0) {
2493                                 printk(KERN_ERR
2494                                        "%s: couldn't disable %s: %d\n",
2495                                        __func__, name, ret);
2496                         }
2497                 } else {
2498                         /* The intention is that in future we will
2499                          * assume that full constraints are provided
2500                          * so warn even if we aren't going to do
2501                          * anything here.
2502                          */
2503                         printk(KERN_WARNING
2504                                "%s: incomplete constraints, leaving %s on\n",
2505                                __func__, name);
2506                 }
2507
2508 unlock:
2509                 mutex_unlock(&rdev->mutex);
2510         }
2511
2512         mutex_unlock(&regulator_list_mutex);
2513
2514         return 0;
2515 }
2516 late_initcall(regulator_init_complete);