ALSA: usb-audio: add support for Akai MPD16
[safe/jmp/linux-2.6] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/suspend.h>
23 #include <linux/delay.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regulator/machine.h>
27
28 #include "dummy.h"
29
30 #define REGULATOR_VERSION "0.5"
31
32 static DEFINE_MUTEX(regulator_list_mutex);
33 static LIST_HEAD(regulator_list);
34 static LIST_HEAD(regulator_map_list);
35 static int has_full_constraints;
36
37 /*
38  * struct regulator_map
39  *
40  * Used to provide symbolic supply names to devices.
41  */
42 struct regulator_map {
43         struct list_head list;
44         const char *dev_name;   /* The dev_name() for the consumer */
45         const char *supply;
46         struct regulator_dev *regulator;
47 };
48
49 /*
50  * struct regulator
51  *
52  * One for each consumer device.
53  */
54 struct regulator {
55         struct device *dev;
56         struct list_head list;
57         int uA_load;
58         int min_uV;
59         int max_uV;
60         char *supply_name;
61         struct device_attribute dev_attr;
62         struct regulator_dev *rdev;
63 };
64
65 static int _regulator_is_enabled(struct regulator_dev *rdev);
66 static int _regulator_disable(struct regulator_dev *rdev);
67 static int _regulator_get_voltage(struct regulator_dev *rdev);
68 static int _regulator_get_current_limit(struct regulator_dev *rdev);
69 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
70 static void _notifier_call_chain(struct regulator_dev *rdev,
71                                   unsigned long event, void *data);
72
73 static const char *rdev_get_name(struct regulator_dev *rdev)
74 {
75         if (rdev->constraints && rdev->constraints->name)
76                 return rdev->constraints->name;
77         else if (rdev->desc->name)
78                 return rdev->desc->name;
79         else
80                 return "";
81 }
82
83 /* gets the regulator for a given consumer device */
84 static struct regulator *get_device_regulator(struct device *dev)
85 {
86         struct regulator *regulator = NULL;
87         struct regulator_dev *rdev;
88
89         mutex_lock(&regulator_list_mutex);
90         list_for_each_entry(rdev, &regulator_list, list) {
91                 mutex_lock(&rdev->mutex);
92                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
93                         if (regulator->dev == dev) {
94                                 mutex_unlock(&rdev->mutex);
95                                 mutex_unlock(&regulator_list_mutex);
96                                 return regulator;
97                         }
98                 }
99                 mutex_unlock(&rdev->mutex);
100         }
101         mutex_unlock(&regulator_list_mutex);
102         return NULL;
103 }
104
105 /* Platform voltage constraint check */
106 static int regulator_check_voltage(struct regulator_dev *rdev,
107                                    int *min_uV, int *max_uV)
108 {
109         BUG_ON(*min_uV > *max_uV);
110
111         if (!rdev->constraints) {
112                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
113                        rdev_get_name(rdev));
114                 return -ENODEV;
115         }
116         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
117                 printk(KERN_ERR "%s: operation not allowed for %s\n",
118                        __func__, rdev_get_name(rdev));
119                 return -EPERM;
120         }
121
122         if (*max_uV > rdev->constraints->max_uV)
123                 *max_uV = rdev->constraints->max_uV;
124         if (*min_uV < rdev->constraints->min_uV)
125                 *min_uV = rdev->constraints->min_uV;
126
127         if (*min_uV > *max_uV)
128                 return -EINVAL;
129
130         return 0;
131 }
132
133 /* current constraint check */
134 static int regulator_check_current_limit(struct regulator_dev *rdev,
135                                         int *min_uA, int *max_uA)
136 {
137         BUG_ON(*min_uA > *max_uA);
138
139         if (!rdev->constraints) {
140                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
141                        rdev_get_name(rdev));
142                 return -ENODEV;
143         }
144         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
145                 printk(KERN_ERR "%s: operation not allowed for %s\n",
146                        __func__, rdev_get_name(rdev));
147                 return -EPERM;
148         }
149
150         if (*max_uA > rdev->constraints->max_uA)
151                 *max_uA = rdev->constraints->max_uA;
152         if (*min_uA < rdev->constraints->min_uA)
153                 *min_uA = rdev->constraints->min_uA;
154
155         if (*min_uA > *max_uA)
156                 return -EINVAL;
157
158         return 0;
159 }
160
161 /* operating mode constraint check */
162 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
163 {
164         switch (mode) {
165         case REGULATOR_MODE_FAST:
166         case REGULATOR_MODE_NORMAL:
167         case REGULATOR_MODE_IDLE:
168         case REGULATOR_MODE_STANDBY:
169                 break;
170         default:
171                 return -EINVAL;
172         }
173
174         if (!rdev->constraints) {
175                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
176                        rdev_get_name(rdev));
177                 return -ENODEV;
178         }
179         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
180                 printk(KERN_ERR "%s: operation not allowed for %s\n",
181                        __func__, rdev_get_name(rdev));
182                 return -EPERM;
183         }
184         if (!(rdev->constraints->valid_modes_mask & mode)) {
185                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
186                        __func__, mode, rdev_get_name(rdev));
187                 return -EINVAL;
188         }
189         return 0;
190 }
191
192 /* dynamic regulator mode switching constraint check */
193 static int regulator_check_drms(struct regulator_dev *rdev)
194 {
195         if (!rdev->constraints) {
196                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
197                        rdev_get_name(rdev));
198                 return -ENODEV;
199         }
200         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
201                 printk(KERN_ERR "%s: operation not allowed for %s\n",
202                        __func__, rdev_get_name(rdev));
203                 return -EPERM;
204         }
205         return 0;
206 }
207
208 static ssize_t device_requested_uA_show(struct device *dev,
209                              struct device_attribute *attr, char *buf)
210 {
211         struct regulator *regulator;
212
213         regulator = get_device_regulator(dev);
214         if (regulator == NULL)
215                 return 0;
216
217         return sprintf(buf, "%d\n", regulator->uA_load);
218 }
219
220 static ssize_t regulator_uV_show(struct device *dev,
221                                 struct device_attribute *attr, char *buf)
222 {
223         struct regulator_dev *rdev = dev_get_drvdata(dev);
224         ssize_t ret;
225
226         mutex_lock(&rdev->mutex);
227         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
228         mutex_unlock(&rdev->mutex);
229
230         return ret;
231 }
232 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
233
234 static ssize_t regulator_uA_show(struct device *dev,
235                                 struct device_attribute *attr, char *buf)
236 {
237         struct regulator_dev *rdev = dev_get_drvdata(dev);
238
239         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
240 }
241 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
242
243 static ssize_t regulator_name_show(struct device *dev,
244                              struct device_attribute *attr, char *buf)
245 {
246         struct regulator_dev *rdev = dev_get_drvdata(dev);
247
248         return sprintf(buf, "%s\n", rdev_get_name(rdev));
249 }
250
251 static ssize_t regulator_print_opmode(char *buf, int mode)
252 {
253         switch (mode) {
254         case REGULATOR_MODE_FAST:
255                 return sprintf(buf, "fast\n");
256         case REGULATOR_MODE_NORMAL:
257                 return sprintf(buf, "normal\n");
258         case REGULATOR_MODE_IDLE:
259                 return sprintf(buf, "idle\n");
260         case REGULATOR_MODE_STANDBY:
261                 return sprintf(buf, "standby\n");
262         }
263         return sprintf(buf, "unknown\n");
264 }
265
266 static ssize_t regulator_opmode_show(struct device *dev,
267                                     struct device_attribute *attr, char *buf)
268 {
269         struct regulator_dev *rdev = dev_get_drvdata(dev);
270
271         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
272 }
273 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
274
275 static ssize_t regulator_print_state(char *buf, int state)
276 {
277         if (state > 0)
278                 return sprintf(buf, "enabled\n");
279         else if (state == 0)
280                 return sprintf(buf, "disabled\n");
281         else
282                 return sprintf(buf, "unknown\n");
283 }
284
285 static ssize_t regulator_state_show(struct device *dev,
286                                    struct device_attribute *attr, char *buf)
287 {
288         struct regulator_dev *rdev = dev_get_drvdata(dev);
289         ssize_t ret;
290
291         mutex_lock(&rdev->mutex);
292         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
293         mutex_unlock(&rdev->mutex);
294
295         return ret;
296 }
297 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
298
299 static ssize_t regulator_status_show(struct device *dev,
300                                    struct device_attribute *attr, char *buf)
301 {
302         struct regulator_dev *rdev = dev_get_drvdata(dev);
303         int status;
304         char *label;
305
306         status = rdev->desc->ops->get_status(rdev);
307         if (status < 0)
308                 return status;
309
310         switch (status) {
311         case REGULATOR_STATUS_OFF:
312                 label = "off";
313                 break;
314         case REGULATOR_STATUS_ON:
315                 label = "on";
316                 break;
317         case REGULATOR_STATUS_ERROR:
318                 label = "error";
319                 break;
320         case REGULATOR_STATUS_FAST:
321                 label = "fast";
322                 break;
323         case REGULATOR_STATUS_NORMAL:
324                 label = "normal";
325                 break;
326         case REGULATOR_STATUS_IDLE:
327                 label = "idle";
328                 break;
329         case REGULATOR_STATUS_STANDBY:
330                 label = "standby";
331                 break;
332         default:
333                 return -ERANGE;
334         }
335
336         return sprintf(buf, "%s\n", label);
337 }
338 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
339
340 static ssize_t regulator_min_uA_show(struct device *dev,
341                                     struct device_attribute *attr, char *buf)
342 {
343         struct regulator_dev *rdev = dev_get_drvdata(dev);
344
345         if (!rdev->constraints)
346                 return sprintf(buf, "constraint not defined\n");
347
348         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
349 }
350 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
351
352 static ssize_t regulator_max_uA_show(struct device *dev,
353                                     struct device_attribute *attr, char *buf)
354 {
355         struct regulator_dev *rdev = dev_get_drvdata(dev);
356
357         if (!rdev->constraints)
358                 return sprintf(buf, "constraint not defined\n");
359
360         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
361 }
362 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
363
364 static ssize_t regulator_min_uV_show(struct device *dev,
365                                     struct device_attribute *attr, char *buf)
366 {
367         struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369         if (!rdev->constraints)
370                 return sprintf(buf, "constraint not defined\n");
371
372         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
373 }
374 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
375
376 static ssize_t regulator_max_uV_show(struct device *dev,
377                                     struct device_attribute *attr, char *buf)
378 {
379         struct regulator_dev *rdev = dev_get_drvdata(dev);
380
381         if (!rdev->constraints)
382                 return sprintf(buf, "constraint not defined\n");
383
384         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
385 }
386 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
387
388 static ssize_t regulator_total_uA_show(struct device *dev,
389                                       struct device_attribute *attr, char *buf)
390 {
391         struct regulator_dev *rdev = dev_get_drvdata(dev);
392         struct regulator *regulator;
393         int uA = 0;
394
395         mutex_lock(&rdev->mutex);
396         list_for_each_entry(regulator, &rdev->consumer_list, list)
397                 uA += regulator->uA_load;
398         mutex_unlock(&rdev->mutex);
399         return sprintf(buf, "%d\n", uA);
400 }
401 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
402
403 static ssize_t regulator_num_users_show(struct device *dev,
404                                       struct device_attribute *attr, char *buf)
405 {
406         struct regulator_dev *rdev = dev_get_drvdata(dev);
407         return sprintf(buf, "%d\n", rdev->use_count);
408 }
409
410 static ssize_t regulator_type_show(struct device *dev,
411                                   struct device_attribute *attr, char *buf)
412 {
413         struct regulator_dev *rdev = dev_get_drvdata(dev);
414
415         switch (rdev->desc->type) {
416         case REGULATOR_VOLTAGE:
417                 return sprintf(buf, "voltage\n");
418         case REGULATOR_CURRENT:
419                 return sprintf(buf, "current\n");
420         }
421         return sprintf(buf, "unknown\n");
422 }
423
424 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
425                                 struct device_attribute *attr, char *buf)
426 {
427         struct regulator_dev *rdev = dev_get_drvdata(dev);
428
429         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
430 }
431 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
432                 regulator_suspend_mem_uV_show, NULL);
433
434 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
435                                 struct device_attribute *attr, char *buf)
436 {
437         struct regulator_dev *rdev = dev_get_drvdata(dev);
438
439         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
440 }
441 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
442                 regulator_suspend_disk_uV_show, NULL);
443
444 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
445                                 struct device_attribute *attr, char *buf)
446 {
447         struct regulator_dev *rdev = dev_get_drvdata(dev);
448
449         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
450 }
451 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
452                 regulator_suspend_standby_uV_show, NULL);
453
454 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
455                                 struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         return regulator_print_opmode(buf,
460                 rdev->constraints->state_mem.mode);
461 }
462 static DEVICE_ATTR(suspend_mem_mode, 0444,
463                 regulator_suspend_mem_mode_show, NULL);
464
465 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
466                                 struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         return regulator_print_opmode(buf,
471                 rdev->constraints->state_disk.mode);
472 }
473 static DEVICE_ATTR(suspend_disk_mode, 0444,
474                 regulator_suspend_disk_mode_show, NULL);
475
476 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
477                                 struct device_attribute *attr, char *buf)
478 {
479         struct regulator_dev *rdev = dev_get_drvdata(dev);
480
481         return regulator_print_opmode(buf,
482                 rdev->constraints->state_standby.mode);
483 }
484 static DEVICE_ATTR(suspend_standby_mode, 0444,
485                 regulator_suspend_standby_mode_show, NULL);
486
487 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
488                                    struct device_attribute *attr, char *buf)
489 {
490         struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492         return regulator_print_state(buf,
493                         rdev->constraints->state_mem.enabled);
494 }
495 static DEVICE_ATTR(suspend_mem_state, 0444,
496                 regulator_suspend_mem_state_show, NULL);
497
498 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
499                                    struct device_attribute *attr, char *buf)
500 {
501         struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503         return regulator_print_state(buf,
504                         rdev->constraints->state_disk.enabled);
505 }
506 static DEVICE_ATTR(suspend_disk_state, 0444,
507                 regulator_suspend_disk_state_show, NULL);
508
509 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
510                                    struct device_attribute *attr, char *buf)
511 {
512         struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514         return regulator_print_state(buf,
515                         rdev->constraints->state_standby.enabled);
516 }
517 static DEVICE_ATTR(suspend_standby_state, 0444,
518                 regulator_suspend_standby_state_show, NULL);
519
520
521 /*
522  * These are the only attributes are present for all regulators.
523  * Other attributes are a function of regulator functionality.
524  */
525 static struct device_attribute regulator_dev_attrs[] = {
526         __ATTR(name, 0444, regulator_name_show, NULL),
527         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
528         __ATTR(type, 0444, regulator_type_show, NULL),
529         __ATTR_NULL,
530 };
531
532 static void regulator_dev_release(struct device *dev)
533 {
534         struct regulator_dev *rdev = dev_get_drvdata(dev);
535         kfree(rdev);
536 }
537
538 static struct class regulator_class = {
539         .name = "regulator",
540         .dev_release = regulator_dev_release,
541         .dev_attrs = regulator_dev_attrs,
542 };
543
544 /* Calculate the new optimum regulator operating mode based on the new total
545  * consumer load. All locks held by caller */
546 static void drms_uA_update(struct regulator_dev *rdev)
547 {
548         struct regulator *sibling;
549         int current_uA = 0, output_uV, input_uV, err;
550         unsigned int mode;
551
552         err = regulator_check_drms(rdev);
553         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
554             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
555                 return;
556
557         /* get output voltage */
558         output_uV = rdev->desc->ops->get_voltage(rdev);
559         if (output_uV <= 0)
560                 return;
561
562         /* get input voltage */
563         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
564                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
565         else
566                 input_uV = rdev->constraints->input_uV;
567         if (input_uV <= 0)
568                 return;
569
570         /* calc total requested load */
571         list_for_each_entry(sibling, &rdev->consumer_list, list)
572                 current_uA += sibling->uA_load;
573
574         /* now get the optimum mode for our new total regulator load */
575         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
576                                                   output_uV, current_uA);
577
578         /* check the new mode is allowed */
579         err = regulator_check_mode(rdev, mode);
580         if (err == 0)
581                 rdev->desc->ops->set_mode(rdev, mode);
582 }
583
584 static int suspend_set_state(struct regulator_dev *rdev,
585         struct regulator_state *rstate)
586 {
587         int ret = 0;
588         bool can_set_state;
589
590         can_set_state = rdev->desc->ops->set_suspend_enable &&
591                 rdev->desc->ops->set_suspend_disable;
592
593         /* If we have no suspend mode configration don't set anything;
594          * only warn if the driver actually makes the suspend mode
595          * configurable.
596          */
597         if (!rstate->enabled && !rstate->disabled) {
598                 if (can_set_state)
599                         printk(KERN_WARNING "%s: No configuration for %s\n",
600                                __func__, rdev_get_name(rdev));
601                 return 0;
602         }
603
604         if (rstate->enabled && rstate->disabled) {
605                 printk(KERN_ERR "%s: invalid configuration for %s\n",
606                        __func__, rdev_get_name(rdev));
607                 return -EINVAL;
608         }
609
610         if (!can_set_state) {
611                 printk(KERN_ERR "%s: no way to set suspend state\n",
612                         __func__);
613                 return -EINVAL;
614         }
615
616         if (rstate->enabled)
617                 ret = rdev->desc->ops->set_suspend_enable(rdev);
618         else
619                 ret = rdev->desc->ops->set_suspend_disable(rdev);
620         if (ret < 0) {
621                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
622                 return ret;
623         }
624
625         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
626                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
627                 if (ret < 0) {
628                         printk(KERN_ERR "%s: failed to set voltage\n",
629                                 __func__);
630                         return ret;
631                 }
632         }
633
634         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
635                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
636                 if (ret < 0) {
637                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
638                         return ret;
639                 }
640         }
641         return ret;
642 }
643
644 /* locks held by caller */
645 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
646 {
647         if (!rdev->constraints)
648                 return -EINVAL;
649
650         switch (state) {
651         case PM_SUSPEND_STANDBY:
652                 return suspend_set_state(rdev,
653                         &rdev->constraints->state_standby);
654         case PM_SUSPEND_MEM:
655                 return suspend_set_state(rdev,
656                         &rdev->constraints->state_mem);
657         case PM_SUSPEND_MAX:
658                 return suspend_set_state(rdev,
659                         &rdev->constraints->state_disk);
660         default:
661                 return -EINVAL;
662         }
663 }
664
665 static void print_constraints(struct regulator_dev *rdev)
666 {
667         struct regulation_constraints *constraints = rdev->constraints;
668         char buf[80] = "";
669         int count = 0;
670         int ret;
671
672         if (constraints->min_uV && constraints->max_uV) {
673                 if (constraints->min_uV == constraints->max_uV)
674                         count += sprintf(buf + count, "%d mV ",
675                                          constraints->min_uV / 1000);
676                 else
677                         count += sprintf(buf + count, "%d <--> %d mV ",
678                                          constraints->min_uV / 1000,
679                                          constraints->max_uV / 1000);
680         }
681
682         if (!constraints->min_uV ||
683             constraints->min_uV != constraints->max_uV) {
684                 ret = _regulator_get_voltage(rdev);
685                 if (ret > 0)
686                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
687         }
688
689         if (constraints->min_uA && constraints->max_uA) {
690                 if (constraints->min_uA == constraints->max_uA)
691                         count += sprintf(buf + count, "%d mA ",
692                                          constraints->min_uA / 1000);
693                 else
694                         count += sprintf(buf + count, "%d <--> %d mA ",
695                                          constraints->min_uA / 1000,
696                                          constraints->max_uA / 1000);
697         }
698
699         if (!constraints->min_uA ||
700             constraints->min_uA != constraints->max_uA) {
701                 ret = _regulator_get_current_limit(rdev);
702                 if (ret > 0)
703                         count += sprintf(buf + count, "at %d uA ", ret / 1000);
704         }
705
706         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
707                 count += sprintf(buf + count, "fast ");
708         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
709                 count += sprintf(buf + count, "normal ");
710         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
711                 count += sprintf(buf + count, "idle ");
712         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
713                 count += sprintf(buf + count, "standby");
714
715         printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
716 }
717
718 static int machine_constraints_voltage(struct regulator_dev *rdev,
719         struct regulation_constraints *constraints)
720 {
721         struct regulator_ops *ops = rdev->desc->ops;
722         const char *name = rdev_get_name(rdev);
723         int ret;
724
725         /* do we need to apply the constraint voltage */
726         if (rdev->constraints->apply_uV &&
727                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
728                 ops->set_voltage) {
729                 ret = ops->set_voltage(rdev,
730                         rdev->constraints->min_uV, rdev->constraints->max_uV);
731                         if (ret < 0) {
732                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
733                                        __func__,
734                                        rdev->constraints->min_uV, name);
735                                 rdev->constraints = NULL;
736                                 return ret;
737                         }
738         }
739
740         /* constrain machine-level voltage specs to fit
741          * the actual range supported by this regulator.
742          */
743         if (ops->list_voltage && rdev->desc->n_voltages) {
744                 int     count = rdev->desc->n_voltages;
745                 int     i;
746                 int     min_uV = INT_MAX;
747                 int     max_uV = INT_MIN;
748                 int     cmin = constraints->min_uV;
749                 int     cmax = constraints->max_uV;
750
751                 /* it's safe to autoconfigure fixed-voltage supplies
752                    and the constraints are used by list_voltage. */
753                 if (count == 1 && !cmin) {
754                         cmin = 1;
755                         cmax = INT_MAX;
756                         constraints->min_uV = cmin;
757                         constraints->max_uV = cmax;
758                 }
759
760                 /* voltage constraints are optional */
761                 if ((cmin == 0) && (cmax == 0))
762                         return 0;
763
764                 /* else require explicit machine-level constraints */
765                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
766                         pr_err("%s: %s '%s' voltage constraints\n",
767                                        __func__, "invalid", name);
768                         return -EINVAL;
769                 }
770
771                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
772                 for (i = 0; i < count; i++) {
773                         int     value;
774
775                         value = ops->list_voltage(rdev, i);
776                         if (value <= 0)
777                                 continue;
778
779                         /* maybe adjust [min_uV..max_uV] */
780                         if (value >= cmin && value < min_uV)
781                                 min_uV = value;
782                         if (value <= cmax && value > max_uV)
783                                 max_uV = value;
784                 }
785
786                 /* final: [min_uV..max_uV] valid iff constraints valid */
787                 if (max_uV < min_uV) {
788                         pr_err("%s: %s '%s' voltage constraints\n",
789                                        __func__, "unsupportable", name);
790                         return -EINVAL;
791                 }
792
793                 /* use regulator's subset of machine constraints */
794                 if (constraints->min_uV < min_uV) {
795                         pr_debug("%s: override '%s' %s, %d -> %d\n",
796                                        __func__, name, "min_uV",
797                                         constraints->min_uV, min_uV);
798                         constraints->min_uV = min_uV;
799                 }
800                 if (constraints->max_uV > max_uV) {
801                         pr_debug("%s: override '%s' %s, %d -> %d\n",
802                                        __func__, name, "max_uV",
803                                         constraints->max_uV, max_uV);
804                         constraints->max_uV = max_uV;
805                 }
806         }
807
808         return 0;
809 }
810
811 /**
812  * set_machine_constraints - sets regulator constraints
813  * @rdev: regulator source
814  * @constraints: constraints to apply
815  *
816  * Allows platform initialisation code to define and constrain
817  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
818  * Constraints *must* be set by platform code in order for some
819  * regulator operations to proceed i.e. set_voltage, set_current_limit,
820  * set_mode.
821  */
822 static int set_machine_constraints(struct regulator_dev *rdev,
823         struct regulation_constraints *constraints)
824 {
825         int ret = 0;
826         const char *name;
827         struct regulator_ops *ops = rdev->desc->ops;
828
829         rdev->constraints = constraints;
830
831         name = rdev_get_name(rdev);
832
833         ret = machine_constraints_voltage(rdev, constraints);
834         if (ret != 0)
835                 goto out;
836
837         /* do we need to setup our suspend state */
838         if (constraints->initial_state) {
839                 ret = suspend_prepare(rdev, constraints->initial_state);
840                 if (ret < 0) {
841                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
842                                __func__, name);
843                         rdev->constraints = NULL;
844                         goto out;
845                 }
846         }
847
848         if (constraints->initial_mode) {
849                 if (!ops->set_mode) {
850                         printk(KERN_ERR "%s: no set_mode operation for %s\n",
851                                __func__, name);
852                         ret = -EINVAL;
853                         goto out;
854                 }
855
856                 ret = ops->set_mode(rdev, constraints->initial_mode);
857                 if (ret < 0) {
858                         printk(KERN_ERR
859                                "%s: failed to set initial mode for %s: %d\n",
860                                __func__, name, ret);
861                         goto out;
862                 }
863         }
864
865         /* If the constraints say the regulator should be on at this point
866          * and we have control then make sure it is enabled.
867          */
868         if ((constraints->always_on || constraints->boot_on) && ops->enable) {
869                 ret = ops->enable(rdev);
870                 if (ret < 0) {
871                         printk(KERN_ERR "%s: failed to enable %s\n",
872                                __func__, name);
873                         rdev->constraints = NULL;
874                         goto out;
875                 }
876         }
877
878         print_constraints(rdev);
879 out:
880         return ret;
881 }
882
883 /**
884  * set_supply - set regulator supply regulator
885  * @rdev: regulator name
886  * @supply_rdev: supply regulator name
887  *
888  * Called by platform initialisation code to set the supply regulator for this
889  * regulator. This ensures that a regulators supply will also be enabled by the
890  * core if it's child is enabled.
891  */
892 static int set_supply(struct regulator_dev *rdev,
893         struct regulator_dev *supply_rdev)
894 {
895         int err;
896
897         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
898                                 "supply");
899         if (err) {
900                 printk(KERN_ERR
901                        "%s: could not add device link %s err %d\n",
902                        __func__, supply_rdev->dev.kobj.name, err);
903                        goto out;
904         }
905         rdev->supply = supply_rdev;
906         list_add(&rdev->slist, &supply_rdev->supply_list);
907 out:
908         return err;
909 }
910
911 /**
912  * set_consumer_device_supply: Bind a regulator to a symbolic supply
913  * @rdev:         regulator source
914  * @consumer_dev: device the supply applies to
915  * @consumer_dev_name: dev_name() string for device supply applies to
916  * @supply:       symbolic name for supply
917  *
918  * Allows platform initialisation code to map physical regulator
919  * sources to symbolic names for supplies for use by devices.  Devices
920  * should use these symbolic names to request regulators, avoiding the
921  * need to provide board-specific regulator names as platform data.
922  *
923  * Only one of consumer_dev and consumer_dev_name may be specified.
924  */
925 static int set_consumer_device_supply(struct regulator_dev *rdev,
926         struct device *consumer_dev, const char *consumer_dev_name,
927         const char *supply)
928 {
929         struct regulator_map *node;
930         int has_dev;
931
932         if (consumer_dev && consumer_dev_name)
933                 return -EINVAL;
934
935         if (!consumer_dev_name && consumer_dev)
936                 consumer_dev_name = dev_name(consumer_dev);
937
938         if (supply == NULL)
939                 return -EINVAL;
940
941         if (consumer_dev_name != NULL)
942                 has_dev = 1;
943         else
944                 has_dev = 0;
945
946         list_for_each_entry(node, &regulator_map_list, list) {
947                 if (consumer_dev_name != node->dev_name)
948                         continue;
949                 if (strcmp(node->supply, supply) != 0)
950                         continue;
951
952                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
953                                 dev_name(&node->regulator->dev),
954                                 node->regulator->desc->name,
955                                 supply,
956                                 dev_name(&rdev->dev), rdev_get_name(rdev));
957                 return -EBUSY;
958         }
959
960         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
961         if (node == NULL)
962                 return -ENOMEM;
963
964         node->regulator = rdev;
965         node->supply = supply;
966
967         if (has_dev) {
968                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
969                 if (node->dev_name == NULL) {
970                         kfree(node);
971                         return -ENOMEM;
972                 }
973         }
974
975         list_add(&node->list, &regulator_map_list);
976         return 0;
977 }
978
979 static void unset_consumer_device_supply(struct regulator_dev *rdev,
980         const char *consumer_dev_name, struct device *consumer_dev)
981 {
982         struct regulator_map *node, *n;
983
984         if (consumer_dev && !consumer_dev_name)
985                 consumer_dev_name = dev_name(consumer_dev);
986
987         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
988                 if (rdev != node->regulator)
989                         continue;
990
991                 if (consumer_dev_name && node->dev_name &&
992                     strcmp(consumer_dev_name, node->dev_name))
993                         continue;
994
995                 list_del(&node->list);
996                 kfree(node->dev_name);
997                 kfree(node);
998                 return;
999         }
1000 }
1001
1002 static void unset_regulator_supplies(struct regulator_dev *rdev)
1003 {
1004         struct regulator_map *node, *n;
1005
1006         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1007                 if (rdev == node->regulator) {
1008                         list_del(&node->list);
1009                         kfree(node->dev_name);
1010                         kfree(node);
1011                         return;
1012                 }
1013         }
1014 }
1015
1016 #define REG_STR_SIZE    32
1017
1018 static struct regulator *create_regulator(struct regulator_dev *rdev,
1019                                           struct device *dev,
1020                                           const char *supply_name)
1021 {
1022         struct regulator *regulator;
1023         char buf[REG_STR_SIZE];
1024         int err, size;
1025
1026         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1027         if (regulator == NULL)
1028                 return NULL;
1029
1030         mutex_lock(&rdev->mutex);
1031         regulator->rdev = rdev;
1032         list_add(&regulator->list, &rdev->consumer_list);
1033
1034         if (dev) {
1035                 /* create a 'requested_microamps_name' sysfs entry */
1036                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1037                         supply_name);
1038                 if (size >= REG_STR_SIZE)
1039                         goto overflow_err;
1040
1041                 regulator->dev = dev;
1042                 sysfs_attr_init(&regulator->dev_attr.attr);
1043                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1044                 if (regulator->dev_attr.attr.name == NULL)
1045                         goto attr_name_err;
1046
1047                 regulator->dev_attr.attr.owner = THIS_MODULE;
1048                 regulator->dev_attr.attr.mode = 0444;
1049                 regulator->dev_attr.show = device_requested_uA_show;
1050                 err = device_create_file(dev, &regulator->dev_attr);
1051                 if (err < 0) {
1052                         printk(KERN_WARNING "%s: could not add regulator_dev"
1053                                 " load sysfs\n", __func__);
1054                         goto attr_name_err;
1055                 }
1056
1057                 /* also add a link to the device sysfs entry */
1058                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1059                                  dev->kobj.name, supply_name);
1060                 if (size >= REG_STR_SIZE)
1061                         goto attr_err;
1062
1063                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1064                 if (regulator->supply_name == NULL)
1065                         goto attr_err;
1066
1067                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1068                                         buf);
1069                 if (err) {
1070                         printk(KERN_WARNING
1071                                "%s: could not add device link %s err %d\n",
1072                                __func__, dev->kobj.name, err);
1073                         device_remove_file(dev, &regulator->dev_attr);
1074                         goto link_name_err;
1075                 }
1076         }
1077         mutex_unlock(&rdev->mutex);
1078         return regulator;
1079 link_name_err:
1080         kfree(regulator->supply_name);
1081 attr_err:
1082         device_remove_file(regulator->dev, &regulator->dev_attr);
1083 attr_name_err:
1084         kfree(regulator->dev_attr.attr.name);
1085 overflow_err:
1086         list_del(&regulator->list);
1087         kfree(regulator);
1088         mutex_unlock(&rdev->mutex);
1089         return NULL;
1090 }
1091
1092 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1093 {
1094         if (!rdev->desc->ops->enable_time)
1095                 return 0;
1096         return rdev->desc->ops->enable_time(rdev);
1097 }
1098
1099 /* Internal regulator request function */
1100 static struct regulator *_regulator_get(struct device *dev, const char *id,
1101                                         int exclusive)
1102 {
1103         struct regulator_dev *rdev;
1104         struct regulator_map *map;
1105         struct regulator *regulator = ERR_PTR(-ENODEV);
1106         const char *devname = NULL;
1107         int ret;
1108
1109         if (id == NULL) {
1110                 printk(KERN_ERR "regulator: get() with no identifier\n");
1111                 return regulator;
1112         }
1113
1114         if (dev)
1115                 devname = dev_name(dev);
1116
1117         mutex_lock(&regulator_list_mutex);
1118
1119         list_for_each_entry(map, &regulator_map_list, list) {
1120                 /* If the mapping has a device set up it must match */
1121                 if (map->dev_name &&
1122                     (!devname || strcmp(map->dev_name, devname)))
1123                         continue;
1124
1125                 if (strcmp(map->supply, id) == 0) {
1126                         rdev = map->regulator;
1127                         goto found;
1128                 }
1129         }
1130
1131 #ifdef CONFIG_REGULATOR_DUMMY
1132         if (!devname)
1133                 devname = "deviceless";
1134
1135         /* If the board didn't flag that it was fully constrained then
1136          * substitute in a dummy regulator so consumers can continue.
1137          */
1138         if (!has_full_constraints) {
1139                 pr_warning("%s supply %s not found, using dummy regulator\n",
1140                            devname, id);
1141                 rdev = dummy_regulator_rdev;
1142                 goto found;
1143         }
1144 #endif
1145
1146         mutex_unlock(&regulator_list_mutex);
1147         return regulator;
1148
1149 found:
1150         if (rdev->exclusive) {
1151                 regulator = ERR_PTR(-EPERM);
1152                 goto out;
1153         }
1154
1155         if (exclusive && rdev->open_count) {
1156                 regulator = ERR_PTR(-EBUSY);
1157                 goto out;
1158         }
1159
1160         if (!try_module_get(rdev->owner))
1161                 goto out;
1162
1163         regulator = create_regulator(rdev, dev, id);
1164         if (regulator == NULL) {
1165                 regulator = ERR_PTR(-ENOMEM);
1166                 module_put(rdev->owner);
1167         }
1168
1169         rdev->open_count++;
1170         if (exclusive) {
1171                 rdev->exclusive = 1;
1172
1173                 ret = _regulator_is_enabled(rdev);
1174                 if (ret > 0)
1175                         rdev->use_count = 1;
1176                 else
1177                         rdev->use_count = 0;
1178         }
1179
1180 out:
1181         mutex_unlock(&regulator_list_mutex);
1182
1183         return regulator;
1184 }
1185
1186 /**
1187  * regulator_get - lookup and obtain a reference to a regulator.
1188  * @dev: device for regulator "consumer"
1189  * @id: Supply name or regulator ID.
1190  *
1191  * Returns a struct regulator corresponding to the regulator producer,
1192  * or IS_ERR() condition containing errno.
1193  *
1194  * Use of supply names configured via regulator_set_device_supply() is
1195  * strongly encouraged.  It is recommended that the supply name used
1196  * should match the name used for the supply and/or the relevant
1197  * device pins in the datasheet.
1198  */
1199 struct regulator *regulator_get(struct device *dev, const char *id)
1200 {
1201         return _regulator_get(dev, id, 0);
1202 }
1203 EXPORT_SYMBOL_GPL(regulator_get);
1204
1205 /**
1206  * regulator_get_exclusive - obtain exclusive access to a regulator.
1207  * @dev: device for regulator "consumer"
1208  * @id: Supply name or regulator ID.
1209  *
1210  * Returns a struct regulator corresponding to the regulator producer,
1211  * or IS_ERR() condition containing errno.  Other consumers will be
1212  * unable to obtain this reference is held and the use count for the
1213  * regulator will be initialised to reflect the current state of the
1214  * regulator.
1215  *
1216  * This is intended for use by consumers which cannot tolerate shared
1217  * use of the regulator such as those which need to force the
1218  * regulator off for correct operation of the hardware they are
1219  * controlling.
1220  *
1221  * Use of supply names configured via regulator_set_device_supply() is
1222  * strongly encouraged.  It is recommended that the supply name used
1223  * should match the name used for the supply and/or the relevant
1224  * device pins in the datasheet.
1225  */
1226 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1227 {
1228         return _regulator_get(dev, id, 1);
1229 }
1230 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1231
1232 /**
1233  * regulator_put - "free" the regulator source
1234  * @regulator: regulator source
1235  *
1236  * Note: drivers must ensure that all regulator_enable calls made on this
1237  * regulator source are balanced by regulator_disable calls prior to calling
1238  * this function.
1239  */
1240 void regulator_put(struct regulator *regulator)
1241 {
1242         struct regulator_dev *rdev;
1243
1244         if (regulator == NULL || IS_ERR(regulator))
1245                 return;
1246
1247         mutex_lock(&regulator_list_mutex);
1248         rdev = regulator->rdev;
1249
1250         /* remove any sysfs entries */
1251         if (regulator->dev) {
1252                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1253                 kfree(regulator->supply_name);
1254                 device_remove_file(regulator->dev, &regulator->dev_attr);
1255                 kfree(regulator->dev_attr.attr.name);
1256         }
1257         list_del(&regulator->list);
1258         kfree(regulator);
1259
1260         rdev->open_count--;
1261         rdev->exclusive = 0;
1262
1263         module_put(rdev->owner);
1264         mutex_unlock(&regulator_list_mutex);
1265 }
1266 EXPORT_SYMBOL_GPL(regulator_put);
1267
1268 static int _regulator_can_change_status(struct regulator_dev *rdev)
1269 {
1270         if (!rdev->constraints)
1271                 return 0;
1272
1273         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1274                 return 1;
1275         else
1276                 return 0;
1277 }
1278
1279 /* locks held by regulator_enable() */
1280 static int _regulator_enable(struct regulator_dev *rdev)
1281 {
1282         int ret, delay;
1283
1284         /* do we need to enable the supply regulator first */
1285         if (rdev->supply) {
1286                 ret = _regulator_enable(rdev->supply);
1287                 if (ret < 0) {
1288                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1289                                __func__, rdev_get_name(rdev), ret);
1290                         return ret;
1291                 }
1292         }
1293
1294         /* check voltage and requested load before enabling */
1295         if (rdev->constraints &&
1296             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1297                 drms_uA_update(rdev);
1298
1299         if (rdev->use_count == 0) {
1300                 /* The regulator may on if it's not switchable or left on */
1301                 ret = _regulator_is_enabled(rdev);
1302                 if (ret == -EINVAL || ret == 0) {
1303                         if (!_regulator_can_change_status(rdev))
1304                                 return -EPERM;
1305
1306                         if (!rdev->desc->ops->enable)
1307                                 return -EINVAL;
1308
1309                         /* Query before enabling in case configuration
1310                          * dependant.  */
1311                         ret = _regulator_get_enable_time(rdev);
1312                         if (ret >= 0) {
1313                                 delay = ret;
1314                         } else {
1315                                 printk(KERN_WARNING
1316                                         "%s: enable_time() failed for %s: %d\n",
1317                                         __func__, rdev_get_name(rdev),
1318                                         ret);
1319                                 delay = 0;
1320                         }
1321
1322                         /* Allow the regulator to ramp; it would be useful
1323                          * to extend this for bulk operations so that the
1324                          * regulators can ramp together.  */
1325                         ret = rdev->desc->ops->enable(rdev);
1326                         if (ret < 0)
1327                                 return ret;
1328
1329                         if (delay >= 1000)
1330                                 mdelay(delay / 1000);
1331                         else if (delay)
1332                                 udelay(delay);
1333
1334                 } else if (ret < 0) {
1335                         printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1336                                __func__, rdev_get_name(rdev), ret);
1337                         return ret;
1338                 }
1339                 /* Fallthrough on positive return values - already enabled */
1340         }
1341
1342         rdev->use_count++;
1343
1344         return 0;
1345 }
1346
1347 /**
1348  * regulator_enable - enable regulator output
1349  * @regulator: regulator source
1350  *
1351  * Request that the regulator be enabled with the regulator output at
1352  * the predefined voltage or current value.  Calls to regulator_enable()
1353  * must be balanced with calls to regulator_disable().
1354  *
1355  * NOTE: the output value can be set by other drivers, boot loader or may be
1356  * hardwired in the regulator.
1357  */
1358 int regulator_enable(struct regulator *regulator)
1359 {
1360         struct regulator_dev *rdev = regulator->rdev;
1361         int ret = 0;
1362
1363         mutex_lock(&rdev->mutex);
1364         ret = _regulator_enable(rdev);
1365         mutex_unlock(&rdev->mutex);
1366         return ret;
1367 }
1368 EXPORT_SYMBOL_GPL(regulator_enable);
1369
1370 /* locks held by regulator_disable() */
1371 static int _regulator_disable(struct regulator_dev *rdev)
1372 {
1373         int ret = 0;
1374
1375         if (WARN(rdev->use_count <= 0,
1376                         "unbalanced disables for %s\n",
1377                         rdev_get_name(rdev)))
1378                 return -EIO;
1379
1380         /* are we the last user and permitted to disable ? */
1381         if (rdev->use_count == 1 &&
1382             (rdev->constraints && !rdev->constraints->always_on)) {
1383
1384                 /* we are last user */
1385                 if (_regulator_can_change_status(rdev) &&
1386                     rdev->desc->ops->disable) {
1387                         ret = rdev->desc->ops->disable(rdev);
1388                         if (ret < 0) {
1389                                 printk(KERN_ERR "%s: failed to disable %s\n",
1390                                        __func__, rdev_get_name(rdev));
1391                                 return ret;
1392                         }
1393
1394                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1395                                              NULL);
1396                 }
1397
1398                 /* decrease our supplies ref count and disable if required */
1399                 if (rdev->supply)
1400                         _regulator_disable(rdev->supply);
1401
1402                 rdev->use_count = 0;
1403         } else if (rdev->use_count > 1) {
1404
1405                 if (rdev->constraints &&
1406                         (rdev->constraints->valid_ops_mask &
1407                         REGULATOR_CHANGE_DRMS))
1408                         drms_uA_update(rdev);
1409
1410                 rdev->use_count--;
1411         }
1412         return ret;
1413 }
1414
1415 /**
1416  * regulator_disable - disable regulator output
1417  * @regulator: regulator source
1418  *
1419  * Disable the regulator output voltage or current.  Calls to
1420  * regulator_enable() must be balanced with calls to
1421  * regulator_disable().
1422  *
1423  * NOTE: this will only disable the regulator output if no other consumer
1424  * devices have it enabled, the regulator device supports disabling and
1425  * machine constraints permit this operation.
1426  */
1427 int regulator_disable(struct regulator *regulator)
1428 {
1429         struct regulator_dev *rdev = regulator->rdev;
1430         int ret = 0;
1431
1432         mutex_lock(&rdev->mutex);
1433         ret = _regulator_disable(rdev);
1434         mutex_unlock(&rdev->mutex);
1435         return ret;
1436 }
1437 EXPORT_SYMBOL_GPL(regulator_disable);
1438
1439 /* locks held by regulator_force_disable() */
1440 static int _regulator_force_disable(struct regulator_dev *rdev)
1441 {
1442         int ret = 0;
1443
1444         /* force disable */
1445         if (rdev->desc->ops->disable) {
1446                 /* ah well, who wants to live forever... */
1447                 ret = rdev->desc->ops->disable(rdev);
1448                 if (ret < 0) {
1449                         printk(KERN_ERR "%s: failed to force disable %s\n",
1450                                __func__, rdev_get_name(rdev));
1451                         return ret;
1452                 }
1453                 /* notify other consumers that power has been forced off */
1454                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1455                         REGULATOR_EVENT_DISABLE, NULL);
1456         }
1457
1458         /* decrease our supplies ref count and disable if required */
1459         if (rdev->supply)
1460                 _regulator_disable(rdev->supply);
1461
1462         rdev->use_count = 0;
1463         return ret;
1464 }
1465
1466 /**
1467  * regulator_force_disable - force disable regulator output
1468  * @regulator: regulator source
1469  *
1470  * Forcibly disable the regulator output voltage or current.
1471  * NOTE: this *will* disable the regulator output even if other consumer
1472  * devices have it enabled. This should be used for situations when device
1473  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1474  */
1475 int regulator_force_disable(struct regulator *regulator)
1476 {
1477         int ret;
1478
1479         mutex_lock(&regulator->rdev->mutex);
1480         regulator->uA_load = 0;
1481         ret = _regulator_force_disable(regulator->rdev);
1482         mutex_unlock(&regulator->rdev->mutex);
1483         return ret;
1484 }
1485 EXPORT_SYMBOL_GPL(regulator_force_disable);
1486
1487 static int _regulator_is_enabled(struct regulator_dev *rdev)
1488 {
1489         /* If we don't know then assume that the regulator is always on */
1490         if (!rdev->desc->ops->is_enabled)
1491                 return 1;
1492
1493         return rdev->desc->ops->is_enabled(rdev);
1494 }
1495
1496 /**
1497  * regulator_is_enabled - is the regulator output enabled
1498  * @regulator: regulator source
1499  *
1500  * Returns positive if the regulator driver backing the source/client
1501  * has requested that the device be enabled, zero if it hasn't, else a
1502  * negative errno code.
1503  *
1504  * Note that the device backing this regulator handle can have multiple
1505  * users, so it might be enabled even if regulator_enable() was never
1506  * called for this particular source.
1507  */
1508 int regulator_is_enabled(struct regulator *regulator)
1509 {
1510         int ret;
1511
1512         mutex_lock(&regulator->rdev->mutex);
1513         ret = _regulator_is_enabled(regulator->rdev);
1514         mutex_unlock(&regulator->rdev->mutex);
1515
1516         return ret;
1517 }
1518 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1519
1520 /**
1521  * regulator_count_voltages - count regulator_list_voltage() selectors
1522  * @regulator: regulator source
1523  *
1524  * Returns number of selectors, or negative errno.  Selectors are
1525  * numbered starting at zero, and typically correspond to bitfields
1526  * in hardware registers.
1527  */
1528 int regulator_count_voltages(struct regulator *regulator)
1529 {
1530         struct regulator_dev    *rdev = regulator->rdev;
1531
1532         return rdev->desc->n_voltages ? : -EINVAL;
1533 }
1534 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1535
1536 /**
1537  * regulator_list_voltage - enumerate supported voltages
1538  * @regulator: regulator source
1539  * @selector: identify voltage to list
1540  * Context: can sleep
1541  *
1542  * Returns a voltage that can be passed to @regulator_set_voltage(),
1543  * zero if this selector code can't be used on this system, or a
1544  * negative errno.
1545  */
1546 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1547 {
1548         struct regulator_dev    *rdev = regulator->rdev;
1549         struct regulator_ops    *ops = rdev->desc->ops;
1550         int                     ret;
1551
1552         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1553                 return -EINVAL;
1554
1555         mutex_lock(&rdev->mutex);
1556         ret = ops->list_voltage(rdev, selector);
1557         mutex_unlock(&rdev->mutex);
1558
1559         if (ret > 0) {
1560                 if (ret < rdev->constraints->min_uV)
1561                         ret = 0;
1562                 else if (ret > rdev->constraints->max_uV)
1563                         ret = 0;
1564         }
1565
1566         return ret;
1567 }
1568 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1569
1570 /**
1571  * regulator_is_supported_voltage - check if a voltage range can be supported
1572  *
1573  * @regulator: Regulator to check.
1574  * @min_uV: Minimum required voltage in uV.
1575  * @max_uV: Maximum required voltage in uV.
1576  *
1577  * Returns a boolean or a negative error code.
1578  */
1579 int regulator_is_supported_voltage(struct regulator *regulator,
1580                                    int min_uV, int max_uV)
1581 {
1582         int i, voltages, ret;
1583
1584         ret = regulator_count_voltages(regulator);
1585         if (ret < 0)
1586                 return ret;
1587         voltages = ret;
1588
1589         for (i = 0; i < voltages; i++) {
1590                 ret = regulator_list_voltage(regulator, i);
1591
1592                 if (ret >= min_uV && ret <= max_uV)
1593                         return 1;
1594         }
1595
1596         return 0;
1597 }
1598
1599 /**
1600  * regulator_set_voltage - set regulator output voltage
1601  * @regulator: regulator source
1602  * @min_uV: Minimum required voltage in uV
1603  * @max_uV: Maximum acceptable voltage in uV
1604  *
1605  * Sets a voltage regulator to the desired output voltage. This can be set
1606  * during any regulator state. IOW, regulator can be disabled or enabled.
1607  *
1608  * If the regulator is enabled then the voltage will change to the new value
1609  * immediately otherwise if the regulator is disabled the regulator will
1610  * output at the new voltage when enabled.
1611  *
1612  * NOTE: If the regulator is shared between several devices then the lowest
1613  * request voltage that meets the system constraints will be used.
1614  * Regulator system constraints must be set for this regulator before
1615  * calling this function otherwise this call will fail.
1616  */
1617 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1618 {
1619         struct regulator_dev *rdev = regulator->rdev;
1620         int ret;
1621
1622         mutex_lock(&rdev->mutex);
1623
1624         /* sanity check */
1625         if (!rdev->desc->ops->set_voltage) {
1626                 ret = -EINVAL;
1627                 goto out;
1628         }
1629
1630         /* constraints check */
1631         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1632         if (ret < 0)
1633                 goto out;
1634         regulator->min_uV = min_uV;
1635         regulator->max_uV = max_uV;
1636         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1637
1638 out:
1639         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1640         mutex_unlock(&rdev->mutex);
1641         return ret;
1642 }
1643 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1644
1645 static int _regulator_get_voltage(struct regulator_dev *rdev)
1646 {
1647         /* sanity check */
1648         if (rdev->desc->ops->get_voltage)
1649                 return rdev->desc->ops->get_voltage(rdev);
1650         else
1651                 return -EINVAL;
1652 }
1653
1654 /**
1655  * regulator_get_voltage - get regulator output voltage
1656  * @regulator: regulator source
1657  *
1658  * This returns the current regulator voltage in uV.
1659  *
1660  * NOTE: If the regulator is disabled it will return the voltage value. This
1661  * function should not be used to determine regulator state.
1662  */
1663 int regulator_get_voltage(struct regulator *regulator)
1664 {
1665         int ret;
1666
1667         mutex_lock(&regulator->rdev->mutex);
1668
1669         ret = _regulator_get_voltage(regulator->rdev);
1670
1671         mutex_unlock(&regulator->rdev->mutex);
1672
1673         return ret;
1674 }
1675 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1676
1677 /**
1678  * regulator_set_current_limit - set regulator output current limit
1679  * @regulator: regulator source
1680  * @min_uA: Minimuum supported current in uA
1681  * @max_uA: Maximum supported current in uA
1682  *
1683  * Sets current sink to the desired output current. This can be set during
1684  * any regulator state. IOW, regulator can be disabled or enabled.
1685  *
1686  * If the regulator is enabled then the current will change to the new value
1687  * immediately otherwise if the regulator is disabled the regulator will
1688  * output at the new current when enabled.
1689  *
1690  * NOTE: Regulator system constraints must be set for this regulator before
1691  * calling this function otherwise this call will fail.
1692  */
1693 int regulator_set_current_limit(struct regulator *regulator,
1694                                int min_uA, int max_uA)
1695 {
1696         struct regulator_dev *rdev = regulator->rdev;
1697         int ret;
1698
1699         mutex_lock(&rdev->mutex);
1700
1701         /* sanity check */
1702         if (!rdev->desc->ops->set_current_limit) {
1703                 ret = -EINVAL;
1704                 goto out;
1705         }
1706
1707         /* constraints check */
1708         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1709         if (ret < 0)
1710                 goto out;
1711
1712         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1713 out:
1714         mutex_unlock(&rdev->mutex);
1715         return ret;
1716 }
1717 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1718
1719 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1720 {
1721         int ret;
1722
1723         mutex_lock(&rdev->mutex);
1724
1725         /* sanity check */
1726         if (!rdev->desc->ops->get_current_limit) {
1727                 ret = -EINVAL;
1728                 goto out;
1729         }
1730
1731         ret = rdev->desc->ops->get_current_limit(rdev);
1732 out:
1733         mutex_unlock(&rdev->mutex);
1734         return ret;
1735 }
1736
1737 /**
1738  * regulator_get_current_limit - get regulator output current
1739  * @regulator: regulator source
1740  *
1741  * This returns the current supplied by the specified current sink in uA.
1742  *
1743  * NOTE: If the regulator is disabled it will return the current value. This
1744  * function should not be used to determine regulator state.
1745  */
1746 int regulator_get_current_limit(struct regulator *regulator)
1747 {
1748         return _regulator_get_current_limit(regulator->rdev);
1749 }
1750 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1751
1752 /**
1753  * regulator_set_mode - set regulator operating mode
1754  * @regulator: regulator source
1755  * @mode: operating mode - one of the REGULATOR_MODE constants
1756  *
1757  * Set regulator operating mode to increase regulator efficiency or improve
1758  * regulation performance.
1759  *
1760  * NOTE: Regulator system constraints must be set for this regulator before
1761  * calling this function otherwise this call will fail.
1762  */
1763 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1764 {
1765         struct regulator_dev *rdev = regulator->rdev;
1766         int ret;
1767
1768         mutex_lock(&rdev->mutex);
1769
1770         /* sanity check */
1771         if (!rdev->desc->ops->set_mode) {
1772                 ret = -EINVAL;
1773                 goto out;
1774         }
1775
1776         /* constraints check */
1777         ret = regulator_check_mode(rdev, mode);
1778         if (ret < 0)
1779                 goto out;
1780
1781         ret = rdev->desc->ops->set_mode(rdev, mode);
1782 out:
1783         mutex_unlock(&rdev->mutex);
1784         return ret;
1785 }
1786 EXPORT_SYMBOL_GPL(regulator_set_mode);
1787
1788 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1789 {
1790         int ret;
1791
1792         mutex_lock(&rdev->mutex);
1793
1794         /* sanity check */
1795         if (!rdev->desc->ops->get_mode) {
1796                 ret = -EINVAL;
1797                 goto out;
1798         }
1799
1800         ret = rdev->desc->ops->get_mode(rdev);
1801 out:
1802         mutex_unlock(&rdev->mutex);
1803         return ret;
1804 }
1805
1806 /**
1807  * regulator_get_mode - get regulator operating mode
1808  * @regulator: regulator source
1809  *
1810  * Get the current regulator operating mode.
1811  */
1812 unsigned int regulator_get_mode(struct regulator *regulator)
1813 {
1814         return _regulator_get_mode(regulator->rdev);
1815 }
1816 EXPORT_SYMBOL_GPL(regulator_get_mode);
1817
1818 /**
1819  * regulator_set_optimum_mode - set regulator optimum operating mode
1820  * @regulator: regulator source
1821  * @uA_load: load current
1822  *
1823  * Notifies the regulator core of a new device load. This is then used by
1824  * DRMS (if enabled by constraints) to set the most efficient regulator
1825  * operating mode for the new regulator loading.
1826  *
1827  * Consumer devices notify their supply regulator of the maximum power
1828  * they will require (can be taken from device datasheet in the power
1829  * consumption tables) when they change operational status and hence power
1830  * state. Examples of operational state changes that can affect power
1831  * consumption are :-
1832  *
1833  *    o Device is opened / closed.
1834  *    o Device I/O is about to begin or has just finished.
1835  *    o Device is idling in between work.
1836  *
1837  * This information is also exported via sysfs to userspace.
1838  *
1839  * DRMS will sum the total requested load on the regulator and change
1840  * to the most efficient operating mode if platform constraints allow.
1841  *
1842  * Returns the new regulator mode or error.
1843  */
1844 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1845 {
1846         struct regulator_dev *rdev = regulator->rdev;
1847         struct regulator *consumer;
1848         int ret, output_uV, input_uV, total_uA_load = 0;
1849         unsigned int mode;
1850
1851         mutex_lock(&rdev->mutex);
1852
1853         regulator->uA_load = uA_load;
1854         ret = regulator_check_drms(rdev);
1855         if (ret < 0)
1856                 goto out;
1857         ret = -EINVAL;
1858
1859         /* sanity check */
1860         if (!rdev->desc->ops->get_optimum_mode)
1861                 goto out;
1862
1863         /* get output voltage */
1864         output_uV = rdev->desc->ops->get_voltage(rdev);
1865         if (output_uV <= 0) {
1866                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1867                         __func__, rdev_get_name(rdev));
1868                 goto out;
1869         }
1870
1871         /* get input voltage */
1872         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1873                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1874         else
1875                 input_uV = rdev->constraints->input_uV;
1876         if (input_uV <= 0) {
1877                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1878                         __func__, rdev_get_name(rdev));
1879                 goto out;
1880         }
1881
1882         /* calc total requested load for this regulator */
1883         list_for_each_entry(consumer, &rdev->consumer_list, list)
1884                 total_uA_load += consumer->uA_load;
1885
1886         mode = rdev->desc->ops->get_optimum_mode(rdev,
1887                                                  input_uV, output_uV,
1888                                                  total_uA_load);
1889         ret = regulator_check_mode(rdev, mode);
1890         if (ret < 0) {
1891                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1892                         " %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1893                         total_uA_load, input_uV, output_uV);
1894                 goto out;
1895         }
1896
1897         ret = rdev->desc->ops->set_mode(rdev, mode);
1898         if (ret < 0) {
1899                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1900                         __func__, mode, rdev_get_name(rdev));
1901                 goto out;
1902         }
1903         ret = mode;
1904 out:
1905         mutex_unlock(&rdev->mutex);
1906         return ret;
1907 }
1908 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1909
1910 /**
1911  * regulator_register_notifier - register regulator event notifier
1912  * @regulator: regulator source
1913  * @nb: notifier block
1914  *
1915  * Register notifier block to receive regulator events.
1916  */
1917 int regulator_register_notifier(struct regulator *regulator,
1918                               struct notifier_block *nb)
1919 {
1920         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1921                                                 nb);
1922 }
1923 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1924
1925 /**
1926  * regulator_unregister_notifier - unregister regulator event notifier
1927  * @regulator: regulator source
1928  * @nb: notifier block
1929  *
1930  * Unregister regulator event notifier block.
1931  */
1932 int regulator_unregister_notifier(struct regulator *regulator,
1933                                 struct notifier_block *nb)
1934 {
1935         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1936                                                   nb);
1937 }
1938 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1939
1940 /* notify regulator consumers and downstream regulator consumers.
1941  * Note mutex must be held by caller.
1942  */
1943 static void _notifier_call_chain(struct regulator_dev *rdev,
1944                                   unsigned long event, void *data)
1945 {
1946         struct regulator_dev *_rdev;
1947
1948         /* call rdev chain first */
1949         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1950
1951         /* now notify regulator we supply */
1952         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1953                 mutex_lock(&_rdev->mutex);
1954                 _notifier_call_chain(_rdev, event, data);
1955                 mutex_unlock(&_rdev->mutex);
1956         }
1957 }
1958
1959 /**
1960  * regulator_bulk_get - get multiple regulator consumers
1961  *
1962  * @dev:           Device to supply
1963  * @num_consumers: Number of consumers to register
1964  * @consumers:     Configuration of consumers; clients are stored here.
1965  *
1966  * @return 0 on success, an errno on failure.
1967  *
1968  * This helper function allows drivers to get several regulator
1969  * consumers in one operation.  If any of the regulators cannot be
1970  * acquired then any regulators that were allocated will be freed
1971  * before returning to the caller.
1972  */
1973 int regulator_bulk_get(struct device *dev, int num_consumers,
1974                        struct regulator_bulk_data *consumers)
1975 {
1976         int i;
1977         int ret;
1978
1979         for (i = 0; i < num_consumers; i++)
1980                 consumers[i].consumer = NULL;
1981
1982         for (i = 0; i < num_consumers; i++) {
1983                 consumers[i].consumer = regulator_get(dev,
1984                                                       consumers[i].supply);
1985                 if (IS_ERR(consumers[i].consumer)) {
1986                         ret = PTR_ERR(consumers[i].consumer);
1987                         dev_err(dev, "Failed to get supply '%s': %d\n",
1988                                 consumers[i].supply, ret);
1989                         consumers[i].consumer = NULL;
1990                         goto err;
1991                 }
1992         }
1993
1994         return 0;
1995
1996 err:
1997         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1998                 regulator_put(consumers[i].consumer);
1999
2000         return ret;
2001 }
2002 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2003
2004 /**
2005  * regulator_bulk_enable - enable multiple regulator consumers
2006  *
2007  * @num_consumers: Number of consumers
2008  * @consumers:     Consumer data; clients are stored here.
2009  * @return         0 on success, an errno on failure
2010  *
2011  * This convenience API allows consumers to enable multiple regulator
2012  * clients in a single API call.  If any consumers cannot be enabled
2013  * then any others that were enabled will be disabled again prior to
2014  * return.
2015  */
2016 int regulator_bulk_enable(int num_consumers,
2017                           struct regulator_bulk_data *consumers)
2018 {
2019         int i;
2020         int ret;
2021
2022         for (i = 0; i < num_consumers; i++) {
2023                 ret = regulator_enable(consumers[i].consumer);
2024                 if (ret != 0)
2025                         goto err;
2026         }
2027
2028         return 0;
2029
2030 err:
2031         printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2032         for (--i; i >= 0; --i)
2033                 regulator_disable(consumers[i].consumer);
2034
2035         return ret;
2036 }
2037 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2038
2039 /**
2040  * regulator_bulk_disable - disable multiple regulator consumers
2041  *
2042  * @num_consumers: Number of consumers
2043  * @consumers:     Consumer data; clients are stored here.
2044  * @return         0 on success, an errno on failure
2045  *
2046  * This convenience API allows consumers to disable multiple regulator
2047  * clients in a single API call.  If any consumers cannot be enabled
2048  * then any others that were disabled will be disabled again prior to
2049  * return.
2050  */
2051 int regulator_bulk_disable(int num_consumers,
2052                            struct regulator_bulk_data *consumers)
2053 {
2054         int i;
2055         int ret;
2056
2057         for (i = 0; i < num_consumers; i++) {
2058                 ret = regulator_disable(consumers[i].consumer);
2059                 if (ret != 0)
2060                         goto err;
2061         }
2062
2063         return 0;
2064
2065 err:
2066         printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2067                ret);
2068         for (--i; i >= 0; --i)
2069                 regulator_enable(consumers[i].consumer);
2070
2071         return ret;
2072 }
2073 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2074
2075 /**
2076  * regulator_bulk_free - free multiple regulator consumers
2077  *
2078  * @num_consumers: Number of consumers
2079  * @consumers:     Consumer data; clients are stored here.
2080  *
2081  * This convenience API allows consumers to free multiple regulator
2082  * clients in a single API call.
2083  */
2084 void regulator_bulk_free(int num_consumers,
2085                          struct regulator_bulk_data *consumers)
2086 {
2087         int i;
2088
2089         for (i = 0; i < num_consumers; i++) {
2090                 regulator_put(consumers[i].consumer);
2091                 consumers[i].consumer = NULL;
2092         }
2093 }
2094 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2095
2096 /**
2097  * regulator_notifier_call_chain - call regulator event notifier
2098  * @rdev: regulator source
2099  * @event: notifier block
2100  * @data: callback-specific data.
2101  *
2102  * Called by regulator drivers to notify clients a regulator event has
2103  * occurred. We also notify regulator clients downstream.
2104  * Note lock must be held by caller.
2105  */
2106 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2107                                   unsigned long event, void *data)
2108 {
2109         _notifier_call_chain(rdev, event, data);
2110         return NOTIFY_DONE;
2111
2112 }
2113 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2114
2115 /**
2116  * regulator_mode_to_status - convert a regulator mode into a status
2117  *
2118  * @mode: Mode to convert
2119  *
2120  * Convert a regulator mode into a status.
2121  */
2122 int regulator_mode_to_status(unsigned int mode)
2123 {
2124         switch (mode) {
2125         case REGULATOR_MODE_FAST:
2126                 return REGULATOR_STATUS_FAST;
2127         case REGULATOR_MODE_NORMAL:
2128                 return REGULATOR_STATUS_NORMAL;
2129         case REGULATOR_MODE_IDLE:
2130                 return REGULATOR_STATUS_IDLE;
2131         case REGULATOR_STATUS_STANDBY:
2132                 return REGULATOR_STATUS_STANDBY;
2133         default:
2134                 return 0;
2135         }
2136 }
2137 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2138
2139 /*
2140  * To avoid cluttering sysfs (and memory) with useless state, only
2141  * create attributes that can be meaningfully displayed.
2142  */
2143 static int add_regulator_attributes(struct regulator_dev *rdev)
2144 {
2145         struct device           *dev = &rdev->dev;
2146         struct regulator_ops    *ops = rdev->desc->ops;
2147         int                     status = 0;
2148
2149         /* some attributes need specific methods to be displayed */
2150         if (ops->get_voltage) {
2151                 status = device_create_file(dev, &dev_attr_microvolts);
2152                 if (status < 0)
2153                         return status;
2154         }
2155         if (ops->get_current_limit) {
2156                 status = device_create_file(dev, &dev_attr_microamps);
2157                 if (status < 0)
2158                         return status;
2159         }
2160         if (ops->get_mode) {
2161                 status = device_create_file(dev, &dev_attr_opmode);
2162                 if (status < 0)
2163                         return status;
2164         }
2165         if (ops->is_enabled) {
2166                 status = device_create_file(dev, &dev_attr_state);
2167                 if (status < 0)
2168                         return status;
2169         }
2170         if (ops->get_status) {
2171                 status = device_create_file(dev, &dev_attr_status);
2172                 if (status < 0)
2173                         return status;
2174         }
2175
2176         /* some attributes are type-specific */
2177         if (rdev->desc->type == REGULATOR_CURRENT) {
2178                 status = device_create_file(dev, &dev_attr_requested_microamps);
2179                 if (status < 0)
2180                         return status;
2181         }
2182
2183         /* all the other attributes exist to support constraints;
2184          * don't show them if there are no constraints, or if the
2185          * relevant supporting methods are missing.
2186          */
2187         if (!rdev->constraints)
2188                 return status;
2189
2190         /* constraints need specific supporting methods */
2191         if (ops->set_voltage) {
2192                 status = device_create_file(dev, &dev_attr_min_microvolts);
2193                 if (status < 0)
2194                         return status;
2195                 status = device_create_file(dev, &dev_attr_max_microvolts);
2196                 if (status < 0)
2197                         return status;
2198         }
2199         if (ops->set_current_limit) {
2200                 status = device_create_file(dev, &dev_attr_min_microamps);
2201                 if (status < 0)
2202                         return status;
2203                 status = device_create_file(dev, &dev_attr_max_microamps);
2204                 if (status < 0)
2205                         return status;
2206         }
2207
2208         /* suspend mode constraints need multiple supporting methods */
2209         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2210                 return status;
2211
2212         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2213         if (status < 0)
2214                 return status;
2215         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2216         if (status < 0)
2217                 return status;
2218         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2219         if (status < 0)
2220                 return status;
2221
2222         if (ops->set_suspend_voltage) {
2223                 status = device_create_file(dev,
2224                                 &dev_attr_suspend_standby_microvolts);
2225                 if (status < 0)
2226                         return status;
2227                 status = device_create_file(dev,
2228                                 &dev_attr_suspend_mem_microvolts);
2229                 if (status < 0)
2230                         return status;
2231                 status = device_create_file(dev,
2232                                 &dev_attr_suspend_disk_microvolts);
2233                 if (status < 0)
2234                         return status;
2235         }
2236
2237         if (ops->set_suspend_mode) {
2238                 status = device_create_file(dev,
2239                                 &dev_attr_suspend_standby_mode);
2240                 if (status < 0)
2241                         return status;
2242                 status = device_create_file(dev,
2243                                 &dev_attr_suspend_mem_mode);
2244                 if (status < 0)
2245                         return status;
2246                 status = device_create_file(dev,
2247                                 &dev_attr_suspend_disk_mode);
2248                 if (status < 0)
2249                         return status;
2250         }
2251
2252         return status;
2253 }
2254
2255 /**
2256  * regulator_register - register regulator
2257  * @regulator_desc: regulator to register
2258  * @dev: struct device for the regulator
2259  * @init_data: platform provided init data, passed through by driver
2260  * @driver_data: private regulator data
2261  *
2262  * Called by regulator drivers to register a regulator.
2263  * Returns 0 on success.
2264  */
2265 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2266         struct device *dev, struct regulator_init_data *init_data,
2267         void *driver_data)
2268 {
2269         static atomic_t regulator_no = ATOMIC_INIT(0);
2270         struct regulator_dev *rdev;
2271         int ret, i;
2272
2273         if (regulator_desc == NULL)
2274                 return ERR_PTR(-EINVAL);
2275
2276         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2277                 return ERR_PTR(-EINVAL);
2278
2279         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2280             regulator_desc->type != REGULATOR_CURRENT)
2281                 return ERR_PTR(-EINVAL);
2282
2283         if (!init_data)
2284                 return ERR_PTR(-EINVAL);
2285
2286         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2287         if (rdev == NULL)
2288                 return ERR_PTR(-ENOMEM);
2289
2290         mutex_lock(&regulator_list_mutex);
2291
2292         mutex_init(&rdev->mutex);
2293         rdev->reg_data = driver_data;
2294         rdev->owner = regulator_desc->owner;
2295         rdev->desc = regulator_desc;
2296         INIT_LIST_HEAD(&rdev->consumer_list);
2297         INIT_LIST_HEAD(&rdev->supply_list);
2298         INIT_LIST_HEAD(&rdev->list);
2299         INIT_LIST_HEAD(&rdev->slist);
2300         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2301
2302         /* preform any regulator specific init */
2303         if (init_data->regulator_init) {
2304                 ret = init_data->regulator_init(rdev->reg_data);
2305                 if (ret < 0)
2306                         goto clean;
2307         }
2308
2309         /* register with sysfs */
2310         rdev->dev.class = &regulator_class;
2311         rdev->dev.parent = dev;
2312         dev_set_name(&rdev->dev, "regulator.%d",
2313                      atomic_inc_return(&regulator_no) - 1);
2314         ret = device_register(&rdev->dev);
2315         if (ret != 0)
2316                 goto clean;
2317
2318         dev_set_drvdata(&rdev->dev, rdev);
2319
2320         /* set regulator constraints */
2321         ret = set_machine_constraints(rdev, &init_data->constraints);
2322         if (ret < 0)
2323                 goto scrub;
2324
2325         /* add attributes supported by this regulator */
2326         ret = add_regulator_attributes(rdev);
2327         if (ret < 0)
2328                 goto scrub;
2329
2330         /* set supply regulator if it exists */
2331         if (init_data->supply_regulator_dev) {
2332                 ret = set_supply(rdev,
2333                         dev_get_drvdata(init_data->supply_regulator_dev));
2334                 if (ret < 0)
2335                         goto scrub;
2336         }
2337
2338         /* add consumers devices */
2339         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2340                 ret = set_consumer_device_supply(rdev,
2341                         init_data->consumer_supplies[i].dev,
2342                         init_data->consumer_supplies[i].dev_name,
2343                         init_data->consumer_supplies[i].supply);
2344                 if (ret < 0) {
2345                         for (--i; i >= 0; i--)
2346                                 unset_consumer_device_supply(rdev,
2347                                     init_data->consumer_supplies[i].dev_name,
2348                                     init_data->consumer_supplies[i].dev);
2349                         goto scrub;
2350                 }
2351         }
2352
2353         list_add(&rdev->list, &regulator_list);
2354 out:
2355         mutex_unlock(&regulator_list_mutex);
2356         return rdev;
2357
2358 scrub:
2359         device_unregister(&rdev->dev);
2360         /* device core frees rdev */
2361         rdev = ERR_PTR(ret);
2362         goto out;
2363
2364 clean:
2365         kfree(rdev);
2366         rdev = ERR_PTR(ret);
2367         goto out;
2368 }
2369 EXPORT_SYMBOL_GPL(regulator_register);
2370
2371 /**
2372  * regulator_unregister - unregister regulator
2373  * @rdev: regulator to unregister
2374  *
2375  * Called by regulator drivers to unregister a regulator.
2376  */
2377 void regulator_unregister(struct regulator_dev *rdev)
2378 {
2379         if (rdev == NULL)
2380                 return;
2381
2382         mutex_lock(&regulator_list_mutex);
2383         WARN_ON(rdev->open_count);
2384         unset_regulator_supplies(rdev);
2385         list_del(&rdev->list);
2386         if (rdev->supply)
2387                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2388         device_unregister(&rdev->dev);
2389         mutex_unlock(&regulator_list_mutex);
2390 }
2391 EXPORT_SYMBOL_GPL(regulator_unregister);
2392
2393 /**
2394  * regulator_suspend_prepare - prepare regulators for system wide suspend
2395  * @state: system suspend state
2396  *
2397  * Configure each regulator with it's suspend operating parameters for state.
2398  * This will usually be called by machine suspend code prior to supending.
2399  */
2400 int regulator_suspend_prepare(suspend_state_t state)
2401 {
2402         struct regulator_dev *rdev;
2403         int ret = 0;
2404
2405         /* ON is handled by regulator active state */
2406         if (state == PM_SUSPEND_ON)
2407                 return -EINVAL;
2408
2409         mutex_lock(&regulator_list_mutex);
2410         list_for_each_entry(rdev, &regulator_list, list) {
2411
2412                 mutex_lock(&rdev->mutex);
2413                 ret = suspend_prepare(rdev, state);
2414                 mutex_unlock(&rdev->mutex);
2415
2416                 if (ret < 0) {
2417                         printk(KERN_ERR "%s: failed to prepare %s\n",
2418                                 __func__, rdev_get_name(rdev));
2419                         goto out;
2420                 }
2421         }
2422 out:
2423         mutex_unlock(&regulator_list_mutex);
2424         return ret;
2425 }
2426 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2427
2428 /**
2429  * regulator_has_full_constraints - the system has fully specified constraints
2430  *
2431  * Calling this function will cause the regulator API to disable all
2432  * regulators which have a zero use count and don't have an always_on
2433  * constraint in a late_initcall.
2434  *
2435  * The intention is that this will become the default behaviour in a
2436  * future kernel release so users are encouraged to use this facility
2437  * now.
2438  */
2439 void regulator_has_full_constraints(void)
2440 {
2441         has_full_constraints = 1;
2442 }
2443 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2444
2445 /**
2446  * rdev_get_drvdata - get rdev regulator driver data
2447  * @rdev: regulator
2448  *
2449  * Get rdev regulator driver private data. This call can be used in the
2450  * regulator driver context.
2451  */
2452 void *rdev_get_drvdata(struct regulator_dev *rdev)
2453 {
2454         return rdev->reg_data;
2455 }
2456 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2457
2458 /**
2459  * regulator_get_drvdata - get regulator driver data
2460  * @regulator: regulator
2461  *
2462  * Get regulator driver private data. This call can be used in the consumer
2463  * driver context when non API regulator specific functions need to be called.
2464  */
2465 void *regulator_get_drvdata(struct regulator *regulator)
2466 {
2467         return regulator->rdev->reg_data;
2468 }
2469 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2470
2471 /**
2472  * regulator_set_drvdata - set regulator driver data
2473  * @regulator: regulator
2474  * @data: data
2475  */
2476 void regulator_set_drvdata(struct regulator *regulator, void *data)
2477 {
2478         regulator->rdev->reg_data = data;
2479 }
2480 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2481
2482 /**
2483  * regulator_get_id - get regulator ID
2484  * @rdev: regulator
2485  */
2486 int rdev_get_id(struct regulator_dev *rdev)
2487 {
2488         return rdev->desc->id;
2489 }
2490 EXPORT_SYMBOL_GPL(rdev_get_id);
2491
2492 struct device *rdev_get_dev(struct regulator_dev *rdev)
2493 {
2494         return &rdev->dev;
2495 }
2496 EXPORT_SYMBOL_GPL(rdev_get_dev);
2497
2498 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2499 {
2500         return reg_init_data->driver_data;
2501 }
2502 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2503
2504 static int __init regulator_init(void)
2505 {
2506         int ret;
2507
2508         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2509
2510         ret = class_register(&regulator_class);
2511
2512         regulator_dummy_init();
2513
2514         return ret;
2515 }
2516
2517 /* init early to allow our consumers to complete system booting */
2518 core_initcall(regulator_init);
2519
2520 static int __init regulator_init_complete(void)
2521 {
2522         struct regulator_dev *rdev;
2523         struct regulator_ops *ops;
2524         struct regulation_constraints *c;
2525         int enabled, ret;
2526         const char *name;
2527
2528         mutex_lock(&regulator_list_mutex);
2529
2530         /* If we have a full configuration then disable any regulators
2531          * which are not in use or always_on.  This will become the
2532          * default behaviour in the future.
2533          */
2534         list_for_each_entry(rdev, &regulator_list, list) {
2535                 ops = rdev->desc->ops;
2536                 c = rdev->constraints;
2537
2538                 name = rdev_get_name(rdev);
2539
2540                 if (!ops->disable || (c && c->always_on))
2541                         continue;
2542
2543                 mutex_lock(&rdev->mutex);
2544
2545                 if (rdev->use_count)
2546                         goto unlock;
2547
2548                 /* If we can't read the status assume it's on. */
2549                 if (ops->is_enabled)
2550                         enabled = ops->is_enabled(rdev);
2551                 else
2552                         enabled = 1;
2553
2554                 if (!enabled)
2555                         goto unlock;
2556
2557                 if (has_full_constraints) {
2558                         /* We log since this may kill the system if it
2559                          * goes wrong. */
2560                         printk(KERN_INFO "%s: disabling %s\n",
2561                                __func__, name);
2562                         ret = ops->disable(rdev);
2563                         if (ret != 0) {
2564                                 printk(KERN_ERR
2565                                        "%s: couldn't disable %s: %d\n",
2566                                        __func__, name, ret);
2567                         }
2568                 } else {
2569                         /* The intention is that in future we will
2570                          * assume that full constraints are provided
2571                          * so warn even if we aren't going to do
2572                          * anything here.
2573                          */
2574                         printk(KERN_WARNING
2575                                "%s: incomplete constraints, leaving %s on\n",
2576                                __func__, name);
2577                 }
2578
2579 unlock:
2580                 mutex_unlock(&rdev->mutex);
2581         }
2582
2583         mutex_unlock(&regulator_list_mutex);
2584
2585         return 0;
2586 }
2587 late_initcall(regulator_init_complete);