intel-iommu: Clean up iommu_domain_identity_map()
[safe/jmp/linux-2.6] / drivers / pci / intel-iommu.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  * Author: Fenghua Yu <fenghua.yu@intel.com>
22  */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
42 #include "pci.h"
43
44 #define ROOT_SIZE               VTD_PAGE_SIZE
45 #define CONTEXT_SIZE            VTD_PAGE_SIZE
46
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
49
50 #define IOAPIC_RANGE_START      (0xfee00000)
51 #define IOAPIC_RANGE_END        (0xfeefffff)
52 #define IOVA_START_ADDR         (0x1000)
53
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
55
56 #define MAX_AGAW_WIDTH 64
57
58 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
59 #define DOMAIN_MAX_PFN(gaw)  ((((u64)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
60
61 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
62 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
63 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
64
65
66 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
67    are never going to work. */
68 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
69 {
70         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
71 }
72
73 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
74 {
75         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
76 }
77 static inline unsigned long page_to_dma_pfn(struct page *pg)
78 {
79         return mm_to_dma_pfn(page_to_pfn(pg));
80 }
81 static inline unsigned long virt_to_dma_pfn(void *p)
82 {
83         return page_to_dma_pfn(virt_to_page(p));
84 }
85
86 /* global iommu list, set NULL for ignored DMAR units */
87 static struct intel_iommu **g_iommus;
88
89 static int rwbf_quirk;
90
91 /*
92  * 0: Present
93  * 1-11: Reserved
94  * 12-63: Context Ptr (12 - (haw-1))
95  * 64-127: Reserved
96  */
97 struct root_entry {
98         u64     val;
99         u64     rsvd1;
100 };
101 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
102 static inline bool root_present(struct root_entry *root)
103 {
104         return (root->val & 1);
105 }
106 static inline void set_root_present(struct root_entry *root)
107 {
108         root->val |= 1;
109 }
110 static inline void set_root_value(struct root_entry *root, unsigned long value)
111 {
112         root->val |= value & VTD_PAGE_MASK;
113 }
114
115 static inline struct context_entry *
116 get_context_addr_from_root(struct root_entry *root)
117 {
118         return (struct context_entry *)
119                 (root_present(root)?phys_to_virt(
120                 root->val & VTD_PAGE_MASK) :
121                 NULL);
122 }
123
124 /*
125  * low 64 bits:
126  * 0: present
127  * 1: fault processing disable
128  * 2-3: translation type
129  * 12-63: address space root
130  * high 64 bits:
131  * 0-2: address width
132  * 3-6: aval
133  * 8-23: domain id
134  */
135 struct context_entry {
136         u64 lo;
137         u64 hi;
138 };
139
140 static inline bool context_present(struct context_entry *context)
141 {
142         return (context->lo & 1);
143 }
144 static inline void context_set_present(struct context_entry *context)
145 {
146         context->lo |= 1;
147 }
148
149 static inline void context_set_fault_enable(struct context_entry *context)
150 {
151         context->lo &= (((u64)-1) << 2) | 1;
152 }
153
154 static inline void context_set_translation_type(struct context_entry *context,
155                                                 unsigned long value)
156 {
157         context->lo &= (((u64)-1) << 4) | 3;
158         context->lo |= (value & 3) << 2;
159 }
160
161 static inline void context_set_address_root(struct context_entry *context,
162                                             unsigned long value)
163 {
164         context->lo |= value & VTD_PAGE_MASK;
165 }
166
167 static inline void context_set_address_width(struct context_entry *context,
168                                              unsigned long value)
169 {
170         context->hi |= value & 7;
171 }
172
173 static inline void context_set_domain_id(struct context_entry *context,
174                                          unsigned long value)
175 {
176         context->hi |= (value & ((1 << 16) - 1)) << 8;
177 }
178
179 static inline void context_clear_entry(struct context_entry *context)
180 {
181         context->lo = 0;
182         context->hi = 0;
183 }
184
185 /*
186  * 0: readable
187  * 1: writable
188  * 2-6: reserved
189  * 7: super page
190  * 8-10: available
191  * 11: snoop behavior
192  * 12-63: Host physcial address
193  */
194 struct dma_pte {
195         u64 val;
196 };
197
198 static inline void dma_clear_pte(struct dma_pte *pte)
199 {
200         pte->val = 0;
201 }
202
203 static inline void dma_set_pte_readable(struct dma_pte *pte)
204 {
205         pte->val |= DMA_PTE_READ;
206 }
207
208 static inline void dma_set_pte_writable(struct dma_pte *pte)
209 {
210         pte->val |= DMA_PTE_WRITE;
211 }
212
213 static inline void dma_set_pte_snp(struct dma_pte *pte)
214 {
215         pte->val |= DMA_PTE_SNP;
216 }
217
218 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
219 {
220         pte->val = (pte->val & ~3) | (prot & 3);
221 }
222
223 static inline u64 dma_pte_addr(struct dma_pte *pte)
224 {
225         return (pte->val & VTD_PAGE_MASK);
226 }
227
228 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
229 {
230         pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
231 }
232
233 static inline bool dma_pte_present(struct dma_pte *pte)
234 {
235         return (pte->val & 3) != 0;
236 }
237
238 /*
239  * This domain is a statically identity mapping domain.
240  *      1. This domain creats a static 1:1 mapping to all usable memory.
241  *      2. It maps to each iommu if successful.
242  *      3. Each iommu mapps to this domain if successful.
243  */
244 struct dmar_domain *si_domain;
245
246 /* devices under the same p2p bridge are owned in one domain */
247 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
248
249 /* domain represents a virtual machine, more than one devices
250  * across iommus may be owned in one domain, e.g. kvm guest.
251  */
252 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 1)
253
254 /* si_domain contains mulitple devices */
255 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 2)
256
257 struct dmar_domain {
258         int     id;                     /* domain id */
259         unsigned long iommu_bmp;        /* bitmap of iommus this domain uses*/
260
261         struct list_head devices;       /* all devices' list */
262         struct iova_domain iovad;       /* iova's that belong to this domain */
263
264         struct dma_pte  *pgd;           /* virtual address */
265         spinlock_t      mapping_lock;   /* page table lock */
266         int             gaw;            /* max guest address width */
267
268         /* adjusted guest address width, 0 is level 2 30-bit */
269         int             agaw;
270
271         int             flags;          /* flags to find out type of domain */
272
273         int             iommu_coherency;/* indicate coherency of iommu access */
274         int             iommu_snooping; /* indicate snooping control feature*/
275         int             iommu_count;    /* reference count of iommu */
276         spinlock_t      iommu_lock;     /* protect iommu set in domain */
277         u64             max_addr;       /* maximum mapped address */
278 };
279
280 /* PCI domain-device relationship */
281 struct device_domain_info {
282         struct list_head link;  /* link to domain siblings */
283         struct list_head global; /* link to global list */
284         int segment;            /* PCI domain */
285         u8 bus;                 /* PCI bus number */
286         u8 devfn;               /* PCI devfn number */
287         struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
288         struct intel_iommu *iommu; /* IOMMU used by this device */
289         struct dmar_domain *domain; /* pointer to domain */
290 };
291
292 static void flush_unmaps_timeout(unsigned long data);
293
294 DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
295
296 #define HIGH_WATER_MARK 250
297 struct deferred_flush_tables {
298         int next;
299         struct iova *iova[HIGH_WATER_MARK];
300         struct dmar_domain *domain[HIGH_WATER_MARK];
301 };
302
303 static struct deferred_flush_tables *deferred_flush;
304
305 /* bitmap for indexing intel_iommus */
306 static int g_num_of_iommus;
307
308 static DEFINE_SPINLOCK(async_umap_flush_lock);
309 static LIST_HEAD(unmaps_to_do);
310
311 static int timer_on;
312 static long list_size;
313
314 static void domain_remove_dev_info(struct dmar_domain *domain);
315
316 #ifdef CONFIG_DMAR_DEFAULT_ON
317 int dmar_disabled = 0;
318 #else
319 int dmar_disabled = 1;
320 #endif /*CONFIG_DMAR_DEFAULT_ON*/
321
322 static int __initdata dmar_map_gfx = 1;
323 static int dmar_forcedac;
324 static int intel_iommu_strict;
325
326 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
327 static DEFINE_SPINLOCK(device_domain_lock);
328 static LIST_HEAD(device_domain_list);
329
330 static struct iommu_ops intel_iommu_ops;
331
332 static int __init intel_iommu_setup(char *str)
333 {
334         if (!str)
335                 return -EINVAL;
336         while (*str) {
337                 if (!strncmp(str, "on", 2)) {
338                         dmar_disabled = 0;
339                         printk(KERN_INFO "Intel-IOMMU: enabled\n");
340                 } else if (!strncmp(str, "off", 3)) {
341                         dmar_disabled = 1;
342                         printk(KERN_INFO "Intel-IOMMU: disabled\n");
343                 } else if (!strncmp(str, "igfx_off", 8)) {
344                         dmar_map_gfx = 0;
345                         printk(KERN_INFO
346                                 "Intel-IOMMU: disable GFX device mapping\n");
347                 } else if (!strncmp(str, "forcedac", 8)) {
348                         printk(KERN_INFO
349                                 "Intel-IOMMU: Forcing DAC for PCI devices\n");
350                         dmar_forcedac = 1;
351                 } else if (!strncmp(str, "strict", 6)) {
352                         printk(KERN_INFO
353                                 "Intel-IOMMU: disable batched IOTLB flush\n");
354                         intel_iommu_strict = 1;
355                 }
356
357                 str += strcspn(str, ",");
358                 while (*str == ',')
359                         str++;
360         }
361         return 0;
362 }
363 __setup("intel_iommu=", intel_iommu_setup);
364
365 static struct kmem_cache *iommu_domain_cache;
366 static struct kmem_cache *iommu_devinfo_cache;
367 static struct kmem_cache *iommu_iova_cache;
368
369 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
370 {
371         unsigned int flags;
372         void *vaddr;
373
374         /* trying to avoid low memory issues */
375         flags = current->flags & PF_MEMALLOC;
376         current->flags |= PF_MEMALLOC;
377         vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
378         current->flags &= (~PF_MEMALLOC | flags);
379         return vaddr;
380 }
381
382
383 static inline void *alloc_pgtable_page(void)
384 {
385         unsigned int flags;
386         void *vaddr;
387
388         /* trying to avoid low memory issues */
389         flags = current->flags & PF_MEMALLOC;
390         current->flags |= PF_MEMALLOC;
391         vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
392         current->flags &= (~PF_MEMALLOC | flags);
393         return vaddr;
394 }
395
396 static inline void free_pgtable_page(void *vaddr)
397 {
398         free_page((unsigned long)vaddr);
399 }
400
401 static inline void *alloc_domain_mem(void)
402 {
403         return iommu_kmem_cache_alloc(iommu_domain_cache);
404 }
405
406 static void free_domain_mem(void *vaddr)
407 {
408         kmem_cache_free(iommu_domain_cache, vaddr);
409 }
410
411 static inline void * alloc_devinfo_mem(void)
412 {
413         return iommu_kmem_cache_alloc(iommu_devinfo_cache);
414 }
415
416 static inline void free_devinfo_mem(void *vaddr)
417 {
418         kmem_cache_free(iommu_devinfo_cache, vaddr);
419 }
420
421 struct iova *alloc_iova_mem(void)
422 {
423         return iommu_kmem_cache_alloc(iommu_iova_cache);
424 }
425
426 void free_iova_mem(struct iova *iova)
427 {
428         kmem_cache_free(iommu_iova_cache, iova);
429 }
430
431
432 static inline int width_to_agaw(int width);
433
434 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
435 {
436         unsigned long sagaw;
437         int agaw = -1;
438
439         sagaw = cap_sagaw(iommu->cap);
440         for (agaw = width_to_agaw(max_gaw);
441              agaw >= 0; agaw--) {
442                 if (test_bit(agaw, &sagaw))
443                         break;
444         }
445
446         return agaw;
447 }
448
449 /*
450  * Calculate max SAGAW for each iommu.
451  */
452 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
453 {
454         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
455 }
456
457 /*
458  * calculate agaw for each iommu.
459  * "SAGAW" may be different across iommus, use a default agaw, and
460  * get a supported less agaw for iommus that don't support the default agaw.
461  */
462 int iommu_calculate_agaw(struct intel_iommu *iommu)
463 {
464         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
465 }
466
467 /* This functionin only returns single iommu in a domain */
468 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
469 {
470         int iommu_id;
471
472         /* si_domain and vm domain should not get here. */
473         BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
474         BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
475
476         iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
477         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
478                 return NULL;
479
480         return g_iommus[iommu_id];
481 }
482
483 static void domain_update_iommu_coherency(struct dmar_domain *domain)
484 {
485         int i;
486
487         domain->iommu_coherency = 1;
488
489         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
490         for (; i < g_num_of_iommus; ) {
491                 if (!ecap_coherent(g_iommus[i]->ecap)) {
492                         domain->iommu_coherency = 0;
493                         break;
494                 }
495                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
496         }
497 }
498
499 static void domain_update_iommu_snooping(struct dmar_domain *domain)
500 {
501         int i;
502
503         domain->iommu_snooping = 1;
504
505         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
506         for (; i < g_num_of_iommus; ) {
507                 if (!ecap_sc_support(g_iommus[i]->ecap)) {
508                         domain->iommu_snooping = 0;
509                         break;
510                 }
511                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
512         }
513 }
514
515 /* Some capabilities may be different across iommus */
516 static void domain_update_iommu_cap(struct dmar_domain *domain)
517 {
518         domain_update_iommu_coherency(domain);
519         domain_update_iommu_snooping(domain);
520 }
521
522 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
523 {
524         struct dmar_drhd_unit *drhd = NULL;
525         int i;
526
527         for_each_drhd_unit(drhd) {
528                 if (drhd->ignored)
529                         continue;
530                 if (segment != drhd->segment)
531                         continue;
532
533                 for (i = 0; i < drhd->devices_cnt; i++) {
534                         if (drhd->devices[i] &&
535                             drhd->devices[i]->bus->number == bus &&
536                             drhd->devices[i]->devfn == devfn)
537                                 return drhd->iommu;
538                         if (drhd->devices[i] &&
539                             drhd->devices[i]->subordinate &&
540                             drhd->devices[i]->subordinate->number <= bus &&
541                             drhd->devices[i]->subordinate->subordinate >= bus)
542                                 return drhd->iommu;
543                 }
544
545                 if (drhd->include_all)
546                         return drhd->iommu;
547         }
548
549         return NULL;
550 }
551
552 static void domain_flush_cache(struct dmar_domain *domain,
553                                void *addr, int size)
554 {
555         if (!domain->iommu_coherency)
556                 clflush_cache_range(addr, size);
557 }
558
559 /* Gets context entry for a given bus and devfn */
560 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
561                 u8 bus, u8 devfn)
562 {
563         struct root_entry *root;
564         struct context_entry *context;
565         unsigned long phy_addr;
566         unsigned long flags;
567
568         spin_lock_irqsave(&iommu->lock, flags);
569         root = &iommu->root_entry[bus];
570         context = get_context_addr_from_root(root);
571         if (!context) {
572                 context = (struct context_entry *)alloc_pgtable_page();
573                 if (!context) {
574                         spin_unlock_irqrestore(&iommu->lock, flags);
575                         return NULL;
576                 }
577                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
578                 phy_addr = virt_to_phys((void *)context);
579                 set_root_value(root, phy_addr);
580                 set_root_present(root);
581                 __iommu_flush_cache(iommu, root, sizeof(*root));
582         }
583         spin_unlock_irqrestore(&iommu->lock, flags);
584         return &context[devfn];
585 }
586
587 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
588 {
589         struct root_entry *root;
590         struct context_entry *context;
591         int ret;
592         unsigned long flags;
593
594         spin_lock_irqsave(&iommu->lock, flags);
595         root = &iommu->root_entry[bus];
596         context = get_context_addr_from_root(root);
597         if (!context) {
598                 ret = 0;
599                 goto out;
600         }
601         ret = context_present(&context[devfn]);
602 out:
603         spin_unlock_irqrestore(&iommu->lock, flags);
604         return ret;
605 }
606
607 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
608 {
609         struct root_entry *root;
610         struct context_entry *context;
611         unsigned long flags;
612
613         spin_lock_irqsave(&iommu->lock, flags);
614         root = &iommu->root_entry[bus];
615         context = get_context_addr_from_root(root);
616         if (context) {
617                 context_clear_entry(&context[devfn]);
618                 __iommu_flush_cache(iommu, &context[devfn], \
619                         sizeof(*context));
620         }
621         spin_unlock_irqrestore(&iommu->lock, flags);
622 }
623
624 static void free_context_table(struct intel_iommu *iommu)
625 {
626         struct root_entry *root;
627         int i;
628         unsigned long flags;
629         struct context_entry *context;
630
631         spin_lock_irqsave(&iommu->lock, flags);
632         if (!iommu->root_entry) {
633                 goto out;
634         }
635         for (i = 0; i < ROOT_ENTRY_NR; i++) {
636                 root = &iommu->root_entry[i];
637                 context = get_context_addr_from_root(root);
638                 if (context)
639                         free_pgtable_page(context);
640         }
641         free_pgtable_page(iommu->root_entry);
642         iommu->root_entry = NULL;
643 out:
644         spin_unlock_irqrestore(&iommu->lock, flags);
645 }
646
647 /* page table handling */
648 #define LEVEL_STRIDE            (9)
649 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
650
651 static inline int agaw_to_level(int agaw)
652 {
653         return agaw + 2;
654 }
655
656 static inline int agaw_to_width(int agaw)
657 {
658         return 30 + agaw * LEVEL_STRIDE;
659
660 }
661
662 static inline int width_to_agaw(int width)
663 {
664         return (width - 30) / LEVEL_STRIDE;
665 }
666
667 static inline unsigned int level_to_offset_bits(int level)
668 {
669         return (level - 1) * LEVEL_STRIDE;
670 }
671
672 static inline int pfn_level_offset(unsigned long pfn, int level)
673 {
674         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
675 }
676
677 static inline unsigned long level_mask(int level)
678 {
679         return -1UL << level_to_offset_bits(level);
680 }
681
682 static inline unsigned long level_size(int level)
683 {
684         return 1UL << level_to_offset_bits(level);
685 }
686
687 static inline unsigned long align_to_level(unsigned long pfn, int level)
688 {
689         return (pfn + level_size(level) - 1) & level_mask(level);
690 }
691
692 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
693                                       unsigned long pfn)
694 {
695         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
696         struct dma_pte *parent, *pte = NULL;
697         int level = agaw_to_level(domain->agaw);
698         int offset;
699         unsigned long flags;
700
701         BUG_ON(!domain->pgd);
702         BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
703         parent = domain->pgd;
704
705         spin_lock_irqsave(&domain->mapping_lock, flags);
706         while (level > 0) {
707                 void *tmp_page;
708
709                 offset = pfn_level_offset(pfn, level);
710                 pte = &parent[offset];
711                 if (level == 1)
712                         break;
713
714                 if (!dma_pte_present(pte)) {
715                         tmp_page = alloc_pgtable_page();
716
717                         if (!tmp_page) {
718                                 spin_unlock_irqrestore(&domain->mapping_lock,
719                                         flags);
720                                 return NULL;
721                         }
722                         domain_flush_cache(domain, tmp_page, PAGE_SIZE);
723                         dma_set_pte_pfn(pte, virt_to_dma_pfn(tmp_page));
724                         /*
725                          * high level table always sets r/w, last level page
726                          * table control read/write
727                          */
728                         dma_set_pte_readable(pte);
729                         dma_set_pte_writable(pte);
730                         domain_flush_cache(domain, pte, sizeof(*pte));
731                 }
732                 parent = phys_to_virt(dma_pte_addr(pte));
733                 level--;
734         }
735
736         spin_unlock_irqrestore(&domain->mapping_lock, flags);
737         return pte;
738 }
739
740 /* return address's pte at specific level */
741 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
742                                          unsigned long pfn,
743                                          int level)
744 {
745         struct dma_pte *parent, *pte = NULL;
746         int total = agaw_to_level(domain->agaw);
747         int offset;
748
749         parent = domain->pgd;
750         while (level <= total) {
751                 offset = pfn_level_offset(pfn, total);
752                 pte = &parent[offset];
753                 if (level == total)
754                         return pte;
755
756                 if (!dma_pte_present(pte))
757                         break;
758                 parent = phys_to_virt(dma_pte_addr(pte));
759                 total--;
760         }
761         return NULL;
762 }
763
764 /* clear one page's page table */
765 static void dma_pte_clear_one(struct dmar_domain *domain, unsigned long pfn)
766 {
767         struct dma_pte *pte = NULL;
768
769         /* get last level pte */
770         pte = dma_pfn_level_pte(domain, pfn, 1);
771
772         if (pte) {
773                 dma_clear_pte(pte);
774                 domain_flush_cache(domain, pte, sizeof(*pte));
775         }
776 }
777
778 /* clear last level pte, a tlb flush should be followed */
779 static void dma_pte_clear_range(struct dmar_domain *domain,
780                                 unsigned long start_pfn,
781                                 unsigned long last_pfn)
782 {
783         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
784
785         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
786         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
787
788         /* we don't need lock here; nobody else touches the iova range */
789         while (start_pfn <= last_pfn) {
790                 dma_pte_clear_one(domain, start_pfn);
791                 start_pfn++;
792         }
793 }
794
795 /* free page table pages. last level pte should already be cleared */
796 static void dma_pte_free_pagetable(struct dmar_domain *domain,
797                                    unsigned long start_pfn,
798                                    unsigned long last_pfn)
799 {
800         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
801         struct dma_pte *pte;
802         int total = agaw_to_level(domain->agaw);
803         int level;
804         unsigned long tmp;
805
806         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
807         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
808
809         /* we don't need lock here, nobody else touches the iova range */
810         level = 2;
811         while (level <= total) {
812                 tmp = align_to_level(start_pfn, level);
813
814                 /* Only clear this pte/pmd if we're asked to clear its
815                    _whole_ range */
816                 if (tmp + level_size(level) - 1 > last_pfn)
817                         return;
818
819                 while (tmp <= last_pfn) {
820                         pte = dma_pfn_level_pte(domain, tmp, level);
821                         if (pte) {
822                                 free_pgtable_page(
823                                         phys_to_virt(dma_pte_addr(pte)));
824                                 dma_clear_pte(pte);
825                                 domain_flush_cache(domain, pte, sizeof(*pte));
826                         }
827                         tmp += level_size(level);
828                 }
829                 level++;
830         }
831         /* free pgd */
832         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
833                 free_pgtable_page(domain->pgd);
834                 domain->pgd = NULL;
835         }
836 }
837
838 /* iommu handling */
839 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
840 {
841         struct root_entry *root;
842         unsigned long flags;
843
844         root = (struct root_entry *)alloc_pgtable_page();
845         if (!root)
846                 return -ENOMEM;
847
848         __iommu_flush_cache(iommu, root, ROOT_SIZE);
849
850         spin_lock_irqsave(&iommu->lock, flags);
851         iommu->root_entry = root;
852         spin_unlock_irqrestore(&iommu->lock, flags);
853
854         return 0;
855 }
856
857 static void iommu_set_root_entry(struct intel_iommu *iommu)
858 {
859         void *addr;
860         u32 sts;
861         unsigned long flag;
862
863         addr = iommu->root_entry;
864
865         spin_lock_irqsave(&iommu->register_lock, flag);
866         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
867
868         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
869
870         /* Make sure hardware complete it */
871         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
872                       readl, (sts & DMA_GSTS_RTPS), sts);
873
874         spin_unlock_irqrestore(&iommu->register_lock, flag);
875 }
876
877 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
878 {
879         u32 val;
880         unsigned long flag;
881
882         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
883                 return;
884
885         spin_lock_irqsave(&iommu->register_lock, flag);
886         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
887
888         /* Make sure hardware complete it */
889         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
890                       readl, (!(val & DMA_GSTS_WBFS)), val);
891
892         spin_unlock_irqrestore(&iommu->register_lock, flag);
893 }
894
895 /* return value determine if we need a write buffer flush */
896 static void __iommu_flush_context(struct intel_iommu *iommu,
897                                   u16 did, u16 source_id, u8 function_mask,
898                                   u64 type)
899 {
900         u64 val = 0;
901         unsigned long flag;
902
903         switch (type) {
904         case DMA_CCMD_GLOBAL_INVL:
905                 val = DMA_CCMD_GLOBAL_INVL;
906                 break;
907         case DMA_CCMD_DOMAIN_INVL:
908                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
909                 break;
910         case DMA_CCMD_DEVICE_INVL:
911                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
912                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
913                 break;
914         default:
915                 BUG();
916         }
917         val |= DMA_CCMD_ICC;
918
919         spin_lock_irqsave(&iommu->register_lock, flag);
920         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
921
922         /* Make sure hardware complete it */
923         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
924                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
925
926         spin_unlock_irqrestore(&iommu->register_lock, flag);
927 }
928
929 /* return value determine if we need a write buffer flush */
930 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
931                                 u64 addr, unsigned int size_order, u64 type)
932 {
933         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
934         u64 val = 0, val_iva = 0;
935         unsigned long flag;
936
937         switch (type) {
938         case DMA_TLB_GLOBAL_FLUSH:
939                 /* global flush doesn't need set IVA_REG */
940                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
941                 break;
942         case DMA_TLB_DSI_FLUSH:
943                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
944                 break;
945         case DMA_TLB_PSI_FLUSH:
946                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
947                 /* Note: always flush non-leaf currently */
948                 val_iva = size_order | addr;
949                 break;
950         default:
951                 BUG();
952         }
953         /* Note: set drain read/write */
954 #if 0
955         /*
956          * This is probably to be super secure.. Looks like we can
957          * ignore it without any impact.
958          */
959         if (cap_read_drain(iommu->cap))
960                 val |= DMA_TLB_READ_DRAIN;
961 #endif
962         if (cap_write_drain(iommu->cap))
963                 val |= DMA_TLB_WRITE_DRAIN;
964
965         spin_lock_irqsave(&iommu->register_lock, flag);
966         /* Note: Only uses first TLB reg currently */
967         if (val_iva)
968                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
969         dmar_writeq(iommu->reg + tlb_offset + 8, val);
970
971         /* Make sure hardware complete it */
972         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
973                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
974
975         spin_unlock_irqrestore(&iommu->register_lock, flag);
976
977         /* check IOTLB invalidation granularity */
978         if (DMA_TLB_IAIG(val) == 0)
979                 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
980         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
981                 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
982                         (unsigned long long)DMA_TLB_IIRG(type),
983                         (unsigned long long)DMA_TLB_IAIG(val));
984 }
985
986 static struct device_domain_info *iommu_support_dev_iotlb(
987         struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
988 {
989         int found = 0;
990         unsigned long flags;
991         struct device_domain_info *info;
992         struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
993
994         if (!ecap_dev_iotlb_support(iommu->ecap))
995                 return NULL;
996
997         if (!iommu->qi)
998                 return NULL;
999
1000         spin_lock_irqsave(&device_domain_lock, flags);
1001         list_for_each_entry(info, &domain->devices, link)
1002                 if (info->bus == bus && info->devfn == devfn) {
1003                         found = 1;
1004                         break;
1005                 }
1006         spin_unlock_irqrestore(&device_domain_lock, flags);
1007
1008         if (!found || !info->dev)
1009                 return NULL;
1010
1011         if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1012                 return NULL;
1013
1014         if (!dmar_find_matched_atsr_unit(info->dev))
1015                 return NULL;
1016
1017         info->iommu = iommu;
1018
1019         return info;
1020 }
1021
1022 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1023 {
1024         if (!info)
1025                 return;
1026
1027         pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1028 }
1029
1030 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1031 {
1032         if (!info->dev || !pci_ats_enabled(info->dev))
1033                 return;
1034
1035         pci_disable_ats(info->dev);
1036 }
1037
1038 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1039                                   u64 addr, unsigned mask)
1040 {
1041         u16 sid, qdep;
1042         unsigned long flags;
1043         struct device_domain_info *info;
1044
1045         spin_lock_irqsave(&device_domain_lock, flags);
1046         list_for_each_entry(info, &domain->devices, link) {
1047                 if (!info->dev || !pci_ats_enabled(info->dev))
1048                         continue;
1049
1050                 sid = info->bus << 8 | info->devfn;
1051                 qdep = pci_ats_queue_depth(info->dev);
1052                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1053         }
1054         spin_unlock_irqrestore(&device_domain_lock, flags);
1055 }
1056
1057 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1058                                   unsigned long pfn, unsigned int pages)
1059 {
1060         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1061         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1062
1063         BUG_ON(pages == 0);
1064
1065         /*
1066          * Fallback to domain selective flush if no PSI support or the size is
1067          * too big.
1068          * PSI requires page size to be 2 ^ x, and the base address is naturally
1069          * aligned to the size
1070          */
1071         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1072                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1073                                                 DMA_TLB_DSI_FLUSH);
1074         else
1075                 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1076                                                 DMA_TLB_PSI_FLUSH);
1077
1078         /*
1079          * In caching mode, domain ID 0 is reserved for non-present to present
1080          * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1081          */
1082         if (!cap_caching_mode(iommu->cap) || did)
1083                 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1084 }
1085
1086 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1087 {
1088         u32 pmen;
1089         unsigned long flags;
1090
1091         spin_lock_irqsave(&iommu->register_lock, flags);
1092         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1093         pmen &= ~DMA_PMEN_EPM;
1094         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1095
1096         /* wait for the protected region status bit to clear */
1097         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1098                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1099
1100         spin_unlock_irqrestore(&iommu->register_lock, flags);
1101 }
1102
1103 static int iommu_enable_translation(struct intel_iommu *iommu)
1104 {
1105         u32 sts;
1106         unsigned long flags;
1107
1108         spin_lock_irqsave(&iommu->register_lock, flags);
1109         iommu->gcmd |= DMA_GCMD_TE;
1110         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1111
1112         /* Make sure hardware complete it */
1113         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1114                       readl, (sts & DMA_GSTS_TES), sts);
1115
1116         spin_unlock_irqrestore(&iommu->register_lock, flags);
1117         return 0;
1118 }
1119
1120 static int iommu_disable_translation(struct intel_iommu *iommu)
1121 {
1122         u32 sts;
1123         unsigned long flag;
1124
1125         spin_lock_irqsave(&iommu->register_lock, flag);
1126         iommu->gcmd &= ~DMA_GCMD_TE;
1127         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1128
1129         /* Make sure hardware complete it */
1130         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1131                       readl, (!(sts & DMA_GSTS_TES)), sts);
1132
1133         spin_unlock_irqrestore(&iommu->register_lock, flag);
1134         return 0;
1135 }
1136
1137
1138 static int iommu_init_domains(struct intel_iommu *iommu)
1139 {
1140         unsigned long ndomains;
1141         unsigned long nlongs;
1142
1143         ndomains = cap_ndoms(iommu->cap);
1144         pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1145         nlongs = BITS_TO_LONGS(ndomains);
1146
1147         /* TBD: there might be 64K domains,
1148          * consider other allocation for future chip
1149          */
1150         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1151         if (!iommu->domain_ids) {
1152                 printk(KERN_ERR "Allocating domain id array failed\n");
1153                 return -ENOMEM;
1154         }
1155         iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1156                         GFP_KERNEL);
1157         if (!iommu->domains) {
1158                 printk(KERN_ERR "Allocating domain array failed\n");
1159                 kfree(iommu->domain_ids);
1160                 return -ENOMEM;
1161         }
1162
1163         spin_lock_init(&iommu->lock);
1164
1165         /*
1166          * if Caching mode is set, then invalid translations are tagged
1167          * with domainid 0. Hence we need to pre-allocate it.
1168          */
1169         if (cap_caching_mode(iommu->cap))
1170                 set_bit(0, iommu->domain_ids);
1171         return 0;
1172 }
1173
1174
1175 static void domain_exit(struct dmar_domain *domain);
1176 static void vm_domain_exit(struct dmar_domain *domain);
1177
1178 void free_dmar_iommu(struct intel_iommu *iommu)
1179 {
1180         struct dmar_domain *domain;
1181         int i;
1182         unsigned long flags;
1183
1184         i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1185         for (; i < cap_ndoms(iommu->cap); ) {
1186                 domain = iommu->domains[i];
1187                 clear_bit(i, iommu->domain_ids);
1188
1189                 spin_lock_irqsave(&domain->iommu_lock, flags);
1190                 if (--domain->iommu_count == 0) {
1191                         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1192                                 vm_domain_exit(domain);
1193                         else
1194                                 domain_exit(domain);
1195                 }
1196                 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1197
1198                 i = find_next_bit(iommu->domain_ids,
1199                         cap_ndoms(iommu->cap), i+1);
1200         }
1201
1202         if (iommu->gcmd & DMA_GCMD_TE)
1203                 iommu_disable_translation(iommu);
1204
1205         if (iommu->irq) {
1206                 set_irq_data(iommu->irq, NULL);
1207                 /* This will mask the irq */
1208                 free_irq(iommu->irq, iommu);
1209                 destroy_irq(iommu->irq);
1210         }
1211
1212         kfree(iommu->domains);
1213         kfree(iommu->domain_ids);
1214
1215         g_iommus[iommu->seq_id] = NULL;
1216
1217         /* if all iommus are freed, free g_iommus */
1218         for (i = 0; i < g_num_of_iommus; i++) {
1219                 if (g_iommus[i])
1220                         break;
1221         }
1222
1223         if (i == g_num_of_iommus)
1224                 kfree(g_iommus);
1225
1226         /* free context mapping */
1227         free_context_table(iommu);
1228 }
1229
1230 static struct dmar_domain *alloc_domain(void)
1231 {
1232         struct dmar_domain *domain;
1233
1234         domain = alloc_domain_mem();
1235         if (!domain)
1236                 return NULL;
1237
1238         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1239         domain->flags = 0;
1240
1241         return domain;
1242 }
1243
1244 static int iommu_attach_domain(struct dmar_domain *domain,
1245                                struct intel_iommu *iommu)
1246 {
1247         int num;
1248         unsigned long ndomains;
1249         unsigned long flags;
1250
1251         ndomains = cap_ndoms(iommu->cap);
1252
1253         spin_lock_irqsave(&iommu->lock, flags);
1254
1255         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1256         if (num >= ndomains) {
1257                 spin_unlock_irqrestore(&iommu->lock, flags);
1258                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1259                 return -ENOMEM;
1260         }
1261
1262         domain->id = num;
1263         set_bit(num, iommu->domain_ids);
1264         set_bit(iommu->seq_id, &domain->iommu_bmp);
1265         iommu->domains[num] = domain;
1266         spin_unlock_irqrestore(&iommu->lock, flags);
1267
1268         return 0;
1269 }
1270
1271 static void iommu_detach_domain(struct dmar_domain *domain,
1272                                 struct intel_iommu *iommu)
1273 {
1274         unsigned long flags;
1275         int num, ndomains;
1276         int found = 0;
1277
1278         spin_lock_irqsave(&iommu->lock, flags);
1279         ndomains = cap_ndoms(iommu->cap);
1280         num = find_first_bit(iommu->domain_ids, ndomains);
1281         for (; num < ndomains; ) {
1282                 if (iommu->domains[num] == domain) {
1283                         found = 1;
1284                         break;
1285                 }
1286                 num = find_next_bit(iommu->domain_ids,
1287                                     cap_ndoms(iommu->cap), num+1);
1288         }
1289
1290         if (found) {
1291                 clear_bit(num, iommu->domain_ids);
1292                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1293                 iommu->domains[num] = NULL;
1294         }
1295         spin_unlock_irqrestore(&iommu->lock, flags);
1296 }
1297
1298 static struct iova_domain reserved_iova_list;
1299 static struct lock_class_key reserved_alloc_key;
1300 static struct lock_class_key reserved_rbtree_key;
1301
1302 static void dmar_init_reserved_ranges(void)
1303 {
1304         struct pci_dev *pdev = NULL;
1305         struct iova *iova;
1306         int i;
1307
1308         init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1309
1310         lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1311                 &reserved_alloc_key);
1312         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1313                 &reserved_rbtree_key);
1314
1315         /* IOAPIC ranges shouldn't be accessed by DMA */
1316         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1317                 IOVA_PFN(IOAPIC_RANGE_END));
1318         if (!iova)
1319                 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1320
1321         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1322         for_each_pci_dev(pdev) {
1323                 struct resource *r;
1324
1325                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1326                         r = &pdev->resource[i];
1327                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1328                                 continue;
1329                         iova = reserve_iova(&reserved_iova_list,
1330                                             IOVA_PFN(r->start),
1331                                             IOVA_PFN(r->end));
1332                         if (!iova)
1333                                 printk(KERN_ERR "Reserve iova failed\n");
1334                 }
1335         }
1336
1337 }
1338
1339 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1340 {
1341         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1342 }
1343
1344 static inline int guestwidth_to_adjustwidth(int gaw)
1345 {
1346         int agaw;
1347         int r = (gaw - 12) % 9;
1348
1349         if (r == 0)
1350                 agaw = gaw;
1351         else
1352                 agaw = gaw + 9 - r;
1353         if (agaw > 64)
1354                 agaw = 64;
1355         return agaw;
1356 }
1357
1358 static int domain_init(struct dmar_domain *domain, int guest_width)
1359 {
1360         struct intel_iommu *iommu;
1361         int adjust_width, agaw;
1362         unsigned long sagaw;
1363
1364         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1365         spin_lock_init(&domain->mapping_lock);
1366         spin_lock_init(&domain->iommu_lock);
1367
1368         domain_reserve_special_ranges(domain);
1369
1370         /* calculate AGAW */
1371         iommu = domain_get_iommu(domain);
1372         if (guest_width > cap_mgaw(iommu->cap))
1373                 guest_width = cap_mgaw(iommu->cap);
1374         domain->gaw = guest_width;
1375         adjust_width = guestwidth_to_adjustwidth(guest_width);
1376         agaw = width_to_agaw(adjust_width);
1377         sagaw = cap_sagaw(iommu->cap);
1378         if (!test_bit(agaw, &sagaw)) {
1379                 /* hardware doesn't support it, choose a bigger one */
1380                 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1381                 agaw = find_next_bit(&sagaw, 5, agaw);
1382                 if (agaw >= 5)
1383                         return -ENODEV;
1384         }
1385         domain->agaw = agaw;
1386         INIT_LIST_HEAD(&domain->devices);
1387
1388         if (ecap_coherent(iommu->ecap))
1389                 domain->iommu_coherency = 1;
1390         else
1391                 domain->iommu_coherency = 0;
1392
1393         if (ecap_sc_support(iommu->ecap))
1394                 domain->iommu_snooping = 1;
1395         else
1396                 domain->iommu_snooping = 0;
1397
1398         domain->iommu_count = 1;
1399
1400         /* always allocate the top pgd */
1401         domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1402         if (!domain->pgd)
1403                 return -ENOMEM;
1404         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1405         return 0;
1406 }
1407
1408 static void domain_exit(struct dmar_domain *domain)
1409 {
1410         struct dmar_drhd_unit *drhd;
1411         struct intel_iommu *iommu;
1412
1413         /* Domain 0 is reserved, so dont process it */
1414         if (!domain)
1415                 return;
1416
1417         domain_remove_dev_info(domain);
1418         /* destroy iovas */
1419         put_iova_domain(&domain->iovad);
1420
1421         /* clear ptes */
1422         dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1423
1424         /* free page tables */
1425         dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1426
1427         for_each_active_iommu(iommu, drhd)
1428                 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1429                         iommu_detach_domain(domain, iommu);
1430
1431         free_domain_mem(domain);
1432 }
1433
1434 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1435                                  u8 bus, u8 devfn, int translation)
1436 {
1437         struct context_entry *context;
1438         unsigned long flags;
1439         struct intel_iommu *iommu;
1440         struct dma_pte *pgd;
1441         unsigned long num;
1442         unsigned long ndomains;
1443         int id;
1444         int agaw;
1445         struct device_domain_info *info = NULL;
1446
1447         pr_debug("Set context mapping for %02x:%02x.%d\n",
1448                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1449
1450         BUG_ON(!domain->pgd);
1451         BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1452                translation != CONTEXT_TT_MULTI_LEVEL);
1453
1454         iommu = device_to_iommu(segment, bus, devfn);
1455         if (!iommu)
1456                 return -ENODEV;
1457
1458         context = device_to_context_entry(iommu, bus, devfn);
1459         if (!context)
1460                 return -ENOMEM;
1461         spin_lock_irqsave(&iommu->lock, flags);
1462         if (context_present(context)) {
1463                 spin_unlock_irqrestore(&iommu->lock, flags);
1464                 return 0;
1465         }
1466
1467         id = domain->id;
1468         pgd = domain->pgd;
1469
1470         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1471             domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1472                 int found = 0;
1473
1474                 /* find an available domain id for this device in iommu */
1475                 ndomains = cap_ndoms(iommu->cap);
1476                 num = find_first_bit(iommu->domain_ids, ndomains);
1477                 for (; num < ndomains; ) {
1478                         if (iommu->domains[num] == domain) {
1479                                 id = num;
1480                                 found = 1;
1481                                 break;
1482                         }
1483                         num = find_next_bit(iommu->domain_ids,
1484                                             cap_ndoms(iommu->cap), num+1);
1485                 }
1486
1487                 if (found == 0) {
1488                         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1489                         if (num >= ndomains) {
1490                                 spin_unlock_irqrestore(&iommu->lock, flags);
1491                                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1492                                 return -EFAULT;
1493                         }
1494
1495                         set_bit(num, iommu->domain_ids);
1496                         set_bit(iommu->seq_id, &domain->iommu_bmp);
1497                         iommu->domains[num] = domain;
1498                         id = num;
1499                 }
1500
1501                 /* Skip top levels of page tables for
1502                  * iommu which has less agaw than default.
1503                  */
1504                 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1505                         pgd = phys_to_virt(dma_pte_addr(pgd));
1506                         if (!dma_pte_present(pgd)) {
1507                                 spin_unlock_irqrestore(&iommu->lock, flags);
1508                                 return -ENOMEM;
1509                         }
1510                 }
1511         }
1512
1513         context_set_domain_id(context, id);
1514
1515         if (translation != CONTEXT_TT_PASS_THROUGH) {
1516                 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1517                 translation = info ? CONTEXT_TT_DEV_IOTLB :
1518                                      CONTEXT_TT_MULTI_LEVEL;
1519         }
1520         /*
1521          * In pass through mode, AW must be programmed to indicate the largest
1522          * AGAW value supported by hardware. And ASR is ignored by hardware.
1523          */
1524         if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1525                 context_set_address_width(context, iommu->msagaw);
1526         else {
1527                 context_set_address_root(context, virt_to_phys(pgd));
1528                 context_set_address_width(context, iommu->agaw);
1529         }
1530
1531         context_set_translation_type(context, translation);
1532         context_set_fault_enable(context);
1533         context_set_present(context);
1534         domain_flush_cache(domain, context, sizeof(*context));
1535
1536         /*
1537          * It's a non-present to present mapping. If hardware doesn't cache
1538          * non-present entry we only need to flush the write-buffer. If the
1539          * _does_ cache non-present entries, then it does so in the special
1540          * domain #0, which we have to flush:
1541          */
1542         if (cap_caching_mode(iommu->cap)) {
1543                 iommu->flush.flush_context(iommu, 0,
1544                                            (((u16)bus) << 8) | devfn,
1545                                            DMA_CCMD_MASK_NOBIT,
1546                                            DMA_CCMD_DEVICE_INVL);
1547                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1548         } else {
1549                 iommu_flush_write_buffer(iommu);
1550         }
1551         iommu_enable_dev_iotlb(info);
1552         spin_unlock_irqrestore(&iommu->lock, flags);
1553
1554         spin_lock_irqsave(&domain->iommu_lock, flags);
1555         if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1556                 domain->iommu_count++;
1557                 domain_update_iommu_cap(domain);
1558         }
1559         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1560         return 0;
1561 }
1562
1563 static int
1564 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1565                         int translation)
1566 {
1567         int ret;
1568         struct pci_dev *tmp, *parent;
1569
1570         ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1571                                          pdev->bus->number, pdev->devfn,
1572                                          translation);
1573         if (ret)
1574                 return ret;
1575
1576         /* dependent device mapping */
1577         tmp = pci_find_upstream_pcie_bridge(pdev);
1578         if (!tmp)
1579                 return 0;
1580         /* Secondary interface's bus number and devfn 0 */
1581         parent = pdev->bus->self;
1582         while (parent != tmp) {
1583                 ret = domain_context_mapping_one(domain,
1584                                                  pci_domain_nr(parent->bus),
1585                                                  parent->bus->number,
1586                                                  parent->devfn, translation);
1587                 if (ret)
1588                         return ret;
1589                 parent = parent->bus->self;
1590         }
1591         if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1592                 return domain_context_mapping_one(domain,
1593                                         pci_domain_nr(tmp->subordinate),
1594                                         tmp->subordinate->number, 0,
1595                                         translation);
1596         else /* this is a legacy PCI bridge */
1597                 return domain_context_mapping_one(domain,
1598                                                   pci_domain_nr(tmp->bus),
1599                                                   tmp->bus->number,
1600                                                   tmp->devfn,
1601                                                   translation);
1602 }
1603
1604 static int domain_context_mapped(struct pci_dev *pdev)
1605 {
1606         int ret;
1607         struct pci_dev *tmp, *parent;
1608         struct intel_iommu *iommu;
1609
1610         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1611                                 pdev->devfn);
1612         if (!iommu)
1613                 return -ENODEV;
1614
1615         ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1616         if (!ret)
1617                 return ret;
1618         /* dependent device mapping */
1619         tmp = pci_find_upstream_pcie_bridge(pdev);
1620         if (!tmp)
1621                 return ret;
1622         /* Secondary interface's bus number and devfn 0 */
1623         parent = pdev->bus->self;
1624         while (parent != tmp) {
1625                 ret = device_context_mapped(iommu, parent->bus->number,
1626                                             parent->devfn);
1627                 if (!ret)
1628                         return ret;
1629                 parent = parent->bus->self;
1630         }
1631         if (tmp->is_pcie)
1632                 return device_context_mapped(iommu, tmp->subordinate->number,
1633                                              0);
1634         else
1635                 return device_context_mapped(iommu, tmp->bus->number,
1636                                              tmp->devfn);
1637 }
1638
1639 static int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1640                               unsigned long phys_pfn, unsigned long nr_pages,
1641                               int prot)
1642 {
1643         struct dma_pte *pte;
1644         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1645
1646         BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1647
1648         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1649                 return -EINVAL;
1650
1651         while (nr_pages--) {
1652                 pte = pfn_to_dma_pte(domain, iov_pfn);
1653                 if (!pte)
1654                         return -ENOMEM;
1655                 /* We don't need lock here, nobody else
1656                  * touches the iova range
1657                  */
1658                 BUG_ON(dma_pte_addr(pte));
1659                 dma_set_pte_pfn(pte, phys_pfn);
1660                 dma_set_pte_prot(pte, prot);
1661                 if (prot & DMA_PTE_SNP)
1662                         dma_set_pte_snp(pte);
1663                 domain_flush_cache(domain, pte, sizeof(*pte));
1664                 iov_pfn++;
1665                 phys_pfn++;
1666         }
1667         return 0;
1668 }
1669
1670 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1671 {
1672         if (!iommu)
1673                 return;
1674
1675         clear_context_table(iommu, bus, devfn);
1676         iommu->flush.flush_context(iommu, 0, 0, 0,
1677                                            DMA_CCMD_GLOBAL_INVL);
1678         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1679 }
1680
1681 static void domain_remove_dev_info(struct dmar_domain *domain)
1682 {
1683         struct device_domain_info *info;
1684         unsigned long flags;
1685         struct intel_iommu *iommu;
1686
1687         spin_lock_irqsave(&device_domain_lock, flags);
1688         while (!list_empty(&domain->devices)) {
1689                 info = list_entry(domain->devices.next,
1690                         struct device_domain_info, link);
1691                 list_del(&info->link);
1692                 list_del(&info->global);
1693                 if (info->dev)
1694                         info->dev->dev.archdata.iommu = NULL;
1695                 spin_unlock_irqrestore(&device_domain_lock, flags);
1696
1697                 iommu_disable_dev_iotlb(info);
1698                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1699                 iommu_detach_dev(iommu, info->bus, info->devfn);
1700                 free_devinfo_mem(info);
1701
1702                 spin_lock_irqsave(&device_domain_lock, flags);
1703         }
1704         spin_unlock_irqrestore(&device_domain_lock, flags);
1705 }
1706
1707 /*
1708  * find_domain
1709  * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1710  */
1711 static struct dmar_domain *
1712 find_domain(struct pci_dev *pdev)
1713 {
1714         struct device_domain_info *info;
1715
1716         /* No lock here, assumes no domain exit in normal case */
1717         info = pdev->dev.archdata.iommu;
1718         if (info)
1719                 return info->domain;
1720         return NULL;
1721 }
1722
1723 /* domain is initialized */
1724 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1725 {
1726         struct dmar_domain *domain, *found = NULL;
1727         struct intel_iommu *iommu;
1728         struct dmar_drhd_unit *drhd;
1729         struct device_domain_info *info, *tmp;
1730         struct pci_dev *dev_tmp;
1731         unsigned long flags;
1732         int bus = 0, devfn = 0;
1733         int segment;
1734         int ret;
1735
1736         domain = find_domain(pdev);
1737         if (domain)
1738                 return domain;
1739
1740         segment = pci_domain_nr(pdev->bus);
1741
1742         dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1743         if (dev_tmp) {
1744                 if (dev_tmp->is_pcie) {
1745                         bus = dev_tmp->subordinate->number;
1746                         devfn = 0;
1747                 } else {
1748                         bus = dev_tmp->bus->number;
1749                         devfn = dev_tmp->devfn;
1750                 }
1751                 spin_lock_irqsave(&device_domain_lock, flags);
1752                 list_for_each_entry(info, &device_domain_list, global) {
1753                         if (info->segment == segment &&
1754                             info->bus == bus && info->devfn == devfn) {
1755                                 found = info->domain;
1756                                 break;
1757                         }
1758                 }
1759                 spin_unlock_irqrestore(&device_domain_lock, flags);
1760                 /* pcie-pci bridge already has a domain, uses it */
1761                 if (found) {
1762                         domain = found;
1763                         goto found_domain;
1764                 }
1765         }
1766
1767         domain = alloc_domain();
1768         if (!domain)
1769                 goto error;
1770
1771         /* Allocate new domain for the device */
1772         drhd = dmar_find_matched_drhd_unit(pdev);
1773         if (!drhd) {
1774                 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1775                         pci_name(pdev));
1776                 return NULL;
1777         }
1778         iommu = drhd->iommu;
1779
1780         ret = iommu_attach_domain(domain, iommu);
1781         if (ret) {
1782                 domain_exit(domain);
1783                 goto error;
1784         }
1785
1786         if (domain_init(domain, gaw)) {
1787                 domain_exit(domain);
1788                 goto error;
1789         }
1790
1791         /* register pcie-to-pci device */
1792         if (dev_tmp) {
1793                 info = alloc_devinfo_mem();
1794                 if (!info) {
1795                         domain_exit(domain);
1796                         goto error;
1797                 }
1798                 info->segment = segment;
1799                 info->bus = bus;
1800                 info->devfn = devfn;
1801                 info->dev = NULL;
1802                 info->domain = domain;
1803                 /* This domain is shared by devices under p2p bridge */
1804                 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1805
1806                 /* pcie-to-pci bridge already has a domain, uses it */
1807                 found = NULL;
1808                 spin_lock_irqsave(&device_domain_lock, flags);
1809                 list_for_each_entry(tmp, &device_domain_list, global) {
1810                         if (tmp->segment == segment &&
1811                             tmp->bus == bus && tmp->devfn == devfn) {
1812                                 found = tmp->domain;
1813                                 break;
1814                         }
1815                 }
1816                 if (found) {
1817                         free_devinfo_mem(info);
1818                         domain_exit(domain);
1819                         domain = found;
1820                 } else {
1821                         list_add(&info->link, &domain->devices);
1822                         list_add(&info->global, &device_domain_list);
1823                 }
1824                 spin_unlock_irqrestore(&device_domain_lock, flags);
1825         }
1826
1827 found_domain:
1828         info = alloc_devinfo_mem();
1829         if (!info)
1830                 goto error;
1831         info->segment = segment;
1832         info->bus = pdev->bus->number;
1833         info->devfn = pdev->devfn;
1834         info->dev = pdev;
1835         info->domain = domain;
1836         spin_lock_irqsave(&device_domain_lock, flags);
1837         /* somebody is fast */
1838         found = find_domain(pdev);
1839         if (found != NULL) {
1840                 spin_unlock_irqrestore(&device_domain_lock, flags);
1841                 if (found != domain) {
1842                         domain_exit(domain);
1843                         domain = found;
1844                 }
1845                 free_devinfo_mem(info);
1846                 return domain;
1847         }
1848         list_add(&info->link, &domain->devices);
1849         list_add(&info->global, &device_domain_list);
1850         pdev->dev.archdata.iommu = info;
1851         spin_unlock_irqrestore(&device_domain_lock, flags);
1852         return domain;
1853 error:
1854         /* recheck it here, maybe others set it */
1855         return find_domain(pdev);
1856 }
1857
1858 static int iommu_identity_mapping;
1859
1860 static int iommu_domain_identity_map(struct dmar_domain *domain,
1861                                      unsigned long long start,
1862                                      unsigned long long end)
1863 {
1864         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1865         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1866
1867         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1868                           dma_to_mm_pfn(last_vpfn))) {
1869                 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1870                 return -ENOMEM;
1871         }
1872
1873         pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1874                  start, end, domain->id);
1875         /*
1876          * RMRR range might have overlap with physical memory range,
1877          * clear it first
1878          */
1879         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1880
1881         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1882                                   last_vpfn - first_vpfn + 1,
1883                                   DMA_PTE_READ|DMA_PTE_WRITE);
1884 }
1885
1886 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1887                                       unsigned long long start,
1888                                       unsigned long long end)
1889 {
1890         struct dmar_domain *domain;
1891         int ret;
1892
1893         printk(KERN_INFO
1894                "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1895                pci_name(pdev), start, end);
1896
1897         domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1898         if (!domain)
1899                 return -ENOMEM;
1900
1901         ret = iommu_domain_identity_map(domain, start, end);
1902         if (ret)
1903                 goto error;
1904
1905         /* context entry init */
1906         ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
1907         if (ret)
1908                 goto error;
1909
1910         return 0;
1911
1912  error:
1913         domain_exit(domain);
1914         return ret;
1915 }
1916
1917 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1918         struct pci_dev *pdev)
1919 {
1920         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1921                 return 0;
1922         return iommu_prepare_identity_map(pdev, rmrr->base_address,
1923                 rmrr->end_address + 1);
1924 }
1925
1926 #ifdef CONFIG_DMAR_FLOPPY_WA
1927 static inline void iommu_prepare_isa(void)
1928 {
1929         struct pci_dev *pdev;
1930         int ret;
1931
1932         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1933         if (!pdev)
1934                 return;
1935
1936         printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
1937         ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1938
1939         if (ret)
1940                 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
1941                        "floppy might not work\n");
1942
1943 }
1944 #else
1945 static inline void iommu_prepare_isa(void)
1946 {
1947         return;
1948 }
1949 #endif /* !CONFIG_DMAR_FLPY_WA */
1950
1951 /* Initialize each context entry as pass through.*/
1952 static int __init init_context_pass_through(void)
1953 {
1954         struct pci_dev *pdev = NULL;
1955         struct dmar_domain *domain;
1956         int ret;
1957
1958         for_each_pci_dev(pdev) {
1959                 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1960                 ret = domain_context_mapping(domain, pdev,
1961                                              CONTEXT_TT_PASS_THROUGH);
1962                 if (ret)
1963                         return ret;
1964         }
1965         return 0;
1966 }
1967
1968 static int md_domain_init(struct dmar_domain *domain, int guest_width);
1969
1970 static int __init si_domain_work_fn(unsigned long start_pfn,
1971                                     unsigned long end_pfn, void *datax)
1972 {
1973         int *ret = datax;
1974
1975         *ret = iommu_domain_identity_map(si_domain,
1976                                          (uint64_t)start_pfn << PAGE_SHIFT,
1977                                          (uint64_t)end_pfn << PAGE_SHIFT);
1978         return *ret;
1979
1980 }
1981
1982 static int si_domain_init(void)
1983 {
1984         struct dmar_drhd_unit *drhd;
1985         struct intel_iommu *iommu;
1986         int nid, ret = 0;
1987
1988         si_domain = alloc_domain();
1989         if (!si_domain)
1990                 return -EFAULT;
1991
1992         pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
1993
1994         for_each_active_iommu(iommu, drhd) {
1995                 ret = iommu_attach_domain(si_domain, iommu);
1996                 if (ret) {
1997                         domain_exit(si_domain);
1998                         return -EFAULT;
1999                 }
2000         }
2001
2002         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2003                 domain_exit(si_domain);
2004                 return -EFAULT;
2005         }
2006
2007         si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2008
2009         for_each_online_node(nid) {
2010                 work_with_active_regions(nid, si_domain_work_fn, &ret);
2011                 if (ret)
2012                         return ret;
2013         }
2014
2015         return 0;
2016 }
2017
2018 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2019                                           struct pci_dev *pdev);
2020 static int identity_mapping(struct pci_dev *pdev)
2021 {
2022         struct device_domain_info *info;
2023
2024         if (likely(!iommu_identity_mapping))
2025                 return 0;
2026
2027
2028         list_for_each_entry(info, &si_domain->devices, link)
2029                 if (info->dev == pdev)
2030                         return 1;
2031         return 0;
2032 }
2033
2034 static int domain_add_dev_info(struct dmar_domain *domain,
2035                                   struct pci_dev *pdev)
2036 {
2037         struct device_domain_info *info;
2038         unsigned long flags;
2039
2040         info = alloc_devinfo_mem();
2041         if (!info)
2042                 return -ENOMEM;
2043
2044         info->segment = pci_domain_nr(pdev->bus);
2045         info->bus = pdev->bus->number;
2046         info->devfn = pdev->devfn;
2047         info->dev = pdev;
2048         info->domain = domain;
2049
2050         spin_lock_irqsave(&device_domain_lock, flags);
2051         list_add(&info->link, &domain->devices);
2052         list_add(&info->global, &device_domain_list);
2053         pdev->dev.archdata.iommu = info;
2054         spin_unlock_irqrestore(&device_domain_lock, flags);
2055
2056         return 0;
2057 }
2058
2059 static int iommu_prepare_static_identity_mapping(void)
2060 {
2061         struct pci_dev *pdev = NULL;
2062         int ret;
2063
2064         ret = si_domain_init();
2065         if (ret)
2066                 return -EFAULT;
2067
2068         for_each_pci_dev(pdev) {
2069                 printk(KERN_INFO "IOMMU: identity mapping for device %s\n",
2070                        pci_name(pdev));
2071
2072                 ret = domain_context_mapping(si_domain, pdev,
2073                                              CONTEXT_TT_MULTI_LEVEL);
2074                 if (ret)
2075                         return ret;
2076                 ret = domain_add_dev_info(si_domain, pdev);
2077                 if (ret)
2078                         return ret;
2079         }
2080
2081         return 0;
2082 }
2083
2084 int __init init_dmars(void)
2085 {
2086         struct dmar_drhd_unit *drhd;
2087         struct dmar_rmrr_unit *rmrr;
2088         struct pci_dev *pdev;
2089         struct intel_iommu *iommu;
2090         int i, ret;
2091         int pass_through = 1;
2092
2093         /*
2094          * In case pass through can not be enabled, iommu tries to use identity
2095          * mapping.
2096          */
2097         if (iommu_pass_through)
2098                 iommu_identity_mapping = 1;
2099
2100         /*
2101          * for each drhd
2102          *    allocate root
2103          *    initialize and program root entry to not present
2104          * endfor
2105          */
2106         for_each_drhd_unit(drhd) {
2107                 g_num_of_iommus++;
2108                 /*
2109                  * lock not needed as this is only incremented in the single
2110                  * threaded kernel __init code path all other access are read
2111                  * only
2112                  */
2113         }
2114
2115         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2116                         GFP_KERNEL);
2117         if (!g_iommus) {
2118                 printk(KERN_ERR "Allocating global iommu array failed\n");
2119                 ret = -ENOMEM;
2120                 goto error;
2121         }
2122
2123         deferred_flush = kzalloc(g_num_of_iommus *
2124                 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2125         if (!deferred_flush) {
2126                 kfree(g_iommus);
2127                 ret = -ENOMEM;
2128                 goto error;
2129         }
2130
2131         for_each_drhd_unit(drhd) {
2132                 if (drhd->ignored)
2133                         continue;
2134
2135                 iommu = drhd->iommu;
2136                 g_iommus[iommu->seq_id] = iommu;
2137
2138                 ret = iommu_init_domains(iommu);
2139                 if (ret)
2140                         goto error;
2141
2142                 /*
2143                  * TBD:
2144                  * we could share the same root & context tables
2145                  * amoung all IOMMU's. Need to Split it later.
2146                  */
2147                 ret = iommu_alloc_root_entry(iommu);
2148                 if (ret) {
2149                         printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2150                         goto error;
2151                 }
2152                 if (!ecap_pass_through(iommu->ecap))
2153                         pass_through = 0;
2154         }
2155         if (iommu_pass_through)
2156                 if (!pass_through) {
2157                         printk(KERN_INFO
2158                                "Pass Through is not supported by hardware.\n");
2159                         iommu_pass_through = 0;
2160                 }
2161
2162         /*
2163          * Start from the sane iommu hardware state.
2164          */
2165         for_each_drhd_unit(drhd) {
2166                 if (drhd->ignored)
2167                         continue;
2168
2169                 iommu = drhd->iommu;
2170
2171                 /*
2172                  * If the queued invalidation is already initialized by us
2173                  * (for example, while enabling interrupt-remapping) then
2174                  * we got the things already rolling from a sane state.
2175                  */
2176                 if (iommu->qi)
2177                         continue;
2178
2179                 /*
2180                  * Clear any previous faults.
2181                  */
2182                 dmar_fault(-1, iommu);
2183                 /*
2184                  * Disable queued invalidation if supported and already enabled
2185                  * before OS handover.
2186                  */
2187                 dmar_disable_qi(iommu);
2188         }
2189
2190         for_each_drhd_unit(drhd) {
2191                 if (drhd->ignored)
2192                         continue;
2193
2194                 iommu = drhd->iommu;
2195
2196                 if (dmar_enable_qi(iommu)) {
2197                         /*
2198                          * Queued Invalidate not enabled, use Register Based
2199                          * Invalidate
2200                          */
2201                         iommu->flush.flush_context = __iommu_flush_context;
2202                         iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2203                         printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2204                                "invalidation\n",
2205                                (unsigned long long)drhd->reg_base_addr);
2206                 } else {
2207                         iommu->flush.flush_context = qi_flush_context;
2208                         iommu->flush.flush_iotlb = qi_flush_iotlb;
2209                         printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2210                                "invalidation\n",
2211                                (unsigned long long)drhd->reg_base_addr);
2212                 }
2213         }
2214
2215         /*
2216          * If pass through is set and enabled, context entries of all pci
2217          * devices are intialized by pass through translation type.
2218          */
2219         if (iommu_pass_through) {
2220                 ret = init_context_pass_through();
2221                 if (ret) {
2222                         printk(KERN_ERR "IOMMU: Pass through init failed.\n");
2223                         iommu_pass_through = 0;
2224                 }
2225         }
2226
2227         /*
2228          * If pass through is not set or not enabled, setup context entries for
2229          * identity mappings for rmrr, gfx, and isa and may fall back to static
2230          * identity mapping if iommu_identity_mapping is set.
2231          */
2232         if (!iommu_pass_through) {
2233                 if (iommu_identity_mapping)
2234                         iommu_prepare_static_identity_mapping();
2235                 /*
2236                  * For each rmrr
2237                  *   for each dev attached to rmrr
2238                  *   do
2239                  *     locate drhd for dev, alloc domain for dev
2240                  *     allocate free domain
2241                  *     allocate page table entries for rmrr
2242                  *     if context not allocated for bus
2243                  *           allocate and init context
2244                  *           set present in root table for this bus
2245                  *     init context with domain, translation etc
2246                  *    endfor
2247                  * endfor
2248                  */
2249                 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2250                 for_each_rmrr_units(rmrr) {
2251                         for (i = 0; i < rmrr->devices_cnt; i++) {
2252                                 pdev = rmrr->devices[i];
2253                                 /*
2254                                  * some BIOS lists non-exist devices in DMAR
2255                                  * table.
2256                                  */
2257                                 if (!pdev)
2258                                         continue;
2259                                 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2260                                 if (ret)
2261                                         printk(KERN_ERR
2262                                  "IOMMU: mapping reserved region failed\n");
2263                         }
2264                 }
2265
2266                 iommu_prepare_isa();
2267         }
2268
2269         /*
2270          * for each drhd
2271          *   enable fault log
2272          *   global invalidate context cache
2273          *   global invalidate iotlb
2274          *   enable translation
2275          */
2276         for_each_drhd_unit(drhd) {
2277                 if (drhd->ignored)
2278                         continue;
2279                 iommu = drhd->iommu;
2280
2281                 iommu_flush_write_buffer(iommu);
2282
2283                 ret = dmar_set_interrupt(iommu);
2284                 if (ret)
2285                         goto error;
2286
2287                 iommu_set_root_entry(iommu);
2288
2289                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2290                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2291                 iommu_disable_protect_mem_regions(iommu);
2292
2293                 ret = iommu_enable_translation(iommu);
2294                 if (ret)
2295                         goto error;
2296         }
2297
2298         return 0;
2299 error:
2300         for_each_drhd_unit(drhd) {
2301                 if (drhd->ignored)
2302                         continue;
2303                 iommu = drhd->iommu;
2304                 free_iommu(iommu);
2305         }
2306         kfree(g_iommus);
2307         return ret;
2308 }
2309
2310 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2311                                             size_t size)
2312 {
2313         host_addr &= ~PAGE_MASK;
2314         host_addr += size + PAGE_SIZE - 1;
2315
2316         return host_addr >> VTD_PAGE_SHIFT;
2317 }
2318
2319 struct iova *
2320 iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
2321 {
2322         struct iova *piova;
2323
2324         /* Make sure it's in range */
2325         end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
2326         if (!size || (IOVA_START_ADDR + size > end))
2327                 return NULL;
2328
2329         piova = alloc_iova(&domain->iovad,
2330                         size >> PAGE_SHIFT, IOVA_PFN(end), 1);
2331         return piova;
2332 }
2333
2334 static struct iova *
2335 __intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
2336                    size_t size, u64 dma_mask)
2337 {
2338         struct pci_dev *pdev = to_pci_dev(dev);
2339         struct iova *iova = NULL;
2340
2341         if (dma_mask <= DMA_BIT_MASK(32) || dmar_forcedac)
2342                 iova = iommu_alloc_iova(domain, size, dma_mask);
2343         else {
2344                 /*
2345                  * First try to allocate an io virtual address in
2346                  * DMA_BIT_MASK(32) and if that fails then try allocating
2347                  * from higher range
2348                  */
2349                 iova = iommu_alloc_iova(domain, size, DMA_BIT_MASK(32));
2350                 if (!iova)
2351                         iova = iommu_alloc_iova(domain, size, dma_mask);
2352         }
2353
2354         if (!iova) {
2355                 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
2356                 return NULL;
2357         }
2358
2359         return iova;
2360 }
2361
2362 static struct dmar_domain *
2363 get_valid_domain_for_dev(struct pci_dev *pdev)
2364 {
2365         struct dmar_domain *domain;
2366         int ret;
2367
2368         domain = get_domain_for_dev(pdev,
2369                         DEFAULT_DOMAIN_ADDRESS_WIDTH);
2370         if (!domain) {
2371                 printk(KERN_ERR
2372                         "Allocating domain for %s failed", pci_name(pdev));
2373                 return NULL;
2374         }
2375
2376         /* make sure context mapping is ok */
2377         if (unlikely(!domain_context_mapped(pdev))) {
2378                 ret = domain_context_mapping(domain, pdev,
2379                                              CONTEXT_TT_MULTI_LEVEL);
2380                 if (ret) {
2381                         printk(KERN_ERR
2382                                 "Domain context map for %s failed",
2383                                 pci_name(pdev));
2384                         return NULL;
2385                 }
2386         }
2387
2388         return domain;
2389 }
2390
2391 static int iommu_dummy(struct pci_dev *pdev)
2392 {
2393         return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2394 }
2395
2396 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2397 static int iommu_no_mapping(struct pci_dev *pdev)
2398 {
2399         int found;
2400
2401         if (!iommu_identity_mapping)
2402                 return iommu_dummy(pdev);
2403
2404         found = identity_mapping(pdev);
2405         if (found) {
2406                 if (pdev->dma_mask > DMA_BIT_MASK(32))
2407                         return 1;
2408                 else {
2409                         /*
2410                          * 32 bit DMA is removed from si_domain and fall back
2411                          * to non-identity mapping.
2412                          */
2413                         domain_remove_one_dev_info(si_domain, pdev);
2414                         printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2415                                pci_name(pdev));
2416                         return 0;
2417                 }
2418         } else {
2419                 /*
2420                  * In case of a detached 64 bit DMA device from vm, the device
2421                  * is put into si_domain for identity mapping.
2422                  */
2423                 if (pdev->dma_mask > DMA_BIT_MASK(32)) {
2424                         int ret;
2425                         ret = domain_add_dev_info(si_domain, pdev);
2426                         if (!ret) {
2427                                 printk(KERN_INFO "64bit %s uses identity mapping\n",
2428                                        pci_name(pdev));
2429                                 return 1;
2430                         }
2431                 }
2432         }
2433
2434         return iommu_dummy(pdev);
2435 }
2436
2437 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2438                                      size_t size, int dir, u64 dma_mask)
2439 {
2440         struct pci_dev *pdev = to_pci_dev(hwdev);
2441         struct dmar_domain *domain;
2442         phys_addr_t start_paddr;
2443         struct iova *iova;
2444         int prot = 0;
2445         int ret;
2446         struct intel_iommu *iommu;
2447
2448         BUG_ON(dir == DMA_NONE);
2449
2450         if (iommu_no_mapping(pdev))
2451                 return paddr;
2452
2453         domain = get_valid_domain_for_dev(pdev);
2454         if (!domain)
2455                 return 0;
2456
2457         iommu = domain_get_iommu(domain);
2458         size = aligned_nrpages(paddr, size);
2459
2460         iova = __intel_alloc_iova(hwdev, domain, size << VTD_PAGE_SHIFT, pdev->dma_mask);
2461         if (!iova)
2462                 goto error;
2463
2464         /*
2465          * Check if DMAR supports zero-length reads on write only
2466          * mappings..
2467          */
2468         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2469                         !cap_zlr(iommu->cap))
2470                 prot |= DMA_PTE_READ;
2471         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2472                 prot |= DMA_PTE_WRITE;
2473         /*
2474          * paddr - (paddr + size) might be partial page, we should map the whole
2475          * page.  Note: if two part of one page are separately mapped, we
2476          * might have two guest_addr mapping to the same host paddr, but this
2477          * is not a big problem
2478          */
2479         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2480                                  paddr >> VTD_PAGE_SHIFT, size, prot);
2481         if (ret)
2482                 goto error;
2483
2484         /* it's a non-present to present mapping. Only flush if caching mode */
2485         if (cap_caching_mode(iommu->cap))
2486                 iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size);
2487         else
2488                 iommu_flush_write_buffer(iommu);
2489
2490         start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2491         start_paddr += paddr & ~PAGE_MASK;
2492         return start_paddr;
2493
2494 error:
2495         if (iova)
2496                 __free_iova(&domain->iovad, iova);
2497         printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2498                 pci_name(pdev), size, (unsigned long long)paddr, dir);
2499         return 0;
2500 }
2501
2502 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2503                                  unsigned long offset, size_t size,
2504                                  enum dma_data_direction dir,
2505                                  struct dma_attrs *attrs)
2506 {
2507         return __intel_map_single(dev, page_to_phys(page) + offset, size,
2508                                   dir, to_pci_dev(dev)->dma_mask);
2509 }
2510
2511 static void flush_unmaps(void)
2512 {
2513         int i, j;
2514
2515         timer_on = 0;
2516
2517         /* just flush them all */
2518         for (i = 0; i < g_num_of_iommus; i++) {
2519                 struct intel_iommu *iommu = g_iommus[i];
2520                 if (!iommu)
2521                         continue;
2522
2523                 if (!deferred_flush[i].next)
2524                         continue;
2525
2526                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2527                                          DMA_TLB_GLOBAL_FLUSH);
2528                 for (j = 0; j < deferred_flush[i].next; j++) {
2529                         unsigned long mask;
2530                         struct iova *iova = deferred_flush[i].iova[j];
2531
2532                         mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2533                         mask = ilog2(mask >> VTD_PAGE_SHIFT);
2534                         iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2535                                         iova->pfn_lo << PAGE_SHIFT, mask);
2536                         __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2537                 }
2538                 deferred_flush[i].next = 0;
2539         }
2540
2541         list_size = 0;
2542 }
2543
2544 static void flush_unmaps_timeout(unsigned long data)
2545 {
2546         unsigned long flags;
2547
2548         spin_lock_irqsave(&async_umap_flush_lock, flags);
2549         flush_unmaps();
2550         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2551 }
2552
2553 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2554 {
2555         unsigned long flags;
2556         int next, iommu_id;
2557         struct intel_iommu *iommu;
2558
2559         spin_lock_irqsave(&async_umap_flush_lock, flags);
2560         if (list_size == HIGH_WATER_MARK)
2561                 flush_unmaps();
2562
2563         iommu = domain_get_iommu(dom);
2564         iommu_id = iommu->seq_id;
2565
2566         next = deferred_flush[iommu_id].next;
2567         deferred_flush[iommu_id].domain[next] = dom;
2568         deferred_flush[iommu_id].iova[next] = iova;
2569         deferred_flush[iommu_id].next++;
2570
2571         if (!timer_on) {
2572                 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2573                 timer_on = 1;
2574         }
2575         list_size++;
2576         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2577 }
2578
2579 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2580                              size_t size, enum dma_data_direction dir,
2581                              struct dma_attrs *attrs)
2582 {
2583         struct pci_dev *pdev = to_pci_dev(dev);
2584         struct dmar_domain *domain;
2585         unsigned long start_pfn, last_pfn;
2586         struct iova *iova;
2587         struct intel_iommu *iommu;
2588
2589         if (iommu_no_mapping(pdev))
2590                 return;
2591
2592         domain = find_domain(pdev);
2593         BUG_ON(!domain);
2594
2595         iommu = domain_get_iommu(domain);
2596
2597         iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2598         if (!iova)
2599                 return;
2600
2601         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2602         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2603
2604         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2605                  pci_name(pdev), start_pfn, last_pfn);
2606
2607         /*  clear the whole page */
2608         dma_pte_clear_range(domain, start_pfn, last_pfn);
2609
2610         /* free page tables */
2611         dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2612
2613         if (intel_iommu_strict) {
2614                 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2615                                       last_pfn - start_pfn + 1);
2616                 /* free iova */
2617                 __free_iova(&domain->iovad, iova);
2618         } else {
2619                 add_unmap(domain, iova);
2620                 /*
2621                  * queue up the release of the unmap to save the 1/6th of the
2622                  * cpu used up by the iotlb flush operation...
2623                  */
2624         }
2625 }
2626
2627 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2628                                int dir)
2629 {
2630         intel_unmap_page(dev, dev_addr, size, dir, NULL);
2631 }
2632
2633 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2634                                   dma_addr_t *dma_handle, gfp_t flags)
2635 {
2636         void *vaddr;
2637         int order;
2638
2639         size = PAGE_ALIGN(size);
2640         order = get_order(size);
2641         flags &= ~(GFP_DMA | GFP_DMA32);
2642
2643         vaddr = (void *)__get_free_pages(flags, order);
2644         if (!vaddr)
2645                 return NULL;
2646         memset(vaddr, 0, size);
2647
2648         *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2649                                          DMA_BIDIRECTIONAL,
2650                                          hwdev->coherent_dma_mask);
2651         if (*dma_handle)
2652                 return vaddr;
2653         free_pages((unsigned long)vaddr, order);
2654         return NULL;
2655 }
2656
2657 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2658                                 dma_addr_t dma_handle)
2659 {
2660         int order;
2661
2662         size = PAGE_ALIGN(size);
2663         order = get_order(size);
2664
2665         intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2666         free_pages((unsigned long)vaddr, order);
2667 }
2668
2669 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2670                            int nelems, enum dma_data_direction dir,
2671                            struct dma_attrs *attrs)
2672 {
2673         struct pci_dev *pdev = to_pci_dev(hwdev);
2674         struct dmar_domain *domain;
2675         unsigned long start_pfn, last_pfn;
2676         struct iova *iova;
2677         struct intel_iommu *iommu;
2678
2679         if (iommu_no_mapping(pdev))
2680                 return;
2681
2682         domain = find_domain(pdev);
2683         BUG_ON(!domain);
2684
2685         iommu = domain_get_iommu(domain);
2686
2687         iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2688         if (!iova)
2689                 return;
2690
2691         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2692         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2693
2694         /*  clear the whole page */
2695         dma_pte_clear_range(domain, start_pfn, last_pfn);
2696
2697         /* free page tables */
2698         dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2699
2700         iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2701                               (last_pfn - start_pfn + 1));
2702
2703         /* free iova */
2704         __free_iova(&domain->iovad, iova);
2705 }
2706
2707 static int intel_nontranslate_map_sg(struct device *hddev,
2708         struct scatterlist *sglist, int nelems, int dir)
2709 {
2710         int i;
2711         struct scatterlist *sg;
2712
2713         for_each_sg(sglist, sg, nelems, i) {
2714                 BUG_ON(!sg_page(sg));
2715                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2716                 sg->dma_length = sg->length;
2717         }
2718         return nelems;
2719 }
2720
2721 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2722                         enum dma_data_direction dir, struct dma_attrs *attrs)
2723 {
2724         int i;
2725         struct pci_dev *pdev = to_pci_dev(hwdev);
2726         struct dmar_domain *domain;
2727         size_t size = 0;
2728         int prot = 0;
2729         size_t offset_pfn = 0;
2730         struct iova *iova = NULL;
2731         int ret;
2732         struct scatterlist *sg;
2733         unsigned long start_vpfn;
2734         struct intel_iommu *iommu;
2735
2736         BUG_ON(dir == DMA_NONE);
2737         if (iommu_no_mapping(pdev))
2738                 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2739
2740         domain = get_valid_domain_for_dev(pdev);
2741         if (!domain)
2742                 return 0;
2743
2744         iommu = domain_get_iommu(domain);
2745
2746         for_each_sg(sglist, sg, nelems, i)
2747                 size += aligned_nrpages(sg->offset, sg->length);
2748
2749         iova = __intel_alloc_iova(hwdev, domain, size << VTD_PAGE_SHIFT,
2750                                   pdev->dma_mask);
2751         if (!iova) {
2752                 sglist->dma_length = 0;
2753                 return 0;
2754         }
2755
2756         /*
2757          * Check if DMAR supports zero-length reads on write only
2758          * mappings..
2759          */
2760         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2761                         !cap_zlr(iommu->cap))
2762                 prot |= DMA_PTE_READ;
2763         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2764                 prot |= DMA_PTE_WRITE;
2765
2766         start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2767         offset_pfn = 0;
2768         for_each_sg(sglist, sg, nelems, i) {
2769                 int nr_pages = aligned_nrpages(sg->offset, sg->length);
2770                 ret = domain_pfn_mapping(domain, start_vpfn + offset_pfn,
2771                                          page_to_dma_pfn(sg_page(sg)),
2772                                          nr_pages, prot);
2773                 if (ret) {
2774                         /*  clear the page */
2775                         dma_pte_clear_range(domain, start_vpfn,
2776                                             start_vpfn + offset_pfn);
2777                         /* free page tables */
2778                         dma_pte_free_pagetable(domain, start_vpfn,
2779                                                start_vpfn + offset_pfn);
2780                         /* free iova */
2781                         __free_iova(&domain->iovad, iova);
2782                         return 0;
2783                 }
2784                 sg->dma_address = ((dma_addr_t)(start_vpfn + offset_pfn)
2785                                    << VTD_PAGE_SHIFT) + sg->offset;
2786                 sg->dma_length = sg->length;
2787                 offset_pfn += nr_pages;
2788         }
2789
2790         /* it's a non-present to present mapping. Only flush if caching mode */
2791         if (cap_caching_mode(iommu->cap))
2792                 iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn);
2793         else
2794                 iommu_flush_write_buffer(iommu);
2795
2796         return nelems;
2797 }
2798
2799 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2800 {
2801         return !dma_addr;
2802 }
2803
2804 struct dma_map_ops intel_dma_ops = {
2805         .alloc_coherent = intel_alloc_coherent,
2806         .free_coherent = intel_free_coherent,
2807         .map_sg = intel_map_sg,
2808         .unmap_sg = intel_unmap_sg,
2809         .map_page = intel_map_page,
2810         .unmap_page = intel_unmap_page,
2811         .mapping_error = intel_mapping_error,
2812 };
2813
2814 static inline int iommu_domain_cache_init(void)
2815 {
2816         int ret = 0;
2817
2818         iommu_domain_cache = kmem_cache_create("iommu_domain",
2819                                          sizeof(struct dmar_domain),
2820                                          0,
2821                                          SLAB_HWCACHE_ALIGN,
2822
2823                                          NULL);
2824         if (!iommu_domain_cache) {
2825                 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2826                 ret = -ENOMEM;
2827         }
2828
2829         return ret;
2830 }
2831
2832 static inline int iommu_devinfo_cache_init(void)
2833 {
2834         int ret = 0;
2835
2836         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2837                                          sizeof(struct device_domain_info),
2838                                          0,
2839                                          SLAB_HWCACHE_ALIGN,
2840                                          NULL);
2841         if (!iommu_devinfo_cache) {
2842                 printk(KERN_ERR "Couldn't create devinfo cache\n");
2843                 ret = -ENOMEM;
2844         }
2845
2846         return ret;
2847 }
2848
2849 static inline int iommu_iova_cache_init(void)
2850 {
2851         int ret = 0;
2852
2853         iommu_iova_cache = kmem_cache_create("iommu_iova",
2854                                          sizeof(struct iova),
2855                                          0,
2856                                          SLAB_HWCACHE_ALIGN,
2857                                          NULL);
2858         if (!iommu_iova_cache) {
2859                 printk(KERN_ERR "Couldn't create iova cache\n");
2860                 ret = -ENOMEM;
2861         }
2862
2863         return ret;
2864 }
2865
2866 static int __init iommu_init_mempool(void)
2867 {
2868         int ret;
2869         ret = iommu_iova_cache_init();
2870         if (ret)
2871                 return ret;
2872
2873         ret = iommu_domain_cache_init();
2874         if (ret)
2875                 goto domain_error;
2876
2877         ret = iommu_devinfo_cache_init();
2878         if (!ret)
2879                 return ret;
2880
2881         kmem_cache_destroy(iommu_domain_cache);
2882 domain_error:
2883         kmem_cache_destroy(iommu_iova_cache);
2884
2885         return -ENOMEM;
2886 }
2887
2888 static void __init iommu_exit_mempool(void)
2889 {
2890         kmem_cache_destroy(iommu_devinfo_cache);
2891         kmem_cache_destroy(iommu_domain_cache);
2892         kmem_cache_destroy(iommu_iova_cache);
2893
2894 }
2895
2896 static void __init init_no_remapping_devices(void)
2897 {
2898         struct dmar_drhd_unit *drhd;
2899
2900         for_each_drhd_unit(drhd) {
2901                 if (!drhd->include_all) {
2902                         int i;
2903                         for (i = 0; i < drhd->devices_cnt; i++)
2904                                 if (drhd->devices[i] != NULL)
2905                                         break;
2906                         /* ignore DMAR unit if no pci devices exist */
2907                         if (i == drhd->devices_cnt)
2908                                 drhd->ignored = 1;
2909                 }
2910         }
2911
2912         if (dmar_map_gfx)
2913                 return;
2914
2915         for_each_drhd_unit(drhd) {
2916                 int i;
2917                 if (drhd->ignored || drhd->include_all)
2918                         continue;
2919
2920                 for (i = 0; i < drhd->devices_cnt; i++)
2921                         if (drhd->devices[i] &&
2922                                 !IS_GFX_DEVICE(drhd->devices[i]))
2923                                 break;
2924
2925                 if (i < drhd->devices_cnt)
2926                         continue;
2927
2928                 /* bypass IOMMU if it is just for gfx devices */
2929                 drhd->ignored = 1;
2930                 for (i = 0; i < drhd->devices_cnt; i++) {
2931                         if (!drhd->devices[i])
2932                                 continue;
2933                         drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2934                 }
2935         }
2936 }
2937
2938 #ifdef CONFIG_SUSPEND
2939 static int init_iommu_hw(void)
2940 {
2941         struct dmar_drhd_unit *drhd;
2942         struct intel_iommu *iommu = NULL;
2943
2944         for_each_active_iommu(iommu, drhd)
2945                 if (iommu->qi)
2946                         dmar_reenable_qi(iommu);
2947
2948         for_each_active_iommu(iommu, drhd) {
2949                 iommu_flush_write_buffer(iommu);
2950
2951                 iommu_set_root_entry(iommu);
2952
2953                 iommu->flush.flush_context(iommu, 0, 0, 0,
2954                                            DMA_CCMD_GLOBAL_INVL);
2955                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2956                                          DMA_TLB_GLOBAL_FLUSH);
2957                 iommu_disable_protect_mem_regions(iommu);
2958                 iommu_enable_translation(iommu);
2959         }
2960
2961         return 0;
2962 }
2963
2964 static void iommu_flush_all(void)
2965 {
2966         struct dmar_drhd_unit *drhd;
2967         struct intel_iommu *iommu;
2968
2969         for_each_active_iommu(iommu, drhd) {
2970                 iommu->flush.flush_context(iommu, 0, 0, 0,
2971                                            DMA_CCMD_GLOBAL_INVL);
2972                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2973                                          DMA_TLB_GLOBAL_FLUSH);
2974         }
2975 }
2976
2977 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
2978 {
2979         struct dmar_drhd_unit *drhd;
2980         struct intel_iommu *iommu = NULL;
2981         unsigned long flag;
2982
2983         for_each_active_iommu(iommu, drhd) {
2984                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
2985                                                  GFP_ATOMIC);
2986                 if (!iommu->iommu_state)
2987                         goto nomem;
2988         }
2989
2990         iommu_flush_all();
2991
2992         for_each_active_iommu(iommu, drhd) {
2993                 iommu_disable_translation(iommu);
2994
2995                 spin_lock_irqsave(&iommu->register_lock, flag);
2996
2997                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
2998                         readl(iommu->reg + DMAR_FECTL_REG);
2999                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3000                         readl(iommu->reg + DMAR_FEDATA_REG);
3001                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3002                         readl(iommu->reg + DMAR_FEADDR_REG);
3003                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3004                         readl(iommu->reg + DMAR_FEUADDR_REG);
3005
3006                 spin_unlock_irqrestore(&iommu->register_lock, flag);
3007         }
3008         return 0;
3009
3010 nomem:
3011         for_each_active_iommu(iommu, drhd)
3012                 kfree(iommu->iommu_state);
3013
3014         return -ENOMEM;
3015 }
3016
3017 static int iommu_resume(struct sys_device *dev)
3018 {
3019         struct dmar_drhd_unit *drhd;
3020         struct intel_iommu *iommu = NULL;
3021         unsigned long flag;
3022
3023         if (init_iommu_hw()) {
3024                 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3025                 return -EIO;
3026         }
3027
3028         for_each_active_iommu(iommu, drhd) {
3029
3030                 spin_lock_irqsave(&iommu->register_lock, flag);
3031
3032                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3033                         iommu->reg + DMAR_FECTL_REG);
3034                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3035                         iommu->reg + DMAR_FEDATA_REG);
3036                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3037                         iommu->reg + DMAR_FEADDR_REG);
3038                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3039                         iommu->reg + DMAR_FEUADDR_REG);
3040
3041                 spin_unlock_irqrestore(&iommu->register_lock, flag);
3042         }
3043
3044         for_each_active_iommu(iommu, drhd)
3045                 kfree(iommu->iommu_state);
3046
3047         return 0;
3048 }
3049
3050 static struct sysdev_class iommu_sysclass = {
3051         .name           = "iommu",
3052         .resume         = iommu_resume,
3053         .suspend        = iommu_suspend,
3054 };
3055
3056 static struct sys_device device_iommu = {
3057         .cls    = &iommu_sysclass,
3058 };
3059
3060 static int __init init_iommu_sysfs(void)
3061 {
3062         int error;
3063
3064         error = sysdev_class_register(&iommu_sysclass);
3065         if (error)
3066                 return error;
3067
3068         error = sysdev_register(&device_iommu);
3069         if (error)
3070                 sysdev_class_unregister(&iommu_sysclass);
3071
3072         return error;
3073 }
3074
3075 #else
3076 static int __init init_iommu_sysfs(void)
3077 {
3078         return 0;
3079 }
3080 #endif  /* CONFIG_PM */
3081
3082 int __init intel_iommu_init(void)
3083 {
3084         int ret = 0;
3085
3086         if (dmar_table_init())
3087                 return  -ENODEV;
3088
3089         if (dmar_dev_scope_init())
3090                 return  -ENODEV;
3091
3092         /*
3093          * Check the need for DMA-remapping initialization now.
3094          * Above initialization will also be used by Interrupt-remapping.
3095          */
3096         if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
3097                 return -ENODEV;
3098
3099         iommu_init_mempool();
3100         dmar_init_reserved_ranges();
3101
3102         init_no_remapping_devices();
3103
3104         ret = init_dmars();
3105         if (ret) {
3106                 printk(KERN_ERR "IOMMU: dmar init failed\n");
3107                 put_iova_domain(&reserved_iova_list);
3108                 iommu_exit_mempool();
3109                 return ret;
3110         }
3111         printk(KERN_INFO
3112         "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3113
3114         init_timer(&unmap_timer);
3115         force_iommu = 1;
3116
3117         if (!iommu_pass_through) {
3118                 printk(KERN_INFO
3119                        "Multi-level page-table translation for DMAR.\n");
3120                 dma_ops = &intel_dma_ops;
3121         } else
3122                 printk(KERN_INFO
3123                        "DMAR: Pass through translation for DMAR.\n");
3124
3125         init_iommu_sysfs();
3126
3127         register_iommu(&intel_iommu_ops);
3128
3129         return 0;
3130 }
3131
3132 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3133                                            struct pci_dev *pdev)
3134 {
3135         struct pci_dev *tmp, *parent;
3136
3137         if (!iommu || !pdev)
3138                 return;
3139
3140         /* dependent device detach */
3141         tmp = pci_find_upstream_pcie_bridge(pdev);
3142         /* Secondary interface's bus number and devfn 0 */
3143         if (tmp) {
3144                 parent = pdev->bus->self;
3145                 while (parent != tmp) {
3146                         iommu_detach_dev(iommu, parent->bus->number,
3147                                          parent->devfn);
3148                         parent = parent->bus->self;
3149                 }
3150                 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3151                         iommu_detach_dev(iommu,
3152                                 tmp->subordinate->number, 0);
3153                 else /* this is a legacy PCI bridge */
3154                         iommu_detach_dev(iommu, tmp->bus->number,
3155                                          tmp->devfn);
3156         }
3157 }
3158
3159 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3160                                           struct pci_dev *pdev)
3161 {
3162         struct device_domain_info *info;
3163         struct intel_iommu *iommu;
3164         unsigned long flags;
3165         int found = 0;
3166         struct list_head *entry, *tmp;
3167
3168         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3169                                 pdev->devfn);
3170         if (!iommu)
3171                 return;
3172
3173         spin_lock_irqsave(&device_domain_lock, flags);
3174         list_for_each_safe(entry, tmp, &domain->devices) {
3175                 info = list_entry(entry, struct device_domain_info, link);
3176                 /* No need to compare PCI domain; it has to be the same */
3177                 if (info->bus == pdev->bus->number &&
3178                     info->devfn == pdev->devfn) {
3179                         list_del(&info->link);
3180                         list_del(&info->global);
3181                         if (info->dev)
3182                                 info->dev->dev.archdata.iommu = NULL;
3183                         spin_unlock_irqrestore(&device_domain_lock, flags);
3184
3185                         iommu_disable_dev_iotlb(info);
3186                         iommu_detach_dev(iommu, info->bus, info->devfn);
3187                         iommu_detach_dependent_devices(iommu, pdev);
3188                         free_devinfo_mem(info);
3189
3190                         spin_lock_irqsave(&device_domain_lock, flags);
3191
3192                         if (found)
3193                                 break;
3194                         else
3195                                 continue;
3196                 }
3197
3198                 /* if there is no other devices under the same iommu
3199                  * owned by this domain, clear this iommu in iommu_bmp
3200                  * update iommu count and coherency
3201                  */
3202                 if (iommu == device_to_iommu(info->segment, info->bus,
3203                                             info->devfn))
3204                         found = 1;
3205         }
3206
3207         if (found == 0) {
3208                 unsigned long tmp_flags;
3209                 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3210                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3211                 domain->iommu_count--;
3212                 domain_update_iommu_cap(domain);
3213                 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3214         }
3215
3216         spin_unlock_irqrestore(&device_domain_lock, flags);
3217 }
3218
3219 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3220 {
3221         struct device_domain_info *info;
3222         struct intel_iommu *iommu;
3223         unsigned long flags1, flags2;
3224
3225         spin_lock_irqsave(&device_domain_lock, flags1);
3226         while (!list_empty(&domain->devices)) {
3227                 info = list_entry(domain->devices.next,
3228                         struct device_domain_info, link);
3229                 list_del(&info->link);
3230                 list_del(&info->global);
3231                 if (info->dev)
3232                         info->dev->dev.archdata.iommu = NULL;
3233
3234                 spin_unlock_irqrestore(&device_domain_lock, flags1);
3235
3236                 iommu_disable_dev_iotlb(info);
3237                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3238                 iommu_detach_dev(iommu, info->bus, info->devfn);
3239                 iommu_detach_dependent_devices(iommu, info->dev);
3240
3241                 /* clear this iommu in iommu_bmp, update iommu count
3242                  * and capabilities
3243                  */
3244                 spin_lock_irqsave(&domain->iommu_lock, flags2);
3245                 if (test_and_clear_bit(iommu->seq_id,
3246                                        &domain->iommu_bmp)) {
3247                         domain->iommu_count--;
3248                         domain_update_iommu_cap(domain);
3249                 }
3250                 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3251
3252                 free_devinfo_mem(info);
3253                 spin_lock_irqsave(&device_domain_lock, flags1);
3254         }
3255         spin_unlock_irqrestore(&device_domain_lock, flags1);
3256 }
3257
3258 /* domain id for virtual machine, it won't be set in context */
3259 static unsigned long vm_domid;
3260
3261 static int vm_domain_min_agaw(struct dmar_domain *domain)
3262 {
3263         int i;
3264         int min_agaw = domain->agaw;
3265
3266         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3267         for (; i < g_num_of_iommus; ) {
3268                 if (min_agaw > g_iommus[i]->agaw)
3269                         min_agaw = g_iommus[i]->agaw;
3270
3271                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3272         }
3273
3274         return min_agaw;
3275 }
3276
3277 static struct dmar_domain *iommu_alloc_vm_domain(void)
3278 {
3279         struct dmar_domain *domain;
3280
3281         domain = alloc_domain_mem();
3282         if (!domain)
3283                 return NULL;
3284
3285         domain->id = vm_domid++;
3286         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3287         domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3288
3289         return domain;
3290 }
3291
3292 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3293 {
3294         int adjust_width;
3295
3296         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3297         spin_lock_init(&domain->mapping_lock);
3298         spin_lock_init(&domain->iommu_lock);
3299
3300         domain_reserve_special_ranges(domain);
3301
3302         /* calculate AGAW */
3303         domain->gaw = guest_width;
3304         adjust_width = guestwidth_to_adjustwidth(guest_width);
3305         domain->agaw = width_to_agaw(adjust_width);
3306
3307         INIT_LIST_HEAD(&domain->devices);
3308
3309         domain->iommu_count = 0;
3310         domain->iommu_coherency = 0;
3311         domain->max_addr = 0;
3312
3313         /* always allocate the top pgd */
3314         domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3315         if (!domain->pgd)
3316                 return -ENOMEM;
3317         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3318         return 0;
3319 }
3320
3321 static void iommu_free_vm_domain(struct dmar_domain *domain)
3322 {
3323         unsigned long flags;
3324         struct dmar_drhd_unit *drhd;
3325         struct intel_iommu *iommu;
3326         unsigned long i;
3327         unsigned long ndomains;
3328
3329         for_each_drhd_unit(drhd) {
3330                 if (drhd->ignored)
3331                         continue;
3332                 iommu = drhd->iommu;
3333
3334                 ndomains = cap_ndoms(iommu->cap);
3335                 i = find_first_bit(iommu->domain_ids, ndomains);
3336                 for (; i < ndomains; ) {
3337                         if (iommu->domains[i] == domain) {
3338                                 spin_lock_irqsave(&iommu->lock, flags);
3339                                 clear_bit(i, iommu->domain_ids);
3340                                 iommu->domains[i] = NULL;
3341                                 spin_unlock_irqrestore(&iommu->lock, flags);
3342                                 break;
3343                         }
3344                         i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3345                 }
3346         }
3347 }
3348
3349 static void vm_domain_exit(struct dmar_domain *domain)
3350 {
3351         /* Domain 0 is reserved, so dont process it */
3352         if (!domain)
3353                 return;
3354
3355         vm_domain_remove_all_dev_info(domain);
3356         /* destroy iovas */
3357         put_iova_domain(&domain->iovad);
3358
3359         /* clear ptes */
3360         dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3361
3362         /* free page tables */
3363         dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3364
3365         iommu_free_vm_domain(domain);
3366         free_domain_mem(domain);
3367 }
3368
3369 static int intel_iommu_domain_init(struct iommu_domain *domain)
3370 {
3371         struct dmar_domain *dmar_domain;
3372
3373         dmar_domain = iommu_alloc_vm_domain();
3374         if (!dmar_domain) {
3375                 printk(KERN_ERR
3376                         "intel_iommu_domain_init: dmar_domain == NULL\n");
3377                 return -ENOMEM;
3378         }
3379         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3380                 printk(KERN_ERR
3381                         "intel_iommu_domain_init() failed\n");
3382                 vm_domain_exit(dmar_domain);
3383                 return -ENOMEM;
3384         }
3385         domain->priv = dmar_domain;
3386
3387         return 0;
3388 }
3389
3390 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3391 {
3392         struct dmar_domain *dmar_domain = domain->priv;
3393
3394         domain->priv = NULL;
3395         vm_domain_exit(dmar_domain);
3396 }
3397
3398 static int intel_iommu_attach_device(struct iommu_domain *domain,
3399                                      struct device *dev)
3400 {
3401         struct dmar_domain *dmar_domain = domain->priv;
3402         struct pci_dev *pdev = to_pci_dev(dev);
3403         struct intel_iommu *iommu;
3404         int addr_width;
3405         u64 end;
3406         int ret;
3407
3408         /* normally pdev is not mapped */
3409         if (unlikely(domain_context_mapped(pdev))) {
3410                 struct dmar_domain *old_domain;
3411
3412                 old_domain = find_domain(pdev);
3413                 if (old_domain) {
3414                         if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3415                             dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3416                                 domain_remove_one_dev_info(old_domain, pdev);
3417                         else
3418                                 domain_remove_dev_info(old_domain);
3419                 }
3420         }
3421
3422         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3423                                 pdev->devfn);
3424         if (!iommu)
3425                 return -ENODEV;
3426
3427         /* check if this iommu agaw is sufficient for max mapped address */
3428         addr_width = agaw_to_width(iommu->agaw);
3429         end = DOMAIN_MAX_ADDR(addr_width);
3430         end = end & VTD_PAGE_MASK;
3431         if (end < dmar_domain->max_addr) {
3432                 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3433                        "sufficient for the mapped address (%llx)\n",
3434                        __func__, iommu->agaw, dmar_domain->max_addr);
3435                 return -EFAULT;
3436         }
3437
3438         ret = domain_add_dev_info(dmar_domain, pdev);
3439         if (ret)
3440                 return ret;
3441
3442         ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3443         return ret;
3444 }
3445
3446 static void intel_iommu_detach_device(struct iommu_domain *domain,
3447                                       struct device *dev)
3448 {
3449         struct dmar_domain *dmar_domain = domain->priv;
3450         struct pci_dev *pdev = to_pci_dev(dev);
3451
3452         domain_remove_one_dev_info(dmar_domain, pdev);
3453 }
3454
3455 static int intel_iommu_map_range(struct iommu_domain *domain,
3456                                  unsigned long iova, phys_addr_t hpa,
3457                                  size_t size, int iommu_prot)
3458 {
3459         struct dmar_domain *dmar_domain = domain->priv;
3460         u64 max_addr;
3461         int addr_width;
3462         int prot = 0;
3463         int ret;
3464
3465         if (iommu_prot & IOMMU_READ)
3466                 prot |= DMA_PTE_READ;
3467         if (iommu_prot & IOMMU_WRITE)
3468                 prot |= DMA_PTE_WRITE;
3469         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3470                 prot |= DMA_PTE_SNP;
3471
3472         max_addr = iova + size;
3473         if (dmar_domain->max_addr < max_addr) {
3474                 int min_agaw;
3475                 u64 end;
3476
3477                 /* check if minimum agaw is sufficient for mapped address */
3478                 min_agaw = vm_domain_min_agaw(dmar_domain);
3479                 addr_width = agaw_to_width(min_agaw);
3480                 end = DOMAIN_MAX_ADDR(addr_width);
3481                 end = end & VTD_PAGE_MASK;
3482                 if (end < max_addr) {
3483                         printk(KERN_ERR "%s: iommu agaw (%d) is not "
3484                                "sufficient for the mapped address (%llx)\n",
3485                                __func__, min_agaw, max_addr);
3486                         return -EFAULT;
3487                 }
3488                 dmar_domain->max_addr = max_addr;
3489         }
3490         /* Round up size to next multiple of PAGE_SIZE, if it and
3491            the low bits of hpa would take us onto the next page */
3492         size = aligned_nrpages(hpa, size);
3493         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3494                                  hpa >> VTD_PAGE_SHIFT, size, prot);
3495         return ret;
3496 }
3497
3498 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3499                                     unsigned long iova, size_t size)
3500 {
3501         struct dmar_domain *dmar_domain = domain->priv;
3502
3503         dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3504                             (iova + size - 1) >> VTD_PAGE_SHIFT);
3505
3506         if (dmar_domain->max_addr == iova + size)
3507                 dmar_domain->max_addr = iova;
3508 }
3509
3510 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3511                                             unsigned long iova)
3512 {
3513         struct dmar_domain *dmar_domain = domain->priv;
3514         struct dma_pte *pte;
3515         u64 phys = 0;
3516
3517         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
3518         if (pte)
3519                 phys = dma_pte_addr(pte);
3520
3521         return phys;
3522 }
3523
3524 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3525                                       unsigned long cap)
3526 {
3527         struct dmar_domain *dmar_domain = domain->priv;
3528
3529         if (cap == IOMMU_CAP_CACHE_COHERENCY)
3530                 return dmar_domain->iommu_snooping;
3531
3532         return 0;
3533 }
3534
3535 static struct iommu_ops intel_iommu_ops = {
3536         .domain_init    = intel_iommu_domain_init,
3537         .domain_destroy = intel_iommu_domain_destroy,
3538         .attach_dev     = intel_iommu_attach_device,
3539         .detach_dev     = intel_iommu_detach_device,
3540         .map            = intel_iommu_map_range,
3541         .unmap          = intel_iommu_unmap_range,
3542         .iova_to_phys   = intel_iommu_iova_to_phys,
3543         .domain_has_cap = intel_iommu_domain_has_cap,
3544 };
3545
3546 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3547 {
3548         /*
3549          * Mobile 4 Series Chipset neglects to set RWBF capability,
3550          * but needs it:
3551          */
3552         printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3553         rwbf_quirk = 1;
3554 }
3555
3556 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);