Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/davem/net...
[safe/jmp/linux-2.6] / drivers / net / yellowfin.c
1 /* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
2 /*
3         Written 1997-2001 by Donald Becker.
4
5         This software may be used and distributed according to the terms of
6         the GNU General Public License (GPL), incorporated herein by reference.
7         Drivers based on or derived from this code fall under the GPL and must
8         retain the authorship, copyright and license notice.  This file is not
9         a complete program and may only be used when the entire operating
10         system is licensed under the GPL.
11
12         This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13         It also supports the Symbios Logic version of the same chip core.
14
15         The author may be reached as becker@scyld.com, or C/O
16         Scyld Computing Corporation
17         410 Severn Ave., Suite 210
18         Annapolis MD 21403
19
20         Support and updates available at
21         http://www.scyld.com/network/yellowfin.html
22         [link no longer provides useful info -jgarzik]
23
24 */
25
26 #define DRV_NAME        "yellowfin"
27 #define DRV_VERSION     "2.1"
28 #define DRV_RELDATE     "Sep 11, 2006"
29
30 #define PFX DRV_NAME ": "
31
32 /* The user-configurable values.
33    These may be modified when a driver module is loaded.*/
34
35 static int debug = 1;                   /* 1 normal messages, 0 quiet .. 7 verbose. */
36 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37 static int max_interrupt_work = 20;
38 static int mtu;
39 #ifdef YF_PROTOTYPE                     /* Support for prototype hardware errata. */
40 /* System-wide count of bogus-rx frames. */
41 static int bogus_rx;
42 static int dma_ctrl = 0x004A0263;                       /* Constrained by errata */
43 static int fifo_cfg = 0x0020;                           /* Bypass external Tx FIFO. */
44 #elif defined(YF_NEW)                                   /* A future perfect board :->.  */
45 static int dma_ctrl = 0x00CAC277;                       /* Override when loading module! */
46 static int fifo_cfg = 0x0028;
47 #else
48 static const int dma_ctrl = 0x004A0263;                         /* Constrained by errata */
49 static const int fifo_cfg = 0x0020;                             /* Bypass external Tx FIFO. */
50 #endif
51
52 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53    Setting to > 1514 effectively disables this feature. */
54 static int rx_copybreak;
55
56 /* Used to pass the media type, etc.
57    No media types are currently defined.  These exist for driver
58    interoperability.
59 */
60 #define MAX_UNITS 8                             /* More are supported, limit only on options */
61 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
63
64 /* Do ugly workaround for GX server chipset errata. */
65 static int gx_fix;
66
67 /* Operational parameters that are set at compile time. */
68
69 /* Keep the ring sizes a power of two for efficiency.
70    Making the Tx ring too long decreases the effectiveness of channel
71    bonding and packet priority.
72    There are no ill effects from too-large receive rings. */
73 #define TX_RING_SIZE    16
74 #define TX_QUEUE_SIZE   12              /* Must be > 4 && <= TX_RING_SIZE */
75 #define RX_RING_SIZE    64
76 #define STATUS_TOTAL_SIZE       TX_RING_SIZE*sizeof(struct tx_status_words)
77 #define TX_TOTAL_SIZE           2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78 #define RX_TOTAL_SIZE           RX_RING_SIZE*sizeof(struct yellowfin_desc)
79
80 /* Operational parameters that usually are not changed. */
81 /* Time in jiffies before concluding the transmitter is hung. */
82 #define TX_TIMEOUT  (2*HZ)
83 #define PKT_BUF_SZ              1536                    /* Size of each temporary Rx buffer.*/
84
85 #define yellowfin_debug debug
86
87 #include <linux/module.h>
88 #include <linux/kernel.h>
89 #include <linux/string.h>
90 #include <linux/timer.h>
91 #include <linux/errno.h>
92 #include <linux/ioport.h>
93 #include <linux/slab.h>
94 #include <linux/interrupt.h>
95 #include <linux/pci.h>
96 #include <linux/init.h>
97 #include <linux/mii.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/ethtool.h>
102 #include <linux/crc32.h>
103 #include <linux/bitops.h>
104 #include <asm/uaccess.h>
105 #include <asm/processor.h>              /* Processor type for cache alignment. */
106 #include <asm/unaligned.h>
107 #include <asm/io.h>
108
109 /* These identify the driver base version and may not be removed. */
110 static const char version[] __devinitconst =
111   KERN_INFO DRV_NAME ".c:v1.05  1/09/2001  Written by Donald Becker <becker@scyld.com>\n"
112   KERN_INFO "  (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
113
114 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
115 MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
116 MODULE_LICENSE("GPL");
117
118 module_param(max_interrupt_work, int, 0);
119 module_param(mtu, int, 0);
120 module_param(debug, int, 0);
121 module_param(rx_copybreak, int, 0);
122 module_param_array(options, int, NULL, 0);
123 module_param_array(full_duplex, int, NULL, 0);
124 module_param(gx_fix, int, 0);
125 MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
126 MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
127 MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
128 MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
129 MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
130 MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
131 MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
132
133 /*
134                                 Theory of Operation
135
136 I. Board Compatibility
137
138 This device driver is designed for the Packet Engines "Yellowfin" Gigabit
139 Ethernet adapter.  The G-NIC 64-bit PCI card is supported, as well as the
140 Symbios 53C885E dual function chip.
141
142 II. Board-specific settings
143
144 PCI bus devices are configured by the system at boot time, so no jumpers
145 need to be set on the board.  The system BIOS preferably should assign the
146 PCI INTA signal to an otherwise unused system IRQ line.
147 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
148 interrupt lines.
149
150 III. Driver operation
151
152 IIIa. Ring buffers
153
154 The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
155 This is a descriptor list scheme similar to that used by the EEPro100 and
156 Tulip.  This driver uses two statically allocated fixed-size descriptor lists
157 formed into rings by a branch from the final descriptor to the beginning of
158 the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
159
160 The driver allocates full frame size skbuffs for the Rx ring buffers at
161 open() time and passes the skb->data field to the Yellowfin as receive data
162 buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
163 a fresh skbuff is allocated and the frame is copied to the new skbuff.
164 When the incoming frame is larger, the skbuff is passed directly up the
165 protocol stack and replaced by a newly allocated skbuff.
166
167 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
168 using a full-sized skbuff for small frames vs. the copying costs of larger
169 frames.  For small frames the copying cost is negligible (esp. considering
170 that we are pre-loading the cache with immediately useful header
171 information).  For large frames the copying cost is non-trivial, and the
172 larger copy might flush the cache of useful data.
173
174 IIIC. Synchronization
175
176 The driver runs as two independent, single-threaded flows of control.  One
177 is the send-packet routine, which enforces single-threaded use by the
178 dev->tbusy flag.  The other thread is the interrupt handler, which is single
179 threaded by the hardware and other software.
180
181 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
182 flag.  It sets the tbusy flag whenever it's queuing a Tx packet. If the next
183 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
184 the 'yp->tx_full' flag.
185
186 The interrupt handler has exclusive control over the Rx ring and records stats
187 from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
188 empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
189 clears both the tx_full and tbusy flags.
190
191 IV. Notes
192
193 Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
194 Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
195 and an AlphaStation to verifty the Alpha port!
196
197 IVb. References
198
199 Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
200 Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
201    Data Manual v3.0
202 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
203 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
204
205 IVc. Errata
206
207 See Packet Engines confidential appendix (prototype chips only).
208 */
209
210
211
212 enum capability_flags {
213         HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
214         HasMACAddrBug=32, /* Only on early revs.  */
215         DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
216 };
217
218 /* The PCI I/O space extent. */
219 enum {
220         YELLOWFIN_SIZE  = 0x100,
221 };
222
223 struct pci_id_info {
224         const char *name;
225         struct match_info {
226                 int     pci, pci_mask, subsystem, subsystem_mask;
227                 int revision, revision_mask;                            /* Only 8 bits. */
228         } id;
229         int drv_flags;                          /* Driver use, intended as capability flags. */
230 };
231
232 static const struct pci_id_info pci_id_tbl[] = {
233         {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
234          FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
235         {"Symbios SYM83C885", { 0x07011000, 0xffffffff},
236           HasMII | DontUseEeprom },
237         { }
238 };
239
240 static const struct pci_device_id yellowfin_pci_tbl[] = {
241         { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
242         { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
243         { }
244 };
245 MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
246
247
248 /* Offsets to the Yellowfin registers.  Various sizes and alignments. */
249 enum yellowfin_offsets {
250         TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
251         TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
252         RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
253         RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
254         EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
255         ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
256         Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
257         MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
258         MII_Status=0xAE,
259         RxDepth=0xB8, FlowCtrl=0xBC,
260         AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
261         EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
262         EEFeature=0xF5,
263 };
264
265 /* The Yellowfin Rx and Tx buffer descriptors.
266    Elements are written as 32 bit for endian portability. */
267 struct yellowfin_desc {
268         __le32 dbdma_cmd;
269         __le32 addr;
270         __le32 branch_addr;
271         __le32 result_status;
272 };
273
274 struct tx_status_words {
275 #ifdef __BIG_ENDIAN
276         u16 tx_errs;
277         u16 tx_cnt;
278         u16 paused;
279         u16 total_tx_cnt;
280 #else  /* Little endian chips. */
281         u16 tx_cnt;
282         u16 tx_errs;
283         u16 total_tx_cnt;
284         u16 paused;
285 #endif /* __BIG_ENDIAN */
286 };
287
288 /* Bits in yellowfin_desc.cmd */
289 enum desc_cmd_bits {
290         CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
291         CMD_NOP=0x60000000, CMD_STOP=0x70000000,
292         BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
293         BRANCH_IFTRUE=0x040000,
294 };
295
296 /* Bits in yellowfin_desc.status */
297 enum desc_status_bits { RX_EOP=0x0040, };
298
299 /* Bits in the interrupt status/mask registers. */
300 enum intr_status_bits {
301         IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
302         IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
303         IntrEarlyRx=0x100, IntrWakeup=0x200, };
304
305 #define PRIV_ALIGN      31      /* Required alignment mask */
306 #define MII_CNT         4
307 struct yellowfin_private {
308         /* Descriptor rings first for alignment.
309            Tx requires a second descriptor for status. */
310         struct yellowfin_desc *rx_ring;
311         struct yellowfin_desc *tx_ring;
312         struct sk_buff* rx_skbuff[RX_RING_SIZE];
313         struct sk_buff* tx_skbuff[TX_RING_SIZE];
314         dma_addr_t rx_ring_dma;
315         dma_addr_t tx_ring_dma;
316
317         struct tx_status_words *tx_status;
318         dma_addr_t tx_status_dma;
319
320         struct timer_list timer;        /* Media selection timer. */
321         /* Frequently used and paired value: keep adjacent for cache effect. */
322         int chip_id, drv_flags;
323         struct pci_dev *pci_dev;
324         unsigned int cur_rx, dirty_rx;          /* Producer/consumer ring indices */
325         unsigned int rx_buf_sz;                         /* Based on MTU+slack. */
326         struct tx_status_words *tx_tail_desc;
327         unsigned int cur_tx, dirty_tx;
328         int tx_threshold;
329         unsigned int tx_full:1;                         /* The Tx queue is full. */
330         unsigned int full_duplex:1;                     /* Full-duplex operation requested. */
331         unsigned int duplex_lock:1;
332         unsigned int medialock:1;                       /* Do not sense media. */
333         unsigned int default_port:4;            /* Last dev->if_port value. */
334         /* MII transceiver section. */
335         int mii_cnt;                                            /* MII device addresses. */
336         u16 advertising;                                        /* NWay media advertisement */
337         unsigned char phys[MII_CNT];            /* MII device addresses, only first one used */
338         spinlock_t lock;
339         void __iomem *base;
340 };
341
342 static int read_eeprom(void __iomem *ioaddr, int location);
343 static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
344 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
345 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
346 static int yellowfin_open(struct net_device *dev);
347 static void yellowfin_timer(unsigned long data);
348 static void yellowfin_tx_timeout(struct net_device *dev);
349 static void yellowfin_init_ring(struct net_device *dev);
350 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev);
351 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
352 static int yellowfin_rx(struct net_device *dev);
353 static void yellowfin_error(struct net_device *dev, int intr_status);
354 static int yellowfin_close(struct net_device *dev);
355 static void set_rx_mode(struct net_device *dev);
356 static const struct ethtool_ops ethtool_ops;
357
358 static const struct net_device_ops netdev_ops = {
359         .ndo_open               = yellowfin_open,
360         .ndo_stop               = yellowfin_close,
361         .ndo_start_xmit         = yellowfin_start_xmit,
362         .ndo_set_multicast_list = set_rx_mode,
363         .ndo_change_mtu         = eth_change_mtu,
364         .ndo_validate_addr      = eth_validate_addr,
365         .ndo_set_mac_address    = eth_mac_addr,
366         .ndo_do_ioctl           = netdev_ioctl,
367         .ndo_tx_timeout         = yellowfin_tx_timeout,
368 };
369
370 static int __devinit yellowfin_init_one(struct pci_dev *pdev,
371                                         const struct pci_device_id *ent)
372 {
373         struct net_device *dev;
374         struct yellowfin_private *np;
375         int irq;
376         int chip_idx = ent->driver_data;
377         static int find_cnt;
378         void __iomem *ioaddr;
379         int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
380         int drv_flags = pci_id_tbl[chip_idx].drv_flags;
381         void *ring_space;
382         dma_addr_t ring_dma;
383 #ifdef USE_IO_OPS
384         int bar = 0;
385 #else
386         int bar = 1;
387 #endif
388
389 /* when built into the kernel, we only print version if device is found */
390 #ifndef MODULE
391         static int printed_version;
392         if (!printed_version++)
393                 printk(version);
394 #endif
395
396         i = pci_enable_device(pdev);
397         if (i) return i;
398
399         dev = alloc_etherdev(sizeof(*np));
400         if (!dev) {
401                 printk (KERN_ERR PFX "cannot allocate ethernet device\n");
402                 return -ENOMEM;
403         }
404         SET_NETDEV_DEV(dev, &pdev->dev);
405
406         np = netdev_priv(dev);
407
408         if (pci_request_regions(pdev, DRV_NAME))
409                 goto err_out_free_netdev;
410
411         pci_set_master (pdev);
412
413         ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
414         if (!ioaddr)
415                 goto err_out_free_res;
416
417         irq = pdev->irq;
418
419         if (drv_flags & DontUseEeprom)
420                 for (i = 0; i < 6; i++)
421                         dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
422         else {
423                 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
424                 for (i = 0; i < 6; i++)
425                         dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
426         }
427
428         /* Reset the chip. */
429         iowrite32(0x80000000, ioaddr + DMACtrl);
430
431         dev->base_addr = (unsigned long)ioaddr;
432         dev->irq = irq;
433
434         pci_set_drvdata(pdev, dev);
435         spin_lock_init(&np->lock);
436
437         np->pci_dev = pdev;
438         np->chip_id = chip_idx;
439         np->drv_flags = drv_flags;
440         np->base = ioaddr;
441
442         ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
443         if (!ring_space)
444                 goto err_out_cleardev;
445         np->tx_ring = (struct yellowfin_desc *)ring_space;
446         np->tx_ring_dma = ring_dma;
447
448         ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
449         if (!ring_space)
450                 goto err_out_unmap_tx;
451         np->rx_ring = (struct yellowfin_desc *)ring_space;
452         np->rx_ring_dma = ring_dma;
453
454         ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma);
455         if (!ring_space)
456                 goto err_out_unmap_rx;
457         np->tx_status = (struct tx_status_words *)ring_space;
458         np->tx_status_dma = ring_dma;
459
460         if (dev->mem_start)
461                 option = dev->mem_start;
462
463         /* The lower four bits are the media type. */
464         if (option > 0) {
465                 if (option & 0x200)
466                         np->full_duplex = 1;
467                 np->default_port = option & 15;
468                 if (np->default_port)
469                         np->medialock = 1;
470         }
471         if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt] > 0)
472                 np->full_duplex = 1;
473
474         if (np->full_duplex)
475                 np->duplex_lock = 1;
476
477         /* The Yellowfin-specific entries in the device structure. */
478         dev->netdev_ops = &netdev_ops;
479         SET_ETHTOOL_OPS(dev, &ethtool_ops);
480         dev->watchdog_timeo = TX_TIMEOUT;
481
482         if (mtu)
483                 dev->mtu = mtu;
484
485         i = register_netdev(dev);
486         if (i)
487                 goto err_out_unmap_status;
488
489         printk(KERN_INFO "%s: %s type %8x at %p, %pM, IRQ %d.\n",
490                    dev->name, pci_id_tbl[chip_idx].name,
491                    ioread32(ioaddr + ChipRev), ioaddr,
492                    dev->dev_addr, irq);
493
494         if (np->drv_flags & HasMII) {
495                 int phy, phy_idx = 0;
496                 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
497                         int mii_status = mdio_read(ioaddr, phy, 1);
498                         if (mii_status != 0xffff  &&  mii_status != 0x0000) {
499                                 np->phys[phy_idx++] = phy;
500                                 np->advertising = mdio_read(ioaddr, phy, 4);
501                                 printk(KERN_INFO "%s: MII PHY found at address %d, status "
502                                            "0x%4.4x advertising %4.4x.\n",
503                                            dev->name, phy, mii_status, np->advertising);
504                         }
505                 }
506                 np->mii_cnt = phy_idx;
507         }
508
509         find_cnt++;
510
511         return 0;
512
513 err_out_unmap_status:
514         pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
515                 np->tx_status_dma);
516 err_out_unmap_rx:
517         pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
518 err_out_unmap_tx:
519         pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
520 err_out_cleardev:
521         pci_set_drvdata(pdev, NULL);
522         pci_iounmap(pdev, ioaddr);
523 err_out_free_res:
524         pci_release_regions(pdev);
525 err_out_free_netdev:
526         free_netdev (dev);
527         return -ENODEV;
528 }
529
530 static int __devinit read_eeprom(void __iomem *ioaddr, int location)
531 {
532         int bogus_cnt = 10000;          /* Typical 33Mhz: 1050 ticks */
533
534         iowrite8(location, ioaddr + EEAddr);
535         iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
536         while ((ioread8(ioaddr + EEStatus) & 0x80)  &&  --bogus_cnt > 0)
537                 ;
538         return ioread8(ioaddr + EERead);
539 }
540
541 /* MII Managemen Data I/O accesses.
542    These routines assume the MDIO controller is idle, and do not exit until
543    the command is finished. */
544
545 static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
546 {
547         int i;
548
549         iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
550         iowrite16(1, ioaddr + MII_Cmd);
551         for (i = 10000; i >= 0; i--)
552                 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
553                         break;
554         return ioread16(ioaddr + MII_Rd_Data);
555 }
556
557 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
558 {
559         int i;
560
561         iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
562         iowrite16(value, ioaddr + MII_Wr_Data);
563
564         /* Wait for the command to finish. */
565         for (i = 10000; i >= 0; i--)
566                 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
567                         break;
568         return;
569 }
570
571
572 static int yellowfin_open(struct net_device *dev)
573 {
574         struct yellowfin_private *yp = netdev_priv(dev);
575         void __iomem *ioaddr = yp->base;
576         int i;
577
578         /* Reset the chip. */
579         iowrite32(0x80000000, ioaddr + DMACtrl);
580
581         i = request_irq(dev->irq, &yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
582         if (i) return i;
583
584         if (yellowfin_debug > 1)
585                 printk(KERN_DEBUG "%s: yellowfin_open() irq %d.\n",
586                            dev->name, dev->irq);
587
588         yellowfin_init_ring(dev);
589
590         iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
591         iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
592
593         for (i = 0; i < 6; i++)
594                 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
595
596         /* Set up various condition 'select' registers.
597            There are no options here. */
598         iowrite32(0x00800080, ioaddr + TxIntrSel);      /* Interrupt on Tx abort */
599         iowrite32(0x00800080, ioaddr + TxBranchSel);    /* Branch on Tx abort */
600         iowrite32(0x00400040, ioaddr + TxWaitSel);      /* Wait on Tx status */
601         iowrite32(0x00400040, ioaddr + RxIntrSel);      /* Interrupt on Rx done */
602         iowrite32(0x00400040, ioaddr + RxBranchSel);    /* Branch on Rx error */
603         iowrite32(0x00400040, ioaddr + RxWaitSel);      /* Wait on Rx done */
604
605         /* Initialize other registers: with so many this eventually this will
606            converted to an offset/value list. */
607         iowrite32(dma_ctrl, ioaddr + DMACtrl);
608         iowrite16(fifo_cfg, ioaddr + FIFOcfg);
609         /* Enable automatic generation of flow control frames, period 0xffff. */
610         iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
611
612         yp->tx_threshold = 32;
613         iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
614
615         if (dev->if_port == 0)
616                 dev->if_port = yp->default_port;
617
618         netif_start_queue(dev);
619
620         /* Setting the Rx mode will start the Rx process. */
621         if (yp->drv_flags & IsGigabit) {
622                 /* We are always in full-duplex mode with gigabit! */
623                 yp->full_duplex = 1;
624                 iowrite16(0x01CF, ioaddr + Cnfg);
625         } else {
626                 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
627                 iowrite16(0x1018, ioaddr + FrameGap1);
628                 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
629         }
630         set_rx_mode(dev);
631
632         /* Enable interrupts by setting the interrupt mask. */
633         iowrite16(0x81ff, ioaddr + IntrEnb);                    /* See enum intr_status_bits */
634         iowrite16(0x0000, ioaddr + EventStatus);                /* Clear non-interrupting events */
635         iowrite32(0x80008000, ioaddr + RxCtrl);         /* Start Rx and Tx channels. */
636         iowrite32(0x80008000, ioaddr + TxCtrl);
637
638         if (yellowfin_debug > 2) {
639                 printk(KERN_DEBUG "%s: Done yellowfin_open().\n",
640                            dev->name);
641         }
642
643         /* Set the timer to check for link beat. */
644         init_timer(&yp->timer);
645         yp->timer.expires = jiffies + 3*HZ;
646         yp->timer.data = (unsigned long)dev;
647         yp->timer.function = &yellowfin_timer;                          /* timer handler */
648         add_timer(&yp->timer);
649
650         return 0;
651 }
652
653 static void yellowfin_timer(unsigned long data)
654 {
655         struct net_device *dev = (struct net_device *)data;
656         struct yellowfin_private *yp = netdev_priv(dev);
657         void __iomem *ioaddr = yp->base;
658         int next_tick = 60*HZ;
659
660         if (yellowfin_debug > 3) {
661                 printk(KERN_DEBUG "%s: Yellowfin timer tick, status %8.8x.\n",
662                            dev->name, ioread16(ioaddr + IntrStatus));
663         }
664
665         if (yp->mii_cnt) {
666                 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
667                 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
668                 int negotiated = lpa & yp->advertising;
669                 if (yellowfin_debug > 1)
670                         printk(KERN_DEBUG "%s: MII #%d status register is %4.4x, "
671                                    "link partner capability %4.4x.\n",
672                                    dev->name, yp->phys[0], bmsr, lpa);
673
674                 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
675
676                 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
677
678                 if (bmsr & BMSR_LSTATUS)
679                         next_tick = 60*HZ;
680                 else
681                         next_tick = 3*HZ;
682         }
683
684         yp->timer.expires = jiffies + next_tick;
685         add_timer(&yp->timer);
686 }
687
688 static void yellowfin_tx_timeout(struct net_device *dev)
689 {
690         struct yellowfin_private *yp = netdev_priv(dev);
691         void __iomem *ioaddr = yp->base;
692
693         printk(KERN_WARNING "%s: Yellowfin transmit timed out at %d/%d Tx "
694                    "status %4.4x, Rx status %4.4x, resetting...\n",
695                    dev->name, yp->cur_tx, yp->dirty_tx,
696                    ioread32(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
697
698         /* Note: these should be KERN_DEBUG. */
699         if (yellowfin_debug) {
700                 int i;
701                 printk(KERN_WARNING "  Rx ring %p: ", yp->rx_ring);
702                 for (i = 0; i < RX_RING_SIZE; i++)
703                         printk(" %8.8x", yp->rx_ring[i].result_status);
704                 printk("\n"KERN_WARNING"  Tx ring %p: ", yp->tx_ring);
705                 for (i = 0; i < TX_RING_SIZE; i++)
706                         printk(" %4.4x /%8.8x", yp->tx_status[i].tx_errs,
707                                    yp->tx_ring[i].result_status);
708                 printk("\n");
709         }
710
711         /* If the hardware is found to hang regularly, we will update the code
712            to reinitialize the chip here. */
713         dev->if_port = 0;
714
715         /* Wake the potentially-idle transmit channel. */
716         iowrite32(0x10001000, yp->base + TxCtrl);
717         if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
718                 netif_wake_queue (dev);         /* Typical path */
719
720         dev->trans_start = jiffies; /* prevent tx timeout */
721         dev->stats.tx_errors++;
722 }
723
724 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
725 static void yellowfin_init_ring(struct net_device *dev)
726 {
727         struct yellowfin_private *yp = netdev_priv(dev);
728         int i;
729
730         yp->tx_full = 0;
731         yp->cur_rx = yp->cur_tx = 0;
732         yp->dirty_tx = 0;
733
734         yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
735
736         for (i = 0; i < RX_RING_SIZE; i++) {
737                 yp->rx_ring[i].dbdma_cmd =
738                         cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
739                 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
740                         ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
741         }
742
743         for (i = 0; i < RX_RING_SIZE; i++) {
744                 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
745                 yp->rx_skbuff[i] = skb;
746                 if (skb == NULL)
747                         break;
748                 skb->dev = dev;         /* Mark as being used by this device. */
749                 skb_reserve(skb, 2);    /* 16 byte align the IP header. */
750                 yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
751                         skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
752         }
753         yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
754         yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
755
756 #define NO_TXSTATS
757 #ifdef NO_TXSTATS
758         /* In this mode the Tx ring needs only a single descriptor. */
759         for (i = 0; i < TX_RING_SIZE; i++) {
760                 yp->tx_skbuff[i] = NULL;
761                 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
762                 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
763                         ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
764         }
765         /* Wrap ring */
766         yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
767 #else
768 {
769         int j;
770
771         /* Tx ring needs a pair of descriptors, the second for the status. */
772         for (i = 0; i < TX_RING_SIZE; i++) {
773                 j = 2*i;
774                 yp->tx_skbuff[i] = 0;
775                 /* Branch on Tx error. */
776                 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
777                 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
778                         (j+1)*sizeof(struct yellowfin_desc));
779                 j++;
780                 if (yp->flags & FullTxStatus) {
781                         yp->tx_ring[j].dbdma_cmd =
782                                 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
783                         yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
784                         yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
785                                 i*sizeof(struct tx_status_words));
786                 } else {
787                         /* Symbios chips write only tx_errs word. */
788                         yp->tx_ring[j].dbdma_cmd =
789                                 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
790                         yp->tx_ring[j].request_cnt = 2;
791                         /* Om pade ummmmm... */
792                         yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
793                                 i*sizeof(struct tx_status_words) +
794                                 &(yp->tx_status[0].tx_errs) -
795                                 &(yp->tx_status[0]));
796                 }
797                 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
798                         ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
799         }
800         /* Wrap ring */
801         yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
802 }
803 #endif
804         yp->tx_tail_desc = &yp->tx_status[0];
805         return;
806 }
807
808 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev)
809 {
810         struct yellowfin_private *yp = netdev_priv(dev);
811         unsigned entry;
812         int len = skb->len;
813
814         netif_stop_queue (dev);
815
816         /* Note: Ordering is important here, set the field with the
817            "ownership" bit last, and only then increment cur_tx. */
818
819         /* Calculate the next Tx descriptor entry. */
820         entry = yp->cur_tx % TX_RING_SIZE;
821
822         if (gx_fix) {   /* Note: only works for paddable protocols e.g.  IP. */
823                 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
824                 /* Fix GX chipset errata. */
825                 if (cacheline_end > 24  || cacheline_end == 0) {
826                         len = skb->len + 32 - cacheline_end + 1;
827                         if (skb_padto(skb, len)) {
828                                 yp->tx_skbuff[entry] = NULL;
829                                 netif_wake_queue(dev);
830                                 return 0;
831                         }
832                 }
833         }
834         yp->tx_skbuff[entry] = skb;
835
836 #ifdef NO_TXSTATS
837         yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
838                 skb->data, len, PCI_DMA_TODEVICE));
839         yp->tx_ring[entry].result_status = 0;
840         if (entry >= TX_RING_SIZE-1) {
841                 /* New stop command. */
842                 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
843                 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
844                         cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
845         } else {
846                 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
847                 yp->tx_ring[entry].dbdma_cmd =
848                         cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
849         }
850         yp->cur_tx++;
851 #else
852         yp->tx_ring[entry<<1].request_cnt = len;
853         yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
854                 skb->data, len, PCI_DMA_TODEVICE));
855         /* The input_last (status-write) command is constant, but we must
856            rewrite the subsequent 'stop' command. */
857
858         yp->cur_tx++;
859         {
860                 unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
861                 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
862         }
863         /* Final step -- overwrite the old 'stop' command. */
864
865         yp->tx_ring[entry<<1].dbdma_cmd =
866                 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
867                                           CMD_TX_PKT | BRANCH_IFTRUE) | len);
868 #endif
869
870         /* Non-x86 Todo: explicitly flush cache lines here. */
871
872         /* Wake the potentially-idle transmit channel. */
873         iowrite32(0x10001000, yp->base + TxCtrl);
874
875         if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
876                 netif_start_queue (dev);                /* Typical path */
877         else
878                 yp->tx_full = 1;
879
880         if (yellowfin_debug > 4) {
881                 printk(KERN_DEBUG "%s: Yellowfin transmit frame #%d queued in slot %d.\n",
882                            dev->name, yp->cur_tx, entry);
883         }
884         return 0;
885 }
886
887 /* The interrupt handler does all of the Rx thread work and cleans up
888    after the Tx thread. */
889 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
890 {
891         struct net_device *dev = dev_instance;
892         struct yellowfin_private *yp;
893         void __iomem *ioaddr;
894         int boguscnt = max_interrupt_work;
895         unsigned int handled = 0;
896
897         yp = netdev_priv(dev);
898         ioaddr = yp->base;
899
900         spin_lock (&yp->lock);
901
902         do {
903                 u16 intr_status = ioread16(ioaddr + IntrClear);
904
905                 if (yellowfin_debug > 4)
906                         printk(KERN_DEBUG "%s: Yellowfin interrupt, status %4.4x.\n",
907                                    dev->name, intr_status);
908
909                 if (intr_status == 0)
910                         break;
911                 handled = 1;
912
913                 if (intr_status & (IntrRxDone | IntrEarlyRx)) {
914                         yellowfin_rx(dev);
915                         iowrite32(0x10001000, ioaddr + RxCtrl);         /* Wake Rx engine. */
916                 }
917
918 #ifdef NO_TXSTATS
919                 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
920                         int entry = yp->dirty_tx % TX_RING_SIZE;
921                         struct sk_buff *skb;
922
923                         if (yp->tx_ring[entry].result_status == 0)
924                                 break;
925                         skb = yp->tx_skbuff[entry];
926                         dev->stats.tx_packets++;
927                         dev->stats.tx_bytes += skb->len;
928                         /* Free the original skb. */
929                         pci_unmap_single(yp->pci_dev, le32_to_cpu(yp->tx_ring[entry].addr),
930                                 skb->len, PCI_DMA_TODEVICE);
931                         dev_kfree_skb_irq(skb);
932                         yp->tx_skbuff[entry] = NULL;
933                 }
934                 if (yp->tx_full
935                         && yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
936                         /* The ring is no longer full, clear tbusy. */
937                         yp->tx_full = 0;
938                         netif_wake_queue(dev);
939                 }
940 #else
941                 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
942                         unsigned dirty_tx = yp->dirty_tx;
943
944                         for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
945                                  dirty_tx++) {
946                                 /* Todo: optimize this. */
947                                 int entry = dirty_tx % TX_RING_SIZE;
948                                 u16 tx_errs = yp->tx_status[entry].tx_errs;
949                                 struct sk_buff *skb;
950
951 #ifndef final_version
952                                 if (yellowfin_debug > 5)
953                                         printk(KERN_DEBUG "%s: Tx queue %d check, Tx status "
954                                                    "%4.4x %4.4x %4.4x %4.4x.\n",
955                                                    dev->name, entry,
956                                                    yp->tx_status[entry].tx_cnt,
957                                                    yp->tx_status[entry].tx_errs,
958                                                    yp->tx_status[entry].total_tx_cnt,
959                                                    yp->tx_status[entry].paused);
960 #endif
961                                 if (tx_errs == 0)
962                                         break;  /* It still hasn't been Txed */
963                                 skb = yp->tx_skbuff[entry];
964                                 if (tx_errs & 0xF810) {
965                                         /* There was an major error, log it. */
966 #ifndef final_version
967                                         if (yellowfin_debug > 1)
968                                                 printk(KERN_DEBUG "%s: Transmit error, Tx status %4.4x.\n",
969                                                            dev->name, tx_errs);
970 #endif
971                                         dev->stats.tx_errors++;
972                                         if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
973                                         if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
974                                         if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
975                                         if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
976                                 } else {
977 #ifndef final_version
978                                         if (yellowfin_debug > 4)
979                                                 printk(KERN_DEBUG "%s: Normal transmit, Tx status %4.4x.\n",
980                                                            dev->name, tx_errs);
981 #endif
982                                         dev->stats.tx_bytes += skb->len;
983                                         dev->stats.collisions += tx_errs & 15;
984                                         dev->stats.tx_packets++;
985                                 }
986                                 /* Free the original skb. */
987                                 pci_unmap_single(yp->pci_dev,
988                                         yp->tx_ring[entry<<1].addr, skb->len,
989                                         PCI_DMA_TODEVICE);
990                                 dev_kfree_skb_irq(skb);
991                                 yp->tx_skbuff[entry] = 0;
992                                 /* Mark status as empty. */
993                                 yp->tx_status[entry].tx_errs = 0;
994                         }
995
996 #ifndef final_version
997                         if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
998                                 printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
999                                            dev->name, dirty_tx, yp->cur_tx, yp->tx_full);
1000                                 dirty_tx += TX_RING_SIZE;
1001                         }
1002 #endif
1003
1004                         if (yp->tx_full
1005                                 && yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1006                                 /* The ring is no longer full, clear tbusy. */
1007                                 yp->tx_full = 0;
1008                                 netif_wake_queue(dev);
1009                         }
1010
1011                         yp->dirty_tx = dirty_tx;
1012                         yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1013                 }
1014 #endif
1015
1016                 /* Log errors and other uncommon events. */
1017                 if (intr_status & 0x2ee)        /* Abnormal error summary. */
1018                         yellowfin_error(dev, intr_status);
1019
1020                 if (--boguscnt < 0) {
1021                         printk(KERN_WARNING "%s: Too much work at interrupt, "
1022                                    "status=0x%4.4x.\n",
1023                                    dev->name, intr_status);
1024                         break;
1025                 }
1026         } while (1);
1027
1028         if (yellowfin_debug > 3)
1029                 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1030                            dev->name, ioread16(ioaddr + IntrStatus));
1031
1032         spin_unlock (&yp->lock);
1033         return IRQ_RETVAL(handled);
1034 }
1035
1036 /* This routine is logically part of the interrupt handler, but separated
1037    for clarity and better register allocation. */
1038 static int yellowfin_rx(struct net_device *dev)
1039 {
1040         struct yellowfin_private *yp = netdev_priv(dev);
1041         int entry = yp->cur_rx % RX_RING_SIZE;
1042         int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1043
1044         if (yellowfin_debug > 4) {
1045                 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %8.8x.\n",
1046                            entry, yp->rx_ring[entry].result_status);
1047                 printk(KERN_DEBUG "   #%d desc. %8.8x %8.8x %8.8x.\n",
1048                            entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1049                            yp->rx_ring[entry].result_status);
1050         }
1051
1052         /* If EOP is set on the next entry, it's a new packet. Send it up. */
1053         while (1) {
1054                 struct yellowfin_desc *desc = &yp->rx_ring[entry];
1055                 struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1056                 s16 frame_status;
1057                 u16 desc_status;
1058                 int data_size;
1059                 u8 *buf_addr;
1060
1061                 if(!desc->result_status)
1062                         break;
1063                 pci_dma_sync_single_for_cpu(yp->pci_dev, le32_to_cpu(desc->addr),
1064                         yp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1065                 desc_status = le32_to_cpu(desc->result_status) >> 16;
1066                 buf_addr = rx_skb->data;
1067                 data_size = (le32_to_cpu(desc->dbdma_cmd) -
1068                         le32_to_cpu(desc->result_status)) & 0xffff;
1069                 frame_status = get_unaligned_le16(&(buf_addr[data_size - 2]));
1070                 if (yellowfin_debug > 4)
1071                         printk(KERN_DEBUG "  yellowfin_rx() status was %4.4x.\n",
1072                                    frame_status);
1073                 if (--boguscnt < 0)
1074                         break;
1075                 if ( ! (desc_status & RX_EOP)) {
1076                         if (data_size != 0)
1077                                 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned multiple buffers,"
1078                                            " status %4.4x, data_size %d!\n", dev->name, desc_status, data_size);
1079                         dev->stats.rx_length_errors++;
1080                 } else if ((yp->drv_flags & IsGigabit)  &&  (frame_status & 0x0038)) {
1081                         /* There was a error. */
1082                         if (yellowfin_debug > 3)
1083                                 printk(KERN_DEBUG "  yellowfin_rx() Rx error was %4.4x.\n",
1084                                            frame_status);
1085                         dev->stats.rx_errors++;
1086                         if (frame_status & 0x0060) dev->stats.rx_length_errors++;
1087                         if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
1088                         if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
1089                         if (frame_status < 0) dev->stats.rx_dropped++;
1090                 } else if ( !(yp->drv_flags & IsGigabit)  &&
1091                                    ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1092                         u8 status1 = buf_addr[data_size-2];
1093                         u8 status2 = buf_addr[data_size-1];
1094                         dev->stats.rx_errors++;
1095                         if (status1 & 0xC0) dev->stats.rx_length_errors++;
1096                         if (status2 & 0x03) dev->stats.rx_frame_errors++;
1097                         if (status2 & 0x04) dev->stats.rx_crc_errors++;
1098                         if (status2 & 0x80) dev->stats.rx_dropped++;
1099 #ifdef YF_PROTOTYPE             /* Support for prototype hardware errata. */
1100                 } else if ((yp->flags & HasMACAddrBug)  &&
1101                         memcmp(le32_to_cpu(yp->rx_ring_dma +
1102                                 entry*sizeof(struct yellowfin_desc)),
1103                                 dev->dev_addr, 6) != 0 &&
1104                         memcmp(le32_to_cpu(yp->rx_ring_dma +
1105                                 entry*sizeof(struct yellowfin_desc)),
1106                                 "\377\377\377\377\377\377", 6) != 0) {
1107                         if (bogus_rx++ == 0)
1108                                 printk(KERN_WARNING "%s: Bad frame to %pM\n",
1109                                            dev->name, buf_addr);
1110 #endif
1111                 } else {
1112                         struct sk_buff *skb;
1113                         int pkt_len = data_size -
1114                                 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1115                         /* To verify: Yellowfin Length should omit the CRC! */
1116
1117 #ifndef final_version
1118                         if (yellowfin_debug > 4)
1119                                 printk(KERN_DEBUG "  yellowfin_rx() normal Rx pkt length %d"
1120                                            " of %d, bogus_cnt %d.\n",
1121                                            pkt_len, data_size, boguscnt);
1122 #endif
1123                         /* Check if the packet is long enough to just pass up the skbuff
1124                            without copying to a properly sized skbuff. */
1125                         if (pkt_len > rx_copybreak) {
1126                                 skb_put(skb = rx_skb, pkt_len);
1127                                 pci_unmap_single(yp->pci_dev,
1128                                         le32_to_cpu(yp->rx_ring[entry].addr),
1129                                         yp->rx_buf_sz,
1130                                         PCI_DMA_FROMDEVICE);
1131                                 yp->rx_skbuff[entry] = NULL;
1132                         } else {
1133                                 skb = dev_alloc_skb(pkt_len + 2);
1134                                 if (skb == NULL)
1135                                         break;
1136                                 skb_reserve(skb, 2);    /* 16 byte align the IP header */
1137                                 skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
1138                                 skb_put(skb, pkt_len);
1139                                 pci_dma_sync_single_for_device(yp->pci_dev,
1140                                                                 le32_to_cpu(desc->addr),
1141                                                                 yp->rx_buf_sz,
1142                                                                 PCI_DMA_FROMDEVICE);
1143                         }
1144                         skb->protocol = eth_type_trans(skb, dev);
1145                         netif_rx(skb);
1146                         dev->stats.rx_packets++;
1147                         dev->stats.rx_bytes += pkt_len;
1148                 }
1149                 entry = (++yp->cur_rx) % RX_RING_SIZE;
1150         }
1151
1152         /* Refill the Rx ring buffers. */
1153         for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1154                 entry = yp->dirty_rx % RX_RING_SIZE;
1155                 if (yp->rx_skbuff[entry] == NULL) {
1156                         struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
1157                         if (skb == NULL)
1158                                 break;                          /* Better luck next round. */
1159                         yp->rx_skbuff[entry] = skb;
1160                         skb->dev = dev; /* Mark as being used by this device. */
1161                         skb_reserve(skb, 2);    /* Align IP on 16 byte boundaries */
1162                         yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1163                                 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1164                 }
1165                 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1166                 yp->rx_ring[entry].result_status = 0;   /* Clear complete bit. */
1167                 if (entry != 0)
1168                         yp->rx_ring[entry - 1].dbdma_cmd =
1169                                 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1170                 else
1171                         yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1172                                 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1173                                                         | yp->rx_buf_sz);
1174         }
1175
1176         return 0;
1177 }
1178
1179 static void yellowfin_error(struct net_device *dev, int intr_status)
1180 {
1181         printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1182                    dev->name, intr_status);
1183         /* Hmmmmm, it's not clear what to do here. */
1184         if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1185                 dev->stats.tx_errors++;
1186         if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1187                 dev->stats.rx_errors++;
1188 }
1189
1190 static int yellowfin_close(struct net_device *dev)
1191 {
1192         struct yellowfin_private *yp = netdev_priv(dev);
1193         void __iomem *ioaddr = yp->base;
1194         int i;
1195
1196         netif_stop_queue (dev);
1197
1198         if (yellowfin_debug > 1) {
1199                 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x "
1200                            "Rx %4.4x Int %2.2x.\n",
1201                            dev->name, ioread16(ioaddr + TxStatus),
1202                            ioread16(ioaddr + RxStatus),
1203                            ioread16(ioaddr + IntrStatus));
1204                 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
1205                            dev->name, yp->cur_tx, yp->dirty_tx, yp->cur_rx, yp->dirty_rx);
1206         }
1207
1208         /* Disable interrupts by clearing the interrupt mask. */
1209         iowrite16(0x0000, ioaddr + IntrEnb);
1210
1211         /* Stop the chip's Tx and Rx processes. */
1212         iowrite32(0x80000000, ioaddr + RxCtrl);
1213         iowrite32(0x80000000, ioaddr + TxCtrl);
1214
1215         del_timer(&yp->timer);
1216
1217 #if defined(__i386__)
1218         if (yellowfin_debug > 2) {
1219                 printk("\n"KERN_DEBUG"  Tx ring at %8.8llx:\n",
1220                                 (unsigned long long)yp->tx_ring_dma);
1221                 for (i = 0; i < TX_RING_SIZE*2; i++)
1222                         printk(" %c #%d desc. %8.8x %8.8x %8.8x %8.8x.\n",
1223                                    ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1224                                    i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1225                                    yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1226                 printk(KERN_DEBUG "  Tx status %p:\n", yp->tx_status);
1227                 for (i = 0; i < TX_RING_SIZE; i++)
1228                         printk("   #%d status %4.4x %4.4x %4.4x %4.4x.\n",
1229                                    i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1230                                    yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1231
1232                 printk("\n"KERN_DEBUG "  Rx ring %8.8llx:\n",
1233                                 (unsigned long long)yp->rx_ring_dma);
1234                 for (i = 0; i < RX_RING_SIZE; i++) {
1235                         printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x %8.8x\n",
1236                                    ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1237                                    i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1238                                    yp->rx_ring[i].result_status);
1239                         if (yellowfin_debug > 6) {
1240                                 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1241                                         int j;
1242                                         for (j = 0; j < 0x50; j++)
1243                                                 printk(" %4.4x",
1244                                                            get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1245                                         printk("\n");
1246                                 }
1247                         }
1248                 }
1249         }
1250 #endif /* __i386__ debugging only */
1251
1252         free_irq(dev->irq, dev);
1253
1254         /* Free all the skbuffs in the Rx queue. */
1255         for (i = 0; i < RX_RING_SIZE; i++) {
1256                 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1257                 yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1258                 if (yp->rx_skbuff[i]) {
1259                         dev_kfree_skb(yp->rx_skbuff[i]);
1260                 }
1261                 yp->rx_skbuff[i] = NULL;
1262         }
1263         for (i = 0; i < TX_RING_SIZE; i++) {
1264                 if (yp->tx_skbuff[i])
1265                         dev_kfree_skb(yp->tx_skbuff[i]);
1266                 yp->tx_skbuff[i] = NULL;
1267         }
1268
1269 #ifdef YF_PROTOTYPE                     /* Support for prototype hardware errata. */
1270         if (yellowfin_debug > 0) {
1271                 printk(KERN_DEBUG "%s: Received %d frames that we should not have.\n",
1272                            dev->name, bogus_rx);
1273         }
1274 #endif
1275
1276         return 0;
1277 }
1278
1279 /* Set or clear the multicast filter for this adaptor. */
1280
1281 static void set_rx_mode(struct net_device *dev)
1282 {
1283         struct yellowfin_private *yp = netdev_priv(dev);
1284         void __iomem *ioaddr = yp->base;
1285         u16 cfg_value = ioread16(ioaddr + Cnfg);
1286
1287         /* Stop the Rx process to change any value. */
1288         iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1289         if (dev->flags & IFF_PROMISC) {                 /* Set promiscuous. */
1290                 iowrite16(0x000F, ioaddr + AddrMode);
1291         } else if ((dev->mc_count > 64)  ||  (dev->flags & IFF_ALLMULTI)) {
1292                 /* Too many to filter well, or accept all multicasts. */
1293                 iowrite16(0x000B, ioaddr + AddrMode);
1294         } else if (dev->mc_count > 0) { /* Must use the multicast hash table. */
1295                 struct dev_mc_list *mclist;
1296                 u16 hash_table[4];
1297                 int i;
1298                 memset(hash_table, 0, sizeof(hash_table));
1299                 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1300                          i++, mclist = mclist->next) {
1301                         unsigned int bit;
1302
1303                         /* Due to a bug in the early chip versions, multiple filter
1304                            slots must be set for each address. */
1305                         if (yp->drv_flags & HasMulticastBug) {
1306                                 bit = (ether_crc_le(3, mclist->dmi_addr) >> 3) & 0x3f;
1307                                 hash_table[bit >> 4] |= (1 << bit);
1308                                 bit = (ether_crc_le(4, mclist->dmi_addr) >> 3) & 0x3f;
1309                                 hash_table[bit >> 4] |= (1 << bit);
1310                                 bit = (ether_crc_le(5, mclist->dmi_addr) >> 3) & 0x3f;
1311                                 hash_table[bit >> 4] |= (1 << bit);
1312                         }
1313                         bit = (ether_crc_le(6, mclist->dmi_addr) >> 3) & 0x3f;
1314                         hash_table[bit >> 4] |= (1 << bit);
1315                 }
1316                 /* Copy the hash table to the chip. */
1317                 for (i = 0; i < 4; i++)
1318                         iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1319                 iowrite16(0x0003, ioaddr + AddrMode);
1320         } else {                                        /* Normal, unicast/broadcast-only mode. */
1321                 iowrite16(0x0001, ioaddr + AddrMode);
1322         }
1323         /* Restart the Rx process. */
1324         iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1325 }
1326
1327 static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1328 {
1329         struct yellowfin_private *np = netdev_priv(dev);
1330         strcpy(info->driver, DRV_NAME);
1331         strcpy(info->version, DRV_VERSION);
1332         strcpy(info->bus_info, pci_name(np->pci_dev));
1333 }
1334
1335 static const struct ethtool_ops ethtool_ops = {
1336         .get_drvinfo = yellowfin_get_drvinfo
1337 };
1338
1339 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1340 {
1341         struct yellowfin_private *np = netdev_priv(dev);
1342         void __iomem *ioaddr = np->base;
1343         struct mii_ioctl_data *data = if_mii(rq);
1344
1345         switch(cmd) {
1346         case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
1347                 data->phy_id = np->phys[0] & 0x1f;
1348                 /* Fall Through */
1349
1350         case SIOCGMIIREG:               /* Read MII PHY register. */
1351                 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1352                 return 0;
1353
1354         case SIOCSMIIREG:               /* Write MII PHY register. */
1355                 if (!capable(CAP_NET_ADMIN))
1356                         return -EPERM;
1357                 if (data->phy_id == np->phys[0]) {
1358                         u16 value = data->val_in;
1359                         switch (data->reg_num) {
1360                         case 0:
1361                                 /* Check for autonegotiation on or reset. */
1362                                 np->medialock = (value & 0x9000) ? 0 : 1;
1363                                 if (np->medialock)
1364                                         np->full_duplex = (value & 0x0100) ? 1 : 0;
1365                                 break;
1366                         case 4: np->advertising = value; break;
1367                         }
1368                         /* Perhaps check_duplex(dev), depending on chip semantics. */
1369                 }
1370                 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1371                 return 0;
1372         default:
1373                 return -EOPNOTSUPP;
1374         }
1375 }
1376
1377
1378 static void __devexit yellowfin_remove_one (struct pci_dev *pdev)
1379 {
1380         struct net_device *dev = pci_get_drvdata(pdev);
1381         struct yellowfin_private *np;
1382
1383         BUG_ON(!dev);
1384         np = netdev_priv(dev);
1385
1386         pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
1387                 np->tx_status_dma);
1388         pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
1389         pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
1390         unregister_netdev (dev);
1391
1392         pci_iounmap(pdev, np->base);
1393
1394         pci_release_regions (pdev);
1395
1396         free_netdev (dev);
1397         pci_set_drvdata(pdev, NULL);
1398 }
1399
1400
1401 static struct pci_driver yellowfin_driver = {
1402         .name           = DRV_NAME,
1403         .id_table       = yellowfin_pci_tbl,
1404         .probe          = yellowfin_init_one,
1405         .remove         = __devexit_p(yellowfin_remove_one),
1406 };
1407
1408
1409 static int __init yellowfin_init (void)
1410 {
1411 /* when a module, this is printed whether or not devices are found in probe */
1412 #ifdef MODULE
1413         printk(version);
1414 #endif
1415         return pci_register_driver(&yellowfin_driver);
1416 }
1417
1418
1419 static void __exit yellowfin_cleanup (void)
1420 {
1421         pci_unregister_driver (&yellowfin_driver);
1422 }
1423
1424
1425 module_init(yellowfin_init);
1426 module_exit(yellowfin_cleanup);