[PATCH] zd1211rw: Add 3 more device IDs
[safe/jmp/linux-2.6] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* zd_usb.c
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License as published by
5  * the Free Software Foundation; either version 2 of the License, or
6  * (at your option) any later version.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  */
17
18 #include <asm/unaligned.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/firmware.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/skbuff.h>
26 #include <linux/usb.h>
27 #include <linux/workqueue.h>
28 #include <net/ieee80211.h>
29
30 #include "zd_def.h"
31 #include "zd_netdev.h"
32 #include "zd_mac.h"
33 #include "zd_usb.h"
34 #include "zd_util.h"
35
36 static struct usb_device_id usb_ids[] = {
37         /* ZD1211 */
38         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
39         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
40         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
51         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
52         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
53         /* ZD1211B */
54         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
55         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
56         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
57         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
58         /* "Driverless" devices that need ejecting */
59         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
60         {}
61 };
62
63 MODULE_LICENSE("GPL");
64 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
65 MODULE_AUTHOR("Ulrich Kunitz");
66 MODULE_AUTHOR("Daniel Drake");
67 MODULE_VERSION("1.0");
68 MODULE_DEVICE_TABLE(usb, usb_ids);
69
70 #define FW_ZD1211_PREFIX        "zd1211/zd1211_"
71 #define FW_ZD1211B_PREFIX       "zd1211/zd1211b_"
72
73 /* register address handling */
74
75 #ifdef DEBUG
76 static int check_addr(struct zd_usb *usb, zd_addr_t addr)
77 {
78         u32 base = ZD_ADDR_BASE(addr);
79         u32 offset = ZD_OFFSET(addr);
80
81         if ((u32)addr & ADDR_ZERO_MASK)
82                 goto invalid_address;
83         switch (base) {
84         case USB_BASE:
85                 break;
86         case CR_BASE:
87                 if (offset > CR_MAX_OFFSET) {
88                         dev_dbg(zd_usb_dev(usb),
89                                 "CR offset %#010x larger than"
90                                 " CR_MAX_OFFSET %#10x\n",
91                                 offset, CR_MAX_OFFSET);
92                         goto invalid_address;
93                 }
94                 if (offset & 1) {
95                         dev_dbg(zd_usb_dev(usb),
96                                 "CR offset %#010x is not a multiple of 2\n",
97                                 offset);
98                         goto invalid_address;
99                 }
100                 break;
101         case E2P_BASE:
102                 if (offset > E2P_MAX_OFFSET) {
103                         dev_dbg(zd_usb_dev(usb),
104                                 "E2P offset %#010x larger than"
105                                 " E2P_MAX_OFFSET %#010x\n",
106                                 offset, E2P_MAX_OFFSET);
107                         goto invalid_address;
108                 }
109                 break;
110         case FW_BASE:
111                 if (!usb->fw_base_offset) {
112                         dev_dbg(zd_usb_dev(usb),
113                                "ERROR: fw base offset has not been set\n");
114                         return -EAGAIN;
115                 }
116                 if (offset > FW_MAX_OFFSET) {
117                         dev_dbg(zd_usb_dev(usb),
118                                 "FW offset %#10x is larger than"
119                                 " FW_MAX_OFFSET %#010x\n",
120                                 offset, FW_MAX_OFFSET);
121                         goto invalid_address;
122                 }
123                 break;
124         default:
125                 dev_dbg(zd_usb_dev(usb),
126                         "address has unsupported base %#010x\n", addr);
127                 goto invalid_address;
128         }
129
130         return 0;
131 invalid_address:
132         dev_dbg(zd_usb_dev(usb),
133                 "ERROR: invalid address: %#010x\n", addr);
134         return -EINVAL;
135 }
136 #endif /* DEBUG */
137
138 static u16 usb_addr(struct zd_usb *usb, zd_addr_t addr)
139 {
140         u32 base;
141         u16 offset;
142
143         base = ZD_ADDR_BASE(addr);
144         offset = ZD_OFFSET(addr);
145
146         ZD_ASSERT(check_addr(usb, addr) == 0);
147
148         switch (base) {
149         case CR_BASE:
150                 offset += CR_BASE_OFFSET;
151                 break;
152         case E2P_BASE:
153                 offset += E2P_BASE_OFFSET;
154                 break;
155         case FW_BASE:
156                 offset += usb->fw_base_offset;
157                 break;
158         }
159
160         return offset;
161 }
162
163 /* USB device initialization */
164
165 static int request_fw_file(
166         const struct firmware **fw, const char *name, struct device *device)
167 {
168         int r;
169
170         dev_dbg_f(device, "fw name %s\n", name);
171
172         r = request_firmware(fw, name, device);
173         if (r)
174                 dev_err(device,
175                        "Could not load firmware file %s. Error number %d\n",
176                        name, r);
177         return r;
178 }
179
180 static inline u16 get_bcdDevice(const struct usb_device *udev)
181 {
182         return le16_to_cpu(udev->descriptor.bcdDevice);
183 }
184
185 enum upload_code_flags {
186         REBOOT = 1,
187 };
188
189 /* Ensures that MAX_TRANSFER_SIZE is even. */
190 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
191
192 static int upload_code(struct usb_device *udev,
193         const u8 *data, size_t size, u16 code_offset, int flags)
194 {
195         u8 *p;
196         int r;
197
198         /* USB request blocks need "kmalloced" buffers.
199          */
200         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
201         if (!p) {
202                 dev_err(&udev->dev, "out of memory\n");
203                 r = -ENOMEM;
204                 goto error;
205         }
206
207         size &= ~1;
208         while (size > 0) {
209                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
210                         size : MAX_TRANSFER_SIZE;
211
212                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
213
214                 memcpy(p, data, transfer_size);
215                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
216                         USB_REQ_FIRMWARE_DOWNLOAD,
217                         USB_DIR_OUT | USB_TYPE_VENDOR,
218                         code_offset, 0, p, transfer_size, 1000 /* ms */);
219                 if (r < 0) {
220                         dev_err(&udev->dev,
221                                "USB control request for firmware upload"
222                                " failed. Error number %d\n", r);
223                         goto error;
224                 }
225                 transfer_size = r & ~1;
226
227                 size -= transfer_size;
228                 data += transfer_size;
229                 code_offset += transfer_size/sizeof(u16);
230         }
231
232         if (flags & REBOOT) {
233                 u8 ret;
234
235                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
236                         USB_REQ_FIRMWARE_CONFIRM,
237                         USB_DIR_IN | USB_TYPE_VENDOR,
238                         0, 0, &ret, sizeof(ret), 5000 /* ms */);
239                 if (r != sizeof(ret)) {
240                         dev_err(&udev->dev,
241                                 "control request firmeware confirmation failed."
242                                 " Return value %d\n", r);
243                         if (r >= 0)
244                                 r = -ENODEV;
245                         goto error;
246                 }
247                 if (ret & 0x80) {
248                         dev_err(&udev->dev,
249                                 "Internal error while downloading."
250                                 " Firmware confirm return value %#04x\n",
251                                 (unsigned int)ret);
252                         r = -ENODEV;
253                         goto error;
254                 }
255                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
256                         (unsigned int)ret);
257         }
258
259         r = 0;
260 error:
261         kfree(p);
262         return r;
263 }
264
265 static u16 get_word(const void *data, u16 offset)
266 {
267         const __le16 *p = data;
268         return le16_to_cpu(p[offset]);
269 }
270
271 static char *get_fw_name(char *buffer, size_t size, u8 device_type,
272                        const char* postfix)
273 {
274         scnprintf(buffer, size, "%s%s",
275                 device_type == DEVICE_ZD1211B ?
276                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
277                 postfix);
278         return buffer;
279 }
280
281 static int handle_version_mismatch(struct usb_device *udev, u8 device_type,
282         const struct firmware *ub_fw)
283 {
284         const struct firmware *ur_fw = NULL;
285         int offset;
286         int r = 0;
287         char fw_name[128];
288
289         r = request_fw_file(&ur_fw,
290                 get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"),
291                 &udev->dev);
292         if (r)
293                 goto error;
294
295         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START_OFFSET,
296                 REBOOT);
297         if (r)
298                 goto error;
299
300         offset = ((EEPROM_REGS_OFFSET + EEPROM_REGS_SIZE) * sizeof(u16));
301         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
302                 E2P_BASE_OFFSET + EEPROM_REGS_SIZE, REBOOT);
303
304         /* At this point, the vendor driver downloads the whole firmware
305          * image, hacks around with version IDs, and uploads it again,
306          * completely overwriting the boot code. We do not do this here as
307          * it is not required on any tested devices, and it is suspected to
308          * cause problems. */
309 error:
310         release_firmware(ur_fw);
311         return r;
312 }
313
314 static int upload_firmware(struct usb_device *udev, u8 device_type)
315 {
316         int r;
317         u16 fw_bcdDevice;
318         u16 bcdDevice;
319         const struct firmware *ub_fw = NULL;
320         const struct firmware *uph_fw = NULL;
321         char fw_name[128];
322
323         bcdDevice = get_bcdDevice(udev);
324
325         r = request_fw_file(&ub_fw,
326                 get_fw_name(fw_name, sizeof(fw_name), device_type,  "ub"),
327                 &udev->dev);
328         if (r)
329                 goto error;
330
331         fw_bcdDevice = get_word(ub_fw->data, EEPROM_REGS_OFFSET);
332
333         if (fw_bcdDevice != bcdDevice) {
334                 dev_info(&udev->dev,
335                         "firmware version %#06x and device bootcode version "
336                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
337                 if (bcdDevice <= 0x4313)
338                         dev_warn(&udev->dev, "device has old bootcode, please "
339                                 "report success or failure\n");
340
341                 r = handle_version_mismatch(udev, device_type, ub_fw);
342                 if (r)
343                         goto error;
344         } else {
345                 dev_dbg_f(&udev->dev,
346                         "firmware device id %#06x is equal to the "
347                         "actual device id\n", fw_bcdDevice);
348         }
349
350
351         r = request_fw_file(&uph_fw,
352                 get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
353                 &udev->dev);
354         if (r)
355                 goto error;
356
357         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START_OFFSET,
358                         REBOOT);
359         if (r) {
360                 dev_err(&udev->dev,
361                         "Could not upload firmware code uph. Error number %d\n",
362                         r);
363         }
364
365         /* FALL-THROUGH */
366 error:
367         release_firmware(ub_fw);
368         release_firmware(uph_fw);
369         return r;
370 }
371
372 #define urb_dev(urb) (&(urb)->dev->dev)
373
374 static inline void handle_regs_int(struct urb *urb)
375 {
376         struct zd_usb *usb = urb->context;
377         struct zd_usb_interrupt *intr = &usb->intr;
378         int len;
379
380         ZD_ASSERT(in_interrupt());
381         spin_lock(&intr->lock);
382
383         if (intr->read_regs_enabled) {
384                 intr->read_regs.length = len = urb->actual_length;
385
386                 if (len > sizeof(intr->read_regs.buffer))
387                         len = sizeof(intr->read_regs.buffer);
388                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
389                 intr->read_regs_enabled = 0;
390                 complete(&intr->read_regs.completion);
391                 goto out;
392         }
393
394         dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
395 out:
396         spin_unlock(&intr->lock);
397 }
398
399 static inline void handle_retry_failed_int(struct urb *urb)
400 {
401         dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
402 }
403
404
405 static void int_urb_complete(struct urb *urb)
406 {
407         int r;
408         struct usb_int_header *hdr;
409
410         switch (urb->status) {
411         case 0:
412                 break;
413         case -ESHUTDOWN:
414         case -EINVAL:
415         case -ENODEV:
416         case -ENOENT:
417         case -ECONNRESET:
418         case -EPIPE:
419                 goto kfree;
420         default:
421                 goto resubmit;
422         }
423
424         if (urb->actual_length < sizeof(hdr)) {
425                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
426                 goto resubmit;
427         }
428
429         hdr = urb->transfer_buffer;
430         if (hdr->type != USB_INT_TYPE) {
431                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
432                 goto resubmit;
433         }
434
435         switch (hdr->id) {
436         case USB_INT_ID_REGS:
437                 handle_regs_int(urb);
438                 break;
439         case USB_INT_ID_RETRY_FAILED:
440                 handle_retry_failed_int(urb);
441                 break;
442         default:
443                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
444                         (unsigned int)hdr->id);
445                 goto resubmit;
446         }
447
448 resubmit:
449         r = usb_submit_urb(urb, GFP_ATOMIC);
450         if (r) {
451                 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
452                 goto kfree;
453         }
454         return;
455 kfree:
456         kfree(urb->transfer_buffer);
457 }
458
459 static inline int int_urb_interval(struct usb_device *udev)
460 {
461         switch (udev->speed) {
462         case USB_SPEED_HIGH:
463                 return 4;
464         case USB_SPEED_LOW:
465                 return 10;
466         case USB_SPEED_FULL:
467         default:
468                 return 1;
469         }
470 }
471
472 static inline int usb_int_enabled(struct zd_usb *usb)
473 {
474         unsigned long flags;
475         struct zd_usb_interrupt *intr = &usb->intr;
476         struct urb *urb;
477
478         spin_lock_irqsave(&intr->lock, flags);
479         urb = intr->urb;
480         spin_unlock_irqrestore(&intr->lock, flags);
481         return urb != NULL;
482 }
483
484 int zd_usb_enable_int(struct zd_usb *usb)
485 {
486         int r;
487         struct usb_device *udev;
488         struct zd_usb_interrupt *intr = &usb->intr;
489         void *transfer_buffer = NULL;
490         struct urb *urb;
491
492         dev_dbg_f(zd_usb_dev(usb), "\n");
493
494         urb = usb_alloc_urb(0, GFP_NOFS);
495         if (!urb) {
496                 r = -ENOMEM;
497                 goto out;
498         }
499
500         ZD_ASSERT(!irqs_disabled());
501         spin_lock_irq(&intr->lock);
502         if (intr->urb) {
503                 spin_unlock_irq(&intr->lock);
504                 r = 0;
505                 goto error_free_urb;
506         }
507         intr->urb = urb;
508         spin_unlock_irq(&intr->lock);
509
510         /* TODO: make it a DMA buffer */
511         r = -ENOMEM;
512         transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_NOFS);
513         if (!transfer_buffer) {
514                 dev_dbg_f(zd_usb_dev(usb),
515                         "couldn't allocate transfer_buffer\n");
516                 goto error_set_urb_null;
517         }
518
519         udev = zd_usb_to_usbdev(usb);
520         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
521                          transfer_buffer, USB_MAX_EP_INT_BUFFER,
522                          int_urb_complete, usb,
523                          intr->interval);
524
525         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
526         r = usb_submit_urb(urb, GFP_NOFS);
527         if (r) {
528                 dev_dbg_f(zd_usb_dev(usb),
529                          "Couldn't submit urb. Error number %d\n", r);
530                 goto error;
531         }
532
533         return 0;
534 error:
535         kfree(transfer_buffer);
536 error_set_urb_null:
537         spin_lock_irq(&intr->lock);
538         intr->urb = NULL;
539         spin_unlock_irq(&intr->lock);
540 error_free_urb:
541         usb_free_urb(urb);
542 out:
543         return r;
544 }
545
546 void zd_usb_disable_int(struct zd_usb *usb)
547 {
548         unsigned long flags;
549         struct zd_usb_interrupt *intr = &usb->intr;
550         struct urb *urb;
551
552         spin_lock_irqsave(&intr->lock, flags);
553         urb = intr->urb;
554         if (!urb) {
555                 spin_unlock_irqrestore(&intr->lock, flags);
556                 return;
557         }
558         intr->urb = NULL;
559         spin_unlock_irqrestore(&intr->lock, flags);
560
561         usb_kill_urb(urb);
562         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
563         usb_free_urb(urb);
564 }
565
566 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
567                              unsigned int length)
568 {
569         int i;
570         struct zd_mac *mac = zd_usb_to_mac(usb);
571         const struct rx_length_info *length_info;
572
573         if (length < sizeof(struct rx_length_info)) {
574                 /* It's not a complete packet anyhow. */
575                 return;
576         }
577         length_info = (struct rx_length_info *)
578                 (buffer + length - sizeof(struct rx_length_info));
579
580         /* It might be that three frames are merged into a single URB
581          * transaction. We have to check for the length info tag.
582          *
583          * While testing we discovered that length_info might be unaligned,
584          * because if USB transactions are merged, the last packet will not
585          * be padded. Unaligned access might also happen if the length_info
586          * structure is not present.
587          */
588         if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
589         {
590                 unsigned int l, k, n;
591                 for (i = 0, l = 0;; i++) {
592                         k = le16_to_cpu(get_unaligned(&length_info->length[i]));
593                         n = l+k;
594                         if (n > length)
595                                 return;
596                         zd_mac_rx(mac, buffer+l, k);
597                         if (i >= 2)
598                                 return;
599                         l = (n+3) & ~3;
600                 }
601         } else {
602                 zd_mac_rx(mac, buffer, length);
603         }
604 }
605
606 static void rx_urb_complete(struct urb *urb)
607 {
608         struct zd_usb *usb;
609         struct zd_usb_rx *rx;
610         const u8 *buffer;
611         unsigned int length;
612
613         switch (urb->status) {
614         case 0:
615                 break;
616         case -ESHUTDOWN:
617         case -EINVAL:
618         case -ENODEV:
619         case -ENOENT:
620         case -ECONNRESET:
621         case -EPIPE:
622                 return;
623         default:
624                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
625                 goto resubmit;
626         }
627
628         buffer = urb->transfer_buffer;
629         length = urb->actual_length;
630         usb = urb->context;
631         rx = &usb->rx;
632
633         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
634                 /* If there is an old first fragment, we don't care. */
635                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
636                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
637                 spin_lock(&rx->lock);
638                 memcpy(rx->fragment, buffer, length);
639                 rx->fragment_length = length;
640                 spin_unlock(&rx->lock);
641                 goto resubmit;
642         }
643
644         spin_lock(&rx->lock);
645         if (rx->fragment_length > 0) {
646                 /* We are on a second fragment, we believe */
647                 ZD_ASSERT(length + rx->fragment_length <=
648                           ARRAY_SIZE(rx->fragment));
649                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
650                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
651                 handle_rx_packet(usb, rx->fragment,
652                                  rx->fragment_length + length);
653                 rx->fragment_length = 0;
654                 spin_unlock(&rx->lock);
655         } else {
656                 spin_unlock(&rx->lock);
657                 handle_rx_packet(usb, buffer, length);
658         }
659
660 resubmit:
661         usb_submit_urb(urb, GFP_ATOMIC);
662 }
663
664 static struct urb *alloc_urb(struct zd_usb *usb)
665 {
666         struct usb_device *udev = zd_usb_to_usbdev(usb);
667         struct urb *urb;
668         void *buffer;
669
670         urb = usb_alloc_urb(0, GFP_NOFS);
671         if (!urb)
672                 return NULL;
673         buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_NOFS,
674                                   &urb->transfer_dma);
675         if (!buffer) {
676                 usb_free_urb(urb);
677                 return NULL;
678         }
679
680         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
681                           buffer, USB_MAX_RX_SIZE,
682                           rx_urb_complete, usb);
683         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
684
685         return urb;
686 }
687
688 static void free_urb(struct urb *urb)
689 {
690         if (!urb)
691                 return;
692         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
693                         urb->transfer_buffer, urb->transfer_dma);
694         usb_free_urb(urb);
695 }
696
697 int zd_usb_enable_rx(struct zd_usb *usb)
698 {
699         int i, r;
700         struct zd_usb_rx *rx = &usb->rx;
701         struct urb **urbs;
702
703         dev_dbg_f(zd_usb_dev(usb), "\n");
704
705         r = -ENOMEM;
706         urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_NOFS);
707         if (!urbs)
708                 goto error;
709         for (i = 0; i < URBS_COUNT; i++) {
710                 urbs[i] = alloc_urb(usb);
711                 if (!urbs[i])
712                         goto error;
713         }
714
715         ZD_ASSERT(!irqs_disabled());
716         spin_lock_irq(&rx->lock);
717         if (rx->urbs) {
718                 spin_unlock_irq(&rx->lock);
719                 r = 0;
720                 goto error;
721         }
722         rx->urbs = urbs;
723         rx->urbs_count = URBS_COUNT;
724         spin_unlock_irq(&rx->lock);
725
726         for (i = 0; i < URBS_COUNT; i++) {
727                 r = usb_submit_urb(urbs[i], GFP_NOFS);
728                 if (r)
729                         goto error_submit;
730         }
731
732         return 0;
733 error_submit:
734         for (i = 0; i < URBS_COUNT; i++) {
735                 usb_kill_urb(urbs[i]);
736         }
737         spin_lock_irq(&rx->lock);
738         rx->urbs = NULL;
739         rx->urbs_count = 0;
740         spin_unlock_irq(&rx->lock);
741 error:
742         if (urbs) {
743                 for (i = 0; i < URBS_COUNT; i++)
744                         free_urb(urbs[i]);
745         }
746         return r;
747 }
748
749 void zd_usb_disable_rx(struct zd_usb *usb)
750 {
751         int i;
752         unsigned long flags;
753         struct urb **urbs;
754         unsigned int count;
755         struct zd_usb_rx *rx = &usb->rx;
756
757         spin_lock_irqsave(&rx->lock, flags);
758         urbs = rx->urbs;
759         count = rx->urbs_count;
760         spin_unlock_irqrestore(&rx->lock, flags);
761         if (!urbs)
762                 return;
763
764         for (i = 0; i < count; i++) {
765                 usb_kill_urb(urbs[i]);
766                 free_urb(urbs[i]);
767         }
768         kfree(urbs);
769
770         spin_lock_irqsave(&rx->lock, flags);
771         rx->urbs = NULL;
772         rx->urbs_count = 0;
773         spin_unlock_irqrestore(&rx->lock, flags);
774 }
775
776 static void tx_urb_complete(struct urb *urb)
777 {
778         int r;
779
780         switch (urb->status) {
781         case 0:
782                 break;
783         case -ESHUTDOWN:
784         case -EINVAL:
785         case -ENODEV:
786         case -ENOENT:
787         case -ECONNRESET:
788         case -EPIPE:
789                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
790                 break;
791         default:
792                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
793                 goto resubmit;
794         }
795 free_urb:
796         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
797                         urb->transfer_buffer, urb->transfer_dma);
798         usb_free_urb(urb);
799         return;
800 resubmit:
801         r = usb_submit_urb(urb, GFP_ATOMIC);
802         if (r) {
803                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
804                 goto free_urb;
805         }
806 }
807
808 /* Puts the frame on the USB endpoint. It doesn't wait for
809  * completion. The frame must contain the control set.
810  */
811 int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
812 {
813         int r;
814         struct usb_device *udev = zd_usb_to_usbdev(usb);
815         struct urb *urb;
816         void *buffer;
817
818         urb = usb_alloc_urb(0, GFP_ATOMIC);
819         if (!urb) {
820                 r = -ENOMEM;
821                 goto out;
822         }
823
824         buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
825                                   &urb->transfer_dma);
826         if (!buffer) {
827                 r = -ENOMEM;
828                 goto error_free_urb;
829         }
830         memcpy(buffer, frame, length);
831
832         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
833                           buffer, length, tx_urb_complete, NULL);
834         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
835
836         r = usb_submit_urb(urb, GFP_ATOMIC);
837         if (r)
838                 goto error;
839         return 0;
840 error:
841         usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
842                         urb->transfer_dma);
843 error_free_urb:
844         usb_free_urb(urb);
845 out:
846         return r;
847 }
848
849 static inline void init_usb_interrupt(struct zd_usb *usb)
850 {
851         struct zd_usb_interrupt *intr = &usb->intr;
852
853         spin_lock_init(&intr->lock);
854         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
855         init_completion(&intr->read_regs.completion);
856         intr->read_regs.cr_int_addr = cpu_to_le16(usb_addr(usb, CR_INTERRUPT));
857 }
858
859 static inline void init_usb_rx(struct zd_usb *usb)
860 {
861         struct zd_usb_rx *rx = &usb->rx;
862         spin_lock_init(&rx->lock);
863         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
864                 rx->usb_packet_size = 512;
865         } else {
866                 rx->usb_packet_size = 64;
867         }
868         ZD_ASSERT(rx->fragment_length == 0);
869 }
870
871 static inline void init_usb_tx(struct zd_usb *usb)
872 {
873         /* FIXME: at this point we will allocate a fixed number of urb's for
874          * use in a cyclic scheme */
875 }
876
877 void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
878                  struct usb_interface *intf)
879 {
880         memset(usb, 0, sizeof(*usb));
881         usb->intf = usb_get_intf(intf);
882         usb_set_intfdata(usb->intf, netdev);
883         init_usb_interrupt(usb);
884         init_usb_tx(usb);
885         init_usb_rx(usb);
886 }
887
888 int zd_usb_init_hw(struct zd_usb *usb)
889 {
890         int r;
891         struct zd_chip *chip = zd_usb_to_chip(usb);
892
893         ZD_ASSERT(mutex_is_locked(&chip->mutex));
894         r = zd_ioread16_locked(chip, &usb->fw_base_offset,
895                         USB_REG((u16)FW_BASE_ADDR_OFFSET));
896         if (r)
897                 return r;
898         dev_dbg_f(zd_usb_dev(usb), "fw_base_offset: %#06hx\n",
899                  usb->fw_base_offset);
900
901         return 0;
902 }
903
904 void zd_usb_clear(struct zd_usb *usb)
905 {
906         usb_set_intfdata(usb->intf, NULL);
907         usb_put_intf(usb->intf);
908         ZD_MEMCLEAR(usb, sizeof(*usb));
909         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
910 }
911
912 static const char *speed(enum usb_device_speed speed)
913 {
914         switch (speed) {
915         case USB_SPEED_LOW:
916                 return "low";
917         case USB_SPEED_FULL:
918                 return "full";
919         case USB_SPEED_HIGH:
920                 return "high";
921         default:
922                 return "unknown speed";
923         }
924 }
925
926 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
927 {
928         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
929                 le16_to_cpu(udev->descriptor.idVendor),
930                 le16_to_cpu(udev->descriptor.idProduct),
931                 get_bcdDevice(udev),
932                 speed(udev->speed));
933 }
934
935 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
936 {
937         struct usb_device *udev = interface_to_usbdev(usb->intf);
938         return scnprint_id(udev, buffer, size);
939 }
940
941 #ifdef DEBUG
942 static void print_id(struct usb_device *udev)
943 {
944         char buffer[40];
945
946         scnprint_id(udev, buffer, sizeof(buffer));
947         buffer[sizeof(buffer)-1] = 0;
948         dev_dbg_f(&udev->dev, "%s\n", buffer);
949 }
950 #else
951 #define print_id(udev) do { } while (0)
952 #endif
953
954 static int eject_installer(struct usb_interface *intf)
955 {
956         struct usb_device *udev = interface_to_usbdev(intf);
957         struct usb_host_interface *iface_desc = &intf->altsetting[0];
958         struct usb_endpoint_descriptor *endpoint;
959         unsigned char *cmd;
960         u8 bulk_out_ep;
961         int r;
962
963         /* Find bulk out endpoint */
964         endpoint = &iface_desc->endpoint[1].desc;
965         if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
966             (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
967             USB_ENDPOINT_XFER_BULK) {
968                 bulk_out_ep = endpoint->bEndpointAddress;
969         } else {
970                 dev_err(&udev->dev,
971                         "zd1211rw: Could not find bulk out endpoint\n");
972                 return -ENODEV;
973         }
974
975         cmd = kzalloc(31, GFP_KERNEL);
976         if (cmd == NULL)
977                 return -ENODEV;
978
979         /* USB bulk command block */
980         cmd[0] = 0x55;  /* bulk command signature */
981         cmd[1] = 0x53;  /* bulk command signature */
982         cmd[2] = 0x42;  /* bulk command signature */
983         cmd[3] = 0x43;  /* bulk command signature */
984         cmd[14] = 6;    /* command length */
985
986         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
987         cmd[19] = 0x2;  /* eject disc */
988
989         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
990         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
991                 cmd, 31, NULL, 2000);
992         kfree(cmd);
993         if (r)
994                 return r;
995
996         /* At this point, the device disconnects and reconnects with the real
997          * ID numbers. */
998
999         usb_set_intfdata(intf, NULL);
1000         return 0;
1001 }
1002
1003 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1004 {
1005         int r;
1006         struct usb_device *udev = interface_to_usbdev(intf);
1007         struct net_device *netdev = NULL;
1008
1009         print_id(udev);
1010
1011         if (id->driver_info & DEVICE_INSTALLER)
1012                 return eject_installer(intf);
1013
1014         switch (udev->speed) {
1015         case USB_SPEED_LOW:
1016         case USB_SPEED_FULL:
1017         case USB_SPEED_HIGH:
1018                 break;
1019         default:
1020                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1021                 r = -ENODEV;
1022                 goto error;
1023         }
1024
1025         netdev = zd_netdev_alloc(intf);
1026         if (netdev == NULL) {
1027                 r = -ENOMEM;
1028                 goto error;
1029         }
1030
1031         r = upload_firmware(udev, id->driver_info);
1032         if (r) {
1033                 dev_err(&intf->dev,
1034                        "couldn't load firmware. Error number %d\n", r);
1035                 goto error;
1036         }
1037
1038         r = usb_reset_configuration(udev);
1039         if (r) {
1040                 dev_dbg_f(&intf->dev,
1041                         "couldn't reset configuration. Error number %d\n", r);
1042                 goto error;
1043         }
1044
1045         /* At this point the interrupt endpoint is not generally enabled. We
1046          * save the USB bandwidth until the network device is opened. But
1047          * notify that the initialization of the MAC will require the
1048          * interrupts to be temporary enabled.
1049          */
1050         r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
1051         if (r) {
1052                 dev_dbg_f(&intf->dev,
1053                          "couldn't initialize mac. Error number %d\n", r);
1054                 goto error;
1055         }
1056
1057         r = register_netdev(netdev);
1058         if (r) {
1059                 dev_dbg_f(&intf->dev,
1060                          "couldn't register netdev. Error number %d\n", r);
1061                 goto error;
1062         }
1063
1064         dev_dbg_f(&intf->dev, "successful\n");
1065         dev_info(&intf->dev,"%s\n", netdev->name);
1066         return 0;
1067 error:
1068         usb_reset_device(interface_to_usbdev(intf));
1069         zd_netdev_free(netdev);
1070         return r;
1071 }
1072
1073 static void disconnect(struct usb_interface *intf)
1074 {
1075         struct net_device *netdev = zd_intf_to_netdev(intf);
1076         struct zd_mac *mac = zd_netdev_mac(netdev);
1077         struct zd_usb *usb = &mac->chip.usb;
1078
1079         /* Either something really bad happened, or we're just dealing with
1080          * a DEVICE_INSTALLER. */
1081         if (netdev == NULL)
1082                 return;
1083
1084         dev_dbg_f(zd_usb_dev(usb), "\n");
1085
1086         zd_netdev_disconnect(netdev);
1087
1088         /* Just in case something has gone wrong! */
1089         zd_usb_disable_rx(usb);
1090         zd_usb_disable_int(usb);
1091
1092         /* If the disconnect has been caused by a removal of the
1093          * driver module, the reset allows reloading of the driver. If the
1094          * reset will not be executed here, the upload of the firmware in the
1095          * probe function caused by the reloading of the driver will fail.
1096          */
1097         usb_reset_device(interface_to_usbdev(intf));
1098
1099         zd_netdev_free(netdev);
1100         dev_dbg(&intf->dev, "disconnected\n");
1101 }
1102
1103 static struct usb_driver driver = {
1104         .name           = "zd1211rw",
1105         .id_table       = usb_ids,
1106         .probe          = probe,
1107         .disconnect     = disconnect,
1108 };
1109
1110 struct workqueue_struct *zd_workqueue;
1111
1112 static int __init usb_init(void)
1113 {
1114         int r;
1115
1116         pr_debug("usb_init()\n");
1117
1118         zd_workqueue = create_singlethread_workqueue(driver.name);
1119         if (zd_workqueue == NULL) {
1120                 printk(KERN_ERR "%s: couldn't create workqueue\n", driver.name);
1121                 return -ENOMEM;
1122         }
1123
1124         r = usb_register(&driver);
1125         if (r) {
1126                 printk(KERN_ERR "usb_register() failed. Error number %d\n", r);
1127                 return r;
1128         }
1129
1130         pr_debug("zd1211rw initialized\n");
1131         return 0;
1132 }
1133
1134 static void __exit usb_exit(void)
1135 {
1136         pr_debug("usb_exit()\n");
1137         usb_deregister(&driver);
1138         destroy_workqueue(zd_workqueue);
1139 }
1140
1141 module_init(usb_init);
1142 module_exit(usb_exit);
1143
1144 static int usb_int_regs_length(unsigned int count)
1145 {
1146         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1147 }
1148
1149 static void prepare_read_regs_int(struct zd_usb *usb)
1150 {
1151         struct zd_usb_interrupt *intr = &usb->intr;
1152
1153         spin_lock_irq(&intr->lock);
1154         intr->read_regs_enabled = 1;
1155         INIT_COMPLETION(intr->read_regs.completion);
1156         spin_unlock_irq(&intr->lock);
1157 }
1158
1159 static void disable_read_regs_int(struct zd_usb *usb)
1160 {
1161         struct zd_usb_interrupt *intr = &usb->intr;
1162
1163         spin_lock_irq(&intr->lock);
1164         intr->read_regs_enabled = 0;
1165         spin_unlock_irq(&intr->lock);
1166 }
1167
1168 static int get_results(struct zd_usb *usb, u16 *values,
1169                        struct usb_req_read_regs *req, unsigned int count)
1170 {
1171         int r;
1172         int i;
1173         struct zd_usb_interrupt *intr = &usb->intr;
1174         struct read_regs_int *rr = &intr->read_regs;
1175         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1176
1177         spin_lock_irq(&intr->lock);
1178
1179         r = -EIO;
1180         /* The created block size seems to be larger than expected.
1181          * However results appear to be correct.
1182          */
1183         if (rr->length < usb_int_regs_length(count)) {
1184                 dev_dbg_f(zd_usb_dev(usb),
1185                          "error: actual length %d less than expected %d\n",
1186                          rr->length, usb_int_regs_length(count));
1187                 goto error_unlock;
1188         }
1189         if (rr->length > sizeof(rr->buffer)) {
1190                 dev_dbg_f(zd_usb_dev(usb),
1191                          "error: actual length %d exceeds buffer size %zu\n",
1192                          rr->length, sizeof(rr->buffer));
1193                 goto error_unlock;
1194         }
1195
1196         for (i = 0; i < count; i++) {
1197                 struct reg_data *rd = &regs->regs[i];
1198                 if (rd->addr != req->addr[i]) {
1199                         dev_dbg_f(zd_usb_dev(usb),
1200                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1201                                  le16_to_cpu(rd->addr),
1202                                  le16_to_cpu(req->addr[i]));
1203                         goto error_unlock;
1204                 }
1205                 values[i] = le16_to_cpu(rd->value);
1206         }
1207
1208         r = 0;
1209 error_unlock:
1210         spin_unlock_irq(&intr->lock);
1211         return r;
1212 }
1213
1214 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1215                      const zd_addr_t *addresses, unsigned int count)
1216 {
1217         int r;
1218         int i, req_len, actual_req_len;
1219         struct usb_device *udev;
1220         struct usb_req_read_regs *req = NULL;
1221         unsigned long timeout;
1222
1223         if (count < 1) {
1224                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1225                 return -EINVAL;
1226         }
1227         if (count > USB_MAX_IOREAD16_COUNT) {
1228                 dev_dbg_f(zd_usb_dev(usb),
1229                          "error: count %u exceeds possible max %u\n",
1230                          count, USB_MAX_IOREAD16_COUNT);
1231                 return -EINVAL;
1232         }
1233         if (in_atomic()) {
1234                 dev_dbg_f(zd_usb_dev(usb),
1235                          "error: io in atomic context not supported\n");
1236                 return -EWOULDBLOCK;
1237         }
1238         if (!usb_int_enabled(usb)) {
1239                  dev_dbg_f(zd_usb_dev(usb),
1240                           "error: usb interrupt not enabled\n");
1241                 return -EWOULDBLOCK;
1242         }
1243
1244         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1245         req = kmalloc(req_len, GFP_NOFS);
1246         if (!req)
1247                 return -ENOMEM;
1248         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1249         for (i = 0; i < count; i++)
1250                 req->addr[i] = cpu_to_le16(usb_addr(usb, addresses[i]));
1251
1252         udev = zd_usb_to_usbdev(usb);
1253         prepare_read_regs_int(usb);
1254         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1255                          req, req_len, &actual_req_len, 1000 /* ms */);
1256         if (r) {
1257                 dev_dbg_f(zd_usb_dev(usb),
1258                         "error in usb_bulk_msg(). Error number %d\n", r);
1259                 goto error;
1260         }
1261         if (req_len != actual_req_len) {
1262                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1263                         " req_len %d != actual_req_len %d\n",
1264                         req_len, actual_req_len);
1265                 r = -EIO;
1266                 goto error;
1267         }
1268
1269         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1270                                               msecs_to_jiffies(1000));
1271         if (!timeout) {
1272                 disable_read_regs_int(usb);
1273                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1274                 r = -ETIMEDOUT;
1275                 goto error;
1276         }
1277
1278         r = get_results(usb, values, req, count);
1279 error:
1280         kfree(req);
1281         return r;
1282 }
1283
1284 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1285                       unsigned int count)
1286 {
1287         int r;
1288         struct usb_device *udev;
1289         struct usb_req_write_regs *req = NULL;
1290         int i, req_len, actual_req_len;
1291
1292         if (count == 0)
1293                 return 0;
1294         if (count > USB_MAX_IOWRITE16_COUNT) {
1295                 dev_dbg_f(zd_usb_dev(usb),
1296                         "error: count %u exceeds possible max %u\n",
1297                         count, USB_MAX_IOWRITE16_COUNT);
1298                 return -EINVAL;
1299         }
1300         if (in_atomic()) {
1301                 dev_dbg_f(zd_usb_dev(usb),
1302                         "error: io in atomic context not supported\n");
1303                 return -EWOULDBLOCK;
1304         }
1305
1306         req_len = sizeof(struct usb_req_write_regs) +
1307                   count * sizeof(struct reg_data);
1308         req = kmalloc(req_len, GFP_NOFS);
1309         if (!req)
1310                 return -ENOMEM;
1311
1312         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1313         for (i = 0; i < count; i++) {
1314                 struct reg_data *rw  = &req->reg_writes[i];
1315                 rw->addr = cpu_to_le16(usb_addr(usb, ioreqs[i].addr));
1316                 rw->value = cpu_to_le16(ioreqs[i].value);
1317         }
1318
1319         udev = zd_usb_to_usbdev(usb);
1320         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1321                          req, req_len, &actual_req_len, 1000 /* ms */);
1322         if (r) {
1323                 dev_dbg_f(zd_usb_dev(usb),
1324                         "error in usb_bulk_msg(). Error number %d\n", r);
1325                 goto error;
1326         }
1327         if (req_len != actual_req_len) {
1328                 dev_dbg_f(zd_usb_dev(usb),
1329                         "error in usb_bulk_msg()"
1330                         " req_len %d != actual_req_len %d\n",
1331                         req_len, actual_req_len);
1332                 r = -EIO;
1333                 goto error;
1334         }
1335
1336         /* FALL-THROUGH with r == 0 */
1337 error:
1338         kfree(req);
1339         return r;
1340 }
1341
1342 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1343 {
1344         int r;
1345         struct usb_device *udev;
1346         struct usb_req_rfwrite *req = NULL;
1347         int i, req_len, actual_req_len;
1348         u16 bit_value_template;
1349
1350         if (in_atomic()) {
1351                 dev_dbg_f(zd_usb_dev(usb),
1352                         "error: io in atomic context not supported\n");
1353                 return -EWOULDBLOCK;
1354         }
1355         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1356                 dev_dbg_f(zd_usb_dev(usb),
1357                         "error: bits %d are smaller than"
1358                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1359                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1360                 return -EINVAL;
1361         }
1362         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1363                 dev_dbg_f(zd_usb_dev(usb),
1364                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1365                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1366                 return -EINVAL;
1367         }
1368 #ifdef DEBUG
1369         if (value & (~0UL << bits)) {
1370                 dev_dbg_f(zd_usb_dev(usb),
1371                         "error: value %#09x has bits >= %d set\n",
1372                         value, bits);
1373                 return -EINVAL;
1374         }
1375 #endif /* DEBUG */
1376
1377         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1378
1379         r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1380         if (r) {
1381                 dev_dbg_f(zd_usb_dev(usb),
1382                         "error %d: Couldn't read CR203\n", r);
1383                 goto out;
1384         }
1385         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1386
1387         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1388         req = kmalloc(req_len, GFP_NOFS);
1389         if (!req)
1390                 return -ENOMEM;
1391
1392         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1393         /* 1: 3683a, but not used in ZYDAS driver */
1394         req->value = cpu_to_le16(2);
1395         req->bits = cpu_to_le16(bits);
1396
1397         for (i = 0; i < bits; i++) {
1398                 u16 bv = bit_value_template;
1399                 if (value & (1 << (bits-1-i)))
1400                         bv |= RF_DATA;
1401                 req->bit_values[i] = cpu_to_le16(bv);
1402         }
1403
1404         udev = zd_usb_to_usbdev(usb);
1405         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1406                          req, req_len, &actual_req_len, 1000 /* ms */);
1407         if (r) {
1408                 dev_dbg_f(zd_usb_dev(usb),
1409                         "error in usb_bulk_msg(). Error number %d\n", r);
1410                 goto out;
1411         }
1412         if (req_len != actual_req_len) {
1413                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1414                         " req_len %d != actual_req_len %d\n",
1415                         req_len, actual_req_len);
1416                 r = -EIO;
1417                 goto out;
1418         }
1419
1420         /* FALL-THROUGH with r == 0 */
1421 out:
1422         kfree(req);
1423         return r;
1424 }