477a944167c47f1d9370d4843bf7c01f12ccc5ae
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Link tuning handlers
34  */
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
38                 return;
39
40         /*
41          * Reset link information.
42          * Both the currently active vgc level as well as
43          * the link tuner counter should be reset. Resetting
44          * the counter is important for devices where the
45          * device should only perform link tuning during the
46          * first minute after being enabled.
47          */
48         rt2x00dev->link.count = 0;
49         rt2x00dev->link.vgc_level = 0;
50
51         /*
52          * Reset the link tuner.
53          */
54         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59         /*
60          * Clear all (possibly) pre-existing quality statistics.
61          */
62         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63
64         /*
65          * The RX and TX percentage should start at 50%
66          * this will assure we will get at least get some
67          * decent value when the link tuner starts.
68          * The value will be dropped and overwritten with
69          * the correct (measured )value anyway during the
70          * first run of the link tuner.
71          */
72         rt2x00dev->link.qual.rx_percentage = 50;
73         rt2x00dev->link.qual.tx_percentage = 50;
74
75         rt2x00lib_reset_link_tuner(rt2x00dev);
76
77         queue_delayed_work(rt2x00dev->hw->workqueue,
78                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83         cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 /*
87  * Radio control handlers.
88  */
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91         int status;
92
93         /*
94          * Don't enable the radio twice.
95          * And check if the hardware button has been disabled.
96          */
97         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
98             test_bit(DEVICE_STATE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99                 return 0;
100
101         /*
102          * Initialize all data queues.
103          */
104         rt2x00queue_init_rx(rt2x00dev);
105         rt2x00queue_init_tx(rt2x00dev);
106
107         /*
108          * Enable radio.
109          */
110         status =
111             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
112         if (status)
113                 return status;
114
115         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
116
117         rt2x00leds_led_radio(rt2x00dev, true);
118         rt2x00led_led_activity(rt2x00dev, true);
119
120         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
121
122         /*
123          * Enable RX.
124          */
125         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
126
127         /*
128          * Start the TX queues.
129          */
130         ieee80211_wake_queues(rt2x00dev->hw);
131
132         return 0;
133 }
134
135 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
136 {
137         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
138                 return;
139
140         /*
141          * Stop the TX queues.
142          */
143         ieee80211_stop_queues(rt2x00dev->hw);
144
145         /*
146          * Disable RX.
147          */
148         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
149
150         /*
151          * Disable radio.
152          */
153         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
154         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
155         rt2x00led_led_activity(rt2x00dev, false);
156         rt2x00leds_led_radio(rt2x00dev, false);
157 }
158
159 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
160 {
161         /*
162          * When we are disabling the RX, we should also stop the link tuner.
163          */
164         if (state == STATE_RADIO_RX_OFF)
165                 rt2x00lib_stop_link_tuner(rt2x00dev);
166
167         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
168
169         /*
170          * When we are enabling the RX, we should also start the link tuner.
171          */
172         if (state == STATE_RADIO_RX_ON &&
173             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
174                 rt2x00lib_start_link_tuner(rt2x00dev);
175 }
176
177 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
178 {
179         enum antenna rx = rt2x00dev->link.ant.active.rx;
180         enum antenna tx = rt2x00dev->link.ant.active.tx;
181         int sample_a =
182             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
183         int sample_b =
184             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
185
186         /*
187          * We are done sampling. Now we should evaluate the results.
188          */
189         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
190
191         /*
192          * During the last period we have sampled the RSSI
193          * from both antenna's. It now is time to determine
194          * which antenna demonstrated the best performance.
195          * When we are already on the antenna with the best
196          * performance, then there really is nothing for us
197          * left to do.
198          */
199         if (sample_a == sample_b)
200                 return;
201
202         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
203                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
204
205         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
206                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
207
208         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
209 }
210
211 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
212 {
213         enum antenna rx = rt2x00dev->link.ant.active.rx;
214         enum antenna tx = rt2x00dev->link.ant.active.tx;
215         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
216         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
217
218         /*
219          * Legacy driver indicates that we should swap antenna's
220          * when the difference in RSSI is greater that 5. This
221          * also should be done when the RSSI was actually better
222          * then the previous sample.
223          * When the difference exceeds the threshold we should
224          * sample the rssi from the other antenna to make a valid
225          * comparison between the 2 antennas.
226          */
227         if (abs(rssi_curr - rssi_old) < 5)
228                 return;
229
230         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
231
232         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
233                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
234
235         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
236                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
237
238         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
239 }
240
241 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
242 {
243         /*
244          * Determine if software diversity is enabled for
245          * either the TX or RX antenna (or both).
246          * Always perform this check since within the link
247          * tuner interval the configuration might have changed.
248          */
249         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
250         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
251
252         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
253                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
254         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
255                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
256
257         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
258             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
259                 rt2x00dev->link.ant.flags = 0;
260                 return;
261         }
262
263         /*
264          * If we have only sampled the data over the last period
265          * we should now harvest the data. Otherwise just evaluate
266          * the data. The latter should only be performed once
267          * every 2 seconds.
268          */
269         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
270                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
271         else if (rt2x00dev->link.count & 1)
272                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
273 }
274
275 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
276 {
277         int avg_rssi = rssi;
278
279         /*
280          * Update global RSSI
281          */
282         if (link->qual.avg_rssi)
283                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
284         link->qual.avg_rssi = avg_rssi;
285
286         /*
287          * Update antenna RSSI
288          */
289         if (link->ant.rssi_ant)
290                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
291         link->ant.rssi_ant = rssi;
292 }
293
294 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
295 {
296         if (qual->rx_failed || qual->rx_success)
297                 qual->rx_percentage =
298                     (qual->rx_success * 100) /
299                     (qual->rx_failed + qual->rx_success);
300         else
301                 qual->rx_percentage = 50;
302
303         if (qual->tx_failed || qual->tx_success)
304                 qual->tx_percentage =
305                     (qual->tx_success * 100) /
306                     (qual->tx_failed + qual->tx_success);
307         else
308                 qual->tx_percentage = 50;
309
310         qual->rx_success = 0;
311         qual->rx_failed = 0;
312         qual->tx_success = 0;
313         qual->tx_failed = 0;
314 }
315
316 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
317                                            int rssi)
318 {
319         int rssi_percentage = 0;
320         int signal;
321
322         /*
323          * We need a positive value for the RSSI.
324          */
325         if (rssi < 0)
326                 rssi += rt2x00dev->rssi_offset;
327
328         /*
329          * Calculate the different percentages,
330          * which will be used for the signal.
331          */
332         if (rt2x00dev->rssi_offset)
333                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
334
335         /*
336          * Add the individual percentages and use the WEIGHT
337          * defines to calculate the current link signal.
338          */
339         signal = ((WEIGHT_RSSI * rssi_percentage) +
340                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
341                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
342
343         return (signal > 100) ? 100 : signal;
344 }
345
346 static void rt2x00lib_link_tuner(struct work_struct *work)
347 {
348         struct rt2x00_dev *rt2x00dev =
349             container_of(work, struct rt2x00_dev, link.work.work);
350
351         /*
352          * When the radio is shutting down we should
353          * immediately cease all link tuning.
354          */
355         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
356                 return;
357
358         /*
359          * Update statistics.
360          */
361         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
362         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
363             rt2x00dev->link.qual.rx_failed;
364
365         /*
366          * Only perform the link tuning when Link tuning
367          * has been enabled (This could have been disabled from the EEPROM).
368          */
369         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
370                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
371
372         /*
373          * Precalculate a portion of the link signal which is
374          * in based on the tx/rx success/failure counters.
375          */
376         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
377
378         /*
379          * Send a signal to the led to update the led signal strength.
380          */
381         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
382
383         /*
384          * Evaluate antenna setup, make this the last step since this could
385          * possibly reset some statistics.
386          */
387         rt2x00lib_evaluate_antenna(rt2x00dev);
388
389         /*
390          * Increase tuner counter, and reschedule the next link tuner run.
391          */
392         rt2x00dev->link.count++;
393         queue_delayed_work(rt2x00dev->hw->workqueue,
394                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
395 }
396
397 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
398 {
399         struct rt2x00_dev *rt2x00dev =
400             container_of(work, struct rt2x00_dev, filter_work);
401
402         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
403 }
404
405 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
406                                           struct ieee80211_vif *vif)
407 {
408         struct rt2x00_dev *rt2x00dev = data;
409         struct rt2x00_intf *intf = vif_to_intf(vif);
410         struct ieee80211_bss_conf conf;
411         int delayed_flags;
412
413         /*
414          * Copy all data we need during this action under the protection
415          * of a spinlock. Otherwise race conditions might occur which results
416          * into an invalid configuration.
417          */
418         spin_lock(&intf->lock);
419
420         memcpy(&conf, &vif->bss_conf, sizeof(conf));
421         delayed_flags = intf->delayed_flags;
422         intf->delayed_flags = 0;
423
424         spin_unlock(&intf->lock);
425
426         /*
427          * It is possible the radio was disabled while the work had been
428          * scheduled. If that happens we should return here immediately,
429          * note that in the spinlock protected area above the delayed_flags
430          * have been cleared correctly.
431          */
432         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
433                 return;
434
435         if (delayed_flags & DELAYED_UPDATE_BEACON)
436                 rt2x00queue_update_beacon(rt2x00dev, vif);
437
438         if (delayed_flags & DELAYED_CONFIG_ERP)
439                 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
440
441         if (delayed_flags & DELAYED_LED_ASSOC)
442                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
443 }
444
445 static void rt2x00lib_intf_scheduled(struct work_struct *work)
446 {
447         struct rt2x00_dev *rt2x00dev =
448             container_of(work, struct rt2x00_dev, intf_work);
449
450         /*
451          * Iterate over each interface and perform the
452          * requested configurations.
453          */
454         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
455                                             rt2x00lib_intf_scheduled_iter,
456                                             rt2x00dev);
457 }
458
459 /*
460  * Interrupt context handlers.
461  */
462 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
463                                       struct ieee80211_vif *vif)
464 {
465         struct rt2x00_dev *rt2x00dev = data;
466         struct rt2x00_intf *intf = vif_to_intf(vif);
467
468         if (vif->type != NL80211_IFTYPE_AP &&
469             vif->type != NL80211_IFTYPE_ADHOC)
470                 return;
471
472         /*
473          * Clean up the beacon skb.
474          */
475         rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
476         intf->beacon->skb = NULL;
477
478         spin_lock(&intf->lock);
479         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
480         spin_unlock(&intf->lock);
481 }
482
483 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
484 {
485         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
486                 return;
487
488         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
489                                                    rt2x00lib_beacondone_iter,
490                                                    rt2x00dev);
491
492         schedule_work(&rt2x00dev->intf_work);
493 }
494 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
495
496 void rt2x00lib_txdone(struct queue_entry *entry,
497                       struct txdone_entry_desc *txdesc)
498 {
499         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
500         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
501         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
502         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
503         u8 rate_idx, rate_flags;
504
505         /*
506          * Unmap the skb.
507          */
508         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
509
510         /*
511          * If the IV/EIV data was stripped from the frame before it was
512          * passed to the hardware, we should now reinsert it again because
513          * mac80211 will expect the the same data to be present it the
514          * frame as it was passed to us.
515          */
516         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
517                 rt2x00crypto_tx_insert_iv(entry->skb);
518
519         /*
520          * Send frame to debugfs immediately, after this call is completed
521          * we are going to overwrite the skb->cb array.
522          */
523         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
524
525         /*
526          * Update TX statistics.
527          */
528         rt2x00dev->link.qual.tx_success +=
529             test_bit(TXDONE_SUCCESS, &txdesc->flags);
530         rt2x00dev->link.qual.tx_failed +=
531             test_bit(TXDONE_FAILURE, &txdesc->flags);
532
533         rate_idx = skbdesc->tx_rate_idx;
534         rate_flags = skbdesc->tx_rate_flags;
535
536         /*
537          * Initialize TX status
538          */
539         memset(&tx_info->status, 0, sizeof(tx_info->status));
540         tx_info->status.ack_signal = 0;
541         tx_info->status.rates[0].idx = rate_idx;
542         tx_info->status.rates[0].flags = rate_flags;
543         tx_info->status.rates[0].count = txdesc->retry + 1;
544         tx_info->status.rates[1].idx = -1; /* terminate */
545
546         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
547                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
548                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
549                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
550                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
551         }
552
553         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
554                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
555                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
556                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
557                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
558         }
559
560         /*
561          * Only send the status report to mac80211 when TX status was
562          * requested by it. If this was a extra frame coming through
563          * a mac80211 library call (RTS/CTS) then we should not send the
564          * status report back.
565          */
566         if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
567                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
568         else
569                 dev_kfree_skb_irq(entry->skb);
570
571         /*
572          * Make this entry available for reuse.
573          */
574         entry->skb = NULL;
575         entry->flags = 0;
576
577         rt2x00dev->ops->lib->init_txentry(rt2x00dev, entry);
578
579         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
580         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
581
582         /*
583          * If the data queue was below the threshold before the txdone
584          * handler we must make sure the packet queue in the mac80211 stack
585          * is reenabled when the txdone handler has finished.
586          */
587         if (!rt2x00queue_threshold(entry->queue))
588                 ieee80211_wake_queue(rt2x00dev->hw, qid);
589 }
590 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
591
592 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
593                       struct queue_entry *entry)
594 {
595         struct rxdone_entry_desc rxdesc;
596         struct sk_buff *skb;
597         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
598         struct ieee80211_supported_band *sband;
599         struct ieee80211_hdr *hdr;
600         const struct rt2x00_rate *rate;
601         unsigned int header_length;
602         unsigned int align;
603         unsigned int i;
604         int idx = -1;
605
606         /*
607          * Allocate a new sk_buffer. If no new buffer available, drop the
608          * received frame and reuse the existing buffer.
609          */
610         skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
611         if (!skb)
612                 return;
613
614         /*
615          * Unmap the skb.
616          */
617         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
618
619         /*
620          * Extract the RXD details.
621          */
622         memset(&rxdesc, 0, sizeof(rxdesc));
623         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
624
625         /*
626          * The data behind the ieee80211 header must be
627          * aligned on a 4 byte boundary.
628          */
629         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
630         align = ((unsigned long)(entry->skb->data + header_length)) & 3;
631
632         /*
633          * Hardware might have stripped the IV/EIV/ICV data,
634          * in that case it is possible that the data was
635          * provided seperately (through hardware descriptor)
636          * in which case we should reinsert the data into the frame.
637          */
638         if ((rxdesc.flags & RX_FLAG_IV_STRIPPED)) {
639                 rt2x00crypto_rx_insert_iv(entry->skb, align,
640                                           header_length, &rxdesc);
641         } else if (align) {
642                 skb_push(entry->skb, align);
643                 /* Move entire frame in 1 command */
644                 memmove(entry->skb->data, entry->skb->data + align,
645                         rxdesc.size);
646         }
647
648         /* Update data pointers, trim buffer to correct size */
649         skb_trim(entry->skb, rxdesc.size);
650
651         /*
652          * Update RX statistics.
653          */
654         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
655         for (i = 0; i < sband->n_bitrates; i++) {
656                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
657
658                 if (((rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
659                      (rate->plcp == rxdesc.signal)) ||
660                     ((rxdesc.dev_flags & RXDONE_SIGNAL_BITRATE) &&
661                       (rate->bitrate == rxdesc.signal))) {
662                         idx = i;
663                         break;
664                 }
665         }
666
667         if (idx < 0) {
668                 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
669                         "signal=0x%.2x, plcp=%d.\n", rxdesc.signal,
670                         !!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP));
671                 idx = 0;
672         }
673
674         /*
675          * Only update link status if this is a beacon frame carrying our bssid.
676          */
677         hdr = (struct ieee80211_hdr *)entry->skb->data;
678         if (ieee80211_is_beacon(hdr->frame_control) &&
679             (rxdesc.dev_flags & RXDONE_MY_BSS))
680                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc.rssi);
681
682         rt2x00debug_update_crypto(rt2x00dev,
683                                   rxdesc.cipher,
684                                   rxdesc.cipher_status);
685
686         rt2x00dev->link.qual.rx_success++;
687
688         rx_status->mactime = rxdesc.timestamp;
689         rx_status->rate_idx = idx;
690         rx_status->qual =
691             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc.rssi);
692         rx_status->signal = rxdesc.rssi;
693         rx_status->flag = rxdesc.flags;
694         rx_status->antenna = rt2x00dev->link.ant.active.rx;
695
696         /*
697          * Send frame to mac80211 & debugfs.
698          * mac80211 will clean up the skb structure.
699          */
700         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
701         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
702
703         /*
704          * Replace the skb with the freshly allocated one.
705          */
706         entry->skb = skb;
707         entry->flags = 0;
708
709         rt2x00dev->ops->lib->init_rxentry(rt2x00dev, entry);
710
711         rt2x00queue_index_inc(entry->queue, Q_INDEX);
712 }
713 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
714
715 /*
716  * Driver initialization handlers.
717  */
718 const struct rt2x00_rate rt2x00_supported_rates[12] = {
719         {
720                 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
721                 .bitrate = 10,
722                 .ratemask = BIT(0),
723                 .plcp = 0x00,
724         },
725         {
726                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
727                 .bitrate = 20,
728                 .ratemask = BIT(1),
729                 .plcp = 0x01,
730         },
731         {
732                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
733                 .bitrate = 55,
734                 .ratemask = BIT(2),
735                 .plcp = 0x02,
736         },
737         {
738                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
739                 .bitrate = 110,
740                 .ratemask = BIT(3),
741                 .plcp = 0x03,
742         },
743         {
744                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
745                 .bitrate = 60,
746                 .ratemask = BIT(4),
747                 .plcp = 0x0b,
748         },
749         {
750                 .flags = DEV_RATE_OFDM,
751                 .bitrate = 90,
752                 .ratemask = BIT(5),
753                 .plcp = 0x0f,
754         },
755         {
756                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
757                 .bitrate = 120,
758                 .ratemask = BIT(6),
759                 .plcp = 0x0a,
760         },
761         {
762                 .flags = DEV_RATE_OFDM,
763                 .bitrate = 180,
764                 .ratemask = BIT(7),
765                 .plcp = 0x0e,
766         },
767         {
768                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
769                 .bitrate = 240,
770                 .ratemask = BIT(8),
771                 .plcp = 0x09,
772         },
773         {
774                 .flags = DEV_RATE_OFDM,
775                 .bitrate = 360,
776                 .ratemask = BIT(9),
777                 .plcp = 0x0d,
778         },
779         {
780                 .flags = DEV_RATE_OFDM,
781                 .bitrate = 480,
782                 .ratemask = BIT(10),
783                 .plcp = 0x08,
784         },
785         {
786                 .flags = DEV_RATE_OFDM,
787                 .bitrate = 540,
788                 .ratemask = BIT(11),
789                 .plcp = 0x0c,
790         },
791 };
792
793 static void rt2x00lib_channel(struct ieee80211_channel *entry,
794                               const int channel, const int tx_power,
795                               const int value)
796 {
797         entry->center_freq = ieee80211_channel_to_frequency(channel);
798         entry->hw_value = value;
799         entry->max_power = tx_power;
800         entry->max_antenna_gain = 0xff;
801 }
802
803 static void rt2x00lib_rate(struct ieee80211_rate *entry,
804                            const u16 index, const struct rt2x00_rate *rate)
805 {
806         entry->flags = 0;
807         entry->bitrate = rate->bitrate;
808         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
809         entry->hw_value_short = entry->hw_value;
810
811         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
812                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
813                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
814         }
815 }
816
817 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
818                                     struct hw_mode_spec *spec)
819 {
820         struct ieee80211_hw *hw = rt2x00dev->hw;
821         struct ieee80211_channel *channels;
822         struct ieee80211_rate *rates;
823         unsigned int num_rates;
824         unsigned int i;
825
826         num_rates = 0;
827         if (spec->supported_rates & SUPPORT_RATE_CCK)
828                 num_rates += 4;
829         if (spec->supported_rates & SUPPORT_RATE_OFDM)
830                 num_rates += 8;
831
832         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
833         if (!channels)
834                 return -ENOMEM;
835
836         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
837         if (!rates)
838                 goto exit_free_channels;
839
840         /*
841          * Initialize Rate list.
842          */
843         for (i = 0; i < num_rates; i++)
844                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
845
846         /*
847          * Initialize Channel list.
848          */
849         for (i = 0; i < spec->num_channels; i++) {
850                 rt2x00lib_channel(&channels[i],
851                                   spec->channels[i].channel,
852                                   spec->channels_info[i].tx_power1, i);
853         }
854
855         /*
856          * Intitialize 802.11b, 802.11g
857          * Rates: CCK, OFDM.
858          * Channels: 2.4 GHz
859          */
860         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
861                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
862                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
863                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
864                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
865                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
866                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
867         }
868
869         /*
870          * Intitialize 802.11a
871          * Rates: OFDM.
872          * Channels: OFDM, UNII, HiperLAN2.
873          */
874         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
875                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
876                     spec->num_channels - 14;
877                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
878                     num_rates - 4;
879                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
880                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
881                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
882                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
883         }
884
885         return 0;
886
887  exit_free_channels:
888         kfree(channels);
889         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
890         return -ENOMEM;
891 }
892
893 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
894 {
895         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
896                 ieee80211_unregister_hw(rt2x00dev->hw);
897
898         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
899                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
900                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
901                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
902                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
903         }
904
905         kfree(rt2x00dev->spec.channels_info);
906 }
907
908 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
909 {
910         struct hw_mode_spec *spec = &rt2x00dev->spec;
911         int status;
912
913         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
914                 return 0;
915
916         /*
917          * Initialize HW modes.
918          */
919         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
920         if (status)
921                 return status;
922
923         /*
924          * Initialize HW fields.
925          */
926         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
927
928         /*
929          * Register HW.
930          */
931         status = ieee80211_register_hw(rt2x00dev->hw);
932         if (status) {
933                 rt2x00lib_remove_hw(rt2x00dev);
934                 return status;
935         }
936
937         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
938
939         return 0;
940 }
941
942 /*
943  * Initialization/uninitialization handlers.
944  */
945 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
946 {
947         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
948                 return;
949
950         /*
951          * Unregister extra components.
952          */
953         rt2x00rfkill_unregister(rt2x00dev);
954
955         /*
956          * Allow the HW to uninitialize.
957          */
958         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
959
960         /*
961          * Free allocated queue entries.
962          */
963         rt2x00queue_uninitialize(rt2x00dev);
964 }
965
966 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
967 {
968         int status;
969
970         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
971                 return 0;
972
973         /*
974          * Allocate all queue entries.
975          */
976         status = rt2x00queue_initialize(rt2x00dev);
977         if (status)
978                 return status;
979
980         /*
981          * Initialize the device.
982          */
983         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
984         if (status) {
985                 rt2x00queue_uninitialize(rt2x00dev);
986                 return status;
987         }
988
989         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
990
991         /*
992          * Register the extra components.
993          */
994         rt2x00rfkill_register(rt2x00dev);
995
996         return 0;
997 }
998
999 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1000 {
1001         int retval;
1002
1003         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1004                 return 0;
1005
1006         /*
1007          * If this is the first interface which is added,
1008          * we should load the firmware now.
1009          */
1010         retval = rt2x00lib_load_firmware(rt2x00dev);
1011         if (retval)
1012                 return retval;
1013
1014         /*
1015          * Initialize the device.
1016          */
1017         retval = rt2x00lib_initialize(rt2x00dev);
1018         if (retval)
1019                 return retval;
1020
1021         rt2x00dev->intf_ap_count = 0;
1022         rt2x00dev->intf_sta_count = 0;
1023         rt2x00dev->intf_associated = 0;
1024
1025         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1026
1027         return 0;
1028 }
1029
1030 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1031 {
1032         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1033                 return;
1034
1035         /*
1036          * Perhaps we can add something smarter here,
1037          * but for now just disabling the radio should do.
1038          */
1039         rt2x00lib_disable_radio(rt2x00dev);
1040
1041         rt2x00dev->intf_ap_count = 0;
1042         rt2x00dev->intf_sta_count = 0;
1043         rt2x00dev->intf_associated = 0;
1044 }
1045
1046 /*
1047  * driver allocation handlers.
1048  */
1049 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1050 {
1051         int retval = -ENOMEM;
1052
1053         /*
1054          * Make room for rt2x00_intf inside the per-interface
1055          * structure ieee80211_vif.
1056          */
1057         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1058
1059         /*
1060          * Determine which operating modes are supported, all modes
1061          * which require beaconing, depend on the availability of
1062          * beacon entries.
1063          */
1064         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1065         if (rt2x00dev->ops->bcn->entry_num > 0)
1066                 rt2x00dev->hw->wiphy->interface_modes |=
1067                     BIT(NL80211_IFTYPE_ADHOC) |
1068                     BIT(NL80211_IFTYPE_AP);
1069
1070         /*
1071          * Let the driver probe the device to detect the capabilities.
1072          */
1073         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1074         if (retval) {
1075                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1076                 goto exit;
1077         }
1078
1079         /*
1080          * Initialize configuration work.
1081          */
1082         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1083         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1084         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1085
1086         /*
1087          * Allocate queue array.
1088          */
1089         retval = rt2x00queue_allocate(rt2x00dev);
1090         if (retval)
1091                 goto exit;
1092
1093         /*
1094          * Initialize ieee80211 structure.
1095          */
1096         retval = rt2x00lib_probe_hw(rt2x00dev);
1097         if (retval) {
1098                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1099                 goto exit;
1100         }
1101
1102         /*
1103          * Register extra components.
1104          */
1105         rt2x00leds_register(rt2x00dev);
1106         rt2x00rfkill_allocate(rt2x00dev);
1107         rt2x00debug_register(rt2x00dev);
1108
1109         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1110
1111         return 0;
1112
1113 exit:
1114         rt2x00lib_remove_dev(rt2x00dev);
1115
1116         return retval;
1117 }
1118 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1119
1120 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1121 {
1122         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1123
1124         /*
1125          * Disable radio.
1126          */
1127         rt2x00lib_disable_radio(rt2x00dev);
1128
1129         /*
1130          * Uninitialize device.
1131          */
1132         rt2x00lib_uninitialize(rt2x00dev);
1133
1134         /*
1135          * Free extra components
1136          */
1137         rt2x00debug_deregister(rt2x00dev);
1138         rt2x00rfkill_free(rt2x00dev);
1139         rt2x00leds_unregister(rt2x00dev);
1140
1141         /*
1142          * Free ieee80211_hw memory.
1143          */
1144         rt2x00lib_remove_hw(rt2x00dev);
1145
1146         /*
1147          * Free firmware image.
1148          */
1149         rt2x00lib_free_firmware(rt2x00dev);
1150
1151         /*
1152          * Free queue structures.
1153          */
1154         rt2x00queue_free(rt2x00dev);
1155 }
1156 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1157
1158 /*
1159  * Device state handlers
1160  */
1161 #ifdef CONFIG_PM
1162 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1163 {
1164         int retval;
1165
1166         NOTICE(rt2x00dev, "Going to sleep.\n");
1167
1168         /*
1169          * Only continue if mac80211 has open interfaces.
1170          */
1171         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
1172             !test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1173                 goto exit;
1174
1175         set_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags);
1176
1177         /*
1178          * Disable radio.
1179          */
1180         rt2x00lib_stop(rt2x00dev);
1181         rt2x00lib_uninitialize(rt2x00dev);
1182
1183         /*
1184          * Suspend/disable extra components.
1185          */
1186         rt2x00leds_suspend(rt2x00dev);
1187         rt2x00debug_deregister(rt2x00dev);
1188
1189 exit:
1190         /*
1191          * Set device mode to sleep for power management,
1192          * on some hardware this call seems to consistently fail.
1193          * From the specifications it is hard to tell why it fails,
1194          * and if this is a "bad thing".
1195          * Overall it is safe to just ignore the failure and
1196          * continue suspending. The only downside is that the
1197          * device will not be in optimal power save mode, but with
1198          * the radio and the other components already disabled the
1199          * device is as good as disabled.
1200          */
1201         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1202         if (retval)
1203                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1204                         "continue suspending.\n");
1205
1206         return 0;
1207 }
1208 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1209
1210 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1211                                   struct ieee80211_vif *vif)
1212 {
1213         struct rt2x00_dev *rt2x00dev = data;
1214         struct rt2x00_intf *intf = vif_to_intf(vif);
1215
1216         spin_lock(&intf->lock);
1217
1218         rt2x00lib_config_intf(rt2x00dev, intf,
1219                               vif->type, intf->mac, intf->bssid);
1220
1221
1222         /*
1223          * Master or Ad-hoc mode require a new beacon update.
1224          */
1225         if (vif->type == NL80211_IFTYPE_AP ||
1226             vif->type == NL80211_IFTYPE_ADHOC)
1227                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1228
1229         spin_unlock(&intf->lock);
1230 }
1231
1232 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1233 {
1234         int retval;
1235
1236         NOTICE(rt2x00dev, "Waking up.\n");
1237
1238         /*
1239          * Restore/enable extra components.
1240          */
1241         rt2x00debug_register(rt2x00dev);
1242         rt2x00leds_resume(rt2x00dev);
1243
1244         /*
1245          * Only continue if mac80211 had open interfaces.
1246          */
1247         if (!test_and_clear_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags))
1248                 return 0;
1249
1250         /*
1251          * Reinitialize device and all active interfaces.
1252          */
1253         retval = rt2x00lib_start(rt2x00dev);
1254         if (retval)
1255                 goto exit;
1256
1257         /*
1258          * Reconfigure device.
1259          */
1260         retval = rt2x00mac_config(rt2x00dev->hw, ~0);
1261         if (retval)
1262                 goto exit;
1263
1264         /*
1265          * Iterator over each active interface to
1266          * reconfigure the hardware.
1267          */
1268         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1269                                             rt2x00lib_resume_intf, rt2x00dev);
1270
1271         /*
1272          * We are ready again to receive requests from mac80211.
1273          */
1274         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1275
1276         /*
1277          * It is possible that during that mac80211 has attempted
1278          * to send frames while we were suspending or resuming.
1279          * In that case we have disabled the TX queue and should
1280          * now enable it again
1281          */
1282         ieee80211_wake_queues(rt2x00dev->hw);
1283
1284         /*
1285          * During interface iteration we might have changed the
1286          * delayed_flags, time to handles the event by calling
1287          * the work handler directly.
1288          */
1289         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1290
1291         return 0;
1292
1293 exit:
1294         rt2x00lib_stop(rt2x00dev);
1295         rt2x00lib_uninitialize(rt2x00dev);
1296         rt2x00debug_deregister(rt2x00dev);
1297
1298         return retval;
1299 }
1300 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1301 #endif /* CONFIG_PM */
1302
1303 /*
1304  * rt2x00lib module information.
1305  */
1306 MODULE_AUTHOR(DRV_PROJECT);
1307 MODULE_VERSION(DRV_VERSION);
1308 MODULE_DESCRIPTION("rt2x00 library");
1309 MODULE_LICENSE("GPL");