2f3bfc60688090e494cb47e52a308e51966597aa
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Link tuning handlers
34  */
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
38                 return;
39
40         /*
41          * Reset link information.
42          * Both the currently active vgc level as well as
43          * the link tuner counter should be reset. Resetting
44          * the counter is important for devices where the
45          * device should only perform link tuning during the
46          * first minute after being enabled.
47          */
48         rt2x00dev->link.count = 0;
49         rt2x00dev->link.vgc_level = 0;
50
51         /*
52          * Reset the link tuner.
53          */
54         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59         /*
60          * Clear all (possibly) pre-existing quality statistics.
61          */
62         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63
64         /*
65          * The RX and TX percentage should start at 50%
66          * this will assure we will get at least get some
67          * decent value when the link tuner starts.
68          * The value will be dropped and overwritten with
69          * the correct (measured )value anyway during the
70          * first run of the link tuner.
71          */
72         rt2x00dev->link.qual.rx_percentage = 50;
73         rt2x00dev->link.qual.tx_percentage = 50;
74
75         rt2x00lib_reset_link_tuner(rt2x00dev);
76
77         queue_delayed_work(rt2x00dev->hw->workqueue,
78                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83         cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 /*
87  * Radio control handlers.
88  */
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91         int status;
92
93         /*
94          * Don't enable the radio twice.
95          * And check if the hardware button has been disabled.
96          */
97         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
98             test_bit(DEVICE_STATE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99                 return 0;
100
101         /*
102          * Initialize all data queues.
103          */
104         rt2x00queue_init_rx(rt2x00dev);
105         rt2x00queue_init_tx(rt2x00dev);
106
107         /*
108          * Enable radio.
109          */
110         status =
111             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
112         if (status)
113                 return status;
114
115         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
116
117         rt2x00leds_led_radio(rt2x00dev, true);
118         rt2x00led_led_activity(rt2x00dev, true);
119
120         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
121
122         /*
123          * Enable RX.
124          */
125         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
126
127         /*
128          * Start the TX queues.
129          */
130         ieee80211_wake_queues(rt2x00dev->hw);
131
132         return 0;
133 }
134
135 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
136 {
137         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
138                 return;
139
140         /*
141          * Stop the TX queues.
142          */
143         ieee80211_stop_queues(rt2x00dev->hw);
144
145         /*
146          * Disable RX.
147          */
148         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
149
150         /*
151          * Disable radio.
152          */
153         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
154         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
155         rt2x00led_led_activity(rt2x00dev, false);
156         rt2x00leds_led_radio(rt2x00dev, false);
157 }
158
159 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
160 {
161         /*
162          * When we are disabling the RX, we should also stop the link tuner.
163          */
164         if (state == STATE_RADIO_RX_OFF)
165                 rt2x00lib_stop_link_tuner(rt2x00dev);
166
167         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
168
169         /*
170          * When we are enabling the RX, we should also start the link tuner.
171          */
172         if (state == STATE_RADIO_RX_ON &&
173             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
174                 rt2x00lib_start_link_tuner(rt2x00dev);
175 }
176
177 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
178 {
179         enum antenna rx = rt2x00dev->link.ant.active.rx;
180         enum antenna tx = rt2x00dev->link.ant.active.tx;
181         int sample_a =
182             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
183         int sample_b =
184             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
185
186         /*
187          * We are done sampling. Now we should evaluate the results.
188          */
189         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
190
191         /*
192          * During the last period we have sampled the RSSI
193          * from both antenna's. It now is time to determine
194          * which antenna demonstrated the best performance.
195          * When we are already on the antenna with the best
196          * performance, then there really is nothing for us
197          * left to do.
198          */
199         if (sample_a == sample_b)
200                 return;
201
202         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
203                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
204
205         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
206                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
207
208         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
209 }
210
211 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
212 {
213         enum antenna rx = rt2x00dev->link.ant.active.rx;
214         enum antenna tx = rt2x00dev->link.ant.active.tx;
215         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
216         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
217
218         /*
219          * Legacy driver indicates that we should swap antenna's
220          * when the difference in RSSI is greater that 5. This
221          * also should be done when the RSSI was actually better
222          * then the previous sample.
223          * When the difference exceeds the threshold we should
224          * sample the rssi from the other antenna to make a valid
225          * comparison between the 2 antennas.
226          */
227         if (abs(rssi_curr - rssi_old) < 5)
228                 return;
229
230         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
231
232         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
233                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
234
235         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
236                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
237
238         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
239 }
240
241 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
242 {
243         /*
244          * Determine if software diversity is enabled for
245          * either the TX or RX antenna (or both).
246          * Always perform this check since within the link
247          * tuner interval the configuration might have changed.
248          */
249         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
250         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
251
252         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
253             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
254                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
255         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
256             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
257                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
258
259         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
260             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
261                 rt2x00dev->link.ant.flags = 0;
262                 return;
263         }
264
265         /*
266          * If we have only sampled the data over the last period
267          * we should now harvest the data. Otherwise just evaluate
268          * the data. The latter should only be performed once
269          * every 2 seconds.
270          */
271         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
272                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
273         else if (rt2x00dev->link.count & 1)
274                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
275 }
276
277 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
278 {
279         int avg_rssi = rssi;
280
281         /*
282          * Update global RSSI
283          */
284         if (link->qual.avg_rssi)
285                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
286         link->qual.avg_rssi = avg_rssi;
287
288         /*
289          * Update antenna RSSI
290          */
291         if (link->ant.rssi_ant)
292                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
293         link->ant.rssi_ant = rssi;
294 }
295
296 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
297 {
298         if (qual->rx_failed || qual->rx_success)
299                 qual->rx_percentage =
300                     (qual->rx_success * 100) /
301                     (qual->rx_failed + qual->rx_success);
302         else
303                 qual->rx_percentage = 50;
304
305         if (qual->tx_failed || qual->tx_success)
306                 qual->tx_percentage =
307                     (qual->tx_success * 100) /
308                     (qual->tx_failed + qual->tx_success);
309         else
310                 qual->tx_percentage = 50;
311
312         qual->rx_success = 0;
313         qual->rx_failed = 0;
314         qual->tx_success = 0;
315         qual->tx_failed = 0;
316 }
317
318 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
319                                            int rssi)
320 {
321         int rssi_percentage = 0;
322         int signal;
323
324         /*
325          * We need a positive value for the RSSI.
326          */
327         if (rssi < 0)
328                 rssi += rt2x00dev->rssi_offset;
329
330         /*
331          * Calculate the different percentages,
332          * which will be used for the signal.
333          */
334         if (rt2x00dev->rssi_offset)
335                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
336
337         /*
338          * Add the individual percentages and use the WEIGHT
339          * defines to calculate the current link signal.
340          */
341         signal = ((WEIGHT_RSSI * rssi_percentage) +
342                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
343                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
344
345         return (signal > 100) ? 100 : signal;
346 }
347
348 static void rt2x00lib_link_tuner(struct work_struct *work)
349 {
350         struct rt2x00_dev *rt2x00dev =
351             container_of(work, struct rt2x00_dev, link.work.work);
352
353         /*
354          * When the radio is shutting down we should
355          * immediately cease all link tuning.
356          */
357         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
358                 return;
359
360         /*
361          * Update statistics.
362          */
363         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
364         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
365             rt2x00dev->link.qual.rx_failed;
366
367         /*
368          * Only perform the link tuning when Link tuning
369          * has been enabled (This could have been disabled from the EEPROM).
370          */
371         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
372                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
373
374         /*
375          * Precalculate a portion of the link signal which is
376          * in based on the tx/rx success/failure counters.
377          */
378         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
379
380         /*
381          * Send a signal to the led to update the led signal strength.
382          */
383         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
384
385         /*
386          * Evaluate antenna setup, make this the last step since this could
387          * possibly reset some statistics.
388          */
389         rt2x00lib_evaluate_antenna(rt2x00dev);
390
391         /*
392          * Increase tuner counter, and reschedule the next link tuner run.
393          */
394         rt2x00dev->link.count++;
395         queue_delayed_work(rt2x00dev->hw->workqueue,
396                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
397 }
398
399 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
400 {
401         struct rt2x00_dev *rt2x00dev =
402             container_of(work, struct rt2x00_dev, filter_work);
403
404         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
405 }
406
407 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
408                                           struct ieee80211_vif *vif)
409 {
410         struct rt2x00_dev *rt2x00dev = data;
411         struct rt2x00_intf *intf = vif_to_intf(vif);
412         struct ieee80211_bss_conf conf;
413         int delayed_flags;
414
415         /*
416          * Copy all data we need during this action under the protection
417          * of a spinlock. Otherwise race conditions might occur which results
418          * into an invalid configuration.
419          */
420         spin_lock(&intf->lock);
421
422         memcpy(&conf, &intf->conf, sizeof(conf));
423         delayed_flags = intf->delayed_flags;
424         intf->delayed_flags = 0;
425
426         spin_unlock(&intf->lock);
427
428         /*
429          * It is possible the radio was disabled while the work had been
430          * scheduled. If that happens we should return here immediately,
431          * note that in the spinlock protected area above the delayed_flags
432          * have been cleared correctly.
433          */
434         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
435                 return;
436
437         if (delayed_flags & DELAYED_UPDATE_BEACON)
438                 rt2x00queue_update_beacon(rt2x00dev, vif);
439
440         if (delayed_flags & DELAYED_CONFIG_ERP)
441                 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
442
443         if (delayed_flags & DELAYED_LED_ASSOC)
444                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
445 }
446
447 static void rt2x00lib_intf_scheduled(struct work_struct *work)
448 {
449         struct rt2x00_dev *rt2x00dev =
450             container_of(work, struct rt2x00_dev, intf_work);
451
452         /*
453          * Iterate over each interface and perform the
454          * requested configurations.
455          */
456         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
457                                             rt2x00lib_intf_scheduled_iter,
458                                             rt2x00dev);
459 }
460
461 /*
462  * Interrupt context handlers.
463  */
464 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
465                                       struct ieee80211_vif *vif)
466 {
467         struct rt2x00_dev *rt2x00dev = data;
468         struct rt2x00_intf *intf = vif_to_intf(vif);
469
470         if (vif->type != IEEE80211_IF_TYPE_AP &&
471             vif->type != IEEE80211_IF_TYPE_IBSS)
472                 return;
473
474         /*
475          * Clean up the beacon skb.
476          */
477         rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
478         intf->beacon->skb = NULL;
479
480         spin_lock(&intf->lock);
481         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
482         spin_unlock(&intf->lock);
483 }
484
485 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
486 {
487         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
488                 return;
489
490         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
491                                                    rt2x00lib_beacondone_iter,
492                                                    rt2x00dev);
493
494         schedule_work(&rt2x00dev->intf_work);
495 }
496 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
497
498 void rt2x00lib_txdone(struct queue_entry *entry,
499                       struct txdone_entry_desc *txdesc)
500 {
501         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
502         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
503         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
504
505         /*
506          * Unmap the skb.
507          */
508         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
509
510         /*
511          * If the IV/EIV data was stripped from the frame before it was
512          * passed to the hardware, we should now reinsert it again because
513          * mac80211 will expect the the same data to be present it the
514          * frame as it was passed to us.
515          */
516         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
517                 rt2x00crypto_tx_insert_iv(entry->skb);
518
519         /*
520          * Send frame to debugfs immediately, after this call is completed
521          * we are going to overwrite the skb->cb array.
522          */
523         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
524
525         /*
526          * Update TX statistics.
527          */
528         rt2x00dev->link.qual.tx_success +=
529             test_bit(TXDONE_SUCCESS, &txdesc->flags);
530         rt2x00dev->link.qual.tx_failed +=
531             test_bit(TXDONE_FAILURE, &txdesc->flags);
532
533         /*
534          * Initialize TX status
535          */
536         memset(&tx_info->status, 0, sizeof(tx_info->status));
537         tx_info->status.ack_signal = 0;
538         tx_info->status.excessive_retries =
539             test_bit(TXDONE_EXCESSIVE_RETRY, &txdesc->flags);
540         tx_info->status.retry_count = txdesc->retry;
541
542         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
543                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
544                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
545                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
546                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
547         }
548
549         if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) {
550                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
551                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
552                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
553                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
554         }
555
556         /*
557          * Only send the status report to mac80211 when TX status was
558          * requested by it. If this was a extra frame coming through
559          * a mac80211 library call (RTS/CTS) then we should not send the
560          * status report back.
561          */
562         if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
563                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
564         else
565                 dev_kfree_skb_irq(entry->skb);
566
567         /*
568          * Make this entry available for reuse.
569          */
570         entry->skb = NULL;
571         entry->flags = 0;
572
573         rt2x00dev->ops->lib->init_txentry(rt2x00dev, entry);
574
575         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
576         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
577
578         /*
579          * If the data queue was below the threshold before the txdone
580          * handler we must make sure the packet queue in the mac80211 stack
581          * is reenabled when the txdone handler has finished.
582          */
583         if (!rt2x00queue_threshold(entry->queue))
584                 ieee80211_wake_queue(rt2x00dev->hw, qid);
585 }
586 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
587
588 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
589                       struct queue_entry *entry)
590 {
591         struct rxdone_entry_desc rxdesc;
592         struct sk_buff *skb;
593         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
594         struct ieee80211_supported_band *sband;
595         struct ieee80211_hdr *hdr;
596         const struct rt2x00_rate *rate;
597         unsigned int header_length;
598         unsigned int align;
599         unsigned int i;
600         int idx = -1;
601
602         /*
603          * Allocate a new sk_buffer. If no new buffer available, drop the
604          * received frame and reuse the existing buffer.
605          */
606         skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
607         if (!skb)
608                 return;
609
610         /*
611          * Unmap the skb.
612          */
613         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
614
615         /*
616          * Extract the RXD details.
617          */
618         memset(&rxdesc, 0, sizeof(rxdesc));
619         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
620
621         /*
622          * The data behind the ieee80211 header must be
623          * aligned on a 4 byte boundary.
624          */
625         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
626         align = ((unsigned long)(entry->skb->data + header_length)) & 3;
627
628         /*
629          * Hardware might have stripped the IV/EIV/ICV data,
630          * in that case it is possible that the data was
631          * provided seperately (through hardware descriptor)
632          * in which case we should reinsert the data into the frame.
633          */
634         if ((rxdesc.flags & RX_FLAG_IV_STRIPPED)) {
635                 rt2x00crypto_rx_insert_iv(entry->skb, align,
636                                           header_length, &rxdesc);
637         } else if (align) {
638                 skb_push(entry->skb, align);
639                 /* Move entire frame in 1 command */
640                 memmove(entry->skb->data, entry->skb->data + align,
641                         rxdesc.size);
642         }
643
644         /* Update data pointers, trim buffer to correct size */
645         skb_trim(entry->skb, rxdesc.size);
646
647         /*
648          * Update RX statistics.
649          */
650         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
651         for (i = 0; i < sband->n_bitrates; i++) {
652                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
653
654                 if (((rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
655                      (rate->plcp == rxdesc.signal)) ||
656                     ((rxdesc.dev_flags & RXDONE_SIGNAL_BITRATE) &&
657                       (rate->bitrate == rxdesc.signal))) {
658                         idx = i;
659                         break;
660                 }
661         }
662
663         if (idx < 0) {
664                 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
665                         "signal=0x%.2x, plcp=%d.\n", rxdesc.signal,
666                         !!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP));
667                 idx = 0;
668         }
669
670         /*
671          * Only update link status if this is a beacon frame carrying our bssid.
672          */
673         hdr = (struct ieee80211_hdr *)entry->skb->data;
674         if (ieee80211_is_beacon(hdr->frame_control) &&
675             (rxdesc.dev_flags & RXDONE_MY_BSS))
676                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc.rssi);
677
678         rt2x00debug_update_crypto(rt2x00dev,
679                                   rxdesc.cipher,
680                                   rxdesc.cipher_status);
681
682         rt2x00dev->link.qual.rx_success++;
683
684         rx_status->mactime = rxdesc.timestamp;
685         rx_status->rate_idx = idx;
686         rx_status->qual =
687             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc.rssi);
688         rx_status->signal = rxdesc.rssi;
689         rx_status->flag = rxdesc.flags;
690         rx_status->antenna = rt2x00dev->link.ant.active.rx;
691
692         /*
693          * Send frame to mac80211 & debugfs.
694          * mac80211 will clean up the skb structure.
695          */
696         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
697         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
698
699         /*
700          * Replace the skb with the freshly allocated one.
701          */
702         entry->skb = skb;
703         entry->flags = 0;
704
705         rt2x00dev->ops->lib->init_rxentry(rt2x00dev, entry);
706
707         rt2x00queue_index_inc(entry->queue, Q_INDEX);
708 }
709 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
710
711 /*
712  * Driver initialization handlers.
713  */
714 const struct rt2x00_rate rt2x00_supported_rates[12] = {
715         {
716                 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
717                 .bitrate = 10,
718                 .ratemask = BIT(0),
719                 .plcp = 0x00,
720         },
721         {
722                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
723                 .bitrate = 20,
724                 .ratemask = BIT(1),
725                 .plcp = 0x01,
726         },
727         {
728                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
729                 .bitrate = 55,
730                 .ratemask = BIT(2),
731                 .plcp = 0x02,
732         },
733         {
734                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
735                 .bitrate = 110,
736                 .ratemask = BIT(3),
737                 .plcp = 0x03,
738         },
739         {
740                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
741                 .bitrate = 60,
742                 .ratemask = BIT(4),
743                 .plcp = 0x0b,
744         },
745         {
746                 .flags = DEV_RATE_OFDM,
747                 .bitrate = 90,
748                 .ratemask = BIT(5),
749                 .plcp = 0x0f,
750         },
751         {
752                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
753                 .bitrate = 120,
754                 .ratemask = BIT(6),
755                 .plcp = 0x0a,
756         },
757         {
758                 .flags = DEV_RATE_OFDM,
759                 .bitrate = 180,
760                 .ratemask = BIT(7),
761                 .plcp = 0x0e,
762         },
763         {
764                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
765                 .bitrate = 240,
766                 .ratemask = BIT(8),
767                 .plcp = 0x09,
768         },
769         {
770                 .flags = DEV_RATE_OFDM,
771                 .bitrate = 360,
772                 .ratemask = BIT(9),
773                 .plcp = 0x0d,
774         },
775         {
776                 .flags = DEV_RATE_OFDM,
777                 .bitrate = 480,
778                 .ratemask = BIT(10),
779                 .plcp = 0x08,
780         },
781         {
782                 .flags = DEV_RATE_OFDM,
783                 .bitrate = 540,
784                 .ratemask = BIT(11),
785                 .plcp = 0x0c,
786         },
787 };
788
789 static void rt2x00lib_channel(struct ieee80211_channel *entry,
790                               const int channel, const int tx_power,
791                               const int value)
792 {
793         entry->center_freq = ieee80211_channel_to_frequency(channel);
794         entry->hw_value = value;
795         entry->max_power = tx_power;
796         entry->max_antenna_gain = 0xff;
797 }
798
799 static void rt2x00lib_rate(struct ieee80211_rate *entry,
800                            const u16 index, const struct rt2x00_rate *rate)
801 {
802         entry->flags = 0;
803         entry->bitrate = rate->bitrate;
804         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
805         entry->hw_value_short = entry->hw_value;
806
807         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
808                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
809                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
810         }
811 }
812
813 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
814                                     struct hw_mode_spec *spec)
815 {
816         struct ieee80211_hw *hw = rt2x00dev->hw;
817         struct ieee80211_channel *channels;
818         struct ieee80211_rate *rates;
819         unsigned int num_rates;
820         unsigned int i;
821
822         num_rates = 0;
823         if (spec->supported_rates & SUPPORT_RATE_CCK)
824                 num_rates += 4;
825         if (spec->supported_rates & SUPPORT_RATE_OFDM)
826                 num_rates += 8;
827
828         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
829         if (!channels)
830                 return -ENOMEM;
831
832         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
833         if (!rates)
834                 goto exit_free_channels;
835
836         /*
837          * Initialize Rate list.
838          */
839         for (i = 0; i < num_rates; i++)
840                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
841
842         /*
843          * Initialize Channel list.
844          */
845         for (i = 0; i < spec->num_channels; i++) {
846                 rt2x00lib_channel(&channels[i],
847                                   spec->channels[i].channel,
848                                   spec->channels_info[i].tx_power1, i);
849         }
850
851         /*
852          * Intitialize 802.11b, 802.11g
853          * Rates: CCK, OFDM.
854          * Channels: 2.4 GHz
855          */
856         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
857                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
858                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
859                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
860                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
861                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
862                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
863         }
864
865         /*
866          * Intitialize 802.11a
867          * Rates: OFDM.
868          * Channels: OFDM, UNII, HiperLAN2.
869          */
870         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
871                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
872                     spec->num_channels - 14;
873                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
874                     num_rates - 4;
875                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
876                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
877                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
878                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
879         }
880
881         return 0;
882
883  exit_free_channels:
884         kfree(channels);
885         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
886         return -ENOMEM;
887 }
888
889 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
890 {
891         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
892                 ieee80211_unregister_hw(rt2x00dev->hw);
893
894         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
895                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
896                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
897                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
898                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
899         }
900
901         kfree(rt2x00dev->spec.channels_info);
902 }
903
904 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
905 {
906         struct hw_mode_spec *spec = &rt2x00dev->spec;
907         int status;
908
909         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
910                 return 0;
911
912         /*
913          * Initialize HW modes.
914          */
915         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
916         if (status)
917                 return status;
918
919         /*
920          * Initialize HW fields.
921          */
922         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
923
924         /*
925          * Register HW.
926          */
927         status = ieee80211_register_hw(rt2x00dev->hw);
928         if (status) {
929                 rt2x00lib_remove_hw(rt2x00dev);
930                 return status;
931         }
932
933         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
934
935         return 0;
936 }
937
938 /*
939  * Initialization/uninitialization handlers.
940  */
941 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
942 {
943         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
944                 return;
945
946         /*
947          * Unregister extra components.
948          */
949         rt2x00rfkill_unregister(rt2x00dev);
950
951         /*
952          * Allow the HW to uninitialize.
953          */
954         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
955
956         /*
957          * Free allocated queue entries.
958          */
959         rt2x00queue_uninitialize(rt2x00dev);
960 }
961
962 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
963 {
964         int status;
965
966         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
967                 return 0;
968
969         /*
970          * Allocate all queue entries.
971          */
972         status = rt2x00queue_initialize(rt2x00dev);
973         if (status)
974                 return status;
975
976         /*
977          * Initialize the device.
978          */
979         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
980         if (status) {
981                 rt2x00queue_uninitialize(rt2x00dev);
982                 return status;
983         }
984
985         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
986
987         /*
988          * Register the extra components.
989          */
990         rt2x00rfkill_register(rt2x00dev);
991
992         return 0;
993 }
994
995 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
996 {
997         int retval;
998
999         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1000                 return 0;
1001
1002         /*
1003          * If this is the first interface which is added,
1004          * we should load the firmware now.
1005          */
1006         retval = rt2x00lib_load_firmware(rt2x00dev);
1007         if (retval)
1008                 return retval;
1009
1010         /*
1011          * Initialize the device.
1012          */
1013         retval = rt2x00lib_initialize(rt2x00dev);
1014         if (retval)
1015                 return retval;
1016
1017         rt2x00dev->intf_ap_count = 0;
1018         rt2x00dev->intf_sta_count = 0;
1019         rt2x00dev->intf_associated = 0;
1020
1021         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1022
1023         return 0;
1024 }
1025
1026 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1027 {
1028         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1029                 return;
1030
1031         /*
1032          * Perhaps we can add something smarter here,
1033          * but for now just disabling the radio should do.
1034          */
1035         rt2x00lib_disable_radio(rt2x00dev);
1036
1037         rt2x00dev->intf_ap_count = 0;
1038         rt2x00dev->intf_sta_count = 0;
1039         rt2x00dev->intf_associated = 0;
1040 }
1041
1042 /*
1043  * driver allocation handlers.
1044  */
1045 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1046 {
1047         int retval = -ENOMEM;
1048
1049         /*
1050          * Make room for rt2x00_intf inside the per-interface
1051          * structure ieee80211_vif.
1052          */
1053         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1054
1055         rt2x00dev->hw->wiphy->interface_modes =
1056             BIT(NL80211_IFTYPE_AP) |
1057             BIT(NL80211_IFTYPE_STATION) |
1058             BIT(NL80211_IFTYPE_ADHOC);
1059
1060         /*
1061          * Let the driver probe the device to detect the capabilities.
1062          */
1063         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1064         if (retval) {
1065                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1066                 goto exit;
1067         }
1068
1069         /*
1070          * Initialize configuration work.
1071          */
1072         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1073         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1074         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1075
1076         /*
1077          * Allocate queue array.
1078          */
1079         retval = rt2x00queue_allocate(rt2x00dev);
1080         if (retval)
1081                 goto exit;
1082
1083         /*
1084          * Initialize ieee80211 structure.
1085          */
1086         retval = rt2x00lib_probe_hw(rt2x00dev);
1087         if (retval) {
1088                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1089                 goto exit;
1090         }
1091
1092         /*
1093          * Register extra components.
1094          */
1095         rt2x00leds_register(rt2x00dev);
1096         rt2x00rfkill_allocate(rt2x00dev);
1097         rt2x00debug_register(rt2x00dev);
1098
1099         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1100
1101         return 0;
1102
1103 exit:
1104         rt2x00lib_remove_dev(rt2x00dev);
1105
1106         return retval;
1107 }
1108 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1109
1110 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1111 {
1112         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1113
1114         /*
1115          * Disable radio.
1116          */
1117         rt2x00lib_disable_radio(rt2x00dev);
1118
1119         /*
1120          * Uninitialize device.
1121          */
1122         rt2x00lib_uninitialize(rt2x00dev);
1123
1124         /*
1125          * Free extra components
1126          */
1127         rt2x00debug_deregister(rt2x00dev);
1128         rt2x00rfkill_free(rt2x00dev);
1129         rt2x00leds_unregister(rt2x00dev);
1130
1131         /*
1132          * Free ieee80211_hw memory.
1133          */
1134         rt2x00lib_remove_hw(rt2x00dev);
1135
1136         /*
1137          * Free firmware image.
1138          */
1139         rt2x00lib_free_firmware(rt2x00dev);
1140
1141         /*
1142          * Free queue structures.
1143          */
1144         rt2x00queue_free(rt2x00dev);
1145 }
1146 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1147
1148 /*
1149  * Device state handlers
1150  */
1151 #ifdef CONFIG_PM
1152 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1153 {
1154         int retval;
1155
1156         NOTICE(rt2x00dev, "Going to sleep.\n");
1157
1158         /*
1159          * Only continue if mac80211 has open interfaces.
1160          */
1161         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
1162             !test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1163                 goto exit;
1164
1165         set_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags);
1166
1167         /*
1168          * Disable radio.
1169          */
1170         rt2x00lib_stop(rt2x00dev);
1171         rt2x00lib_uninitialize(rt2x00dev);
1172
1173         /*
1174          * Suspend/disable extra components.
1175          */
1176         rt2x00leds_suspend(rt2x00dev);
1177         rt2x00debug_deregister(rt2x00dev);
1178
1179 exit:
1180         /*
1181          * Set device mode to sleep for power management,
1182          * on some hardware this call seems to consistently fail.
1183          * From the specifications it is hard to tell why it fails,
1184          * and if this is a "bad thing".
1185          * Overall it is safe to just ignore the failure and
1186          * continue suspending. The only downside is that the
1187          * device will not be in optimal power save mode, but with
1188          * the radio and the other components already disabled the
1189          * device is as good as disabled.
1190          */
1191         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1192         if (retval)
1193                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1194                         "continue suspending.\n");
1195
1196         return 0;
1197 }
1198 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1199
1200 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1201                                   struct ieee80211_vif *vif)
1202 {
1203         struct rt2x00_dev *rt2x00dev = data;
1204         struct rt2x00_intf *intf = vif_to_intf(vif);
1205
1206         spin_lock(&intf->lock);
1207
1208         rt2x00lib_config_intf(rt2x00dev, intf,
1209                               vif->type, intf->mac, intf->bssid);
1210
1211
1212         /*
1213          * Master or Ad-hoc mode require a new beacon update.
1214          */
1215         if (vif->type == IEEE80211_IF_TYPE_AP ||
1216             vif->type == IEEE80211_IF_TYPE_IBSS)
1217                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1218
1219         spin_unlock(&intf->lock);
1220 }
1221
1222 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1223 {
1224         int retval;
1225
1226         NOTICE(rt2x00dev, "Waking up.\n");
1227
1228         /*
1229          * Restore/enable extra components.
1230          */
1231         rt2x00debug_register(rt2x00dev);
1232         rt2x00leds_resume(rt2x00dev);
1233
1234         /*
1235          * Only continue if mac80211 had open interfaces.
1236          */
1237         if (!test_and_clear_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags))
1238                 return 0;
1239
1240         /*
1241          * Reinitialize device and all active interfaces.
1242          */
1243         retval = rt2x00lib_start(rt2x00dev);
1244         if (retval)
1245                 goto exit;
1246
1247         /*
1248          * Reconfigure device.
1249          */
1250         retval = rt2x00mac_config(rt2x00dev->hw, &rt2x00dev->hw->conf);
1251         if (retval)
1252                 goto exit;
1253
1254         /*
1255          * Iterator over each active interface to
1256          * reconfigure the hardware.
1257          */
1258         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1259                                             rt2x00lib_resume_intf, rt2x00dev);
1260
1261         /*
1262          * We are ready again to receive requests from mac80211.
1263          */
1264         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1265
1266         /*
1267          * It is possible that during that mac80211 has attempted
1268          * to send frames while we were suspending or resuming.
1269          * In that case we have disabled the TX queue and should
1270          * now enable it again
1271          */
1272         ieee80211_wake_queues(rt2x00dev->hw);
1273
1274         /*
1275          * During interface iteration we might have changed the
1276          * delayed_flags, time to handles the event by calling
1277          * the work handler directly.
1278          */
1279         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1280
1281         return 0;
1282
1283 exit:
1284         rt2x00lib_stop(rt2x00dev);
1285         rt2x00lib_uninitialize(rt2x00dev);
1286         rt2x00debug_deregister(rt2x00dev);
1287
1288         return retval;
1289 }
1290 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1291 #endif /* CONFIG_PM */
1292
1293 /*
1294  * rt2x00lib module information.
1295  */
1296 MODULE_AUTHOR(DRV_PROJECT);
1297 MODULE_VERSION(DRV_VERSION);
1298 MODULE_DESCRIPTION("rt2x00 library");
1299 MODULE_LICENSE("GPL");