Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/usb.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00usb.h"
37 #include "rt2500usb.h"
38
39 /*
40  * Allow hardware encryption to be disabled.
41  */
42 static int modparam_nohwcrypt = 0;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45
46 /*
47  * Register access.
48  * All access to the CSR registers will go through the methods
49  * rt2500usb_register_read and rt2500usb_register_write.
50  * BBP and RF register require indirect register access,
51  * and use the CSR registers BBPCSR and RFCSR to achieve this.
52  * These indirect registers work with busy bits,
53  * and we will try maximal REGISTER_BUSY_COUNT times to access
54  * the register while taking a REGISTER_BUSY_DELAY us delay
55  * between each attampt. When the busy bit is still set at that time,
56  * the access attempt is considered to have failed,
57  * and we will print an error.
58  * If the csr_mutex is already held then the _lock variants must
59  * be used instead.
60  */
61 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
62                                            const unsigned int offset,
63                                            u16 *value)
64 {
65         __le16 reg;
66         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
67                                       USB_VENDOR_REQUEST_IN, offset,
68                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
69         *value = le16_to_cpu(reg);
70 }
71
72 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
73                                                 const unsigned int offset,
74                                                 u16 *value)
75 {
76         __le16 reg;
77         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
78                                        USB_VENDOR_REQUEST_IN, offset,
79                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
80         *value = le16_to_cpu(reg);
81 }
82
83 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
84                                                 const unsigned int offset,
85                                                 void *value, const u16 length)
86 {
87         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
88                                       USB_VENDOR_REQUEST_IN, offset,
89                                       value, length,
90                                       REGISTER_TIMEOUT16(length));
91 }
92
93 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
94                                             const unsigned int offset,
95                                             u16 value)
96 {
97         __le16 reg = cpu_to_le16(value);
98         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
99                                       USB_VENDOR_REQUEST_OUT, offset,
100                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
101 }
102
103 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
104                                                  const unsigned int offset,
105                                                  u16 value)
106 {
107         __le16 reg = cpu_to_le16(value);
108         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
109                                        USB_VENDOR_REQUEST_OUT, offset,
110                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
111 }
112
113 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
114                                                  const unsigned int offset,
115                                                  void *value, const u16 length)
116 {
117         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
118                                       USB_VENDOR_REQUEST_OUT, offset,
119                                       value, length,
120                                       REGISTER_TIMEOUT16(length));
121 }
122
123 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
124                                   const unsigned int offset,
125                                   struct rt2x00_field16 field,
126                                   u16 *reg)
127 {
128         unsigned int i;
129
130         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
131                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
132                 if (!rt2x00_get_field16(*reg, field))
133                         return 1;
134                 udelay(REGISTER_BUSY_DELAY);
135         }
136
137         ERROR(rt2x00dev, "Indirect register access failed: "
138               "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
139         *reg = ~0;
140
141         return 0;
142 }
143
144 #define WAIT_FOR_BBP(__dev, __reg) \
145         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
146 #define WAIT_FOR_RF(__dev, __reg) \
147         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
148
149 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
150                                 const unsigned int word, const u8 value)
151 {
152         u16 reg;
153
154         mutex_lock(&rt2x00dev->csr_mutex);
155
156         /*
157          * Wait until the BBP becomes available, afterwards we
158          * can safely write the new data into the register.
159          */
160         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
161                 reg = 0;
162                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
163                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
164                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
165
166                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
167         }
168
169         mutex_unlock(&rt2x00dev->csr_mutex);
170 }
171
172 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
173                                const unsigned int word, u8 *value)
174 {
175         u16 reg;
176
177         mutex_lock(&rt2x00dev->csr_mutex);
178
179         /*
180          * Wait until the BBP becomes available, afterwards we
181          * can safely write the read request into the register.
182          * After the data has been written, we wait until hardware
183          * returns the correct value, if at any time the register
184          * doesn't become available in time, reg will be 0xffffffff
185          * which means we return 0xff to the caller.
186          */
187         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
188                 reg = 0;
189                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
190                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
191
192                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
193
194                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
195                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
196         }
197
198         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
199
200         mutex_unlock(&rt2x00dev->csr_mutex);
201 }
202
203 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
204                                const unsigned int word, const u32 value)
205 {
206         u16 reg;
207
208         mutex_lock(&rt2x00dev->csr_mutex);
209
210         /*
211          * Wait until the RF becomes available, afterwards we
212          * can safely write the new data into the register.
213          */
214         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
215                 reg = 0;
216                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
217                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
218
219                 reg = 0;
220                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
221                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
222                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
223                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
224
225                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
226                 rt2x00_rf_write(rt2x00dev, word, value);
227         }
228
229         mutex_unlock(&rt2x00dev->csr_mutex);
230 }
231
232 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
233 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
234                                      const unsigned int offset,
235                                      u32 *value)
236 {
237         rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
238 }
239
240 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
241                                       const unsigned int offset,
242                                       u32 value)
243 {
244         rt2500usb_register_write(rt2x00dev, offset, value);
245 }
246
247 static const struct rt2x00debug rt2500usb_rt2x00debug = {
248         .owner  = THIS_MODULE,
249         .csr    = {
250                 .read           = _rt2500usb_register_read,
251                 .write          = _rt2500usb_register_write,
252                 .flags          = RT2X00DEBUGFS_OFFSET,
253                 .word_base      = CSR_REG_BASE,
254                 .word_size      = sizeof(u16),
255                 .word_count     = CSR_REG_SIZE / sizeof(u16),
256         },
257         .eeprom = {
258                 .read           = rt2x00_eeprom_read,
259                 .write          = rt2x00_eeprom_write,
260                 .word_base      = EEPROM_BASE,
261                 .word_size      = sizeof(u16),
262                 .word_count     = EEPROM_SIZE / sizeof(u16),
263         },
264         .bbp    = {
265                 .read           = rt2500usb_bbp_read,
266                 .write          = rt2500usb_bbp_write,
267                 .word_base      = BBP_BASE,
268                 .word_size      = sizeof(u8),
269                 .word_count     = BBP_SIZE / sizeof(u8),
270         },
271         .rf     = {
272                 .read           = rt2x00_rf_read,
273                 .write          = rt2500usb_rf_write,
274                 .word_base      = RF_BASE,
275                 .word_size      = sizeof(u32),
276                 .word_count     = RF_SIZE / sizeof(u32),
277         },
278 };
279 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
280
281 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
282 {
283         u16 reg;
284
285         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
286         return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
287 }
288
289 #ifdef CONFIG_RT2X00_LIB_LEDS
290 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
291                                      enum led_brightness brightness)
292 {
293         struct rt2x00_led *led =
294             container_of(led_cdev, struct rt2x00_led, led_dev);
295         unsigned int enabled = brightness != LED_OFF;
296         u16 reg;
297
298         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
299
300         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
301                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
302         else if (led->type == LED_TYPE_ACTIVITY)
303                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
304
305         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
306 }
307
308 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
309                                unsigned long *delay_on,
310                                unsigned long *delay_off)
311 {
312         struct rt2x00_led *led =
313             container_of(led_cdev, struct rt2x00_led, led_dev);
314         u16 reg;
315
316         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
317         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
318         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
319         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
320
321         return 0;
322 }
323
324 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
325                                struct rt2x00_led *led,
326                                enum led_type type)
327 {
328         led->rt2x00dev = rt2x00dev;
329         led->type = type;
330         led->led_dev.brightness_set = rt2500usb_brightness_set;
331         led->led_dev.blink_set = rt2500usb_blink_set;
332         led->flags = LED_INITIALIZED;
333 }
334 #endif /* CONFIG_RT2X00_LIB_LEDS */
335
336 /*
337  * Configuration handlers.
338  */
339
340 /*
341  * rt2500usb does not differentiate between shared and pairwise
342  * keys, so we should use the same function for both key types.
343  */
344 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
345                                 struct rt2x00lib_crypto *crypto,
346                                 struct ieee80211_key_conf *key)
347 {
348         int timeout;
349         u32 mask;
350         u16 reg;
351
352         if (crypto->cmd == SET_KEY) {
353                 /*
354                  * Pairwise key will always be entry 0, but this
355                  * could collide with a shared key on the same
356                  * position...
357                  */
358                 mask = TXRX_CSR0_KEY_ID.bit_mask;
359
360                 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
361                 reg &= mask;
362
363                 if (reg && reg == mask)
364                         return -ENOSPC;
365
366                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
367
368                 key->hw_key_idx += reg ? ffz(reg) : 0;
369
370                 /*
371                  * The encryption key doesn't fit within the CSR cache,
372                  * this means we should allocate it separately and use
373                  * rt2x00usb_vendor_request() to send the key to the hardware.
374                  */
375                 reg = KEY_ENTRY(key->hw_key_idx);
376                 timeout = REGISTER_TIMEOUT32(sizeof(crypto->key));
377                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
378                                                     USB_VENDOR_REQUEST_OUT, reg,
379                                                     crypto->key,
380                                                     sizeof(crypto->key),
381                                                     timeout);
382
383                 /*
384                  * The driver does not support the IV/EIV generation
385                  * in hardware. However it demands the data to be provided
386                  * both separately as well as inside the frame.
387                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
388                  * to ensure rt2x00lib will not strip the data from the
389                  * frame after the copy, now we must tell mac80211
390                  * to generate the IV/EIV data.
391                  */
392                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
393                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
394         }
395
396         /*
397          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
398          * a particular key is valid.
399          */
400         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
401         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
402         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
403
404         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
405         if (crypto->cmd == SET_KEY)
406                 mask |= 1 << key->hw_key_idx;
407         else if (crypto->cmd == DISABLE_KEY)
408                 mask &= ~(1 << key->hw_key_idx);
409         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
410         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
411
412         return 0;
413 }
414
415 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
416                                     const unsigned int filter_flags)
417 {
418         u16 reg;
419
420         /*
421          * Start configuration steps.
422          * Note that the version error will always be dropped
423          * and broadcast frames will always be accepted since
424          * there is no filter for it at this time.
425          */
426         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
427         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
428                            !(filter_flags & FIF_FCSFAIL));
429         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
430                            !(filter_flags & FIF_PLCPFAIL));
431         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
432                            !(filter_flags & FIF_CONTROL));
433         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
434                            !(filter_flags & FIF_PROMISC_IN_BSS));
435         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
436                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
437                            !rt2x00dev->intf_ap_count);
438         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
439         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
440                            !(filter_flags & FIF_ALLMULTI));
441         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
442         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
443 }
444
445 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
446                                   struct rt2x00_intf *intf,
447                                   struct rt2x00intf_conf *conf,
448                                   const unsigned int flags)
449 {
450         unsigned int bcn_preload;
451         u16 reg;
452
453         if (flags & CONFIG_UPDATE_TYPE) {
454                 /*
455                  * Enable beacon config
456                  */
457                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
458                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
459                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
460                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
461                                    2 * (conf->type != NL80211_IFTYPE_STATION));
462                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
463
464                 /*
465                  * Enable synchronisation.
466                  */
467                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
468                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
469                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
470
471                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
472                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
473                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
474                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
475                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
476         }
477
478         if (flags & CONFIG_UPDATE_MAC)
479                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
480                                               (3 * sizeof(__le16)));
481
482         if (flags & CONFIG_UPDATE_BSSID)
483                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
484                                               (3 * sizeof(__le16)));
485 }
486
487 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
488                                  struct rt2x00lib_erp *erp)
489 {
490         u16 reg;
491
492         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
493         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
494                            !!erp->short_preamble);
495         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
496
497         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
498
499         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
500         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL, erp->beacon_int * 4);
501         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
502
503         rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
504         rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
505         rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
506 }
507
508 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
509                                  struct antenna_setup *ant)
510 {
511         u8 r2;
512         u8 r14;
513         u16 csr5;
514         u16 csr6;
515
516         /*
517          * We should never come here because rt2x00lib is supposed
518          * to catch this and send us the correct antenna explicitely.
519          */
520         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
521                ant->tx == ANTENNA_SW_DIVERSITY);
522
523         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
524         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
525         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
526         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
527
528         /*
529          * Configure the TX antenna.
530          */
531         switch (ant->tx) {
532         case ANTENNA_HW_DIVERSITY:
533                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
534                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
535                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
536                 break;
537         case ANTENNA_A:
538                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
539                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
540                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
541                 break;
542         case ANTENNA_B:
543         default:
544                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
545                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
546                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
547                 break;
548         }
549
550         /*
551          * Configure the RX antenna.
552          */
553         switch (ant->rx) {
554         case ANTENNA_HW_DIVERSITY:
555                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
556                 break;
557         case ANTENNA_A:
558                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
559                 break;
560         case ANTENNA_B:
561         default:
562                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
563                 break;
564         }
565
566         /*
567          * RT2525E and RT5222 need to flip TX I/Q
568          */
569         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
570                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
571                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
572                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
573
574                 /*
575                  * RT2525E does not need RX I/Q Flip.
576                  */
577                 if (rt2x00_rf(rt2x00dev, RF2525E))
578                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
579         } else {
580                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
581                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
582         }
583
584         rt2500usb_bbp_write(rt2x00dev, 2, r2);
585         rt2500usb_bbp_write(rt2x00dev, 14, r14);
586         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
587         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
588 }
589
590 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
591                                      struct rf_channel *rf, const int txpower)
592 {
593         /*
594          * Set TXpower.
595          */
596         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
597
598         /*
599          * For RT2525E we should first set the channel to half band higher.
600          */
601         if (rt2x00_rf(rt2x00dev, RF2525E)) {
602                 static const u32 vals[] = {
603                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
604                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
605                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
606                         0x00000902, 0x00000906
607                 };
608
609                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
610                 if (rf->rf4)
611                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
612         }
613
614         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
615         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
616         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
617         if (rf->rf4)
618                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
619 }
620
621 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
622                                      const int txpower)
623 {
624         u32 rf3;
625
626         rt2x00_rf_read(rt2x00dev, 3, &rf3);
627         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
628         rt2500usb_rf_write(rt2x00dev, 3, rf3);
629 }
630
631 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
632                                 struct rt2x00lib_conf *libconf)
633 {
634         enum dev_state state =
635             (libconf->conf->flags & IEEE80211_CONF_PS) ?
636                 STATE_SLEEP : STATE_AWAKE;
637         u16 reg;
638
639         if (state == STATE_SLEEP) {
640                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
641                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
642                                    rt2x00dev->beacon_int - 20);
643                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
644                                    libconf->conf->listen_interval - 1);
645
646                 /* We must first disable autowake before it can be enabled */
647                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
648                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
649
650                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
651                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
652         } else {
653                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
654                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
655                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
656         }
657
658         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
659 }
660
661 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
662                              struct rt2x00lib_conf *libconf,
663                              const unsigned int flags)
664 {
665         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
666                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
667                                          libconf->conf->power_level);
668         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
669             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
670                 rt2500usb_config_txpower(rt2x00dev,
671                                          libconf->conf->power_level);
672         if (flags & IEEE80211_CONF_CHANGE_PS)
673                 rt2500usb_config_ps(rt2x00dev, libconf);
674 }
675
676 /*
677  * Link tuning
678  */
679 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
680                                  struct link_qual *qual)
681 {
682         u16 reg;
683
684         /*
685          * Update FCS error count from register.
686          */
687         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
688         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
689
690         /*
691          * Update False CCA count from register.
692          */
693         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
694         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
695 }
696
697 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
698                                   struct link_qual *qual)
699 {
700         u16 eeprom;
701         u16 value;
702
703         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
704         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
705         rt2500usb_bbp_write(rt2x00dev, 24, value);
706
707         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
708         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
709         rt2500usb_bbp_write(rt2x00dev, 25, value);
710
711         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
712         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
713         rt2500usb_bbp_write(rt2x00dev, 61, value);
714
715         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
716         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
717         rt2500usb_bbp_write(rt2x00dev, 17, value);
718
719         qual->vgc_level = value;
720 }
721
722 /*
723  * Initialization functions.
724  */
725 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
726 {
727         u16 reg;
728
729         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
730                                     USB_MODE_TEST, REGISTER_TIMEOUT);
731         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
732                                     0x00f0, REGISTER_TIMEOUT);
733
734         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
735         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
736         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
737
738         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
739         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
740
741         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
742         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
743         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
744         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
745         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
746
747         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
748         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
749         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
750         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
751         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
752
753         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
754         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
755         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
756         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
757         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
758         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
759
760         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
761         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
762         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
763         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
764         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
765         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
766
767         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
768         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
769         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
770         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
771         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
772         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
773
774         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
775         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
776         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
777         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
778         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
779         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
780
781         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
782         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
783         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
784         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
785         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
786         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
787
788         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
789         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
790
791         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
792                 return -EBUSY;
793
794         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
795         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
796         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
797         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
798         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
799
800         if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
801                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
802                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
803         } else {
804                 reg = 0;
805                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
806                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
807         }
808         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
809
810         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
811         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
812         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
813         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
814
815         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
816         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
817                            rt2x00dev->rx->data_size);
818         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
819
820         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
821         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
822         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
823         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
824
825         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
826         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
827         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
828
829         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
830         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
831         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
832
833         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
834         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
835         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
836
837         return 0;
838 }
839
840 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
841 {
842         unsigned int i;
843         u8 value;
844
845         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
846                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
847                 if ((value != 0xff) && (value != 0x00))
848                         return 0;
849                 udelay(REGISTER_BUSY_DELAY);
850         }
851
852         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
853         return -EACCES;
854 }
855
856 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
857 {
858         unsigned int i;
859         u16 eeprom;
860         u8 value;
861         u8 reg_id;
862
863         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
864                 return -EACCES;
865
866         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
867         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
868         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
869         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
870         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
871         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
872         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
873         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
874         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
875         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
876         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
877         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
878         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
879         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
880         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
881         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
882         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
883         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
884         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
885         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
886         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
887         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
888         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
889         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
890         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
891         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
892         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
893         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
894         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
895         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
896         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
897
898         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
899                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
900
901                 if (eeprom != 0xffff && eeprom != 0x0000) {
902                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
903                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
904                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
905                 }
906         }
907
908         return 0;
909 }
910
911 /*
912  * Device state switch handlers.
913  */
914 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
915                                 enum dev_state state)
916 {
917         u16 reg;
918
919         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
920         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
921                            (state == STATE_RADIO_RX_OFF) ||
922                            (state == STATE_RADIO_RX_OFF_LINK));
923         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
924 }
925
926 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
927 {
928         /*
929          * Initialize all registers.
930          */
931         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
932                      rt2500usb_init_bbp(rt2x00dev)))
933                 return -EIO;
934
935         return 0;
936 }
937
938 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
939 {
940         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
941         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
942
943         /*
944          * Disable synchronisation.
945          */
946         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
947
948         rt2x00usb_disable_radio(rt2x00dev);
949 }
950
951 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
952                                enum dev_state state)
953 {
954         u16 reg;
955         u16 reg2;
956         unsigned int i;
957         char put_to_sleep;
958         char bbp_state;
959         char rf_state;
960
961         put_to_sleep = (state != STATE_AWAKE);
962
963         reg = 0;
964         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
965         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
966         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
967         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
968         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
969         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
970
971         /*
972          * Device is not guaranteed to be in the requested state yet.
973          * We must wait until the register indicates that the
974          * device has entered the correct state.
975          */
976         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
977                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
978                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
979                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
980                 if (bbp_state == state && rf_state == state)
981                         return 0;
982                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
983                 msleep(30);
984         }
985
986         return -EBUSY;
987 }
988
989 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
990                                       enum dev_state state)
991 {
992         int retval = 0;
993
994         switch (state) {
995         case STATE_RADIO_ON:
996                 retval = rt2500usb_enable_radio(rt2x00dev);
997                 break;
998         case STATE_RADIO_OFF:
999                 rt2500usb_disable_radio(rt2x00dev);
1000                 break;
1001         case STATE_RADIO_RX_ON:
1002         case STATE_RADIO_RX_ON_LINK:
1003         case STATE_RADIO_RX_OFF:
1004         case STATE_RADIO_RX_OFF_LINK:
1005                 rt2500usb_toggle_rx(rt2x00dev, state);
1006                 break;
1007         case STATE_RADIO_IRQ_ON:
1008         case STATE_RADIO_IRQ_OFF:
1009                 /* No support, but no error either */
1010                 break;
1011         case STATE_DEEP_SLEEP:
1012         case STATE_SLEEP:
1013         case STATE_STANDBY:
1014         case STATE_AWAKE:
1015                 retval = rt2500usb_set_state(rt2x00dev, state);
1016                 break;
1017         default:
1018                 retval = -ENOTSUPP;
1019                 break;
1020         }
1021
1022         if (unlikely(retval))
1023                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1024                       state, retval);
1025
1026         return retval;
1027 }
1028
1029 /*
1030  * TX descriptor initialization
1031  */
1032 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1033                                     struct sk_buff *skb,
1034                                     struct txentry_desc *txdesc)
1035 {
1036         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1037         __le32 *txd = skbdesc->desc;
1038         u32 word;
1039
1040         /*
1041          * Start writing the descriptor words.
1042          */
1043         rt2x00_desc_read(txd, 1, &word);
1044         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1045         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1046         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1047         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1048         rt2x00_desc_write(txd, 1, word);
1049
1050         rt2x00_desc_read(txd, 2, &word);
1051         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1052         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1053         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1054         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1055         rt2x00_desc_write(txd, 2, word);
1056
1057         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1058                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1059                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1060         }
1061
1062         rt2x00_desc_read(txd, 0, &word);
1063         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1064         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1065                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1066         rt2x00_set_field32(&word, TXD_W0_ACK,
1067                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1068         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1069                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1070         rt2x00_set_field32(&word, TXD_W0_OFDM,
1071                            (txdesc->rate_mode == RATE_MODE_OFDM));
1072         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1073                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1074         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1075         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1076         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1077         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1078         rt2x00_desc_write(txd, 0, word);
1079 }
1080
1081 /*
1082  * TX data initialization
1083  */
1084 static void rt2500usb_beacondone(struct urb *urb);
1085
1086 static void rt2500usb_write_beacon(struct queue_entry *entry)
1087 {
1088         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1089         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1090         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1091         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1092         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1093         int length;
1094         u16 reg;
1095
1096         /*
1097          * Add the descriptor in front of the skb.
1098          */
1099         skb_push(entry->skb, entry->queue->desc_size);
1100         memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1101         skbdesc->desc = entry->skb->data;
1102
1103         /*
1104          * Disable beaconing while we are reloading the beacon data,
1105          * otherwise we might be sending out invalid data.
1106          */
1107         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1108         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1109         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1110
1111         /*
1112          * USB devices cannot blindly pass the skb->len as the
1113          * length of the data to usb_fill_bulk_urb. Pass the skb
1114          * to the driver to determine what the length should be.
1115          */
1116         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1117
1118         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1119                           entry->skb->data, length, rt2500usb_beacondone,
1120                           entry);
1121
1122         /*
1123          * Second we need to create the guardian byte.
1124          * We only need a single byte, so lets recycle
1125          * the 'flags' field we are not using for beacons.
1126          */
1127         bcn_priv->guardian_data = 0;
1128         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1129                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1130                           entry);
1131
1132         /*
1133          * Send out the guardian byte.
1134          */
1135         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1136 }
1137
1138 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1139 {
1140         int length;
1141
1142         /*
1143          * The length _must_ be a multiple of 2,
1144          * but it must _not_ be a multiple of the USB packet size.
1145          */
1146         length = roundup(entry->skb->len, 2);
1147         length += (2 * !(length % entry->queue->usb_maxpacket));
1148
1149         return length;
1150 }
1151
1152 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1153                                     const enum data_queue_qid queue)
1154 {
1155         u16 reg, reg0;
1156
1157         if (queue != QID_BEACON) {
1158                 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1159                 return;
1160         }
1161
1162         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1163         if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1164                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1165                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1166                 reg0 = reg;
1167                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1168                 /*
1169                  * Beacon generation will fail initially.
1170                  * To prevent this we need to change the TXRX_CSR19
1171                  * register several times (reg0 is the same as reg
1172                  * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1173                  * and 1 in reg).
1174                  */
1175                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1176                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1177                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1178                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1179                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1180         }
1181 }
1182
1183 /*
1184  * RX control handlers
1185  */
1186 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1187                                   struct rxdone_entry_desc *rxdesc)
1188 {
1189         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1190         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1191         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1192         __le32 *rxd =
1193             (__le32 *)(entry->skb->data +
1194                        (entry_priv->urb->actual_length -
1195                         entry->queue->desc_size));
1196         u32 word0;
1197         u32 word1;
1198
1199         /*
1200          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1201          * frame data in rt2x00usb.
1202          */
1203         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1204         rxd = (__le32 *)skbdesc->desc;
1205
1206         /*
1207          * It is now safe to read the descriptor on all architectures.
1208          */
1209         rt2x00_desc_read(rxd, 0, &word0);
1210         rt2x00_desc_read(rxd, 1, &word1);
1211
1212         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1213                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1214         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1215                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1216
1217         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1218                 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1219                 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1220                         rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1221         }
1222
1223         if (rxdesc->cipher != CIPHER_NONE) {
1224                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1225                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1226                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1227
1228                 /* ICV is located at the end of frame */
1229
1230                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1231                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1232                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1233                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1234                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1235         }
1236
1237         /*
1238          * Obtain the status about this packet.
1239          * When frame was received with an OFDM bitrate,
1240          * the signal is the PLCP value. If it was received with
1241          * a CCK bitrate the signal is the rate in 100kbit/s.
1242          */
1243         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1244         rxdesc->rssi =
1245             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1246         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1247
1248         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1249                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1250         else
1251                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1252         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1253                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1254
1255         /*
1256          * Adjust the skb memory window to the frame boundaries.
1257          */
1258         skb_trim(entry->skb, rxdesc->size);
1259 }
1260
1261 /*
1262  * Interrupt functions.
1263  */
1264 static void rt2500usb_beacondone(struct urb *urb)
1265 {
1266         struct queue_entry *entry = (struct queue_entry *)urb->context;
1267         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1268
1269         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1270                 return;
1271
1272         /*
1273          * Check if this was the guardian beacon,
1274          * if that was the case we need to send the real beacon now.
1275          * Otherwise we should free the sk_buffer, the device
1276          * should be doing the rest of the work now.
1277          */
1278         if (bcn_priv->guardian_urb == urb) {
1279                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1280         } else if (bcn_priv->urb == urb) {
1281                 dev_kfree_skb(entry->skb);
1282                 entry->skb = NULL;
1283         }
1284 }
1285
1286 /*
1287  * Device probe functions.
1288  */
1289 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1290 {
1291         u16 word;
1292         u8 *mac;
1293         u8 bbp;
1294
1295         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1296
1297         /*
1298          * Start validation of the data that has been read.
1299          */
1300         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1301         if (!is_valid_ether_addr(mac)) {
1302                 random_ether_addr(mac);
1303                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1304         }
1305
1306         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1307         if (word == 0xffff) {
1308                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1309                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1310                                    ANTENNA_SW_DIVERSITY);
1311                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1312                                    ANTENNA_SW_DIVERSITY);
1313                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1314                                    LED_MODE_DEFAULT);
1315                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1316                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1317                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1318                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1319                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1320         }
1321
1322         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1323         if (word == 0xffff) {
1324                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1325                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1326                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1327                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1328                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1329         }
1330
1331         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1332         if (word == 0xffff) {
1333                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1334                                    DEFAULT_RSSI_OFFSET);
1335                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1336                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1337         }
1338
1339         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1340         if (word == 0xffff) {
1341                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1342                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1343                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1344         }
1345
1346         /*
1347          * Switch lower vgc bound to current BBP R17 value,
1348          * lower the value a bit for better quality.
1349          */
1350         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1351         bbp -= 6;
1352
1353         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1354         if (word == 0xffff) {
1355                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1356                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1357                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1358                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1359         } else {
1360                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1361                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1362         }
1363
1364         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1365         if (word == 0xffff) {
1366                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1367                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1368                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1369                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1370         }
1371
1372         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1373         if (word == 0xffff) {
1374                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1375                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1376                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1377                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1378         }
1379
1380         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1381         if (word == 0xffff) {
1382                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1383                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1384                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1385                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1386         }
1387
1388         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1389         if (word == 0xffff) {
1390                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1391                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1392                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1393                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1394         }
1395
1396         return 0;
1397 }
1398
1399 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1400 {
1401         u16 reg;
1402         u16 value;
1403         u16 eeprom;
1404
1405         /*
1406          * Read EEPROM word for configuration.
1407          */
1408         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1409
1410         /*
1411          * Identify RF chipset.
1412          */
1413         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1414         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1415         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1416
1417         if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1418                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1419                 return -ENODEV;
1420         }
1421
1422         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1423             !rt2x00_rf(rt2x00dev, RF2523) &&
1424             !rt2x00_rf(rt2x00dev, RF2524) &&
1425             !rt2x00_rf(rt2x00dev, RF2525) &&
1426             !rt2x00_rf(rt2x00dev, RF2525E) &&
1427             !rt2x00_rf(rt2x00dev, RF5222)) {
1428                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1429                 return -ENODEV;
1430         }
1431
1432         /*
1433          * Identify default antenna configuration.
1434          */
1435         rt2x00dev->default_ant.tx =
1436             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1437         rt2x00dev->default_ant.rx =
1438             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1439
1440         /*
1441          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1442          * I am not 100% sure about this, but the legacy drivers do not
1443          * indicate antenna swapping in software is required when
1444          * diversity is enabled.
1445          */
1446         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1447                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1448         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1449                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1450
1451         /*
1452          * Store led mode, for correct led behaviour.
1453          */
1454 #ifdef CONFIG_RT2X00_LIB_LEDS
1455         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1456
1457         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1458         if (value == LED_MODE_TXRX_ACTIVITY ||
1459             value == LED_MODE_DEFAULT ||
1460             value == LED_MODE_ASUS)
1461                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1462                                    LED_TYPE_ACTIVITY);
1463 #endif /* CONFIG_RT2X00_LIB_LEDS */
1464
1465         /*
1466          * Detect if this device has an hardware controlled radio.
1467          */
1468         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1469                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1470
1471         /*
1472          * Check if the BBP tuning should be disabled.
1473          */
1474         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1475         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1476                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1477
1478         /*
1479          * Read the RSSI <-> dBm offset information.
1480          */
1481         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1482         rt2x00dev->rssi_offset =
1483             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1484
1485         return 0;
1486 }
1487
1488 /*
1489  * RF value list for RF2522
1490  * Supports: 2.4 GHz
1491  */
1492 static const struct rf_channel rf_vals_bg_2522[] = {
1493         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1494         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1495         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1496         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1497         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1498         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1499         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1500         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1501         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1502         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1503         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1504         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1505         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1506         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1507 };
1508
1509 /*
1510  * RF value list for RF2523
1511  * Supports: 2.4 GHz
1512  */
1513 static const struct rf_channel rf_vals_bg_2523[] = {
1514         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1515         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1516         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1517         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1518         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1519         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1520         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1521         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1522         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1523         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1524         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1525         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1526         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1527         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1528 };
1529
1530 /*
1531  * RF value list for RF2524
1532  * Supports: 2.4 GHz
1533  */
1534 static const struct rf_channel rf_vals_bg_2524[] = {
1535         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1536         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1537         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1538         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1539         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1540         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1541         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1542         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1543         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1544         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1545         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1546         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1547         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1548         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1549 };
1550
1551 /*
1552  * RF value list for RF2525
1553  * Supports: 2.4 GHz
1554  */
1555 static const struct rf_channel rf_vals_bg_2525[] = {
1556         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1557         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1558         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1559         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1560         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1561         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1562         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1563         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1564         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1565         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1566         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1567         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1568         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1569         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1570 };
1571
1572 /*
1573  * RF value list for RF2525e
1574  * Supports: 2.4 GHz
1575  */
1576 static const struct rf_channel rf_vals_bg_2525e[] = {
1577         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1578         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1579         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1580         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1581         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1582         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1583         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1584         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1585         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1586         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1587         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1588         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1589         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1590         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1591 };
1592
1593 /*
1594  * RF value list for RF5222
1595  * Supports: 2.4 GHz & 5.2 GHz
1596  */
1597 static const struct rf_channel rf_vals_5222[] = {
1598         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1599         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1600         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1601         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1602         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1603         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1604         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1605         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1606         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1607         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1608         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1609         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1610         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1611         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1612
1613         /* 802.11 UNI / HyperLan 2 */
1614         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1615         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1616         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1617         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1618         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1619         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1620         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1621         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1622
1623         /* 802.11 HyperLan 2 */
1624         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1625         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1626         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1627         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1628         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1629         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1630         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1631         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1632         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1633         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1634
1635         /* 802.11 UNII */
1636         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1637         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1638         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1639         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1640         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1641 };
1642
1643 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1644 {
1645         struct hw_mode_spec *spec = &rt2x00dev->spec;
1646         struct channel_info *info;
1647         char *tx_power;
1648         unsigned int i;
1649
1650         /*
1651          * Initialize all hw fields.
1652          */
1653         rt2x00dev->hw->flags =
1654             IEEE80211_HW_RX_INCLUDES_FCS |
1655             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1656             IEEE80211_HW_SIGNAL_DBM |
1657             IEEE80211_HW_SUPPORTS_PS |
1658             IEEE80211_HW_PS_NULLFUNC_STACK;
1659
1660         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1661         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1662                                 rt2x00_eeprom_addr(rt2x00dev,
1663                                                    EEPROM_MAC_ADDR_0));
1664
1665         /*
1666          * Initialize hw_mode information.
1667          */
1668         spec->supported_bands = SUPPORT_BAND_2GHZ;
1669         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1670
1671         if (rt2x00_rf(rt2x00dev, RF2522)) {
1672                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1673                 spec->channels = rf_vals_bg_2522;
1674         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1675                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1676                 spec->channels = rf_vals_bg_2523;
1677         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1678                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1679                 spec->channels = rf_vals_bg_2524;
1680         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1681                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1682                 spec->channels = rf_vals_bg_2525;
1683         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1684                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1685                 spec->channels = rf_vals_bg_2525e;
1686         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1687                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1688                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1689                 spec->channels = rf_vals_5222;
1690         }
1691
1692         /*
1693          * Create channel information array
1694          */
1695         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1696         if (!info)
1697                 return -ENOMEM;
1698
1699         spec->channels_info = info;
1700
1701         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1702         for (i = 0; i < 14; i++)
1703                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1704
1705         if (spec->num_channels > 14) {
1706                 for (i = 14; i < spec->num_channels; i++)
1707                         info[i].tx_power1 = DEFAULT_TXPOWER;
1708         }
1709
1710         return 0;
1711 }
1712
1713 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1714 {
1715         int retval;
1716
1717         /*
1718          * Allocate eeprom data.
1719          */
1720         retval = rt2500usb_validate_eeprom(rt2x00dev);
1721         if (retval)
1722                 return retval;
1723
1724         retval = rt2500usb_init_eeprom(rt2x00dev);
1725         if (retval)
1726                 return retval;
1727
1728         /*
1729          * Initialize hw specifications.
1730          */
1731         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1732         if (retval)
1733                 return retval;
1734
1735         /*
1736          * This device requires the atim queue
1737          */
1738         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1739         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1740         if (!modparam_nohwcrypt) {
1741                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1742                 __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
1743         }
1744         __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1745
1746         /*
1747          * Set the rssi offset.
1748          */
1749         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1750
1751         return 0;
1752 }
1753
1754 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1755         .tx                     = rt2x00mac_tx,
1756         .start                  = rt2x00mac_start,
1757         .stop                   = rt2x00mac_stop,
1758         .add_interface          = rt2x00mac_add_interface,
1759         .remove_interface       = rt2x00mac_remove_interface,
1760         .config                 = rt2x00mac_config,
1761         .configure_filter       = rt2x00mac_configure_filter,
1762         .set_tim                = rt2x00mac_set_tim,
1763         .set_key                = rt2x00mac_set_key,
1764         .get_stats              = rt2x00mac_get_stats,
1765         .bss_info_changed       = rt2x00mac_bss_info_changed,
1766         .conf_tx                = rt2x00mac_conf_tx,
1767         .rfkill_poll            = rt2x00mac_rfkill_poll,
1768 };
1769
1770 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1771         .probe_hw               = rt2500usb_probe_hw,
1772         .initialize             = rt2x00usb_initialize,
1773         .uninitialize           = rt2x00usb_uninitialize,
1774         .clear_entry            = rt2x00usb_clear_entry,
1775         .set_device_state       = rt2500usb_set_device_state,
1776         .rfkill_poll            = rt2500usb_rfkill_poll,
1777         .link_stats             = rt2500usb_link_stats,
1778         .reset_tuner            = rt2500usb_reset_tuner,
1779         .write_tx_desc          = rt2500usb_write_tx_desc,
1780         .write_tx_data          = rt2x00usb_write_tx_data,
1781         .write_beacon           = rt2500usb_write_beacon,
1782         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1783         .kick_tx_queue          = rt2500usb_kick_tx_queue,
1784         .kill_tx_queue          = rt2x00usb_kill_tx_queue,
1785         .fill_rxdone            = rt2500usb_fill_rxdone,
1786         .config_shared_key      = rt2500usb_config_key,
1787         .config_pairwise_key    = rt2500usb_config_key,
1788         .config_filter          = rt2500usb_config_filter,
1789         .config_intf            = rt2500usb_config_intf,
1790         .config_erp             = rt2500usb_config_erp,
1791         .config_ant             = rt2500usb_config_ant,
1792         .config                 = rt2500usb_config,
1793 };
1794
1795 static const struct data_queue_desc rt2500usb_queue_rx = {
1796         .entry_num              = RX_ENTRIES,
1797         .data_size              = DATA_FRAME_SIZE,
1798         .desc_size              = RXD_DESC_SIZE,
1799         .priv_size              = sizeof(struct queue_entry_priv_usb),
1800 };
1801
1802 static const struct data_queue_desc rt2500usb_queue_tx = {
1803         .entry_num              = TX_ENTRIES,
1804         .data_size              = DATA_FRAME_SIZE,
1805         .desc_size              = TXD_DESC_SIZE,
1806         .priv_size              = sizeof(struct queue_entry_priv_usb),
1807 };
1808
1809 static const struct data_queue_desc rt2500usb_queue_bcn = {
1810         .entry_num              = BEACON_ENTRIES,
1811         .data_size              = MGMT_FRAME_SIZE,
1812         .desc_size              = TXD_DESC_SIZE,
1813         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1814 };
1815
1816 static const struct data_queue_desc rt2500usb_queue_atim = {
1817         .entry_num              = ATIM_ENTRIES,
1818         .data_size              = DATA_FRAME_SIZE,
1819         .desc_size              = TXD_DESC_SIZE,
1820         .priv_size              = sizeof(struct queue_entry_priv_usb),
1821 };
1822
1823 static const struct rt2x00_ops rt2500usb_ops = {
1824         .name                   = KBUILD_MODNAME,
1825         .max_sta_intf           = 1,
1826         .max_ap_intf            = 1,
1827         .eeprom_size            = EEPROM_SIZE,
1828         .rf_size                = RF_SIZE,
1829         .tx_queues              = NUM_TX_QUEUES,
1830         .extra_tx_headroom      = TXD_DESC_SIZE,
1831         .rx                     = &rt2500usb_queue_rx,
1832         .tx                     = &rt2500usb_queue_tx,
1833         .bcn                    = &rt2500usb_queue_bcn,
1834         .atim                   = &rt2500usb_queue_atim,
1835         .lib                    = &rt2500usb_rt2x00_ops,
1836         .hw                     = &rt2500usb_mac80211_ops,
1837 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1838         .debugfs                = &rt2500usb_rt2x00debug,
1839 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1840 };
1841
1842 /*
1843  * rt2500usb module information.
1844  */
1845 static struct usb_device_id rt2500usb_device_table[] = {
1846         /* ASUS */
1847         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1848         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1849         /* Belkin */
1850         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1851         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1852         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1853         /* Cisco Systems */
1854         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1855         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1856         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1857         /* CNet */
1858         { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
1859         /* Conceptronic */
1860         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1861         /* D-LINK */
1862         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1863         /* Gigabyte */
1864         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1865         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1866         /* Hercules */
1867         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1868         /* Melco */
1869         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1870         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1871         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1872         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1873         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1874         /* MSI */
1875         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1876         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1877         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1878         /* Ralink */
1879         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1880         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1881         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1882         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1883         /* Sagem */
1884         { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
1885         /* Siemens */
1886         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1887         /* SMC */
1888         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1889         /* Spairon */
1890         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1891         /* SURECOM */
1892         { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
1893         /* Trust */
1894         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1895         /* VTech */
1896         { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
1897         /* Zinwell */
1898         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1899         { 0, }
1900 };
1901
1902 MODULE_AUTHOR(DRV_PROJECT);
1903 MODULE_VERSION(DRV_VERSION);
1904 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1905 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1906 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1907 MODULE_LICENSE("GPL");
1908
1909 static struct usb_driver rt2500usb_driver = {
1910         .name           = KBUILD_MODNAME,
1911         .id_table       = rt2500usb_device_table,
1912         .probe          = rt2x00usb_probe,
1913         .disconnect     = rt2x00usb_disconnect,
1914         .suspend        = rt2x00usb_suspend,
1915         .resume         = rt2x00usb_resume,
1916 };
1917
1918 static int __init rt2500usb_init(void)
1919 {
1920         return usb_register(&rt2500usb_driver);
1921 }
1922
1923 static void __exit rt2500usb_exit(void)
1924 {
1925         usb_deregister(&rt2500usb_driver);
1926 }
1927
1928 module_init(rt2500usb_init);
1929 module_exit(rt2500usb_exit);