rt2500usb: remove dead link tuning code
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
37
38 /*
39  * Allow hardware encryption to be disabled.
40  */
41 static int modparam_nohwcrypt = 0;
42 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
43 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
44
45 /*
46  * Register access.
47  * All access to the CSR registers will go through the methods
48  * rt2500usb_register_read and rt2500usb_register_write.
49  * BBP and RF register require indirect register access,
50  * and use the CSR registers BBPCSR and RFCSR to achieve this.
51  * These indirect registers work with busy bits,
52  * and we will try maximal REGISTER_BUSY_COUNT times to access
53  * the register while taking a REGISTER_BUSY_DELAY us delay
54  * between each attampt. When the busy bit is still set at that time,
55  * the access attempt is considered to have failed,
56  * and we will print an error.
57  * If the csr_mutex is already held then the _lock variants must
58  * be used instead.
59  */
60 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
61                                            const unsigned int offset,
62                                            u16 *value)
63 {
64         __le16 reg;
65         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
66                                       USB_VENDOR_REQUEST_IN, offset,
67                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
68         *value = le16_to_cpu(reg);
69 }
70
71 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
72                                                 const unsigned int offset,
73                                                 u16 *value)
74 {
75         __le16 reg;
76         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
77                                        USB_VENDOR_REQUEST_IN, offset,
78                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
79         *value = le16_to_cpu(reg);
80 }
81
82 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
83                                                 const unsigned int offset,
84                                                 void *value, const u16 length)
85 {
86         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
87                                       USB_VENDOR_REQUEST_IN, offset,
88                                       value, length,
89                                       REGISTER_TIMEOUT16(length));
90 }
91
92 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
93                                             const unsigned int offset,
94                                             u16 value)
95 {
96         __le16 reg = cpu_to_le16(value);
97         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
98                                       USB_VENDOR_REQUEST_OUT, offset,
99                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
100 }
101
102 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
103                                                  const unsigned int offset,
104                                                  u16 value)
105 {
106         __le16 reg = cpu_to_le16(value);
107         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
108                                        USB_VENDOR_REQUEST_OUT, offset,
109                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
110 }
111
112 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
113                                                  const unsigned int offset,
114                                                  void *value, const u16 length)
115 {
116         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
117                                       USB_VENDOR_REQUEST_OUT, offset,
118                                       value, length,
119                                       REGISTER_TIMEOUT16(length));
120 }
121
122 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
123                                   const unsigned int offset,
124                                   struct rt2x00_field16 field,
125                                   u16 *reg)
126 {
127         unsigned int i;
128
129         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
130                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
131                 if (!rt2x00_get_field16(*reg, field))
132                         return 1;
133                 udelay(REGISTER_BUSY_DELAY);
134         }
135
136         ERROR(rt2x00dev, "Indirect register access failed: "
137               "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
138         *reg = ~0;
139
140         return 0;
141 }
142
143 #define WAIT_FOR_BBP(__dev, __reg) \
144         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
145 #define WAIT_FOR_RF(__dev, __reg) \
146         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
147
148 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
149                                 const unsigned int word, const u8 value)
150 {
151         u16 reg;
152
153         mutex_lock(&rt2x00dev->csr_mutex);
154
155         /*
156          * Wait until the BBP becomes available, afterwards we
157          * can safely write the new data into the register.
158          */
159         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
160                 reg = 0;
161                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
162                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
163                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
164
165                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
166         }
167
168         mutex_unlock(&rt2x00dev->csr_mutex);
169 }
170
171 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
172                                const unsigned int word, u8 *value)
173 {
174         u16 reg;
175
176         mutex_lock(&rt2x00dev->csr_mutex);
177
178         /*
179          * Wait until the BBP becomes available, afterwards we
180          * can safely write the read request into the register.
181          * After the data has been written, we wait until hardware
182          * returns the correct value, if at any time the register
183          * doesn't become available in time, reg will be 0xffffffff
184          * which means we return 0xff to the caller.
185          */
186         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
187                 reg = 0;
188                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
189                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
190
191                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
192
193                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
194                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
195         }
196
197         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
198
199         mutex_unlock(&rt2x00dev->csr_mutex);
200 }
201
202 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
203                                const unsigned int word, const u32 value)
204 {
205         u16 reg;
206
207         mutex_lock(&rt2x00dev->csr_mutex);
208
209         /*
210          * Wait until the RF becomes available, afterwards we
211          * can safely write the new data into the register.
212          */
213         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
214                 reg = 0;
215                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
216                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
217
218                 reg = 0;
219                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
220                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
221                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
222                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
223
224                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
225                 rt2x00_rf_write(rt2x00dev, word, value);
226         }
227
228         mutex_unlock(&rt2x00dev->csr_mutex);
229 }
230
231 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
232 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
233                                      const unsigned int offset,
234                                      u32 *value)
235 {
236         rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
237 }
238
239 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
240                                       const unsigned int offset,
241                                       u32 value)
242 {
243         rt2500usb_register_write(rt2x00dev, offset, value);
244 }
245
246 static const struct rt2x00debug rt2500usb_rt2x00debug = {
247         .owner  = THIS_MODULE,
248         .csr    = {
249                 .read           = _rt2500usb_register_read,
250                 .write          = _rt2500usb_register_write,
251                 .flags          = RT2X00DEBUGFS_OFFSET,
252                 .word_base      = CSR_REG_BASE,
253                 .word_size      = sizeof(u16),
254                 .word_count     = CSR_REG_SIZE / sizeof(u16),
255         },
256         .eeprom = {
257                 .read           = rt2x00_eeprom_read,
258                 .write          = rt2x00_eeprom_write,
259                 .word_base      = EEPROM_BASE,
260                 .word_size      = sizeof(u16),
261                 .word_count     = EEPROM_SIZE / sizeof(u16),
262         },
263         .bbp    = {
264                 .read           = rt2500usb_bbp_read,
265                 .write          = rt2500usb_bbp_write,
266                 .word_base      = BBP_BASE,
267                 .word_size      = sizeof(u8),
268                 .word_count     = BBP_SIZE / sizeof(u8),
269         },
270         .rf     = {
271                 .read           = rt2x00_rf_read,
272                 .write          = rt2500usb_rf_write,
273                 .word_base      = RF_BASE,
274                 .word_size      = sizeof(u32),
275                 .word_count     = RF_SIZE / sizeof(u32),
276         },
277 };
278 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
279
280 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
281 {
282         u16 reg;
283
284         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
285         return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
286 }
287
288 #ifdef CONFIG_RT2X00_LIB_LEDS
289 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
290                                      enum led_brightness brightness)
291 {
292         struct rt2x00_led *led =
293             container_of(led_cdev, struct rt2x00_led, led_dev);
294         unsigned int enabled = brightness != LED_OFF;
295         u16 reg;
296
297         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
298
299         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
300                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
301         else if (led->type == LED_TYPE_ACTIVITY)
302                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
303
304         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
305 }
306
307 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
308                                unsigned long *delay_on,
309                                unsigned long *delay_off)
310 {
311         struct rt2x00_led *led =
312             container_of(led_cdev, struct rt2x00_led, led_dev);
313         u16 reg;
314
315         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
316         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
317         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
318         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
319
320         return 0;
321 }
322
323 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
324                                struct rt2x00_led *led,
325                                enum led_type type)
326 {
327         led->rt2x00dev = rt2x00dev;
328         led->type = type;
329         led->led_dev.brightness_set = rt2500usb_brightness_set;
330         led->led_dev.blink_set = rt2500usb_blink_set;
331         led->flags = LED_INITIALIZED;
332 }
333 #endif /* CONFIG_RT2X00_LIB_LEDS */
334
335 /*
336  * Configuration handlers.
337  */
338
339 /*
340  * rt2500usb does not differentiate between shared and pairwise
341  * keys, so we should use the same function for both key types.
342  */
343 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
344                                 struct rt2x00lib_crypto *crypto,
345                                 struct ieee80211_key_conf *key)
346 {
347         int timeout;
348         u32 mask;
349         u16 reg;
350
351         if (crypto->cmd == SET_KEY) {
352                 /*
353                  * Pairwise key will always be entry 0, but this
354                  * could collide with a shared key on the same
355                  * position...
356                  */
357                 mask = TXRX_CSR0_KEY_ID.bit_mask;
358
359                 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
360                 reg &= mask;
361
362                 if (reg && reg == mask)
363                         return -ENOSPC;
364
365                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
366
367                 key->hw_key_idx += reg ? ffz(reg) : 0;
368
369                 /*
370                  * The encryption key doesn't fit within the CSR cache,
371                  * this means we should allocate it seperately and use
372                  * rt2x00usb_vendor_request() to send the key to the hardware.
373                  */
374                 reg = KEY_ENTRY(key->hw_key_idx);
375                 timeout = REGISTER_TIMEOUT32(sizeof(crypto->key));
376                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
377                                                     USB_VENDOR_REQUEST_OUT, reg,
378                                                     crypto->key,
379                                                     sizeof(crypto->key),
380                                                     timeout);
381
382                 /*
383                  * The driver does not support the IV/EIV generation
384                  * in hardware. However it demands the data to be provided
385                  * both seperately as well as inside the frame.
386                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
387                  * to ensure rt2x00lib will not strip the data from the
388                  * frame after the copy, now we must tell mac80211
389                  * to generate the IV/EIV data.
390                  */
391                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
392                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
393         }
394
395         /*
396          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
397          * a particular key is valid.
398          */
399         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
400         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
401         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
402
403         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
404         if (crypto->cmd == SET_KEY)
405                 mask |= 1 << key->hw_key_idx;
406         else if (crypto->cmd == DISABLE_KEY)
407                 mask &= ~(1 << key->hw_key_idx);
408         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
409         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
410
411         return 0;
412 }
413
414 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
415                                     const unsigned int filter_flags)
416 {
417         u16 reg;
418
419         /*
420          * Start configuration steps.
421          * Note that the version error will always be dropped
422          * and broadcast frames will always be accepted since
423          * there is no filter for it at this time.
424          */
425         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
426         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
427                            !(filter_flags & FIF_FCSFAIL));
428         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
429                            !(filter_flags & FIF_PLCPFAIL));
430         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
431                            !(filter_flags & FIF_CONTROL));
432         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
433                            !(filter_flags & FIF_PROMISC_IN_BSS));
434         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
435                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
436                            !rt2x00dev->intf_ap_count);
437         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
438         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
439                            !(filter_flags & FIF_ALLMULTI));
440         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
441         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
442 }
443
444 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
445                                   struct rt2x00_intf *intf,
446                                   struct rt2x00intf_conf *conf,
447                                   const unsigned int flags)
448 {
449         unsigned int bcn_preload;
450         u16 reg;
451
452         if (flags & CONFIG_UPDATE_TYPE) {
453                 /*
454                  * Enable beacon config
455                  */
456                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
457                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
458                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
459                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
460                                    2 * (conf->type != NL80211_IFTYPE_STATION));
461                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
462
463                 /*
464                  * Enable synchronisation.
465                  */
466                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
467                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
468                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
469
470                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
471                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
472                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
473                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
474                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
475         }
476
477         if (flags & CONFIG_UPDATE_MAC)
478                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
479                                               (3 * sizeof(__le16)));
480
481         if (flags & CONFIG_UPDATE_BSSID)
482                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
483                                               (3 * sizeof(__le16)));
484 }
485
486 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
487                                  struct rt2x00lib_erp *erp)
488 {
489         u16 reg;
490
491         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
492         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
493                            !!erp->short_preamble);
494         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
495
496         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
497
498         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
499         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL, erp->beacon_int * 4);
500         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
501
502         rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
503         rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
504         rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
505 }
506
507 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
508                                  struct antenna_setup *ant)
509 {
510         u8 r2;
511         u8 r14;
512         u16 csr5;
513         u16 csr6;
514
515         /*
516          * We should never come here because rt2x00lib is supposed
517          * to catch this and send us the correct antenna explicitely.
518          */
519         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
520                ant->tx == ANTENNA_SW_DIVERSITY);
521
522         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
523         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
524         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
525         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
526
527         /*
528          * Configure the TX antenna.
529          */
530         switch (ant->tx) {
531         case ANTENNA_HW_DIVERSITY:
532                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
533                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
534                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
535                 break;
536         case ANTENNA_A:
537                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
538                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
539                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
540                 break;
541         case ANTENNA_B:
542         default:
543                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
544                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
545                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
546                 break;
547         }
548
549         /*
550          * Configure the RX antenna.
551          */
552         switch (ant->rx) {
553         case ANTENNA_HW_DIVERSITY:
554                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
555                 break;
556         case ANTENNA_A:
557                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
558                 break;
559         case ANTENNA_B:
560         default:
561                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
562                 break;
563         }
564
565         /*
566          * RT2525E and RT5222 need to flip TX I/Q
567          */
568         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
569             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
570                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
571                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
572                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
573
574                 /*
575                  * RT2525E does not need RX I/Q Flip.
576                  */
577                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
578                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
579         } else {
580                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
581                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
582         }
583
584         rt2500usb_bbp_write(rt2x00dev, 2, r2);
585         rt2500usb_bbp_write(rt2x00dev, 14, r14);
586         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
587         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
588 }
589
590 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
591                                      struct rf_channel *rf, const int txpower)
592 {
593         /*
594          * Set TXpower.
595          */
596         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
597
598         /*
599          * For RT2525E we should first set the channel to half band higher.
600          */
601         if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
602                 static const u32 vals[] = {
603                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
604                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
605                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
606                         0x00000902, 0x00000906
607                 };
608
609                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
610                 if (rf->rf4)
611                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
612         }
613
614         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
615         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
616         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
617         if (rf->rf4)
618                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
619 }
620
621 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
622                                      const int txpower)
623 {
624         u32 rf3;
625
626         rt2x00_rf_read(rt2x00dev, 3, &rf3);
627         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
628         rt2500usb_rf_write(rt2x00dev, 3, rf3);
629 }
630
631 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
632                                 struct rt2x00lib_conf *libconf)
633 {
634         enum dev_state state =
635             (libconf->conf->flags & IEEE80211_CONF_PS) ?
636                 STATE_SLEEP : STATE_AWAKE;
637         u16 reg;
638
639         if (state == STATE_SLEEP) {
640                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
641                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
642                                    rt2x00dev->beacon_int - 20);
643                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
644                                    libconf->conf->listen_interval - 1);
645
646                 /* We must first disable autowake before it can be enabled */
647                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
648                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
649
650                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
651                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
652         }
653
654         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
655 }
656
657 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
658                              struct rt2x00lib_conf *libconf,
659                              const unsigned int flags)
660 {
661         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
662                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
663                                          libconf->conf->power_level);
664         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
665             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
666                 rt2500usb_config_txpower(rt2x00dev,
667                                          libconf->conf->power_level);
668         if (flags & IEEE80211_CONF_CHANGE_PS)
669                 rt2500usb_config_ps(rt2x00dev, libconf);
670 }
671
672 /*
673  * Link tuning
674  */
675 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
676                                  struct link_qual *qual)
677 {
678         u16 reg;
679
680         /*
681          * Update FCS error count from register.
682          */
683         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
684         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
685
686         /*
687          * Update False CCA count from register.
688          */
689         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
690         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
691 }
692
693 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
694                                   struct link_qual *qual)
695 {
696         u16 eeprom;
697         u16 value;
698
699         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
700         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
701         rt2500usb_bbp_write(rt2x00dev, 24, value);
702
703         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
704         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
705         rt2500usb_bbp_write(rt2x00dev, 25, value);
706
707         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
708         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
709         rt2500usb_bbp_write(rt2x00dev, 61, value);
710
711         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
712         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
713         rt2500usb_bbp_write(rt2x00dev, 17, value);
714
715         qual->vgc_level = value;
716 }
717
718 /*
719  * Initialization functions.
720  */
721 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
722 {
723         u16 reg;
724
725         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
726                                     USB_MODE_TEST, REGISTER_TIMEOUT);
727         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
728                                     0x00f0, REGISTER_TIMEOUT);
729
730         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
731         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
732         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
733
734         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
735         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
736
737         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
738         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
739         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
740         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
741         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
742
743         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
744         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
745         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
746         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
747         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
748
749         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
750         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
751         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
752         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
753         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
754         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
755
756         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
757         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
758         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
759         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
760         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
761         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
762
763         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
764         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
765         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
766         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
767         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
768         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
769
770         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
771         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
772         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
773         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
774         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
775         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
776
777         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
778         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
779         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
780         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
781         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
782         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
783
784         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
785         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
786
787         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
788                 return -EBUSY;
789
790         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
791         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
792         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
793         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
794         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
795
796         if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
797                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
798                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
799         } else {
800                 reg = 0;
801                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
802                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
803         }
804         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
805
806         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
807         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
808         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
809         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
810
811         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
812         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
813                            rt2x00dev->rx->data_size);
814         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
815
816         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
817         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
818         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
819         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
820
821         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
822         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
823         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
824
825         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
826         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
827         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
828
829         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
830         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
831         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
832
833         return 0;
834 }
835
836 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
837 {
838         unsigned int i;
839         u8 value;
840
841         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
842                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
843                 if ((value != 0xff) && (value != 0x00))
844                         return 0;
845                 udelay(REGISTER_BUSY_DELAY);
846         }
847
848         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
849         return -EACCES;
850 }
851
852 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
853 {
854         unsigned int i;
855         u16 eeprom;
856         u8 value;
857         u8 reg_id;
858
859         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
860                 return -EACCES;
861
862         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
863         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
864         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
865         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
866         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
867         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
868         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
869         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
870         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
871         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
872         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
873         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
874         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
875         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
876         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
877         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
878         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
879         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
880         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
881         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
882         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
883         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
884         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
885         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
886         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
887         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
888         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
889         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
890         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
891         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
892         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
893
894         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
895                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
896
897                 if (eeprom != 0xffff && eeprom != 0x0000) {
898                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
899                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
900                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
901                 }
902         }
903
904         return 0;
905 }
906
907 /*
908  * Device state switch handlers.
909  */
910 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
911                                 enum dev_state state)
912 {
913         u16 reg;
914
915         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
916         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
917                            (state == STATE_RADIO_RX_OFF) ||
918                            (state == STATE_RADIO_RX_OFF_LINK));
919         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
920 }
921
922 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
923 {
924         /*
925          * Initialize all registers.
926          */
927         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
928                      rt2500usb_init_bbp(rt2x00dev)))
929                 return -EIO;
930
931         return 0;
932 }
933
934 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
935 {
936         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
937         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
938
939         /*
940          * Disable synchronisation.
941          */
942         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
943
944         rt2x00usb_disable_radio(rt2x00dev);
945 }
946
947 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
948                                enum dev_state state)
949 {
950         u16 reg;
951         u16 reg2;
952         unsigned int i;
953         char put_to_sleep;
954         char bbp_state;
955         char rf_state;
956
957         put_to_sleep = (state != STATE_AWAKE);
958
959         reg = 0;
960         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
961         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
962         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
963         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
964         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
965         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
966
967         /*
968          * Device is not guaranteed to be in the requested state yet.
969          * We must wait until the register indicates that the
970          * device has entered the correct state.
971          */
972         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
973                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
974                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
975                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
976                 if (bbp_state == state && rf_state == state)
977                         return 0;
978                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
979                 msleep(30);
980         }
981
982         return -EBUSY;
983 }
984
985 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
986                                       enum dev_state state)
987 {
988         int retval = 0;
989
990         switch (state) {
991         case STATE_RADIO_ON:
992                 retval = rt2500usb_enable_radio(rt2x00dev);
993                 break;
994         case STATE_RADIO_OFF:
995                 rt2500usb_disable_radio(rt2x00dev);
996                 break;
997         case STATE_RADIO_RX_ON:
998         case STATE_RADIO_RX_ON_LINK:
999         case STATE_RADIO_RX_OFF:
1000         case STATE_RADIO_RX_OFF_LINK:
1001                 rt2500usb_toggle_rx(rt2x00dev, state);
1002                 break;
1003         case STATE_RADIO_IRQ_ON:
1004         case STATE_RADIO_IRQ_OFF:
1005                 /* No support, but no error either */
1006                 break;
1007         case STATE_DEEP_SLEEP:
1008         case STATE_SLEEP:
1009         case STATE_STANDBY:
1010         case STATE_AWAKE:
1011                 retval = rt2500usb_set_state(rt2x00dev, state);
1012                 break;
1013         default:
1014                 retval = -ENOTSUPP;
1015                 break;
1016         }
1017
1018         if (unlikely(retval))
1019                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1020                       state, retval);
1021
1022         return retval;
1023 }
1024
1025 /*
1026  * TX descriptor initialization
1027  */
1028 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1029                                     struct sk_buff *skb,
1030                                     struct txentry_desc *txdesc)
1031 {
1032         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1033         __le32 *txd = skbdesc->desc;
1034         u32 word;
1035
1036         /*
1037          * Start writing the descriptor words.
1038          */
1039         rt2x00_desc_read(txd, 1, &word);
1040         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1041         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1042         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1043         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1044         rt2x00_desc_write(txd, 1, word);
1045
1046         rt2x00_desc_read(txd, 2, &word);
1047         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1048         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1049         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1050         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1051         rt2x00_desc_write(txd, 2, word);
1052
1053         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1054                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1055                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1056         }
1057
1058         rt2x00_desc_read(txd, 0, &word);
1059         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1060         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1061                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1062         rt2x00_set_field32(&word, TXD_W0_ACK,
1063                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1064         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1065                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1066         rt2x00_set_field32(&word, TXD_W0_OFDM,
1067                            (txdesc->rate_mode == RATE_MODE_OFDM));
1068         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1069                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1070         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1071         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1072         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1073         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1074         rt2x00_desc_write(txd, 0, word);
1075 }
1076
1077 /*
1078  * TX data initialization
1079  */
1080 static void rt2500usb_beacondone(struct urb *urb);
1081
1082 static void rt2500usb_write_beacon(struct queue_entry *entry)
1083 {
1084         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1085         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1086         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1087         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1088         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1089         int length;
1090         u16 reg;
1091
1092         /*
1093          * Add the descriptor in front of the skb.
1094          */
1095         skb_push(entry->skb, entry->queue->desc_size);
1096         memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1097         skbdesc->desc = entry->skb->data;
1098
1099         /*
1100          * Disable beaconing while we are reloading the beacon data,
1101          * otherwise we might be sending out invalid data.
1102          */
1103         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1104         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1105         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1106
1107         /*
1108          * USB devices cannot blindly pass the skb->len as the
1109          * length of the data to usb_fill_bulk_urb. Pass the skb
1110          * to the driver to determine what the length should be.
1111          */
1112         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1113
1114         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1115                           entry->skb->data, length, rt2500usb_beacondone,
1116                           entry);
1117
1118         /*
1119          * Second we need to create the guardian byte.
1120          * We only need a single byte, so lets recycle
1121          * the 'flags' field we are not using for beacons.
1122          */
1123         bcn_priv->guardian_data = 0;
1124         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1125                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1126                           entry);
1127
1128         /*
1129          * Send out the guardian byte.
1130          */
1131         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1132 }
1133
1134 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1135 {
1136         int length;
1137
1138         /*
1139          * The length _must_ be a multiple of 2,
1140          * but it must _not_ be a multiple of the USB packet size.
1141          */
1142         length = roundup(entry->skb->len, 2);
1143         length += (2 * !(length % entry->queue->usb_maxpacket));
1144
1145         return length;
1146 }
1147
1148 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1149                                     const enum data_queue_qid queue)
1150 {
1151         u16 reg, reg0;
1152
1153         if (queue != QID_BEACON) {
1154                 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1155                 return;
1156         }
1157
1158         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1159         if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1160                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1161                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1162                 reg0 = reg;
1163                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1164                 /*
1165                  * Beacon generation will fail initially.
1166                  * To prevent this we need to change the TXRX_CSR19
1167                  * register several times (reg0 is the same as reg
1168                  * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1169                  * and 1 in reg).
1170                  */
1171                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1172                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1173                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1174                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1175                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1176         }
1177 }
1178
1179 /*
1180  * RX control handlers
1181  */
1182 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1183                                   struct rxdone_entry_desc *rxdesc)
1184 {
1185         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1186         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1187         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1188         __le32 *rxd =
1189             (__le32 *)(entry->skb->data +
1190                        (entry_priv->urb->actual_length -
1191                         entry->queue->desc_size));
1192         u32 word0;
1193         u32 word1;
1194
1195         /*
1196          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1197          * frame data in rt2x00usb.
1198          */
1199         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1200         rxd = (__le32 *)skbdesc->desc;
1201
1202         /*
1203          * It is now safe to read the descriptor on all architectures.
1204          */
1205         rt2x00_desc_read(rxd, 0, &word0);
1206         rt2x00_desc_read(rxd, 1, &word1);
1207
1208         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1209                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1210         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1211                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1212
1213         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1214                 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1215                 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1216                         rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1217         }
1218
1219         if (rxdesc->cipher != CIPHER_NONE) {
1220                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1221                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1222                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1223
1224                 /* ICV is located at the end of frame */
1225
1226                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1227                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1228                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1229                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1230                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1231         }
1232
1233         /*
1234          * Obtain the status about this packet.
1235          * When frame was received with an OFDM bitrate,
1236          * the signal is the PLCP value. If it was received with
1237          * a CCK bitrate the signal is the rate in 100kbit/s.
1238          */
1239         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1240         rxdesc->rssi =
1241             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1242         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1243
1244         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1245                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1246         else
1247                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1248         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1249                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1250
1251         /*
1252          * Adjust the skb memory window to the frame boundaries.
1253          */
1254         skb_trim(entry->skb, rxdesc->size);
1255 }
1256
1257 /*
1258  * Interrupt functions.
1259  */
1260 static void rt2500usb_beacondone(struct urb *urb)
1261 {
1262         struct queue_entry *entry = (struct queue_entry *)urb->context;
1263         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1264
1265         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1266                 return;
1267
1268         /*
1269          * Check if this was the guardian beacon,
1270          * if that was the case we need to send the real beacon now.
1271          * Otherwise we should free the sk_buffer, the device
1272          * should be doing the rest of the work now.
1273          */
1274         if (bcn_priv->guardian_urb == urb) {
1275                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1276         } else if (bcn_priv->urb == urb) {
1277                 dev_kfree_skb(entry->skb);
1278                 entry->skb = NULL;
1279         }
1280 }
1281
1282 /*
1283  * Device probe functions.
1284  */
1285 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1286 {
1287         u16 word;
1288         u8 *mac;
1289         u8 bbp;
1290
1291         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1292
1293         /*
1294          * Start validation of the data that has been read.
1295          */
1296         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1297         if (!is_valid_ether_addr(mac)) {
1298                 random_ether_addr(mac);
1299                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1300         }
1301
1302         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1303         if (word == 0xffff) {
1304                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1305                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1306                                    ANTENNA_SW_DIVERSITY);
1307                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1308                                    ANTENNA_SW_DIVERSITY);
1309                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1310                                    LED_MODE_DEFAULT);
1311                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1312                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1313                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1314                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1315                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1316         }
1317
1318         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1319         if (word == 0xffff) {
1320                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1321                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1322                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1323                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1324                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1325         }
1326
1327         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1328         if (word == 0xffff) {
1329                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1330                                    DEFAULT_RSSI_OFFSET);
1331                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1332                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1333         }
1334
1335         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1336         if (word == 0xffff) {
1337                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1338                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1339                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1340         }
1341
1342         /*
1343          * Switch lower vgc bound to current BBP R17 value,
1344          * lower the value a bit for better quality.
1345          */
1346         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1347         bbp -= 6;
1348
1349         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1350         if (word == 0xffff) {
1351                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1352                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1353                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1354                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1355         } else {
1356                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1357                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1358         }
1359
1360         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1361         if (word == 0xffff) {
1362                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1363                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1364                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1365                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1366         }
1367
1368         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1369         if (word == 0xffff) {
1370                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1371                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1372                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1373                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1374         }
1375
1376         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1377         if (word == 0xffff) {
1378                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1379                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1380                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1381                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1382         }
1383
1384         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1385         if (word == 0xffff) {
1386                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1387                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1388                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1389                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1390         }
1391
1392         return 0;
1393 }
1394
1395 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1396 {
1397         u16 reg;
1398         u16 value;
1399         u16 eeprom;
1400
1401         /*
1402          * Read EEPROM word for configuration.
1403          */
1404         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1405
1406         /*
1407          * Identify RF chipset.
1408          */
1409         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1410         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1411         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1412
1413         if (!rt2x00_check_rev(&rt2x00dev->chip, 0x000ffff0, 0) ||
1414             rt2x00_check_rev(&rt2x00dev->chip, 0x0000000f, 0)) {
1415
1416                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1417                 return -ENODEV;
1418         }
1419
1420         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1421             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1422             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1423             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1424             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1425             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1426                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1427                 return -ENODEV;
1428         }
1429
1430         /*
1431          * Identify default antenna configuration.
1432          */
1433         rt2x00dev->default_ant.tx =
1434             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1435         rt2x00dev->default_ant.rx =
1436             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1437
1438         /*
1439          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1440          * I am not 100% sure about this, but the legacy drivers do not
1441          * indicate antenna swapping in software is required when
1442          * diversity is enabled.
1443          */
1444         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1445                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1446         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1447                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1448
1449         /*
1450          * Store led mode, for correct led behaviour.
1451          */
1452 #ifdef CONFIG_RT2X00_LIB_LEDS
1453         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1454
1455         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1456         if (value == LED_MODE_TXRX_ACTIVITY ||
1457             value == LED_MODE_DEFAULT ||
1458             value == LED_MODE_ASUS)
1459                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1460                                    LED_TYPE_ACTIVITY);
1461 #endif /* CONFIG_RT2X00_LIB_LEDS */
1462
1463         /*
1464          * Detect if this device has an hardware controlled radio.
1465          */
1466         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1467                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1468
1469         /*
1470          * Check if the BBP tuning should be disabled.
1471          */
1472         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1473         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1474                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1475
1476         /*
1477          * Read the RSSI <-> dBm offset information.
1478          */
1479         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1480         rt2x00dev->rssi_offset =
1481             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1482
1483         return 0;
1484 }
1485
1486 /*
1487  * RF value list for RF2522
1488  * Supports: 2.4 GHz
1489  */
1490 static const struct rf_channel rf_vals_bg_2522[] = {
1491         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1492         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1493         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1494         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1495         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1496         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1497         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1498         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1499         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1500         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1501         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1502         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1503         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1504         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1505 };
1506
1507 /*
1508  * RF value list for RF2523
1509  * Supports: 2.4 GHz
1510  */
1511 static const struct rf_channel rf_vals_bg_2523[] = {
1512         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1513         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1514         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1515         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1516         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1517         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1518         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1519         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1520         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1521         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1522         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1523         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1524         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1525         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1526 };
1527
1528 /*
1529  * RF value list for RF2524
1530  * Supports: 2.4 GHz
1531  */
1532 static const struct rf_channel rf_vals_bg_2524[] = {
1533         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1534         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1535         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1536         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1537         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1538         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1539         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1540         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1541         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1542         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1543         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1544         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1545         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1546         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1547 };
1548
1549 /*
1550  * RF value list for RF2525
1551  * Supports: 2.4 GHz
1552  */
1553 static const struct rf_channel rf_vals_bg_2525[] = {
1554         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1555         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1556         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1557         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1558         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1559         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1560         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1561         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1562         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1563         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1564         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1565         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1566         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1567         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1568 };
1569
1570 /*
1571  * RF value list for RF2525e
1572  * Supports: 2.4 GHz
1573  */
1574 static const struct rf_channel rf_vals_bg_2525e[] = {
1575         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1576         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1577         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1578         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1579         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1580         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1581         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1582         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1583         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1584         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1585         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1586         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1587         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1588         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1589 };
1590
1591 /*
1592  * RF value list for RF5222
1593  * Supports: 2.4 GHz & 5.2 GHz
1594  */
1595 static const struct rf_channel rf_vals_5222[] = {
1596         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1597         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1598         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1599         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1600         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1601         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1602         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1603         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1604         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1605         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1606         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1607         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1608         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1609         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1610
1611         /* 802.11 UNI / HyperLan 2 */
1612         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1613         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1614         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1615         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1616         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1617         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1618         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1619         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1620
1621         /* 802.11 HyperLan 2 */
1622         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1623         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1624         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1625         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1626         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1627         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1628         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1629         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1630         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1631         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1632
1633         /* 802.11 UNII */
1634         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1635         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1636         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1637         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1638         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1639 };
1640
1641 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1642 {
1643         struct hw_mode_spec *spec = &rt2x00dev->spec;
1644         struct channel_info *info;
1645         char *tx_power;
1646         unsigned int i;
1647
1648         /*
1649          * Initialize all hw fields.
1650          */
1651         rt2x00dev->hw->flags =
1652             IEEE80211_HW_RX_INCLUDES_FCS |
1653             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1654             IEEE80211_HW_SIGNAL_DBM |
1655             IEEE80211_HW_SUPPORTS_PS |
1656             IEEE80211_HW_PS_NULLFUNC_STACK;
1657
1658         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1659
1660         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1661         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1662                                 rt2x00_eeprom_addr(rt2x00dev,
1663                                                    EEPROM_MAC_ADDR_0));
1664
1665         /*
1666          * Initialize hw_mode information.
1667          */
1668         spec->supported_bands = SUPPORT_BAND_2GHZ;
1669         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1670
1671         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1672                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1673                 spec->channels = rf_vals_bg_2522;
1674         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1675                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1676                 spec->channels = rf_vals_bg_2523;
1677         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1678                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1679                 spec->channels = rf_vals_bg_2524;
1680         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1681                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1682                 spec->channels = rf_vals_bg_2525;
1683         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1684                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1685                 spec->channels = rf_vals_bg_2525e;
1686         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1687                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1688                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1689                 spec->channels = rf_vals_5222;
1690         }
1691
1692         /*
1693          * Create channel information array
1694          */
1695         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1696         if (!info)
1697                 return -ENOMEM;
1698
1699         spec->channels_info = info;
1700
1701         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1702         for (i = 0; i < 14; i++)
1703                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1704
1705         if (spec->num_channels > 14) {
1706                 for (i = 14; i < spec->num_channels; i++)
1707                         info[i].tx_power1 = DEFAULT_TXPOWER;
1708         }
1709
1710         return 0;
1711 }
1712
1713 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1714 {
1715         int retval;
1716
1717         /*
1718          * Allocate eeprom data.
1719          */
1720         retval = rt2500usb_validate_eeprom(rt2x00dev);
1721         if (retval)
1722                 return retval;
1723
1724         retval = rt2500usb_init_eeprom(rt2x00dev);
1725         if (retval)
1726                 return retval;
1727
1728         /*
1729          * Initialize hw specifications.
1730          */
1731         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1732         if (retval)
1733                 return retval;
1734
1735         /*
1736          * This device requires the atim queue
1737          */
1738         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1739         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1740         if (!modparam_nohwcrypt) {
1741                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1742                 __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
1743         }
1744         __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1745
1746         /*
1747          * Set the rssi offset.
1748          */
1749         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1750
1751         return 0;
1752 }
1753
1754 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1755         .tx                     = rt2x00mac_tx,
1756         .start                  = rt2x00mac_start,
1757         .stop                   = rt2x00mac_stop,
1758         .add_interface          = rt2x00mac_add_interface,
1759         .remove_interface       = rt2x00mac_remove_interface,
1760         .config                 = rt2x00mac_config,
1761         .configure_filter       = rt2x00mac_configure_filter,
1762         .set_tim                = rt2x00mac_set_tim,
1763         .set_key                = rt2x00mac_set_key,
1764         .get_stats              = rt2x00mac_get_stats,
1765         .bss_info_changed       = rt2x00mac_bss_info_changed,
1766         .conf_tx                = rt2x00mac_conf_tx,
1767         .get_tx_stats           = rt2x00mac_get_tx_stats,
1768         .rfkill_poll            = rt2x00mac_rfkill_poll,
1769 };
1770
1771 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1772         .probe_hw               = rt2500usb_probe_hw,
1773         .initialize             = rt2x00usb_initialize,
1774         .uninitialize           = rt2x00usb_uninitialize,
1775         .clear_entry            = rt2x00usb_clear_entry,
1776         .set_device_state       = rt2500usb_set_device_state,
1777         .rfkill_poll            = rt2500usb_rfkill_poll,
1778         .link_stats             = rt2500usb_link_stats,
1779         .reset_tuner            = rt2500usb_reset_tuner,
1780         .write_tx_desc          = rt2500usb_write_tx_desc,
1781         .write_tx_data          = rt2x00usb_write_tx_data,
1782         .write_beacon           = rt2500usb_write_beacon,
1783         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1784         .kick_tx_queue          = rt2500usb_kick_tx_queue,
1785         .kill_tx_queue          = rt2x00usb_kill_tx_queue,
1786         .fill_rxdone            = rt2500usb_fill_rxdone,
1787         .config_shared_key      = rt2500usb_config_key,
1788         .config_pairwise_key    = rt2500usb_config_key,
1789         .config_filter          = rt2500usb_config_filter,
1790         .config_intf            = rt2500usb_config_intf,
1791         .config_erp             = rt2500usb_config_erp,
1792         .config_ant             = rt2500usb_config_ant,
1793         .config                 = rt2500usb_config,
1794 };
1795
1796 static const struct data_queue_desc rt2500usb_queue_rx = {
1797         .entry_num              = RX_ENTRIES,
1798         .data_size              = DATA_FRAME_SIZE,
1799         .desc_size              = RXD_DESC_SIZE,
1800         .priv_size              = sizeof(struct queue_entry_priv_usb),
1801 };
1802
1803 static const struct data_queue_desc rt2500usb_queue_tx = {
1804         .entry_num              = TX_ENTRIES,
1805         .data_size              = DATA_FRAME_SIZE,
1806         .desc_size              = TXD_DESC_SIZE,
1807         .priv_size              = sizeof(struct queue_entry_priv_usb),
1808 };
1809
1810 static const struct data_queue_desc rt2500usb_queue_bcn = {
1811         .entry_num              = BEACON_ENTRIES,
1812         .data_size              = MGMT_FRAME_SIZE,
1813         .desc_size              = TXD_DESC_SIZE,
1814         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1815 };
1816
1817 static const struct data_queue_desc rt2500usb_queue_atim = {
1818         .entry_num              = ATIM_ENTRIES,
1819         .data_size              = DATA_FRAME_SIZE,
1820         .desc_size              = TXD_DESC_SIZE,
1821         .priv_size              = sizeof(struct queue_entry_priv_usb),
1822 };
1823
1824 static const struct rt2x00_ops rt2500usb_ops = {
1825         .name           = KBUILD_MODNAME,
1826         .max_sta_intf   = 1,
1827         .max_ap_intf    = 1,
1828         .eeprom_size    = EEPROM_SIZE,
1829         .rf_size        = RF_SIZE,
1830         .tx_queues      = NUM_TX_QUEUES,
1831         .rx             = &rt2500usb_queue_rx,
1832         .tx             = &rt2500usb_queue_tx,
1833         .bcn            = &rt2500usb_queue_bcn,
1834         .atim           = &rt2500usb_queue_atim,
1835         .lib            = &rt2500usb_rt2x00_ops,
1836         .hw             = &rt2500usb_mac80211_ops,
1837 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1838         .debugfs        = &rt2500usb_rt2x00debug,
1839 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1840 };
1841
1842 /*
1843  * rt2500usb module information.
1844  */
1845 static struct usb_device_id rt2500usb_device_table[] = {
1846         /* ASUS */
1847         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1848         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1849         /* Belkin */
1850         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1851         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1852         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1853         /* Cisco Systems */
1854         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1855         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1856         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1857         /* CNet */
1858         { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
1859         /* Conceptronic */
1860         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1861         /* D-LINK */
1862         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1863         /* Gigabyte */
1864         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1865         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1866         /* Hercules */
1867         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1868         /* Melco */
1869         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1870         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1871         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1872         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1873         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1874         /* MSI */
1875         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1876         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1877         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1878         /* Ralink */
1879         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1880         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1881         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1882         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1883         /* Sagem */
1884         { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
1885         /* Siemens */
1886         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1887         /* SMC */
1888         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1889         /* Spairon */
1890         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1891         /* SURECOM */
1892         { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
1893         /* Trust */
1894         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1895         /* VTech */
1896         { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
1897         /* Zinwell */
1898         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1899         { 0, }
1900 };
1901
1902 MODULE_AUTHOR(DRV_PROJECT);
1903 MODULE_VERSION(DRV_VERSION);
1904 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1905 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1906 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1907 MODULE_LICENSE("GPL");
1908
1909 static struct usb_driver rt2500usb_driver = {
1910         .name           = KBUILD_MODNAME,
1911         .id_table       = rt2500usb_device_table,
1912         .probe          = rt2x00usb_probe,
1913         .disconnect     = rt2x00usb_disconnect,
1914         .suspend        = rt2x00usb_suspend,
1915         .resume         = rt2x00usb_resume,
1916 };
1917
1918 static int __init rt2500usb_init(void)
1919 {
1920         return usb_register(&rt2500usb_driver);
1921 }
1922
1923 static void __exit rt2500usb_exit(void)
1924 {
1925         usb_deregister(&rt2500usb_driver);
1926 }
1927
1928 module_init(rt2500usb_init);
1929 module_exit(rt2500usb_exit);