rt2x00: Update copyright year to 2009
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
37
38 /*
39  * Allow hardware encryption to be disabled.
40  */
41 static int modparam_nohwcrypt = 0;
42 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
43 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
44
45 /*
46  * Register access.
47  * All access to the CSR registers will go through the methods
48  * rt2500usb_register_read and rt2500usb_register_write.
49  * BBP and RF register require indirect register access,
50  * and use the CSR registers BBPCSR and RFCSR to achieve this.
51  * These indirect registers work with busy bits,
52  * and we will try maximal REGISTER_BUSY_COUNT times to access
53  * the register while taking a REGISTER_BUSY_DELAY us delay
54  * between each attampt. When the busy bit is still set at that time,
55  * the access attempt is considered to have failed,
56  * and we will print an error.
57  * If the csr_mutex is already held then the _lock variants must
58  * be used instead.
59  */
60 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
61                                            const unsigned int offset,
62                                            u16 *value)
63 {
64         __le16 reg;
65         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
66                                       USB_VENDOR_REQUEST_IN, offset,
67                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
68         *value = le16_to_cpu(reg);
69 }
70
71 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
72                                                 const unsigned int offset,
73                                                 u16 *value)
74 {
75         __le16 reg;
76         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
77                                        USB_VENDOR_REQUEST_IN, offset,
78                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
79         *value = le16_to_cpu(reg);
80 }
81
82 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
83                                                 const unsigned int offset,
84                                                 void *value, const u16 length)
85 {
86         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
87                                       USB_VENDOR_REQUEST_IN, offset,
88                                       value, length,
89                                       REGISTER_TIMEOUT16(length));
90 }
91
92 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
93                                             const unsigned int offset,
94                                             u16 value)
95 {
96         __le16 reg = cpu_to_le16(value);
97         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
98                                       USB_VENDOR_REQUEST_OUT, offset,
99                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
100 }
101
102 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
103                                                  const unsigned int offset,
104                                                  u16 value)
105 {
106         __le16 reg = cpu_to_le16(value);
107         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
108                                        USB_VENDOR_REQUEST_OUT, offset,
109                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
110 }
111
112 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
113                                                  const unsigned int offset,
114                                                  void *value, const u16 length)
115 {
116         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
117                                       USB_VENDOR_REQUEST_OUT, offset,
118                                       value, length,
119                                       REGISTER_TIMEOUT16(length));
120 }
121
122 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
123                                   const unsigned int offset,
124                                   struct rt2x00_field16 field,
125                                   u16 *reg)
126 {
127         unsigned int i;
128
129         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
130                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
131                 if (!rt2x00_get_field16(*reg, field))
132                         return 1;
133                 udelay(REGISTER_BUSY_DELAY);
134         }
135
136         ERROR(rt2x00dev, "Indirect register access failed: "
137               "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
138         *reg = ~0;
139
140         return 0;
141 }
142
143 #define WAIT_FOR_BBP(__dev, __reg) \
144         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
145 #define WAIT_FOR_RF(__dev, __reg) \
146         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
147
148 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
149                                 const unsigned int word, const u8 value)
150 {
151         u16 reg;
152
153         mutex_lock(&rt2x00dev->csr_mutex);
154
155         /*
156          * Wait until the BBP becomes available, afterwards we
157          * can safely write the new data into the register.
158          */
159         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
160                 reg = 0;
161                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
162                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
163                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
164
165                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
166         }
167
168         mutex_unlock(&rt2x00dev->csr_mutex);
169 }
170
171 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
172                                const unsigned int word, u8 *value)
173 {
174         u16 reg;
175
176         mutex_lock(&rt2x00dev->csr_mutex);
177
178         /*
179          * Wait until the BBP becomes available, afterwards we
180          * can safely write the read request into the register.
181          * After the data has been written, we wait until hardware
182          * returns the correct value, if at any time the register
183          * doesn't become available in time, reg will be 0xffffffff
184          * which means we return 0xff to the caller.
185          */
186         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
187                 reg = 0;
188                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
189                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
190
191                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
192
193                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
194                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
195         }
196
197         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
198
199         mutex_unlock(&rt2x00dev->csr_mutex);
200 }
201
202 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
203                                const unsigned int word, const u32 value)
204 {
205         u16 reg;
206
207         if (!word)
208                 return;
209
210         mutex_lock(&rt2x00dev->csr_mutex);
211
212         /*
213          * Wait until the RF becomes available, afterwards we
214          * can safely write the new data into the register.
215          */
216         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
217                 reg = 0;
218                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
219                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
220
221                 reg = 0;
222                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
223                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
224                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
225                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
226
227                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
228                 rt2x00_rf_write(rt2x00dev, word, value);
229         }
230
231         mutex_unlock(&rt2x00dev->csr_mutex);
232 }
233
234 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
235 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
236                                      const unsigned int offset,
237                                      u32 *value)
238 {
239         rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
240 }
241
242 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
243                                       const unsigned int offset,
244                                       u32 value)
245 {
246         rt2500usb_register_write(rt2x00dev, offset, value);
247 }
248
249 static const struct rt2x00debug rt2500usb_rt2x00debug = {
250         .owner  = THIS_MODULE,
251         .csr    = {
252                 .read           = _rt2500usb_register_read,
253                 .write          = _rt2500usb_register_write,
254                 .flags          = RT2X00DEBUGFS_OFFSET,
255                 .word_base      = CSR_REG_BASE,
256                 .word_size      = sizeof(u16),
257                 .word_count     = CSR_REG_SIZE / sizeof(u16),
258         },
259         .eeprom = {
260                 .read           = rt2x00_eeprom_read,
261                 .write          = rt2x00_eeprom_write,
262                 .word_base      = EEPROM_BASE,
263                 .word_size      = sizeof(u16),
264                 .word_count     = EEPROM_SIZE / sizeof(u16),
265         },
266         .bbp    = {
267                 .read           = rt2500usb_bbp_read,
268                 .write          = rt2500usb_bbp_write,
269                 .word_base      = BBP_BASE,
270                 .word_size      = sizeof(u8),
271                 .word_count     = BBP_SIZE / sizeof(u8),
272         },
273         .rf     = {
274                 .read           = rt2x00_rf_read,
275                 .write          = rt2500usb_rf_write,
276                 .word_base      = RF_BASE,
277                 .word_size      = sizeof(u32),
278                 .word_count     = RF_SIZE / sizeof(u32),
279         },
280 };
281 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
282
283 #ifdef CONFIG_RT2X00_LIB_RFKILL
284 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
285 {
286         u16 reg;
287
288         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
289         return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
290 }
291 #else
292 #define rt2500usb_rfkill_poll   NULL
293 #endif /* CONFIG_RT2X00_LIB_RFKILL */
294
295 #ifdef CONFIG_RT2X00_LIB_LEDS
296 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
297                                      enum led_brightness brightness)
298 {
299         struct rt2x00_led *led =
300             container_of(led_cdev, struct rt2x00_led, led_dev);
301         unsigned int enabled = brightness != LED_OFF;
302         u16 reg;
303
304         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
305
306         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
307                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
308         else if (led->type == LED_TYPE_ACTIVITY)
309                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
310
311         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
312 }
313
314 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
315                                unsigned long *delay_on,
316                                unsigned long *delay_off)
317 {
318         struct rt2x00_led *led =
319             container_of(led_cdev, struct rt2x00_led, led_dev);
320         u16 reg;
321
322         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
323         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
324         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
325         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
326
327         return 0;
328 }
329
330 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
331                                struct rt2x00_led *led,
332                                enum led_type type)
333 {
334         led->rt2x00dev = rt2x00dev;
335         led->type = type;
336         led->led_dev.brightness_set = rt2500usb_brightness_set;
337         led->led_dev.blink_set = rt2500usb_blink_set;
338         led->flags = LED_INITIALIZED;
339 }
340 #endif /* CONFIG_RT2X00_LIB_LEDS */
341
342 /*
343  * Configuration handlers.
344  */
345
346 /*
347  * rt2500usb does not differentiate between shared and pairwise
348  * keys, so we should use the same function for both key types.
349  */
350 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
351                                 struct rt2x00lib_crypto *crypto,
352                                 struct ieee80211_key_conf *key)
353 {
354         int timeout;
355         u32 mask;
356         u16 reg;
357
358         if (crypto->cmd == SET_KEY) {
359                 /*
360                  * Pairwise key will always be entry 0, but this
361                  * could collide with a shared key on the same
362                  * position...
363                  */
364                 mask = TXRX_CSR0_KEY_ID.bit_mask;
365
366                 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
367                 reg &= mask;
368
369                 if (reg && reg == mask)
370                         return -ENOSPC;
371
372                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
373
374                 key->hw_key_idx += reg ? ffz(reg) : 0;
375
376                 /*
377                  * The encryption key doesn't fit within the CSR cache,
378                  * this means we should allocate it seperately and use
379                  * rt2x00usb_vendor_request() to send the key to the hardware.
380                  */
381                 reg = KEY_ENTRY(key->hw_key_idx);
382                 timeout = REGISTER_TIMEOUT32(sizeof(crypto->key));
383                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
384                                                     USB_VENDOR_REQUEST_OUT, reg,
385                                                     crypto->key,
386                                                     sizeof(crypto->key),
387                                                     timeout);
388
389                 /*
390                  * The driver does not support the IV/EIV generation
391                  * in hardware. However it demands the data to be provided
392                  * both seperately as well as inside the frame.
393                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
394                  * to ensure rt2x00lib will not strip the data from the
395                  * frame after the copy, now we must tell mac80211
396                  * to generate the IV/EIV data.
397                  */
398                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
399                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
400         }
401
402         /*
403          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
404          * a particular key is valid.
405          */
406         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
407         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
408         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
409
410         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
411         if (crypto->cmd == SET_KEY)
412                 mask |= 1 << key->hw_key_idx;
413         else if (crypto->cmd == DISABLE_KEY)
414                 mask &= ~(1 << key->hw_key_idx);
415         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
416         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
417
418         return 0;
419 }
420
421 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
422                                     const unsigned int filter_flags)
423 {
424         u16 reg;
425
426         /*
427          * Start configuration steps.
428          * Note that the version error will always be dropped
429          * and broadcast frames will always be accepted since
430          * there is no filter for it at this time.
431          */
432         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
433         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
434                            !(filter_flags & FIF_FCSFAIL));
435         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
436                            !(filter_flags & FIF_PLCPFAIL));
437         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
438                            !(filter_flags & FIF_CONTROL));
439         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
440                            !(filter_flags & FIF_PROMISC_IN_BSS));
441         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
442                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
443                            !rt2x00dev->intf_ap_count);
444         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
445         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
446                            !(filter_flags & FIF_ALLMULTI));
447         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
448         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
449 }
450
451 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
452                                   struct rt2x00_intf *intf,
453                                   struct rt2x00intf_conf *conf,
454                                   const unsigned int flags)
455 {
456         unsigned int bcn_preload;
457         u16 reg;
458
459         if (flags & CONFIG_UPDATE_TYPE) {
460                 /*
461                  * Enable beacon config
462                  */
463                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
464                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
465                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
466                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
467                                    2 * (conf->type != NL80211_IFTYPE_STATION));
468                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
469
470                 /*
471                  * Enable synchronisation.
472                  */
473                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
474                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
475                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
476
477                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
478                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
479                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
480                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
481                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
482         }
483
484         if (flags & CONFIG_UPDATE_MAC)
485                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
486                                               (3 * sizeof(__le16)));
487
488         if (flags & CONFIG_UPDATE_BSSID)
489                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
490                                               (3 * sizeof(__le16)));
491 }
492
493 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
494                                  struct rt2x00lib_erp *erp)
495 {
496         u16 reg;
497
498         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
499         rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, erp->ack_timeout);
500         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
501
502         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
503         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
504                            !!erp->short_preamble);
505         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
506
507         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
508
509         rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
510         rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
511         rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
512 }
513
514 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
515                                  struct antenna_setup *ant)
516 {
517         u8 r2;
518         u8 r14;
519         u16 csr5;
520         u16 csr6;
521
522         /*
523          * We should never come here because rt2x00lib is supposed
524          * to catch this and send us the correct antenna explicitely.
525          */
526         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
527                ant->tx == ANTENNA_SW_DIVERSITY);
528
529         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
530         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
531         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
532         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
533
534         /*
535          * Configure the TX antenna.
536          */
537         switch (ant->tx) {
538         case ANTENNA_HW_DIVERSITY:
539                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
540                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
541                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
542                 break;
543         case ANTENNA_A:
544                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
545                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
546                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
547                 break;
548         case ANTENNA_B:
549         default:
550                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
551                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
552                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
553                 break;
554         }
555
556         /*
557          * Configure the RX antenna.
558          */
559         switch (ant->rx) {
560         case ANTENNA_HW_DIVERSITY:
561                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
562                 break;
563         case ANTENNA_A:
564                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
565                 break;
566         case ANTENNA_B:
567         default:
568                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
569                 break;
570         }
571
572         /*
573          * RT2525E and RT5222 need to flip TX I/Q
574          */
575         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
576             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
577                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
578                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
579                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
580
581                 /*
582                  * RT2525E does not need RX I/Q Flip.
583                  */
584                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
585                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
586         } else {
587                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
588                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
589         }
590
591         rt2500usb_bbp_write(rt2x00dev, 2, r2);
592         rt2500usb_bbp_write(rt2x00dev, 14, r14);
593         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
594         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
595 }
596
597 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
598                                      struct rf_channel *rf, const int txpower)
599 {
600         /*
601          * Set TXpower.
602          */
603         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
604
605         /*
606          * For RT2525E we should first set the channel to half band higher.
607          */
608         if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
609                 static const u32 vals[] = {
610                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
611                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
612                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
613                         0x00000902, 0x00000906
614                 };
615
616                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
617                 if (rf->rf4)
618                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
619         }
620
621         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
622         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
623         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
624         if (rf->rf4)
625                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
626 }
627
628 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
629                                      const int txpower)
630 {
631         u32 rf3;
632
633         rt2x00_rf_read(rt2x00dev, 3, &rf3);
634         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
635         rt2500usb_rf_write(rt2x00dev, 3, rf3);
636 }
637
638 static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
639                                       struct rt2x00lib_conf *libconf)
640 {
641         u16 reg;
642
643         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
644         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
645                            libconf->conf->beacon_int * 4);
646         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
647 }
648
649 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
650                                 struct rt2x00lib_conf *libconf)
651 {
652         enum dev_state state =
653             (libconf->conf->flags & IEEE80211_CONF_PS) ?
654                 STATE_SLEEP : STATE_AWAKE;
655         u16 reg;
656
657         if (state == STATE_SLEEP) {
658                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
659                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
660                                    libconf->conf->beacon_int - 20);
661                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
662                                    libconf->conf->listen_interval - 1);
663
664                 /* We must first disable autowake before it can be enabled */
665                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
666                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
667
668                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
669                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
670         }
671
672         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
673 }
674
675 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
676                              struct rt2x00lib_conf *libconf,
677                              const unsigned int flags)
678 {
679         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
680                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
681                                          libconf->conf->power_level);
682         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
683             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
684                 rt2500usb_config_txpower(rt2x00dev,
685                                          libconf->conf->power_level);
686         if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
687                 rt2500usb_config_duration(rt2x00dev, libconf);
688         if (flags & IEEE80211_CONF_CHANGE_PS)
689                 rt2500usb_config_ps(rt2x00dev, libconf);
690 }
691
692 /*
693  * Link tuning
694  */
695 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
696                                  struct link_qual *qual)
697 {
698         u16 reg;
699
700         /*
701          * Update FCS error count from register.
702          */
703         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
704         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
705
706         /*
707          * Update False CCA count from register.
708          */
709         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
710         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
711 }
712
713 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
714                                   struct link_qual *qual)
715 {
716         u16 eeprom;
717         u16 value;
718
719         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
720         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
721         rt2500usb_bbp_write(rt2x00dev, 24, value);
722
723         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
724         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
725         rt2500usb_bbp_write(rt2x00dev, 25, value);
726
727         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
728         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
729         rt2500usb_bbp_write(rt2x00dev, 61, value);
730
731         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
732         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
733         rt2500usb_bbp_write(rt2x00dev, 17, value);
734
735         qual->vgc_level = value;
736 }
737
738 /*
739  * NOTE: This function is directly ported from legacy driver, but
740  * despite it being declared it was never called. Although link tuning
741  * sounds like a good idea, and usually works well for the other drivers,
742  * it does _not_ work with rt2500usb. Enabling this function will result
743  * in TX capabilities only until association kicks in. Immediately
744  * after the successful association all TX frames will be kept in the
745  * hardware queue and never transmitted.
746  */
747 #if 0
748 static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
749 {
750         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
751         u16 bbp_thresh;
752         u16 vgc_bound;
753         u16 sens;
754         u16 r24;
755         u16 r25;
756         u16 r61;
757         u16 r17_sens;
758         u8 r17;
759         u8 up_bound;
760         u8 low_bound;
761
762         /*
763          * Read current r17 value, as well as the sensitivity values
764          * for the r17 register.
765          */
766         rt2500usb_bbp_read(rt2x00dev, 17, &r17);
767         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
768
769         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
770         up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
771         low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
772
773         /*
774          * If we are not associated, we should go straight to the
775          * dynamic CCA tuning.
776          */
777         if (!rt2x00dev->intf_associated)
778                 goto dynamic_cca_tune;
779
780         /*
781          * Determine the BBP tuning threshold and correctly
782          * set BBP 24, 25 and 61.
783          */
784         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
785         bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
786
787         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
788         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
789         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
790
791         if ((rssi + bbp_thresh) > 0) {
792                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
793                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
794                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
795         } else {
796                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
797                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
798                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
799         }
800
801         rt2500usb_bbp_write(rt2x00dev, 24, r24);
802         rt2500usb_bbp_write(rt2x00dev, 25, r25);
803         rt2500usb_bbp_write(rt2x00dev, 61, r61);
804
805         /*
806          * A too low RSSI will cause too much false CCA which will
807          * then corrupt the R17 tuning. To remidy this the tuning should
808          * be stopped (While making sure the R17 value will not exceed limits)
809          */
810         if (rssi >= -40) {
811                 if (r17 != 0x60)
812                         rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
813                 return;
814         }
815
816         /*
817          * Special big-R17 for short distance
818          */
819         if (rssi >= -58) {
820                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
821                 if (r17 != sens)
822                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
823                 return;
824         }
825
826         /*
827          * Special mid-R17 for middle distance
828          */
829         if (rssi >= -74) {
830                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
831                 if (r17 != sens)
832                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
833                 return;
834         }
835
836         /*
837          * Leave short or middle distance condition, restore r17
838          * to the dynamic tuning range.
839          */
840         low_bound = 0x32;
841         if (rssi < -77)
842                 up_bound -= (-77 - rssi);
843
844         if (up_bound < low_bound)
845                 up_bound = low_bound;
846
847         if (r17 > up_bound) {
848                 rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
849                 rt2x00dev->link.vgc_level = up_bound;
850                 return;
851         }
852
853 dynamic_cca_tune:
854
855         /*
856          * R17 is inside the dynamic tuning range,
857          * start tuning the link based on the false cca counter.
858          */
859         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
860                 rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
861                 rt2x00dev->link.vgc_level = r17;
862         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
863                 rt2500usb_bbp_write(rt2x00dev, 17, --r17);
864                 rt2x00dev->link.vgc_level = r17;
865         }
866 }
867 #else
868 #define rt2500usb_link_tuner    NULL
869 #endif
870
871 /*
872  * Initialization functions.
873  */
874 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
875 {
876         u16 reg;
877
878         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
879                                     USB_MODE_TEST, REGISTER_TIMEOUT);
880         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
881                                     0x00f0, REGISTER_TIMEOUT);
882
883         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
884         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
885         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
886
887         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
888         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
889
890         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
891         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
892         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
893         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
894         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
895
896         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
897         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
898         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
899         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
900         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
901
902         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
903         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
904         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
905         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
906         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
907         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
908
909         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
910         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
911         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
912         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
913         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
914         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
915
916         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
917         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
918         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
919         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
920         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
921         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
922
923         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
924         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
925         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
926         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
927         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
928         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
929
930         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
931         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
932         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
933         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
934         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
935         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
936
937         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
938         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
939
940         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
941                 return -EBUSY;
942
943         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
944         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
945         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
946         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
947         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
948
949         if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
950                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
951                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
952         } else {
953                 reg = 0;
954                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
955                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
956         }
957         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
958
959         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
960         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
961         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
962         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
963
964         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
965         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
966                            rt2x00dev->rx->data_size);
967         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
968
969         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
970         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
971         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
972         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
973
974         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
975         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
976         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
977
978         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
979         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
980         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
981
982         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
983         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
984         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
985
986         return 0;
987 }
988
989 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
990 {
991         unsigned int i;
992         u8 value;
993
994         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
995                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
996                 if ((value != 0xff) && (value != 0x00))
997                         return 0;
998                 udelay(REGISTER_BUSY_DELAY);
999         }
1000
1001         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1002         return -EACCES;
1003 }
1004
1005 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1006 {
1007         unsigned int i;
1008         u16 eeprom;
1009         u8 value;
1010         u8 reg_id;
1011
1012         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
1013                 return -EACCES;
1014
1015         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
1016         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
1017         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
1018         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
1019         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
1020         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
1021         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
1022         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
1023         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
1024         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
1025         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
1026         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
1027         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
1028         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
1029         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
1030         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
1031         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
1032         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
1033         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
1034         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
1035         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
1036         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
1037         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
1038         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
1039         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
1040         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
1041         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
1042         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
1043         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
1044         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
1045         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
1046
1047         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1048                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1049
1050                 if (eeprom != 0xffff && eeprom != 0x0000) {
1051                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1052                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1053                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
1054                 }
1055         }
1056
1057         return 0;
1058 }
1059
1060 /*
1061  * Device state switch handlers.
1062  */
1063 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
1064                                 enum dev_state state)
1065 {
1066         u16 reg;
1067
1068         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1069         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
1070                            (state == STATE_RADIO_RX_OFF) ||
1071                            (state == STATE_RADIO_RX_OFF_LINK));
1072         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1073 }
1074
1075 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1076 {
1077         /*
1078          * Initialize all registers.
1079          */
1080         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
1081                      rt2500usb_init_bbp(rt2x00dev)))
1082                 return -EIO;
1083
1084         return 0;
1085 }
1086
1087 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1088 {
1089         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
1090         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
1091
1092         /*
1093          * Disable synchronisation.
1094          */
1095         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1096
1097         rt2x00usb_disable_radio(rt2x00dev);
1098 }
1099
1100 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1101                                enum dev_state state)
1102 {
1103         u16 reg;
1104         u16 reg2;
1105         unsigned int i;
1106         char put_to_sleep;
1107         char bbp_state;
1108         char rf_state;
1109
1110         put_to_sleep = (state != STATE_AWAKE);
1111
1112         reg = 0;
1113         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1114         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1115         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1116         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1117         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1118         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1119
1120         /*
1121          * Device is not guaranteed to be in the requested state yet.
1122          * We must wait until the register indicates that the
1123          * device has entered the correct state.
1124          */
1125         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1126                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1127                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1128                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1129                 if (bbp_state == state && rf_state == state)
1130                         return 0;
1131                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1132                 msleep(30);
1133         }
1134
1135         return -EBUSY;
1136 }
1137
1138 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1139                                       enum dev_state state)
1140 {
1141         int retval = 0;
1142
1143         switch (state) {
1144         case STATE_RADIO_ON:
1145                 retval = rt2500usb_enable_radio(rt2x00dev);
1146                 break;
1147         case STATE_RADIO_OFF:
1148                 rt2500usb_disable_radio(rt2x00dev);
1149                 break;
1150         case STATE_RADIO_RX_ON:
1151         case STATE_RADIO_RX_ON_LINK:
1152         case STATE_RADIO_RX_OFF:
1153         case STATE_RADIO_RX_OFF_LINK:
1154                 rt2500usb_toggle_rx(rt2x00dev, state);
1155                 break;
1156         case STATE_RADIO_IRQ_ON:
1157         case STATE_RADIO_IRQ_OFF:
1158                 /* No support, but no error either */
1159                 break;
1160         case STATE_DEEP_SLEEP:
1161         case STATE_SLEEP:
1162         case STATE_STANDBY:
1163         case STATE_AWAKE:
1164                 retval = rt2500usb_set_state(rt2x00dev, state);
1165                 break;
1166         default:
1167                 retval = -ENOTSUPP;
1168                 break;
1169         }
1170
1171         if (unlikely(retval))
1172                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1173                       state, retval);
1174
1175         return retval;
1176 }
1177
1178 /*
1179  * TX descriptor initialization
1180  */
1181 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1182                                     struct sk_buff *skb,
1183                                     struct txentry_desc *txdesc)
1184 {
1185         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1186         __le32 *txd = skbdesc->desc;
1187         u32 word;
1188
1189         /*
1190          * Start writing the descriptor words.
1191          */
1192         rt2x00_desc_read(txd, 1, &word);
1193         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1194         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1195         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1196         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1197         rt2x00_desc_write(txd, 1, word);
1198
1199         rt2x00_desc_read(txd, 2, &word);
1200         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1201         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1202         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1203         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1204         rt2x00_desc_write(txd, 2, word);
1205
1206         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1207                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1208                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1209         }
1210
1211         rt2x00_desc_read(txd, 0, &word);
1212         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1213         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1214                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1215         rt2x00_set_field32(&word, TXD_W0_ACK,
1216                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1217         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1218                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1219         rt2x00_set_field32(&word, TXD_W0_OFDM,
1220                            (txdesc->rate_mode == RATE_MODE_OFDM));
1221         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1222                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1223         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1224         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1225         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1226         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1227         rt2x00_desc_write(txd, 0, word);
1228 }
1229
1230 /*
1231  * TX data initialization
1232  */
1233 static void rt2500usb_beacondone(struct urb *urb);
1234
1235 static void rt2500usb_write_beacon(struct queue_entry *entry)
1236 {
1237         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1238         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1239         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1240         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1241         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1242         int length;
1243         u16 reg;
1244
1245         /*
1246          * Add the descriptor in front of the skb.
1247          */
1248         skb_push(entry->skb, entry->queue->desc_size);
1249         memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1250         skbdesc->desc = entry->skb->data;
1251
1252         /*
1253          * Disable beaconing while we are reloading the beacon data,
1254          * otherwise we might be sending out invalid data.
1255          */
1256         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1257         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
1258         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
1259         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1260         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1261
1262         /*
1263          * USB devices cannot blindly pass the skb->len as the
1264          * length of the data to usb_fill_bulk_urb. Pass the skb
1265          * to the driver to determine what the length should be.
1266          */
1267         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1268
1269         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1270                           entry->skb->data, length, rt2500usb_beacondone,
1271                           entry);
1272
1273         /*
1274          * Second we need to create the guardian byte.
1275          * We only need a single byte, so lets recycle
1276          * the 'flags' field we are not using for beacons.
1277          */
1278         bcn_priv->guardian_data = 0;
1279         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1280                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1281                           entry);
1282
1283         /*
1284          * Send out the guardian byte.
1285          */
1286         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1287 }
1288
1289 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1290 {
1291         int length;
1292
1293         /*
1294          * The length _must_ be a multiple of 2,
1295          * but it must _not_ be a multiple of the USB packet size.
1296          */
1297         length = roundup(entry->skb->len, 2);
1298         length += (2 * !(length % entry->queue->usb_maxpacket));
1299
1300         return length;
1301 }
1302
1303 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1304                                     const enum data_queue_qid queue)
1305 {
1306         u16 reg;
1307
1308         if (queue != QID_BEACON) {
1309                 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1310                 return;
1311         }
1312
1313         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1314         if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1315                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1316                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1317                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1318                 /*
1319                  * Beacon generation will fail initially.
1320                  * To prevent this we need to register the TXRX_CSR19
1321                  * register several times.
1322                  */
1323                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1324                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1325                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1326                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1327                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1328         }
1329 }
1330
1331 /*
1332  * RX control handlers
1333  */
1334 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1335                                   struct rxdone_entry_desc *rxdesc)
1336 {
1337         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1338         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1339         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1340         __le32 *rxd =
1341             (__le32 *)(entry->skb->data +
1342                        (entry_priv->urb->actual_length -
1343                         entry->queue->desc_size));
1344         u32 word0;
1345         u32 word1;
1346
1347         /*
1348          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1349          * frame data in rt2x00usb.
1350          */
1351         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1352         rxd = (__le32 *)skbdesc->desc;
1353
1354         /*
1355          * It is now safe to read the descriptor on all architectures.
1356          */
1357         rt2x00_desc_read(rxd, 0, &word0);
1358         rt2x00_desc_read(rxd, 1, &word1);
1359
1360         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1361                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1362         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1363                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1364
1365         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1366                 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1367                 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1368                         rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1369         }
1370
1371         if (rxdesc->cipher != CIPHER_NONE) {
1372                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1373                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1374                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1375
1376                 /* ICV is located at the end of frame */
1377
1378                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1379                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1380                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1381                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1382                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1383         }
1384
1385         /*
1386          * Obtain the status about this packet.
1387          * When frame was received with an OFDM bitrate,
1388          * the signal is the PLCP value. If it was received with
1389          * a CCK bitrate the signal is the rate in 100kbit/s.
1390          */
1391         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1392         rxdesc->rssi =
1393             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1394         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1395
1396         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1397                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1398         else
1399                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1400         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1401                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1402
1403         /*
1404          * Adjust the skb memory window to the frame boundaries.
1405          */
1406         skb_trim(entry->skb, rxdesc->size);
1407 }
1408
1409 /*
1410  * Interrupt functions.
1411  */
1412 static void rt2500usb_beacondone(struct urb *urb)
1413 {
1414         struct queue_entry *entry = (struct queue_entry *)urb->context;
1415         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1416
1417         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1418                 return;
1419
1420         /*
1421          * Check if this was the guardian beacon,
1422          * if that was the case we need to send the real beacon now.
1423          * Otherwise we should free the sk_buffer, the device
1424          * should be doing the rest of the work now.
1425          */
1426         if (bcn_priv->guardian_urb == urb) {
1427                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1428         } else if (bcn_priv->urb == urb) {
1429                 dev_kfree_skb(entry->skb);
1430                 entry->skb = NULL;
1431         }
1432 }
1433
1434 /*
1435  * Device probe functions.
1436  */
1437 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1438 {
1439         u16 word;
1440         u8 *mac;
1441         u8 bbp;
1442
1443         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1444
1445         /*
1446          * Start validation of the data that has been read.
1447          */
1448         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1449         if (!is_valid_ether_addr(mac)) {
1450                 random_ether_addr(mac);
1451                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1452         }
1453
1454         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1455         if (word == 0xffff) {
1456                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1457                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1458                                    ANTENNA_SW_DIVERSITY);
1459                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1460                                    ANTENNA_SW_DIVERSITY);
1461                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1462                                    LED_MODE_DEFAULT);
1463                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1464                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1465                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1466                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1467                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1468         }
1469
1470         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1471         if (word == 0xffff) {
1472                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1473                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1474                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1475                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1476                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1477         }
1478
1479         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1480         if (word == 0xffff) {
1481                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1482                                    DEFAULT_RSSI_OFFSET);
1483                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1484                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1485         }
1486
1487         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1488         if (word == 0xffff) {
1489                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1490                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1491                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1492         }
1493
1494         /*
1495          * Switch lower vgc bound to current BBP R17 value,
1496          * lower the value a bit for better quality.
1497          */
1498         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1499         bbp -= 6;
1500
1501         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1502         if (word == 0xffff) {
1503                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1504                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1505                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1506                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1507         } else {
1508                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1509                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1510         }
1511
1512         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1513         if (word == 0xffff) {
1514                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1515                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1516                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1517                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1518         }
1519
1520         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1521         if (word == 0xffff) {
1522                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1523                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1524                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1525                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1526         }
1527
1528         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1529         if (word == 0xffff) {
1530                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1531                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1532                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1533                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1534         }
1535
1536         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1537         if (word == 0xffff) {
1538                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1539                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1540                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1541                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1542         }
1543
1544         return 0;
1545 }
1546
1547 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1548 {
1549         u16 reg;
1550         u16 value;
1551         u16 eeprom;
1552
1553         /*
1554          * Read EEPROM word for configuration.
1555          */
1556         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1557
1558         /*
1559          * Identify RF chipset.
1560          */
1561         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1562         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1563         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1564
1565         if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
1566                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1567                 return -ENODEV;
1568         }
1569
1570         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1571             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1572             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1573             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1574             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1575             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1576                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1577                 return -ENODEV;
1578         }
1579
1580         /*
1581          * Identify default antenna configuration.
1582          */
1583         rt2x00dev->default_ant.tx =
1584             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1585         rt2x00dev->default_ant.rx =
1586             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1587
1588         /*
1589          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1590          * I am not 100% sure about this, but the legacy drivers do not
1591          * indicate antenna swapping in software is required when
1592          * diversity is enabled.
1593          */
1594         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1595                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1596         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1597                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1598
1599         /*
1600          * Store led mode, for correct led behaviour.
1601          */
1602 #ifdef CONFIG_RT2X00_LIB_LEDS
1603         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1604
1605         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1606         if (value == LED_MODE_TXRX_ACTIVITY || value == LED_MODE_DEFAULT)
1607                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1608                                    LED_TYPE_ACTIVITY);
1609 #endif /* CONFIG_RT2X00_LIB_LEDS */
1610
1611         /*
1612          * Detect if this device has an hardware controlled radio.
1613          */
1614 #ifdef CONFIG_RT2X00_LIB_RFKILL
1615         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1616                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1617 #endif /* CONFIG_RT2X00_LIB_RFKILL */
1618
1619         /*
1620          * Check if the BBP tuning should be disabled.
1621          */
1622         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1623         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1624                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1625
1626         /*
1627          * Read the RSSI <-> dBm offset information.
1628          */
1629         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1630         rt2x00dev->rssi_offset =
1631             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1632
1633         return 0;
1634 }
1635
1636 /*
1637  * RF value list for RF2522
1638  * Supports: 2.4 GHz
1639  */
1640 static const struct rf_channel rf_vals_bg_2522[] = {
1641         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1642         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1643         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1644         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1645         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1646         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1647         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1648         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1649         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1650         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1651         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1652         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1653         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1654         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1655 };
1656
1657 /*
1658  * RF value list for RF2523
1659  * Supports: 2.4 GHz
1660  */
1661 static const struct rf_channel rf_vals_bg_2523[] = {
1662         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1663         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1664         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1665         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1666         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1667         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1668         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1669         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1670         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1671         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1672         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1673         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1674         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1675         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1676 };
1677
1678 /*
1679  * RF value list for RF2524
1680  * Supports: 2.4 GHz
1681  */
1682 static const struct rf_channel rf_vals_bg_2524[] = {
1683         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1684         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1685         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1686         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1687         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1688         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1689         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1690         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1691         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1692         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1693         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1694         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1695         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1696         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1697 };
1698
1699 /*
1700  * RF value list for RF2525
1701  * Supports: 2.4 GHz
1702  */
1703 static const struct rf_channel rf_vals_bg_2525[] = {
1704         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1705         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1706         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1707         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1708         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1709         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1710         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1711         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1712         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1713         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1714         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1715         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1716         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1717         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1718 };
1719
1720 /*
1721  * RF value list for RF2525e
1722  * Supports: 2.4 GHz
1723  */
1724 static const struct rf_channel rf_vals_bg_2525e[] = {
1725         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1726         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1727         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1728         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1729         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1730         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1731         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1732         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1733         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1734         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1735         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1736         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1737         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1738         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1739 };
1740
1741 /*
1742  * RF value list for RF5222
1743  * Supports: 2.4 GHz & 5.2 GHz
1744  */
1745 static const struct rf_channel rf_vals_5222[] = {
1746         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1747         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1748         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1749         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1750         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1751         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1752         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1753         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1754         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1755         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1756         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1757         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1758         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1759         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1760
1761         /* 802.11 UNI / HyperLan 2 */
1762         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1763         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1764         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1765         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1766         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1767         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1768         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1769         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1770
1771         /* 802.11 HyperLan 2 */
1772         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1773         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1774         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1775         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1776         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1777         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1778         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1779         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1780         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1781         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1782
1783         /* 802.11 UNII */
1784         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1785         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1786         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1787         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1788         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1789 };
1790
1791 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1792 {
1793         struct hw_mode_spec *spec = &rt2x00dev->spec;
1794         struct channel_info *info;
1795         char *tx_power;
1796         unsigned int i;
1797
1798         /*
1799          * Initialize all hw fields.
1800          */
1801         rt2x00dev->hw->flags =
1802             IEEE80211_HW_RX_INCLUDES_FCS |
1803             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1804             IEEE80211_HW_SIGNAL_DBM |
1805             IEEE80211_HW_SUPPORTS_PS |
1806             IEEE80211_HW_PS_NULLFUNC_STACK;
1807
1808         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1809
1810         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1811         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1812                                 rt2x00_eeprom_addr(rt2x00dev,
1813                                                    EEPROM_MAC_ADDR_0));
1814
1815         /*
1816          * Initialize hw_mode information.
1817          */
1818         spec->supported_bands = SUPPORT_BAND_2GHZ;
1819         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1820
1821         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1822                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1823                 spec->channels = rf_vals_bg_2522;
1824         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1825                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1826                 spec->channels = rf_vals_bg_2523;
1827         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1828                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1829                 spec->channels = rf_vals_bg_2524;
1830         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1831                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1832                 spec->channels = rf_vals_bg_2525;
1833         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1834                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1835                 spec->channels = rf_vals_bg_2525e;
1836         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1837                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1838                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1839                 spec->channels = rf_vals_5222;
1840         }
1841
1842         /*
1843          * Create channel information array
1844          */
1845         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1846         if (!info)
1847                 return -ENOMEM;
1848
1849         spec->channels_info = info;
1850
1851         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1852         for (i = 0; i < 14; i++)
1853                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1854
1855         if (spec->num_channels > 14) {
1856                 for (i = 14; i < spec->num_channels; i++)
1857                         info[i].tx_power1 = DEFAULT_TXPOWER;
1858         }
1859
1860         return 0;
1861 }
1862
1863 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1864 {
1865         int retval;
1866
1867         /*
1868          * Allocate eeprom data.
1869          */
1870         retval = rt2500usb_validate_eeprom(rt2x00dev);
1871         if (retval)
1872                 return retval;
1873
1874         retval = rt2500usb_init_eeprom(rt2x00dev);
1875         if (retval)
1876                 return retval;
1877
1878         /*
1879          * Initialize hw specifications.
1880          */
1881         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1882         if (retval)
1883                 return retval;
1884
1885         /*
1886          * This device requires the atim queue
1887          */
1888         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1889         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1890         __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
1891         if (!modparam_nohwcrypt) {
1892                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1893                 __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
1894         }
1895         __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1896
1897         /*
1898          * Set the rssi offset.
1899          */
1900         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1901
1902         return 0;
1903 }
1904
1905 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1906         .tx                     = rt2x00mac_tx,
1907         .start                  = rt2x00mac_start,
1908         .stop                   = rt2x00mac_stop,
1909         .add_interface          = rt2x00mac_add_interface,
1910         .remove_interface       = rt2x00mac_remove_interface,
1911         .config                 = rt2x00mac_config,
1912         .config_interface       = rt2x00mac_config_interface,
1913         .configure_filter       = rt2x00mac_configure_filter,
1914         .set_key                = rt2x00mac_set_key,
1915         .get_stats              = rt2x00mac_get_stats,
1916         .bss_info_changed       = rt2x00mac_bss_info_changed,
1917         .conf_tx                = rt2x00mac_conf_tx,
1918         .get_tx_stats           = rt2x00mac_get_tx_stats,
1919 };
1920
1921 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1922         .probe_hw               = rt2500usb_probe_hw,
1923         .initialize             = rt2x00usb_initialize,
1924         .uninitialize           = rt2x00usb_uninitialize,
1925         .clear_entry            = rt2x00usb_clear_entry,
1926         .set_device_state       = rt2500usb_set_device_state,
1927         .rfkill_poll            = rt2500usb_rfkill_poll,
1928         .link_stats             = rt2500usb_link_stats,
1929         .reset_tuner            = rt2500usb_reset_tuner,
1930         .link_tuner             = rt2500usb_link_tuner,
1931         .write_tx_desc          = rt2500usb_write_tx_desc,
1932         .write_tx_data          = rt2x00usb_write_tx_data,
1933         .write_beacon           = rt2500usb_write_beacon,
1934         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1935         .kick_tx_queue          = rt2500usb_kick_tx_queue,
1936         .fill_rxdone            = rt2500usb_fill_rxdone,
1937         .config_shared_key      = rt2500usb_config_key,
1938         .config_pairwise_key    = rt2500usb_config_key,
1939         .config_filter          = rt2500usb_config_filter,
1940         .config_intf            = rt2500usb_config_intf,
1941         .config_erp             = rt2500usb_config_erp,
1942         .config_ant             = rt2500usb_config_ant,
1943         .config                 = rt2500usb_config,
1944 };
1945
1946 static const struct data_queue_desc rt2500usb_queue_rx = {
1947         .entry_num              = RX_ENTRIES,
1948         .data_size              = DATA_FRAME_SIZE,
1949         .desc_size              = RXD_DESC_SIZE,
1950         .priv_size              = sizeof(struct queue_entry_priv_usb),
1951 };
1952
1953 static const struct data_queue_desc rt2500usb_queue_tx = {
1954         .entry_num              = TX_ENTRIES,
1955         .data_size              = DATA_FRAME_SIZE,
1956         .desc_size              = TXD_DESC_SIZE,
1957         .priv_size              = sizeof(struct queue_entry_priv_usb),
1958 };
1959
1960 static const struct data_queue_desc rt2500usb_queue_bcn = {
1961         .entry_num              = BEACON_ENTRIES,
1962         .data_size              = MGMT_FRAME_SIZE,
1963         .desc_size              = TXD_DESC_SIZE,
1964         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1965 };
1966
1967 static const struct data_queue_desc rt2500usb_queue_atim = {
1968         .entry_num              = ATIM_ENTRIES,
1969         .data_size              = DATA_FRAME_SIZE,
1970         .desc_size              = TXD_DESC_SIZE,
1971         .priv_size              = sizeof(struct queue_entry_priv_usb),
1972 };
1973
1974 static const struct rt2x00_ops rt2500usb_ops = {
1975         .name           = KBUILD_MODNAME,
1976         .max_sta_intf   = 1,
1977         .max_ap_intf    = 1,
1978         .eeprom_size    = EEPROM_SIZE,
1979         .rf_size        = RF_SIZE,
1980         .tx_queues      = NUM_TX_QUEUES,
1981         .rx             = &rt2500usb_queue_rx,
1982         .tx             = &rt2500usb_queue_tx,
1983         .bcn            = &rt2500usb_queue_bcn,
1984         .atim           = &rt2500usb_queue_atim,
1985         .lib            = &rt2500usb_rt2x00_ops,
1986         .hw             = &rt2500usb_mac80211_ops,
1987 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1988         .debugfs        = &rt2500usb_rt2x00debug,
1989 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1990 };
1991
1992 /*
1993  * rt2500usb module information.
1994  */
1995 static struct usb_device_id rt2500usb_device_table[] = {
1996         /* ASUS */
1997         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1998         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1999         /* Belkin */
2000         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
2001         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
2002         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
2003         /* Cisco Systems */
2004         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
2005         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
2006         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
2007         /* Conceptronic */
2008         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
2009         /* D-LINK */
2010         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
2011         /* Gigabyte */
2012         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
2013         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
2014         /* Hercules */
2015         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
2016         /* Melco */
2017         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
2018         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
2019         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
2020         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
2021         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
2022         /* MSI */
2023         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
2024         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
2025         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
2026         /* Ralink */
2027         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
2028         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
2029         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
2030         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
2031         /* Siemens */
2032         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
2033         /* SMC */
2034         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
2035         /* Spairon */
2036         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
2037         /* Trust */
2038         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
2039         /* Zinwell */
2040         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
2041         { 0, }
2042 };
2043
2044 MODULE_AUTHOR(DRV_PROJECT);
2045 MODULE_VERSION(DRV_VERSION);
2046 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
2047 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
2048 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
2049 MODULE_LICENSE("GPL");
2050
2051 static struct usb_driver rt2500usb_driver = {
2052         .name           = KBUILD_MODNAME,
2053         .id_table       = rt2500usb_device_table,
2054         .probe          = rt2x00usb_probe,
2055         .disconnect     = rt2x00usb_disconnect,
2056         .suspend        = rt2x00usb_suspend,
2057         .resume         = rt2x00usb_resume,
2058 };
2059
2060 static int __init rt2500usb_init(void)
2061 {
2062         return usb_register(&rt2500usb_driver);
2063 }
2064
2065 static void __exit rt2500usb_exit(void)
2066 {
2067         usb_deregister(&rt2500usb_driver);
2068 }
2069
2070 module_init(rt2500usb_init);
2071 module_exit(rt2500usb_exit);