c6e6e7b0ea53351d47df635a5407c54af70aeea7
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
37
38 /*
39  * Allow hardware encryption to be disabled.
40  */
41 static int modparam_nohwcrypt = 0;
42 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
43 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
44
45 /*
46  * Register access.
47  * All access to the CSR registers will go through the methods
48  * rt2500usb_register_read and rt2500usb_register_write.
49  * BBP and RF register require indirect register access,
50  * and use the CSR registers BBPCSR and RFCSR to achieve this.
51  * These indirect registers work with busy bits,
52  * and we will try maximal REGISTER_BUSY_COUNT times to access
53  * the register while taking a REGISTER_BUSY_DELAY us delay
54  * between each attampt. When the busy bit is still set at that time,
55  * the access attempt is considered to have failed,
56  * and we will print an error.
57  * If the csr_mutex is already held then the _lock variants must
58  * be used instead.
59  */
60 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
61                                            const unsigned int offset,
62                                            u16 *value)
63 {
64         __le16 reg;
65         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
66                                       USB_VENDOR_REQUEST_IN, offset,
67                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
68         *value = le16_to_cpu(reg);
69 }
70
71 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
72                                                 const unsigned int offset,
73                                                 u16 *value)
74 {
75         __le16 reg;
76         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
77                                        USB_VENDOR_REQUEST_IN, offset,
78                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
79         *value = le16_to_cpu(reg);
80 }
81
82 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
83                                                 const unsigned int offset,
84                                                 void *value, const u16 length)
85 {
86         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
87                                       USB_VENDOR_REQUEST_IN, offset,
88                                       value, length,
89                                       REGISTER_TIMEOUT16(length));
90 }
91
92 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
93                                             const unsigned int offset,
94                                             u16 value)
95 {
96         __le16 reg = cpu_to_le16(value);
97         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
98                                       USB_VENDOR_REQUEST_OUT, offset,
99                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
100 }
101
102 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
103                                                  const unsigned int offset,
104                                                  u16 value)
105 {
106         __le16 reg = cpu_to_le16(value);
107         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
108                                        USB_VENDOR_REQUEST_OUT, offset,
109                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
110 }
111
112 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
113                                                  const unsigned int offset,
114                                                  void *value, const u16 length)
115 {
116         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
117                                       USB_VENDOR_REQUEST_OUT, offset,
118                                       value, length,
119                                       REGISTER_TIMEOUT16(length));
120 }
121
122 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
123                                   const unsigned int offset,
124                                   struct rt2x00_field16 field,
125                                   u16 *reg)
126 {
127         unsigned int i;
128
129         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
130                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
131                 if (!rt2x00_get_field16(*reg, field))
132                         return 1;
133                 udelay(REGISTER_BUSY_DELAY);
134         }
135
136         ERROR(rt2x00dev, "Indirect register access failed: "
137               "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
138         *reg = ~0;
139
140         return 0;
141 }
142
143 #define WAIT_FOR_BBP(__dev, __reg) \
144         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
145 #define WAIT_FOR_RF(__dev, __reg) \
146         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
147
148 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
149                                 const unsigned int word, const u8 value)
150 {
151         u16 reg;
152
153         mutex_lock(&rt2x00dev->csr_mutex);
154
155         /*
156          * Wait until the BBP becomes available, afterwards we
157          * can safely write the new data into the register.
158          */
159         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
160                 reg = 0;
161                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
162                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
163                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
164
165                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
166         }
167
168         mutex_unlock(&rt2x00dev->csr_mutex);
169 }
170
171 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
172                                const unsigned int word, u8 *value)
173 {
174         u16 reg;
175
176         mutex_lock(&rt2x00dev->csr_mutex);
177
178         /*
179          * Wait until the BBP becomes available, afterwards we
180          * can safely write the read request into the register.
181          * After the data has been written, we wait until hardware
182          * returns the correct value, if at any time the register
183          * doesn't become available in time, reg will be 0xffffffff
184          * which means we return 0xff to the caller.
185          */
186         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
187                 reg = 0;
188                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
189                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
190
191                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
192
193                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
194                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
195         }
196
197         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
198
199         mutex_unlock(&rt2x00dev->csr_mutex);
200 }
201
202 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
203                                const unsigned int word, const u32 value)
204 {
205         u16 reg;
206
207         mutex_lock(&rt2x00dev->csr_mutex);
208
209         /*
210          * Wait until the RF becomes available, afterwards we
211          * can safely write the new data into the register.
212          */
213         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
214                 reg = 0;
215                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
216                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
217
218                 reg = 0;
219                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
220                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
221                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
222                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
223
224                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
225                 rt2x00_rf_write(rt2x00dev, word, value);
226         }
227
228         mutex_unlock(&rt2x00dev->csr_mutex);
229 }
230
231 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
232 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
233                                      const unsigned int offset,
234                                      u32 *value)
235 {
236         rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
237 }
238
239 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
240                                       const unsigned int offset,
241                                       u32 value)
242 {
243         rt2500usb_register_write(rt2x00dev, offset, value);
244 }
245
246 static const struct rt2x00debug rt2500usb_rt2x00debug = {
247         .owner  = THIS_MODULE,
248         .csr    = {
249                 .read           = _rt2500usb_register_read,
250                 .write          = _rt2500usb_register_write,
251                 .flags          = RT2X00DEBUGFS_OFFSET,
252                 .word_base      = CSR_REG_BASE,
253                 .word_size      = sizeof(u16),
254                 .word_count     = CSR_REG_SIZE / sizeof(u16),
255         },
256         .eeprom = {
257                 .read           = rt2x00_eeprom_read,
258                 .write          = rt2x00_eeprom_write,
259                 .word_base      = EEPROM_BASE,
260                 .word_size      = sizeof(u16),
261                 .word_count     = EEPROM_SIZE / sizeof(u16),
262         },
263         .bbp    = {
264                 .read           = rt2500usb_bbp_read,
265                 .write          = rt2500usb_bbp_write,
266                 .word_base      = BBP_BASE,
267                 .word_size      = sizeof(u8),
268                 .word_count     = BBP_SIZE / sizeof(u8),
269         },
270         .rf     = {
271                 .read           = rt2x00_rf_read,
272                 .write          = rt2500usb_rf_write,
273                 .word_base      = RF_BASE,
274                 .word_size      = sizeof(u32),
275                 .word_count     = RF_SIZE / sizeof(u32),
276         },
277 };
278 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
279
280 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
281 {
282         u16 reg;
283
284         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
285         return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
286 }
287
288 #ifdef CONFIG_RT2X00_LIB_LEDS
289 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
290                                      enum led_brightness brightness)
291 {
292         struct rt2x00_led *led =
293             container_of(led_cdev, struct rt2x00_led, led_dev);
294         unsigned int enabled = brightness != LED_OFF;
295         u16 reg;
296
297         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
298
299         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
300                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
301         else if (led->type == LED_TYPE_ACTIVITY)
302                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
303
304         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
305 }
306
307 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
308                                unsigned long *delay_on,
309                                unsigned long *delay_off)
310 {
311         struct rt2x00_led *led =
312             container_of(led_cdev, struct rt2x00_led, led_dev);
313         u16 reg;
314
315         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
316         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
317         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
318         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
319
320         return 0;
321 }
322
323 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
324                                struct rt2x00_led *led,
325                                enum led_type type)
326 {
327         led->rt2x00dev = rt2x00dev;
328         led->type = type;
329         led->led_dev.brightness_set = rt2500usb_brightness_set;
330         led->led_dev.blink_set = rt2500usb_blink_set;
331         led->flags = LED_INITIALIZED;
332 }
333 #endif /* CONFIG_RT2X00_LIB_LEDS */
334
335 /*
336  * Configuration handlers.
337  */
338
339 /*
340  * rt2500usb does not differentiate between shared and pairwise
341  * keys, so we should use the same function for both key types.
342  */
343 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
344                                 struct rt2x00lib_crypto *crypto,
345                                 struct ieee80211_key_conf *key)
346 {
347         int timeout;
348         u32 mask;
349         u16 reg;
350
351         if (crypto->cmd == SET_KEY) {
352                 /*
353                  * Pairwise key will always be entry 0, but this
354                  * could collide with a shared key on the same
355                  * position...
356                  */
357                 mask = TXRX_CSR0_KEY_ID.bit_mask;
358
359                 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
360                 reg &= mask;
361
362                 if (reg && reg == mask)
363                         return -ENOSPC;
364
365                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
366
367                 key->hw_key_idx += reg ? ffz(reg) : 0;
368
369                 /*
370                  * The encryption key doesn't fit within the CSR cache,
371                  * this means we should allocate it seperately and use
372                  * rt2x00usb_vendor_request() to send the key to the hardware.
373                  */
374                 reg = KEY_ENTRY(key->hw_key_idx);
375                 timeout = REGISTER_TIMEOUT32(sizeof(crypto->key));
376                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
377                                                     USB_VENDOR_REQUEST_OUT, reg,
378                                                     crypto->key,
379                                                     sizeof(crypto->key),
380                                                     timeout);
381
382                 /*
383                  * The driver does not support the IV/EIV generation
384                  * in hardware. However it demands the data to be provided
385                  * both seperately as well as inside the frame.
386                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
387                  * to ensure rt2x00lib will not strip the data from the
388                  * frame after the copy, now we must tell mac80211
389                  * to generate the IV/EIV data.
390                  */
391                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
392                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
393         }
394
395         /*
396          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
397          * a particular key is valid.
398          */
399         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
400         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
401         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
402
403         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
404         if (crypto->cmd == SET_KEY)
405                 mask |= 1 << key->hw_key_idx;
406         else if (crypto->cmd == DISABLE_KEY)
407                 mask &= ~(1 << key->hw_key_idx);
408         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
409         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
410
411         return 0;
412 }
413
414 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
415                                     const unsigned int filter_flags)
416 {
417         u16 reg;
418
419         /*
420          * Start configuration steps.
421          * Note that the version error will always be dropped
422          * and broadcast frames will always be accepted since
423          * there is no filter for it at this time.
424          */
425         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
426         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
427                            !(filter_flags & FIF_FCSFAIL));
428         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
429                            !(filter_flags & FIF_PLCPFAIL));
430         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
431                            !(filter_flags & FIF_CONTROL));
432         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
433                            !(filter_flags & FIF_PROMISC_IN_BSS));
434         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
435                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
436                            !rt2x00dev->intf_ap_count);
437         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
438         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
439                            !(filter_flags & FIF_ALLMULTI));
440         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
441         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
442 }
443
444 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
445                                   struct rt2x00_intf *intf,
446                                   struct rt2x00intf_conf *conf,
447                                   const unsigned int flags)
448 {
449         unsigned int bcn_preload;
450         u16 reg;
451
452         if (flags & CONFIG_UPDATE_TYPE) {
453                 /*
454                  * Enable beacon config
455                  */
456                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
457                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
458                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
459                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
460                                    2 * (conf->type != NL80211_IFTYPE_STATION));
461                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
462
463                 /*
464                  * Enable synchronisation.
465                  */
466                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
467                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
468                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
469
470                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
471                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
472                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
473                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
474                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
475         }
476
477         if (flags & CONFIG_UPDATE_MAC)
478                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
479                                               (3 * sizeof(__le16)));
480
481         if (flags & CONFIG_UPDATE_BSSID)
482                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
483                                               (3 * sizeof(__le16)));
484 }
485
486 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
487                                  struct rt2x00lib_erp *erp)
488 {
489         u16 reg;
490
491         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
492         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
493                            !!erp->short_preamble);
494         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
495
496         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
497
498         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
499         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL, erp->beacon_int * 4);
500         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
501
502         rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
503         rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
504         rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
505 }
506
507 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
508                                  struct antenna_setup *ant)
509 {
510         u8 r2;
511         u8 r14;
512         u16 csr5;
513         u16 csr6;
514
515         /*
516          * We should never come here because rt2x00lib is supposed
517          * to catch this and send us the correct antenna explicitely.
518          */
519         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
520                ant->tx == ANTENNA_SW_DIVERSITY);
521
522         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
523         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
524         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
525         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
526
527         /*
528          * Configure the TX antenna.
529          */
530         switch (ant->tx) {
531         case ANTENNA_HW_DIVERSITY:
532                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
533                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
534                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
535                 break;
536         case ANTENNA_A:
537                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
538                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
539                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
540                 break;
541         case ANTENNA_B:
542         default:
543                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
544                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
545                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
546                 break;
547         }
548
549         /*
550          * Configure the RX antenna.
551          */
552         switch (ant->rx) {
553         case ANTENNA_HW_DIVERSITY:
554                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
555                 break;
556         case ANTENNA_A:
557                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
558                 break;
559         case ANTENNA_B:
560         default:
561                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
562                 break;
563         }
564
565         /*
566          * RT2525E and RT5222 need to flip TX I/Q
567          */
568         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
569                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
570                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
571                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
572
573                 /*
574                  * RT2525E does not need RX I/Q Flip.
575                  */
576                 if (rt2x00_rf(rt2x00dev, RF2525E))
577                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
578         } else {
579                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
580                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
581         }
582
583         rt2500usb_bbp_write(rt2x00dev, 2, r2);
584         rt2500usb_bbp_write(rt2x00dev, 14, r14);
585         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
586         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
587 }
588
589 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
590                                      struct rf_channel *rf, const int txpower)
591 {
592         /*
593          * Set TXpower.
594          */
595         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
596
597         /*
598          * For RT2525E we should first set the channel to half band higher.
599          */
600         if (rt2x00_rf(rt2x00dev, RF2525E)) {
601                 static const u32 vals[] = {
602                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
603                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
604                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
605                         0x00000902, 0x00000906
606                 };
607
608                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
609                 if (rf->rf4)
610                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
611         }
612
613         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
614         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
615         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
616         if (rf->rf4)
617                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
618 }
619
620 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
621                                      const int txpower)
622 {
623         u32 rf3;
624
625         rt2x00_rf_read(rt2x00dev, 3, &rf3);
626         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
627         rt2500usb_rf_write(rt2x00dev, 3, rf3);
628 }
629
630 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
631                                 struct rt2x00lib_conf *libconf)
632 {
633         enum dev_state state =
634             (libconf->conf->flags & IEEE80211_CONF_PS) ?
635                 STATE_SLEEP : STATE_AWAKE;
636         u16 reg;
637
638         if (state == STATE_SLEEP) {
639                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
640                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
641                                    rt2x00dev->beacon_int - 20);
642                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
643                                    libconf->conf->listen_interval - 1);
644
645                 /* We must first disable autowake before it can be enabled */
646                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
647                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
648
649                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
650                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
651         } else {
652                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
653                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
654                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
655         }
656
657         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
658 }
659
660 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
661                              struct rt2x00lib_conf *libconf,
662                              const unsigned int flags)
663 {
664         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
665                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
666                                          libconf->conf->power_level);
667         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
668             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
669                 rt2500usb_config_txpower(rt2x00dev,
670                                          libconf->conf->power_level);
671         if (flags & IEEE80211_CONF_CHANGE_PS)
672                 rt2500usb_config_ps(rt2x00dev, libconf);
673 }
674
675 /*
676  * Link tuning
677  */
678 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
679                                  struct link_qual *qual)
680 {
681         u16 reg;
682
683         /*
684          * Update FCS error count from register.
685          */
686         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
687         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
688
689         /*
690          * Update False CCA count from register.
691          */
692         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
693         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
694 }
695
696 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
697                                   struct link_qual *qual)
698 {
699         u16 eeprom;
700         u16 value;
701
702         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
703         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
704         rt2500usb_bbp_write(rt2x00dev, 24, value);
705
706         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
707         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
708         rt2500usb_bbp_write(rt2x00dev, 25, value);
709
710         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
711         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
712         rt2500usb_bbp_write(rt2x00dev, 61, value);
713
714         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
715         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
716         rt2500usb_bbp_write(rt2x00dev, 17, value);
717
718         qual->vgc_level = value;
719 }
720
721 /*
722  * Initialization functions.
723  */
724 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
725 {
726         u16 reg;
727
728         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
729                                     USB_MODE_TEST, REGISTER_TIMEOUT);
730         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
731                                     0x00f0, REGISTER_TIMEOUT);
732
733         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
734         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
735         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
736
737         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
738         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
739
740         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
741         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
742         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
743         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
744         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
745
746         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
747         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
748         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
749         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
750         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
751
752         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
753         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
754         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
755         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
756         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
757         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
758
759         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
760         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
761         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
762         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
763         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
764         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
765
766         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
767         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
768         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
769         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
770         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
771         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
772
773         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
774         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
775         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
776         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
777         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
778         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
779
780         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
781         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
782         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
783         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
784         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
785         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
786
787         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
788         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
789
790         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
791                 return -EBUSY;
792
793         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
794         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
795         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
796         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
797         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
798
799         if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
800                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
801                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
802         } else {
803                 reg = 0;
804                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
805                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
806         }
807         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
808
809         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
810         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
811         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
812         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
813
814         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
815         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
816                            rt2x00dev->rx->data_size);
817         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
818
819         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
820         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
821         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
822         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
823
824         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
825         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
826         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
827
828         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
829         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
830         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
831
832         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
833         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
834         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
835
836         return 0;
837 }
838
839 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
840 {
841         unsigned int i;
842         u8 value;
843
844         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
845                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
846                 if ((value != 0xff) && (value != 0x00))
847                         return 0;
848                 udelay(REGISTER_BUSY_DELAY);
849         }
850
851         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
852         return -EACCES;
853 }
854
855 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
856 {
857         unsigned int i;
858         u16 eeprom;
859         u8 value;
860         u8 reg_id;
861
862         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
863                 return -EACCES;
864
865         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
866         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
867         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
868         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
869         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
870         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
871         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
872         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
873         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
874         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
875         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
876         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
877         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
878         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
879         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
880         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
881         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
882         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
883         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
884         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
885         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
886         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
887         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
888         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
889         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
890         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
891         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
892         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
893         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
894         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
895         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
896
897         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
898                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
899
900                 if (eeprom != 0xffff && eeprom != 0x0000) {
901                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
902                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
903                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
904                 }
905         }
906
907         return 0;
908 }
909
910 /*
911  * Device state switch handlers.
912  */
913 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
914                                 enum dev_state state)
915 {
916         u16 reg;
917
918         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
919         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
920                            (state == STATE_RADIO_RX_OFF) ||
921                            (state == STATE_RADIO_RX_OFF_LINK));
922         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
923 }
924
925 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
926 {
927         /*
928          * Initialize all registers.
929          */
930         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
931                      rt2500usb_init_bbp(rt2x00dev)))
932                 return -EIO;
933
934         return 0;
935 }
936
937 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
938 {
939         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
940         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
941
942         /*
943          * Disable synchronisation.
944          */
945         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
946
947         rt2x00usb_disable_radio(rt2x00dev);
948 }
949
950 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
951                                enum dev_state state)
952 {
953         u16 reg;
954         u16 reg2;
955         unsigned int i;
956         char put_to_sleep;
957         char bbp_state;
958         char rf_state;
959
960         put_to_sleep = (state != STATE_AWAKE);
961
962         reg = 0;
963         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
964         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
965         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
966         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
967         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
968         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
969
970         /*
971          * Device is not guaranteed to be in the requested state yet.
972          * We must wait until the register indicates that the
973          * device has entered the correct state.
974          */
975         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
976                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
977                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
978                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
979                 if (bbp_state == state && rf_state == state)
980                         return 0;
981                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
982                 msleep(30);
983         }
984
985         return -EBUSY;
986 }
987
988 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
989                                       enum dev_state state)
990 {
991         int retval = 0;
992
993         switch (state) {
994         case STATE_RADIO_ON:
995                 retval = rt2500usb_enable_radio(rt2x00dev);
996                 break;
997         case STATE_RADIO_OFF:
998                 rt2500usb_disable_radio(rt2x00dev);
999                 break;
1000         case STATE_RADIO_RX_ON:
1001         case STATE_RADIO_RX_ON_LINK:
1002         case STATE_RADIO_RX_OFF:
1003         case STATE_RADIO_RX_OFF_LINK:
1004                 rt2500usb_toggle_rx(rt2x00dev, state);
1005                 break;
1006         case STATE_RADIO_IRQ_ON:
1007         case STATE_RADIO_IRQ_OFF:
1008                 /* No support, but no error either */
1009                 break;
1010         case STATE_DEEP_SLEEP:
1011         case STATE_SLEEP:
1012         case STATE_STANDBY:
1013         case STATE_AWAKE:
1014                 retval = rt2500usb_set_state(rt2x00dev, state);
1015                 break;
1016         default:
1017                 retval = -ENOTSUPP;
1018                 break;
1019         }
1020
1021         if (unlikely(retval))
1022                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1023                       state, retval);
1024
1025         return retval;
1026 }
1027
1028 /*
1029  * TX descriptor initialization
1030  */
1031 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1032                                     struct sk_buff *skb,
1033                                     struct txentry_desc *txdesc)
1034 {
1035         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1036         __le32 *txd = skbdesc->desc;
1037         u32 word;
1038
1039         /*
1040          * Start writing the descriptor words.
1041          */
1042         rt2x00_desc_read(txd, 1, &word);
1043         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1044         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1045         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1046         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1047         rt2x00_desc_write(txd, 1, word);
1048
1049         rt2x00_desc_read(txd, 2, &word);
1050         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1051         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1052         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1053         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1054         rt2x00_desc_write(txd, 2, word);
1055
1056         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1057                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1058                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1059         }
1060
1061         rt2x00_desc_read(txd, 0, &word);
1062         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1063         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1064                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1065         rt2x00_set_field32(&word, TXD_W0_ACK,
1066                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1067         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1068                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1069         rt2x00_set_field32(&word, TXD_W0_OFDM,
1070                            (txdesc->rate_mode == RATE_MODE_OFDM));
1071         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1072                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1073         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1074         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1075         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1076         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1077         rt2x00_desc_write(txd, 0, word);
1078 }
1079
1080 /*
1081  * TX data initialization
1082  */
1083 static void rt2500usb_beacondone(struct urb *urb);
1084
1085 static void rt2500usb_write_beacon(struct queue_entry *entry)
1086 {
1087         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1088         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1089         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1090         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1091         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1092         int length;
1093         u16 reg;
1094
1095         /*
1096          * Add the descriptor in front of the skb.
1097          */
1098         skb_push(entry->skb, entry->queue->desc_size);
1099         memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1100         skbdesc->desc = entry->skb->data;
1101
1102         /*
1103          * Disable beaconing while we are reloading the beacon data,
1104          * otherwise we might be sending out invalid data.
1105          */
1106         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1107         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1108         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1109
1110         /*
1111          * USB devices cannot blindly pass the skb->len as the
1112          * length of the data to usb_fill_bulk_urb. Pass the skb
1113          * to the driver to determine what the length should be.
1114          */
1115         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1116
1117         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1118                           entry->skb->data, length, rt2500usb_beacondone,
1119                           entry);
1120
1121         /*
1122          * Second we need to create the guardian byte.
1123          * We only need a single byte, so lets recycle
1124          * the 'flags' field we are not using for beacons.
1125          */
1126         bcn_priv->guardian_data = 0;
1127         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1128                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1129                           entry);
1130
1131         /*
1132          * Send out the guardian byte.
1133          */
1134         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1135 }
1136
1137 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1138 {
1139         int length;
1140
1141         /*
1142          * The length _must_ be a multiple of 2,
1143          * but it must _not_ be a multiple of the USB packet size.
1144          */
1145         length = roundup(entry->skb->len, 2);
1146         length += (2 * !(length % entry->queue->usb_maxpacket));
1147
1148         return length;
1149 }
1150
1151 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1152                                     const enum data_queue_qid queue)
1153 {
1154         u16 reg, reg0;
1155
1156         if (queue != QID_BEACON) {
1157                 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1158                 return;
1159         }
1160
1161         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1162         if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1163                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1164                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1165                 reg0 = reg;
1166                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1167                 /*
1168                  * Beacon generation will fail initially.
1169                  * To prevent this we need to change the TXRX_CSR19
1170                  * register several times (reg0 is the same as reg
1171                  * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1172                  * and 1 in reg).
1173                  */
1174                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1175                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1176                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1177                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1178                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1179         }
1180 }
1181
1182 /*
1183  * RX control handlers
1184  */
1185 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1186                                   struct rxdone_entry_desc *rxdesc)
1187 {
1188         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1189         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1190         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1191         __le32 *rxd =
1192             (__le32 *)(entry->skb->data +
1193                        (entry_priv->urb->actual_length -
1194                         entry->queue->desc_size));
1195         u32 word0;
1196         u32 word1;
1197
1198         /*
1199          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1200          * frame data in rt2x00usb.
1201          */
1202         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1203         rxd = (__le32 *)skbdesc->desc;
1204
1205         /*
1206          * It is now safe to read the descriptor on all architectures.
1207          */
1208         rt2x00_desc_read(rxd, 0, &word0);
1209         rt2x00_desc_read(rxd, 1, &word1);
1210
1211         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1212                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1213         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1214                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1215
1216         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1217                 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1218                 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1219                         rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1220         }
1221
1222         if (rxdesc->cipher != CIPHER_NONE) {
1223                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1224                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1225                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1226
1227                 /* ICV is located at the end of frame */
1228
1229                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1230                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1231                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1232                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1233                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1234         }
1235
1236         /*
1237          * Obtain the status about this packet.
1238          * When frame was received with an OFDM bitrate,
1239          * the signal is the PLCP value. If it was received with
1240          * a CCK bitrate the signal is the rate in 100kbit/s.
1241          */
1242         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1243         rxdesc->rssi =
1244             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1245         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1246
1247         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1248                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1249         else
1250                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1251         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1252                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1253
1254         /*
1255          * Adjust the skb memory window to the frame boundaries.
1256          */
1257         skb_trim(entry->skb, rxdesc->size);
1258 }
1259
1260 /*
1261  * Interrupt functions.
1262  */
1263 static void rt2500usb_beacondone(struct urb *urb)
1264 {
1265         struct queue_entry *entry = (struct queue_entry *)urb->context;
1266         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1267
1268         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1269                 return;
1270
1271         /*
1272          * Check if this was the guardian beacon,
1273          * if that was the case we need to send the real beacon now.
1274          * Otherwise we should free the sk_buffer, the device
1275          * should be doing the rest of the work now.
1276          */
1277         if (bcn_priv->guardian_urb == urb) {
1278                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1279         } else if (bcn_priv->urb == urb) {
1280                 dev_kfree_skb(entry->skb);
1281                 entry->skb = NULL;
1282         }
1283 }
1284
1285 /*
1286  * Device probe functions.
1287  */
1288 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1289 {
1290         u16 word;
1291         u8 *mac;
1292         u8 bbp;
1293
1294         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1295
1296         /*
1297          * Start validation of the data that has been read.
1298          */
1299         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1300         if (!is_valid_ether_addr(mac)) {
1301                 random_ether_addr(mac);
1302                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1303         }
1304
1305         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1306         if (word == 0xffff) {
1307                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1308                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1309                                    ANTENNA_SW_DIVERSITY);
1310                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1311                                    ANTENNA_SW_DIVERSITY);
1312                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1313                                    LED_MODE_DEFAULT);
1314                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1315                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1316                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1317                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1318                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1319         }
1320
1321         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1322         if (word == 0xffff) {
1323                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1324                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1325                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1326                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1327                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1328         }
1329
1330         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1331         if (word == 0xffff) {
1332                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1333                                    DEFAULT_RSSI_OFFSET);
1334                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1335                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1336         }
1337
1338         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1339         if (word == 0xffff) {
1340                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1341                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1342                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1343         }
1344
1345         /*
1346          * Switch lower vgc bound to current BBP R17 value,
1347          * lower the value a bit for better quality.
1348          */
1349         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1350         bbp -= 6;
1351
1352         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1353         if (word == 0xffff) {
1354                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1355                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1356                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1357                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1358         } else {
1359                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1360                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1361         }
1362
1363         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1364         if (word == 0xffff) {
1365                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1366                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1367                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1368                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1369         }
1370
1371         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1372         if (word == 0xffff) {
1373                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1374                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1375                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1376                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1377         }
1378
1379         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1380         if (word == 0xffff) {
1381                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1382                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1383                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1384                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1385         }
1386
1387         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1388         if (word == 0xffff) {
1389                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1390                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1391                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1392                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1393         }
1394
1395         return 0;
1396 }
1397
1398 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1399 {
1400         u16 reg;
1401         u16 value;
1402         u16 eeprom;
1403
1404         /*
1405          * Read EEPROM word for configuration.
1406          */
1407         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1408
1409         /*
1410          * Identify RF chipset.
1411          */
1412         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1413         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1414         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1415
1416         if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1417                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1418                 return -ENODEV;
1419         }
1420
1421         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1422             !rt2x00_rf(rt2x00dev, RF2523) &&
1423             !rt2x00_rf(rt2x00dev, RF2524) &&
1424             !rt2x00_rf(rt2x00dev, RF2525) &&
1425             !rt2x00_rf(rt2x00dev, RF2525E) &&
1426             !rt2x00_rf(rt2x00dev, RF5222)) {
1427                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1428                 return -ENODEV;
1429         }
1430
1431         /*
1432          * Identify default antenna configuration.
1433          */
1434         rt2x00dev->default_ant.tx =
1435             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1436         rt2x00dev->default_ant.rx =
1437             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1438
1439         /*
1440          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1441          * I am not 100% sure about this, but the legacy drivers do not
1442          * indicate antenna swapping in software is required when
1443          * diversity is enabled.
1444          */
1445         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1446                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1447         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1448                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1449
1450         /*
1451          * Store led mode, for correct led behaviour.
1452          */
1453 #ifdef CONFIG_RT2X00_LIB_LEDS
1454         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1455
1456         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1457         if (value == LED_MODE_TXRX_ACTIVITY ||
1458             value == LED_MODE_DEFAULT ||
1459             value == LED_MODE_ASUS)
1460                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1461                                    LED_TYPE_ACTIVITY);
1462 #endif /* CONFIG_RT2X00_LIB_LEDS */
1463
1464         /*
1465          * Detect if this device has an hardware controlled radio.
1466          */
1467         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1468                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1469
1470         /*
1471          * Check if the BBP tuning should be disabled.
1472          */
1473         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1474         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1475                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1476
1477         /*
1478          * Read the RSSI <-> dBm offset information.
1479          */
1480         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1481         rt2x00dev->rssi_offset =
1482             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1483
1484         return 0;
1485 }
1486
1487 /*
1488  * RF value list for RF2522
1489  * Supports: 2.4 GHz
1490  */
1491 static const struct rf_channel rf_vals_bg_2522[] = {
1492         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1493         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1494         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1495         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1496         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1497         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1498         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1499         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1500         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1501         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1502         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1503         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1504         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1505         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1506 };
1507
1508 /*
1509  * RF value list for RF2523
1510  * Supports: 2.4 GHz
1511  */
1512 static const struct rf_channel rf_vals_bg_2523[] = {
1513         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1514         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1515         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1516         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1517         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1518         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1519         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1520         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1521         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1522         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1523         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1524         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1525         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1526         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1527 };
1528
1529 /*
1530  * RF value list for RF2524
1531  * Supports: 2.4 GHz
1532  */
1533 static const struct rf_channel rf_vals_bg_2524[] = {
1534         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1535         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1536         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1537         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1538         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1539         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1540         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1541         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1542         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1543         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1544         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1545         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1546         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1547         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1548 };
1549
1550 /*
1551  * RF value list for RF2525
1552  * Supports: 2.4 GHz
1553  */
1554 static const struct rf_channel rf_vals_bg_2525[] = {
1555         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1556         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1557         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1558         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1559         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1560         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1561         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1562         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1563         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1564         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1565         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1566         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1567         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1568         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1569 };
1570
1571 /*
1572  * RF value list for RF2525e
1573  * Supports: 2.4 GHz
1574  */
1575 static const struct rf_channel rf_vals_bg_2525e[] = {
1576         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1577         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1578         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1579         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1580         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1581         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1582         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1583         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1584         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1585         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1586         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1587         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1588         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1589         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1590 };
1591
1592 /*
1593  * RF value list for RF5222
1594  * Supports: 2.4 GHz & 5.2 GHz
1595  */
1596 static const struct rf_channel rf_vals_5222[] = {
1597         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1598         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1599         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1600         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1601         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1602         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1603         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1604         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1605         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1606         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1607         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1608         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1609         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1610         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1611
1612         /* 802.11 UNI / HyperLan 2 */
1613         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1614         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1615         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1616         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1617         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1618         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1619         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1620         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1621
1622         /* 802.11 HyperLan 2 */
1623         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1624         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1625         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1626         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1627         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1628         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1629         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1630         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1631         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1632         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1633
1634         /* 802.11 UNII */
1635         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1636         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1637         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1638         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1639         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1640 };
1641
1642 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1643 {
1644         struct hw_mode_spec *spec = &rt2x00dev->spec;
1645         struct channel_info *info;
1646         char *tx_power;
1647         unsigned int i;
1648
1649         /*
1650          * Initialize all hw fields.
1651          */
1652         rt2x00dev->hw->flags =
1653             IEEE80211_HW_RX_INCLUDES_FCS |
1654             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1655             IEEE80211_HW_SIGNAL_DBM |
1656             IEEE80211_HW_SUPPORTS_PS |
1657             IEEE80211_HW_PS_NULLFUNC_STACK;
1658
1659         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1660         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1661                                 rt2x00_eeprom_addr(rt2x00dev,
1662                                                    EEPROM_MAC_ADDR_0));
1663
1664         /*
1665          * Initialize hw_mode information.
1666          */
1667         spec->supported_bands = SUPPORT_BAND_2GHZ;
1668         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1669
1670         if (rt2x00_rf(rt2x00dev, RF2522)) {
1671                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1672                 spec->channels = rf_vals_bg_2522;
1673         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1674                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1675                 spec->channels = rf_vals_bg_2523;
1676         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1677                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1678                 spec->channels = rf_vals_bg_2524;
1679         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1680                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1681                 spec->channels = rf_vals_bg_2525;
1682         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1683                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1684                 spec->channels = rf_vals_bg_2525e;
1685         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1686                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1687                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1688                 spec->channels = rf_vals_5222;
1689         }
1690
1691         /*
1692          * Create channel information array
1693          */
1694         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1695         if (!info)
1696                 return -ENOMEM;
1697
1698         spec->channels_info = info;
1699
1700         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1701         for (i = 0; i < 14; i++)
1702                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1703
1704         if (spec->num_channels > 14) {
1705                 for (i = 14; i < spec->num_channels; i++)
1706                         info[i].tx_power1 = DEFAULT_TXPOWER;
1707         }
1708
1709         return 0;
1710 }
1711
1712 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1713 {
1714         int retval;
1715
1716         /*
1717          * Allocate eeprom data.
1718          */
1719         retval = rt2500usb_validate_eeprom(rt2x00dev);
1720         if (retval)
1721                 return retval;
1722
1723         retval = rt2500usb_init_eeprom(rt2x00dev);
1724         if (retval)
1725                 return retval;
1726
1727         /*
1728          * Initialize hw specifications.
1729          */
1730         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1731         if (retval)
1732                 return retval;
1733
1734         /*
1735          * This device requires the atim queue
1736          */
1737         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1738         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1739         if (!modparam_nohwcrypt) {
1740                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1741                 __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
1742         }
1743         __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1744
1745         /*
1746          * Set the rssi offset.
1747          */
1748         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1749
1750         return 0;
1751 }
1752
1753 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1754         .tx                     = rt2x00mac_tx,
1755         .start                  = rt2x00mac_start,
1756         .stop                   = rt2x00mac_stop,
1757         .add_interface          = rt2x00mac_add_interface,
1758         .remove_interface       = rt2x00mac_remove_interface,
1759         .config                 = rt2x00mac_config,
1760         .configure_filter       = rt2x00mac_configure_filter,
1761         .set_tim                = rt2x00mac_set_tim,
1762         .set_key                = rt2x00mac_set_key,
1763         .get_stats              = rt2x00mac_get_stats,
1764         .bss_info_changed       = rt2x00mac_bss_info_changed,
1765         .conf_tx                = rt2x00mac_conf_tx,
1766         .rfkill_poll            = rt2x00mac_rfkill_poll,
1767 };
1768
1769 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1770         .probe_hw               = rt2500usb_probe_hw,
1771         .initialize             = rt2x00usb_initialize,
1772         .uninitialize           = rt2x00usb_uninitialize,
1773         .clear_entry            = rt2x00usb_clear_entry,
1774         .set_device_state       = rt2500usb_set_device_state,
1775         .rfkill_poll            = rt2500usb_rfkill_poll,
1776         .link_stats             = rt2500usb_link_stats,
1777         .reset_tuner            = rt2500usb_reset_tuner,
1778         .write_tx_desc          = rt2500usb_write_tx_desc,
1779         .write_tx_data          = rt2x00usb_write_tx_data,
1780         .write_beacon           = rt2500usb_write_beacon,
1781         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1782         .kick_tx_queue          = rt2500usb_kick_tx_queue,
1783         .kill_tx_queue          = rt2x00usb_kill_tx_queue,
1784         .fill_rxdone            = rt2500usb_fill_rxdone,
1785         .config_shared_key      = rt2500usb_config_key,
1786         .config_pairwise_key    = rt2500usb_config_key,
1787         .config_filter          = rt2500usb_config_filter,
1788         .config_intf            = rt2500usb_config_intf,
1789         .config_erp             = rt2500usb_config_erp,
1790         .config_ant             = rt2500usb_config_ant,
1791         .config                 = rt2500usb_config,
1792 };
1793
1794 static const struct data_queue_desc rt2500usb_queue_rx = {
1795         .entry_num              = RX_ENTRIES,
1796         .data_size              = DATA_FRAME_SIZE,
1797         .desc_size              = RXD_DESC_SIZE,
1798         .priv_size              = sizeof(struct queue_entry_priv_usb),
1799 };
1800
1801 static const struct data_queue_desc rt2500usb_queue_tx = {
1802         .entry_num              = TX_ENTRIES,
1803         .data_size              = DATA_FRAME_SIZE,
1804         .desc_size              = TXD_DESC_SIZE,
1805         .priv_size              = sizeof(struct queue_entry_priv_usb),
1806 };
1807
1808 static const struct data_queue_desc rt2500usb_queue_bcn = {
1809         .entry_num              = BEACON_ENTRIES,
1810         .data_size              = MGMT_FRAME_SIZE,
1811         .desc_size              = TXD_DESC_SIZE,
1812         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1813 };
1814
1815 static const struct data_queue_desc rt2500usb_queue_atim = {
1816         .entry_num              = ATIM_ENTRIES,
1817         .data_size              = DATA_FRAME_SIZE,
1818         .desc_size              = TXD_DESC_SIZE,
1819         .priv_size              = sizeof(struct queue_entry_priv_usb),
1820 };
1821
1822 static const struct rt2x00_ops rt2500usb_ops = {
1823         .name                   = KBUILD_MODNAME,
1824         .max_sta_intf           = 1,
1825         .max_ap_intf            = 1,
1826         .eeprom_size            = EEPROM_SIZE,
1827         .rf_size                = RF_SIZE,
1828         .tx_queues              = NUM_TX_QUEUES,
1829         .extra_tx_headroom      = TXD_DESC_SIZE,
1830         .rx                     = &rt2500usb_queue_rx,
1831         .tx                     = &rt2500usb_queue_tx,
1832         .bcn                    = &rt2500usb_queue_bcn,
1833         .atim                   = &rt2500usb_queue_atim,
1834         .lib                    = &rt2500usb_rt2x00_ops,
1835         .hw                     = &rt2500usb_mac80211_ops,
1836 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1837         .debugfs                = &rt2500usb_rt2x00debug,
1838 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1839 };
1840
1841 /*
1842  * rt2500usb module information.
1843  */
1844 static struct usb_device_id rt2500usb_device_table[] = {
1845         /* ASUS */
1846         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1847         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1848         /* Belkin */
1849         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1850         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1851         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1852         /* Cisco Systems */
1853         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1854         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1855         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1856         /* CNet */
1857         { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
1858         /* Conceptronic */
1859         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1860         /* D-LINK */
1861         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1862         /* Gigabyte */
1863         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1864         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1865         /* Hercules */
1866         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1867         /* Melco */
1868         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1869         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1870         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1871         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1872         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1873         /* MSI */
1874         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1875         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1876         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1877         /* Ralink */
1878         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1879         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1880         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1881         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1882         /* Sagem */
1883         { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
1884         /* Siemens */
1885         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1886         /* SMC */
1887         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1888         /* Spairon */
1889         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1890         /* SURECOM */
1891         { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
1892         /* Trust */
1893         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1894         /* VTech */
1895         { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
1896         /* Zinwell */
1897         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1898         { 0, }
1899 };
1900
1901 MODULE_AUTHOR(DRV_PROJECT);
1902 MODULE_VERSION(DRV_VERSION);
1903 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1904 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1905 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1906 MODULE_LICENSE("GPL");
1907
1908 static struct usb_driver rt2500usb_driver = {
1909         .name           = KBUILD_MODNAME,
1910         .id_table       = rt2500usb_device_table,
1911         .probe          = rt2x00usb_probe,
1912         .disconnect     = rt2x00usb_disconnect,
1913         .suspend        = rt2x00usb_suspend,
1914         .resume         = rt2x00usb_resume,
1915 };
1916
1917 static int __init rt2500usb_init(void)
1918 {
1919         return usb_register(&rt2500usb_driver);
1920 }
1921
1922 static void __exit rt2500usb_exit(void)
1923 {
1924         usb_deregister(&rt2500usb_driver);
1925 }
1926
1927 module_init(rt2500usb_init);
1928 module_exit(rt2500usb_exit);