Merge branch 'for-next' into for-linus
[safe/jmp/linux-2.6] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
37
38 /*
39  * Allow hardware encryption to be disabled.
40  */
41 static int modparam_nohwcrypt = 0;
42 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
43 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
44
45 /*
46  * Register access.
47  * All access to the CSR registers will go through the methods
48  * rt2500usb_register_read and rt2500usb_register_write.
49  * BBP and RF register require indirect register access,
50  * and use the CSR registers BBPCSR and RFCSR to achieve this.
51  * These indirect registers work with busy bits,
52  * and we will try maximal REGISTER_BUSY_COUNT times to access
53  * the register while taking a REGISTER_BUSY_DELAY us delay
54  * between each attampt. When the busy bit is still set at that time,
55  * the access attempt is considered to have failed,
56  * and we will print an error.
57  * If the csr_mutex is already held then the _lock variants must
58  * be used instead.
59  */
60 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
61                                            const unsigned int offset,
62                                            u16 *value)
63 {
64         __le16 reg;
65         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
66                                       USB_VENDOR_REQUEST_IN, offset,
67                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
68         *value = le16_to_cpu(reg);
69 }
70
71 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
72                                                 const unsigned int offset,
73                                                 u16 *value)
74 {
75         __le16 reg;
76         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
77                                        USB_VENDOR_REQUEST_IN, offset,
78                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
79         *value = le16_to_cpu(reg);
80 }
81
82 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
83                                                 const unsigned int offset,
84                                                 void *value, const u16 length)
85 {
86         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
87                                       USB_VENDOR_REQUEST_IN, offset,
88                                       value, length,
89                                       REGISTER_TIMEOUT16(length));
90 }
91
92 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
93                                             const unsigned int offset,
94                                             u16 value)
95 {
96         __le16 reg = cpu_to_le16(value);
97         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
98                                       USB_VENDOR_REQUEST_OUT, offset,
99                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
100 }
101
102 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
103                                                  const unsigned int offset,
104                                                  u16 value)
105 {
106         __le16 reg = cpu_to_le16(value);
107         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
108                                        USB_VENDOR_REQUEST_OUT, offset,
109                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
110 }
111
112 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
113                                                  const unsigned int offset,
114                                                  void *value, const u16 length)
115 {
116         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
117                                       USB_VENDOR_REQUEST_OUT, offset,
118                                       value, length,
119                                       REGISTER_TIMEOUT16(length));
120 }
121
122 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
123                                   const unsigned int offset,
124                                   struct rt2x00_field16 field,
125                                   u16 *reg)
126 {
127         unsigned int i;
128
129         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
130                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
131                 if (!rt2x00_get_field16(*reg, field))
132                         return 1;
133                 udelay(REGISTER_BUSY_DELAY);
134         }
135
136         ERROR(rt2x00dev, "Indirect register access failed: "
137               "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
138         *reg = ~0;
139
140         return 0;
141 }
142
143 #define WAIT_FOR_BBP(__dev, __reg) \
144         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
145 #define WAIT_FOR_RF(__dev, __reg) \
146         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
147
148 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
149                                 const unsigned int word, const u8 value)
150 {
151         u16 reg;
152
153         mutex_lock(&rt2x00dev->csr_mutex);
154
155         /*
156          * Wait until the BBP becomes available, afterwards we
157          * can safely write the new data into the register.
158          */
159         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
160                 reg = 0;
161                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
162                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
163                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
164
165                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
166         }
167
168         mutex_unlock(&rt2x00dev->csr_mutex);
169 }
170
171 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
172                                const unsigned int word, u8 *value)
173 {
174         u16 reg;
175
176         mutex_lock(&rt2x00dev->csr_mutex);
177
178         /*
179          * Wait until the BBP becomes available, afterwards we
180          * can safely write the read request into the register.
181          * After the data has been written, we wait until hardware
182          * returns the correct value, if at any time the register
183          * doesn't become available in time, reg will be 0xffffffff
184          * which means we return 0xff to the caller.
185          */
186         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
187                 reg = 0;
188                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
189                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
190
191                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
192
193                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
194                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
195         }
196
197         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
198
199         mutex_unlock(&rt2x00dev->csr_mutex);
200 }
201
202 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
203                                const unsigned int word, const u32 value)
204 {
205         u16 reg;
206
207         mutex_lock(&rt2x00dev->csr_mutex);
208
209         /*
210          * Wait until the RF becomes available, afterwards we
211          * can safely write the new data into the register.
212          */
213         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
214                 reg = 0;
215                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
216                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
217
218                 reg = 0;
219                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
220                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
221                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
222                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
223
224                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
225                 rt2x00_rf_write(rt2x00dev, word, value);
226         }
227
228         mutex_unlock(&rt2x00dev->csr_mutex);
229 }
230
231 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
232 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
233                                      const unsigned int offset,
234                                      u32 *value)
235 {
236         rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
237 }
238
239 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
240                                       const unsigned int offset,
241                                       u32 value)
242 {
243         rt2500usb_register_write(rt2x00dev, offset, value);
244 }
245
246 static const struct rt2x00debug rt2500usb_rt2x00debug = {
247         .owner  = THIS_MODULE,
248         .csr    = {
249                 .read           = _rt2500usb_register_read,
250                 .write          = _rt2500usb_register_write,
251                 .flags          = RT2X00DEBUGFS_OFFSET,
252                 .word_base      = CSR_REG_BASE,
253                 .word_size      = sizeof(u16),
254                 .word_count     = CSR_REG_SIZE / sizeof(u16),
255         },
256         .eeprom = {
257                 .read           = rt2x00_eeprom_read,
258                 .write          = rt2x00_eeprom_write,
259                 .word_base      = EEPROM_BASE,
260                 .word_size      = sizeof(u16),
261                 .word_count     = EEPROM_SIZE / sizeof(u16),
262         },
263         .bbp    = {
264                 .read           = rt2500usb_bbp_read,
265                 .write          = rt2500usb_bbp_write,
266                 .word_base      = BBP_BASE,
267                 .word_size      = sizeof(u8),
268                 .word_count     = BBP_SIZE / sizeof(u8),
269         },
270         .rf     = {
271                 .read           = rt2x00_rf_read,
272                 .write          = rt2500usb_rf_write,
273                 .word_base      = RF_BASE,
274                 .word_size      = sizeof(u32),
275                 .word_count     = RF_SIZE / sizeof(u32),
276         },
277 };
278 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
279
280 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
281 {
282         u16 reg;
283
284         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
285         return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
286 }
287
288 #ifdef CONFIG_RT2X00_LIB_LEDS
289 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
290                                      enum led_brightness brightness)
291 {
292         struct rt2x00_led *led =
293             container_of(led_cdev, struct rt2x00_led, led_dev);
294         unsigned int enabled = brightness != LED_OFF;
295         u16 reg;
296
297         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
298
299         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
300                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
301         else if (led->type == LED_TYPE_ACTIVITY)
302                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
303
304         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
305 }
306
307 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
308                                unsigned long *delay_on,
309                                unsigned long *delay_off)
310 {
311         struct rt2x00_led *led =
312             container_of(led_cdev, struct rt2x00_led, led_dev);
313         u16 reg;
314
315         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
316         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
317         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
318         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
319
320         return 0;
321 }
322
323 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
324                                struct rt2x00_led *led,
325                                enum led_type type)
326 {
327         led->rt2x00dev = rt2x00dev;
328         led->type = type;
329         led->led_dev.brightness_set = rt2500usb_brightness_set;
330         led->led_dev.blink_set = rt2500usb_blink_set;
331         led->flags = LED_INITIALIZED;
332 }
333 #endif /* CONFIG_RT2X00_LIB_LEDS */
334
335 /*
336  * Configuration handlers.
337  */
338
339 /*
340  * rt2500usb does not differentiate between shared and pairwise
341  * keys, so we should use the same function for both key types.
342  */
343 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
344                                 struct rt2x00lib_crypto *crypto,
345                                 struct ieee80211_key_conf *key)
346 {
347         int timeout;
348         u32 mask;
349         u16 reg;
350
351         if (crypto->cmd == SET_KEY) {
352                 /*
353                  * Pairwise key will always be entry 0, but this
354                  * could collide with a shared key on the same
355                  * position...
356                  */
357                 mask = TXRX_CSR0_KEY_ID.bit_mask;
358
359                 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
360                 reg &= mask;
361
362                 if (reg && reg == mask)
363                         return -ENOSPC;
364
365                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
366
367                 key->hw_key_idx += reg ? ffz(reg) : 0;
368
369                 /*
370                  * The encryption key doesn't fit within the CSR cache,
371                  * this means we should allocate it separately and use
372                  * rt2x00usb_vendor_request() to send the key to the hardware.
373                  */
374                 reg = KEY_ENTRY(key->hw_key_idx);
375                 timeout = REGISTER_TIMEOUT32(sizeof(crypto->key));
376                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
377                                                     USB_VENDOR_REQUEST_OUT, reg,
378                                                     crypto->key,
379                                                     sizeof(crypto->key),
380                                                     timeout);
381
382                 /*
383                  * The driver does not support the IV/EIV generation
384                  * in hardware. However it demands the data to be provided
385                  * both separately as well as inside the frame.
386                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
387                  * to ensure rt2x00lib will not strip the data from the
388                  * frame after the copy, now we must tell mac80211
389                  * to generate the IV/EIV data.
390                  */
391                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
392                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
393         }
394
395         /*
396          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
397          * a particular key is valid.
398          */
399         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
400         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
401         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
402
403         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
404         if (crypto->cmd == SET_KEY)
405                 mask |= 1 << key->hw_key_idx;
406         else if (crypto->cmd == DISABLE_KEY)
407                 mask &= ~(1 << key->hw_key_idx);
408         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
409         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
410
411         return 0;
412 }
413
414 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
415                                     const unsigned int filter_flags)
416 {
417         u16 reg;
418
419         /*
420          * Start configuration steps.
421          * Note that the version error will always be dropped
422          * and broadcast frames will always be accepted since
423          * there is no filter for it at this time.
424          */
425         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
426         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
427                            !(filter_flags & FIF_FCSFAIL));
428         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
429                            !(filter_flags & FIF_PLCPFAIL));
430         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
431                            !(filter_flags & FIF_CONTROL));
432         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
433                            !(filter_flags & FIF_PROMISC_IN_BSS));
434         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
435                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
436                            !rt2x00dev->intf_ap_count);
437         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
438         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
439                            !(filter_flags & FIF_ALLMULTI));
440         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
441         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
442 }
443
444 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
445                                   struct rt2x00_intf *intf,
446                                   struct rt2x00intf_conf *conf,
447                                   const unsigned int flags)
448 {
449         unsigned int bcn_preload;
450         u16 reg;
451
452         if (flags & CONFIG_UPDATE_TYPE) {
453                 /*
454                  * Enable beacon config
455                  */
456                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
457                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
458                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
459                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
460                                    2 * (conf->type != NL80211_IFTYPE_STATION));
461                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
462
463                 /*
464                  * Enable synchronisation.
465                  */
466                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
467                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
468                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
469
470                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
471                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
472                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
473                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
474                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
475         }
476
477         if (flags & CONFIG_UPDATE_MAC)
478                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
479                                               (3 * sizeof(__le16)));
480
481         if (flags & CONFIG_UPDATE_BSSID)
482                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
483                                               (3 * sizeof(__le16)));
484 }
485
486 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
487                                  struct rt2x00lib_erp *erp)
488 {
489         u16 reg;
490
491         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
492         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
493                            !!erp->short_preamble);
494         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
495
496         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
497
498         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
499         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL, erp->beacon_int * 4);
500         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
501
502         rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
503         rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
504         rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
505 }
506
507 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
508                                  struct antenna_setup *ant)
509 {
510         u8 r2;
511         u8 r14;
512         u16 csr5;
513         u16 csr6;
514
515         /*
516          * We should never come here because rt2x00lib is supposed
517          * to catch this and send us the correct antenna explicitely.
518          */
519         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
520                ant->tx == ANTENNA_SW_DIVERSITY);
521
522         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
523         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
524         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
525         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
526
527         /*
528          * Configure the TX antenna.
529          */
530         switch (ant->tx) {
531         case ANTENNA_HW_DIVERSITY:
532                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
533                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
534                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
535                 break;
536         case ANTENNA_A:
537                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
538                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
539                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
540                 break;
541         case ANTENNA_B:
542         default:
543                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
544                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
545                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
546                 break;
547         }
548
549         /*
550          * Configure the RX antenna.
551          */
552         switch (ant->rx) {
553         case ANTENNA_HW_DIVERSITY:
554                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
555                 break;
556         case ANTENNA_A:
557                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
558                 break;
559         case ANTENNA_B:
560         default:
561                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
562                 break;
563         }
564
565         /*
566          * RT2525E and RT5222 need to flip TX I/Q
567          */
568         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
569                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
570                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
571                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
572
573                 /*
574                  * RT2525E does not need RX I/Q Flip.
575                  */
576                 if (rt2x00_rf(rt2x00dev, RF2525E))
577                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
578         } else {
579                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
580                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
581         }
582
583         rt2500usb_bbp_write(rt2x00dev, 2, r2);
584         rt2500usb_bbp_write(rt2x00dev, 14, r14);
585         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
586         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
587 }
588
589 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
590                                      struct rf_channel *rf, const int txpower)
591 {
592         /*
593          * Set TXpower.
594          */
595         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
596
597         /*
598          * For RT2525E we should first set the channel to half band higher.
599          */
600         if (rt2x00_rf(rt2x00dev, RF2525E)) {
601                 static const u32 vals[] = {
602                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
603                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
604                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
605                         0x00000902, 0x00000906
606                 };
607
608                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
609                 if (rf->rf4)
610                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
611         }
612
613         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
614         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
615         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
616         if (rf->rf4)
617                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
618 }
619
620 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
621                                      const int txpower)
622 {
623         u32 rf3;
624
625         rt2x00_rf_read(rt2x00dev, 3, &rf3);
626         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
627         rt2500usb_rf_write(rt2x00dev, 3, rf3);
628 }
629
630 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
631                                 struct rt2x00lib_conf *libconf)
632 {
633         enum dev_state state =
634             (libconf->conf->flags & IEEE80211_CONF_PS) ?
635                 STATE_SLEEP : STATE_AWAKE;
636         u16 reg;
637
638         if (state == STATE_SLEEP) {
639                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
640                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
641                                    rt2x00dev->beacon_int - 20);
642                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
643                                    libconf->conf->listen_interval - 1);
644
645                 /* We must first disable autowake before it can be enabled */
646                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
647                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
648
649                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
650                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
651         }
652
653         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
654 }
655
656 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
657                              struct rt2x00lib_conf *libconf,
658                              const unsigned int flags)
659 {
660         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
661                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
662                                          libconf->conf->power_level);
663         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
664             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
665                 rt2500usb_config_txpower(rt2x00dev,
666                                          libconf->conf->power_level);
667         if (flags & IEEE80211_CONF_CHANGE_PS)
668                 rt2500usb_config_ps(rt2x00dev, libconf);
669 }
670
671 /*
672  * Link tuning
673  */
674 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
675                                  struct link_qual *qual)
676 {
677         u16 reg;
678
679         /*
680          * Update FCS error count from register.
681          */
682         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
683         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
684
685         /*
686          * Update False CCA count from register.
687          */
688         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
689         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
690 }
691
692 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
693                                   struct link_qual *qual)
694 {
695         u16 eeprom;
696         u16 value;
697
698         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
699         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
700         rt2500usb_bbp_write(rt2x00dev, 24, value);
701
702         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
703         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
704         rt2500usb_bbp_write(rt2x00dev, 25, value);
705
706         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
707         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
708         rt2500usb_bbp_write(rt2x00dev, 61, value);
709
710         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
711         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
712         rt2500usb_bbp_write(rt2x00dev, 17, value);
713
714         qual->vgc_level = value;
715 }
716
717 /*
718  * Initialization functions.
719  */
720 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
721 {
722         u16 reg;
723
724         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
725                                     USB_MODE_TEST, REGISTER_TIMEOUT);
726         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
727                                     0x00f0, REGISTER_TIMEOUT);
728
729         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
730         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
731         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
732
733         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
734         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
735
736         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
737         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
738         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
739         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
740         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
741
742         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
743         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
744         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
745         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
746         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
747
748         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
749         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
750         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
751         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
752         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
753         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
754
755         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
756         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
757         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
758         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
759         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
760         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
761
762         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
763         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
764         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
765         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
766         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
767         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
768
769         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
770         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
771         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
772         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
773         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
774         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
775
776         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
777         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
778         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
779         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
780         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
781         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
782
783         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
784         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
785
786         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
787                 return -EBUSY;
788
789         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
790         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
791         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
792         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
793         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
794
795         if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
796                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
797                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
798         } else {
799                 reg = 0;
800                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
801                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
802         }
803         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
804
805         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
806         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
807         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
808         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
809
810         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
811         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
812                            rt2x00dev->rx->data_size);
813         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
814
815         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
816         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
817         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
818         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
819
820         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
821         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
822         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
823
824         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
825         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
826         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
827
828         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
829         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
830         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
831
832         return 0;
833 }
834
835 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
836 {
837         unsigned int i;
838         u8 value;
839
840         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
841                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
842                 if ((value != 0xff) && (value != 0x00))
843                         return 0;
844                 udelay(REGISTER_BUSY_DELAY);
845         }
846
847         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
848         return -EACCES;
849 }
850
851 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
852 {
853         unsigned int i;
854         u16 eeprom;
855         u8 value;
856         u8 reg_id;
857
858         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
859                 return -EACCES;
860
861         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
862         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
863         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
864         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
865         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
866         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
867         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
868         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
869         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
870         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
871         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
872         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
873         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
874         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
875         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
876         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
877         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
878         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
879         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
880         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
881         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
882         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
883         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
884         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
885         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
886         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
887         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
888         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
889         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
890         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
891         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
892
893         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
894                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
895
896                 if (eeprom != 0xffff && eeprom != 0x0000) {
897                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
898                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
899                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
900                 }
901         }
902
903         return 0;
904 }
905
906 /*
907  * Device state switch handlers.
908  */
909 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
910                                 enum dev_state state)
911 {
912         u16 reg;
913
914         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
915         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
916                            (state == STATE_RADIO_RX_OFF) ||
917                            (state == STATE_RADIO_RX_OFF_LINK));
918         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
919 }
920
921 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
922 {
923         /*
924          * Initialize all registers.
925          */
926         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
927                      rt2500usb_init_bbp(rt2x00dev)))
928                 return -EIO;
929
930         return 0;
931 }
932
933 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
934 {
935         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
936         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
937
938         /*
939          * Disable synchronisation.
940          */
941         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
942
943         rt2x00usb_disable_radio(rt2x00dev);
944 }
945
946 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
947                                enum dev_state state)
948 {
949         u16 reg;
950         u16 reg2;
951         unsigned int i;
952         char put_to_sleep;
953         char bbp_state;
954         char rf_state;
955
956         put_to_sleep = (state != STATE_AWAKE);
957
958         reg = 0;
959         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
960         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
961         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
962         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
963         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
964         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
965
966         /*
967          * Device is not guaranteed to be in the requested state yet.
968          * We must wait until the register indicates that the
969          * device has entered the correct state.
970          */
971         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
972                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
973                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
974                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
975                 if (bbp_state == state && rf_state == state)
976                         return 0;
977                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
978                 msleep(30);
979         }
980
981         return -EBUSY;
982 }
983
984 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
985                                       enum dev_state state)
986 {
987         int retval = 0;
988
989         switch (state) {
990         case STATE_RADIO_ON:
991                 retval = rt2500usb_enable_radio(rt2x00dev);
992                 break;
993         case STATE_RADIO_OFF:
994                 rt2500usb_disable_radio(rt2x00dev);
995                 break;
996         case STATE_RADIO_RX_ON:
997         case STATE_RADIO_RX_ON_LINK:
998         case STATE_RADIO_RX_OFF:
999         case STATE_RADIO_RX_OFF_LINK:
1000                 rt2500usb_toggle_rx(rt2x00dev, state);
1001                 break;
1002         case STATE_RADIO_IRQ_ON:
1003         case STATE_RADIO_IRQ_OFF:
1004                 /* No support, but no error either */
1005                 break;
1006         case STATE_DEEP_SLEEP:
1007         case STATE_SLEEP:
1008         case STATE_STANDBY:
1009         case STATE_AWAKE:
1010                 retval = rt2500usb_set_state(rt2x00dev, state);
1011                 break;
1012         default:
1013                 retval = -ENOTSUPP;
1014                 break;
1015         }
1016
1017         if (unlikely(retval))
1018                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1019                       state, retval);
1020
1021         return retval;
1022 }
1023
1024 /*
1025  * TX descriptor initialization
1026  */
1027 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1028                                     struct sk_buff *skb,
1029                                     struct txentry_desc *txdesc)
1030 {
1031         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1032         __le32 *txd = skbdesc->desc;
1033         u32 word;
1034
1035         /*
1036          * Start writing the descriptor words.
1037          */
1038         rt2x00_desc_read(txd, 1, &word);
1039         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1040         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1041         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1042         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1043         rt2x00_desc_write(txd, 1, word);
1044
1045         rt2x00_desc_read(txd, 2, &word);
1046         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1047         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1048         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1049         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1050         rt2x00_desc_write(txd, 2, word);
1051
1052         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1053                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1054                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1055         }
1056
1057         rt2x00_desc_read(txd, 0, &word);
1058         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1059         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1060                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1061         rt2x00_set_field32(&word, TXD_W0_ACK,
1062                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1063         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1064                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1065         rt2x00_set_field32(&word, TXD_W0_OFDM,
1066                            (txdesc->rate_mode == RATE_MODE_OFDM));
1067         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1068                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1069         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1070         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1071         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1072         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1073         rt2x00_desc_write(txd, 0, word);
1074 }
1075
1076 /*
1077  * TX data initialization
1078  */
1079 static void rt2500usb_beacondone(struct urb *urb);
1080
1081 static void rt2500usb_write_beacon(struct queue_entry *entry)
1082 {
1083         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1084         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1085         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1086         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1087         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1088         int length;
1089         u16 reg;
1090
1091         /*
1092          * Add the descriptor in front of the skb.
1093          */
1094         skb_push(entry->skb, entry->queue->desc_size);
1095         memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1096         skbdesc->desc = entry->skb->data;
1097
1098         /*
1099          * Disable beaconing while we are reloading the beacon data,
1100          * otherwise we might be sending out invalid data.
1101          */
1102         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1103         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1104         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1105
1106         /*
1107          * USB devices cannot blindly pass the skb->len as the
1108          * length of the data to usb_fill_bulk_urb. Pass the skb
1109          * to the driver to determine what the length should be.
1110          */
1111         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1112
1113         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1114                           entry->skb->data, length, rt2500usb_beacondone,
1115                           entry);
1116
1117         /*
1118          * Second we need to create the guardian byte.
1119          * We only need a single byte, so lets recycle
1120          * the 'flags' field we are not using for beacons.
1121          */
1122         bcn_priv->guardian_data = 0;
1123         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1124                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1125                           entry);
1126
1127         /*
1128          * Send out the guardian byte.
1129          */
1130         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1131 }
1132
1133 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1134 {
1135         int length;
1136
1137         /*
1138          * The length _must_ be a multiple of 2,
1139          * but it must _not_ be a multiple of the USB packet size.
1140          */
1141         length = roundup(entry->skb->len, 2);
1142         length += (2 * !(length % entry->queue->usb_maxpacket));
1143
1144         return length;
1145 }
1146
1147 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1148                                     const enum data_queue_qid queue)
1149 {
1150         u16 reg, reg0;
1151
1152         if (queue != QID_BEACON) {
1153                 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1154                 return;
1155         }
1156
1157         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1158         if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1159                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1160                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1161                 reg0 = reg;
1162                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1163                 /*
1164                  * Beacon generation will fail initially.
1165                  * To prevent this we need to change the TXRX_CSR19
1166                  * register several times (reg0 is the same as reg
1167                  * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1168                  * and 1 in reg).
1169                  */
1170                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1171                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1172                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1173                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1174                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1175         }
1176 }
1177
1178 /*
1179  * RX control handlers
1180  */
1181 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1182                                   struct rxdone_entry_desc *rxdesc)
1183 {
1184         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1185         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1186         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1187         __le32 *rxd =
1188             (__le32 *)(entry->skb->data +
1189                        (entry_priv->urb->actual_length -
1190                         entry->queue->desc_size));
1191         u32 word0;
1192         u32 word1;
1193
1194         /*
1195          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1196          * frame data in rt2x00usb.
1197          */
1198         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1199         rxd = (__le32 *)skbdesc->desc;
1200
1201         /*
1202          * It is now safe to read the descriptor on all architectures.
1203          */
1204         rt2x00_desc_read(rxd, 0, &word0);
1205         rt2x00_desc_read(rxd, 1, &word1);
1206
1207         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1208                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1209         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1210                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1211
1212         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1213                 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1214                 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1215                         rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1216         }
1217
1218         if (rxdesc->cipher != CIPHER_NONE) {
1219                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1220                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1221                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1222
1223                 /* ICV is located at the end of frame */
1224
1225                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1226                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1227                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1228                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1229                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1230         }
1231
1232         /*
1233          * Obtain the status about this packet.
1234          * When frame was received with an OFDM bitrate,
1235          * the signal is the PLCP value. If it was received with
1236          * a CCK bitrate the signal is the rate in 100kbit/s.
1237          */
1238         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1239         rxdesc->rssi =
1240             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1241         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1242
1243         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1244                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1245         else
1246                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1247         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1248                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1249
1250         /*
1251          * Adjust the skb memory window to the frame boundaries.
1252          */
1253         skb_trim(entry->skb, rxdesc->size);
1254 }
1255
1256 /*
1257  * Interrupt functions.
1258  */
1259 static void rt2500usb_beacondone(struct urb *urb)
1260 {
1261         struct queue_entry *entry = (struct queue_entry *)urb->context;
1262         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1263
1264         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1265                 return;
1266
1267         /*
1268          * Check if this was the guardian beacon,
1269          * if that was the case we need to send the real beacon now.
1270          * Otherwise we should free the sk_buffer, the device
1271          * should be doing the rest of the work now.
1272          */
1273         if (bcn_priv->guardian_urb == urb) {
1274                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1275         } else if (bcn_priv->urb == urb) {
1276                 dev_kfree_skb(entry->skb);
1277                 entry->skb = NULL;
1278         }
1279 }
1280
1281 /*
1282  * Device probe functions.
1283  */
1284 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1285 {
1286         u16 word;
1287         u8 *mac;
1288         u8 bbp;
1289
1290         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1291
1292         /*
1293          * Start validation of the data that has been read.
1294          */
1295         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1296         if (!is_valid_ether_addr(mac)) {
1297                 random_ether_addr(mac);
1298                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1299         }
1300
1301         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1302         if (word == 0xffff) {
1303                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1304                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1305                                    ANTENNA_SW_DIVERSITY);
1306                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1307                                    ANTENNA_SW_DIVERSITY);
1308                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1309                                    LED_MODE_DEFAULT);
1310                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1311                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1312                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1313                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1314                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1315         }
1316
1317         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1318         if (word == 0xffff) {
1319                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1320                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1321                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1322                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1323                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1324         }
1325
1326         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1327         if (word == 0xffff) {
1328                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1329                                    DEFAULT_RSSI_OFFSET);
1330                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1331                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1332         }
1333
1334         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1335         if (word == 0xffff) {
1336                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1337                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1338                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1339         }
1340
1341         /*
1342          * Switch lower vgc bound to current BBP R17 value,
1343          * lower the value a bit for better quality.
1344          */
1345         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1346         bbp -= 6;
1347
1348         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1349         if (word == 0xffff) {
1350                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1351                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1352                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1353                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1354         } else {
1355                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1356                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1357         }
1358
1359         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1360         if (word == 0xffff) {
1361                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1362                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1363                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1364                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1365         }
1366
1367         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1368         if (word == 0xffff) {
1369                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1370                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1371                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1372                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1373         }
1374
1375         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1376         if (word == 0xffff) {
1377                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1378                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1379                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1380                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1381         }
1382
1383         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1384         if (word == 0xffff) {
1385                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1386                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1387                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1388                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1389         }
1390
1391         return 0;
1392 }
1393
1394 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1395 {
1396         u16 reg;
1397         u16 value;
1398         u16 eeprom;
1399
1400         /*
1401          * Read EEPROM word for configuration.
1402          */
1403         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1404
1405         /*
1406          * Identify RF chipset.
1407          */
1408         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1409         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1410         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1411
1412         if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1413                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1414                 return -ENODEV;
1415         }
1416
1417         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1418             !rt2x00_rf(rt2x00dev, RF2523) &&
1419             !rt2x00_rf(rt2x00dev, RF2524) &&
1420             !rt2x00_rf(rt2x00dev, RF2525) &&
1421             !rt2x00_rf(rt2x00dev, RF2525E) &&
1422             !rt2x00_rf(rt2x00dev, RF5222)) {
1423                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1424                 return -ENODEV;
1425         }
1426
1427         /*
1428          * Identify default antenna configuration.
1429          */
1430         rt2x00dev->default_ant.tx =
1431             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1432         rt2x00dev->default_ant.rx =
1433             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1434
1435         /*
1436          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1437          * I am not 100% sure about this, but the legacy drivers do not
1438          * indicate antenna swapping in software is required when
1439          * diversity is enabled.
1440          */
1441         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1442                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1443         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1444                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1445
1446         /*
1447          * Store led mode, for correct led behaviour.
1448          */
1449 #ifdef CONFIG_RT2X00_LIB_LEDS
1450         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1451
1452         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1453         if (value == LED_MODE_TXRX_ACTIVITY ||
1454             value == LED_MODE_DEFAULT ||
1455             value == LED_MODE_ASUS)
1456                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1457                                    LED_TYPE_ACTIVITY);
1458 #endif /* CONFIG_RT2X00_LIB_LEDS */
1459
1460         /*
1461          * Detect if this device has an hardware controlled radio.
1462          */
1463         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1464                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1465
1466         /*
1467          * Check if the BBP tuning should be disabled.
1468          */
1469         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1470         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1471                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1472
1473         /*
1474          * Read the RSSI <-> dBm offset information.
1475          */
1476         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1477         rt2x00dev->rssi_offset =
1478             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1479
1480         return 0;
1481 }
1482
1483 /*
1484  * RF value list for RF2522
1485  * Supports: 2.4 GHz
1486  */
1487 static const struct rf_channel rf_vals_bg_2522[] = {
1488         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1489         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1490         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1491         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1492         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1493         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1494         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1495         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1496         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1497         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1498         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1499         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1500         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1501         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1502 };
1503
1504 /*
1505  * RF value list for RF2523
1506  * Supports: 2.4 GHz
1507  */
1508 static const struct rf_channel rf_vals_bg_2523[] = {
1509         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1510         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1511         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1512         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1513         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1514         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1515         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1516         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1517         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1518         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1519         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1520         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1521         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1522         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1523 };
1524
1525 /*
1526  * RF value list for RF2524
1527  * Supports: 2.4 GHz
1528  */
1529 static const struct rf_channel rf_vals_bg_2524[] = {
1530         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1531         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1532         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1533         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1534         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1535         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1536         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1537         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1538         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1539         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1540         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1541         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1542         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1543         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1544 };
1545
1546 /*
1547  * RF value list for RF2525
1548  * Supports: 2.4 GHz
1549  */
1550 static const struct rf_channel rf_vals_bg_2525[] = {
1551         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1552         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1553         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1554         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1555         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1556         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1557         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1558         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1559         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1560         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1561         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1562         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1563         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1564         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1565 };
1566
1567 /*
1568  * RF value list for RF2525e
1569  * Supports: 2.4 GHz
1570  */
1571 static const struct rf_channel rf_vals_bg_2525e[] = {
1572         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1573         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1574         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1575         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1576         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1577         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1578         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1579         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1580         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1581         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1582         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1583         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1584         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1585         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1586 };
1587
1588 /*
1589  * RF value list for RF5222
1590  * Supports: 2.4 GHz & 5.2 GHz
1591  */
1592 static const struct rf_channel rf_vals_5222[] = {
1593         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1594         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1595         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1596         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1597         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1598         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1599         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1600         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1601         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1602         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1603         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1604         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1605         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1606         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1607
1608         /* 802.11 UNI / HyperLan 2 */
1609         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1610         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1611         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1612         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1613         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1614         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1615         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1616         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1617
1618         /* 802.11 HyperLan 2 */
1619         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1620         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1621         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1622         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1623         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1624         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1625         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1626         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1627         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1628         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1629
1630         /* 802.11 UNII */
1631         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1632         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1633         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1634         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1635         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1636 };
1637
1638 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1639 {
1640         struct hw_mode_spec *spec = &rt2x00dev->spec;
1641         struct channel_info *info;
1642         char *tx_power;
1643         unsigned int i;
1644
1645         /*
1646          * Initialize all hw fields.
1647          */
1648         rt2x00dev->hw->flags =
1649             IEEE80211_HW_RX_INCLUDES_FCS |
1650             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1651             IEEE80211_HW_SIGNAL_DBM |
1652             IEEE80211_HW_SUPPORTS_PS |
1653             IEEE80211_HW_PS_NULLFUNC_STACK;
1654
1655         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1656         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1657                                 rt2x00_eeprom_addr(rt2x00dev,
1658                                                    EEPROM_MAC_ADDR_0));
1659
1660         /*
1661          * Initialize hw_mode information.
1662          */
1663         spec->supported_bands = SUPPORT_BAND_2GHZ;
1664         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1665
1666         if (rt2x00_rf(rt2x00dev, RF2522)) {
1667                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1668                 spec->channels = rf_vals_bg_2522;
1669         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1670                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1671                 spec->channels = rf_vals_bg_2523;
1672         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1673                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1674                 spec->channels = rf_vals_bg_2524;
1675         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1676                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1677                 spec->channels = rf_vals_bg_2525;
1678         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1679                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1680                 spec->channels = rf_vals_bg_2525e;
1681         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1682                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1683                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1684                 spec->channels = rf_vals_5222;
1685         }
1686
1687         /*
1688          * Create channel information array
1689          */
1690         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1691         if (!info)
1692                 return -ENOMEM;
1693
1694         spec->channels_info = info;
1695
1696         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1697         for (i = 0; i < 14; i++)
1698                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1699
1700         if (spec->num_channels > 14) {
1701                 for (i = 14; i < spec->num_channels; i++)
1702                         info[i].tx_power1 = DEFAULT_TXPOWER;
1703         }
1704
1705         return 0;
1706 }
1707
1708 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1709 {
1710         int retval;
1711
1712         /*
1713          * Allocate eeprom data.
1714          */
1715         retval = rt2500usb_validate_eeprom(rt2x00dev);
1716         if (retval)
1717                 return retval;
1718
1719         retval = rt2500usb_init_eeprom(rt2x00dev);
1720         if (retval)
1721                 return retval;
1722
1723         /*
1724          * Initialize hw specifications.
1725          */
1726         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1727         if (retval)
1728                 return retval;
1729
1730         /*
1731          * This device requires the atim queue
1732          */
1733         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1734         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1735         if (!modparam_nohwcrypt) {
1736                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1737                 __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
1738         }
1739         __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1740
1741         /*
1742          * Set the rssi offset.
1743          */
1744         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1745
1746         return 0;
1747 }
1748
1749 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1750         .tx                     = rt2x00mac_tx,
1751         .start                  = rt2x00mac_start,
1752         .stop                   = rt2x00mac_stop,
1753         .add_interface          = rt2x00mac_add_interface,
1754         .remove_interface       = rt2x00mac_remove_interface,
1755         .config                 = rt2x00mac_config,
1756         .configure_filter       = rt2x00mac_configure_filter,
1757         .set_tim                = rt2x00mac_set_tim,
1758         .set_key                = rt2x00mac_set_key,
1759         .get_stats              = rt2x00mac_get_stats,
1760         .bss_info_changed       = rt2x00mac_bss_info_changed,
1761         .conf_tx                = rt2x00mac_conf_tx,
1762         .rfkill_poll            = rt2x00mac_rfkill_poll,
1763 };
1764
1765 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1766         .probe_hw               = rt2500usb_probe_hw,
1767         .initialize             = rt2x00usb_initialize,
1768         .uninitialize           = rt2x00usb_uninitialize,
1769         .clear_entry            = rt2x00usb_clear_entry,
1770         .set_device_state       = rt2500usb_set_device_state,
1771         .rfkill_poll            = rt2500usb_rfkill_poll,
1772         .link_stats             = rt2500usb_link_stats,
1773         .reset_tuner            = rt2500usb_reset_tuner,
1774         .write_tx_desc          = rt2500usb_write_tx_desc,
1775         .write_tx_data          = rt2x00usb_write_tx_data,
1776         .write_beacon           = rt2500usb_write_beacon,
1777         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1778         .kick_tx_queue          = rt2500usb_kick_tx_queue,
1779         .kill_tx_queue          = rt2x00usb_kill_tx_queue,
1780         .fill_rxdone            = rt2500usb_fill_rxdone,
1781         .config_shared_key      = rt2500usb_config_key,
1782         .config_pairwise_key    = rt2500usb_config_key,
1783         .config_filter          = rt2500usb_config_filter,
1784         .config_intf            = rt2500usb_config_intf,
1785         .config_erp             = rt2500usb_config_erp,
1786         .config_ant             = rt2500usb_config_ant,
1787         .config                 = rt2500usb_config,
1788 };
1789
1790 static const struct data_queue_desc rt2500usb_queue_rx = {
1791         .entry_num              = RX_ENTRIES,
1792         .data_size              = DATA_FRAME_SIZE,
1793         .desc_size              = RXD_DESC_SIZE,
1794         .priv_size              = sizeof(struct queue_entry_priv_usb),
1795 };
1796
1797 static const struct data_queue_desc rt2500usb_queue_tx = {
1798         .entry_num              = TX_ENTRIES,
1799         .data_size              = DATA_FRAME_SIZE,
1800         .desc_size              = TXD_DESC_SIZE,
1801         .priv_size              = sizeof(struct queue_entry_priv_usb),
1802 };
1803
1804 static const struct data_queue_desc rt2500usb_queue_bcn = {
1805         .entry_num              = BEACON_ENTRIES,
1806         .data_size              = MGMT_FRAME_SIZE,
1807         .desc_size              = TXD_DESC_SIZE,
1808         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1809 };
1810
1811 static const struct data_queue_desc rt2500usb_queue_atim = {
1812         .entry_num              = ATIM_ENTRIES,
1813         .data_size              = DATA_FRAME_SIZE,
1814         .desc_size              = TXD_DESC_SIZE,
1815         .priv_size              = sizeof(struct queue_entry_priv_usb),
1816 };
1817
1818 static const struct rt2x00_ops rt2500usb_ops = {
1819         .name                   = KBUILD_MODNAME,
1820         .max_sta_intf           = 1,
1821         .max_ap_intf            = 1,
1822         .eeprom_size            = EEPROM_SIZE,
1823         .rf_size                = RF_SIZE,
1824         .tx_queues              = NUM_TX_QUEUES,
1825         .extra_tx_headroom      = TXD_DESC_SIZE,
1826         .rx                     = &rt2500usb_queue_rx,
1827         .tx                     = &rt2500usb_queue_tx,
1828         .bcn                    = &rt2500usb_queue_bcn,
1829         .atim                   = &rt2500usb_queue_atim,
1830         .lib                    = &rt2500usb_rt2x00_ops,
1831         .hw                     = &rt2500usb_mac80211_ops,
1832 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1833         .debugfs                = &rt2500usb_rt2x00debug,
1834 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1835 };
1836
1837 /*
1838  * rt2500usb module information.
1839  */
1840 static struct usb_device_id rt2500usb_device_table[] = {
1841         /* ASUS */
1842         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1843         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1844         /* Belkin */
1845         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1846         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1847         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1848         /* Cisco Systems */
1849         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1850         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1851         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1852         /* CNet */
1853         { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
1854         /* Conceptronic */
1855         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1856         /* D-LINK */
1857         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1858         /* Gigabyte */
1859         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1860         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1861         /* Hercules */
1862         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1863         /* Melco */
1864         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1865         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1866         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1867         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1868         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1869         /* MSI */
1870         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1871         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1872         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1873         /* Ralink */
1874         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1875         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1876         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1877         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1878         /* Sagem */
1879         { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
1880         /* Siemens */
1881         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1882         /* SMC */
1883         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1884         /* Spairon */
1885         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1886         /* SURECOM */
1887         { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
1888         /* Trust */
1889         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1890         /* VTech */
1891         { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
1892         /* Zinwell */
1893         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1894         { 0, }
1895 };
1896
1897 MODULE_AUTHOR(DRV_PROJECT);
1898 MODULE_VERSION(DRV_VERSION);
1899 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1900 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1901 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1902 MODULE_LICENSE("GPL");
1903
1904 static struct usb_driver rt2500usb_driver = {
1905         .name           = KBUILD_MODNAME,
1906         .id_table       = rt2500usb_device_table,
1907         .probe          = rt2x00usb_probe,
1908         .disconnect     = rt2x00usb_disconnect,
1909         .suspend        = rt2x00usb_suspend,
1910         .resume         = rt2x00usb_resume,
1911 };
1912
1913 static int __init rt2500usb_init(void)
1914 {
1915         return usb_register(&rt2500usb_driver);
1916 }
1917
1918 static void __exit rt2500usb_exit(void)
1919 {
1920         usb_deregister(&rt2500usb_driver);
1921 }
1922
1923 module_init(rt2500usb_init);
1924 module_exit(rt2500usb_exit);