e42eb6499f0e0f29acfca745fdcfc175569424be
[safe/jmp/linux-2.6] / drivers / net / wireless / iwlwifi / iwl-eeprom.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2009 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2009 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62
63
64 #include <linux/kernel.h>
65 #include <linux/module.h>
66 #include <linux/init.h>
67
68 #include <net/mac80211.h>
69
70 #include "iwl-commands.h"
71 #include "iwl-dev.h"
72 #include "iwl-core.h"
73 #include "iwl-debug.h"
74 #include "iwl-eeprom.h"
75 #include "iwl-io.h"
76
77 /************************** EEPROM BANDS ****************************
78  *
79  * The iwl_eeprom_band definitions below provide the mapping from the
80  * EEPROM contents to the specific channel number supported for each
81  * band.
82  *
83  * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
84  * definition below maps to physical channel 42 in the 5.2GHz spectrum.
85  * The specific geography and calibration information for that channel
86  * is contained in the eeprom map itself.
87  *
88  * During init, we copy the eeprom information and channel map
89  * information into priv->channel_info_24/52 and priv->channel_map_24/52
90  *
91  * channel_map_24/52 provides the index in the channel_info array for a
92  * given channel.  We have to have two separate maps as there is channel
93  * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
94  * band_2
95  *
96  * A value of 0xff stored in the channel_map indicates that the channel
97  * is not supported by the hardware at all.
98  *
99  * A value of 0xfe in the channel_map indicates that the channel is not
100  * valid for Tx with the current hardware.  This means that
101  * while the system can tune and receive on a given channel, it may not
102  * be able to associate or transmit any frames on that
103  * channel.  There is no corresponding channel information for that
104  * entry.
105  *
106  *********************************************************************/
107
108 /* 2.4 GHz */
109 const u8 iwl_eeprom_band_1[14] = {
110         1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
111 };
112
113 /* 5.2 GHz bands */
114 static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
115         183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
116 };
117
118 static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
119         34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
120 };
121
122 static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
123         100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
124 };
125
126 static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
127         145, 149, 153, 157, 161, 165
128 };
129
130 static const u8 iwl_eeprom_band_6[] = {       /* 2.4 ht40 channel */
131         1, 2, 3, 4, 5, 6, 7
132 };
133
134 static const u8 iwl_eeprom_band_7[] = {       /* 5.2 ht40 channel */
135         36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
136 };
137
138 /**
139  * struct iwl_txpwr_section: eeprom section information
140  * @offset: indirect address into eeprom image
141  * @count: number of "struct iwl_eeprom_enhanced_txpwr" in this section
142  * @band: band type for the section
143  * @is_common - true: common section, false: channel section
144  * @is_cck - true: cck section, false: not cck section
145  * @is_ht_40 - true: all channel in the section are HT40 channel,
146  *             false: legacy or HT 20 MHz
147  *             ignore if it is common section
148  * @iwl_eeprom_section_channel: channel array in the section,
149  *             ignore if common section
150  */
151 struct iwl_txpwr_section {
152         u32 offset;
153         u8 count;
154         enum ieee80211_band band;
155         bool is_common;
156         bool is_cck;
157         bool is_ht40;
158         u8 iwl_eeprom_section_channel[EEPROM_MAX_TXPOWER_SECTION_ELEMENTS];
159 };
160
161 /**
162  * section 1 - 3 are regulatory tx power apply to all channels based on
163  *    modulation: CCK, OFDM
164  *    Band: 2.4GHz, 5.2GHz
165  * section 4 - 10 are regulatory tx power apply to specified channels
166  *    For example:
167  *      1L - Channel 1 Legacy
168  *      1HT - Channel 1 HT
169  *      (1,+1) - Channel 1 HT40 "_above_"
170  *
171  * Section 1: all CCK channels
172  * Section 2: all 2.4 GHz OFDM (Legacy, HT and HT40) channels
173  * Section 3: all 5.2 GHz OFDM (Legacy, HT and HT40) channels
174  * Section 4: 2.4 GHz 20MHz channels: 1L, 1HT, 2L, 2HT, 10L, 10HT, 11L, 11HT
175  * Section 5: 2.4 GHz 40MHz channels: (1,+1) (2,+1) (6,+1) (7,+1) (9,+1)
176  * Section 6: 5.2 GHz 20MHz channels: 36L, 64L, 100L, 36HT, 64HT, 100HT
177  * Section 7: 5.2 GHz 40MHz channels: (36,+1) (60,+1) (100,+1)
178  * Section 8: 2.4 GHz channel: 13L, 13HT
179  * Section 9: 2.4 GHz channel: 140L, 140HT
180  * Section 10: 2.4 GHz 40MHz channels: (132,+1)  (44,+1)
181  *
182  */
183 static const struct iwl_txpwr_section enhinfo[] = {
184         { EEPROM_LB_CCK_20_COMMON, 1, IEEE80211_BAND_2GHZ, true, true, false },
185         { EEPROM_LB_OFDM_COMMON, 3, IEEE80211_BAND_2GHZ, true, false, false },
186         { EEPROM_HB_OFDM_COMMON, 3, IEEE80211_BAND_5GHZ, true, false, false },
187         { EEPROM_LB_OFDM_20_BAND, 8, IEEE80211_BAND_2GHZ,
188                 false, false, false,
189                 {1, 1, 2, 2, 10, 10, 11, 11 } },
190         { EEPROM_LB_OFDM_HT40_BAND, 5, IEEE80211_BAND_2GHZ,
191                 false, false, true,
192                 { 1, 2, 6, 7, 9 } },
193         { EEPROM_HB_OFDM_20_BAND, 6, IEEE80211_BAND_5GHZ,
194                 false, false, false,
195                 { 36, 64, 100, 36, 64, 100 } },
196         { EEPROM_HB_OFDM_HT40_BAND, 3, IEEE80211_BAND_5GHZ,
197                 false, false, true,
198                 { 36, 60, 100 } },
199         { EEPROM_LB_OFDM_20_CHANNEL_13, 2, IEEE80211_BAND_2GHZ,
200                 false, false, false,
201                 { 13, 13 } },
202         { EEPROM_HB_OFDM_20_CHANNEL_140, 2, IEEE80211_BAND_5GHZ,
203                 false, false, false,
204                 { 140, 140 } },
205         { EEPROM_HB_OFDM_HT40_BAND_1, 2, IEEE80211_BAND_5GHZ,
206                 false, false, true,
207                 { 132, 44 } },
208 };
209
210 /******************************************************************************
211  *
212  * EEPROM related functions
213  *
214 ******************************************************************************/
215
216 int iwlcore_eeprom_verify_signature(struct iwl_priv *priv)
217 {
218         u32 gp = iwl_read32(priv, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
219         int ret = 0;
220
221         IWL_DEBUG_INFO(priv, "EEPROM signature=0x%08x\n", gp);
222         switch (gp) {
223         case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
224                 if (priv->nvm_device_type != NVM_DEVICE_TYPE_OTP) {
225                         IWL_ERR(priv, "EEPROM with bad signature: 0x%08x\n",
226                                 gp);
227                         ret = -ENOENT;
228                 }
229                 break;
230         case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
231         case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
232                 if (priv->nvm_device_type != NVM_DEVICE_TYPE_EEPROM) {
233                         IWL_ERR(priv, "OTP with bad signature: 0x%08x\n", gp);
234                         ret = -ENOENT;
235                 }
236                 break;
237         case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
238         default:
239                 IWL_ERR(priv, "bad EEPROM/OTP signature, type=%s, "
240                         "EEPROM_GP=0x%08x\n",
241                         (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP)
242                         ? "OTP" : "EEPROM", gp);
243                 ret = -ENOENT;
244                 break;
245         }
246         return ret;
247 }
248 EXPORT_SYMBOL(iwlcore_eeprom_verify_signature);
249
250 static void iwl_set_otp_access(struct iwl_priv *priv, enum iwl_access_mode mode)
251 {
252         u32 otpgp;
253
254         otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
255         if (mode == IWL_OTP_ACCESS_ABSOLUTE)
256                 iwl_clear_bit(priv, CSR_OTP_GP_REG,
257                                 CSR_OTP_GP_REG_OTP_ACCESS_MODE);
258         else
259                 iwl_set_bit(priv, CSR_OTP_GP_REG,
260                                 CSR_OTP_GP_REG_OTP_ACCESS_MODE);
261 }
262
263 static int iwlcore_get_nvm_type(struct iwl_priv *priv)
264 {
265         u32 otpgp;
266         int nvm_type;
267
268         /* OTP only valid for CP/PP and after */
269         switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
270         case CSR_HW_REV_TYPE_NONE:
271                 IWL_ERR(priv, "Unknown hardware type\n");
272                 return -ENOENT;
273         case CSR_HW_REV_TYPE_3945:
274         case CSR_HW_REV_TYPE_4965:
275         case CSR_HW_REV_TYPE_5300:
276         case CSR_HW_REV_TYPE_5350:
277         case CSR_HW_REV_TYPE_5100:
278         case CSR_HW_REV_TYPE_5150:
279                 nvm_type = NVM_DEVICE_TYPE_EEPROM;
280                 break;
281         default:
282                 otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
283                 if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
284                         nvm_type = NVM_DEVICE_TYPE_OTP;
285                 else
286                         nvm_type = NVM_DEVICE_TYPE_EEPROM;
287                 break;
288         }
289         return  nvm_type;
290 }
291
292 /*
293  * The device's EEPROM semaphore prevents conflicts between driver and uCode
294  * when accessing the EEPROM; each access is a series of pulses to/from the
295  * EEPROM chip, not a single event, so even reads could conflict if they
296  * weren't arbitrated by the semaphore.
297  */
298 int iwlcore_eeprom_acquire_semaphore(struct iwl_priv *priv)
299 {
300         u16 count;
301         int ret;
302
303         for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
304                 /* Request semaphore */
305                 iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
306                             CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
307
308                 /* See if we got it */
309                 ret = iwl_poll_bit(priv, CSR_HW_IF_CONFIG_REG,
310                                 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
311                                 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
312                                 EEPROM_SEM_TIMEOUT);
313                 if (ret >= 0) {
314                         IWL_DEBUG_IO(priv, "Acquired semaphore after %d tries.\n",
315                                 count+1);
316                         return ret;
317                 }
318         }
319
320         return ret;
321 }
322 EXPORT_SYMBOL(iwlcore_eeprom_acquire_semaphore);
323
324 void iwlcore_eeprom_release_semaphore(struct iwl_priv *priv)
325 {
326         iwl_clear_bit(priv, CSR_HW_IF_CONFIG_REG,
327                 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
328
329 }
330 EXPORT_SYMBOL(iwlcore_eeprom_release_semaphore);
331
332 const u8 *iwlcore_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
333 {
334         BUG_ON(offset >= priv->cfg->eeprom_size);
335         return &priv->eeprom[offset];
336 }
337 EXPORT_SYMBOL(iwlcore_eeprom_query_addr);
338
339 static int iwl_init_otp_access(struct iwl_priv *priv)
340 {
341         int ret;
342
343         /* Enable 40MHz radio clock */
344         _iwl_write32(priv, CSR_GP_CNTRL,
345                      _iwl_read32(priv, CSR_GP_CNTRL) |
346                      CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
347
348         /* wait for clock to be ready */
349         ret = iwl_poll_bit(priv, CSR_GP_CNTRL,
350                                   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
351                                   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
352                                   25000);
353         if (ret < 0)
354                 IWL_ERR(priv, "Time out access OTP\n");
355         else {
356                 iwl_set_bits_prph(priv, APMG_PS_CTRL_REG,
357                                   APMG_PS_CTRL_VAL_RESET_REQ);
358                 udelay(5);
359                 iwl_clear_bits_prph(priv, APMG_PS_CTRL_REG,
360                                     APMG_PS_CTRL_VAL_RESET_REQ);
361
362                 /*
363                  * CSR auto clock gate disable bit -
364                  * this is only applicable for HW with OTP shadow RAM
365                  */
366                 if (priv->cfg->shadow_ram_support)
367                         iwl_set_bit(priv, CSR_DBG_LINK_PWR_MGMT_REG,
368                                 CSR_RESET_LINK_PWR_MGMT_DISABLED);
369         }
370         return ret;
371 }
372
373 static int iwl_read_otp_word(struct iwl_priv *priv, u16 addr, u16 *eeprom_data)
374 {
375         int ret = 0;
376         u32 r;
377         u32 otpgp;
378
379         _iwl_write32(priv, CSR_EEPROM_REG,
380                      CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
381         ret = iwl_poll_bit(priv, CSR_EEPROM_REG,
382                                   CSR_EEPROM_REG_READ_VALID_MSK,
383                                   CSR_EEPROM_REG_READ_VALID_MSK,
384                                   IWL_EEPROM_ACCESS_TIMEOUT);
385         if (ret < 0) {
386                 IWL_ERR(priv, "Time out reading OTP[%d]\n", addr);
387                 return ret;
388         }
389         r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
390         /* check for ECC errors: */
391         otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
392         if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
393                 /* stop in this case */
394                 /* set the uncorrectable OTP ECC bit for acknowledgement */
395                 iwl_set_bit(priv, CSR_OTP_GP_REG,
396                         CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
397                 IWL_ERR(priv, "Uncorrectable OTP ECC error, abort OTP read\n");
398                 return -EINVAL;
399         }
400         if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
401                 /* continue in this case */
402                 /* set the correctable OTP ECC bit for acknowledgement */
403                 iwl_set_bit(priv, CSR_OTP_GP_REG,
404                                 CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
405                 IWL_ERR(priv, "Correctable OTP ECC error, continue read\n");
406         }
407         *eeprom_data = le16_to_cpu((__force __le16)(r >> 16));
408         return 0;
409 }
410
411 /*
412  * iwl_is_otp_empty: check for empty OTP
413  */
414 static bool iwl_is_otp_empty(struct iwl_priv *priv)
415 {
416         u16 next_link_addr = 0, link_value;
417         bool is_empty = false;
418
419         /* locate the beginning of OTP link list */
420         if (!iwl_read_otp_word(priv, next_link_addr, &link_value)) {
421                 if (!link_value) {
422                         IWL_ERR(priv, "OTP is empty\n");
423                         is_empty = true;
424                 }
425         } else {
426                 IWL_ERR(priv, "Unable to read first block of OTP list.\n");
427                 is_empty = true;
428         }
429
430         return is_empty;
431 }
432
433
434 /*
435  * iwl_find_otp_image: find EEPROM image in OTP
436  *   finding the OTP block that contains the EEPROM image.
437  *   the last valid block on the link list (the block _before_ the last block)
438  *   is the block we should read and used to configure the device.
439  *   If all the available OTP blocks are full, the last block will be the block
440  *   we should read and used to configure the device.
441  *   only perform this operation if shadow RAM is disabled
442  */
443 static int iwl_find_otp_image(struct iwl_priv *priv,
444                                         u16 *validblockaddr)
445 {
446         u16 next_link_addr = 0, link_value = 0, valid_addr;
447         int usedblocks = 0;
448
449         /* set addressing mode to absolute to traverse the link list */
450         iwl_set_otp_access(priv, IWL_OTP_ACCESS_ABSOLUTE);
451
452         /* checking for empty OTP or error */
453         if (iwl_is_otp_empty(priv))
454                 return -EINVAL;
455
456         /*
457          * start traverse link list
458          * until reach the max number of OTP blocks
459          * different devices have different number of OTP blocks
460          */
461         do {
462                 /* save current valid block address
463                  * check for more block on the link list
464                  */
465                 valid_addr = next_link_addr;
466                 next_link_addr = link_value * sizeof(u16);
467                 IWL_DEBUG_INFO(priv, "OTP blocks %d addr 0x%x\n",
468                                usedblocks, next_link_addr);
469                 if (iwl_read_otp_word(priv, next_link_addr, &link_value))
470                         return -EINVAL;
471                 if (!link_value) {
472                         /*
473                          * reach the end of link list, return success and
474                          * set address point to the starting address
475                          * of the image
476                          */
477                         *validblockaddr = valid_addr;
478                         /* skip first 2 bytes (link list pointer) */
479                         *validblockaddr += 2;
480                         return 0;
481                 }
482                 /* more in the link list, continue */
483                 usedblocks++;
484         } while (usedblocks <= priv->cfg->max_ll_items);
485
486         /* OTP has no valid blocks */
487         IWL_DEBUG_INFO(priv, "OTP has no valid blocks\n");
488         return -EINVAL;
489 }
490
491 /**
492  * iwl_eeprom_init - read EEPROM contents
493  *
494  * Load the EEPROM contents from adapter into priv->eeprom
495  *
496  * NOTE:  This routine uses the non-debug IO access functions.
497  */
498 int iwl_eeprom_init(struct iwl_priv *priv)
499 {
500         u16 *e;
501         u32 gp = iwl_read32(priv, CSR_EEPROM_GP);
502         int sz;
503         int ret;
504         u16 addr;
505         u16 validblockaddr = 0;
506         u16 cache_addr = 0;
507
508         priv->nvm_device_type = iwlcore_get_nvm_type(priv);
509         if (priv->nvm_device_type == -ENOENT)
510                 return -ENOENT;
511         /* allocate eeprom */
512         IWL_DEBUG_INFO(priv, "NVM size = %d\n", priv->cfg->eeprom_size);
513         sz = priv->cfg->eeprom_size;
514         priv->eeprom = kzalloc(sz, GFP_KERNEL);
515         if (!priv->eeprom) {
516                 ret = -ENOMEM;
517                 goto alloc_err;
518         }
519         e = (u16 *)priv->eeprom;
520
521         ret = priv->cfg->ops->lib->eeprom_ops.verify_signature(priv);
522         if (ret < 0) {
523                 IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
524                 ret = -ENOENT;
525                 goto err;
526         }
527
528         /* Make sure driver (instead of uCode) is allowed to read EEPROM */
529         ret = priv->cfg->ops->lib->eeprom_ops.acquire_semaphore(priv);
530         if (ret < 0) {
531                 IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n");
532                 ret = -ENOENT;
533                 goto err;
534         }
535         if (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
536
537                 /* OTP reads require powered-up chip */
538                 priv->cfg->ops->lib->apm_ops.init(priv);
539
540                 ret = iwl_init_otp_access(priv);
541                 if (ret) {
542                         IWL_ERR(priv, "Failed to initialize OTP access.\n");
543                         ret = -ENOENT;
544                         goto done;
545                 }
546                 _iwl_write32(priv, CSR_EEPROM_GP,
547                              iwl_read32(priv, CSR_EEPROM_GP) &
548                              ~CSR_EEPROM_GP_IF_OWNER_MSK);
549
550                 iwl_set_bit(priv, CSR_OTP_GP_REG,
551                              CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
552                              CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
553                 /* traversing the linked list if no shadow ram supported */
554                 if (!priv->cfg->shadow_ram_support) {
555                         if (iwl_find_otp_image(priv, &validblockaddr)) {
556                                 ret = -ENOENT;
557                                 goto done;
558                         }
559                 }
560                 for (addr = validblockaddr; addr < validblockaddr + sz;
561                      addr += sizeof(u16)) {
562                         u16 eeprom_data;
563
564                         ret = iwl_read_otp_word(priv, addr, &eeprom_data);
565                         if (ret)
566                                 goto done;
567                         e[cache_addr / 2] = eeprom_data;
568                         cache_addr += sizeof(u16);
569                 }
570
571                 /*
572                  * Now that OTP reads are complete, reset chip to save
573                  *   power until we load uCode during "up".
574                  */
575                 priv->cfg->ops->lib->apm_ops.stop(priv);
576
577         } else {
578                 /* eeprom is an array of 16bit values */
579                 for (addr = 0; addr < sz; addr += sizeof(u16)) {
580                         u32 r;
581
582                         _iwl_write32(priv, CSR_EEPROM_REG,
583                                      CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
584
585                         ret = iwl_poll_bit(priv, CSR_EEPROM_REG,
586                                                   CSR_EEPROM_REG_READ_VALID_MSK,
587                                                   CSR_EEPROM_REG_READ_VALID_MSK,
588                                                   IWL_EEPROM_ACCESS_TIMEOUT);
589                         if (ret < 0) {
590                                 IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr);
591                                 goto done;
592                         }
593                         r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
594                         e[addr / 2] = le16_to_cpu((__force __le16)(r >> 16));
595                 }
596         }
597         ret = 0;
598 done:
599         priv->cfg->ops->lib->eeprom_ops.release_semaphore(priv);
600 err:
601         if (ret)
602                 iwl_eeprom_free(priv);
603 alloc_err:
604         return ret;
605 }
606 EXPORT_SYMBOL(iwl_eeprom_init);
607
608 void iwl_eeprom_free(struct iwl_priv *priv)
609 {
610         kfree(priv->eeprom);
611         priv->eeprom = NULL;
612 }
613 EXPORT_SYMBOL(iwl_eeprom_free);
614
615 int iwl_eeprom_check_version(struct iwl_priv *priv)
616 {
617         u16 eeprom_ver;
618         u16 calib_ver;
619
620         eeprom_ver = iwl_eeprom_query16(priv, EEPROM_VERSION);
621         calib_ver = priv->cfg->ops->lib->eeprom_ops.calib_version(priv);
622
623         if (eeprom_ver < priv->cfg->eeprom_ver ||
624             calib_ver < priv->cfg->eeprom_calib_ver)
625                 goto err;
626
627         return 0;
628 err:
629         IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
630                   eeprom_ver, priv->cfg->eeprom_ver,
631                   calib_ver,  priv->cfg->eeprom_calib_ver);
632         return -EINVAL;
633
634 }
635 EXPORT_SYMBOL(iwl_eeprom_check_version);
636
637 const u8 *iwl_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
638 {
639         return priv->cfg->ops->lib->eeprom_ops.query_addr(priv, offset);
640 }
641 EXPORT_SYMBOL(iwl_eeprom_query_addr);
642
643 u16 iwl_eeprom_query16(const struct iwl_priv *priv, size_t offset)
644 {
645         if (!priv->eeprom)
646                 return 0;
647         return (u16)priv->eeprom[offset] | ((u16)priv->eeprom[offset + 1] << 8);
648 }
649 EXPORT_SYMBOL(iwl_eeprom_query16);
650
651 void iwl_eeprom_get_mac(const struct iwl_priv *priv, u8 *mac)
652 {
653         const u8 *addr = priv->cfg->ops->lib->eeprom_ops.query_addr(priv,
654                                         EEPROM_MAC_ADDRESS);
655         memcpy(mac, addr, ETH_ALEN);
656 }
657 EXPORT_SYMBOL(iwl_eeprom_get_mac);
658
659 static void iwl_init_band_reference(const struct iwl_priv *priv,
660                         int eep_band, int *eeprom_ch_count,
661                         const struct iwl_eeprom_channel **eeprom_ch_info,
662                         const u8 **eeprom_ch_index)
663 {
664         u32 offset = priv->cfg->ops->lib->
665                         eeprom_ops.regulatory_bands[eep_band - 1];
666         switch (eep_band) {
667         case 1:         /* 2.4GHz band */
668                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
669                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
670                                 iwl_eeprom_query_addr(priv, offset);
671                 *eeprom_ch_index = iwl_eeprom_band_1;
672                 break;
673         case 2:         /* 4.9GHz band */
674                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
675                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
676                                 iwl_eeprom_query_addr(priv, offset);
677                 *eeprom_ch_index = iwl_eeprom_band_2;
678                 break;
679         case 3:         /* 5.2GHz band */
680                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
681                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
682                                 iwl_eeprom_query_addr(priv, offset);
683                 *eeprom_ch_index = iwl_eeprom_band_3;
684                 break;
685         case 4:         /* 5.5GHz band */
686                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
687                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
688                                 iwl_eeprom_query_addr(priv, offset);
689                 *eeprom_ch_index = iwl_eeprom_band_4;
690                 break;
691         case 5:         /* 5.7GHz band */
692                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
693                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
694                                 iwl_eeprom_query_addr(priv, offset);
695                 *eeprom_ch_index = iwl_eeprom_band_5;
696                 break;
697         case 6:         /* 2.4GHz ht40 channels */
698                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
699                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
700                                 iwl_eeprom_query_addr(priv, offset);
701                 *eeprom_ch_index = iwl_eeprom_band_6;
702                 break;
703         case 7:         /* 5 GHz ht40 channels */
704                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
705                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
706                                 iwl_eeprom_query_addr(priv, offset);
707                 *eeprom_ch_index = iwl_eeprom_band_7;
708                 break;
709         default:
710                 BUG();
711                 return;
712         }
713 }
714
715 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
716                             ? # x " " : "")
717
718 /**
719  * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
720  *
721  * Does not set up a command, or touch hardware.
722  */
723 static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
724                               enum ieee80211_band band, u16 channel,
725                               const struct iwl_eeprom_channel *eeprom_ch,
726                               u8 clear_ht40_extension_channel)
727 {
728         struct iwl_channel_info *ch_info;
729
730         ch_info = (struct iwl_channel_info *)
731                         iwl_get_channel_info(priv, band, channel);
732
733         if (!is_channel_valid(ch_info))
734                 return -1;
735
736         IWL_DEBUG_INFO(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
737                         " Ad-Hoc %ssupported\n",
738                         ch_info->channel,
739                         is_channel_a_band(ch_info) ?
740                         "5.2" : "2.4",
741                         CHECK_AND_PRINT(IBSS),
742                         CHECK_AND_PRINT(ACTIVE),
743                         CHECK_AND_PRINT(RADAR),
744                         CHECK_AND_PRINT(WIDE),
745                         CHECK_AND_PRINT(DFS),
746                         eeprom_ch->flags,
747                         eeprom_ch->max_power_avg,
748                         ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
749                          && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
750                         "" : "not ");
751
752         ch_info->ht40_eeprom = *eeprom_ch;
753         ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
754         ch_info->ht40_flags = eeprom_ch->flags;
755         ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;
756
757         return 0;
758 }
759
760 /**
761  * iwl_get_max_txpower_avg - get the highest tx power from all chains.
762  *     find the highest tx power from all chains for the channel
763  */
764 static s8 iwl_get_max_txpower_avg(struct iwl_priv *priv,
765                 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower, int element)
766 {
767         s8 max_txpower_avg = 0; /* (dBm) */
768
769         IWL_DEBUG_INFO(priv, "%d - "
770                         "chain_a: %d dB chain_b: %d dB "
771                         "chain_c: %d dB mimo2: %d dB mimo3: %d dB\n",
772                         element,
773                         enhanced_txpower[element].chain_a_max >> 1,
774                         enhanced_txpower[element].chain_b_max >> 1,
775                         enhanced_txpower[element].chain_c_max >> 1,
776                         enhanced_txpower[element].mimo2_max >> 1,
777                         enhanced_txpower[element].mimo3_max >> 1);
778         /* Take the highest tx power from any valid chains */
779         if ((priv->cfg->valid_tx_ant & ANT_A) &&
780             (enhanced_txpower[element].chain_a_max > max_txpower_avg))
781                 max_txpower_avg = enhanced_txpower[element].chain_a_max;
782         if ((priv->cfg->valid_tx_ant & ANT_B) &&
783             (enhanced_txpower[element].chain_b_max > max_txpower_avg))
784                 max_txpower_avg = enhanced_txpower[element].chain_b_max;
785         if ((priv->cfg->valid_tx_ant & ANT_C) &&
786             (enhanced_txpower[element].chain_c_max > max_txpower_avg))
787                 max_txpower_avg = enhanced_txpower[element].chain_c_max;
788         if (((priv->cfg->valid_tx_ant == ANT_AB) |
789             (priv->cfg->valid_tx_ant == ANT_BC) |
790             (priv->cfg->valid_tx_ant == ANT_AC)) &&
791             (enhanced_txpower[element].mimo2_max > max_txpower_avg))
792                 max_txpower_avg =  enhanced_txpower[element].mimo2_max;
793         if ((priv->cfg->valid_tx_ant == ANT_ABC) &&
794             (enhanced_txpower[element].mimo3_max > max_txpower_avg))
795                 max_txpower_avg = enhanced_txpower[element].mimo3_max;
796
797         /* max. tx power in EEPROM is in 1/2 dBm format
798          * convert from 1/2 dBm to dBm
799          */
800         return max_txpower_avg >> 1;
801 }
802
803 /**
804  * iwl_update_common_txpower: update channel tx power
805  *     update tx power per band based on EEPROM enhanced tx power info.
806  */
807 static s8 iwl_update_common_txpower(struct iwl_priv *priv,
808                 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
809                 int section, int element)
810 {
811         struct iwl_channel_info *ch_info;
812         int ch;
813         bool is_ht40 = false;
814         s8 max_txpower_avg; /* (dBm) */
815
816         /* it is common section, contain all type (Legacy, HT and HT40)
817          * based on the element in the section to determine
818          * is it HT 40 or not
819          */
820         if (element == EEPROM_TXPOWER_COMMON_HT40_INDEX)
821                 is_ht40 = true;
822         max_txpower_avg =
823                 iwl_get_max_txpower_avg(priv, enhanced_txpower, element);
824         ch_info = priv->channel_info;
825
826         for (ch = 0; ch < priv->channel_count; ch++) {
827                 /* find matching band and update tx power if needed */
828                 if ((ch_info->band == enhinfo[section].band) &&
829                     (ch_info->max_power_avg < max_txpower_avg) && (!is_ht40)) {
830                         /* Update regulatory-based run-time data */
831                         ch_info->max_power_avg = ch_info->curr_txpow =
832                             max_txpower_avg;
833                         ch_info->scan_power = max_txpower_avg;
834                 }
835                 if ((ch_info->band == enhinfo[section].band) && is_ht40 &&
836                     ch_info->ht40_max_power_avg &&
837                     (ch_info->ht40_max_power_avg < max_txpower_avg)) {
838                         /* Update regulatory-based run-time data */
839                         ch_info->ht40_max_power_avg = max_txpower_avg;
840                 }
841                 ch_info++;
842         }
843         return max_txpower_avg;
844 }
845
846 /**
847  * iwl_update_channel_txpower: update channel tx power
848  *      update channel tx power based on EEPROM enhanced tx power info.
849  */
850 static s8 iwl_update_channel_txpower(struct iwl_priv *priv,
851                 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
852                 int section, int element)
853 {
854         struct iwl_channel_info *ch_info;
855         int ch;
856         u8 channel;
857         s8 max_txpower_avg; /* (dBm) */
858
859         channel = enhinfo[section].iwl_eeprom_section_channel[element];
860         max_txpower_avg =
861                 iwl_get_max_txpower_avg(priv, enhanced_txpower, element);
862
863         ch_info = priv->channel_info;
864         for (ch = 0; ch < priv->channel_count; ch++) {
865                 /* find matching channel and update tx power if needed */
866                 if (ch_info->channel == channel) {
867                         if ((ch_info->max_power_avg < max_txpower_avg) &&
868                             (!enhinfo[section].is_ht40)) {
869                                 /* Update regulatory-based run-time data */
870                                 ch_info->max_power_avg = max_txpower_avg;
871                                 ch_info->curr_txpow = max_txpower_avg;
872                                 ch_info->scan_power = max_txpower_avg;
873                         }
874                         if ((enhinfo[section].is_ht40) &&
875                             (ch_info->ht40_max_power_avg) &&
876                             (ch_info->ht40_max_power_avg < max_txpower_avg)) {
877                                 /* Update regulatory-based run-time data */
878                                 ch_info->ht40_max_power_avg = max_txpower_avg;
879                         }
880                         break;
881                 }
882                 ch_info++;
883         }
884         return max_txpower_avg;
885 }
886
887 /**
888  * iwlcore_eeprom_enhanced_txpower: process enhanced tx power info
889  */
890 void iwlcore_eeprom_enhanced_txpower(struct iwl_priv *priv)
891 {
892         int eeprom_section_count = 0;
893         int section, element;
894         struct iwl_eeprom_enhanced_txpwr *enhanced_txpower;
895         u32 offset;
896         s8 max_txpower_avg; /* (dBm) */
897
898         /* Loop through all the sections
899          * adjust bands and channel's max tx power
900          * Set the tx_power_user_lmt to the highest power
901          * supported by any channels and chains
902          */
903         for (section = 0; section < ARRAY_SIZE(enhinfo); section++) {
904                 eeprom_section_count = enhinfo[section].count;
905                 offset = enhinfo[section].offset;
906                 enhanced_txpower = (struct iwl_eeprom_enhanced_txpwr *)
907                                 iwl_eeprom_query_addr(priv, offset);
908
909                 /*
910                  * check for valid entry -
911                  * different version of EEPROM might contain different set
912                  * of enhanced tx power table
913                  * always check for valid entry before process
914                  * the information
915                  */
916                 if (!enhanced_txpower->common || enhanced_txpower->reserved)
917                         continue;
918
919                 for (element = 0; element < eeprom_section_count; element++) {
920                         if (enhinfo[section].is_common)
921                                 max_txpower_avg =
922                                         iwl_update_common_txpower(priv,
923                                         enhanced_txpower, section, element);
924                         else
925                                 max_txpower_avg =
926                                         iwl_update_channel_txpower(priv,
927                                         enhanced_txpower, section, element);
928
929                         /* Update the tx_power_user_lmt to the highest power
930                          * supported by any channel */
931                         if (max_txpower_avg > priv->tx_power_user_lmt)
932                                 priv->tx_power_user_lmt = max_txpower_avg;
933                 }
934         }
935 }
936 EXPORT_SYMBOL(iwlcore_eeprom_enhanced_txpower);
937
938 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
939                             ? # x " " : "")
940
941 /**
942  * iwl_init_channel_map - Set up driver's info for all possible channels
943  */
944 int iwl_init_channel_map(struct iwl_priv *priv)
945 {
946         int eeprom_ch_count = 0;
947         const u8 *eeprom_ch_index = NULL;
948         const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
949         int band, ch;
950         struct iwl_channel_info *ch_info;
951
952         if (priv->channel_count) {
953                 IWL_DEBUG_INFO(priv, "Channel map already initialized.\n");
954                 return 0;
955         }
956
957         IWL_DEBUG_INFO(priv, "Initializing regulatory info from EEPROM\n");
958
959         priv->channel_count =
960             ARRAY_SIZE(iwl_eeprom_band_1) +
961             ARRAY_SIZE(iwl_eeprom_band_2) +
962             ARRAY_SIZE(iwl_eeprom_band_3) +
963             ARRAY_SIZE(iwl_eeprom_band_4) +
964             ARRAY_SIZE(iwl_eeprom_band_5);
965
966         IWL_DEBUG_INFO(priv, "Parsing data for %d channels.\n", priv->channel_count);
967
968         priv->channel_info = kzalloc(sizeof(struct iwl_channel_info) *
969                                      priv->channel_count, GFP_KERNEL);
970         if (!priv->channel_info) {
971                 IWL_ERR(priv, "Could not allocate channel_info\n");
972                 priv->channel_count = 0;
973                 return -ENOMEM;
974         }
975
976         ch_info = priv->channel_info;
977
978         /* Loop through the 5 EEPROM bands adding them in order to the
979          * channel map we maintain (that contains additional information than
980          * what just in the EEPROM) */
981         for (band = 1; band <= 5; band++) {
982
983                 iwl_init_band_reference(priv, band, &eeprom_ch_count,
984                                         &eeprom_ch_info, &eeprom_ch_index);
985
986                 /* Loop through each band adding each of the channels */
987                 for (ch = 0; ch < eeprom_ch_count; ch++) {
988                         ch_info->channel = eeprom_ch_index[ch];
989                         ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
990                             IEEE80211_BAND_5GHZ;
991
992                         /* permanently store EEPROM's channel regulatory flags
993                          *   and max power in channel info database. */
994                         ch_info->eeprom = eeprom_ch_info[ch];
995
996                         /* Copy the run-time flags so they are there even on
997                          * invalid channels */
998                         ch_info->flags = eeprom_ch_info[ch].flags;
999                         /* First write that ht40 is not enabled, and then enable
1000                          * one by one */
1001                         ch_info->ht40_extension_channel =
1002                                         IEEE80211_CHAN_NO_HT40;
1003
1004                         if (!(is_channel_valid(ch_info))) {
1005                                 IWL_DEBUG_INFO(priv, "Ch. %d Flags %x [%sGHz] - "
1006                                                "No traffic\n",
1007                                                ch_info->channel,
1008                                                ch_info->flags,
1009                                                is_channel_a_band(ch_info) ?
1010                                                "5.2" : "2.4");
1011                                 ch_info++;
1012                                 continue;
1013                         }
1014
1015                         /* Initialize regulatory-based run-time data */
1016                         ch_info->max_power_avg = ch_info->curr_txpow =
1017                             eeprom_ch_info[ch].max_power_avg;
1018                         ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
1019                         ch_info->min_power = 0;
1020
1021                         IWL_DEBUG_INFO(priv, "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm):"
1022                                        " Ad-Hoc %ssupported\n",
1023                                        ch_info->channel,
1024                                        is_channel_a_band(ch_info) ?
1025                                        "5.2" : "2.4",
1026                                        CHECK_AND_PRINT_I(VALID),
1027                                        CHECK_AND_PRINT_I(IBSS),
1028                                        CHECK_AND_PRINT_I(ACTIVE),
1029                                        CHECK_AND_PRINT_I(RADAR),
1030                                        CHECK_AND_PRINT_I(WIDE),
1031                                        CHECK_AND_PRINT_I(DFS),
1032                                        eeprom_ch_info[ch].flags,
1033                                        eeprom_ch_info[ch].max_power_avg,
1034                                        ((eeprom_ch_info[ch].
1035                                          flags & EEPROM_CHANNEL_IBSS)
1036                                         && !(eeprom_ch_info[ch].
1037                                              flags & EEPROM_CHANNEL_RADAR))
1038                                        ? "" : "not ");
1039
1040                         /* Set the tx_power_user_lmt to the highest power
1041                          * supported by any channel */
1042                         if (eeprom_ch_info[ch].max_power_avg >
1043                                                 priv->tx_power_user_lmt)
1044                                 priv->tx_power_user_lmt =
1045                                     eeprom_ch_info[ch].max_power_avg;
1046
1047                         ch_info++;
1048                 }
1049         }
1050
1051         /* Check if we do have HT40 channels */
1052         if (priv->cfg->ops->lib->eeprom_ops.regulatory_bands[5] ==
1053             EEPROM_REGULATORY_BAND_NO_HT40 &&
1054             priv->cfg->ops->lib->eeprom_ops.regulatory_bands[6] ==
1055             EEPROM_REGULATORY_BAND_NO_HT40)
1056                 return 0;
1057
1058         /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
1059         for (band = 6; band <= 7; band++) {
1060                 enum ieee80211_band ieeeband;
1061
1062                 iwl_init_band_reference(priv, band, &eeprom_ch_count,
1063                                         &eeprom_ch_info, &eeprom_ch_index);
1064
1065                 /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
1066                 ieeeband =
1067                         (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
1068
1069                 /* Loop through each band adding each of the channels */
1070                 for (ch = 0; ch < eeprom_ch_count; ch++) {
1071                         /* Set up driver's info for lower half */
1072                         iwl_mod_ht40_chan_info(priv, ieeeband,
1073                                                 eeprom_ch_index[ch],
1074                                                 &eeprom_ch_info[ch],
1075                                                 IEEE80211_CHAN_NO_HT40PLUS);
1076
1077                         /* Set up driver's info for upper half */
1078                         iwl_mod_ht40_chan_info(priv, ieeeband,
1079                                                 eeprom_ch_index[ch] + 4,
1080                                                 &eeprom_ch_info[ch],
1081                                                 IEEE80211_CHAN_NO_HT40MINUS);
1082                 }
1083         }
1084
1085         /* for newer device (6000 series and up)
1086          * EEPROM contain enhanced tx power information
1087          * driver need to process addition information
1088          * to determine the max channel tx power limits
1089          */
1090         if (priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower)
1091                 priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower(priv);
1092
1093         return 0;
1094 }
1095 EXPORT_SYMBOL(iwl_init_channel_map);
1096
1097 /*
1098  * iwl_free_channel_map - undo allocations in iwl_init_channel_map
1099  */
1100 void iwl_free_channel_map(struct iwl_priv *priv)
1101 {
1102         kfree(priv->channel_info);
1103         priv->channel_count = 0;
1104 }
1105 EXPORT_SYMBOL(iwl_free_channel_map);
1106
1107 /**
1108  * iwl_get_channel_info - Find driver's private channel info
1109  *
1110  * Based on band and channel number.
1111  */
1112 const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
1113                                         enum ieee80211_band band, u16 channel)
1114 {
1115         int i;
1116
1117         switch (band) {
1118         case IEEE80211_BAND_5GHZ:
1119                 for (i = 14; i < priv->channel_count; i++) {
1120                         if (priv->channel_info[i].channel == channel)
1121                                 return &priv->channel_info[i];
1122                 }
1123                 break;
1124         case IEEE80211_BAND_2GHZ:
1125                 if (channel >= 1 && channel <= 14)
1126                         return &priv->channel_info[channel - 1];
1127                 break;
1128         default:
1129                 BUG();
1130         }
1131
1132         return NULL;
1133 }
1134 EXPORT_SYMBOL(iwl_get_channel_info);
1135