[PATCH] ipw2200 locking fix
[safe/jmp/linux-2.6] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.1.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION     IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84
85 static int cmdlog = 0;
86 #ifdef CONFIG_IPW2200_DEBUG
87 static int debug = 0;
88 #endif
89 static int channel = 0;
90 static int mode = 0;
91
92 static u32 ipw_debug_level;
93 static int associate = 1;
94 static int auto_create = 1;
95 static int led = 0;
96 static int disable = 0;
97 static int bt_coexist = 0;
98 static int hwcrypto = 0;
99 static int roaming = 1;
100 static const char ipw_modes[] = {
101         'a', 'b', 'g', '?'
102 };
103 static int antenna = CFG_SYS_ANTENNA_BOTH;
104
105 #ifdef CONFIG_IPW2200_PROMISCUOUS
106 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
107 #endif
108
109
110 #ifdef CONFIG_IPW2200_QOS
111 static int qos_enable = 0;
112 static int qos_burst_enable = 0;
113 static int qos_no_ack_mask = 0;
114 static int burst_duration_CCK = 0;
115 static int burst_duration_OFDM = 0;
116
117 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
118         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
119          QOS_TX3_CW_MIN_OFDM},
120         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
121          QOS_TX3_CW_MAX_OFDM},
122         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
123         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
124         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
125          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
126 };
127
128 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
129         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
130          QOS_TX3_CW_MIN_CCK},
131         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
132          QOS_TX3_CW_MAX_CCK},
133         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
134         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
135         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
136          QOS_TX3_TXOP_LIMIT_CCK}
137 };
138
139 static struct ieee80211_qos_parameters def_parameters_OFDM = {
140         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
141          DEF_TX3_CW_MIN_OFDM},
142         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
143          DEF_TX3_CW_MAX_OFDM},
144         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
145         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
146         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
147          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
148 };
149
150 static struct ieee80211_qos_parameters def_parameters_CCK = {
151         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
152          DEF_TX3_CW_MIN_CCK},
153         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
154          DEF_TX3_CW_MAX_CCK},
155         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
156         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
157         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
158          DEF_TX3_TXOP_LIMIT_CCK}
159 };
160
161 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
162
163 static int from_priority_to_tx_queue[] = {
164         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
165         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
166 };
167
168 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
169
170 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
171                                        *qos_param);
172 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
173                                      *qos_param);
174 #endif                          /* CONFIG_IPW2200_QOS */
175
176 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
177 static void ipw_remove_current_network(struct ipw_priv *priv);
178 static void ipw_rx(struct ipw_priv *priv);
179 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
180                                 struct clx2_tx_queue *txq, int qindex);
181 static int ipw_queue_reset(struct ipw_priv *priv);
182
183 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
184                              int len, int sync);
185
186 static void ipw_tx_queue_free(struct ipw_priv *);
187
188 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
189 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
190 static void ipw_rx_queue_replenish(void *);
191 static int ipw_up(struct ipw_priv *);
192 static void ipw_bg_up(void *);
193 static void ipw_down(struct ipw_priv *);
194 static void ipw_bg_down(void *);
195 static int ipw_config(struct ipw_priv *);
196 static int init_supported_rates(struct ipw_priv *priv,
197                                 struct ipw_supported_rates *prates);
198 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
199 static void ipw_send_wep_keys(struct ipw_priv *, int);
200
201 static int snprint_line(char *buf, size_t count,
202                         const u8 * data, u32 len, u32 ofs)
203 {
204         int out, i, j, l;
205         char c;
206
207         out = snprintf(buf, count, "%08X", ofs);
208
209         for (l = 0, i = 0; i < 2; i++) {
210                 out += snprintf(buf + out, count - out, " ");
211                 for (j = 0; j < 8 && l < len; j++, l++)
212                         out += snprintf(buf + out, count - out, "%02X ",
213                                         data[(i * 8 + j)]);
214                 for (; j < 8; j++)
215                         out += snprintf(buf + out, count - out, "   ");
216         }
217
218         out += snprintf(buf + out, count - out, " ");
219         for (l = 0, i = 0; i < 2; i++) {
220                 out += snprintf(buf + out, count - out, " ");
221                 for (j = 0; j < 8 && l < len; j++, l++) {
222                         c = data[(i * 8 + j)];
223                         if (!isascii(c) || !isprint(c))
224                                 c = '.';
225
226                         out += snprintf(buf + out, count - out, "%c", c);
227                 }
228
229                 for (; j < 8; j++)
230                         out += snprintf(buf + out, count - out, " ");
231         }
232
233         return out;
234 }
235
236 static void printk_buf(int level, const u8 * data, u32 len)
237 {
238         char line[81];
239         u32 ofs = 0;
240         if (!(ipw_debug_level & level))
241                 return;
242
243         while (len) {
244                 snprint_line(line, sizeof(line), &data[ofs],
245                              min(len, 16U), ofs);
246                 printk(KERN_DEBUG "%s\n", line);
247                 ofs += 16;
248                 len -= min(len, 16U);
249         }
250 }
251
252 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
253 {
254         size_t out = size;
255         u32 ofs = 0;
256         int total = 0;
257
258         while (size && len) {
259                 out = snprint_line(output, size, &data[ofs],
260                                    min_t(size_t, len, 16U), ofs);
261
262                 ofs += 16;
263                 output += out;
264                 size -= out;
265                 len -= min_t(size_t, len, 16U);
266                 total += out;
267         }
268         return total;
269 }
270
271 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
272 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
273 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
274
275 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
276 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
277 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
278
279 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
280 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
281 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
282 {
283         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
284                      __LINE__, (u32) (b), (u32) (c));
285         _ipw_write_reg8(a, b, c);
286 }
287
288 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
289 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
290 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
291 {
292         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
293                      __LINE__, (u32) (b), (u32) (c));
294         _ipw_write_reg16(a, b, c);
295 }
296
297 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
298 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
299 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
300 {
301         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
302                      __LINE__, (u32) (b), (u32) (c));
303         _ipw_write_reg32(a, b, c);
304 }
305
306 /* 8-bit direct write (low 4K) */
307 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
308
309 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
310 #define ipw_write8(ipw, ofs, val) \
311  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
312  _ipw_write8(ipw, ofs, val)
313
314 /* 16-bit direct write (low 4K) */
315 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
316
317 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
318 #define ipw_write16(ipw, ofs, val) \
319  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
320  _ipw_write16(ipw, ofs, val)
321
322 /* 32-bit direct write (low 4K) */
323 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
324
325 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
326 #define ipw_write32(ipw, ofs, val) \
327  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
328  _ipw_write32(ipw, ofs, val)
329
330 /* 8-bit direct read (low 4K) */
331 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
332
333 /* 8-bit direct read (low 4K), with debug wrapper */
334 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
335 {
336         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
337         return _ipw_read8(ipw, ofs);
338 }
339
340 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
341 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
342
343 /* 16-bit direct read (low 4K) */
344 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
345
346 /* 16-bit direct read (low 4K), with debug wrapper */
347 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
348 {
349         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
350         return _ipw_read16(ipw, ofs);
351 }
352
353 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
354 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
355
356 /* 32-bit direct read (low 4K) */
357 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
358
359 /* 32-bit direct read (low 4K), with debug wrapper */
360 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
361 {
362         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
363         return _ipw_read32(ipw, ofs);
364 }
365
366 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
367 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
368
369 /* multi-byte read (above 4K), with debug wrapper */
370 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
371 static inline void __ipw_read_indirect(const char *f, int l,
372                                        struct ipw_priv *a, u32 b, u8 * c, int d)
373 {
374         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
375                      d);
376         _ipw_read_indirect(a, b, c, d);
377 }
378
379 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
380 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
381
382 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
383 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
384                                 int num);
385 #define ipw_write_indirect(a, b, c, d) \
386         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
387         _ipw_write_indirect(a, b, c, d)
388
389 /* 32-bit indirect write (above 4K) */
390 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
391 {
392         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
393         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
394         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
395 }
396
397 /* 8-bit indirect write (above 4K) */
398 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
399 {
400         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
401         u32 dif_len = reg - aligned_addr;
402
403         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
404         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
405         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
406 }
407
408 /* 16-bit indirect write (above 4K) */
409 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
410 {
411         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
412         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
413
414         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
415         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
416         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
417 }
418
419 /* 8-bit indirect read (above 4K) */
420 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
421 {
422         u32 word;
423         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
424         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
425         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
426         return (word >> ((reg & 0x3) * 8)) & 0xff;
427 }
428
429 /* 32-bit indirect read (above 4K) */
430 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
431 {
432         u32 value;
433
434         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
435
436         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
437         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
438         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
439         return value;
440 }
441
442 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
443 /*    for area above 1st 4K of SRAM/reg space */
444 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
445                                int num)
446 {
447         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
448         u32 dif_len = addr - aligned_addr;
449         u32 i;
450
451         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
452
453         if (num <= 0) {
454                 return;
455         }
456
457         /* Read the first dword (or portion) byte by byte */
458         if (unlikely(dif_len)) {
459                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
460                 /* Start reading at aligned_addr + dif_len */
461                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
462                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
463                 aligned_addr += 4;
464         }
465
466         /* Read all of the middle dwords as dwords, with auto-increment */
467         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
468         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
469                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
470
471         /* Read the last dword (or portion) byte by byte */
472         if (unlikely(num)) {
473                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
474                 for (i = 0; num > 0; i++, num--)
475                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
476         }
477 }
478
479 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
480 /*    for area above 1st 4K of SRAM/reg space */
481 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
482                                 int num)
483 {
484         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
485         u32 dif_len = addr - aligned_addr;
486         u32 i;
487
488         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
489
490         if (num <= 0) {
491                 return;
492         }
493
494         /* Write the first dword (or portion) byte by byte */
495         if (unlikely(dif_len)) {
496                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
497                 /* Start writing at aligned_addr + dif_len */
498                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
499                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
500                 aligned_addr += 4;
501         }
502
503         /* Write all of the middle dwords as dwords, with auto-increment */
504         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
505         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
506                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
507
508         /* Write the last dword (or portion) byte by byte */
509         if (unlikely(num)) {
510                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
511                 for (i = 0; num > 0; i++, num--, buf++)
512                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
513         }
514 }
515
516 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
517 /*    for 1st 4K of SRAM/regs space */
518 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
519                              int num)
520 {
521         memcpy_toio((priv->hw_base + addr), buf, num);
522 }
523
524 /* Set bit(s) in low 4K of SRAM/regs */
525 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
526 {
527         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
528 }
529
530 /* Clear bit(s) in low 4K of SRAM/regs */
531 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
532 {
533         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
534 }
535
536 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
537 {
538         if (priv->status & STATUS_INT_ENABLED)
539                 return;
540         priv->status |= STATUS_INT_ENABLED;
541         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
542 }
543
544 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
545 {
546         if (!(priv->status & STATUS_INT_ENABLED))
547                 return;
548         priv->status &= ~STATUS_INT_ENABLED;
549         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
550 }
551
552 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
553 {
554         unsigned long flags;
555
556         spin_lock_irqsave(&priv->irq_lock, flags);
557         __ipw_enable_interrupts(priv);
558         spin_unlock_irqrestore(&priv->irq_lock, flags);
559 }
560
561 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
562 {
563         unsigned long flags;
564
565         spin_lock_irqsave(&priv->irq_lock, flags);
566         __ipw_disable_interrupts(priv);
567         spin_unlock_irqrestore(&priv->irq_lock, flags);
568 }
569
570 #ifdef CONFIG_IPW2200_DEBUG
571 static char *ipw_error_desc(u32 val)
572 {
573         switch (val) {
574         case IPW_FW_ERROR_OK:
575                 return "ERROR_OK";
576         case IPW_FW_ERROR_FAIL:
577                 return "ERROR_FAIL";
578         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
579                 return "MEMORY_UNDERFLOW";
580         case IPW_FW_ERROR_MEMORY_OVERFLOW:
581                 return "MEMORY_OVERFLOW";
582         case IPW_FW_ERROR_BAD_PARAM:
583                 return "BAD_PARAM";
584         case IPW_FW_ERROR_BAD_CHECKSUM:
585                 return "BAD_CHECKSUM";
586         case IPW_FW_ERROR_NMI_INTERRUPT:
587                 return "NMI_INTERRUPT";
588         case IPW_FW_ERROR_BAD_DATABASE:
589                 return "BAD_DATABASE";
590         case IPW_FW_ERROR_ALLOC_FAIL:
591                 return "ALLOC_FAIL";
592         case IPW_FW_ERROR_DMA_UNDERRUN:
593                 return "DMA_UNDERRUN";
594         case IPW_FW_ERROR_DMA_STATUS:
595                 return "DMA_STATUS";
596         case IPW_FW_ERROR_DINO_ERROR:
597                 return "DINO_ERROR";
598         case IPW_FW_ERROR_EEPROM_ERROR:
599                 return "EEPROM_ERROR";
600         case IPW_FW_ERROR_SYSASSERT:
601                 return "SYSASSERT";
602         case IPW_FW_ERROR_FATAL_ERROR:
603                 return "FATAL_ERROR";
604         default:
605                 return "UNKNOWN_ERROR";
606         }
607 }
608
609 static void ipw_dump_error_log(struct ipw_priv *priv,
610                                struct ipw_fw_error *error)
611 {
612         u32 i;
613
614         if (!error) {
615                 IPW_ERROR("Error allocating and capturing error log.  "
616                           "Nothing to dump.\n");
617                 return;
618         }
619
620         IPW_ERROR("Start IPW Error Log Dump:\n");
621         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
622                   error->status, error->config);
623
624         for (i = 0; i < error->elem_len; i++)
625                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
626                           ipw_error_desc(error->elem[i].desc),
627                           error->elem[i].time,
628                           error->elem[i].blink1,
629                           error->elem[i].blink2,
630                           error->elem[i].link1,
631                           error->elem[i].link2, error->elem[i].data);
632         for (i = 0; i < error->log_len; i++)
633                 IPW_ERROR("%i\t0x%08x\t%i\n",
634                           error->log[i].time,
635                           error->log[i].data, error->log[i].event);
636 }
637 #endif
638
639 static inline int ipw_is_init(struct ipw_priv *priv)
640 {
641         return (priv->status & STATUS_INIT) ? 1 : 0;
642 }
643
644 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
645 {
646         u32 addr, field_info, field_len, field_count, total_len;
647
648         IPW_DEBUG_ORD("ordinal = %i\n", ord);
649
650         if (!priv || !val || !len) {
651                 IPW_DEBUG_ORD("Invalid argument\n");
652                 return -EINVAL;
653         }
654
655         /* verify device ordinal tables have been initialized */
656         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
657                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
658                 return -EINVAL;
659         }
660
661         switch (IPW_ORD_TABLE_ID_MASK & ord) {
662         case IPW_ORD_TABLE_0_MASK:
663                 /*
664                  * TABLE 0: Direct access to a table of 32 bit values
665                  *
666                  * This is a very simple table with the data directly
667                  * read from the table
668                  */
669
670                 /* remove the table id from the ordinal */
671                 ord &= IPW_ORD_TABLE_VALUE_MASK;
672
673                 /* boundary check */
674                 if (ord > priv->table0_len) {
675                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
676                                       "max (%i)\n", ord, priv->table0_len);
677                         return -EINVAL;
678                 }
679
680                 /* verify we have enough room to store the value */
681                 if (*len < sizeof(u32)) {
682                         IPW_DEBUG_ORD("ordinal buffer length too small, "
683                                       "need %zd\n", sizeof(u32));
684                         return -EINVAL;
685                 }
686
687                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
688                               ord, priv->table0_addr + (ord << 2));
689
690                 *len = sizeof(u32);
691                 ord <<= 2;
692                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
693                 break;
694
695         case IPW_ORD_TABLE_1_MASK:
696                 /*
697                  * TABLE 1: Indirect access to a table of 32 bit values
698                  *
699                  * This is a fairly large table of u32 values each
700                  * representing starting addr for the data (which is
701                  * also a u32)
702                  */
703
704                 /* remove the table id from the ordinal */
705                 ord &= IPW_ORD_TABLE_VALUE_MASK;
706
707                 /* boundary check */
708                 if (ord > priv->table1_len) {
709                         IPW_DEBUG_ORD("ordinal value too long\n");
710                         return -EINVAL;
711                 }
712
713                 /* verify we have enough room to store the value */
714                 if (*len < sizeof(u32)) {
715                         IPW_DEBUG_ORD("ordinal buffer length too small, "
716                                       "need %zd\n", sizeof(u32));
717                         return -EINVAL;
718                 }
719
720                 *((u32 *) val) =
721                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
722                 *len = sizeof(u32);
723                 break;
724
725         case IPW_ORD_TABLE_2_MASK:
726                 /*
727                  * TABLE 2: Indirect access to a table of variable sized values
728                  *
729                  * This table consist of six values, each containing
730                  *     - dword containing the starting offset of the data
731                  *     - dword containing the lengh in the first 16bits
732                  *       and the count in the second 16bits
733                  */
734
735                 /* remove the table id from the ordinal */
736                 ord &= IPW_ORD_TABLE_VALUE_MASK;
737
738                 /* boundary check */
739                 if (ord > priv->table2_len) {
740                         IPW_DEBUG_ORD("ordinal value too long\n");
741                         return -EINVAL;
742                 }
743
744                 /* get the address of statistic */
745                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
746
747                 /* get the second DW of statistics ;
748                  * two 16-bit words - first is length, second is count */
749                 field_info =
750                     ipw_read_reg32(priv,
751                                    priv->table2_addr + (ord << 3) +
752                                    sizeof(u32));
753
754                 /* get each entry length */
755                 field_len = *((u16 *) & field_info);
756
757                 /* get number of entries */
758                 field_count = *(((u16 *) & field_info) + 1);
759
760                 /* abort if not enought memory */
761                 total_len = field_len * field_count;
762                 if (total_len > *len) {
763                         *len = total_len;
764                         return -EINVAL;
765                 }
766
767                 *len = total_len;
768                 if (!total_len)
769                         return 0;
770
771                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
772                               "field_info = 0x%08x\n",
773                               addr, total_len, field_info);
774                 ipw_read_indirect(priv, addr, val, total_len);
775                 break;
776
777         default:
778                 IPW_DEBUG_ORD("Invalid ordinal!\n");
779                 return -EINVAL;
780
781         }
782
783         return 0;
784 }
785
786 static void ipw_init_ordinals(struct ipw_priv *priv)
787 {
788         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
789         priv->table0_len = ipw_read32(priv, priv->table0_addr);
790
791         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
792                       priv->table0_addr, priv->table0_len);
793
794         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
795         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
796
797         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
798                       priv->table1_addr, priv->table1_len);
799
800         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
801         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
802         priv->table2_len &= 0x0000ffff; /* use first two bytes */
803
804         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
805                       priv->table2_addr, priv->table2_len);
806
807 }
808
809 static u32 ipw_register_toggle(u32 reg)
810 {
811         reg &= ~IPW_START_STANDBY;
812         if (reg & IPW_GATE_ODMA)
813                 reg &= ~IPW_GATE_ODMA;
814         if (reg & IPW_GATE_IDMA)
815                 reg &= ~IPW_GATE_IDMA;
816         if (reg & IPW_GATE_ADMA)
817                 reg &= ~IPW_GATE_ADMA;
818         return reg;
819 }
820
821 /*
822  * LED behavior:
823  * - On radio ON, turn on any LEDs that require to be on during start
824  * - On initialization, start unassociated blink
825  * - On association, disable unassociated blink
826  * - On disassociation, start unassociated blink
827  * - On radio OFF, turn off any LEDs started during radio on
828  *
829  */
830 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
831 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
832 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
833
834 static void ipw_led_link_on(struct ipw_priv *priv)
835 {
836         unsigned long flags;
837         u32 led;
838
839         /* If configured to not use LEDs, or nic_type is 1,
840          * then we don't toggle a LINK led */
841         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
842                 return;
843
844         spin_lock_irqsave(&priv->lock, flags);
845
846         if (!(priv->status & STATUS_RF_KILL_MASK) &&
847             !(priv->status & STATUS_LED_LINK_ON)) {
848                 IPW_DEBUG_LED("Link LED On\n");
849                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
850                 led |= priv->led_association_on;
851
852                 led = ipw_register_toggle(led);
853
854                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
855                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
856
857                 priv->status |= STATUS_LED_LINK_ON;
858
859                 /* If we aren't associated, schedule turning the LED off */
860                 if (!(priv->status & STATUS_ASSOCIATED))
861                         queue_delayed_work(priv->workqueue,
862                                            &priv->led_link_off,
863                                            LD_TIME_LINK_ON);
864         }
865
866         spin_unlock_irqrestore(&priv->lock, flags);
867 }
868
869 static void ipw_bg_led_link_on(void *data)
870 {
871         struct ipw_priv *priv = data;
872         mutex_lock(&priv->mutex);
873         ipw_led_link_on(data);
874         mutex_unlock(&priv->mutex);
875 }
876
877 static void ipw_led_link_off(struct ipw_priv *priv)
878 {
879         unsigned long flags;
880         u32 led;
881
882         /* If configured not to use LEDs, or nic type is 1,
883          * then we don't goggle the LINK led. */
884         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
885                 return;
886
887         spin_lock_irqsave(&priv->lock, flags);
888
889         if (priv->status & STATUS_LED_LINK_ON) {
890                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
891                 led &= priv->led_association_off;
892                 led = ipw_register_toggle(led);
893
894                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
895                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
896
897                 IPW_DEBUG_LED("Link LED Off\n");
898
899                 priv->status &= ~STATUS_LED_LINK_ON;
900
901                 /* If we aren't associated and the radio is on, schedule
902                  * turning the LED on (blink while unassociated) */
903                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
904                     !(priv->status & STATUS_ASSOCIATED))
905                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
906                                            LD_TIME_LINK_OFF);
907
908         }
909
910         spin_unlock_irqrestore(&priv->lock, flags);
911 }
912
913 static void ipw_bg_led_link_off(void *data)
914 {
915         struct ipw_priv *priv = data;
916         mutex_lock(&priv->mutex);
917         ipw_led_link_off(data);
918         mutex_unlock(&priv->mutex);
919 }
920
921 static void __ipw_led_activity_on(struct ipw_priv *priv)
922 {
923         u32 led;
924
925         if (priv->config & CFG_NO_LED)
926                 return;
927
928         if (priv->status & STATUS_RF_KILL_MASK)
929                 return;
930
931         if (!(priv->status & STATUS_LED_ACT_ON)) {
932                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
933                 led |= priv->led_activity_on;
934
935                 led = ipw_register_toggle(led);
936
937                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
938                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
939
940                 IPW_DEBUG_LED("Activity LED On\n");
941
942                 priv->status |= STATUS_LED_ACT_ON;
943
944                 cancel_delayed_work(&priv->led_act_off);
945                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
946                                    LD_TIME_ACT_ON);
947         } else {
948                 /* Reschedule LED off for full time period */
949                 cancel_delayed_work(&priv->led_act_off);
950                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
951                                    LD_TIME_ACT_ON);
952         }
953 }
954
955 #if 0
956 void ipw_led_activity_on(struct ipw_priv *priv)
957 {
958         unsigned long flags;
959         spin_lock_irqsave(&priv->lock, flags);
960         __ipw_led_activity_on(priv);
961         spin_unlock_irqrestore(&priv->lock, flags);
962 }
963 #endif  /*  0  */
964
965 static void ipw_led_activity_off(struct ipw_priv *priv)
966 {
967         unsigned long flags;
968         u32 led;
969
970         if (priv->config & CFG_NO_LED)
971                 return;
972
973         spin_lock_irqsave(&priv->lock, flags);
974
975         if (priv->status & STATUS_LED_ACT_ON) {
976                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
977                 led &= priv->led_activity_off;
978
979                 led = ipw_register_toggle(led);
980
981                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
982                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
983
984                 IPW_DEBUG_LED("Activity LED Off\n");
985
986                 priv->status &= ~STATUS_LED_ACT_ON;
987         }
988
989         spin_unlock_irqrestore(&priv->lock, flags);
990 }
991
992 static void ipw_bg_led_activity_off(void *data)
993 {
994         struct ipw_priv *priv = data;
995         mutex_lock(&priv->mutex);
996         ipw_led_activity_off(data);
997         mutex_unlock(&priv->mutex);
998 }
999
1000 static void ipw_led_band_on(struct ipw_priv *priv)
1001 {
1002         unsigned long flags;
1003         u32 led;
1004
1005         /* Only nic type 1 supports mode LEDs */
1006         if (priv->config & CFG_NO_LED ||
1007             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1008                 return;
1009
1010         spin_lock_irqsave(&priv->lock, flags);
1011
1012         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1013         if (priv->assoc_network->mode == IEEE_A) {
1014                 led |= priv->led_ofdm_on;
1015                 led &= priv->led_association_off;
1016                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1017         } else if (priv->assoc_network->mode == IEEE_G) {
1018                 led |= priv->led_ofdm_on;
1019                 led |= priv->led_association_on;
1020                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1021         } else {
1022                 led &= priv->led_ofdm_off;
1023                 led |= priv->led_association_on;
1024                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1025         }
1026
1027         led = ipw_register_toggle(led);
1028
1029         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1030         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1031
1032         spin_unlock_irqrestore(&priv->lock, flags);
1033 }
1034
1035 static void ipw_led_band_off(struct ipw_priv *priv)
1036 {
1037         unsigned long flags;
1038         u32 led;
1039
1040         /* Only nic type 1 supports mode LEDs */
1041         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1042                 return;
1043
1044         spin_lock_irqsave(&priv->lock, flags);
1045
1046         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1047         led &= priv->led_ofdm_off;
1048         led &= priv->led_association_off;
1049
1050         led = ipw_register_toggle(led);
1051
1052         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1053         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1054
1055         spin_unlock_irqrestore(&priv->lock, flags);
1056 }
1057
1058 static void ipw_led_radio_on(struct ipw_priv *priv)
1059 {
1060         ipw_led_link_on(priv);
1061 }
1062
1063 static void ipw_led_radio_off(struct ipw_priv *priv)
1064 {
1065         ipw_led_activity_off(priv);
1066         ipw_led_link_off(priv);
1067 }
1068
1069 static void ipw_led_link_up(struct ipw_priv *priv)
1070 {
1071         /* Set the Link Led on for all nic types */
1072         ipw_led_link_on(priv);
1073 }
1074
1075 static void ipw_led_link_down(struct ipw_priv *priv)
1076 {
1077         ipw_led_activity_off(priv);
1078         ipw_led_link_off(priv);
1079
1080         if (priv->status & STATUS_RF_KILL_MASK)
1081                 ipw_led_radio_off(priv);
1082 }
1083
1084 static void ipw_led_init(struct ipw_priv *priv)
1085 {
1086         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1087
1088         /* Set the default PINs for the link and activity leds */
1089         priv->led_activity_on = IPW_ACTIVITY_LED;
1090         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1091
1092         priv->led_association_on = IPW_ASSOCIATED_LED;
1093         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1094
1095         /* Set the default PINs for the OFDM leds */
1096         priv->led_ofdm_on = IPW_OFDM_LED;
1097         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1098
1099         switch (priv->nic_type) {
1100         case EEPROM_NIC_TYPE_1:
1101                 /* In this NIC type, the LEDs are reversed.... */
1102                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1103                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1104                 priv->led_association_on = IPW_ACTIVITY_LED;
1105                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1106
1107                 if (!(priv->config & CFG_NO_LED))
1108                         ipw_led_band_on(priv);
1109
1110                 /* And we don't blink link LEDs for this nic, so
1111                  * just return here */
1112                 return;
1113
1114         case EEPROM_NIC_TYPE_3:
1115         case EEPROM_NIC_TYPE_2:
1116         case EEPROM_NIC_TYPE_4:
1117         case EEPROM_NIC_TYPE_0:
1118                 break;
1119
1120         default:
1121                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1122                                priv->nic_type);
1123                 priv->nic_type = EEPROM_NIC_TYPE_0;
1124                 break;
1125         }
1126
1127         if (!(priv->config & CFG_NO_LED)) {
1128                 if (priv->status & STATUS_ASSOCIATED)
1129                         ipw_led_link_on(priv);
1130                 else
1131                         ipw_led_link_off(priv);
1132         }
1133 }
1134
1135 static void ipw_led_shutdown(struct ipw_priv *priv)
1136 {
1137         ipw_led_activity_off(priv);
1138         ipw_led_link_off(priv);
1139         ipw_led_band_off(priv);
1140         cancel_delayed_work(&priv->led_link_on);
1141         cancel_delayed_work(&priv->led_link_off);
1142         cancel_delayed_work(&priv->led_act_off);
1143 }
1144
1145 /*
1146  * The following adds a new attribute to the sysfs representation
1147  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1148  * used for controling the debug level.
1149  *
1150  * See the level definitions in ipw for details.
1151  */
1152 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1153 {
1154         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1155 }
1156
1157 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1158                                  size_t count)
1159 {
1160         char *p = (char *)buf;
1161         u32 val;
1162
1163         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1164                 p++;
1165                 if (p[0] == 'x' || p[0] == 'X')
1166                         p++;
1167                 val = simple_strtoul(p, &p, 16);
1168         } else
1169                 val = simple_strtoul(p, &p, 10);
1170         if (p == buf)
1171                 printk(KERN_INFO DRV_NAME
1172                        ": %s is not in hex or decimal form.\n", buf);
1173         else
1174                 ipw_debug_level = val;
1175
1176         return strnlen(buf, count);
1177 }
1178
1179 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1180                    show_debug_level, store_debug_level);
1181
1182 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1183 {
1184         /* length = 1st dword in log */
1185         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1186 }
1187
1188 static void ipw_capture_event_log(struct ipw_priv *priv,
1189                                   u32 log_len, struct ipw_event *log)
1190 {
1191         u32 base;
1192
1193         if (log_len) {
1194                 base = ipw_read32(priv, IPW_EVENT_LOG);
1195                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1196                                   (u8 *) log, sizeof(*log) * log_len);
1197         }
1198 }
1199
1200 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1201 {
1202         struct ipw_fw_error *error;
1203         u32 log_len = ipw_get_event_log_len(priv);
1204         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1205         u32 elem_len = ipw_read_reg32(priv, base);
1206
1207         error = kmalloc(sizeof(*error) +
1208                         sizeof(*error->elem) * elem_len +
1209                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1210         if (!error) {
1211                 IPW_ERROR("Memory allocation for firmware error log "
1212                           "failed.\n");
1213                 return NULL;
1214         }
1215         error->jiffies = jiffies;
1216         error->status = priv->status;
1217         error->config = priv->config;
1218         error->elem_len = elem_len;
1219         error->log_len = log_len;
1220         error->elem = (struct ipw_error_elem *)error->payload;
1221         error->log = (struct ipw_event *)(error->elem + elem_len);
1222
1223         ipw_capture_event_log(priv, log_len, error->log);
1224
1225         if (elem_len)
1226                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1227                                   sizeof(*error->elem) * elem_len);
1228
1229         return error;
1230 }
1231
1232 static void ipw_free_error_log(struct ipw_fw_error *error)
1233 {
1234         if (error)
1235                 kfree(error);
1236 }
1237
1238 static ssize_t show_event_log(struct device *d,
1239                               struct device_attribute *attr, char *buf)
1240 {
1241         struct ipw_priv *priv = dev_get_drvdata(d);
1242         u32 log_len = ipw_get_event_log_len(priv);
1243         struct ipw_event log[log_len];
1244         u32 len = 0, i;
1245
1246         ipw_capture_event_log(priv, log_len, log);
1247
1248         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1249         for (i = 0; i < log_len; i++)
1250                 len += snprintf(buf + len, PAGE_SIZE - len,
1251                                 "\n%08X%08X%08X",
1252                                 log[i].time, log[i].event, log[i].data);
1253         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1254         return len;
1255 }
1256
1257 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1258
1259 static ssize_t show_error(struct device *d,
1260                           struct device_attribute *attr, char *buf)
1261 {
1262         struct ipw_priv *priv = dev_get_drvdata(d);
1263         u32 len = 0, i;
1264         if (!priv->error)
1265                 return 0;
1266         len += snprintf(buf + len, PAGE_SIZE - len,
1267                         "%08lX%08X%08X%08X",
1268                         priv->error->jiffies,
1269                         priv->error->status,
1270                         priv->error->config, priv->error->elem_len);
1271         for (i = 0; i < priv->error->elem_len; i++)
1272                 len += snprintf(buf + len, PAGE_SIZE - len,
1273                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1274                                 priv->error->elem[i].time,
1275                                 priv->error->elem[i].desc,
1276                                 priv->error->elem[i].blink1,
1277                                 priv->error->elem[i].blink2,
1278                                 priv->error->elem[i].link1,
1279                                 priv->error->elem[i].link2,
1280                                 priv->error->elem[i].data);
1281
1282         len += snprintf(buf + len, PAGE_SIZE - len,
1283                         "\n%08X", priv->error->log_len);
1284         for (i = 0; i < priv->error->log_len; i++)
1285                 len += snprintf(buf + len, PAGE_SIZE - len,
1286                                 "\n%08X%08X%08X",
1287                                 priv->error->log[i].time,
1288                                 priv->error->log[i].event,
1289                                 priv->error->log[i].data);
1290         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1291         return len;
1292 }
1293
1294 static ssize_t clear_error(struct device *d,
1295                            struct device_attribute *attr,
1296                            const char *buf, size_t count)
1297 {
1298         struct ipw_priv *priv = dev_get_drvdata(d);
1299         if (priv->error) {
1300                 ipw_free_error_log(priv->error);
1301                 priv->error = NULL;
1302         }
1303         return count;
1304 }
1305
1306 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1307
1308 static ssize_t show_cmd_log(struct device *d,
1309                             struct device_attribute *attr, char *buf)
1310 {
1311         struct ipw_priv *priv = dev_get_drvdata(d);
1312         u32 len = 0, i;
1313         if (!priv->cmdlog)
1314                 return 0;
1315         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1316              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1317              i = (i + 1) % priv->cmdlog_len) {
1318                 len +=
1319                     snprintf(buf + len, PAGE_SIZE - len,
1320                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1321                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1322                              priv->cmdlog[i].cmd.len);
1323                 len +=
1324                     snprintk_buf(buf + len, PAGE_SIZE - len,
1325                                  (u8 *) priv->cmdlog[i].cmd.param,
1326                                  priv->cmdlog[i].cmd.len);
1327                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1328         }
1329         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1330         return len;
1331 }
1332
1333 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1334
1335 #ifdef CONFIG_IPW2200_PROMISCUOUS
1336 static void ipw_prom_free(struct ipw_priv *priv);
1337 static int ipw_prom_alloc(struct ipw_priv *priv);
1338 static ssize_t store_rtap_iface(struct device *d,
1339                          struct device_attribute *attr,
1340                          const char *buf, size_t count)
1341 {
1342         struct ipw_priv *priv = dev_get_drvdata(d);
1343         int rc = 0;
1344
1345         if (count < 1)
1346                 return -EINVAL;
1347
1348         switch (buf[0]) {
1349         case '0':
1350                 if (!rtap_iface)
1351                         return count;
1352
1353                 if (netif_running(priv->prom_net_dev)) {
1354                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1355                         return count;
1356                 }
1357
1358                 ipw_prom_free(priv);
1359                 rtap_iface = 0;
1360                 break;
1361
1362         case '1':
1363                 if (rtap_iface)
1364                         return count;
1365
1366                 rc = ipw_prom_alloc(priv);
1367                 if (!rc)
1368                         rtap_iface = 1;
1369                 break;
1370
1371         default:
1372                 return -EINVAL;
1373         }
1374
1375         if (rc) {
1376                 IPW_ERROR("Failed to register promiscuous network "
1377                           "device (error %d).\n", rc);
1378         }
1379
1380         return count;
1381 }
1382
1383 static ssize_t show_rtap_iface(struct device *d,
1384                         struct device_attribute *attr,
1385                         char *buf)
1386 {
1387         struct ipw_priv *priv = dev_get_drvdata(d);
1388         if (rtap_iface)
1389                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1390         else {
1391                 buf[0] = '-';
1392                 buf[1] = '1';
1393                 buf[2] = '\0';
1394                 return 3;
1395         }
1396 }
1397
1398 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1399                    store_rtap_iface);
1400
1401 static ssize_t store_rtap_filter(struct device *d,
1402                          struct device_attribute *attr,
1403                          const char *buf, size_t count)
1404 {
1405         struct ipw_priv *priv = dev_get_drvdata(d);
1406
1407         if (!priv->prom_priv) {
1408                 IPW_ERROR("Attempting to set filter without "
1409                           "rtap_iface enabled.\n");
1410                 return -EPERM;
1411         }
1412
1413         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1414
1415         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1416                        BIT_ARG16(priv->prom_priv->filter));
1417
1418         return count;
1419 }
1420
1421 static ssize_t show_rtap_filter(struct device *d,
1422                         struct device_attribute *attr,
1423                         char *buf)
1424 {
1425         struct ipw_priv *priv = dev_get_drvdata(d);
1426         return sprintf(buf, "0x%04X",
1427                        priv->prom_priv ? priv->prom_priv->filter : 0);
1428 }
1429
1430 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1431                    store_rtap_filter);
1432 #endif
1433
1434 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1435                              char *buf)
1436 {
1437         struct ipw_priv *priv = dev_get_drvdata(d);
1438         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1439 }
1440
1441 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1442                               const char *buf, size_t count)
1443 {
1444         struct ipw_priv *priv = dev_get_drvdata(d);
1445 #ifdef CONFIG_IPW2200_DEBUG
1446         struct net_device *dev = priv->net_dev;
1447 #endif
1448         char buffer[] = "00000000";
1449         unsigned long len =
1450             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1451         unsigned long val;
1452         char *p = buffer;
1453
1454         IPW_DEBUG_INFO("enter\n");
1455
1456         strncpy(buffer, buf, len);
1457         buffer[len] = 0;
1458
1459         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1460                 p++;
1461                 if (p[0] == 'x' || p[0] == 'X')
1462                         p++;
1463                 val = simple_strtoul(p, &p, 16);
1464         } else
1465                 val = simple_strtoul(p, &p, 10);
1466         if (p == buffer) {
1467                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1468         } else {
1469                 priv->ieee->scan_age = val;
1470                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1471         }
1472
1473         IPW_DEBUG_INFO("exit\n");
1474         return len;
1475 }
1476
1477 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1478
1479 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1480                         char *buf)
1481 {
1482         struct ipw_priv *priv = dev_get_drvdata(d);
1483         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1484 }
1485
1486 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1487                          const char *buf, size_t count)
1488 {
1489         struct ipw_priv *priv = dev_get_drvdata(d);
1490
1491         IPW_DEBUG_INFO("enter\n");
1492
1493         if (count == 0)
1494                 return 0;
1495
1496         if (*buf == 0) {
1497                 IPW_DEBUG_LED("Disabling LED control.\n");
1498                 priv->config |= CFG_NO_LED;
1499                 ipw_led_shutdown(priv);
1500         } else {
1501                 IPW_DEBUG_LED("Enabling LED control.\n");
1502                 priv->config &= ~CFG_NO_LED;
1503                 ipw_led_init(priv);
1504         }
1505
1506         IPW_DEBUG_INFO("exit\n");
1507         return count;
1508 }
1509
1510 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1511
1512 static ssize_t show_status(struct device *d,
1513                            struct device_attribute *attr, char *buf)
1514 {
1515         struct ipw_priv *p = d->driver_data;
1516         return sprintf(buf, "0x%08x\n", (int)p->status);
1517 }
1518
1519 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1520
1521 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1522                         char *buf)
1523 {
1524         struct ipw_priv *p = d->driver_data;
1525         return sprintf(buf, "0x%08x\n", (int)p->config);
1526 }
1527
1528 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1529
1530 static ssize_t show_nic_type(struct device *d,
1531                              struct device_attribute *attr, char *buf)
1532 {
1533         struct ipw_priv *priv = d->driver_data;
1534         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1535 }
1536
1537 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1538
1539 static ssize_t show_ucode_version(struct device *d,
1540                                   struct device_attribute *attr, char *buf)
1541 {
1542         u32 len = sizeof(u32), tmp = 0;
1543         struct ipw_priv *p = d->driver_data;
1544
1545         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1546                 return 0;
1547
1548         return sprintf(buf, "0x%08x\n", tmp);
1549 }
1550
1551 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1552
1553 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1554                         char *buf)
1555 {
1556         u32 len = sizeof(u32), tmp = 0;
1557         struct ipw_priv *p = d->driver_data;
1558
1559         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1560                 return 0;
1561
1562         return sprintf(buf, "0x%08x\n", tmp);
1563 }
1564
1565 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1566
1567 /*
1568  * Add a device attribute to view/control the delay between eeprom
1569  * operations.
1570  */
1571 static ssize_t show_eeprom_delay(struct device *d,
1572                                  struct device_attribute *attr, char *buf)
1573 {
1574         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1575         return sprintf(buf, "%i\n", n);
1576 }
1577 static ssize_t store_eeprom_delay(struct device *d,
1578                                   struct device_attribute *attr,
1579                                   const char *buf, size_t count)
1580 {
1581         struct ipw_priv *p = d->driver_data;
1582         sscanf(buf, "%i", &p->eeprom_delay);
1583         return strnlen(buf, count);
1584 }
1585
1586 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1587                    show_eeprom_delay, store_eeprom_delay);
1588
1589 static ssize_t show_command_event_reg(struct device *d,
1590                                       struct device_attribute *attr, char *buf)
1591 {
1592         u32 reg = 0;
1593         struct ipw_priv *p = d->driver_data;
1594
1595         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1596         return sprintf(buf, "0x%08x\n", reg);
1597 }
1598 static ssize_t store_command_event_reg(struct device *d,
1599                                        struct device_attribute *attr,
1600                                        const char *buf, size_t count)
1601 {
1602         u32 reg;
1603         struct ipw_priv *p = d->driver_data;
1604
1605         sscanf(buf, "%x", &reg);
1606         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1607         return strnlen(buf, count);
1608 }
1609
1610 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1611                    show_command_event_reg, store_command_event_reg);
1612
1613 static ssize_t show_mem_gpio_reg(struct device *d,
1614                                  struct device_attribute *attr, char *buf)
1615 {
1616         u32 reg = 0;
1617         struct ipw_priv *p = d->driver_data;
1618
1619         reg = ipw_read_reg32(p, 0x301100);
1620         return sprintf(buf, "0x%08x\n", reg);
1621 }
1622 static ssize_t store_mem_gpio_reg(struct device *d,
1623                                   struct device_attribute *attr,
1624                                   const char *buf, size_t count)
1625 {
1626         u32 reg;
1627         struct ipw_priv *p = d->driver_data;
1628
1629         sscanf(buf, "%x", &reg);
1630         ipw_write_reg32(p, 0x301100, reg);
1631         return strnlen(buf, count);
1632 }
1633
1634 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1635                    show_mem_gpio_reg, store_mem_gpio_reg);
1636
1637 static ssize_t show_indirect_dword(struct device *d,
1638                                    struct device_attribute *attr, char *buf)
1639 {
1640         u32 reg = 0;
1641         struct ipw_priv *priv = d->driver_data;
1642
1643         if (priv->status & STATUS_INDIRECT_DWORD)
1644                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1645         else
1646                 reg = 0;
1647
1648         return sprintf(buf, "0x%08x\n", reg);
1649 }
1650 static ssize_t store_indirect_dword(struct device *d,
1651                                     struct device_attribute *attr,
1652                                     const char *buf, size_t count)
1653 {
1654         struct ipw_priv *priv = d->driver_data;
1655
1656         sscanf(buf, "%x", &priv->indirect_dword);
1657         priv->status |= STATUS_INDIRECT_DWORD;
1658         return strnlen(buf, count);
1659 }
1660
1661 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1662                    show_indirect_dword, store_indirect_dword);
1663
1664 static ssize_t show_indirect_byte(struct device *d,
1665                                   struct device_attribute *attr, char *buf)
1666 {
1667         u8 reg = 0;
1668         struct ipw_priv *priv = d->driver_data;
1669
1670         if (priv->status & STATUS_INDIRECT_BYTE)
1671                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1672         else
1673                 reg = 0;
1674
1675         return sprintf(buf, "0x%02x\n", reg);
1676 }
1677 static ssize_t store_indirect_byte(struct device *d,
1678                                    struct device_attribute *attr,
1679                                    const char *buf, size_t count)
1680 {
1681         struct ipw_priv *priv = d->driver_data;
1682
1683         sscanf(buf, "%x", &priv->indirect_byte);
1684         priv->status |= STATUS_INDIRECT_BYTE;
1685         return strnlen(buf, count);
1686 }
1687
1688 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1689                    show_indirect_byte, store_indirect_byte);
1690
1691 static ssize_t show_direct_dword(struct device *d,
1692                                  struct device_attribute *attr, char *buf)
1693 {
1694         u32 reg = 0;
1695         struct ipw_priv *priv = d->driver_data;
1696
1697         if (priv->status & STATUS_DIRECT_DWORD)
1698                 reg = ipw_read32(priv, priv->direct_dword);
1699         else
1700                 reg = 0;
1701
1702         return sprintf(buf, "0x%08x\n", reg);
1703 }
1704 static ssize_t store_direct_dword(struct device *d,
1705                                   struct device_attribute *attr,
1706                                   const char *buf, size_t count)
1707 {
1708         struct ipw_priv *priv = d->driver_data;
1709
1710         sscanf(buf, "%x", &priv->direct_dword);
1711         priv->status |= STATUS_DIRECT_DWORD;
1712         return strnlen(buf, count);
1713 }
1714
1715 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1716                    show_direct_dword, store_direct_dword);
1717
1718 static int rf_kill_active(struct ipw_priv *priv)
1719 {
1720         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1721                 priv->status |= STATUS_RF_KILL_HW;
1722         else
1723                 priv->status &= ~STATUS_RF_KILL_HW;
1724
1725         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1726 }
1727
1728 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1729                             char *buf)
1730 {
1731         /* 0 - RF kill not enabled
1732            1 - SW based RF kill active (sysfs)
1733            2 - HW based RF kill active
1734            3 - Both HW and SW baed RF kill active */
1735         struct ipw_priv *priv = d->driver_data;
1736         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1737             (rf_kill_active(priv) ? 0x2 : 0x0);
1738         return sprintf(buf, "%i\n", val);
1739 }
1740
1741 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1742 {
1743         if ((disable_radio ? 1 : 0) ==
1744             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1745                 return 0;
1746
1747         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1748                           disable_radio ? "OFF" : "ON");
1749
1750         if (disable_radio) {
1751                 priv->status |= STATUS_RF_KILL_SW;
1752
1753                 if (priv->workqueue)
1754                         cancel_delayed_work(&priv->request_scan);
1755                 queue_work(priv->workqueue, &priv->down);
1756         } else {
1757                 priv->status &= ~STATUS_RF_KILL_SW;
1758                 if (rf_kill_active(priv)) {
1759                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1760                                           "disabled by HW switch\n");
1761                         /* Make sure the RF_KILL check timer is running */
1762                         cancel_delayed_work(&priv->rf_kill);
1763                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1764                                            2 * HZ);
1765                 } else
1766                         queue_work(priv->workqueue, &priv->up);
1767         }
1768
1769         return 1;
1770 }
1771
1772 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1773                              const char *buf, size_t count)
1774 {
1775         struct ipw_priv *priv = d->driver_data;
1776
1777         ipw_radio_kill_sw(priv, buf[0] == '1');
1778
1779         return count;
1780 }
1781
1782 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1783
1784 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1785                                char *buf)
1786 {
1787         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1788         int pos = 0, len = 0;
1789         if (priv->config & CFG_SPEED_SCAN) {
1790                 while (priv->speed_scan[pos] != 0)
1791                         len += sprintf(&buf[len], "%d ",
1792                                        priv->speed_scan[pos++]);
1793                 return len + sprintf(&buf[len], "\n");
1794         }
1795
1796         return sprintf(buf, "0\n");
1797 }
1798
1799 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1800                                 const char *buf, size_t count)
1801 {
1802         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1803         int channel, pos = 0;
1804         const char *p = buf;
1805
1806         /* list of space separated channels to scan, optionally ending with 0 */
1807         while ((channel = simple_strtol(p, NULL, 0))) {
1808                 if (pos == MAX_SPEED_SCAN - 1) {
1809                         priv->speed_scan[pos] = 0;
1810                         break;
1811                 }
1812
1813                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1814                         priv->speed_scan[pos++] = channel;
1815                 else
1816                         IPW_WARNING("Skipping invalid channel request: %d\n",
1817                                     channel);
1818                 p = strchr(p, ' ');
1819                 if (!p)
1820                         break;
1821                 while (*p == ' ' || *p == '\t')
1822                         p++;
1823         }
1824
1825         if (pos == 0)
1826                 priv->config &= ~CFG_SPEED_SCAN;
1827         else {
1828                 priv->speed_scan_pos = 0;
1829                 priv->config |= CFG_SPEED_SCAN;
1830         }
1831
1832         return count;
1833 }
1834
1835 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1836                    store_speed_scan);
1837
1838 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1839                               char *buf)
1840 {
1841         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1842         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1843 }
1844
1845 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1846                                const char *buf, size_t count)
1847 {
1848         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1849         if (buf[0] == '1')
1850                 priv->config |= CFG_NET_STATS;
1851         else
1852                 priv->config &= ~CFG_NET_STATS;
1853
1854         return count;
1855 }
1856
1857 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1858                    show_net_stats, store_net_stats);
1859
1860 static void notify_wx_assoc_event(struct ipw_priv *priv)
1861 {
1862         union iwreq_data wrqu;
1863         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1864         if (priv->status & STATUS_ASSOCIATED)
1865                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1866         else
1867                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1868         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1869 }
1870
1871 static void ipw_irq_tasklet(struct ipw_priv *priv)
1872 {
1873         u32 inta, inta_mask, handled = 0;
1874         unsigned long flags;
1875         int rc = 0;
1876
1877         spin_lock_irqsave(&priv->irq_lock, flags);
1878
1879         inta = ipw_read32(priv, IPW_INTA_RW);
1880         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1881         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1882
1883         /* Add any cached INTA values that need to be handled */
1884         inta |= priv->isr_inta;
1885
1886         spin_unlock_irqrestore(&priv->irq_lock, flags);
1887
1888         spin_lock_irqsave(&priv->lock, flags);
1889
1890         /* handle all the justifications for the interrupt */
1891         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1892                 ipw_rx(priv);
1893                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1894         }
1895
1896         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1897                 IPW_DEBUG_HC("Command completed.\n");
1898                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1899                 priv->status &= ~STATUS_HCMD_ACTIVE;
1900                 wake_up_interruptible(&priv->wait_command_queue);
1901                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1902         }
1903
1904         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1905                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1906                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1907                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1908         }
1909
1910         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1911                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1912                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1913                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1914         }
1915
1916         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1917                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1918                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1919                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1920         }
1921
1922         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1923                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1924                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1925                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1926         }
1927
1928         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1929                 IPW_WARNING("STATUS_CHANGE\n");
1930                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1931         }
1932
1933         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1934                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1935                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1936         }
1937
1938         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1939                 IPW_WARNING("HOST_CMD_DONE\n");
1940                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1941         }
1942
1943         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1944                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1945                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1946         }
1947
1948         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1949                 IPW_WARNING("PHY_OFF_DONE\n");
1950                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1951         }
1952
1953         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1954                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1955                 priv->status |= STATUS_RF_KILL_HW;
1956                 wake_up_interruptible(&priv->wait_command_queue);
1957                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1958                 cancel_delayed_work(&priv->request_scan);
1959                 schedule_work(&priv->link_down);
1960                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1961                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1962         }
1963
1964         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1965                 IPW_WARNING("Firmware error detected.  Restarting.\n");
1966                 if (priv->error) {
1967                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
1968 #ifdef CONFIG_IPW2200_DEBUG
1969                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1970                                 struct ipw_fw_error *error =
1971                                     ipw_alloc_error_log(priv);
1972                                 ipw_dump_error_log(priv, error);
1973                                 if (error)
1974                                         ipw_free_error_log(error);
1975                         }
1976 #endif
1977                 } else {
1978                         priv->error = ipw_alloc_error_log(priv);
1979                         if (priv->error)
1980                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
1981                         else
1982                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
1983                                              "log.\n");
1984 #ifdef CONFIG_IPW2200_DEBUG
1985                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
1986                                 ipw_dump_error_log(priv, priv->error);
1987 #endif
1988                 }
1989
1990                 /* XXX: If hardware encryption is for WPA/WPA2,
1991                  * we have to notify the supplicant. */
1992                 if (priv->ieee->sec.encrypt) {
1993                         priv->status &= ~STATUS_ASSOCIATED;
1994                         notify_wx_assoc_event(priv);
1995                 }
1996
1997                 /* Keep the restart process from trying to send host
1998                  * commands by clearing the INIT status bit */
1999                 priv->status &= ~STATUS_INIT;
2000
2001                 /* Cancel currently queued command. */
2002                 priv->status &= ~STATUS_HCMD_ACTIVE;
2003                 wake_up_interruptible(&priv->wait_command_queue);
2004
2005                 queue_work(priv->workqueue, &priv->adapter_restart);
2006                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2007         }
2008
2009         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2010                 IPW_ERROR("Parity error\n");
2011                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2012         }
2013
2014         if (handled != inta) {
2015                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2016         }
2017
2018         spin_unlock_irqrestore(&priv->lock, flags);
2019
2020         /* enable all interrupts */
2021         ipw_enable_interrupts(priv);
2022 }
2023
2024 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2025 static char *get_cmd_string(u8 cmd)
2026 {
2027         switch (cmd) {
2028                 IPW_CMD(HOST_COMPLETE);
2029                 IPW_CMD(POWER_DOWN);
2030                 IPW_CMD(SYSTEM_CONFIG);
2031                 IPW_CMD(MULTICAST_ADDRESS);
2032                 IPW_CMD(SSID);
2033                 IPW_CMD(ADAPTER_ADDRESS);
2034                 IPW_CMD(PORT_TYPE);
2035                 IPW_CMD(RTS_THRESHOLD);
2036                 IPW_CMD(FRAG_THRESHOLD);
2037                 IPW_CMD(POWER_MODE);
2038                 IPW_CMD(WEP_KEY);
2039                 IPW_CMD(TGI_TX_KEY);
2040                 IPW_CMD(SCAN_REQUEST);
2041                 IPW_CMD(SCAN_REQUEST_EXT);
2042                 IPW_CMD(ASSOCIATE);
2043                 IPW_CMD(SUPPORTED_RATES);
2044                 IPW_CMD(SCAN_ABORT);
2045                 IPW_CMD(TX_FLUSH);
2046                 IPW_CMD(QOS_PARAMETERS);
2047                 IPW_CMD(DINO_CONFIG);
2048                 IPW_CMD(RSN_CAPABILITIES);
2049                 IPW_CMD(RX_KEY);
2050                 IPW_CMD(CARD_DISABLE);
2051                 IPW_CMD(SEED_NUMBER);
2052                 IPW_CMD(TX_POWER);
2053                 IPW_CMD(COUNTRY_INFO);
2054                 IPW_CMD(AIRONET_INFO);
2055                 IPW_CMD(AP_TX_POWER);
2056                 IPW_CMD(CCKM_INFO);
2057                 IPW_CMD(CCX_VER_INFO);
2058                 IPW_CMD(SET_CALIBRATION);
2059                 IPW_CMD(SENSITIVITY_CALIB);
2060                 IPW_CMD(RETRY_LIMIT);
2061                 IPW_CMD(IPW_PRE_POWER_DOWN);
2062                 IPW_CMD(VAP_BEACON_TEMPLATE);
2063                 IPW_CMD(VAP_DTIM_PERIOD);
2064                 IPW_CMD(EXT_SUPPORTED_RATES);
2065                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2066                 IPW_CMD(VAP_QUIET_INTERVALS);
2067                 IPW_CMD(VAP_CHANNEL_SWITCH);
2068                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2069                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2070                 IPW_CMD(VAP_CF_PARAM_SET);
2071                 IPW_CMD(VAP_SET_BEACONING_STATE);
2072                 IPW_CMD(MEASUREMENT);
2073                 IPW_CMD(POWER_CAPABILITY);
2074                 IPW_CMD(SUPPORTED_CHANNELS);
2075                 IPW_CMD(TPC_REPORT);
2076                 IPW_CMD(WME_INFO);
2077                 IPW_CMD(PRODUCTION_COMMAND);
2078         default:
2079                 return "UNKNOWN";
2080         }
2081 }
2082
2083 #define HOST_COMPLETE_TIMEOUT HZ
2084
2085 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2086 {
2087         int rc = 0;
2088         unsigned long flags;
2089
2090         spin_lock_irqsave(&priv->lock, flags);
2091         if (priv->status & STATUS_HCMD_ACTIVE) {
2092                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2093                           get_cmd_string(cmd->cmd));
2094                 spin_unlock_irqrestore(&priv->lock, flags);
2095                 return -EAGAIN;
2096         }
2097
2098         priv->status |= STATUS_HCMD_ACTIVE;
2099
2100         if (priv->cmdlog) {
2101                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2102                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2103                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2104                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2105                        cmd->len);
2106                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2107         }
2108
2109         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2110                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2111                      priv->status);
2112
2113 #ifndef DEBUG_CMD_WEP_KEY
2114         if (cmd->cmd == IPW_CMD_WEP_KEY)
2115                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2116         else
2117 #endif
2118                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2119
2120         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2121         if (rc) {
2122                 priv->status &= ~STATUS_HCMD_ACTIVE;
2123                 IPW_ERROR("Failed to send %s: Reason %d\n",
2124                           get_cmd_string(cmd->cmd), rc);
2125                 spin_unlock_irqrestore(&priv->lock, flags);
2126                 goto exit;
2127         }
2128         spin_unlock_irqrestore(&priv->lock, flags);
2129
2130         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2131                                               !(priv->
2132                                                 status & STATUS_HCMD_ACTIVE),
2133                                               HOST_COMPLETE_TIMEOUT);
2134         if (rc == 0) {
2135                 spin_lock_irqsave(&priv->lock, flags);
2136                 if (priv->status & STATUS_HCMD_ACTIVE) {
2137                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2138                                   get_cmd_string(cmd->cmd));
2139                         priv->status &= ~STATUS_HCMD_ACTIVE;
2140                         spin_unlock_irqrestore(&priv->lock, flags);
2141                         rc = -EIO;
2142                         goto exit;
2143                 }
2144                 spin_unlock_irqrestore(&priv->lock, flags);
2145         } else
2146                 rc = 0;
2147
2148         if (priv->status & STATUS_RF_KILL_HW) {
2149                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2150                           get_cmd_string(cmd->cmd));
2151                 rc = -EIO;
2152                 goto exit;
2153         }
2154
2155       exit:
2156         if (priv->cmdlog) {
2157                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2158                 priv->cmdlog_pos %= priv->cmdlog_len;
2159         }
2160         return rc;
2161 }
2162
2163 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2164 {
2165         struct host_cmd cmd = {
2166                 .cmd = command,
2167         };
2168
2169         return __ipw_send_cmd(priv, &cmd);
2170 }
2171
2172 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2173                             void *data)
2174 {
2175         struct host_cmd cmd = {
2176                 .cmd = command,
2177                 .len = len,
2178                 .param = data,
2179         };
2180
2181         return __ipw_send_cmd(priv, &cmd);
2182 }
2183
2184 static int ipw_send_host_complete(struct ipw_priv *priv)
2185 {
2186         if (!priv) {
2187                 IPW_ERROR("Invalid args\n");
2188                 return -1;
2189         }
2190
2191         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2192 }
2193
2194 static int ipw_send_system_config(struct ipw_priv *priv)
2195 {
2196         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2197                                 sizeof(priv->sys_config),
2198                                 &priv->sys_config);
2199 }
2200
2201 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2202 {
2203         if (!priv || !ssid) {
2204                 IPW_ERROR("Invalid args\n");
2205                 return -1;
2206         }
2207
2208         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2209                                 ssid);
2210 }
2211
2212 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2213 {
2214         if (!priv || !mac) {
2215                 IPW_ERROR("Invalid args\n");
2216                 return -1;
2217         }
2218
2219         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2220                        priv->net_dev->name, MAC_ARG(mac));
2221
2222         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2223 }
2224
2225 /*
2226  * NOTE: This must be executed from our workqueue as it results in udelay
2227  * being called which may corrupt the keyboard if executed on default
2228  * workqueue
2229  */
2230 static void ipw_adapter_restart(void *adapter)
2231 {
2232         struct ipw_priv *priv = adapter;
2233
2234         if (priv->status & STATUS_RF_KILL_MASK)
2235                 return;
2236
2237         ipw_down(priv);
2238
2239         if (priv->assoc_network &&
2240             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2241                 ipw_remove_current_network(priv);
2242
2243         if (ipw_up(priv)) {
2244                 IPW_ERROR("Failed to up device\n");
2245                 return;
2246         }
2247 }
2248
2249 static void ipw_bg_adapter_restart(void *data)
2250 {
2251         struct ipw_priv *priv = data;
2252         mutex_lock(&priv->mutex);
2253         ipw_adapter_restart(data);
2254         mutex_unlock(&priv->mutex);
2255 }
2256
2257 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2258
2259 static void ipw_scan_check(void *data)
2260 {
2261         struct ipw_priv *priv = data;
2262         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2263                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2264                                "adapter after (%dms).\n",
2265                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2266                 queue_work(priv->workqueue, &priv->adapter_restart);
2267         }
2268 }
2269
2270 static void ipw_bg_scan_check(void *data)
2271 {
2272         struct ipw_priv *priv = data;
2273         mutex_lock(&priv->mutex);
2274         ipw_scan_check(data);
2275         mutex_unlock(&priv->mutex);
2276 }
2277
2278 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2279                                      struct ipw_scan_request_ext *request)
2280 {
2281         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2282                                 sizeof(*request), request);
2283 }
2284
2285 static int ipw_send_scan_abort(struct ipw_priv *priv)
2286 {
2287         if (!priv) {
2288                 IPW_ERROR("Invalid args\n");
2289                 return -1;
2290         }
2291
2292         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2293 }
2294
2295 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2296 {
2297         struct ipw_sensitivity_calib calib = {
2298                 .beacon_rssi_raw = sens,
2299         };
2300
2301         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2302                                 &calib);
2303 }
2304
2305 static int ipw_send_associate(struct ipw_priv *priv,
2306                               struct ipw_associate *associate)
2307 {
2308         struct ipw_associate tmp_associate;
2309
2310         if (!priv || !associate) {
2311                 IPW_ERROR("Invalid args\n");
2312                 return -1;
2313         }
2314
2315         memcpy(&tmp_associate, associate, sizeof(*associate));
2316         tmp_associate.policy_support =
2317             cpu_to_le16(tmp_associate.policy_support);
2318         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2319         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2320         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2321         tmp_associate.listen_interval =
2322             cpu_to_le16(tmp_associate.listen_interval);
2323         tmp_associate.beacon_interval =
2324             cpu_to_le16(tmp_associate.beacon_interval);
2325         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2326
2327         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2328                                 &tmp_associate);
2329 }
2330
2331 static int ipw_send_supported_rates(struct ipw_priv *priv,
2332                                     struct ipw_supported_rates *rates)
2333 {
2334         if (!priv || !rates) {
2335                 IPW_ERROR("Invalid args\n");
2336                 return -1;
2337         }
2338
2339         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2340                                 rates);
2341 }
2342
2343 static int ipw_set_random_seed(struct ipw_priv *priv)
2344 {
2345         u32 val;
2346
2347         if (!priv) {
2348                 IPW_ERROR("Invalid args\n");
2349                 return -1;
2350         }
2351
2352         get_random_bytes(&val, sizeof(val));
2353
2354         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2355 }
2356
2357 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2358 {
2359         if (!priv) {
2360                 IPW_ERROR("Invalid args\n");
2361                 return -1;
2362         }
2363
2364         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2365                                 &phy_off);
2366 }
2367
2368 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2369 {
2370         if (!priv || !power) {
2371                 IPW_ERROR("Invalid args\n");
2372                 return -1;
2373         }
2374
2375         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2376 }
2377
2378 static int ipw_set_tx_power(struct ipw_priv *priv)
2379 {
2380         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2381         struct ipw_tx_power tx_power;
2382         s8 max_power;
2383         int i;
2384
2385         memset(&tx_power, 0, sizeof(tx_power));
2386
2387         /* configure device for 'G' band */
2388         tx_power.ieee_mode = IPW_G_MODE;
2389         tx_power.num_channels = geo->bg_channels;
2390         for (i = 0; i < geo->bg_channels; i++) {
2391                 max_power = geo->bg[i].max_power;
2392                 tx_power.channels_tx_power[i].channel_number =
2393                     geo->bg[i].channel;
2394                 tx_power.channels_tx_power[i].tx_power = max_power ?
2395                     min(max_power, priv->tx_power) : priv->tx_power;
2396         }
2397         if (ipw_send_tx_power(priv, &tx_power))
2398                 return -EIO;
2399
2400         /* configure device to also handle 'B' band */
2401         tx_power.ieee_mode = IPW_B_MODE;
2402         if (ipw_send_tx_power(priv, &tx_power))
2403                 return -EIO;
2404
2405         /* configure device to also handle 'A' band */
2406         if (priv->ieee->abg_true) {
2407                 tx_power.ieee_mode = IPW_A_MODE;
2408                 tx_power.num_channels = geo->a_channels;
2409                 for (i = 0; i < tx_power.num_channels; i++) {
2410                         max_power = geo->a[i].max_power;
2411                         tx_power.channels_tx_power[i].channel_number =
2412                             geo->a[i].channel;
2413                         tx_power.channels_tx_power[i].tx_power = max_power ?
2414                             min(max_power, priv->tx_power) : priv->tx_power;
2415                 }
2416                 if (ipw_send_tx_power(priv, &tx_power))
2417                         return -EIO;
2418         }
2419         return 0;
2420 }
2421
2422 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2423 {
2424         struct ipw_rts_threshold rts_threshold = {
2425                 .rts_threshold = rts,
2426         };
2427
2428         if (!priv) {
2429                 IPW_ERROR("Invalid args\n");
2430                 return -1;
2431         }
2432
2433         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2434                                 sizeof(rts_threshold), &rts_threshold);
2435 }
2436
2437 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2438 {
2439         struct ipw_frag_threshold frag_threshold = {
2440                 .frag_threshold = frag,
2441         };
2442
2443         if (!priv) {
2444                 IPW_ERROR("Invalid args\n");
2445                 return -1;
2446         }
2447
2448         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2449                                 sizeof(frag_threshold), &frag_threshold);
2450 }
2451
2452 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2453 {
2454         u32 param;
2455
2456         if (!priv) {
2457                 IPW_ERROR("Invalid args\n");
2458                 return -1;
2459         }
2460
2461         /* If on battery, set to 3, if AC set to CAM, else user
2462          * level */
2463         switch (mode) {
2464         case IPW_POWER_BATTERY:
2465                 param = IPW_POWER_INDEX_3;
2466                 break;
2467         case IPW_POWER_AC:
2468                 param = IPW_POWER_MODE_CAM;
2469                 break;
2470         default:
2471                 param = mode;
2472                 break;
2473         }
2474
2475         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2476                                 &param);
2477 }
2478
2479 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2480 {
2481         struct ipw_retry_limit retry_limit = {
2482                 .short_retry_limit = slimit,
2483                 .long_retry_limit = llimit
2484         };
2485
2486         if (!priv) {
2487                 IPW_ERROR("Invalid args\n");
2488                 return -1;
2489         }
2490
2491         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2492                                 &retry_limit);
2493 }
2494
2495 /*
2496  * The IPW device contains a Microwire compatible EEPROM that stores
2497  * various data like the MAC address.  Usually the firmware has exclusive
2498  * access to the eeprom, but during device initialization (before the
2499  * device driver has sent the HostComplete command to the firmware) the
2500  * device driver has read access to the EEPROM by way of indirect addressing
2501  * through a couple of memory mapped registers.
2502  *
2503  * The following is a simplified implementation for pulling data out of the
2504  * the eeprom, along with some helper functions to find information in
2505  * the per device private data's copy of the eeprom.
2506  *
2507  * NOTE: To better understand how these functions work (i.e what is a chip
2508  *       select and why do have to keep driving the eeprom clock?), read
2509  *       just about any data sheet for a Microwire compatible EEPROM.
2510  */
2511
2512 /* write a 32 bit value into the indirect accessor register */
2513 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2514 {
2515         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2516
2517         /* the eeprom requires some time to complete the operation */
2518         udelay(p->eeprom_delay);
2519
2520         return;
2521 }
2522
2523 /* perform a chip select operation */
2524 static void eeprom_cs(struct ipw_priv *priv)
2525 {
2526         eeprom_write_reg(priv, 0);
2527         eeprom_write_reg(priv, EEPROM_BIT_CS);
2528         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2529         eeprom_write_reg(priv, EEPROM_BIT_CS);
2530 }
2531
2532 /* perform a chip select operation */
2533 static void eeprom_disable_cs(struct ipw_priv *priv)
2534 {
2535         eeprom_write_reg(priv, EEPROM_BIT_CS);
2536         eeprom_write_reg(priv, 0);
2537         eeprom_write_reg(priv, EEPROM_BIT_SK);
2538 }
2539
2540 /* push a single bit down to the eeprom */
2541 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2542 {
2543         int d = (bit ? EEPROM_BIT_DI : 0);
2544         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2545         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2546 }
2547
2548 /* push an opcode followed by an address down to the eeprom */
2549 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2550 {
2551         int i;
2552
2553         eeprom_cs(priv);
2554         eeprom_write_bit(priv, 1);
2555         eeprom_write_bit(priv, op & 2);
2556         eeprom_write_bit(priv, op & 1);
2557         for (i = 7; i >= 0; i--) {
2558                 eeprom_write_bit(priv, addr & (1 << i));
2559         }
2560 }
2561
2562 /* pull 16 bits off the eeprom, one bit at a time */
2563 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2564 {
2565         int i;
2566         u16 r = 0;
2567
2568         /* Send READ Opcode */
2569         eeprom_op(priv, EEPROM_CMD_READ, addr);
2570
2571         /* Send dummy bit */
2572         eeprom_write_reg(priv, EEPROM_BIT_CS);
2573
2574         /* Read the byte off the eeprom one bit at a time */
2575         for (i = 0; i < 16; i++) {
2576                 u32 data = 0;
2577                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2578                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2579                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2580                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2581         }
2582
2583         /* Send another dummy bit */
2584         eeprom_write_reg(priv, 0);
2585         eeprom_disable_cs(priv);
2586
2587         return r;
2588 }
2589
2590 /* helper function for pulling the mac address out of the private */
2591 /* data's copy of the eeprom data                                 */
2592 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2593 {
2594         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2595 }
2596
2597 /*
2598  * Either the device driver (i.e. the host) or the firmware can
2599  * load eeprom data into the designated region in SRAM.  If neither
2600  * happens then the FW will shutdown with a fatal error.
2601  *
2602  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2603  * bit needs region of shared SRAM needs to be non-zero.
2604  */
2605 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2606 {
2607         int i;
2608         u16 *eeprom = (u16 *) priv->eeprom;
2609
2610         IPW_DEBUG_TRACE(">>\n");
2611
2612         /* read entire contents of eeprom into private buffer */
2613         for (i = 0; i < 128; i++)
2614                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2615
2616         /*
2617            If the data looks correct, then copy it to our private
2618            copy.  Otherwise let the firmware know to perform the operation
2619            on its own.
2620          */
2621         if (priv->eeprom[EEPROM_VERSION] != 0) {
2622                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2623
2624                 /* write the eeprom data to sram */
2625                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2626                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2627
2628                 /* Do not load eeprom data on fatal error or suspend */
2629                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2630         } else {
2631                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2632
2633                 /* Load eeprom data on fatal error or suspend */
2634                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2635         }
2636
2637         IPW_DEBUG_TRACE("<<\n");
2638 }
2639
2640 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2641 {
2642         count >>= 2;
2643         if (!count)
2644                 return;
2645         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2646         while (count--)
2647                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2648 }
2649
2650 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2651 {
2652         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2653                         CB_NUMBER_OF_ELEMENTS_SMALL *
2654                         sizeof(struct command_block));
2655 }
2656
2657 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2658 {                               /* start dma engine but no transfers yet */
2659
2660         IPW_DEBUG_FW(">> : \n");
2661
2662         /* Start the dma */
2663         ipw_fw_dma_reset_command_blocks(priv);
2664
2665         /* Write CB base address */
2666         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2667
2668         IPW_DEBUG_FW("<< : \n");
2669         return 0;
2670 }
2671
2672 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2673 {
2674         u32 control = 0;
2675
2676         IPW_DEBUG_FW(">> :\n");
2677
2678         //set the Stop and Abort bit
2679         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2680         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2681         priv->sram_desc.last_cb_index = 0;
2682
2683         IPW_DEBUG_FW("<< \n");
2684 }
2685
2686 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2687                                           struct command_block *cb)
2688 {
2689         u32 address =
2690             IPW_SHARED_SRAM_DMA_CONTROL +
2691             (sizeof(struct command_block) * index);
2692         IPW_DEBUG_FW(">> :\n");
2693
2694         ipw_write_indirect(priv, address, (u8 *) cb,
2695                            (int)sizeof(struct command_block));
2696
2697         IPW_DEBUG_FW("<< :\n");
2698         return 0;
2699
2700 }
2701
2702 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2703 {
2704         u32 control = 0;
2705         u32 index = 0;
2706
2707         IPW_DEBUG_FW(">> :\n");
2708
2709         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2710                 ipw_fw_dma_write_command_block(priv, index,
2711                                                &priv->sram_desc.cb_list[index]);
2712
2713         /* Enable the DMA in the CSR register */
2714         ipw_clear_bit(priv, IPW_RESET_REG,
2715                       IPW_RESET_REG_MASTER_DISABLED |
2716                       IPW_RESET_REG_STOP_MASTER);
2717
2718         /* Set the Start bit. */
2719         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2720         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2721
2722         IPW_DEBUG_FW("<< :\n");
2723         return 0;
2724 }
2725
2726 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2727 {
2728         u32 address;
2729         u32 register_value = 0;
2730         u32 cb_fields_address = 0;
2731
2732         IPW_DEBUG_FW(">> :\n");
2733         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2734         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2735
2736         /* Read the DMA Controlor register */
2737         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2738         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2739
2740         /* Print the CB values */
2741         cb_fields_address = address;
2742         register_value = ipw_read_reg32(priv, cb_fields_address);
2743         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2744
2745         cb_fields_address += sizeof(u32);
2746         register_value = ipw_read_reg32(priv, cb_fields_address);
2747         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2748
2749         cb_fields_address += sizeof(u32);
2750         register_value = ipw_read_reg32(priv, cb_fields_address);
2751         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2752                           register_value);
2753
2754         cb_fields_address += sizeof(u32);
2755         register_value = ipw_read_reg32(priv, cb_fields_address);
2756         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2757
2758         IPW_DEBUG_FW(">> :\n");
2759 }
2760
2761 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2762 {
2763         u32 current_cb_address = 0;
2764         u32 current_cb_index = 0;
2765
2766         IPW_DEBUG_FW("<< :\n");
2767         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2768
2769         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2770             sizeof(struct command_block);
2771
2772         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2773                           current_cb_index, current_cb_address);
2774
2775         IPW_DEBUG_FW(">> :\n");
2776         return current_cb_index;
2777
2778 }
2779
2780 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2781                                         u32 src_address,
2782                                         u32 dest_address,
2783                                         u32 length,
2784                                         int interrupt_enabled, int is_last)
2785 {
2786
2787         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2788             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2789             CB_DEST_SIZE_LONG;
2790         struct command_block *cb;
2791         u32 last_cb_element = 0;
2792
2793         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2794                           src_address, dest_address, length);
2795
2796         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2797                 return -1;
2798
2799         last_cb_element = priv->sram_desc.last_cb_index;
2800         cb = &priv->sram_desc.cb_list[last_cb_element];
2801         priv->sram_desc.last_cb_index++;
2802
2803         /* Calculate the new CB control word */
2804         if (interrupt_enabled)
2805                 control |= CB_INT_ENABLED;
2806
2807         if (is_last)
2808                 control |= CB_LAST_VALID;
2809
2810         control |= length;
2811
2812         /* Calculate the CB Element's checksum value */
2813         cb->status = control ^ src_address ^ dest_address;
2814
2815         /* Copy the Source and Destination addresses */
2816         cb->dest_addr = dest_address;
2817         cb->source_addr = src_address;
2818
2819         /* Copy the Control Word last */
2820         cb->control = control;
2821
2822         return 0;
2823 }
2824
2825 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2826                                  u32 src_phys, u32 dest_address, u32 length)
2827 {
2828         u32 bytes_left = length;
2829         u32 src_offset = 0;
2830         u32 dest_offset = 0;
2831         int status = 0;
2832         IPW_DEBUG_FW(">> \n");
2833         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2834                           src_phys, dest_address, length);
2835         while (bytes_left > CB_MAX_LENGTH) {
2836                 status = ipw_fw_dma_add_command_block(priv,
2837                                                       src_phys + src_offset,
2838                                                       dest_address +
2839                                                       dest_offset,
2840                                                       CB_MAX_LENGTH, 0, 0);
2841                 if (status) {
2842                         IPW_DEBUG_FW_INFO(": Failed\n");
2843                         return -1;
2844                 } else
2845                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2846
2847                 src_offset += CB_MAX_LENGTH;
2848                 dest_offset += CB_MAX_LENGTH;
2849                 bytes_left -= CB_MAX_LENGTH;
2850         }
2851
2852         /* add the buffer tail */
2853         if (bytes_left > 0) {
2854                 status =
2855                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2856                                                  dest_address + dest_offset,
2857                                                  bytes_left, 0, 0);
2858                 if (status) {
2859                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2860                         return -1;
2861                 } else
2862                         IPW_DEBUG_FW_INFO
2863                             (": Adding new cb - the buffer tail\n");
2864         }
2865
2866         IPW_DEBUG_FW("<< \n");
2867         return 0;
2868 }
2869
2870 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2871 {
2872         u32 current_index = 0, previous_index;
2873         u32 watchdog = 0;
2874
2875         IPW_DEBUG_FW(">> : \n");
2876
2877         current_index = ipw_fw_dma_command_block_index(priv);
2878         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2879                           (int)priv->sram_desc.last_cb_index);
2880
2881         while (current_index < priv->sram_desc.last_cb_index) {
2882                 udelay(50);
2883                 previous_index = current_index;
2884                 current_index = ipw_fw_dma_command_block_index(priv);
2885
2886                 if (previous_index < current_index) {
2887                         watchdog = 0;
2888                         continue;
2889                 }
2890                 if (++watchdog > 400) {
2891                         IPW_DEBUG_FW_INFO("Timeout\n");
2892                         ipw_fw_dma_dump_command_block(priv);
2893                         ipw_fw_dma_abort(priv);
2894                         return -1;
2895                 }
2896         }
2897
2898         ipw_fw_dma_abort(priv);
2899
2900         /*Disable the DMA in the CSR register */
2901         ipw_set_bit(priv, IPW_RESET_REG,
2902                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2903
2904         IPW_DEBUG_FW("<< dmaWaitSync \n");
2905         return 0;
2906 }
2907
2908 static void ipw_remove_current_network(struct ipw_priv *priv)
2909 {
2910         struct list_head *element, *safe;
2911         struct ieee80211_network *network = NULL;
2912         unsigned long flags;
2913
2914         spin_lock_irqsave(&priv->ieee->lock, flags);
2915         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2916                 network = list_entry(element, struct ieee80211_network, list);
2917                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2918                         list_del(element);
2919                         list_add_tail(&network->list,
2920                                       &priv->ieee->network_free_list);
2921                 }
2922         }
2923         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2924 }
2925
2926 /**
2927  * Check that card is still alive.
2928  * Reads debug register from domain0.
2929  * If card is present, pre-defined value should
2930  * be found there.
2931  *
2932  * @param priv
2933  * @return 1 if card is present, 0 otherwise
2934  */
2935 static inline int ipw_alive(struct ipw_priv *priv)
2936 {
2937         return ipw_read32(priv, 0x90) == 0xd55555d5;
2938 }
2939
2940 /* timeout in msec, attempted in 10-msec quanta */
2941 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2942                                int timeout)
2943 {
2944         int i = 0;
2945
2946         do {
2947                 if ((ipw_read32(priv, addr) & mask) == mask)
2948                         return i;
2949                 mdelay(10);
2950                 i += 10;
2951         } while (i < timeout);
2952
2953         return -ETIME;
2954 }
2955
2956 /* These functions load the firmware and micro code for the operation of
2957  * the ipw hardware.  It assumes the buffer has all the bits for the
2958  * image and the caller is handling the memory allocation and clean up.
2959  */
2960
2961 static int ipw_stop_master(struct ipw_priv *priv)
2962 {
2963         int rc;
2964
2965         IPW_DEBUG_TRACE(">> \n");
2966         /* stop master. typical delay - 0 */
2967         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2968
2969         /* timeout is in msec, polled in 10-msec quanta */
2970         rc = ipw_poll_bit(priv, IPW_RESET_REG,
2971                           IPW_RESET_REG_MASTER_DISABLED, 100);
2972         if (rc < 0) {
2973                 IPW_ERROR("wait for stop master failed after 100ms\n");
2974                 return -1;
2975         }
2976
2977         IPW_DEBUG_INFO("stop master %dms\n", rc);
2978
2979         return rc;
2980 }
2981
2982 static void ipw_arc_release(struct ipw_priv *priv)
2983 {
2984         IPW_DEBUG_TRACE(">> \n");
2985         mdelay(5);
2986
2987         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2988
2989         /* no one knows timing, for safety add some delay */
2990         mdelay(5);
2991 }
2992
2993 struct fw_chunk {
2994         u32 address;
2995         u32 length;
2996 };
2997
2998 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2999 {
3000         int rc = 0, i, addr;
3001         u8 cr = 0;
3002         u16 *image;
3003
3004         image = (u16 *) data;
3005
3006         IPW_DEBUG_TRACE(">> \n");
3007
3008         rc = ipw_stop_master(priv);
3009
3010         if (rc < 0)
3011                 return rc;
3012
3013 //      spin_lock_irqsave(&priv->lock, flags);
3014
3015         for (addr = IPW_SHARED_LOWER_BOUND;
3016              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3017                 ipw_write32(priv, addr, 0);
3018         }
3019
3020         /* no ucode (yet) */
3021         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3022         /* destroy DMA queues */
3023         /* reset sequence */
3024
3025         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3026         ipw_arc_release(priv);
3027         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3028         mdelay(1);
3029
3030         /* reset PHY */
3031         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3032         mdelay(1);
3033
3034         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3035         mdelay(1);
3036
3037         /* enable ucode store */
3038         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3039         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3040         mdelay(1);
3041
3042         /* write ucode */
3043         /**
3044          * @bug
3045          * Do NOT set indirect address register once and then
3046          * store data to indirect data register in the loop.
3047          * It seems very reasonable, but in this case DINO do not
3048          * accept ucode. It is essential to set address each time.
3049          */
3050         /* load new ipw uCode */
3051         for (i = 0; i < len / 2; i++)
3052                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3053                                 cpu_to_le16(image[i]));
3054
3055         /* enable DINO */
3056         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3057         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3058
3059         /* this is where the igx / win driver deveates from the VAP driver. */
3060
3061         /* wait for alive response */
3062         for (i = 0; i < 100; i++) {
3063                 /* poll for incoming data */
3064                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3065                 if (cr & DINO_RXFIFO_DATA)
3066                         break;
3067                 mdelay(1);
3068         }
3069
3070         if (cr & DINO_RXFIFO_DATA) {
3071                 /* alive_command_responce size is NOT multiple of 4 */
3072                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3073
3074                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3075                         response_buffer[i] =
3076                             le32_to_cpu(ipw_read_reg32(priv,
3077                                                        IPW_BASEBAND_RX_FIFO_READ));
3078                 memcpy(&priv->dino_alive, response_buffer,
3079                        sizeof(priv->dino_alive));
3080                 if (priv->dino_alive.alive_command == 1
3081                     && priv->dino_alive.ucode_valid == 1) {
3082                         rc = 0;
3083                         IPW_DEBUG_INFO
3084                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3085                              "of %02d/%02d/%02d %02d:%02d\n",
3086                              priv->dino_alive.software_revision,
3087                              priv->dino_alive.software_revision,
3088                              priv->dino_alive.device_identifier,
3089                              priv->dino_alive.device_identifier,
3090                              priv->dino_alive.time_stamp[0],
3091                              priv->dino_alive.time_stamp[1],
3092                              priv->dino_alive.time_stamp[2],
3093                              priv->dino_alive.time_stamp[3],
3094                              priv->dino_alive.time_stamp[4]);
3095                 } else {
3096                         IPW_DEBUG_INFO("Microcode is not alive\n");
3097                         rc = -EINVAL;
3098                 }
3099         } else {
3100                 IPW_DEBUG_INFO("No alive response from DINO\n");
3101                 rc = -ETIME;
3102         }
3103
3104         /* disable DINO, otherwise for some reason
3105            firmware have problem getting alive resp. */
3106         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3107
3108 //      spin_unlock_irqrestore(&priv->lock, flags);
3109
3110         return rc;
3111 }
3112
3113 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3114 {
3115         int rc = -1;
3116         int offset = 0;
3117         struct fw_chunk *chunk;
3118         dma_addr_t shared_phys;
3119         u8 *shared_virt;
3120
3121         IPW_DEBUG_TRACE("<< : \n");
3122         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3123
3124         if (!shared_virt)
3125                 return -ENOMEM;
3126
3127         memmove(shared_virt, data, len);
3128
3129         /* Start the Dma */
3130         rc = ipw_fw_dma_enable(priv);
3131
3132         if (priv->sram_desc.last_cb_index > 0) {
3133                 /* the DMA is already ready this would be a bug. */
3134                 BUG();
3135                 goto out;
3136         }
3137
3138         do {
3139                 chunk = (struct fw_chunk *)(data + offset);
3140                 offset += sizeof(struct fw_chunk);
3141                 /* build DMA packet and queue up for sending */
3142                 /* dma to chunk->address, the chunk->length bytes from data +
3143                  * offeset*/
3144                 /* Dma loading */
3145                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3146                                            le32_to_cpu(chunk->address),
3147                                            le32_to_cpu(chunk->length));
3148                 if (rc) {
3149                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3150                         goto out;
3151                 }
3152
3153                 offset += le32_to_cpu(chunk->length);
3154         } while (offset < len);
3155
3156         /* Run the DMA and wait for the answer */
3157         rc = ipw_fw_dma_kick(priv);
3158         if (rc) {
3159                 IPW_ERROR("dmaKick Failed\n");
3160                 goto out;
3161         }
3162
3163         rc = ipw_fw_dma_wait(priv);
3164         if (rc) {
3165                 IPW_ERROR("dmaWaitSync Failed\n");
3166                 goto out;
3167         }
3168       out:
3169         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3170         return rc;
3171 }
3172
3173 /* stop nic */
3174 static int ipw_stop_nic(struct ipw_priv *priv)
3175 {
3176         int rc = 0;
3177
3178         /* stop */
3179         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3180
3181         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3182                           IPW_RESET_REG_MASTER_DISABLED, 500);
3183         if (rc < 0) {
3184                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3185                 return rc;
3186         }
3187
3188         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3189
3190         return rc;
3191 }
3192
3193 static void ipw_start_nic(struct ipw_priv *priv)
3194 {
3195         IPW_DEBUG_TRACE(">>\n");
3196
3197         /* prvHwStartNic  release ARC */
3198         ipw_clear_bit(priv, IPW_RESET_REG,
3199                       IPW_RESET_REG_MASTER_DISABLED |
3200                       IPW_RESET_REG_STOP_MASTER |
3201                       CBD_RESET_REG_PRINCETON_RESET);
3202
3203         /* enable power management */
3204         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3205                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3206
3207         IPW_DEBUG_TRACE("<<\n");
3208 }
3209
3210 static int ipw_init_nic(struct ipw_priv *priv)
3211 {
3212         int rc;
3213
3214         IPW_DEBUG_TRACE(">>\n");
3215         /* reset */
3216         /*prvHwInitNic */
3217         /* set "initialization complete" bit to move adapter to D0 state */
3218         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3219
3220         /* low-level PLL activation */
3221         ipw_write32(priv, IPW_READ_INT_REGISTER,
3222                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3223
3224         /* wait for clock stabilization */
3225         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3226                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3227         if (rc < 0)
3228                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3229
3230         /* assert SW reset */
3231         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3232
3233         udelay(10);
3234
3235         /* set "initialization complete" bit to move adapter to D0 state */
3236         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3237
3238         IPW_DEBUG_TRACE(">>\n");
3239         return 0;
3240 }
3241
3242 /* Call this function from process context, it will sleep in request_firmware.
3243  * Probe is an ok place to call this from.
3244  */
3245 static int ipw_reset_nic(struct ipw_priv *priv)
3246 {
3247         int rc = 0;
3248         unsigned long flags;
3249
3250         IPW_DEBUG_TRACE(">>\n");
3251
3252         rc = ipw_init_nic(priv);
3253
3254         spin_lock_irqsave(&priv->lock, flags);
3255         /* Clear the 'host command active' bit... */
3256         priv->status &= ~STATUS_HCMD_ACTIVE;
3257         wake_up_interruptible(&priv->wait_command_queue);
3258         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3259         wake_up_interruptible(&priv->wait_state);
3260         spin_unlock_irqrestore(&priv->lock, flags);
3261
3262         IPW_DEBUG_TRACE("<<\n");
3263         return rc;
3264 }
3265
3266
3267 struct ipw_fw {
3268         __le32 ver;
3269         __le32 boot_size;
3270         __le32 ucode_size;
3271         __le32 fw_size;
3272         u8 data[0];
3273 };
3274
3275 static int ipw_get_fw(struct ipw_priv *priv,
3276                       const struct firmware **raw, const char *name)
3277 {
3278         struct ipw_fw *fw;
3279         int rc;
3280
3281         /* ask firmware_class module to get the boot firmware off disk */
3282         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3283         if (rc < 0) {
3284                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3285                 return rc;
3286         }
3287
3288         if ((*raw)->size < sizeof(*fw)) {
3289                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3290                 return -EINVAL;
3291         }
3292
3293         fw = (void *)(*raw)->data;
3294
3295         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3296             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3297                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3298                           name, (*raw)->size);
3299                 return -EINVAL;
3300         }
3301
3302         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3303                        name,
3304                        le32_to_cpu(fw->ver) >> 16,
3305                        le32_to_cpu(fw->ver) & 0xff,
3306                        (*raw)->size - sizeof(*fw));
3307         return 0;
3308 }
3309
3310 #define IPW_RX_BUF_SIZE (3000)
3311
3312 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3313                                       struct ipw_rx_queue *rxq)
3314 {
3315         unsigned long flags;
3316         int i;
3317
3318         spin_lock_irqsave(&rxq->lock, flags);
3319
3320         INIT_LIST_HEAD(&rxq->rx_free);
3321         INIT_LIST_HEAD(&rxq->rx_used);
3322
3323         /* Fill the rx_used queue with _all_ of the Rx buffers */
3324         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3325                 /* In the reset function, these buffers may have been allocated
3326                  * to an SKB, so we need to unmap and free potential storage */
3327                 if (rxq->pool[i].skb != NULL) {
3328                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3329                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3330                         dev_kfree_skb(rxq->pool[i].skb);
3331                         rxq->pool[i].skb = NULL;
3332                 }
3333                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3334         }
3335
3336         /* Set us so that we have processed and used all buffers, but have
3337          * not restocked the Rx queue with fresh buffers */
3338         rxq->read = rxq->write = 0;
3339         rxq->processed = RX_QUEUE_SIZE - 1;
3340         rxq->free_count = 0;
3341         spin_unlock_irqrestore(&rxq->lock, flags);
3342 }
3343
3344 #ifdef CONFIG_PM
3345 static int fw_loaded = 0;
3346 static const struct firmware *raw = NULL;
3347
3348 static void free_firmware(void)
3349 {
3350         if (fw_loaded) {
3351                 release_firmware(raw);
3352                 raw = NULL;
3353                 fw_loaded = 0;
3354         }
3355 }
3356 #else
3357 #define free_firmware() do {} while (0)
3358 #endif
3359
3360 static int ipw_load(struct ipw_priv *priv)
3361 {
3362 #ifndef CONFIG_PM
3363         const struct firmware *raw = NULL;
3364 #endif
3365         struct ipw_fw *fw;
3366         u8 *boot_img, *ucode_img, *fw_img;
3367         u8 *name = NULL;
3368         int rc = 0, retries = 3;
3369
3370         switch (priv->ieee->iw_mode) {
3371         case IW_MODE_ADHOC:
3372                 name = "ipw2200-ibss.fw";
3373                 break;
3374 #ifdef CONFIG_IPW2200_MONITOR
3375         case IW_MODE_MONITOR:
3376                 name = "ipw2200-sniffer.fw";
3377                 break;
3378 #endif
3379         case IW_MODE_INFRA:
3380                 name = "ipw2200-bss.fw";
3381                 break;
3382         }
3383
3384         if (!name) {
3385                 rc = -EINVAL;
3386                 goto error;
3387         }
3388
3389 #ifdef CONFIG_PM
3390         if (!fw_loaded) {
3391 #endif
3392                 rc = ipw_get_fw(priv, &raw, name);
3393                 if (rc < 0)
3394                         goto error;
3395 #ifdef CONFIG_PM
3396         }
3397 #endif
3398
3399         fw = (void *)raw->data;
3400         boot_img = &fw->data[0];
3401         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3402         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3403                            le32_to_cpu(fw->ucode_size)];
3404
3405         if (rc < 0)
3406                 goto error;
3407
3408         if (!priv->rxq)
3409                 priv->rxq = ipw_rx_queue_alloc(priv);
3410         else
3411                 ipw_rx_queue_reset(priv, priv->rxq);
3412         if (!priv->rxq) {
3413                 IPW_ERROR("Unable to initialize Rx queue\n");
3414                 goto error;
3415         }
3416
3417       retry:
3418         /* Ensure interrupts are disabled */
3419         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3420         priv->status &= ~STATUS_INT_ENABLED;
3421
3422         /* ack pending interrupts */
3423         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3424
3425         ipw_stop_nic(priv);
3426
3427         rc = ipw_reset_nic(priv);
3428         if (rc < 0) {
3429                 IPW_ERROR("Unable to reset NIC\n");
3430                 goto error;
3431         }
3432
3433         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3434                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3435
3436         /* DMA the initial boot firmware into the device */
3437         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3438         if (rc < 0) {
3439                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3440                 goto error;
3441         }
3442
3443         /* kick start the device */
3444         ipw_start_nic(priv);
3445
3446         /* wait for the device to finish its initial startup sequence */
3447         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3448                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3449         if (rc < 0) {
3450                 IPW_ERROR("device failed to boot initial fw image\n");
3451                 goto error;
3452         }
3453         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3454
3455         /* ack fw init done interrupt */
3456         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3457
3458         /* DMA the ucode into the device */
3459         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3460         if (rc < 0) {
3461                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3462                 goto error;
3463         }
3464
3465         /* stop nic */
3466         ipw_stop_nic(priv);
3467
3468         /* DMA bss firmware into the device */
3469         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3470         if (rc < 0) {
3471                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3472                 goto error;
3473         }
3474 #ifdef CONFIG_PM
3475         fw_loaded = 1;
3476 #endif
3477
3478         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3479
3480         rc = ipw_queue_reset(priv);
3481         if (rc < 0) {
3482                 IPW_ERROR("Unable to initialize queues\n");
3483                 goto error;
3484         }
3485
3486         /* Ensure interrupts are disabled */
3487         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3488         /* ack pending interrupts */
3489         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3490
3491         /* kick start the device */
3492         ipw_start_nic(priv);
3493
3494         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3495                 if (retries > 0) {
3496                         IPW_WARNING("Parity error.  Retrying init.\n");
3497                         retries--;
3498                         goto retry;
3499                 }
3500
3501                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3502                 rc = -EIO;
3503                 goto error;
3504         }
3505
3506         /* wait for the device */
3507         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3508                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3509         if (rc < 0) {
3510                 IPW_ERROR("device failed to start within 500ms\n");
3511                 goto error;
3512         }
3513         IPW_DEBUG_INFO("device response after %dms\n", rc);
3514
3515         /* ack fw init done interrupt */
3516         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3517
3518         /* read eeprom data and initialize the eeprom region of sram */
3519         priv->eeprom_delay = 1;
3520         ipw_eeprom_init_sram(priv);
3521
3522         /* enable interrupts */
3523         ipw_enable_interrupts(priv);
3524
3525         /* Ensure our queue has valid packets */
3526         ipw_rx_queue_replenish(priv);
3527
3528         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3529
3530         /* ack pending interrupts */
3531         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3532
3533 #ifndef CONFIG_PM
3534         release_firmware(raw);
3535 #endif
3536         return 0;
3537
3538       error:
3539         if (priv->rxq) {
3540                 ipw_rx_queue_free(priv, priv->rxq);
3541                 priv->rxq = NULL;
3542         }
3543         ipw_tx_queue_free(priv);
3544         if (raw)
3545                 release_firmware(raw);
3546 #ifdef CONFIG_PM
3547         fw_loaded = 0;
3548         raw = NULL;
3549 #endif
3550
3551         return rc;
3552 }
3553
3554 /**
3555  * DMA services
3556  *
3557  * Theory of operation
3558  *
3559  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3560  * 2 empty entries always kept in the buffer to protect from overflow.
3561  *
3562  * For Tx queue, there are low mark and high mark limits. If, after queuing
3563  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3564  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3565  * Tx queue resumed.
3566  *
3567  * The IPW operates with six queues, one receive queue in the device's
3568  * sram, one transmit queue for sending commands to the device firmware,
3569  * and four transmit queues for data.
3570  *
3571  * The four transmit queues allow for performing quality of service (qos)
3572  * transmissions as per the 802.11 protocol.  Currently Linux does not
3573  * provide a mechanism to the user for utilizing prioritized queues, so
3574  * we only utilize the first data transmit queue (queue1).
3575  */
3576
3577 /**
3578  * Driver allocates buffers of this size for Rx
3579  */
3580
3581 static inline int ipw_queue_space(const struct clx2_queue *q)
3582 {
3583         int s = q->last_used - q->first_empty;
3584         if (s <= 0)
3585                 s += q->n_bd;
3586         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3587         if (s < 0)
3588                 s = 0;
3589         return s;
3590 }
3591
3592 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3593 {
3594         return (++index == n_bd) ? 0 : index;
3595 }
3596
3597 /**
3598  * Initialize common DMA queue structure
3599  *
3600  * @param q                queue to init
3601  * @param count            Number of BD's to allocate. Should be power of 2
3602  * @param read_register    Address for 'read' register
3603  *                         (not offset within BAR, full address)
3604  * @param write_register   Address for 'write' register
3605  *                         (not offset within BAR, full address)
3606  * @param base_register    Address for 'base' register
3607  *                         (not offset within BAR, full address)
3608  * @param size             Address for 'size' register
3609  *                         (not offset within BAR, full address)
3610  */
3611 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3612                            int count, u32 read, u32 write, u32 base, u32 size)
3613 {
3614         q->n_bd = count;
3615
3616         q->low_mark = q->n_bd / 4;
3617         if (q->low_mark < 4)
3618                 q->low_mark = 4;
3619
3620         q->high_mark = q->n_bd / 8;
3621         if (q->high_mark < 2)
3622                 q->high_mark = 2;
3623
3624         q->first_empty = q->last_used = 0;
3625         q->reg_r = read;
3626         q->reg_w = write;
3627
3628         ipw_write32(priv, base, q->dma_addr);
3629         ipw_write32(priv, size, count);
3630         ipw_write32(priv, read, 0);
3631         ipw_write32(priv, write, 0);
3632
3633         _ipw_read32(priv, 0x90);
3634 }
3635
3636 static int ipw_queue_tx_init(struct ipw_priv *priv,
3637                              struct clx2_tx_queue *q,
3638                              int count, u32 read, u32 write, u32 base, u32 size)
3639 {
3640         struct pci_dev *dev = priv->pci_dev;
3641
3642         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3643         if (!q->txb) {
3644                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3645                 return -ENOMEM;
3646         }
3647
3648         q->bd =
3649             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3650         if (!q->bd) {
3651                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3652                           sizeof(q->bd[0]) * count);
3653                 kfree(q->txb);
3654                 q->txb = NULL;
3655                 return -ENOMEM;
3656         }
3657
3658         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3659         return 0;
3660 }
3661
3662 /**
3663  * Free one TFD, those at index [txq->q.last_used].
3664  * Do NOT advance any indexes
3665  *
3666  * @param dev
3667  * @param txq
3668  */
3669 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3670                                   struct clx2_tx_queue *txq)
3671 {
3672         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3673         struct pci_dev *dev = priv->pci_dev;
3674         int i;
3675
3676         /* classify bd */
3677         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3678                 /* nothing to cleanup after for host commands */
3679                 return;
3680
3681         /* sanity check */
3682         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3683                 IPW_ERROR("Too many chunks: %i\n",
3684                           le32_to_cpu(bd->u.data.num_chunks));
3685                 /** @todo issue fatal error, it is quite serious situation */
3686                 return;
3687         }
3688
3689         /* unmap chunks if any */
3690         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3691                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3692                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3693                                  PCI_DMA_TODEVICE);
3694                 if (txq->txb[txq->q.last_used]) {
3695                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3696                         txq->txb[txq->q.last_used] = NULL;
3697                 }
3698         }
3699 }
3700
3701 /**
3702  * Deallocate DMA queue.
3703  *
3704  * Empty queue by removing and destroying all BD's.
3705  * Free all buffers.
3706  *
3707  * @param dev
3708  * @param q
3709  */
3710 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3711 {
3712         struct clx2_queue *q = &txq->q;
3713         struct pci_dev *dev = priv->pci_dev;
3714
3715         if (q->n_bd == 0)
3716                 return;
3717
3718         /* first, empty all BD's */
3719         for (; q->first_empty != q->last_used;
3720              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3721                 ipw_queue_tx_free_tfd(priv, txq);
3722         }
3723
3724         /* free buffers belonging to queue itself */
3725         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3726                             q->dma_addr);
3727         kfree(txq->txb);
3728
3729         /* 0 fill whole structure */
3730         memset(txq, 0, sizeof(*txq));
3731 }
3732
3733 /**
3734  * Destroy all DMA queues and structures
3735  *
3736  * @param priv
3737  */
3738 static void ipw_tx_queue_free(struct ipw_priv *priv)
3739 {
3740         /* Tx CMD queue */
3741         ipw_queue_tx_free(priv, &priv->txq_cmd);
3742
3743         /* Tx queues */
3744         ipw_queue_tx_free(priv, &priv->txq[0]);
3745         ipw_queue_tx_free(priv, &priv->txq[1]);
3746         ipw_queue_tx_free(priv, &priv->txq[2]);
3747         ipw_queue_tx_free(priv, &priv->txq[3]);
3748 }
3749
3750 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3751 {
3752         /* First 3 bytes are manufacturer */
3753         bssid[0] = priv->mac_addr[0];
3754         bssid[1] = priv->mac_addr[1];
3755         bssid[2] = priv->mac_addr[2];
3756
3757         /* Last bytes are random */
3758         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3759
3760         bssid[0] &= 0xfe;       /* clear multicast bit */
3761         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3762 }
3763
3764 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3765 {
3766         struct ipw_station_entry entry;
3767         int i;
3768
3769         for (i = 0; i < priv->num_stations; i++) {
3770                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3771                         /* Another node is active in network */
3772                         priv->missed_adhoc_beacons = 0;
3773                         if (!(priv->config & CFG_STATIC_CHANNEL))
3774                                 /* when other nodes drop out, we drop out */
3775                                 priv->config &= ~CFG_ADHOC_PERSIST;
3776
3777                         return i;
3778                 }
3779         }
3780
3781         if (i == MAX_STATIONS)
3782                 return IPW_INVALID_STATION;
3783
3784         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3785
3786         entry.reserved = 0;
3787         entry.support_mode = 0;
3788         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3789         memcpy(priv->stations[i], bssid, ETH_ALEN);
3790         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3791                          &entry, sizeof(entry));
3792         priv->num_stations++;
3793
3794         return i;
3795 }
3796
3797 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3798 {
3799         int i;
3800
3801         for (i = 0; i < priv->num_stations; i++)
3802                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3803                         return i;
3804
3805         return IPW_INVALID_STATION;
3806 }
3807
3808 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3809 {
3810         int err;
3811
3812         if (priv->status & STATUS_ASSOCIATING) {
3813                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3814                 queue_work(priv->workqueue, &priv->disassociate);
3815                 return;
3816         }
3817
3818         if (!(priv->status & STATUS_ASSOCIATED)) {
3819                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3820                 return;
3821         }
3822
3823         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3824                         "on channel %d.\n",
3825                         MAC_ARG(priv->assoc_request.bssid),
3826                         priv->assoc_request.channel);
3827
3828         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3829         priv->status |= STATUS_DISASSOCIATING;
3830
3831         if (quiet)
3832                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3833         else
3834                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3835
3836         err = ipw_send_associate(priv, &priv->assoc_request);
3837         if (err) {
3838                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3839                              "failed.\n");
3840                 return;
3841         }
3842
3843 }
3844
3845 static int ipw_disassociate(void *data)
3846 {
3847         struct ipw_priv *priv = data;
3848         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3849                 return 0;
3850         ipw_send_disassociate(data, 0);
3851         return 1;
3852 }
3853
3854 static void ipw_bg_disassociate(void *data)
3855 {
3856         struct ipw_priv *priv = data;
3857         mutex_lock(&priv->mutex);
3858         ipw_disassociate(data);
3859         mutex_unlock(&priv->mutex);
3860 }
3861
3862 static void ipw_system_config(void *data)
3863 {
3864         struct ipw_priv *priv = data;
3865
3866 #ifdef CONFIG_IPW2200_PROMISCUOUS
3867         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3868                 priv->sys_config.accept_all_data_frames = 1;
3869                 priv->sys_config.accept_non_directed_frames = 1;
3870                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3871                 priv->sys_config.accept_all_mgmt_frames = 1;
3872         }
3873 #endif
3874
3875         ipw_send_system_config(priv);
3876 }
3877
3878 struct ipw_status_code {
3879         u16 status;
3880         const char *reason;
3881 };
3882
3883 static const struct ipw_status_code ipw_status_codes[] = {
3884         {0x00, "Successful"},
3885         {0x01, "Unspecified failure"},
3886         {0x0A, "Cannot support all requested capabilities in the "
3887          "Capability information field"},
3888         {0x0B, "Reassociation denied due to inability to confirm that "
3889          "association exists"},
3890         {0x0C, "Association denied due to reason outside the scope of this "
3891          "standard"},
3892         {0x0D,
3893          "Responding station does not support the specified authentication "
3894          "algorithm"},
3895         {0x0E,
3896          "Received an Authentication frame with authentication sequence "
3897          "transaction sequence number out of expected sequence"},
3898         {0x0F, "Authentication rejected because of challenge failure"},
3899         {0x10, "Authentication rejected due to timeout waiting for next "
3900          "frame in sequence"},
3901         {0x11, "Association denied because AP is unable to handle additional "
3902          "associated stations"},
3903         {0x12,
3904          "Association denied due to requesting station not supporting all "
3905          "of the datarates in the BSSBasicServiceSet Parameter"},
3906         {0x13,
3907          "Association denied due to requesting station not supporting "
3908          "short preamble operation"},
3909         {0x14,
3910          "Association denied due to requesting station not supporting "
3911          "PBCC encoding"},
3912         {0x15,
3913          "Association denied due to requesting station not supporting "
3914          "channel agility"},
3915         {0x19,
3916          "Association denied due to requesting station not supporting "
3917          "short slot operation"},
3918         {0x1A,
3919          "Association denied due to requesting station not supporting "
3920          "DSSS-OFDM operation"},
3921         {0x28, "Invalid Information Element"},
3922         {0x29, "Group Cipher is not valid"},
3923         {0x2A, "Pairwise Cipher is not valid"},
3924         {0x2B, "AKMP is not valid"},
3925         {0x2C, "Unsupported RSN IE version"},
3926         {0x2D, "Invalid RSN IE Capabilities"},
3927         {0x2E, "Cipher suite is rejected per security policy"},
3928 };
3929
3930 #ifdef CONFIG_IPW2200_DEBUG
3931 static const char *ipw_get_status_code(u16 status)
3932 {
3933         int i;
3934         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3935                 if (ipw_status_codes[i].status == (status & 0xff))
3936                         return ipw_status_codes[i].reason;
3937         return "Unknown status value.";
3938 }
3939 #endif
3940
3941 static void inline average_init(struct average *avg)
3942 {
3943         memset(avg, 0, sizeof(*avg));
3944 }
3945
3946 #define DEPTH_RSSI 8
3947 #define DEPTH_NOISE 16
3948 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3949 {
3950         return ((depth-1)*prev_avg +  val)/depth;
3951 }
3952
3953 static void average_add(struct average *avg, s16 val)
3954 {
3955         avg->sum -= avg->entries[avg->pos];
3956         avg->sum += val;
3957         avg->entries[avg->pos++] = val;
3958         if (unlikely(avg->pos == AVG_ENTRIES)) {
3959                 avg->init = 1;
3960                 avg->pos = 0;
3961         }
3962 }
3963
3964 static s16 average_value(struct average *avg)
3965 {
3966         if (!unlikely(avg->init)) {
3967                 if (avg->pos)
3968                         return avg->sum / avg->pos;
3969                 return 0;
3970         }
3971
3972         return avg->sum / AVG_ENTRIES;
3973 }
3974
3975 static void ipw_reset_stats(struct ipw_priv *priv)
3976 {
3977         u32 len = sizeof(u32);
3978
3979         priv->quality = 0;
3980
3981         average_init(&priv->average_missed_beacons);
3982         priv->exp_avg_rssi = -60;
3983         priv->exp_avg_noise = -85 + 0x100;
3984
3985         priv->last_rate = 0;
3986         priv->last_missed_beacons = 0;
3987         priv->last_rx_packets = 0;
3988         priv->last_tx_packets = 0;
3989         priv->last_tx_failures = 0;
3990
3991         /* Firmware managed, reset only when NIC is restarted, so we have to
3992          * normalize on the current value */
3993         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3994                         &priv->last_rx_err, &len);
3995         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3996                         &priv->last_tx_failures, &len);
3997
3998         /* Driver managed, reset with each association */
3999         priv->missed_adhoc_beacons = 0;
4000         priv->missed_beacons = 0;
4001         priv->tx_packets = 0;
4002         priv->rx_packets = 0;
4003
4004 }
4005
4006 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4007 {
4008         u32 i = 0x80000000;
4009         u32 mask = priv->rates_mask;
4010         /* If currently associated in B mode, restrict the maximum
4011          * rate match to B rates */
4012         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4013                 mask &= IEEE80211_CCK_RATES_MASK;
4014
4015         /* TODO: Verify that the rate is supported by the current rates
4016          * list. */
4017
4018         while (i && !(mask & i))
4019                 i >>= 1;
4020         switch (i) {
4021         case IEEE80211_CCK_RATE_1MB_MASK:
4022                 return 1000000;
4023         case IEEE80211_CCK_RATE_2MB_MASK:
4024                 return 2000000;
4025         case IEEE80211_CCK_RATE_5MB_MASK:
4026                 return 5500000;
4027         case IEEE80211_OFDM_RATE_6MB_MASK:
4028                 return 6000000;
4029         case IEEE80211_OFDM_RATE_9MB_MASK:
4030                 return 9000000;
4031         case IEEE80211_CCK_RATE_11MB_MASK:
4032                 return 11000000;
4033         case IEEE80211_OFDM_RATE_12MB_MASK:
4034                 return 12000000;
4035         case IEEE80211_OFDM_RATE_18MB_MASK:
4036                 return 18000000;
4037         case IEEE80211_OFDM_RATE_24MB_MASK:
4038                 return 24000000;
4039         case IEEE80211_OFDM_RATE_36MB_MASK:
4040                 return 36000000;
4041         case IEEE80211_OFDM_RATE_48MB_MASK:
4042                 return 48000000;
4043         case IEEE80211_OFDM_RATE_54MB_MASK:
4044                 return 54000000;
4045         }
4046
4047         if (priv->ieee->mode == IEEE_B)
4048                 return 11000000;
4049         else
4050                 return 54000000;
4051 }
4052
4053 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4054 {
4055         u32 rate, len = sizeof(rate);
4056         int err;
4057
4058         if (!(priv->status & STATUS_ASSOCIATED))
4059                 return 0;
4060
4061         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4062                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4063                                       &len);
4064                 if (err) {
4065                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4066                         return 0;
4067                 }
4068         } else
4069                 return ipw_get_max_rate(priv);
4070
4071         switch (rate) {
4072         case IPW_TX_RATE_1MB:
4073                 return 1000000;
4074         case IPW_TX_RATE_2MB:
4075                 return 2000000;
4076         case IPW_TX_RATE_5MB:
4077                 return 5500000;
4078         case IPW_TX_RATE_6MB:
4079                 return 6000000;
4080         case IPW_TX_RATE_9MB:
4081                 return 9000000;
4082         case IPW_TX_RATE_11MB:
4083                 return 11000000;
4084         case IPW_TX_RATE_12MB:
4085                 return 12000000;
4086         case IPW_TX_RATE_18MB:
4087                 return 18000000;
4088         case IPW_TX_RATE_24MB:
4089                 return 24000000;
4090         case IPW_TX_RATE_36MB:
4091                 return 36000000;
4092         case IPW_TX_RATE_48MB:
4093                 return 48000000;
4094         case IPW_TX_RATE_54MB:
4095                 return 54000000;
4096         }
4097
4098         return 0;
4099 }
4100
4101 #define IPW_STATS_INTERVAL (2 * HZ)
4102 static void ipw_gather_stats(struct ipw_priv *priv)
4103 {
4104         u32 rx_err, rx_err_delta, rx_packets_delta;
4105         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4106         u32 missed_beacons_percent, missed_beacons_delta;
4107         u32 quality = 0;
4108         u32 len = sizeof(u32);
4109         s16 rssi;
4110         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4111             rate_quality;
4112         u32 max_rate;
4113
4114         if (!(priv->status & STATUS_ASSOCIATED)) {
4115                 priv->quality = 0;
4116                 return;
4117         }
4118
4119         /* Update the statistics */
4120         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4121                         &priv->missed_beacons, &len);
4122         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4123         priv->last_missed_beacons = priv->missed_beacons;
4124         if (priv->assoc_request.beacon_interval) {
4125                 missed_beacons_percent = missed_beacons_delta *
4126                     (HZ * priv->assoc_request.beacon_interval) /
4127                     (IPW_STATS_INTERVAL * 10);
4128         } else {
4129                 missed_beacons_percent = 0;
4130         }
4131         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4132
4133         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4134         rx_err_delta = rx_err - priv->last_rx_err;
4135         priv->last_rx_err = rx_err;
4136
4137         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4138         tx_failures_delta = tx_failures - priv->last_tx_failures;
4139         priv->last_tx_failures = tx_failures;
4140
4141         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4142         priv->last_rx_packets = priv->rx_packets;
4143
4144         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4145         priv->last_tx_packets = priv->tx_packets;
4146
4147         /* Calculate quality based on the following:
4148          *
4149          * Missed beacon: 100% = 0, 0% = 70% missed
4150          * Rate: 60% = 1Mbs, 100% = Max
4151          * Rx and Tx errors represent a straight % of total Rx/Tx
4152          * RSSI: 100% = > -50,  0% = < -80
4153          * Rx errors: 100% = 0, 0% = 50% missed
4154          *
4155          * The lowest computed quality is used.
4156          *
4157          */
4158 #define BEACON_THRESHOLD 5
4159         beacon_quality = 100 - missed_beacons_percent;
4160         if (beacon_quality < BEACON_THRESHOLD)
4161                 beacon_quality = 0;
4162         else
4163                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4164                     (100 - BEACON_THRESHOLD);
4165         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4166                         beacon_quality, missed_beacons_percent);
4167
4168         priv->last_rate = ipw_get_current_rate(priv);
4169         max_rate = ipw_get_max_rate(priv);
4170         rate_quality = priv->last_rate * 40 / max_rate + 60;
4171         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4172                         rate_quality, priv->last_rate / 1000000);
4173
4174         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4175                 rx_quality = 100 - (rx_err_delta * 100) /
4176                     (rx_packets_delta + rx_err_delta);
4177         else
4178                 rx_quality = 100;
4179         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4180                         rx_quality, rx_err_delta, rx_packets_delta);
4181
4182         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4183                 tx_quality = 100 - (tx_failures_delta * 100) /
4184                     (tx_packets_delta + tx_failures_delta);
4185         else
4186                 tx_quality = 100;
4187         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4188                         tx_quality, tx_failures_delta, tx_packets_delta);
4189
4190         rssi = priv->exp_avg_rssi;
4191         signal_quality =
4192             (100 *
4193              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4194              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4195              (priv->ieee->perfect_rssi - rssi) *
4196              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4197               62 * (priv->ieee->perfect_rssi - rssi))) /
4198             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4199              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4200         if (signal_quality > 100)
4201                 signal_quality = 100;
4202         else if (signal_quality < 1)
4203                 signal_quality = 0;
4204
4205         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4206                         signal_quality, rssi);
4207
4208         quality = min(beacon_quality,
4209                       min(rate_quality,
4210                           min(tx_quality, min(rx_quality, signal_quality))));
4211         if (quality == beacon_quality)
4212                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4213                                 quality);
4214         if (quality == rate_quality)
4215                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4216                                 quality);
4217         if (quality == tx_quality)
4218                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4219                                 quality);
4220         if (quality == rx_quality)
4221                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4222                                 quality);
4223         if (quality == signal_quality)
4224                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4225                                 quality);
4226
4227         priv->quality = quality;
4228
4229         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4230                            IPW_STATS_INTERVAL);
4231 }
4232
4233 static void ipw_bg_gather_stats(void *data)
4234 {
4235         struct ipw_priv *priv = data;
4236         mutex_lock(&priv->mutex);
4237         ipw_gather_stats(data);
4238         mutex_unlock(&priv->mutex);
4239 }
4240
4241 /* Missed beacon behavior:
4242  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4243  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4244  * Above disassociate threshold, give up and stop scanning.
4245  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4246 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4247                                             int missed_count)
4248 {
4249         priv->notif_missed_beacons = missed_count;
4250
4251         if (missed_count > priv->disassociate_threshold &&
4252             priv->status & STATUS_ASSOCIATED) {
4253                 /* If associated and we've hit the missed
4254                  * beacon threshold, disassociate, turn
4255                  * off roaming, and abort any active scans */
4256                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4257                           IPW_DL_STATE | IPW_DL_ASSOC,
4258                           "Missed beacon: %d - disassociate\n", missed_count);
4259                 priv->status &= ~STATUS_ROAMING;
4260                 if (priv->status & STATUS_SCANNING) {
4261                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4262                                   IPW_DL_STATE,
4263                                   "Aborting scan with missed beacon.\n");
4264                         queue_work(priv->workqueue, &priv->abort_scan);
4265                 }
4266
4267                 queue_work(priv->workqueue, &priv->disassociate);
4268                 return;
4269         }
4270
4271         if (priv->status & STATUS_ROAMING) {
4272                 /* If we are currently roaming, then just
4273                  * print a debug statement... */
4274                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4275                           "Missed beacon: %d - roam in progress\n",
4276                           missed_count);
4277                 return;
4278         }
4279
4280         if (roaming &&
4281             (missed_count > priv->roaming_threshold &&
4282              missed_count <= priv->disassociate_threshold)) {
4283                 /* If we are not already roaming, set the ROAM
4284                  * bit in the status and kick off a scan.
4285                  * This can happen several times before we reach
4286                  * disassociate_threshold. */
4287                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4288                           "Missed beacon: %d - initiate "
4289                           "roaming\n", missed_count);
4290                 if (!(priv->status & STATUS_ROAMING)) {
4291                         priv->status |= STATUS_ROAMING;
4292                         if (!(priv->status & STATUS_SCANNING))
4293                                 queue_work(priv->workqueue,
4294                                            &priv->request_scan);
4295                 }
4296                 return;
4297         }
4298
4299         if (priv->status & STATUS_SCANNING) {
4300                 /* Stop scan to keep fw from getting
4301                  * stuck (only if we aren't roaming --
4302                  * otherwise we'll never scan more than 2 or 3
4303                  * channels..) */
4304                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4305                           "Aborting scan with missed beacon.\n");
4306                 queue_work(priv->workqueue, &priv->abort_scan);
4307         }
4308
4309         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4310 }
4311
4312 /**
4313  * Handle host notification packet.
4314  * Called from interrupt routine
4315  */
4316 static void ipw_rx_notification(struct ipw_priv *priv,
4317                                        struct ipw_rx_notification *notif)
4318 {
4319         notif->size = le16_to_cpu(notif->size);
4320
4321         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4322
4323         switch (notif->subtype) {
4324         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4325                         struct notif_association *assoc = &notif->u.assoc;
4326
4327                         switch (assoc->state) {
4328                         case CMAS_ASSOCIATED:{
4329                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4330                                                   IPW_DL_ASSOC,
4331                                                   "associated: '%s' " MAC_FMT
4332                                                   " \n",
4333                                                   escape_essid(priv->essid,
4334                                                                priv->essid_len),
4335                                                   MAC_ARG(priv->bssid));
4336
4337                                         switch (priv->ieee->iw_mode) {
4338                                         case IW_MODE_INFRA:
4339                                                 memcpy(priv->ieee->bssid,
4340                                                        priv->bssid, ETH_ALEN);
4341                                                 break;
4342
4343                                         case IW_MODE_ADHOC:
4344                                                 memcpy(priv->ieee->bssid,
4345                                                        priv->bssid, ETH_ALEN);
4346
4347                                                 /* clear out the station table */
4348                                                 priv->num_stations = 0;
4349
4350                                                 IPW_DEBUG_ASSOC
4351                                                     ("queueing adhoc check\n");
4352                                                 queue_delayed_work(priv->
4353                                                                    workqueue,
4354                                                                    &priv->
4355                                                                    adhoc_check,
4356                                                                    priv->
4357                                                                    assoc_request.
4358                                                                    beacon_interval);
4359                                                 break;
4360                                         }
4361
4362                                         priv->status &= ~STATUS_ASSOCIATING;
4363                                         priv->status |= STATUS_ASSOCIATED;
4364                                         queue_work(priv->workqueue,
4365                                                    &priv->system_config);
4366
4367 #ifdef CONFIG_IPW2200_QOS
4368 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4369                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4370                                         if ((priv->status & STATUS_AUTH) &&
4371                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4372                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4373                                                 if ((sizeof
4374                                                      (struct
4375                                                       ieee80211_assoc_response)
4376                                                      <= notif->size)
4377                                                     && (notif->size <= 2314)) {
4378                                                         struct
4379                                                         ieee80211_rx_stats
4380                                                             stats = {
4381                                                                 .len =
4382                                                                     notif->
4383                                                                     size - 1,
4384                                                         };
4385
4386                                                         IPW_DEBUG_QOS
4387                                                             ("QoS Associate "
4388                                                              "size %d\n",
4389                                                              notif->size);
4390                                                         ieee80211_rx_mgt(priv->
4391                                                                          ieee,
4392                                                                          (struct
4393                                                                           ieee80211_hdr_4addr
4394                                                                           *)
4395                                                                          &notif->u.raw, &stats);
4396                                                 }
4397                                         }
4398 #endif
4399
4400                                         schedule_work(&priv->link_up);
4401
4402                                         break;
4403                                 }
4404
4405                         case CMAS_AUTHENTICATED:{
4406                                         if (priv->
4407                                             status & (STATUS_ASSOCIATED |
4408                                                       STATUS_AUTH)) {
4409 #ifdef CONFIG_IPW2200_DEBUG
4410                                                 struct notif_authenticate *auth
4411                                                     = &notif->u.auth;
4412                                                 IPW_DEBUG(IPW_DL_NOTIF |
4413                                                           IPW_DL_STATE |
4414                                                           IPW_DL_ASSOC,
4415                                                           "deauthenticated: '%s' "
4416                                                           MAC_FMT
4417                                                           ": (0x%04X) - %s \n",
4418                                                           escape_essid(priv->
4419                                                                        essid,
4420                                                                        priv->
4421                                                                        essid_len),
4422                                                           MAC_ARG(priv->bssid),
4423                                                           ntohs(auth->status),
4424                                                           ipw_get_status_code
4425                                                           (ntohs
4426                                                            (auth->status)));
4427 #endif
4428
4429                                                 priv->status &=
4430                                                     ~(STATUS_ASSOCIATING |
4431                                                       STATUS_AUTH |
4432                                                       STATUS_ASSOCIATED);
4433
4434                                                 schedule_work(&priv->link_down);
4435                                                 break;
4436                                         }
4437
4438                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4439                                                   IPW_DL_ASSOC,
4440                                                   "authenticated: '%s' " MAC_FMT
4441                                                   "\n",
4442                                                   escape_essid(priv->essid,
4443                                                                priv->essid_len),
4444                                                   MAC_ARG(priv->bssid));
4445                                         break;
4446                                 }
4447
4448                         case CMAS_INIT:{
4449                                         if (priv->status & STATUS_AUTH) {
4450                                                 struct
4451                                                     ieee80211_assoc_response
4452                                                 *resp;
4453                                                 resp =
4454                                                     (struct
4455                                                      ieee80211_assoc_response
4456                                                      *)&notif->u.raw;
4457                                                 IPW_DEBUG(IPW_DL_NOTIF |
4458                                                           IPW_DL_STATE |
4459                                                           IPW_DL_ASSOC,
4460                                                           "association failed (0x%04X): %s\n",
4461                                                           ntohs(resp->status),
4462                                                           ipw_get_status_code
4463                                                           (ntohs
4464                                                            (resp->status)));
4465                                         }
4466
4467                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4468                                                   IPW_DL_ASSOC,
4469                                                   "disassociated: '%s' " MAC_FMT
4470                                                   " \n",
4471                                                   escape_essid(priv->essid,
4472                                                                priv->essid_len),
4473                                                   MAC_ARG(priv->bssid));
4474
4475                                         priv->status &=
4476                                             ~(STATUS_DISASSOCIATING |
4477                                               STATUS_ASSOCIATING |
4478                                               STATUS_ASSOCIATED | STATUS_AUTH);
4479                                         if (priv->assoc_network
4480                                             && (priv->assoc_network->
4481                                                 capability &
4482                                                 WLAN_CAPABILITY_IBSS))
4483                                                 ipw_remove_current_network
4484                                                     (priv);
4485
4486                                         schedule_work(&priv->link_down);
4487
4488                                         break;
4489                                 }
4490
4491                         case CMAS_RX_ASSOC_RESP:
4492                                 break;
4493
4494                         default:
4495                                 IPW_ERROR("assoc: unknown (%d)\n",
4496                                           assoc->state);
4497                                 break;
4498                         }
4499
4500                         break;
4501                 }
4502
4503         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4504                         struct notif_authenticate *auth = &notif->u.auth;
4505                         switch (auth->state) {
4506                         case CMAS_AUTHENTICATED:
4507                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4508                                           "authenticated: '%s' " MAC_FMT " \n",
4509                                           escape_essid(priv->essid,
4510                                                        priv->essid_len),
4511                                           MAC_ARG(priv->bssid));
4512                                 priv->status |= STATUS_AUTH;
4513                                 break;
4514
4515                         case CMAS_INIT:
4516                                 if (priv->status & STATUS_AUTH) {
4517                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4518                                                   IPW_DL_ASSOC,
4519                                                   "authentication failed (0x%04X): %s\n",
4520                                                   ntohs(auth->status),
4521                                                   ipw_get_status_code(ntohs
4522                                                                       (auth->
4523                                                                        status)));
4524                                 }
4525                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4526                                           IPW_DL_ASSOC,
4527                                           "deauthenticated: '%s' " MAC_FMT "\n",
4528                                           escape_essid(priv->essid,
4529                                                        priv->essid_len),
4530                                           MAC_ARG(priv->bssid));
4531
4532                                 priv->status &= ~(STATUS_ASSOCIATING |
4533                                                   STATUS_AUTH |
4534                                                   STATUS_ASSOCIATED);
4535
4536                                 schedule_work(&priv->link_down);
4537                                 break;
4538
4539                         case CMAS_TX_AUTH_SEQ_1:
4540                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4541                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4542                                 break;
4543                         case CMAS_RX_AUTH_SEQ_2:
4544                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4545                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4546                                 break;
4547                         case CMAS_AUTH_SEQ_1_PASS:
4548                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4549                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4550                                 break;
4551                         case CMAS_AUTH_SEQ_1_FAIL:
4552                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4553                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4554                                 break;
4555                         case CMAS_TX_AUTH_SEQ_3:
4556                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4557                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4558                                 break;
4559                         case CMAS_RX_AUTH_SEQ_4:
4560                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4561                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4562                                 break;
4563                         case CMAS_AUTH_SEQ_2_PASS:
4564                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4565                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4566                                 break;
4567                         case CMAS_AUTH_SEQ_2_FAIL:
4568                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4569                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4570                                 break;
4571                         case CMAS_TX_ASSOC:
4572                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4573                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4574                                 break;
4575                         case CMAS_RX_ASSOC_RESP:
4576                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4577                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4578
4579                                 break;
4580                         case CMAS_ASSOCIATED:
4581                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4582                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4583                                 break;
4584                         default:
4585                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4586                                                 auth->state);
4587                                 break;
4588                         }
4589                         break;
4590                 }
4591
4592         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4593                         struct notif_channel_result *x =
4594                             &notif->u.channel_result;
4595
4596                         if (notif->size == sizeof(*x)) {
4597                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4598                                                x->channel_num);
4599                         } else {
4600                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4601                                                "(should be %zd)\n",
4602                                                notif->size, sizeof(*x));
4603                         }
4604                         break;
4605                 }
4606
4607         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4608                         struct notif_scan_complete *x = &notif->u.scan_complete;
4609                         if (notif->size == sizeof(*x)) {
4610                                 IPW_DEBUG_SCAN
4611                                     ("Scan completed: type %d, %d channels, "
4612                                      "%d status\n", x->scan_type,
4613                                      x->num_channels, x->status);
4614                         } else {
4615                                 IPW_ERROR("Scan completed of wrong size %d "
4616                                           "(should be %zd)\n",
4617                                           notif->size, sizeof(*x));
4618                         }
4619
4620                         priv->status &=
4621                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4622
4623                         wake_up_interruptible(&priv->wait_state);
4624                         cancel_delayed_work(&priv->scan_check);
4625
4626                         if (priv->status & STATUS_EXIT_PENDING)
4627                                 break;
4628
4629                         priv->ieee->scans++;
4630
4631 #ifdef CONFIG_IPW2200_MONITOR
4632                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4633                                 priv->status |= STATUS_SCAN_FORCED;
4634                                 queue_work(priv->workqueue,
4635                                            &priv->request_scan);
4636                                 break;
4637                         }
4638                         priv->status &= ~STATUS_SCAN_FORCED;
4639 #endif                          /* CONFIG_IPW2200_MONITOR */
4640
4641                         if (!(priv->status & (STATUS_ASSOCIATED |
4642                                               STATUS_ASSOCIATING |
4643                                               STATUS_ROAMING |
4644                                               STATUS_DISASSOCIATING)))
4645                                 queue_work(priv->workqueue, &priv->associate);
4646                         else if (priv->status & STATUS_ROAMING) {
4647                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4648                                         /* If a scan completed and we are in roam mode, then
4649                                          * the scan that completed was the one requested as a
4650                                          * result of entering roam... so, schedule the
4651                                          * roam work */
4652                                         queue_work(priv->workqueue,
4653                                                    &priv->roam);
4654                                 else
4655                                         /* Don't schedule if we aborted the scan */
4656                                         priv->status &= ~STATUS_ROAMING;
4657                         } else if (priv->status & STATUS_SCAN_PENDING)
4658                                 queue_work(priv->workqueue,
4659                                            &priv->request_scan);
4660                         else if (priv->config & CFG_BACKGROUND_SCAN
4661                                  && priv->status & STATUS_ASSOCIATED)
4662                                 queue_delayed_work(priv->workqueue,
4663                                                    &priv->request_scan, HZ);
4664
4665                         /* Send an empty event to user space.
4666                          * We don't send the received data on the event because
4667                          * it would require us to do complex transcoding, and
4668                          * we want to minimise the work done in the irq handler
4669                          * Use a request to extract the data.
4670                          * Also, we generate this even for any scan, regardless
4671                          * on how the scan was initiated. User space can just
4672                          * sync on periodic scan to get fresh data...
4673                          * Jean II */
4674                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) {
4675                                 union iwreq_data wrqu;
4676
4677                                 wrqu.data.length = 0;
4678                                 wrqu.data.flags = 0;
4679                                 wireless_send_event(priv->net_dev, SIOCGIWSCAN,
4680                                                     &wrqu, NULL);
4681                         }
4682                         break;
4683                 }
4684
4685         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4686                         struct notif_frag_length *x = &notif->u.frag_len;
4687
4688                         if (notif->size == sizeof(*x))
4689                                 IPW_ERROR("Frag length: %d\n",
4690                                           le16_to_cpu(x->frag_length));
4691                         else
4692                                 IPW_ERROR("Frag length of wrong size %d "
4693                                           "(should be %zd)\n",
4694                                           notif->size, sizeof(*x));
4695                         break;
4696                 }
4697
4698         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4699                         struct notif_link_deterioration *x =
4700                             &notif->u.link_deterioration;
4701
4702                         if (notif->size == sizeof(*x)) {
4703                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4704                                         "link deterioration: type %d, cnt %d\n",
4705                                         x->silence_notification_type,
4706                                         x->silence_count);
4707                                 memcpy(&priv->last_link_deterioration, x,
4708                                        sizeof(*x));
4709                         } else {
4710                                 IPW_ERROR("Link Deterioration of wrong size %d "
4711                                           "(should be %zd)\n",
4712                                           notif->size, sizeof(*x));
4713                         }
4714                         break;
4715                 }
4716
4717         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4718                         IPW_ERROR("Dino config\n");
4719                         if (priv->hcmd
4720                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4721                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4722
4723                         break;
4724                 }
4725
4726         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4727                         struct notif_beacon_state *x = &notif->u.beacon_state;
4728                         if (notif->size != sizeof(*x)) {
4729                                 IPW_ERROR
4730                                     ("Beacon state of wrong size %d (should "
4731                                      "be %zd)\n", notif->size, sizeof(*x));
4732                                 break;
4733                         }
4734
4735                         if (le32_to_cpu(x->state) ==
4736                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4737                                 ipw_handle_missed_beacon(priv,
4738                                                          le32_to_cpu(x->
4739                                                                      number));
4740
4741                         break;
4742                 }
4743
4744         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4745                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4746                         if (notif->size == sizeof(*x)) {
4747                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4748                                           "0x%02x station %d\n",
4749                                           x->key_state, x->security_type,
4750                                           x->station_index);
4751                                 break;
4752                         }
4753
4754                         IPW_ERROR
4755                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4756                              notif->size, sizeof(*x));
4757                         break;
4758                 }
4759
4760         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4761                         struct notif_calibration *x = &notif->u.calibration;
4762
4763                         if (notif->size == sizeof(*x)) {
4764                                 memcpy(&priv->calib, x, sizeof(*x));
4765                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4766                                 break;
4767                         }
4768
4769                         IPW_ERROR
4770                             ("Calibration of wrong size %d (should be %zd)\n",
4771                              notif->size, sizeof(*x));
4772                         break;
4773                 }
4774
4775         case HOST_NOTIFICATION_NOISE_STATS:{
4776                         if (notif->size == sizeof(u32)) {
4777                                 priv->exp_avg_noise =
4778                                     exponential_average(priv->exp_avg_noise,
4779                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4780                                     DEPTH_NOISE);
4781                                 break;
4782                         }
4783
4784                         IPW_ERROR
4785                             ("Noise stat is wrong size %d (should be %zd)\n",
4786                              notif->size, sizeof(u32));
4787                         break;
4788                 }
4789
4790         default:
4791                 IPW_DEBUG_NOTIF("Unknown notification: "
4792                                 "subtype=%d,flags=0x%2x,size=%d\n",
4793                                 notif->subtype, notif->flags, notif->size);
4794         }
4795 }
4796
4797 /**
4798  * Destroys all DMA structures and initialise them again
4799  *
4800  * @param priv
4801  * @return error code
4802  */
4803 static int ipw_queue_reset(struct ipw_priv *priv)
4804 {
4805         int rc = 0;
4806         /** @todo customize queue sizes */
4807         int nTx = 64, nTxCmd = 8;
4808         ipw_tx_queue_free(priv);
4809         /* Tx CMD queue */
4810         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4811                                IPW_TX_CMD_QUEUE_READ_INDEX,
4812                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4813                                IPW_TX_CMD_QUEUE_BD_BASE,
4814                                IPW_TX_CMD_QUEUE_BD_SIZE);
4815         if (rc) {
4816                 IPW_ERROR("Tx Cmd queue init failed\n");
4817                 goto error;
4818         }
4819         /* Tx queue(s) */
4820         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4821                                IPW_TX_QUEUE_0_READ_INDEX,
4822                                IPW_TX_QUEUE_0_WRITE_INDEX,
4823                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4824         if (rc) {
4825                 IPW_ERROR("Tx 0 queue init failed\n");
4826                 goto error;
4827         }
4828         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4829                                IPW_TX_QUEUE_1_READ_INDEX,
4830                                IPW_TX_QUEUE_1_WRITE_INDEX,
4831                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4832         if (rc) {
4833                 IPW_ERROR("Tx 1 queue init failed\n");
4834                 goto error;
4835         }
4836         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4837                                IPW_TX_QUEUE_2_READ_INDEX,
4838                                IPW_TX_QUEUE_2_WRITE_INDEX,
4839                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4840         if (rc) {
4841                 IPW_ERROR("Tx 2 queue init failed\n");
4842                 goto error;
4843         }
4844         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4845                                IPW_TX_QUEUE_3_READ_INDEX,
4846                                IPW_TX_QUEUE_3_WRITE_INDEX,
4847                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4848         if (rc) {
4849                 IPW_ERROR("Tx 3 queue init failed\n");
4850                 goto error;
4851         }
4852         /* statistics */
4853         priv->rx_bufs_min = 0;
4854         priv->rx_pend_max = 0;
4855         return rc;
4856
4857       error:
4858         ipw_tx_queue_free(priv);
4859         return rc;
4860 }
4861
4862 /**
4863  * Reclaim Tx queue entries no more used by NIC.
4864  *
4865  * When FW adwances 'R' index, all entries between old and
4866  * new 'R' index need to be reclaimed. As result, some free space
4867  * forms. If there is enough free space (> low mark), wake Tx queue.
4868  *
4869  * @note Need to protect against garbage in 'R' index
4870  * @param priv
4871  * @param txq
4872  * @param qindex
4873  * @return Number of used entries remains in the queue
4874  */
4875 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4876                                 struct clx2_tx_queue *txq, int qindex)
4877 {
4878         u32 hw_tail;
4879         int used;
4880         struct clx2_queue *q = &txq->q;
4881
4882         hw_tail = ipw_read32(priv, q->reg_r);
4883         if (hw_tail >= q->n_bd) {
4884                 IPW_ERROR
4885                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4886                      hw_tail, q->n_bd);
4887                 goto done;
4888         }
4889         for (; q->last_used != hw_tail;
4890              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4891                 ipw_queue_tx_free_tfd(priv, txq);
4892                 priv->tx_packets++;
4893         }
4894       done:
4895         if ((ipw_queue_space(q) > q->low_mark) &&
4896             (qindex >= 0) &&
4897             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4898                 netif_wake_queue(priv->net_dev);
4899         used = q->first_empty - q->last_used;
4900         if (used < 0)
4901                 used += q->n_bd;
4902
4903         return used;
4904 }
4905
4906 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4907                              int len, int sync)
4908 {
4909         struct clx2_tx_queue *txq = &priv->txq_cmd;
4910         struct clx2_queue *q = &txq->q;
4911         struct tfd_frame *tfd;
4912
4913         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4914                 IPW_ERROR("No space for Tx\n");
4915                 return -EBUSY;
4916         }
4917
4918         tfd = &txq->bd[q->first_empty];
4919         txq->txb[q->first_empty] = NULL;
4920
4921         memset(tfd, 0, sizeof(*tfd));
4922         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4923         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4924         priv->hcmd_seq++;
4925         tfd->u.cmd.index = hcmd;
4926         tfd->u.cmd.length = len;
4927         memcpy(tfd->u.cmd.payload, buf, len);
4928         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4929         ipw_write32(priv, q->reg_w, q->first_empty);
4930         _ipw_read32(priv, 0x90);
4931
4932         return 0;
4933 }
4934
4935 /*
4936  * Rx theory of operation
4937  *
4938  * The host allocates 32 DMA target addresses and passes the host address
4939  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4940  * 0 to 31
4941  *
4942  * Rx Queue Indexes
4943  * The host/firmware share two index registers for managing the Rx buffers.
4944  *
4945  * The READ index maps to the first position that the firmware may be writing
4946  * to -- the driver can read up to (but not including) this position and get
4947  * good data.
4948  * The READ index is managed by the firmware once the card is enabled.
4949  *
4950  * The WRITE index maps to the last position the driver has read from -- the
4951  * position preceding WRITE is the last slot the firmware can place a packet.
4952  *
4953  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4954  * WRITE = READ.
4955  *
4956  * During initialization the host sets up the READ queue position to the first
4957  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4958  *
4959  * When the firmware places a packet in a buffer it will advance the READ index
4960  * and fire the RX interrupt.  The driver can then query the READ index and
4961  * process as many packets as possible, moving the WRITE index forward as it
4962  * resets the Rx queue buffers with new memory.
4963  *
4964  * The management in the driver is as follows:
4965  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4966  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4967  *   to replensish the ipw->rxq->rx_free.
4968  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4969  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
4970  *   'processed' and 'read' driver indexes as well)
4971  * + A received packet is processed and handed to the kernel network stack,
4972  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
4973  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4974  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4975  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
4976  *   were enough free buffers and RX_STALLED is set it is cleared.
4977  *
4978  *
4979  * Driver sequence:
4980  *
4981  * ipw_rx_queue_alloc()       Allocates rx_free
4982  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
4983  *                            ipw_rx_queue_restock
4984  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
4985  *                            queue, updates firmware pointers, and updates
4986  *                            the WRITE index.  If insufficient rx_free buffers
4987  *                            are available, schedules ipw_rx_queue_replenish
4988  *
4989  * -- enable interrupts --
4990  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
4991  *                            READ INDEX, detaching the SKB from the pool.
4992  *                            Moves the packet buffer from queue to rx_used.
4993  *                            Calls ipw_rx_queue_restock to refill any empty
4994  *                            slots.
4995  * ...
4996  *
4997  */
4998
4999 /*
5000  * If there are slots in the RX queue that  need to be restocked,
5001  * and we have free pre-allocated buffers, fill the ranks as much
5002  * as we can pulling from rx_free.
5003  *
5004  * This moves the 'write' index forward to catch up with 'processed', and
5005  * also updates the memory address in the firmware to reference the new
5006  * target buffer.
5007  */
5008 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5009 {
5010         struct ipw_rx_queue *rxq = priv->rxq;
5011         struct list_head *element;
5012         struct ipw_rx_mem_buffer *rxb;
5013         unsigned long flags;
5014         int write;
5015
5016         spin_lock_irqsave(&rxq->lock, flags);
5017         write = rxq->write;
5018         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
5019                 element = rxq->rx_free.next;
5020                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5021                 list_del(element);
5022
5023                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5024                             rxb->dma_addr);
5025                 rxq->queue[rxq->write] = rxb;
5026                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5027                 rxq->free_count--;
5028         }
5029         spin_unlock_irqrestore(&rxq->lock, flags);
5030
5031         /* If the pre-allocated buffer pool is dropping low, schedule to
5032          * refill it */
5033         if (rxq->free_count <= RX_LOW_WATERMARK)
5034                 queue_work(priv->workqueue, &priv->rx_replenish);
5035
5036         /* If we've added more space for the firmware to place data, tell it */
5037         if (write != rxq->write)
5038                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5039 }
5040
5041 /*
5042  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5043  * Also restock the Rx queue via ipw_rx_queue_restock.
5044  *
5045  * This is called as a scheduled work item (except for during intialization)
5046  */
5047 static void ipw_rx_queue_replenish(void *data)
5048 {
5049         struct ipw_priv *priv = data;
5050         struct ipw_rx_queue *rxq = priv->rxq;
5051         struct list_head *element;
5052         struct ipw_rx_mem_buffer *rxb;
5053         unsigned long flags;
5054
5055         spin_lock_irqsave(&rxq->lock, flags);
5056         while (!list_empty(&rxq->rx_used)) {
5057                 element = rxq->rx_used.next;
5058                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5059                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5060                 if (!rxb->skb) {
5061                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5062                                priv->net_dev->name);
5063                         /* We don't reschedule replenish work here -- we will
5064                          * call the restock method and if it still needs
5065                          * more buffers it will schedule replenish */
5066                         break;
5067                 }
5068                 list_del(element);
5069
5070                 rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
5071                 rxb->dma_addr =
5072                     pci_map_single(priv->pci_dev, rxb->skb->data,
5073                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5074
5075                 list_add_tail(&rxb->list, &rxq->rx_free);
5076                 rxq->free_count++;
5077         }
5078         spin_unlock_irqrestore(&rxq->lock, flags);
5079
5080         ipw_rx_queue_restock(priv);
5081 }
5082
5083 static void ipw_bg_rx_queue_replenish(void *data)
5084 {
5085         struct ipw_priv *priv = data;
5086         mutex_lock(&priv->mutex);
5087         ipw_rx_queue_replenish(data);
5088         mutex_unlock(&priv->mutex);
5089 }
5090
5091 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5092  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5093  * This free routine walks the list of POOL entries and if SKB is set to
5094  * non NULL it is unmapped and freed
5095  */
5096 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5097 {
5098         int i;
5099
5100         if (!rxq)
5101                 return;
5102
5103         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5104                 if (rxq->pool[i].skb != NULL) {
5105                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5106                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5107                         dev_kfree_skb(rxq->pool[i].skb);
5108                 }
5109         }
5110
5111         kfree(rxq);
5112 }
5113
5114 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5115 {
5116         struct ipw_rx_queue *rxq;
5117         int i;
5118
5119         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5120         if (unlikely(!rxq)) {
5121                 IPW_ERROR("memory allocation failed\n");
5122                 return NULL;
5123         }
5124         spin_lock_init(&rxq->lock);
5125         INIT_LIST_HEAD(&rxq->rx_free);
5126         INIT_LIST_HEAD(&rxq->rx_used);
5127
5128         /* Fill the rx_used queue with _all_ of the Rx buffers */
5129         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5130                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5131
5132         /* Set us so that we have processed and used all buffers, but have
5133          * not restocked the Rx queue with fresh buffers */
5134         rxq->read = rxq->write = 0;
5135         rxq->processed = RX_QUEUE_SIZE - 1;
5136         rxq->free_count = 0;
5137
5138         return rxq;
5139 }
5140
5141 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5142 {
5143         rate &= ~IEEE80211_BASIC_RATE_MASK;
5144         if (ieee_mode == IEEE_A) {
5145                 switch (rate) {
5146                 case IEEE80211_OFDM_RATE_6MB:
5147                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5148                             1 : 0;
5149                 case IEEE80211_OFDM_RATE_9MB:
5150                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5151                             1 : 0;
5152                 case IEEE80211_OFDM_RATE_12MB:
5153                         return priv->
5154                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5155                 case IEEE80211_OFDM_RATE_18MB:
5156                         return priv->
5157                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5158                 case IEEE80211_OFDM_RATE_24MB:
5159                         return priv->
5160                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5161                 case IEEE80211_OFDM_RATE_36MB:
5162                         return priv->
5163                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5164                 case IEEE80211_OFDM_RATE_48MB:
5165                         return priv->
5166                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5167                 case IEEE80211_OFDM_RATE_54MB:
5168                         return priv->
5169                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5170                 default:
5171                         return 0;
5172                 }
5173         }
5174
5175         /* B and G mixed */
5176         switch (rate) {
5177         case IEEE80211_CCK_RATE_1MB:
5178                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5179         case IEEE80211_CCK_RATE_2MB:
5180                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5181         case IEEE80211_CCK_RATE_5MB:
5182                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5183         case IEEE80211_CCK_RATE_11MB:
5184                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5185         }
5186
5187         /* If we are limited to B modulations, bail at this point */
5188         if (ieee_mode == IEEE_B)
5189                 return 0;
5190
5191         /* G */
5192         switch (rate) {
5193         case IEEE80211_OFDM_RATE_6MB:
5194                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5195         case IEEE80211_OFDM_RATE_9MB:
5196                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5197         case IEEE80211_OFDM_RATE_12MB:
5198                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5199         case IEEE80211_OFDM_RATE_18MB:
5200                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5201         case IEEE80211_OFDM_RATE_24MB:
5202                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5203         case IEEE80211_OFDM_RATE_36MB:
5204                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5205         case IEEE80211_OFDM_RATE_48MB:
5206                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5207         case IEEE80211_OFDM_RATE_54MB:
5208                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5209         }
5210
5211         return 0;
5212 }
5213
5214 static int ipw_compatible_rates(struct ipw_priv *priv,
5215                                 const struct ieee80211_network *network,
5216                                 struct ipw_supported_rates *rates)
5217 {
5218         int num_rates, i;
5219
5220         memset(rates, 0, sizeof(*rates));
5221         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5222         rates->num_rates = 0;
5223         for (i = 0; i < num_rates; i++) {
5224                 if (!ipw_is_rate_in_mask(priv, network->mode,
5225                                          network->rates[i])) {
5226
5227                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5228                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5229                                                "rate %02X\n",
5230                                                network->rates[i]);
5231                                 rates->supported_rates[rates->num_rates++] =
5232                                     network->rates[i];
5233                                 continue;
5234                         }
5235
5236                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5237                                        network->rates[i], priv->rates_mask);
5238                         continue;
5239                 }
5240
5241                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5242         }
5243
5244         num_rates = min(network->rates_ex_len,
5245                         (u8) (IPW_MAX_RATES - num_rates));
5246         for (i = 0; i < num_rates; i++) {
5247                 if (!ipw_is_rate_in_mask(priv, network->mode,
5248                                          network->rates_ex[i])) {
5249                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5250                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5251                                                "rate %02X\n",
5252                                                network->rates_ex[i]);
5253                                 rates->supported_rates[rates->num_rates++] =
5254                                     network->rates[i];
5255                                 continue;
5256                         }
5257
5258                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5259                                        network->rates_ex[i], priv->rates_mask);
5260                         continue;
5261                 }
5262
5263                 rates->supported_rates[rates->num_rates++] =
5264                     network->rates_ex[i];
5265         }
5266
5267         return 1;
5268 }
5269
5270 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5271                                   const struct ipw_supported_rates *src)
5272 {
5273         u8 i;
5274         for (i = 0; i < src->num_rates; i++)
5275                 dest->supported_rates[i] = src->supported_rates[i];
5276         dest->num_rates = src->num_rates;
5277 }
5278
5279 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5280  * mask should ever be used -- right now all callers to add the scan rates are
5281  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5282 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5283                                    u8 modulation, u32 rate_mask)
5284 {
5285         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5286             IEEE80211_BASIC_RATE_MASK : 0;
5287
5288         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5289                 rates->supported_rates[rates->num_rates++] =
5290                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5291
5292         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5293                 rates->supported_rates[rates->num_rates++] =
5294                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5295
5296         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5297                 rates->supported_rates[rates->num_rates++] = basic_mask |
5298                     IEEE80211_CCK_RATE_5MB;
5299
5300         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5301                 rates->supported_rates[rates->num_rates++] = basic_mask |
5302                     IEEE80211_CCK_RATE_11MB;
5303 }
5304
5305 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5306                                     u8 modulation, u32 rate_mask)
5307 {
5308         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5309             IEEE80211_BASIC_RATE_MASK : 0;
5310
5311         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5312                 rates->supported_rates[rates->num_rates++] = basic_mask |
5313                     IEEE80211_OFDM_RATE_6MB;
5314
5315         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5316                 rates->supported_rates[rates->num_rates++] =
5317                     IEEE80211_OFDM_RATE_9MB;
5318
5319         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5320                 rates->supported_rates[rates->num_rates++] = basic_mask |
5321                     IEEE80211_OFDM_RATE_12MB;
5322
5323         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5324                 rates->supported_rates[rates->num_rates++] =
5325                     IEEE80211_OFDM_RATE_18MB;
5326
5327         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5328                 rates->supported_rates[rates->num_rates++] = basic_mask |
5329                     IEEE80211_OFDM_RATE_24MB;
5330
5331         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5332                 rates->supported_rates[rates->num_rates++] =
5333                     IEEE80211_OFDM_RATE_36MB;
5334
5335         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5336                 rates->supported_rates[rates->num_rates++] =
5337                     IEEE80211_OFDM_RATE_48MB;
5338
5339         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5340                 rates->supported_rates[rates->num_rates++] =
5341                     IEEE80211_OFDM_RATE_54MB;
5342 }
5343
5344 struct ipw_network_match {
5345         struct ieee80211_network *network;
5346         struct ipw_supported_rates rates;
5347 };
5348
5349 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5350                                   struct ipw_network_match *match,
5351                                   struct ieee80211_network *network,
5352                                   int roaming)
5353 {
5354         struct ipw_supported_rates rates;
5355
5356         /* Verify that this network's capability is compatible with the
5357          * current mode (AdHoc or Infrastructure) */
5358         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5359              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5360                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5361                                 "capability mismatch.\n",
5362                                 escape_essid(network->ssid, network->ssid_len),
5363                                 MAC_ARG(network->bssid));
5364                 return 0;
5365         }
5366
5367         /* If we do not have an ESSID for this AP, we can not associate with
5368          * it */
5369         if (network->flags & NETWORK_EMPTY_ESSID) {
5370                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5371                                 "because of hidden ESSID.\n",
5372                                 escape_essid(network->ssid, network->ssid_len),
5373                                 MAC_ARG(network->bssid));
5374                 return 0;
5375         }
5376
5377         if (unlikely(roaming)) {
5378                 /* If we are roaming, then ensure check if this is a valid
5379                  * network to try and roam to */
5380                 if ((network->ssid_len != match->network->ssid_len) ||
5381                     memcmp(network->ssid, match->network->ssid,
5382                            network->ssid_len)) {
5383                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5384                                         "because of non-network ESSID.\n",
5385                                         escape_essid(network->ssid,
5386                                                      network->ssid_len),
5387                                         MAC_ARG(network->bssid));
5388                         return 0;
5389                 }
5390         } else {
5391                 /* If an ESSID has been configured then compare the broadcast
5392                  * ESSID to ours */
5393                 if ((priv->config & CFG_STATIC_ESSID) &&
5394                     ((network->ssid_len != priv->essid_len) ||
5395                      memcmp(network->ssid, priv->essid,
5396                             min(network->ssid_len, priv->essid_len)))) {
5397                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5398
5399                         strncpy(escaped,
5400                                 escape_essid(network->ssid, network->ssid_len),
5401                                 sizeof(escaped));
5402                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5403                                         "because of ESSID mismatch: '%s'.\n",
5404                                         escaped, MAC_ARG(network->bssid),
5405                                         escape_essid(priv->essid,
5406                                                      priv->essid_len));
5407                         return 0;
5408                 }
5409         }
5410
5411         /* If the old network rate is better than this one, don't bother
5412          * testing everything else. */
5413
5414         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5415                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5416                                 "current network.\n",
5417                                 escape_essid(match->network->ssid,
5418                                              match->network->ssid_len));
5419                 return 0;
5420         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5421                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5422                                 "current network.\n",
5423                                 escape_essid(match->network->ssid,
5424                                              match->network->ssid_len));
5425                 return 0;
5426         }
5427
5428         /* Now go through and see if the requested network is valid... */
5429         if (priv->ieee->scan_age != 0 &&
5430             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5431                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5432                                 "because of age: %ums.\n",
5433                                 escape_essid(network->ssid, network->ssid_len),
5434                                 MAC_ARG(network->bssid),
5435                                 jiffies_to_msecs(jiffies -
5436                                                  network->last_scanned));
5437                 return 0;
5438         }
5439
5440         if ((priv->config & CFG_STATIC_CHANNEL) &&
5441             (network->channel != priv->channel)) {
5442                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5443                                 "because of channel mismatch: %d != %d.\n",
5444                                 escape_essid(network->ssid, network->ssid_len),
5445                                 MAC_ARG(network->bssid),
5446                                 network->channel, priv->channel);
5447                 return 0;
5448         }
5449
5450         /* Verify privacy compatability */
5451         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5452             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5453                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5454                                 "because of privacy mismatch: %s != %s.\n",
5455                                 escape_essid(network->ssid, network->ssid_len),
5456                                 MAC_ARG(network->bssid),
5457                                 priv->
5458                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5459                                 network->
5460                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5461                                 "off");
5462                 return 0;
5463         }
5464
5465         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5466                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5467                                 "because of the same BSSID match: " MAC_FMT
5468                                 ".\n", escape_essid(network->ssid,
5469                                                     network->ssid_len),
5470                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5471                 return 0;
5472         }
5473
5474         /* Filter out any incompatible freq / mode combinations */
5475         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5476                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5477                                 "because of invalid frequency/mode "
5478                                 "combination.\n",
5479                                 escape_essid(network->ssid, network->ssid_len),
5480                                 MAC_ARG(network->bssid));
5481                 return 0;
5482         }
5483
5484         /* Ensure that the rates supported by the driver are compatible with
5485          * this AP, including verification of basic rates (mandatory) */
5486         if (!ipw_compatible_rates(priv, network, &rates)) {
5487                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5488                                 "because configured rate mask excludes "
5489                                 "AP mandatory rate.\n",
5490                                 escape_essid(network->ssid, network->ssid_len),
5491                                 MAC_ARG(network->bssid));
5492                 return 0;
5493         }
5494
5495         if (rates.num_rates == 0) {
5496                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5497                                 "because of no compatible rates.\n",
5498                                 escape_essid(network->ssid, network->ssid_len),
5499                                 MAC_ARG(network->bssid));
5500                 return 0;
5501         }
5502
5503         /* TODO: Perform any further minimal comparititive tests.  We do not
5504          * want to put too much policy logic here; intelligent scan selection
5505          * should occur within a generic IEEE 802.11 user space tool.  */
5506
5507         /* Set up 'new' AP to this network */
5508         ipw_copy_rates(&match->rates, &rates);
5509         match->network = network;
5510         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5511                         escape_essid(network->ssid, network->ssid_len),
5512                         MAC_ARG(network->bssid));
5513
5514         return 1;
5515 }
5516
5517 static void ipw_merge_adhoc_network(void *data)
5518 {
5519         struct ipw_priv *priv = data;
5520         struct ieee80211_network *network = NULL;
5521         struct ipw_network_match match = {
5522                 .network = priv->assoc_network
5523         };
5524
5525         if ((priv->status & STATUS_ASSOCIATED) &&
5526             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5527                 /* First pass through ROAM process -- look for a better
5528                  * network */
5529                 unsigned long flags;
5530
5531                 spin_lock_irqsave(&priv->ieee->lock, flags);
5532                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5533                         if (network != priv->assoc_network)
5534                                 ipw_find_adhoc_network(priv, &match, network,
5535                                                        1);
5536                 }
5537                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5538
5539                 if (match.network == priv->assoc_network) {
5540                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5541                                         "merge to.\n");
5542                         return;
5543                 }
5544
5545                 mutex_lock(&priv->mutex);
5546                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5547                         IPW_DEBUG_MERGE("remove network %s\n",
5548                                         escape_essid(priv->essid,
5549                                                      priv->essid_len));
5550                         ipw_remove_current_network(priv);
5551                 }
5552
5553                 ipw_disassociate(priv);
5554                 priv->assoc_network = match.network;
5555                 mutex_unlock(&priv->mutex);
5556                 return;
5557         }
5558 }
5559
5560 static int ipw_best_network(struct ipw_priv *priv,
5561                             struct ipw_network_match *match,
5562                             struct ieee80211_network *network, int roaming)
5563 {
5564         struct ipw_supported_rates rates;
5565
5566         /* Verify that this network's capability is compatible with the
5567          * current mode (AdHoc or Infrastructure) */
5568         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5569              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5570             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5571              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5572                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5573                                 "capability mismatch.\n",
5574                                 escape_essid(network->ssid, network->ssid_len),
5575                                 MAC_ARG(network->bssid));
5576                 return 0;
5577         }
5578
5579         /* If we do not have an ESSID for this AP, we can not associate with
5580          * it */
5581         if (network->flags & NETWORK_EMPTY_ESSID) {
5582                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5583                                 "because of hidden ESSID.\n",
5584                                 escape_essid(network->ssid, network->ssid_len),
5585                                 MAC_ARG(network->bssid));
5586                 return 0;
5587         }
5588
5589         if (unlikely(roaming)) {
5590                 /* If we are roaming, then ensure check if this is a valid
5591                  * network to try and roam to */
5592                 if ((network->ssid_len != match->network->ssid_len) ||
5593                     memcmp(network->ssid, match->network->ssid,
5594                            network->ssid_len)) {
5595                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5596                                         "because of non-network ESSID.\n",
5597                                         escape_essid(network->ssid,
5598                                                      network->ssid_len),
5599                                         MAC_ARG(network->bssid));
5600                         return 0;
5601                 }
5602         } else {
5603                 /* If an ESSID has been configured then compare the broadcast
5604                  * ESSID to ours */
5605                 if ((priv->config & CFG_STATIC_ESSID) &&
5606                     ((network->ssid_len != priv->essid_len) ||
5607                      memcmp(network->ssid, priv->essid,
5608                             min(network->ssid_len, priv->essid_len)))) {
5609                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5610                         strncpy(escaped,
5611                                 escape_essid(network->ssid, network->ssid_len),
5612                                 sizeof(escaped));
5613                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5614                                         "because of ESSID mismatch: '%s'.\n",
5615                                         escaped, MAC_ARG(network->bssid),
5616                                         escape_essid(priv->essid,
5617                                                      priv->essid_len));
5618                         return 0;
5619                 }
5620         }
5621
5622         /* If the old network rate is better than this one, don't bother
5623          * testing everything else. */
5624         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5625                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5626                 strncpy(escaped,
5627                         escape_essid(network->ssid, network->ssid_len),
5628                         sizeof(escaped));
5629                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5630                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5631                                 escaped, MAC_ARG(network->bssid),
5632                                 escape_essid(match->network->ssid,
5633                                              match->network->ssid_len),
5634                                 MAC_ARG(match->network->bssid));
5635                 return 0;
5636         }
5637
5638         /* If this network has already had an association attempt within the
5639          * last 3 seconds, do not try and associate again... */
5640         if (network->last_associate &&
5641             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5642                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5643                                 "because of storming (%ums since last "
5644                                 "assoc attempt).\n",
5645                                 escape_essid(network->ssid, network->ssid_len),
5646                                 MAC_ARG(network->bssid),
5647                                 jiffies_to_msecs(jiffies -
5648                                                  network->last_associate));
5649                 return 0;
5650         }
5651
5652         /* Now go through and see if the requested network is valid... */
5653         if (priv->ieee->scan_age != 0 &&
5654             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5655                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5656                                 "because of age: %ums.\n",
5657                                 escape_essid(network->ssid, network->ssid_len),
5658                                 MAC_ARG(network->bssid),
5659                                 jiffies_to_msecs(jiffies -
5660                                                  network->last_scanned));
5661                 return 0;
5662         }
5663
5664         if ((priv->config & CFG_STATIC_CHANNEL) &&
5665             (network->channel != priv->channel)) {
5666                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5667                                 "because of channel mismatch: %d != %d.\n",
5668                                 escape_essid(network->ssid, network->ssid_len),
5669                                 MAC_ARG(network->bssid),
5670                                 network->channel, priv->channel);
5671                 return 0;
5672         }
5673
5674         /* Verify privacy compatability */
5675         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5676             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5677                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5678                                 "because of privacy mismatch: %s != %s.\n",
5679                                 escape_essid(network->ssid, network->ssid_len),
5680                                 MAC_ARG(network->bssid),
5681                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5682                                 "off",
5683                                 network->capability &
5684                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5685                 return 0;
5686         }
5687
5688         if ((priv->config & CFG_STATIC_BSSID) &&
5689             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5690                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5691                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5692                                 escape_essid(network->ssid, network->ssid_len),
5693                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5694                 return 0;
5695         }
5696
5697         /* Filter out any incompatible freq / mode combinations */
5698         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5699                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5700                                 "because of invalid frequency/mode "
5701                                 "combination.\n",
5702                                 escape_essid(network->ssid, network->ssid_len),
5703                                 MAC_ARG(network->bssid));
5704                 return 0;
5705         }
5706
5707         /* Filter out invalid channel in current GEO */
5708         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5709                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5710                                 "because of invalid channel in current GEO\n",
5711                                 escape_essid(network->ssid, network->ssid_len),
5712                                 MAC_ARG(network->bssid));
5713                 return 0;
5714         }
5715
5716         /* Ensure that the rates supported by the driver are compatible with
5717          * this AP, including verification of basic rates (mandatory) */
5718         if (!ipw_compatible_rates(priv, network, &rates)) {
5719                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5720                                 "because configured rate mask excludes "
5721                                 "AP mandatory rate.\n",
5722                                 escape_essid(network->ssid, network->ssid_len),
5723                                 MAC_ARG(network->bssid));
5724                 return 0;
5725         }
5726
5727         if (rates.num_rates == 0) {
5728                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5729                                 "because of no compatible rates.\n",
5730                                 escape_essid(network->ssid, network->ssid_len),
5731                                 MAC_ARG(network->bssid));
5732                 return 0;
5733         }
5734
5735         /* TODO: Perform any further minimal comparititive tests.  We do not
5736          * want to put too much policy logic here; intelligent scan selection
5737          * should occur within a generic IEEE 802.11 user space tool.  */
5738
5739         /* Set up 'new' AP to this network */
5740         ipw_copy_rates(&match->rates, &rates);
5741         match->network = network;
5742
5743         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5744                         escape_essid(network->ssid, network->ssid_len),
5745                         MAC_ARG(network->bssid));
5746
5747         return 1;
5748 }
5749
5750 static void ipw_adhoc_create(struct ipw_priv *priv,
5751                              struct ieee80211_network *network)
5752 {
5753         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5754         int i;
5755
5756         /*
5757          * For the purposes of scanning, we can set our wireless mode
5758          * to trigger scans across combinations of bands, but when it
5759          * comes to creating a new ad-hoc network, we have tell the FW
5760          * exactly which band to use.
5761          *
5762          * We also have the possibility of an invalid channel for the
5763          * chossen band.  Attempting to create a new ad-hoc network
5764          * with an invalid channel for wireless mode will trigger a
5765          * FW fatal error.
5766          *
5767          */
5768         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5769         case IEEE80211_52GHZ_BAND:
5770                 network->mode = IEEE_A;
5771                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5772                 BUG_ON(i == -1);
5773                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5774                         IPW_WARNING("Overriding invalid channel\n");
5775                         priv->channel = geo->a[0].channel;
5776                 }
5777                 break;
5778
5779         case IEEE80211_24GHZ_BAND:
5780                 if (priv->ieee->mode & IEEE_G)
5781                         network->mode = IEEE_G;
5782                 else
5783                         network->mode = IEEE_B;
5784                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5785                 BUG_ON(i == -1);
5786                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5787                         IPW_WARNING("Overriding invalid channel\n");
5788                         priv->channel = geo->bg[0].channel;
5789                 }
5790                 break;
5791
5792         default:
5793                 IPW_WARNING("Overriding invalid channel\n");
5794                 if (priv->ieee->mode & IEEE_A) {
5795                         network->mode = IEEE_A;
5796                         priv->channel = geo->a[0].channel;
5797                 } else if (priv->ieee->mode & IEEE_G) {
5798                         network->mode = IEEE_G;
5799                         priv->channel = geo->bg[0].channel;
5800                 } else {
5801                         network->mode = IEEE_B;
5802                         priv->channel = geo->bg[0].channel;
5803                 }
5804                 break;
5805         }
5806
5807         network->channel = priv->channel;
5808         priv->config |= CFG_ADHOC_PERSIST;
5809         ipw_create_bssid(priv, network->bssid);
5810         network->ssid_len = priv->essid_len;
5811         memcpy(network->ssid, priv->essid, priv->essid_len);
5812         memset(&network->stats, 0, sizeof(network->stats));
5813         network->capability = WLAN_CAPABILITY_IBSS;
5814         if (!(priv->config & CFG_PREAMBLE_LONG))
5815                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5816         if (priv->capability & CAP_PRIVACY_ON)
5817                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5818         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5819         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5820         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5821         memcpy(network->rates_ex,
5822                &priv->rates.supported_rates[network->rates_len],
5823                network->rates_ex_len);
5824         network->last_scanned = 0;
5825         network->flags = 0;
5826         network->last_associate = 0;
5827         network->time_stamp[0] = 0;
5828         network->time_stamp[1] = 0;
5829         network->beacon_interval = 100; /* Default */
5830         network->listen_interval = 10;  /* Default */
5831         network->atim_window = 0;       /* Default */
5832         network->wpa_ie_len = 0;
5833         network->rsn_ie_len = 0;
5834 }
5835
5836 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5837 {
5838         struct ipw_tgi_tx_key key;
5839
5840         if (!(priv->ieee->sec.flags & (1 << index)))
5841                 return;
5842
5843         key.key_id = index;
5844         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5845         key.security_type = type;
5846         key.station_index = 0;  /* always 0 for BSS */
5847         key.flags = 0;
5848         /* 0 for new key; previous value of counter (after fatal error) */
5849         key.tx_counter[0] = 0;
5850         key.tx_counter[1] = 0;
5851
5852         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5853 }
5854
5855 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5856 {
5857         struct ipw_wep_key key;
5858         int i;
5859
5860         key.cmd_id = DINO_CMD_WEP_KEY;
5861         key.seq_num = 0;
5862
5863         /* Note: AES keys cannot be set for multiple times.
5864          * Only set it at the first time. */
5865         for (i = 0; i < 4; i++) {
5866                 key.key_index = i | type;
5867                 if (!(priv->ieee->sec.flags & (1 << i))) {
5868                         key.key_size = 0;
5869                         continue;
5870                 }
5871
5872                 key.key_size = priv->ieee->sec.key_sizes[i];
5873                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5874
5875                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5876         }
5877 }
5878
5879 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5880 {
5881         if (priv->ieee->host_encrypt)
5882                 return;
5883
5884         switch (level) {
5885         case SEC_LEVEL_3:
5886                 priv->sys_config.disable_unicast_decryption = 0;
5887                 priv->ieee->host_decrypt = 0;
5888                 break;
5889         case SEC_LEVEL_2:
5890                 priv->sys_config.disable_unicast_decryption = 1;
5891                 priv->ieee->host_decrypt = 1;
5892                 break;
5893         case SEC_LEVEL_1:
5894                 priv->sys_config.disable_unicast_decryption = 0;
5895                 priv->ieee->host_decrypt = 0;
5896                 break;
5897         case SEC_LEVEL_0:
5898                 priv->sys_config.disable_unicast_decryption = 1;
5899                 break;
5900         default:
5901                 break;
5902         }
5903 }
5904
5905 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5906 {
5907         if (priv->ieee->host_encrypt)
5908                 return;
5909
5910         switch (level) {
5911         case SEC_LEVEL_3:
5912                 priv->sys_config.disable_multicast_decryption = 0;
5913                 break;
5914         case SEC_LEVEL_2:
5915                 priv->sys_config.disable_multicast_decryption = 1;
5916                 break;
5917         case SEC_LEVEL_1:
5918                 priv->sys_config.disable_multicast_decryption = 0;
5919                 break;
5920         case SEC_LEVEL_0:
5921                 priv->sys_config.disable_multicast_decryption = 1;
5922                 break;
5923         default:
5924                 break;
5925         }
5926 }
5927
5928 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5929 {
5930         switch (priv->ieee->sec.level) {
5931         case SEC_LEVEL_3:
5932                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5933                         ipw_send_tgi_tx_key(priv,
5934                                             DCT_FLAG_EXT_SECURITY_CCM,
5935                                             priv->ieee->sec.active_key);
5936
5937                 if (!priv->ieee->host_mc_decrypt)
5938                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5939                 break;
5940         case SEC_LEVEL_2:
5941                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5942                         ipw_send_tgi_tx_key(priv,
5943                                             DCT_FLAG_EXT_SECURITY_TKIP,
5944                                             priv->ieee->sec.active_key);
5945                 break;
5946         case SEC_LEVEL_1:
5947                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5948                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5949                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5950                 break;
5951         case SEC_LEVEL_0:
5952         default:
5953                 break;
5954         }
5955 }
5956
5957 static void ipw_adhoc_check(void *data)
5958 {
5959         struct ipw_priv *priv = data;
5960
5961         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5962             !(priv->config & CFG_ADHOC_PERSIST)) {
5963                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5964                           IPW_DL_STATE | IPW_DL_ASSOC,
5965                           "Missed beacon: %d - disassociate\n",
5966                           priv->missed_adhoc_beacons);
5967                 ipw_remove_current_network(priv);
5968                 ipw_disassociate(priv);
5969                 return;
5970         }
5971
5972         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5973                            priv->assoc_request.beacon_interval);
5974 }
5975
5976 static void ipw_bg_adhoc_check(void *data)
5977 {
5978         struct ipw_priv *priv = data;
5979         mutex_lock(&priv->mutex);
5980         ipw_adhoc_check(data);
5981         mutex_unlock(&priv->mutex);
5982 }
5983
5984 #ifdef CONFIG_IPW2200_DEBUG
5985 static void ipw_debug_config(struct ipw_priv *priv)
5986 {
5987         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5988                        "[CFG 0x%08X]\n", priv->config);
5989         if (priv->config & CFG_STATIC_CHANNEL)
5990                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5991         else
5992                 IPW_DEBUG_INFO("Channel unlocked.\n");
5993         if (priv->config & CFG_STATIC_ESSID)
5994                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5995                                escape_essid(priv->essid, priv->essid_len));
5996         else
5997                 IPW_DEBUG_INFO("ESSID unlocked.\n");
5998         if (priv->config & CFG_STATIC_BSSID)
5999                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
6000                                MAC_ARG(priv->bssid));
6001         else
6002                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6003         if (priv->capability & CAP_PRIVACY_ON)
6004                 IPW_DEBUG_INFO("PRIVACY on\n");
6005         else
6006                 IPW_DEBUG_INFO("PRIVACY off\n");
6007         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6008 }
6009 #else
6010 #define ipw_debug_config(x) do {} while (0)
6011 #endif
6012
6013 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6014 {
6015         /* TODO: Verify that this works... */
6016         struct ipw_fixed_rate fr = {
6017                 .tx_rates = priv->rates_mask
6018         };
6019         u32 reg;
6020         u16 mask = 0;
6021
6022         /* Identify 'current FW band' and match it with the fixed
6023          * Tx rates */
6024
6025         switch (priv->ieee->freq_band) {
6026         case IEEE80211_52GHZ_BAND:      /* A only */
6027                 /* IEEE_A */
6028                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6029                         /* Invalid fixed rate mask */
6030                         IPW_DEBUG_WX
6031                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6032                         fr.tx_rates = 0;
6033                         break;
6034                 }
6035
6036                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6037                 break;
6038
6039         default:                /* 2.4Ghz or Mixed */
6040                 /* IEEE_B */
6041                 if (mode == IEEE_B) {
6042                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6043                                 /* Invalid fixed rate mask */
6044                                 IPW_DEBUG_WX
6045                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6046                                 fr.tx_rates = 0;
6047                         }
6048                         break;
6049                 }
6050
6051                 /* IEEE_G */
6052                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6053                                     IEEE80211_OFDM_RATES_MASK)) {
6054                         /* Invalid fixed rate mask */
6055                         IPW_DEBUG_WX
6056                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6057                         fr.tx_rates = 0;
6058                         break;
6059                 }
6060
6061                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6062                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6063                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6064                 }
6065
6066                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6067                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6068                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6069                 }
6070
6071                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6072                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6073                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6074                 }
6075
6076                 fr.tx_rates |= mask;
6077                 break;
6078         }
6079
6080         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6081         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6082 }
6083
6084 static void ipw_abort_scan(struct ipw_priv *priv)
6085 {
6086         int err;
6087
6088         if (priv->status & STATUS_SCAN_ABORTING) {
6089                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6090                 return;
6091         }
6092         priv->status |= STATUS_SCAN_ABORTING;
6093
6094         err = ipw_send_scan_abort(priv);
6095         if (err)
6096                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6097 }
6098
6099 static void ipw_add_scan_channels(struct ipw_priv *priv,
6100                                   struct ipw_scan_request_ext *scan,
6101                                   int scan_type)
6102 {
6103         int channel_index = 0;
6104         const struct ieee80211_geo *geo;
6105         int i;
6106
6107         geo = ieee80211_get_geo(priv->ieee);
6108
6109         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6110                 int start = channel_index;
6111                 for (i = 0; i < geo->a_channels; i++) {
6112                         if ((priv->status & STATUS_ASSOCIATED) &&
6113                             geo->a[i].channel == priv->channel)
6114                                 continue;
6115                         channel_index++;
6116                         scan->channels_list[channel_index] = geo->a[i].channel;
6117                         ipw_set_scan_type(scan, channel_index,
6118                                           geo->a[i].
6119                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6120                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6121                                           scan_type);
6122                 }
6123
6124                 if (start != channel_index) {
6125                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6126                             (channel_index - start);
6127                         channel_index++;
6128                 }
6129         }
6130
6131         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6132                 int start = channel_index;
6133                 if (priv->config & CFG_SPEED_SCAN) {
6134                         int index;
6135                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6136                                 /* nop out the list */
6137                                 [0] = 0
6138                         };
6139
6140                         u8 channel;
6141                         while (channel_index < IPW_SCAN_CHANNELS) {
6142                                 channel =
6143                                     priv->speed_scan[priv->speed_scan_pos];
6144                                 if (channel == 0) {
6145                                         priv->speed_scan_pos = 0;
6146                                         channel = priv->speed_scan[0];
6147                                 }
6148                                 if ((priv->status & STATUS_ASSOCIATED) &&
6149                                     channel == priv->channel) {
6150                                         priv->speed_scan_pos++;
6151                                         continue;
6152                                 }
6153
6154                                 /* If this channel has already been
6155                                  * added in scan, break from loop
6156                                  * and this will be the first channel
6157                                  * in the next scan.
6158                                  */
6159                                 if (channels[channel - 1] != 0)
6160                                         break;
6161
6162                                 channels[channel - 1] = 1;
6163                                 priv->speed_scan_pos++;
6164                                 channel_index++;
6165                                 scan->channels_list[channel_index] = channel;
6166                                 index =
6167                                     ieee80211_channel_to_index(priv->ieee, channel);
6168                                 ipw_set_scan_type(scan, channel_index,
6169                                                   geo->bg[index].
6170                                                   flags &
6171                                                   IEEE80211_CH_PASSIVE_ONLY ?
6172                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6173                                                   : scan_type);
6174                         }
6175                 } else {
6176                         for (i = 0; i < geo->bg_channels; i++) {
6177                                 if ((priv->status & STATUS_ASSOCIATED) &&
6178                                     geo->bg[i].channel == priv->channel)
6179                                         continue;
6180                                 channel_index++;
6181                                 scan->channels_list[channel_index] =
6182                                     geo->bg[i].channel;
6183                                 ipw_set_scan_type(scan, channel_index,
6184                                                   geo->bg[i].
6185                                                   flags &
6186                                                   IEEE80211_CH_PASSIVE_ONLY ?
6187                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6188                                                   : scan_type);
6189                         }
6190                 }
6191
6192                 if (start != channel_index) {
6193                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6194                             (channel_index - start);
6195                 }
6196         }
6197 }
6198
6199 static int ipw_request_scan(struct ipw_priv *priv)
6200 {
6201         struct ipw_scan_request_ext scan;
6202         int err = 0, scan_type;
6203
6204         if (!(priv->status & STATUS_INIT) ||
6205             (priv->status & STATUS_EXIT_PENDING))
6206                 return 0;
6207
6208         mutex_lock(&priv->mutex);
6209
6210         if (priv->status & STATUS_SCANNING) {
6211                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6212                 priv->status |= STATUS_SCAN_PENDING;
6213                 goto done;
6214         }
6215
6216         if (!(priv->status & STATUS_SCAN_FORCED) &&
6217             priv->status & STATUS_SCAN_ABORTING) {
6218                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6219                 priv->status |= STATUS_SCAN_PENDING;
6220                 goto done;
6221         }
6222
6223         if (priv->status & STATUS_RF_KILL_MASK) {
6224                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6225                 priv->status |= STATUS_SCAN_PENDING;
6226                 goto done;
6227         }
6228
6229         memset(&scan, 0, sizeof(scan));
6230
6231         if (priv->config & CFG_SPEED_SCAN)
6232                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6233                     cpu_to_le16(30);
6234         else
6235                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6236                     cpu_to_le16(20);
6237
6238         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6239             cpu_to_le16(20);
6240         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6241
6242         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6243
6244 #ifdef CONFIG_IPW2200_MONITOR
6245         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6246                 u8 channel;
6247                 u8 band = 0;
6248
6249                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6250                 case IEEE80211_52GHZ_BAND:
6251                         band = (u8) (IPW_A_MODE << 6) | 1;
6252                         channel = priv->channel;
6253                         break;
6254
6255                 case IEEE80211_24GHZ_BAND:
6256                         band = (u8) (IPW_B_MODE << 6) | 1;
6257                         channel = priv->channel;
6258                         break;
6259
6260                 default:
6261                         band = (u8) (IPW_B_MODE << 6) | 1;
6262                         channel = 9;
6263                         break;
6264                 }
6265
6266                 scan.channels_list[0] = band;
6267                 scan.channels_list[1] = channel;
6268                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6269
6270                 /* NOTE:  The card will sit on this channel for this time
6271                  * period.  Scan aborts are timing sensitive and frequently
6272                  * result in firmware restarts.  As such, it is best to
6273                  * set a small dwell_time here and just keep re-issuing
6274                  * scans.  Otherwise fast channel hopping will not actually
6275                  * hop channels.
6276                  *
6277                  * TODO: Move SPEED SCAN support to all modes and bands */
6278                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6279                     cpu_to_le16(2000);
6280         } else {
6281 #endif                          /* CONFIG_IPW2200_MONITOR */
6282                 /* If we are roaming, then make this a directed scan for the
6283                  * current network.  Otherwise, ensure that every other scan
6284                  * is a fast channel hop scan */
6285                 if ((priv->status & STATUS_ROAMING)
6286                     || (!(priv->status & STATUS_ASSOCIATED)
6287                         && (priv->config & CFG_STATIC_ESSID)
6288                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6289                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6290                         if (err) {
6291                                 IPW_DEBUG_HC("Attempt to send SSID command "
6292                                              "failed.\n");
6293                                 goto done;
6294                         }
6295
6296                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6297                 } else
6298                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6299
6300                 ipw_add_scan_channels(priv, &scan, scan_type);
6301 #ifdef CONFIG_IPW2200_MONITOR
6302         }
6303 #endif
6304
6305         err = ipw_send_scan_request_ext(priv, &scan);
6306         if (err) {
6307                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6308                 goto done;
6309         }
6310
6311         priv->status |= STATUS_SCANNING;
6312         priv->status &= ~STATUS_SCAN_PENDING;
6313         queue_delayed_work(priv->workqueue, &priv->scan_check,
6314                            IPW_SCAN_CHECK_WATCHDOG);
6315       done:
6316         mutex_unlock(&priv->mutex);
6317         return err;
6318 }
6319
6320 static void ipw_bg_abort_scan(void *data)
6321 {
6322         struct ipw_priv *priv = data;
6323         mutex_lock(&priv->mutex);
6324         ipw_abort_scan(data);
6325         mutex_unlock(&priv->mutex);
6326 }
6327
6328 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6329 {
6330         /* This is called when wpa_supplicant loads and closes the driver
6331          * interface. */
6332         priv->ieee->wpa_enabled = value;
6333         return 0;
6334 }
6335
6336 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6337 {
6338         struct ieee80211_device *ieee = priv->ieee;
6339         struct ieee80211_security sec = {
6340                 .flags = SEC_AUTH_MODE,
6341         };
6342         int ret = 0;
6343
6344         if (value & IW_AUTH_ALG_SHARED_KEY) {
6345                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6346                 ieee->open_wep = 0;
6347         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6348                 sec.auth_mode = WLAN_AUTH_OPEN;
6349                 ieee->open_wep = 1;
6350         } else if (value & IW_AUTH_ALG_LEAP) {
6351                 sec.auth_mode = WLAN_AUTH_LEAP;
6352                 ieee->open_wep = 1;
6353         } else
6354                 return -EINVAL;
6355
6356         if (ieee->set_security)
6357                 ieee->set_security(ieee->dev, &sec);
6358         else
6359                 ret = -EOPNOTSUPP;
6360
6361         return ret;
6362 }
6363
6364 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6365                                 int wpa_ie_len)
6366 {
6367         /* make sure WPA is enabled */
6368         ipw_wpa_enable(priv, 1);
6369 }
6370
6371 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6372                             char *capabilities, int length)
6373 {
6374         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6375
6376         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6377                                 capabilities);
6378 }
6379
6380 /*
6381  * WE-18 support
6382  */
6383
6384 /* SIOCSIWGENIE */
6385 static int ipw_wx_set_genie(struct net_device *dev,
6386                             struct iw_request_info *info,
6387                             union iwreq_data *wrqu, char *extra)
6388 {
6389         struct ipw_priv *priv = ieee80211_priv(dev);
6390         struct ieee80211_device *ieee = priv->ieee;
6391         u8 *buf;
6392         int err = 0;
6393
6394         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6395             (wrqu->data.length && extra == NULL))
6396                 return -EINVAL;
6397
6398         //mutex_lock(&priv->mutex);
6399
6400         //if (!ieee->wpa_enabled) {
6401         //      err = -EOPNOTSUPP;
6402         //      goto out;
6403         //}
6404
6405         if (wrqu->data.length) {
6406                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6407                 if (buf == NULL) {
6408                         err = -ENOMEM;
6409                         goto out;
6410                 }
6411
6412                 memcpy(buf, extra, wrqu->data.length);
6413                 kfree(ieee->wpa_ie);
6414                 ieee->wpa_ie = buf;
6415                 ieee->wpa_ie_len = wrqu->data.length;
6416         } else {
6417                 kfree(ieee->wpa_ie);
6418                 ieee->wpa_ie = NULL;
6419                 ieee->wpa_ie_len = 0;
6420         }
6421
6422         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6423       out:
6424         //mutex_unlock(&priv->mutex);
6425         return err;
6426 }
6427
6428 /* SIOCGIWGENIE */
6429 static int ipw_wx_get_genie(struct net_device *dev,
6430                             struct iw_request_info *info,
6431                             union iwreq_data *wrqu, char *extra)
6432 {
6433         struct ipw_priv *priv = ieee80211_priv(dev);
6434         struct ieee80211_device *ieee = priv->ieee;
6435         int err = 0;
6436
6437         //mutex_lock(&priv->mutex);
6438
6439         //if (!ieee->wpa_enabled) {
6440         //      err = -EOPNOTSUPP;
6441         //      goto out;
6442         //}
6443
6444         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6445                 wrqu->data.length = 0;
6446                 goto out;
6447         }
6448
6449         if (wrqu->data.length < ieee->wpa_ie_len) {
6450                 err = -E2BIG;
6451                 goto out;
6452         }
6453
6454         wrqu->data.length = ieee->wpa_ie_len;
6455         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6456
6457       out:
6458         //mutex_unlock(&priv->mutex);
6459         return err;
6460 }
6461
6462 static int wext_cipher2level(int cipher)
6463 {
6464         switch (cipher) {
6465         case IW_AUTH_CIPHER_NONE:
6466                 return SEC_LEVEL_0;
6467         case IW_AUTH_CIPHER_WEP40:
6468         case IW_AUTH_CIPHER_WEP104:
6469                 return SEC_LEVEL_1;
6470         case IW_AUTH_CIPHER_TKIP:
6471                 return SEC_LEVEL_2;
6472         case IW_AUTH_CIPHER_CCMP:
6473                 return SEC_LEVEL_3;
6474         default:
6475                 return -1;
6476         }
6477 }
6478
6479 /* SIOCSIWAUTH */
6480 static int ipw_wx_set_auth(struct net_device *dev,
6481                            struct iw_request_info *info,
6482                            union iwreq_data *wrqu, char *extra)
6483 {
6484         struct ipw_priv *priv = ieee80211_priv(dev);
6485         struct ieee80211_device *ieee = priv->ieee;
6486         struct iw_param *param = &wrqu->param;
6487         struct ieee80211_crypt_data *crypt;
6488         unsigned long flags;
6489         int ret = 0;
6490
6491         switch (param->flags & IW_AUTH_INDEX) {
6492         case IW_AUTH_WPA_VERSION:
6493                 break;
6494         case IW_AUTH_CIPHER_PAIRWISE:
6495                 ipw_set_hw_decrypt_unicast(priv,
6496                                            wext_cipher2level(param->value));
6497                 break;
6498         case IW_AUTH_CIPHER_GROUP:
6499                 ipw_set_hw_decrypt_multicast(priv,
6500                                              wext_cipher2level(param->value));
6501                 break;
6502         case IW_AUTH_KEY_MGMT:
6503                 /*
6504                  * ipw2200 does not use these parameters
6505                  */
6506                 break;
6507
6508         case IW_AUTH_TKIP_COUNTERMEASURES:
6509                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6510                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6511                         break;
6512
6513                 flags = crypt->ops->get_flags(crypt->priv);
6514
6515                 if (param->value)
6516                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6517                 else
6518                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6519
6520                 crypt->ops->set_flags(flags, crypt->priv);
6521
6522                 break;
6523
6524         case IW_AUTH_DROP_UNENCRYPTED:{
6525                         /* HACK:
6526                          *
6527                          * wpa_supplicant calls set_wpa_enabled when the driver
6528                          * is loaded and unloaded, regardless of if WPA is being
6529                          * used.  No other calls are made which can be used to
6530                          * determine if encryption will be used or not prior to
6531                          * association being expected.  If encryption is not being
6532                          * used, drop_unencrypted is set to false, else true -- we
6533                          * can use this to determine if the CAP_PRIVACY_ON bit should
6534                          * be set.
6535                          */
6536                         struct ieee80211_security sec = {
6537                                 .flags = SEC_ENABLED,
6538                                 .enabled = param->value,
6539                         };
6540                         priv->ieee->drop_unencrypted = param->value;
6541                         /* We only change SEC_LEVEL for open mode. Others
6542                          * are set by ipw_wpa_set_encryption.
6543                          */
6544                         if (!param->value) {
6545                                 sec.flags |= SEC_LEVEL;
6546                                 sec.level = SEC_LEVEL_0;
6547                         } else {
6548                                 sec.flags |= SEC_LEVEL;
6549                                 sec.level = SEC_LEVEL_1;
6550                         }
6551                         if (priv->ieee->set_security)
6552                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6553                         break;
6554                 }
6555
6556         case IW_AUTH_80211_AUTH_ALG:
6557                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6558                 break;
6559
6560         case IW_AUTH_WPA_ENABLED:
6561                 ret = ipw_wpa_enable(priv, param->value);
6562                 ipw_disassociate(priv);
6563                 break;
6564
6565         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6566                 ieee->ieee802_1x = param->value;
6567                 break;
6568
6569                 //case IW_AUTH_ROAMING_CONTROL:
6570         case IW_AUTH_PRIVACY_INVOKED:
6571                 ieee->privacy_invoked = param->value;
6572                 break;
6573
6574         default:
6575                 return -EOPNOTSUPP;
6576         }
6577         return ret;
6578 }
6579
6580 /* SIOCGIWAUTH */
6581 static int ipw_wx_get_auth(struct net_device *dev,
6582                            struct iw_request_info *info,
6583                            union iwreq_data *wrqu, char *extra)
6584 {
6585         struct ipw_priv *priv = ieee80211_priv(dev);
6586         struct ieee80211_device *ieee = priv->ieee;
6587         struct ieee80211_crypt_data *crypt;
6588         struct iw_param *param = &wrqu->param;
6589         int ret = 0;
6590
6591         switch (param->flags & IW_AUTH_INDEX) {
6592         case IW_AUTH_WPA_VERSION:
6593         case IW_AUTH_CIPHER_PAIRWISE:
6594         case IW_AUTH_CIPHER_GROUP:
6595         case IW_AUTH_KEY_MGMT:
6596                 /*
6597                  * wpa_supplicant will control these internally
6598                  */
6599                 ret = -EOPNOTSUPP;
6600                 break;
6601
6602         case IW_AUTH_TKIP_COUNTERMEASURES:
6603                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6604                 if (!crypt || !crypt->ops->get_flags)
6605                         break;
6606
6607                 param->value = (crypt->ops->get_flags(crypt->priv) &
6608                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6609
6610                 break;
6611
6612         case IW_AUTH_DROP_UNENCRYPTED:
6613                 param->value = ieee->drop_unencrypted;
6614                 break;
6615
6616         case IW_AUTH_80211_AUTH_ALG:
6617                 param->value = ieee->sec.auth_mode;
6618                 break;
6619
6620         case IW_AUTH_WPA_ENABLED:
6621                 param->value = ieee->wpa_enabled;
6622                 break;
6623
6624         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6625                 param->value = ieee->ieee802_1x;
6626                 break;
6627
6628         case IW_AUTH_ROAMING_CONTROL:
6629         case IW_AUTH_PRIVACY_INVOKED:
6630                 param->value = ieee->privacy_invoked;
6631                 break;
6632
6633         default:
6634                 return -EOPNOTSUPP;
6635         }
6636         return 0;
6637 }
6638
6639 /* SIOCSIWENCODEEXT */
6640 static int ipw_wx_set_encodeext(struct net_device *dev,
6641                                 struct iw_request_info *info,
6642                                 union iwreq_data *wrqu, char *extra)
6643 {
6644         struct ipw_priv *priv = ieee80211_priv(dev);
6645         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6646
6647         if (hwcrypto) {
6648                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6649                         /* IPW HW can't build TKIP MIC,
6650                            host decryption still needed */
6651                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6652                                 priv->ieee->host_mc_decrypt = 1;
6653                         else {
6654                                 priv->ieee->host_encrypt = 0;
6655                                 priv->ieee->host_encrypt_msdu = 1;
6656                                 priv->ieee->host_decrypt = 1;
6657                         }
6658                 } else {
6659                         priv->ieee->host_encrypt = 0;
6660                         priv->ieee->host_encrypt_msdu = 0;
6661                         priv->ieee->host_decrypt = 0;
6662                         priv->ieee->host_mc_decrypt = 0;
6663                 }
6664         }
6665
6666         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6667 }
6668
6669 /* SIOCGIWENCODEEXT */
6670 static int ipw_wx_get_encodeext(struct net_device *dev,
6671                                 struct iw_request_info *info,
6672                                 union iwreq_data *wrqu, char *extra)
6673 {
6674         struct ipw_priv *priv = ieee80211_priv(dev);
6675         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6676 }
6677
6678 /* SIOCSIWMLME */
6679 static int ipw_wx_set_mlme(struct net_device *dev,
6680                            struct iw_request_info *info,
6681                            union iwreq_data *wrqu, char *extra)
6682 {
6683         struct ipw_priv *priv = ieee80211_priv(dev);
6684         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6685         u16 reason;
6686
6687         reason = cpu_to_le16(mlme->reason_code);
6688
6689         switch (mlme->cmd) {
6690         case IW_MLME_DEAUTH:
6691                 // silently ignore
6692                 break;
6693
6694         case IW_MLME_DISASSOC:
6695                 ipw_disassociate(priv);
6696                 break;
6697
6698         default:
6699                 return -EOPNOTSUPP;
6700         }
6701         return 0;
6702 }
6703
6704 #ifdef CONFIG_IPW2200_QOS
6705
6706 /* QoS */
6707 /*
6708 * get the modulation type of the current network or
6709 * the card current mode
6710 */
6711 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6712 {
6713         u8 mode = 0;
6714
6715         if (priv->status & STATUS_ASSOCIATED) {
6716                 unsigned long flags;
6717
6718                 spin_lock_irqsave(&priv->ieee->lock, flags);
6719                 mode = priv->assoc_network->mode;
6720                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6721         } else {
6722                 mode = priv->ieee->mode;
6723         }
6724         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6725         return mode;
6726 }
6727
6728 /*
6729 * Handle management frame beacon and probe response
6730 */
6731 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6732                                          int active_network,
6733                                          struct ieee80211_network *network)
6734 {
6735         u32 size = sizeof(struct ieee80211_qos_parameters);
6736
6737         if (network->capability & WLAN_CAPABILITY_IBSS)
6738                 network->qos_data.active = network->qos_data.supported;
6739
6740         if (network->flags & NETWORK_HAS_QOS_MASK) {
6741                 if (active_network &&
6742                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6743                         network->qos_data.active = network->qos_data.supported;
6744
6745                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6746                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6747                     (network->qos_data.old_param_count !=
6748                      network->qos_data.param_count)) {
6749                         network->qos_data.old_param_count =
6750                             network->qos_data.param_count;
6751                         schedule_work(&priv->qos_activate);
6752                         IPW_DEBUG_QOS("QoS parameters change call "
6753                                       "qos_activate\n");
6754                 }
6755         } else {
6756                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6757                         memcpy(&network->qos_data.parameters,
6758                                &def_parameters_CCK, size);
6759                 else
6760                         memcpy(&network->qos_data.parameters,
6761                                &def_parameters_OFDM, size);
6762
6763                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6764                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6765                         schedule_work(&priv->qos_activate);
6766                 }
6767
6768                 network->qos_data.active = 0;
6769                 network->qos_data.supported = 0;
6770         }
6771         if ((priv->status & STATUS_ASSOCIATED) &&
6772             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6773                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6774                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6775                             !(network->flags & NETWORK_EMPTY_ESSID))
6776                                 if ((network->ssid_len ==
6777                                      priv->assoc_network->ssid_len) &&
6778                                     !memcmp(network->ssid,
6779                                             priv->assoc_network->ssid,
6780                                             network->ssid_len)) {
6781                                         queue_work(priv->workqueue,
6782                                                    &priv->merge_networks);
6783                                 }
6784         }
6785
6786         return 0;
6787 }
6788
6789 /*
6790 * This function set up the firmware to support QoS. It sends
6791 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6792 */
6793 static int ipw_qos_activate(struct ipw_priv *priv,
6794                             struct ieee80211_qos_data *qos_network_data)
6795 {
6796         int err;
6797         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6798         struct ieee80211_qos_parameters *active_one = NULL;
6799         u32 size = sizeof(struct ieee80211_qos_parameters);
6800         u32 burst_duration;
6801         int i;
6802         u8 type;
6803
6804         type = ipw_qos_current_mode(priv);
6805
6806         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6807         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6808         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6809         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6810
6811         if (qos_network_data == NULL) {
6812                 if (type == IEEE_B) {
6813                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6814                         active_one = &def_parameters_CCK;
6815                 } else
6816                         active_one = &def_parameters_OFDM;
6817
6818                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6819                 burst_duration = ipw_qos_get_burst_duration(priv);
6820                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6821                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6822                             (u16) burst_duration;
6823         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6824                 if (type == IEEE_B) {
6825                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6826                                       type);
6827                         if (priv->qos_data.qos_enable == 0)
6828                                 active_one = &def_parameters_CCK;
6829                         else
6830                                 active_one = priv->qos_data.def_qos_parm_CCK;
6831                 } else {
6832                         if (priv->qos_data.qos_enable == 0)
6833                                 active_one = &def_parameters_OFDM;
6834                         else
6835                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6836                 }
6837                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6838         } else {
6839                 unsigned long flags;
6840                 int active;
6841
6842                 spin_lock_irqsave(&priv->ieee->lock, flags);
6843                 active_one = &(qos_network_data->parameters);
6844                 qos_network_data->old_param_count =
6845                     qos_network_data->param_count;
6846                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6847                 active = qos_network_data->supported;
6848                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6849
6850                 if (active == 0) {
6851                         burst_duration = ipw_qos_get_burst_duration(priv);
6852                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6853                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6854                                     tx_op_limit[i] = (u16) burst_duration;
6855                 }
6856         }
6857
6858         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6859         err = ipw_send_qos_params_command(priv,
6860                                           (struct ieee80211_qos_parameters *)
6861                                           &(qos_parameters[0]));
6862         if (err)
6863                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6864
6865         return err;
6866 }
6867
6868 /*
6869 * send IPW_CMD_WME_INFO to the firmware
6870 */
6871 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6872 {
6873         int ret = 0;
6874         struct ieee80211_qos_information_element qos_info;
6875
6876         if (priv == NULL)
6877                 return -1;
6878
6879         qos_info.elementID = QOS_ELEMENT_ID;
6880         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6881
6882         qos_info.version = QOS_VERSION_1;
6883         qos_info.ac_info = 0;
6884
6885         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6886         qos_info.qui_type = QOS_OUI_TYPE;
6887         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6888
6889         ret = ipw_send_qos_info_command(priv, &qos_info);
6890         if (ret != 0) {
6891                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6892         }
6893         return ret;
6894 }
6895
6896 /*
6897 * Set the QoS parameter with the association request structure
6898 */
6899 static int ipw_qos_association(struct ipw_priv *priv,
6900                                struct ieee80211_network *network)
6901 {
6902         int err = 0;
6903         struct ieee80211_qos_data *qos_data = NULL;
6904         struct ieee80211_qos_data ibss_data = {
6905                 .supported = 1,
6906                 .active = 1,
6907         };
6908
6909         switch (priv->ieee->iw_mode) {
6910         case IW_MODE_ADHOC:
6911                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6912
6913                 qos_data = &ibss_data;
6914                 break;
6915
6916         case IW_MODE_INFRA:
6917                 qos_data = &network->qos_data;
6918                 break;
6919
6920         default:
6921                 BUG();
6922                 break;
6923         }
6924
6925         err = ipw_qos_activate(priv, qos_data);
6926         if (err) {
6927                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6928                 return err;
6929         }
6930
6931         if (priv->qos_data.qos_enable && qos_data->supported) {
6932                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6933                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6934                 return ipw_qos_set_info_element(priv);
6935         }
6936
6937         return 0;
6938 }
6939
6940 /*
6941 * handling the beaconing responces. if we get different QoS setting
6942 * of the network from the the associated setting adjust the QoS
6943 * setting
6944 */
6945 static int ipw_qos_association_resp(struct ipw_priv *priv,
6946                                     struct ieee80211_network *network)
6947 {
6948         int ret = 0;
6949         unsigned long flags;
6950         u32 size = sizeof(struct ieee80211_qos_parameters);
6951         int set_qos_param = 0;
6952
6953         if ((priv == NULL) || (network == NULL) ||
6954             (priv->assoc_network == NULL))
6955                 return ret;
6956
6957         if (!(priv->status & STATUS_ASSOCIATED))
6958                 return ret;
6959
6960         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
6961                 return ret;
6962
6963         spin_lock_irqsave(&priv->ieee->lock, flags);
6964         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
6965                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
6966                        sizeof(struct ieee80211_qos_data));
6967                 priv->assoc_network->qos_data.active = 1;
6968                 if ((network->qos_data.old_param_count !=
6969                      network->qos_data.param_count)) {
6970                         set_qos_param = 1;
6971                         network->qos_data.old_param_count =
6972                             network->qos_data.param_count;
6973                 }
6974
6975         } else {
6976                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
6977                         memcpy(&priv->assoc_network->qos_data.parameters,
6978                                &def_parameters_CCK, size);
6979                 else
6980                         memcpy(&priv->assoc_network->qos_data.parameters,
6981                                &def_parameters_OFDM, size);
6982                 priv->assoc_network->qos_data.active = 0;
6983                 priv->assoc_network->qos_data.supported = 0;
6984                 set_qos_param = 1;
6985         }
6986
6987         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6988
6989         if (set_qos_param == 1)
6990                 schedule_work(&priv->qos_activate);
6991
6992         return ret;
6993 }
6994
6995 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
6996 {
6997         u32 ret = 0;
6998
6999         if ((priv == NULL))
7000                 return 0;
7001
7002         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7003                 ret = priv->qos_data.burst_duration_CCK;
7004         else
7005                 ret = priv->qos_data.burst_duration_OFDM;
7006
7007         return ret;
7008 }
7009
7010 /*
7011 * Initialize the setting of QoS global
7012 */
7013 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7014                          int burst_enable, u32 burst_duration_CCK,
7015                          u32 burst_duration_OFDM)
7016 {
7017         priv->qos_data.qos_enable = enable;
7018
7019         if (priv->qos_data.qos_enable) {
7020                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7021                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7022                 IPW_DEBUG_QOS("QoS is enabled\n");
7023         } else {
7024                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7025                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7026                 IPW_DEBUG_QOS("QoS is not enabled\n");
7027         }
7028
7029         priv->qos_data.burst_enable = burst_enable;
7030
7031         if (burst_enable) {
7032                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7033                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7034         } else {
7035                 priv->qos_data.burst_duration_CCK = 0;
7036                 priv->qos_data.burst_duration_OFDM = 0;
7037         }
7038 }
7039
7040 /*
7041 * map the packet priority to the right TX Queue
7042 */
7043 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7044 {
7045         if (priority > 7 || !priv->qos_data.qos_enable)
7046                 priority = 0;
7047
7048         return from_priority_to_tx_queue[priority] - 1;
7049 }
7050
7051 static int ipw_is_qos_active(struct net_device *dev,
7052                              struct sk_buff *skb)
7053 {
7054         struct ipw_priv *priv = ieee80211_priv(dev);
7055         struct ieee80211_qos_data *qos_data = NULL;
7056         int active, supported;
7057         u8 *daddr = skb->data + ETH_ALEN;
7058         int unicast = !is_multicast_ether_addr(daddr);
7059
7060         if (!(priv->status & STATUS_ASSOCIATED))
7061                 return 0;
7062
7063         qos_data = &priv->assoc_network->qos_data;
7064
7065         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7066                 if (unicast == 0)
7067                         qos_data->active = 0;
7068                 else
7069                         qos_data->active = qos_data->supported;
7070         }
7071         active = qos_data->active;
7072         supported = qos_data->supported;
7073         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7074                       "unicast %d\n",
7075                       priv->qos_data.qos_enable, active, supported, unicast);
7076         if (active && priv->qos_data.qos_enable)
7077                 return 1;
7078
7079         return 0;
7080
7081 }
7082 /*
7083 * add QoS parameter to the TX command
7084 */
7085 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7086                                         u16 priority,
7087                                         struct tfd_data *tfd)
7088 {
7089         int tx_queue_id = 0;
7090
7091
7092         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7093         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7094
7095         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7096                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7097                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= CTRL_QOS_NO_ACK;
7098         }
7099         return 0;
7100 }
7101
7102 /*
7103 * background support to run QoS activate functionality
7104 */
7105 static void ipw_bg_qos_activate(void *data)
7106 {
7107         struct ipw_priv *priv = data;
7108
7109         if (priv == NULL)
7110                 return;
7111
7112         mutex_lock(&priv->mutex);
7113
7114         if (priv->status & STATUS_ASSOCIATED)
7115                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7116
7117         mutex_unlock(&priv->mutex);
7118 }
7119
7120 static int ipw_handle_probe_response(struct net_device *dev,
7121                                      struct ieee80211_probe_response *resp,
7122                                      struct ieee80211_network *network)
7123 {
7124         struct ipw_priv *priv = ieee80211_priv(dev);
7125         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7126                               (network == priv->assoc_network));
7127
7128         ipw_qos_handle_probe_response(priv, active_network, network);
7129
7130         return 0;
7131 }
7132
7133 static int ipw_handle_beacon(struct net_device *dev,
7134                              struct ieee80211_beacon *resp,
7135                              struct ieee80211_network *network)
7136 {
7137         struct ipw_priv *priv = ieee80211_priv(dev);
7138         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7139                               (network == priv->assoc_network));
7140
7141         ipw_qos_handle_probe_response(priv, active_network, network);
7142
7143         return 0;
7144 }
7145
7146 static int ipw_handle_assoc_response(struct net_device *dev,
7147                                      struct ieee80211_assoc_response *resp,
7148                                      struct ieee80211_network *network)
7149 {
7150         struct ipw_priv *priv = ieee80211_priv(dev);
7151         ipw_qos_association_resp(priv, network);
7152         return 0;
7153 }
7154
7155 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7156                                        *qos_param)
7157 {
7158         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7159                                 sizeof(*qos_param) * 3, qos_param);
7160 }
7161
7162 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7163                                      *qos_param)
7164 {
7165         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7166                                 qos_param);
7167 }
7168
7169 #endif                          /* CONFIG_IPW2200_QOS */
7170
7171 static int ipw_associate_network(struct ipw_priv *priv,
7172                                  struct ieee80211_network *network,
7173                                  struct ipw_supported_rates *rates, int roaming)
7174 {
7175         int err;
7176
7177         if (priv->config & CFG_FIXED_RATE)
7178                 ipw_set_fixed_rate(priv, network->mode);
7179
7180         if (!(priv->config & CFG_STATIC_ESSID)) {
7181                 priv->essid_len = min(network->ssid_len,
7182                                       (u8) IW_ESSID_MAX_SIZE);
7183                 memcpy(priv->essid, network->ssid, priv->essid_len);
7184         }
7185
7186         network->last_associate = jiffies;
7187
7188         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7189         priv->assoc_request.channel = network->channel;
7190         priv->assoc_request.auth_key = 0;
7191
7192         if ((priv->capability & CAP_PRIVACY_ON) &&
7193             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7194                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7195                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7196
7197                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7198                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7199
7200         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7201                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7202                 priv->assoc_request.auth_type = AUTH_LEAP;
7203         else
7204                 priv->assoc_request.auth_type = AUTH_OPEN;
7205
7206         if (priv->ieee->wpa_ie_len) {
7207                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7208                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7209                                  priv->ieee->wpa_ie_len);
7210         }
7211
7212         /*
7213          * It is valid for our ieee device to support multiple modes, but
7214          * when it comes to associating to a given network we have to choose
7215          * just one mode.
7216          */
7217         if (network->mode & priv->ieee->mode & IEEE_A)
7218                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7219         else if (network->mode & priv->ieee->mode & IEEE_G)
7220                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7221         else if (network->mode & priv->ieee->mode & IEEE_B)
7222                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7223
7224         priv->assoc_request.capability = network->capability;
7225         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7226             && !(priv->config & CFG_PREAMBLE_LONG)) {
7227                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7228         } else {
7229                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7230
7231                 /* Clear the short preamble if we won't be supporting it */
7232                 priv->assoc_request.capability &=
7233                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7234         }
7235
7236         /* Clear capability bits that aren't used in Ad Hoc */
7237         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7238                 priv->assoc_request.capability &=
7239                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7240
7241         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7242                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7243                         roaming ? "Rea" : "A",
7244                         escape_essid(priv->essid, priv->essid_len),
7245                         network->channel,
7246                         ipw_modes[priv->assoc_request.ieee_mode],
7247                         rates->num_rates,
7248                         (priv->assoc_request.preamble_length ==
7249                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7250                         network->capability &
7251                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7252                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7253                         priv->capability & CAP_PRIVACY_ON ?
7254                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7255                          "(open)") : "",
7256                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7257                         priv->capability & CAP_PRIVACY_ON ?
7258                         '1' + priv->ieee->sec.active_key : '.',
7259                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7260
7261         priv->assoc_request.beacon_interval = network->beacon_interval;
7262         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7263             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7264                 priv->assoc_request.assoc_type = HC_IBSS_START;
7265                 priv->assoc_request.assoc_tsf_msw = 0;
7266                 priv->assoc_request.assoc_tsf_lsw = 0;
7267         } else {
7268                 if (unlikely(roaming))
7269                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7270                 else
7271                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7272                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7273                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7274         }
7275
7276         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7277
7278         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7279                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7280                 priv->assoc_request.atim_window = network->atim_window;
7281         } else {
7282                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7283                 priv->assoc_request.atim_window = 0;
7284         }
7285
7286         priv->assoc_request.listen_interval = network->listen_interval;
7287
7288         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7289         if (err) {
7290                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7291                 return err;
7292         }
7293
7294         rates->ieee_mode = priv->assoc_request.ieee_mode;
7295         rates->purpose = IPW_RATE_CONNECT;
7296         ipw_send_supported_rates(priv, rates);
7297
7298         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7299                 priv->sys_config.dot11g_auto_detection = 1;
7300         else
7301                 priv->sys_config.dot11g_auto_detection = 0;
7302
7303         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7304                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7305         else
7306                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7307
7308         err = ipw_send_system_config(priv);
7309         if (err) {
7310                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7311                 return err;
7312         }
7313
7314         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7315         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7316         if (err) {
7317                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7318                 return err;
7319         }
7320
7321         /*
7322          * If preemption is enabled, it is possible for the association
7323          * to complete before we return from ipw_send_associate.  Therefore
7324          * we have to be sure and update our priviate data first.
7325          */
7326         priv->channel = network->channel;
7327         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7328         priv->status |= STATUS_ASSOCIATING;
7329         priv->status &= ~STATUS_SECURITY_UPDATED;
7330
7331         priv->assoc_network = network;
7332
7333 #ifdef CONFIG_IPW2200_QOS
7334         ipw_qos_association(priv, network);
7335 #endif
7336
7337         err = ipw_send_associate(priv, &priv->assoc_request);
7338         if (err) {
7339                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7340                 return err;
7341         }
7342
7343         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7344                   escape_essid(priv->essid, priv->essid_len),
7345                   MAC_ARG(priv->bssid));
7346
7347         return 0;
7348 }
7349
7350 static void ipw_roam(void *data)
7351 {
7352         struct ipw_priv *priv = data;
7353         struct ieee80211_network *network = NULL;
7354         struct ipw_network_match match = {
7355                 .network = priv->assoc_network
7356         };
7357
7358         /* The roaming process is as follows:
7359          *
7360          * 1.  Missed beacon threshold triggers the roaming process by
7361          *     setting the status ROAM bit and requesting a scan.
7362          * 2.  When the scan completes, it schedules the ROAM work
7363          * 3.  The ROAM work looks at all of the known networks for one that
7364          *     is a better network than the currently associated.  If none
7365          *     found, the ROAM process is over (ROAM bit cleared)
7366          * 4.  If a better network is found, a disassociation request is
7367          *     sent.
7368          * 5.  When the disassociation completes, the roam work is again
7369          *     scheduled.  The second time through, the driver is no longer
7370          *     associated, and the newly selected network is sent an
7371          *     association request.
7372          * 6.  At this point ,the roaming process is complete and the ROAM
7373          *     status bit is cleared.
7374          */
7375
7376         /* If we are no longer associated, and the roaming bit is no longer
7377          * set, then we are not actively roaming, so just return */
7378         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7379                 return;
7380
7381         if (priv->status & STATUS_ASSOCIATED) {
7382                 /* First pass through ROAM process -- look for a better
7383                  * network */
7384                 unsigned long flags;
7385                 u8 rssi = priv->assoc_network->stats.rssi;
7386                 priv->assoc_network->stats.rssi = -128;
7387                 spin_lock_irqsave(&priv->ieee->lock, flags);
7388                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7389                         if (network != priv->assoc_network)
7390                                 ipw_best_network(priv, &match, network, 1);
7391                 }
7392                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7393                 priv->assoc_network->stats.rssi = rssi;
7394
7395                 if (match.network == priv->assoc_network) {
7396                         IPW_DEBUG_ASSOC("No better APs in this network to "
7397                                         "roam to.\n");
7398                         priv->status &= ~STATUS_ROAMING;
7399                         ipw_debug_config(priv);
7400                         return;
7401                 }
7402
7403                 ipw_send_disassociate(priv, 1);
7404                 priv->assoc_network = match.network;
7405
7406                 return;
7407         }
7408
7409         /* Second pass through ROAM process -- request association */
7410         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7411         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7412         priv->status &= ~STATUS_ROAMING;
7413 }
7414
7415 static void ipw_bg_roam(void *data)
7416 {
7417         struct ipw_priv *priv = data;
7418         mutex_lock(&priv->mutex);
7419         ipw_roam(data);
7420         mutex_unlock(&priv->mutex);
7421 }
7422
7423 static int ipw_associate(void *data)
7424 {
7425         struct ipw_priv *priv = data;
7426
7427         struct ieee80211_network *network = NULL;
7428         struct ipw_network_match match = {
7429                 .network = NULL
7430         };
7431         struct ipw_supported_rates *rates;
7432         struct list_head *element;
7433         unsigned long flags;
7434
7435         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7436                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7437                 return 0;
7438         }
7439
7440         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7441                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7442                                 "progress)\n");
7443                 return 0;
7444         }
7445
7446         if (priv->status & STATUS_DISASSOCIATING) {
7447                 IPW_DEBUG_ASSOC("Not attempting association (in "
7448                                 "disassociating)\n ");
7449                 queue_work(priv->workqueue, &priv->associate);
7450                 return 0;
7451         }
7452
7453         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7454                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7455                                 "initialized)\n");
7456                 return 0;
7457         }
7458
7459         if (!(priv->config & CFG_ASSOCIATE) &&
7460             !(priv->config & (CFG_STATIC_ESSID |
7461                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7462                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7463                 return 0;
7464         }
7465
7466         /* Protect our use of the network_list */
7467         spin_lock_irqsave(&priv->ieee->lock, flags);
7468         list_for_each_entry(network, &priv->ieee->network_list, list)
7469             ipw_best_network(priv, &match, network, 0);
7470
7471         network = match.network;
7472         rates = &match.rates;
7473
7474         if (network == NULL &&
7475             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7476             priv->config & CFG_ADHOC_CREATE &&
7477             priv->config & CFG_STATIC_ESSID &&
7478             priv->config & CFG_STATIC_CHANNEL &&
7479             !list_empty(&priv->ieee->network_free_list)) {
7480                 element = priv->ieee->network_free_list.next;
7481                 network = list_entry(element, struct ieee80211_network, list);
7482                 ipw_adhoc_create(priv, network);
7483                 rates = &priv->rates;
7484                 list_del(element);
7485                 list_add_tail(&network->list, &priv->ieee->network_list);
7486         }
7487         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7488
7489         /* If we reached the end of the list, then we don't have any valid
7490          * matching APs */
7491         if (!network) {
7492                 ipw_debug_config(priv);
7493
7494                 if (!(priv->status & STATUS_SCANNING)) {
7495                         if (!(priv->config & CFG_SPEED_SCAN))
7496                                 queue_delayed_work(priv->workqueue,
7497                                                    &priv->request_scan,
7498                                                    SCAN_INTERVAL);
7499                         else
7500                                 queue_work(priv->workqueue,
7501                                            &priv->request_scan);
7502                 }
7503
7504                 return 0;
7505         }
7506
7507         ipw_associate_network(priv, network, rates, 0);
7508
7509         return 1;
7510 }
7511
7512 static void ipw_bg_associate(void *data)
7513 {
7514         struct ipw_priv *priv = data;
7515         mutex_lock(&priv->mutex);
7516         ipw_associate(data);
7517         mutex_unlock(&priv->mutex);
7518 }
7519
7520 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7521                                       struct sk_buff *skb)
7522 {
7523         struct ieee80211_hdr *hdr;
7524         u16 fc;
7525
7526         hdr = (struct ieee80211_hdr *)skb->data;
7527         fc = le16_to_cpu(hdr->frame_ctl);
7528         if (!(fc & IEEE80211_FCTL_PROTECTED))
7529                 return;
7530
7531         fc &= ~IEEE80211_FCTL_PROTECTED;
7532         hdr->frame_ctl = cpu_to_le16(fc);
7533         switch (priv->ieee->sec.level) {
7534         case SEC_LEVEL_3:
7535                 /* Remove CCMP HDR */
7536                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7537                         skb->data + IEEE80211_3ADDR_LEN + 8,
7538                         skb->len - IEEE80211_3ADDR_LEN - 8);
7539                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7540                 break;
7541         case SEC_LEVEL_2:
7542                 break;
7543         case SEC_LEVEL_1:
7544                 /* Remove IV */
7545                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7546                         skb->data + IEEE80211_3ADDR_LEN + 4,
7547                         skb->len - IEEE80211_3ADDR_LEN - 4);
7548                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7549                 break;
7550         case SEC_LEVEL_0:
7551                 break;
7552         default:
7553                 printk(KERN_ERR "Unknow security level %d\n",
7554                        priv->ieee->sec.level);
7555                 break;
7556         }
7557 }
7558
7559 static void ipw_handle_data_packet(struct ipw_priv *priv,
7560                                    struct ipw_rx_mem_buffer *rxb,
7561                                    struct ieee80211_rx_stats *stats)
7562 {
7563         struct ieee80211_hdr_4addr *hdr;
7564         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7565
7566         /* We received data from the HW, so stop the watchdog */
7567         priv->net_dev->trans_start = jiffies;
7568
7569         /* We only process data packets if the
7570          * interface is open */
7571         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7572                      skb_tailroom(rxb->skb))) {
7573                 priv->ieee->stats.rx_errors++;
7574                 priv->wstats.discard.misc++;
7575                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7576                 return;
7577         } else if (unlikely(!netif_running(priv->net_dev))) {
7578                 priv->ieee->stats.rx_dropped++;
7579                 priv->wstats.discard.misc++;
7580                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7581                 return;
7582         }
7583
7584         /* Advance skb->data to the start of the actual payload */
7585         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7586
7587         /* Set the size of the skb to the size of the frame */
7588         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7589
7590         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7591
7592         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7593         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7594         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7595             (is_multicast_ether_addr(hdr->addr1) ?
7596              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7597                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7598
7599         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7600                 priv->ieee->stats.rx_errors++;
7601         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7602                 rxb->skb = NULL;
7603                 __ipw_led_activity_on(priv);
7604         }
7605 }
7606
7607 #ifdef CONFIG_IPW2200_RADIOTAP
7608 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7609                                            struct ipw_rx_mem_buffer *rxb,
7610                                            struct ieee80211_rx_stats *stats)
7611 {
7612         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7613         struct ipw_rx_frame *frame = &pkt->u.frame;
7614
7615         /* initial pull of some data */
7616         u16 received_channel = frame->received_channel;
7617         u8 antennaAndPhy = frame->antennaAndPhy;
7618         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7619         u16 pktrate = frame->rate;
7620
7621         /* Magic struct that slots into the radiotap header -- no reason
7622          * to build this manually element by element, we can write it much
7623          * more efficiently than we can parse it. ORDER MATTERS HERE */
7624         struct ipw_rt_hdr *ipw_rt;
7625
7626         short len = le16_to_cpu(pkt->u.frame.length);
7627
7628         /* We received data from the HW, so stop the watchdog */
7629         priv->net_dev->trans_start = jiffies;
7630
7631         /* We only process data packets if the
7632          * interface is open */
7633         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7634                      skb_tailroom(rxb->skb))) {
7635                 priv->ieee->stats.rx_errors++;
7636                 priv->wstats.discard.misc++;
7637                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7638                 return;
7639         } else if (unlikely(!netif_running(priv->net_dev))) {
7640                 priv->ieee->stats.rx_dropped++;
7641                 priv->wstats.discard.misc++;
7642                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7643                 return;
7644         }
7645
7646         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7647          * that now */
7648         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7649                 /* FIXME: Should alloc bigger skb instead */
7650                 priv->ieee->stats.rx_dropped++;
7651                 priv->wstats.discard.misc++;
7652                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7653                 return;
7654         }
7655
7656         /* copy the frame itself */
7657         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7658                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7659
7660         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7661          * part of our real header, saves a little time.
7662          *
7663          * No longer necessary since we fill in all our data.  Purge before merging
7664          * patch officially.
7665          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7666          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7667          */
7668
7669         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7670
7671         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7672         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7673         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7674
7675         /* Big bitfield of all the fields we provide in radiotap */
7676         ipw_rt->rt_hdr.it_present =
7677             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7678              (1 << IEEE80211_RADIOTAP_TSFT) |
7679              (1 << IEEE80211_RADIOTAP_RATE) |
7680              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7681              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7682              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7683              (1 << IEEE80211_RADIOTAP_ANTENNA));
7684
7685         /* Zero the flags, we'll add to them as we go */
7686         ipw_rt->rt_flags = 0;
7687
7688         /* Convert signal to DBM */
7689         ipw_rt->rt_dbmsignal = antsignal;
7690
7691         /* Convert the channel data and set the flags */
7692         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7693         if (received_channel > 14) {    /* 802.11a */
7694                 ipw_rt->rt_chbitmask =
7695                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7696         } else if (antennaAndPhy & 32) {        /* 802.11b */
7697                 ipw_rt->rt_chbitmask =
7698                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7699         } else {                /* 802.11g */
7700                 ipw_rt->rt_chbitmask =
7701                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7702         }
7703
7704         /* set the rate in multiples of 500k/s */
7705         switch (pktrate) {
7706         case IPW_TX_RATE_1MB:
7707                 ipw_rt->rt_rate = 2;
7708                 break;
7709         case IPW_TX_RATE_2MB:
7710                 ipw_rt->rt_rate = 4;
7711                 break;
7712         case IPW_TX_RATE_5MB:
7713                 ipw_rt->rt_rate = 10;
7714                 break;
7715         case IPW_TX_RATE_6MB:
7716                 ipw_rt->rt_rate = 12;
7717                 break;
7718         case IPW_TX_RATE_9MB:
7719                 ipw_rt->rt_rate = 18;
7720                 break;
7721         case IPW_TX_RATE_11MB:
7722                 ipw_rt->rt_rate = 22;
7723                 break;
7724         case IPW_TX_RATE_12MB:
7725                 ipw_rt->rt_rate = 24;
7726                 break;
7727         case IPW_TX_RATE_18MB:
7728                 ipw_rt->rt_rate = 36;
7729                 break;
7730         case IPW_TX_RATE_24MB:
7731                 ipw_rt->rt_rate = 48;
7732                 break;
7733         case IPW_TX_RATE_36MB:
7734                 ipw_rt->rt_rate = 72;
7735                 break;
7736         case IPW_TX_RATE_48MB:
7737                 ipw_rt->rt_rate = 96;
7738                 break;
7739         case IPW_TX_RATE_54MB:
7740                 ipw_rt->rt_rate = 108;
7741                 break;
7742         default:
7743                 ipw_rt->rt_rate = 0;
7744                 break;
7745         }
7746
7747         /* antenna number */
7748         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7749
7750         /* set the preamble flag if we have it */
7751         if ((antennaAndPhy & 64))
7752                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7753
7754         /* Set the size of the skb to the size of the frame */
7755         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7756
7757         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7758
7759         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7760                 priv->ieee->stats.rx_errors++;
7761         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7762                 rxb->skb = NULL;
7763                 /* no LED during capture */
7764         }
7765 }
7766 #endif
7767
7768 #ifdef CONFIG_IPW2200_PROMISCUOUS
7769 #define ieee80211_is_probe_response(fc) \
7770    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7771     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7772
7773 #define ieee80211_is_management(fc) \
7774    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7775
7776 #define ieee80211_is_control(fc) \
7777    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7778
7779 #define ieee80211_is_data(fc) \
7780    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7781
7782 #define ieee80211_is_assoc_request(fc) \
7783    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7784
7785 #define ieee80211_is_reassoc_request(fc) \
7786    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7787
7788 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7789                                       struct ipw_rx_mem_buffer *rxb,
7790                                       struct ieee80211_rx_stats *stats)
7791 {
7792         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7793         struct ipw_rx_frame *frame = &pkt->u.frame;
7794         struct ipw_rt_hdr *ipw_rt;
7795
7796         /* First cache any information we need before we overwrite
7797          * the information provided in the skb from the hardware */
7798         struct ieee80211_hdr *hdr;
7799         u16 channel = frame->received_channel;
7800         u8 phy_flags = frame->antennaAndPhy;
7801         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7802         s8 noise = frame->noise;
7803         u8 rate = frame->rate;
7804         short len = le16_to_cpu(pkt->u.frame.length);
7805         u64 tsf = 0;
7806         struct sk_buff *skb;
7807         int hdr_only = 0;
7808         u16 filter = priv->prom_priv->filter;
7809
7810         /* If the filter is set to not include Rx frames then return */
7811         if (filter & IPW_PROM_NO_RX)
7812                 return;
7813
7814         /* We received data from the HW, so stop the watchdog */
7815         priv->prom_net_dev->trans_start = jiffies;
7816
7817         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7818                 priv->prom_priv->ieee->stats.rx_errors++;
7819                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7820                 return;
7821         }
7822
7823         /* We only process data packets if the interface is open */
7824         if (unlikely(!netif_running(priv->prom_net_dev))) {
7825                 priv->prom_priv->ieee->stats.rx_dropped++;
7826                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7827                 return;
7828         }
7829
7830         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7831          * that now */
7832         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7833                 /* FIXME: Should alloc bigger skb instead */
7834                 priv->prom_priv->ieee->stats.rx_dropped++;
7835                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7836                 return;
7837         }
7838
7839         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7840         if (ieee80211_is_management(hdr->frame_ctl)) {
7841                 if (filter & IPW_PROM_NO_MGMT)
7842                         return;
7843                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7844                         hdr_only = 1;
7845         } else if (ieee80211_is_control(hdr->frame_ctl)) {
7846                 if (filter & IPW_PROM_NO_CTL)
7847                         return;
7848                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7849                         hdr_only = 1;
7850         } else if (ieee80211_is_data(hdr->frame_ctl)) {
7851                 if (filter & IPW_PROM_NO_DATA)
7852                         return;
7853                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7854                         hdr_only = 1;
7855         }
7856
7857         /* Copy the SKB since this is for the promiscuous side */
7858         skb = skb_copy(rxb->skb, GFP_ATOMIC);
7859         if (skb == NULL) {
7860                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7861                 return;
7862         }
7863
7864         /* copy the frame data to write after where the radiotap header goes */
7865         ipw_rt = (void *)skb->data;
7866
7867         if (hdr_only)
7868                 len = ieee80211_get_hdrlen(hdr->frame_ctl);
7869
7870         memcpy(ipw_rt->payload, hdr, len);
7871
7872         /* Zero the radiotap static buffer  ...  We only need to zero the bytes
7873          * NOT part of our real header, saves a little time.
7874          *
7875          * No longer necessary since we fill in all our data.  Purge before
7876          * merging patch officially.
7877          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7878          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7879          */
7880
7881         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7882         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7883         ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt);        /* total header+data */
7884
7885         /* Set the size of the skb to the size of the frame */
7886         skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7887
7888         /* Big bitfield of all the fields we provide in radiotap */
7889         ipw_rt->rt_hdr.it_present =
7890             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7891              (1 << IEEE80211_RADIOTAP_TSFT) |
7892              (1 << IEEE80211_RADIOTAP_RATE) |
7893              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7894              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7895              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7896              (1 << IEEE80211_RADIOTAP_ANTENNA));
7897
7898         /* Zero the flags, we'll add to them as we go */
7899         ipw_rt->rt_flags = 0;
7900
7901         ipw_rt->rt_tsf = tsf;
7902
7903         /* Convert to DBM */
7904         ipw_rt->rt_dbmsignal = signal;
7905         ipw_rt->rt_dbmnoise = noise;
7906
7907         /* Convert the channel data and set the flags */
7908         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7909         if (channel > 14) {     /* 802.11a */
7910                 ipw_rt->rt_chbitmask =
7911                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7912         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
7913                 ipw_rt->rt_chbitmask =
7914                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7915         } else {                /* 802.11g */
7916                 ipw_rt->rt_chbitmask =
7917                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7918         }
7919
7920         /* set the rate in multiples of 500k/s */
7921         switch (rate) {
7922         case IPW_TX_RATE_1MB:
7923                 ipw_rt->rt_rate = 2;
7924                 break;
7925         case IPW_TX_RATE_2MB:
7926                 ipw_rt->rt_rate = 4;
7927                 break;
7928         case IPW_TX_RATE_5MB:
7929                 ipw_rt->rt_rate = 10;
7930                 break;
7931         case IPW_TX_RATE_6MB:
7932                 ipw_rt->rt_rate = 12;
7933                 break;
7934         case IPW_TX_RATE_9MB:
7935                 ipw_rt->rt_rate = 18;
7936                 break;
7937         case IPW_TX_RATE_11MB:
7938                 ipw_rt->rt_rate = 22;
7939                 break;
7940         case IPW_TX_RATE_12MB:
7941                 ipw_rt->rt_rate = 24;
7942                 break;
7943         case IPW_TX_RATE_18MB:
7944                 ipw_rt->rt_rate = 36;
7945                 break;
7946         case IPW_TX_RATE_24MB:
7947                 ipw_rt->rt_rate = 48;
7948                 break;
7949         case IPW_TX_RATE_36MB:
7950                 ipw_rt->rt_rate = 72;
7951                 break;
7952         case IPW_TX_RATE_48MB:
7953                 ipw_rt->rt_rate = 96;
7954                 break;
7955         case IPW_TX_RATE_54MB:
7956                 ipw_rt->rt_rate = 108;
7957                 break;
7958         default:
7959                 ipw_rt->rt_rate = 0;
7960                 break;
7961         }
7962
7963         /* antenna number */
7964         ipw_rt->rt_antenna = (phy_flags & 3);
7965
7966         /* set the preamble flag if we have it */
7967         if (phy_flags & (1 << 6))
7968                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7969
7970         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
7971
7972         if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
7973                 priv->prom_priv->ieee->stats.rx_errors++;
7974                 dev_kfree_skb_any(skb);
7975         }
7976 }
7977 #endif
7978
7979 static int is_network_packet(struct ipw_priv *priv,
7980                                     struct ieee80211_hdr_4addr *header)
7981 {
7982         /* Filter incoming packets to determine if they are targetted toward
7983          * this network, discarding packets coming from ourselves */
7984         switch (priv->ieee->iw_mode) {
7985         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
7986                 /* packets from our adapter are dropped (echo) */
7987                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
7988                         return 0;
7989
7990                 /* {broad,multi}cast packets to our BSSID go through */
7991                 if (is_multicast_ether_addr(header->addr1))
7992                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
7993
7994                 /* packets to our adapter go through */
7995                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7996                                ETH_ALEN);
7997
7998         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
7999                 /* packets from our adapter are dropped (echo) */
8000                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8001                         return 0;
8002
8003                 /* {broad,multi}cast packets to our BSS go through */
8004                 if (is_multicast_ether_addr(header->addr1))
8005                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8006
8007                 /* packets to our adapter go through */
8008                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8009                                ETH_ALEN);
8010         }
8011
8012         return 1;
8013 }
8014
8015 #define IPW_PACKET_RETRY_TIME HZ
8016
8017 static  int is_duplicate_packet(struct ipw_priv *priv,
8018                                       struct ieee80211_hdr_4addr *header)
8019 {
8020         u16 sc = le16_to_cpu(header->seq_ctl);
8021         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8022         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8023         u16 *last_seq, *last_frag;
8024         unsigned long *last_time;
8025
8026         switch (priv->ieee->iw_mode) {
8027         case IW_MODE_ADHOC:
8028                 {
8029                         struct list_head *p;
8030                         struct ipw_ibss_seq *entry = NULL;
8031                         u8 *mac = header->addr2;
8032                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8033
8034                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8035                                 entry =
8036                                     list_entry(p, struct ipw_ibss_seq, list);
8037                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8038                                         break;
8039                         }
8040                         if (p == &priv->ibss_mac_hash[index]) {
8041                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8042                                 if (!entry) {
8043                                         IPW_ERROR
8044                                             ("Cannot malloc new mac entry\n");
8045                                         return 0;
8046                                 }
8047                                 memcpy(entry->mac, mac, ETH_ALEN);
8048                                 entry->seq_num = seq;
8049                                 entry->frag_num = frag;
8050                                 entry->packet_time = jiffies;
8051                                 list_add(&entry->list,
8052                                          &priv->ibss_mac_hash[index]);
8053                                 return 0;
8054                         }
8055                         last_seq = &entry->seq_num;
8056                         last_frag = &entry->frag_num;
8057                         last_time = &entry->packet_time;
8058                         break;
8059                 }
8060         case IW_MODE_INFRA:
8061                 last_seq = &priv->last_seq_num;
8062                 last_frag = &priv->last_frag_num;
8063                 last_time = &priv->last_packet_time;
8064                 break;
8065         default:
8066                 return 0;
8067         }
8068         if ((*last_seq == seq) &&
8069             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8070                 if (*last_frag == frag)
8071                         goto drop;
8072                 if (*last_frag + 1 != frag)
8073                         /* out-of-order fragment */
8074                         goto drop;
8075         } else
8076                 *last_seq = seq;
8077
8078         *last_frag = frag;
8079         *last_time = jiffies;
8080         return 0;
8081
8082       drop:
8083         /* Comment this line now since we observed the card receives
8084          * duplicate packets but the FCTL_RETRY bit is not set in the
8085          * IBSS mode with fragmentation enabled.
8086          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8087         return 1;
8088 }
8089
8090 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8091                                    struct ipw_rx_mem_buffer *rxb,
8092                                    struct ieee80211_rx_stats *stats)
8093 {
8094         struct sk_buff *skb = rxb->skb;
8095         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8096         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8097             (skb->data + IPW_RX_FRAME_SIZE);
8098
8099         ieee80211_rx_mgt(priv->ieee, header, stats);
8100
8101         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8102             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8103               IEEE80211_STYPE_PROBE_RESP) ||
8104              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8105               IEEE80211_STYPE_BEACON))) {
8106                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8107                         ipw_add_station(priv, header->addr2);
8108         }
8109
8110         if (priv->config & CFG_NET_STATS) {
8111                 IPW_DEBUG_HC("sending stat packet\n");
8112
8113                 /* Set the size of the skb to the size of the full
8114                  * ipw header and 802.11 frame */
8115                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8116                         IPW_RX_FRAME_SIZE);
8117
8118                 /* Advance past the ipw packet header to the 802.11 frame */
8119                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8120
8121                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8122                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8123
8124                 skb->dev = priv->ieee->dev;
8125
8126                 /* Point raw at the ieee80211_stats */
8127                 skb->mac.raw = skb->data;
8128
8129                 skb->pkt_type = PACKET_OTHERHOST;
8130                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8131                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8132                 netif_rx(skb);
8133                 rxb->skb = NULL;
8134         }
8135 }
8136
8137 /*
8138  * Main entry function for recieving a packet with 80211 headers.  This
8139  * should be called when ever the FW has notified us that there is a new
8140  * skb in the recieve queue.
8141  */
8142 static void ipw_rx(struct ipw_priv *priv)
8143 {
8144         struct ipw_rx_mem_buffer *rxb;
8145         struct ipw_rx_packet *pkt;
8146         struct ieee80211_hdr_4addr *header;
8147         u32 r, w, i;
8148         u8 network_packet;
8149
8150         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8151         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8152         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8153
8154         while (i != r) {
8155                 rxb = priv->rxq->queue[i];
8156                 if (unlikely(rxb == NULL)) {
8157                         printk(KERN_CRIT "Queue not allocated!\n");
8158                         break;
8159                 }
8160                 priv->rxq->queue[i] = NULL;
8161
8162                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8163                                             IPW_RX_BUF_SIZE,
8164                                             PCI_DMA_FROMDEVICE);
8165
8166                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8167                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8168                              pkt->header.message_type,
8169                              pkt->header.rx_seq_num, pkt->header.control_bits);
8170
8171                 switch (pkt->header.message_type) {
8172                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8173                                 struct ieee80211_rx_stats stats = {
8174                                         .rssi =
8175                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8176                                             IPW_RSSI_TO_DBM,
8177                                         .signal =
8178                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8179                                             IPW_RSSI_TO_DBM + 0x100,
8180                                         .noise =
8181                                             le16_to_cpu(pkt->u.frame.noise),
8182                                         .rate = pkt->u.frame.rate,
8183                                         .mac_time = jiffies,
8184                                         .received_channel =
8185                                             pkt->u.frame.received_channel,
8186                                         .freq =
8187                                             (pkt->u.frame.
8188                                              control & (1 << 0)) ?
8189                                             IEEE80211_24GHZ_BAND :
8190                                             IEEE80211_52GHZ_BAND,
8191                                         .len = le16_to_cpu(pkt->u.frame.length),
8192                                 };
8193
8194                                 if (stats.rssi != 0)
8195                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8196                                 if (stats.signal != 0)
8197                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8198                                 if (stats.noise != 0)
8199                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8200                                 if (stats.rate != 0)
8201                                         stats.mask |= IEEE80211_STATMASK_RATE;
8202
8203                                 priv->rx_packets++;
8204
8205 #ifdef CONFIG_IPW2200_PROMISCUOUS
8206         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8207                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8208 #endif
8209
8210 #ifdef CONFIG_IPW2200_MONITOR
8211                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8212 #ifdef CONFIG_IPW2200_RADIOTAP
8213
8214                 ipw_handle_data_packet_monitor(priv,
8215                                                rxb,
8216                                                &stats);
8217 #else
8218                 ipw_handle_data_packet(priv, rxb,
8219                                        &stats);
8220 #endif
8221                                         break;
8222                                 }
8223 #endif
8224
8225                                 header =
8226                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8227                                                                    data +
8228                                                                    IPW_RX_FRAME_SIZE);
8229                                 /* TODO: Check Ad-Hoc dest/source and make sure
8230                                  * that we are actually parsing these packets
8231                                  * correctly -- we should probably use the
8232                                  * frame control of the packet and disregard
8233                                  * the current iw_mode */
8234
8235                                 network_packet =
8236                                     is_network_packet(priv, header);
8237                                 if (network_packet && priv->assoc_network) {
8238                                         priv->assoc_network->stats.rssi =
8239                                             stats.rssi;
8240                                         priv->exp_avg_rssi =
8241                                             exponential_average(priv->exp_avg_rssi,
8242                                             stats.rssi, DEPTH_RSSI);
8243                                 }
8244
8245                                 IPW_DEBUG_RX("Frame: len=%u\n",
8246                                              le16_to_cpu(pkt->u.frame.length));
8247
8248                                 if (le16_to_cpu(pkt->u.frame.length) <
8249                                     ieee80211_get_hdrlen(le16_to_cpu(
8250                                                     header->frame_ctl))) {
8251                                         IPW_DEBUG_DROP
8252                                             ("Received packet is too small. "
8253                                              "Dropping.\n");
8254                                         priv->ieee->stats.rx_errors++;
8255                                         priv->wstats.discard.misc++;
8256                                         break;
8257                                 }
8258
8259                                 switch (WLAN_FC_GET_TYPE
8260                                         (le16_to_cpu(header->frame_ctl))) {
8261
8262                                 case IEEE80211_FTYPE_MGMT:
8263                                         ipw_handle_mgmt_packet(priv, rxb,
8264                                                                &stats);
8265                                         break;
8266
8267                                 case IEEE80211_FTYPE_CTL:
8268                                         break;
8269
8270                                 case IEEE80211_FTYPE_DATA:
8271                                         if (unlikely(!network_packet ||
8272                                                      is_duplicate_packet(priv,
8273                                                                          header)))
8274                                         {
8275                                                 IPW_DEBUG_DROP("Dropping: "
8276                                                                MAC_FMT ", "
8277                                                                MAC_FMT ", "
8278                                                                MAC_FMT "\n",
8279                                                                MAC_ARG(header->
8280                                                                        addr1),
8281                                                                MAC_ARG(header->
8282                                                                        addr2),
8283                                                                MAC_ARG(header->
8284                                                                        addr3));
8285                                                 break;
8286                                         }
8287
8288                                         ipw_handle_data_packet(priv, rxb,
8289                                                                &stats);
8290
8291                                         break;
8292                                 }
8293                                 break;
8294                         }
8295
8296                 case RX_HOST_NOTIFICATION_TYPE:{
8297                                 IPW_DEBUG_RX
8298                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8299                                      pkt->u.notification.subtype,
8300                                      pkt->u.notification.flags,
8301                                      pkt->u.notification.size);
8302                                 ipw_rx_notification(priv, &pkt->u.notification);
8303                                 break;
8304                         }
8305
8306                 default:
8307                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8308                                      pkt->header.message_type);
8309                         break;
8310                 }
8311
8312                 /* For now we just don't re-use anything.  We can tweak this
8313                  * later to try and re-use notification packets and SKBs that
8314                  * fail to Rx correctly */
8315                 if (rxb->skb != NULL) {
8316                         dev_kfree_skb_any(rxb->skb);
8317                         rxb->skb = NULL;
8318                 }
8319
8320                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8321                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8322                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8323
8324                 i = (i + 1) % RX_QUEUE_SIZE;
8325         }
8326
8327         /* Backtrack one entry */
8328         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8329
8330         ipw_rx_queue_restock(priv);
8331 }
8332
8333 #define DEFAULT_RTS_THRESHOLD     2304U
8334 #define MIN_RTS_THRESHOLD         1U
8335 #define MAX_RTS_THRESHOLD         2304U
8336 #define DEFAULT_BEACON_INTERVAL   100U
8337 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8338 #define DEFAULT_LONG_RETRY_LIMIT  4U
8339
8340 /**
8341  * ipw_sw_reset
8342  * @option: options to control different reset behaviour
8343  *          0 = reset everything except the 'disable' module_param
8344  *          1 = reset everything and print out driver info (for probe only)
8345  *          2 = reset everything
8346  */
8347 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8348 {
8349         int band, modulation;
8350         int old_mode = priv->ieee->iw_mode;
8351
8352         /* Initialize module parameter values here */
8353         priv->config = 0;
8354
8355         /* We default to disabling the LED code as right now it causes
8356          * too many systems to lock up... */
8357         if (!led)
8358                 priv->config |= CFG_NO_LED;
8359
8360         if (associate)
8361                 priv->config |= CFG_ASSOCIATE;
8362         else
8363                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8364
8365         if (auto_create)
8366                 priv->config |= CFG_ADHOC_CREATE;
8367         else
8368                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8369
8370         priv->config &= ~CFG_STATIC_ESSID;
8371         priv->essid_len = 0;
8372         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8373
8374         if (disable && option) {
8375                 priv->status |= STATUS_RF_KILL_SW;
8376                 IPW_DEBUG_INFO("Radio disabled.\n");
8377         }
8378
8379         if (channel != 0) {
8380                 priv->config |= CFG_STATIC_CHANNEL;
8381                 priv->channel = channel;
8382                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8383                 /* TODO: Validate that provided channel is in range */
8384         }
8385 #ifdef CONFIG_IPW2200_QOS
8386         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8387                      burst_duration_CCK, burst_duration_OFDM);
8388 #endif                          /* CONFIG_IPW2200_QOS */
8389
8390         switch (mode) {
8391         case 1:
8392                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8393                 priv->net_dev->type = ARPHRD_ETHER;
8394
8395                 break;
8396 #ifdef CONFIG_IPW2200_MONITOR
8397         case 2:
8398                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8399 #ifdef CONFIG_IPW2200_RADIOTAP
8400                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8401 #else
8402                 priv->net_dev->type = ARPHRD_IEEE80211;
8403 #endif
8404                 break;
8405 #endif
8406         default:
8407         case 0:
8408                 priv->net_dev->type = ARPHRD_ETHER;
8409                 priv->ieee->iw_mode = IW_MODE_INFRA;
8410                 break;
8411         }
8412
8413         if (hwcrypto) {
8414                 priv->ieee->host_encrypt = 0;
8415                 priv->ieee->host_encrypt_msdu = 0;
8416                 priv->ieee->host_decrypt = 0;
8417                 priv->ieee->host_mc_decrypt = 0;
8418         }
8419         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8420
8421         /* IPW2200/2915 is abled to do hardware fragmentation. */
8422         priv->ieee->host_open_frag = 0;
8423
8424         if ((priv->pci_dev->device == 0x4223) ||
8425             (priv->pci_dev->device == 0x4224)) {
8426                 if (option == 1)
8427                         printk(KERN_INFO DRV_NAME
8428                                ": Detected Intel PRO/Wireless 2915ABG Network "
8429                                "Connection\n");
8430                 priv->ieee->abg_true = 1;
8431                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8432                 modulation = IEEE80211_OFDM_MODULATION |
8433                     IEEE80211_CCK_MODULATION;
8434                 priv->adapter = IPW_2915ABG;
8435                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8436         } else {
8437                 if (option == 1)
8438                         printk(KERN_INFO DRV_NAME
8439                                ": Detected Intel PRO/Wireless 2200BG Network "
8440                                "Connection\n");
8441
8442                 priv->ieee->abg_true = 0;
8443                 band = IEEE80211_24GHZ_BAND;
8444                 modulation = IEEE80211_OFDM_MODULATION |
8445                     IEEE80211_CCK_MODULATION;
8446                 priv->adapter = IPW_2200BG;
8447                 priv->ieee->mode = IEEE_G | IEEE_B;
8448         }
8449
8450         priv->ieee->freq_band = band;
8451         priv->ieee->modulation = modulation;
8452
8453         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8454
8455         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8456         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8457
8458         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8459         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8460         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8461
8462         /* If power management is turned on, default to AC mode */
8463         priv->power_mode = IPW_POWER_AC;
8464         priv->tx_power = IPW_TX_POWER_DEFAULT;
8465
8466         return old_mode == priv->ieee->iw_mode;
8467 }
8468
8469 /*
8470  * This file defines the Wireless Extension handlers.  It does not
8471  * define any methods of hardware manipulation and relies on the
8472  * functions defined in ipw_main to provide the HW interaction.
8473  *
8474  * The exception to this is the use of the ipw_get_ordinal()
8475  * function used to poll the hardware vs. making unecessary calls.
8476  *
8477  */
8478
8479 static int ipw_wx_get_name(struct net_device *dev,
8480                            struct iw_request_info *info,
8481                            union iwreq_data *wrqu, char *extra)
8482 {
8483         struct ipw_priv *priv = ieee80211_priv(dev);
8484         mutex_lock(&priv->mutex);
8485         if (priv->status & STATUS_RF_KILL_MASK)
8486                 strcpy(wrqu->name, "radio off");
8487         else if (!(priv->status & STATUS_ASSOCIATED))
8488                 strcpy(wrqu->name, "unassociated");
8489         else
8490                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8491                          ipw_modes[priv->assoc_request.ieee_mode]);
8492         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8493         mutex_unlock(&priv->mutex);
8494         return 0;
8495 }
8496
8497 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8498 {
8499         if (channel == 0) {
8500                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8501                 priv->config &= ~CFG_STATIC_CHANNEL;
8502                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8503                                 "parameters.\n");
8504                 ipw_associate(priv);
8505                 return 0;
8506         }
8507
8508         priv->config |= CFG_STATIC_CHANNEL;
8509
8510         if (priv->channel == channel) {
8511                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8512                                channel);
8513                 return 0;
8514         }
8515
8516         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8517         priv->channel = channel;
8518
8519 #ifdef CONFIG_IPW2200_MONITOR
8520         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8521                 int i;
8522                 if (priv->status & STATUS_SCANNING) {
8523                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8524                                        "channel change.\n");
8525                         ipw_abort_scan(priv);
8526                 }
8527
8528                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8529                         udelay(10);
8530
8531                 if (priv->status & STATUS_SCANNING)
8532                         IPW_DEBUG_SCAN("Still scanning...\n");
8533                 else
8534                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8535                                        1000 - i);
8536
8537                 return 0;
8538         }
8539 #endif                          /* CONFIG_IPW2200_MONITOR */
8540
8541         /* Network configuration changed -- force [re]association */
8542         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8543         if (!ipw_disassociate(priv))
8544                 ipw_associate(priv);
8545
8546         return 0;
8547 }
8548
8549 static int ipw_wx_set_freq(struct net_device *dev,
8550                            struct iw_request_info *info,
8551                            union iwreq_data *wrqu, char *extra)
8552 {
8553         struct ipw_priv *priv = ieee80211_priv(dev);
8554         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8555         struct iw_freq *fwrq = &wrqu->freq;
8556         int ret = 0, i;
8557         u8 channel, flags;
8558         int band;
8559
8560         if (fwrq->m == 0) {
8561                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8562                 mutex_lock(&priv->mutex);
8563                 ret = ipw_set_channel(priv, 0);
8564                 mutex_unlock(&priv->mutex);
8565                 return ret;
8566         }
8567         /* if setting by freq convert to channel */
8568         if (fwrq->e == 1) {
8569                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8570                 if (channel == 0)
8571                         return -EINVAL;
8572         } else
8573                 channel = fwrq->m;
8574
8575         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8576                 return -EINVAL;
8577
8578         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8579                 i = ieee80211_channel_to_index(priv->ieee, channel);
8580                 if (i == -1)
8581                         return -EINVAL;
8582
8583                 flags = (band == IEEE80211_24GHZ_BAND) ?
8584                     geo->bg[i].flags : geo->a[i].flags;
8585                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8586                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8587                         return -EINVAL;
8588                 }
8589         }
8590
8591         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8592         mutex_lock(&priv->mutex);
8593         ret = ipw_set_channel(priv, channel);
8594         mutex_unlock(&priv->mutex);
8595         return ret;
8596 }
8597
8598 static int ipw_wx_get_freq(struct net_device *dev,
8599                            struct iw_request_info *info,
8600                            union iwreq_data *wrqu, char *extra)
8601 {
8602         struct ipw_priv *priv = ieee80211_priv(dev);
8603
8604         wrqu->freq.e = 0;
8605
8606         /* If we are associated, trying to associate, or have a statically
8607          * configured CHANNEL then return that; otherwise return ANY */
8608         mutex_lock(&priv->mutex);
8609         if (priv->config & CFG_STATIC_CHANNEL ||
8610             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
8611                 wrqu->freq.m = priv->channel;
8612         else
8613                 wrqu->freq.m = 0;
8614
8615         mutex_unlock(&priv->mutex);
8616         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8617         return 0;
8618 }
8619
8620 static int ipw_wx_set_mode(struct net_device *dev,
8621                            struct iw_request_info *info,
8622                            union iwreq_data *wrqu, char *extra)
8623 {
8624         struct ipw_priv *priv = ieee80211_priv(dev);
8625         int err = 0;
8626
8627         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8628
8629         switch (wrqu->mode) {
8630 #ifdef CONFIG_IPW2200_MONITOR
8631         case IW_MODE_MONITOR:
8632 #endif
8633         case IW_MODE_ADHOC:
8634         case IW_MODE_INFRA:
8635                 break;
8636         case IW_MODE_AUTO:
8637                 wrqu->mode = IW_MODE_INFRA;
8638                 break;
8639         default:
8640                 return -EINVAL;
8641         }
8642         if (wrqu->mode == priv->ieee->iw_mode)
8643                 return 0;
8644
8645         mutex_lock(&priv->mutex);
8646
8647         ipw_sw_reset(priv, 0);
8648
8649 #ifdef CONFIG_IPW2200_MONITOR
8650         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8651                 priv->net_dev->type = ARPHRD_ETHER;
8652
8653         if (wrqu->mode == IW_MODE_MONITOR)
8654 #ifdef CONFIG_IPW2200_RADIOTAP
8655                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8656 #else
8657                 priv->net_dev->type = ARPHRD_IEEE80211;
8658 #endif
8659 #endif                          /* CONFIG_IPW2200_MONITOR */
8660
8661         /* Free the existing firmware and reset the fw_loaded
8662          * flag so ipw_load() will bring in the new firmawre */
8663         free_firmware();
8664
8665         priv->ieee->iw_mode = wrqu->mode;
8666
8667         queue_work(priv->workqueue, &priv->adapter_restart);
8668         mutex_unlock(&priv->mutex);
8669         return err;
8670 }
8671
8672 static int ipw_wx_get_mode(struct net_device *dev,
8673                            struct iw_request_info *info,
8674                            union iwreq_data *wrqu, char *extra)
8675 {
8676         struct ipw_priv *priv = ieee80211_priv(dev);
8677         mutex_lock(&priv->mutex);
8678         wrqu->mode = priv->ieee->iw_mode;
8679         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8680         mutex_unlock(&priv->mutex);
8681         return 0;
8682 }
8683
8684 /* Values are in microsecond */
8685 static const s32 timeout_duration[] = {
8686         350000,
8687         250000,
8688         75000,
8689         37000,
8690         25000,
8691 };
8692
8693 static const s32 period_duration[] = {
8694         400000,
8695         700000,
8696         1000000,
8697         1000000,
8698         1000000
8699 };
8700
8701 static int ipw_wx_get_range(struct net_device *dev,
8702                             struct iw_request_info *info,
8703                             union iwreq_data *wrqu, char *extra)
8704 {
8705         struct ipw_priv *priv = ieee80211_priv(dev);
8706         struct iw_range *range = (struct iw_range *)extra;
8707         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8708         int i = 0, j;
8709
8710         wrqu->data.length = sizeof(*range);
8711         memset(range, 0, sizeof(*range));
8712
8713         /* 54Mbs == ~27 Mb/s real (802.11g) */
8714         range->throughput = 27 * 1000 * 1000;
8715
8716         range->max_qual.qual = 100;
8717         /* TODO: Find real max RSSI and stick here */
8718         range->max_qual.level = 0;
8719         range->max_qual.noise = 0;
8720         range->max_qual.updated = 7;    /* Updated all three */
8721
8722         range->avg_qual.qual = 70;
8723         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8724         range->avg_qual.level = 0;      /* FIXME to real average level */
8725         range->avg_qual.noise = 0;
8726         range->avg_qual.updated = 7;    /* Updated all three */
8727         mutex_lock(&priv->mutex);
8728         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8729
8730         for (i = 0; i < range->num_bitrates; i++)
8731                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8732                     500000;
8733
8734         range->max_rts = DEFAULT_RTS_THRESHOLD;
8735         range->min_frag = MIN_FRAG_THRESHOLD;
8736         range->max_frag = MAX_FRAG_THRESHOLD;
8737
8738         range->encoding_size[0] = 5;
8739         range->encoding_size[1] = 13;
8740         range->num_encoding_sizes = 2;
8741         range->max_encoding_tokens = WEP_KEYS;
8742
8743         /* Set the Wireless Extension versions */
8744         range->we_version_compiled = WIRELESS_EXT;
8745         range->we_version_source = 18;
8746
8747         i = 0;
8748         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8749                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8750                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8751                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8752                                 continue;
8753
8754                         range->freq[i].i = geo->bg[j].channel;
8755                         range->freq[i].m = geo->bg[j].freq * 100000;
8756                         range->freq[i].e = 1;
8757                         i++;
8758                 }
8759         }
8760
8761         if (priv->ieee->mode & IEEE_A) {
8762                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8763                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8764                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8765                                 continue;
8766
8767                         range->freq[i].i = geo->a[j].channel;
8768                         range->freq[i].m = geo->a[j].freq * 100000;
8769                         range->freq[i].e = 1;
8770                         i++;
8771                 }
8772         }
8773
8774         range->num_channels = i;
8775         range->num_frequency = i;
8776
8777         mutex_unlock(&priv->mutex);
8778
8779         /* Event capability (kernel + driver) */
8780         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8781                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8782                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8783                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8784         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8785
8786         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8787                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8788
8789         IPW_DEBUG_WX("GET Range\n");
8790         return 0;
8791 }
8792
8793 static int ipw_wx_set_wap(struct net_device *dev,
8794                           struct iw_request_info *info,
8795                           union iwreq_data *wrqu, char *extra)
8796 {
8797         struct ipw_priv *priv = ieee80211_priv(dev);
8798
8799         static const unsigned char any[] = {
8800                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8801         };
8802         static const unsigned char off[] = {
8803                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8804         };
8805
8806         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8807                 return -EINVAL;
8808         mutex_lock(&priv->mutex);
8809         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8810             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8811                 /* we disable mandatory BSSID association */
8812                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8813                 priv->config &= ~CFG_STATIC_BSSID;
8814                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8815                                 "parameters.\n");
8816                 ipw_associate(priv);
8817                 mutex_unlock(&priv->mutex);
8818                 return 0;
8819         }
8820
8821         priv->config |= CFG_STATIC_BSSID;
8822         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8823                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8824                 mutex_unlock(&priv->mutex);
8825                 return 0;
8826         }
8827
8828         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8829                      MAC_ARG(wrqu->ap_addr.sa_data));
8830
8831         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8832
8833         /* Network configuration changed -- force [re]association */
8834         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8835         if (!ipw_disassociate(priv))
8836                 ipw_associate(priv);
8837
8838         mutex_unlock(&priv->mutex);
8839         return 0;
8840 }
8841
8842 static int ipw_wx_get_wap(struct net_device *dev,
8843                           struct iw_request_info *info,
8844                           union iwreq_data *wrqu, char *extra)
8845 {
8846         struct ipw_priv *priv = ieee80211_priv(dev);
8847         /* If we are associated, trying to associate, or have a statically
8848          * configured BSSID then return that; otherwise return ANY */
8849         mutex_lock(&priv->mutex);
8850         if (priv->config & CFG_STATIC_BSSID ||
8851             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8852                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8853                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8854         } else
8855                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8856
8857         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8858                      MAC_ARG(wrqu->ap_addr.sa_data));
8859         mutex_unlock(&priv->mutex);
8860         return 0;
8861 }
8862
8863 static int ipw_wx_set_essid(struct net_device *dev,
8864                             struct iw_request_info *info,
8865                             union iwreq_data *wrqu, char *extra)
8866 {
8867         struct ipw_priv *priv = ieee80211_priv(dev);
8868         char *essid = "";       /* ANY */
8869         int length = 0;
8870         mutex_lock(&priv->mutex);
8871         if (wrqu->essid.flags && wrqu->essid.length) {
8872                 length = wrqu->essid.length - 1;
8873                 essid = extra;
8874         }
8875         if (length == 0) {
8876                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8877                 if ((priv->config & CFG_STATIC_ESSID) &&
8878                     !(priv->status & (STATUS_ASSOCIATED |
8879                                       STATUS_ASSOCIATING))) {
8880                         IPW_DEBUG_ASSOC("Attempting to associate with new "
8881                                         "parameters.\n");
8882                         priv->config &= ~CFG_STATIC_ESSID;
8883                         ipw_associate(priv);
8884                 }
8885                 mutex_unlock(&priv->mutex);
8886                 return 0;
8887         }
8888
8889         length = min(length, IW_ESSID_MAX_SIZE);
8890
8891         priv->config |= CFG_STATIC_ESSID;
8892
8893         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
8894                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8895                 mutex_unlock(&priv->mutex);
8896                 return 0;
8897         }
8898
8899         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
8900                      length);
8901
8902         priv->essid_len = length;
8903         memcpy(priv->essid, essid, priv->essid_len);
8904
8905         /* Network configuration changed -- force [re]association */
8906         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8907         if (!ipw_disassociate(priv))
8908                 ipw_associate(priv);
8909
8910         mutex_unlock(&priv->mutex);
8911         return 0;
8912 }
8913
8914 static int ipw_wx_get_essid(struct net_device *dev,
8915                             struct iw_request_info *info,
8916                             union iwreq_data *wrqu, char *extra)
8917 {
8918         struct ipw_priv *priv = ieee80211_priv(dev);
8919
8920         /* If we are associated, trying to associate, or have a statically
8921          * configured ESSID then return that; otherwise return ANY */
8922         mutex_lock(&priv->mutex);
8923         if (priv->config & CFG_STATIC_ESSID ||
8924             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8925                 IPW_DEBUG_WX("Getting essid: '%s'\n",
8926                              escape_essid(priv->essid, priv->essid_len));
8927                 memcpy(extra, priv->essid, priv->essid_len);
8928                 wrqu->essid.length = priv->essid_len;
8929                 wrqu->essid.flags = 1;  /* active */
8930         } else {
8931                 IPW_DEBUG_WX("Getting essid: ANY\n");
8932                 wrqu->essid.length = 0;
8933                 wrqu->essid.flags = 0;  /* active */
8934         }
8935         mutex_unlock(&priv->mutex);
8936         return 0;
8937 }
8938
8939 static int ipw_wx_set_nick(struct net_device *dev,
8940                            struct iw_request_info *info,
8941                            union iwreq_data *wrqu, char *extra)
8942 {
8943         struct ipw_priv *priv = ieee80211_priv(dev);
8944
8945         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8946         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8947                 return -E2BIG;
8948         mutex_lock(&priv->mutex);
8949         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
8950         memset(priv->nick, 0, sizeof(priv->nick));
8951         memcpy(priv->nick, extra, wrqu->data.length);
8952         IPW_DEBUG_TRACE("<<\n");
8953         mutex_unlock(&priv->mutex);
8954         return 0;
8955
8956 }
8957
8958 static int ipw_wx_get_nick(struct net_device *dev,
8959                            struct iw_request_info *info,
8960                            union iwreq_data *wrqu, char *extra)
8961 {
8962         struct ipw_priv *priv = ieee80211_priv(dev);
8963         IPW_DEBUG_WX("Getting nick\n");
8964         mutex_lock(&priv->mutex);
8965         wrqu->data.length = strlen(priv->nick) + 1;
8966         memcpy(extra, priv->nick, wrqu->data.length);
8967         wrqu->data.flags = 1;   /* active */
8968         mutex_unlock(&priv->mutex);
8969         return 0;
8970 }
8971
8972 static int ipw_wx_set_sens(struct net_device *dev,
8973                             struct iw_request_info *info,
8974                             union iwreq_data *wrqu, char *extra)
8975 {
8976         struct ipw_priv *priv = ieee80211_priv(dev);
8977         int err = 0;
8978
8979         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
8980         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
8981         mutex_lock(&priv->mutex);
8982
8983         if (wrqu->sens.fixed == 0)
8984         {
8985                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8986                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8987                 goto out;
8988         }
8989         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
8990             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
8991                 err = -EINVAL;
8992                 goto out;
8993         }
8994
8995         priv->roaming_threshold = wrqu->sens.value;
8996         priv->disassociate_threshold = 3*wrqu->sens.value;
8997       out:
8998         mutex_unlock(&priv->mutex);
8999         return err;
9000 }
9001
9002 static int ipw_wx_get_sens(struct net_device *dev,
9003                             struct iw_request_info *info,
9004                             union iwreq_data *wrqu, char *extra)
9005 {
9006         struct ipw_priv *priv = ieee80211_priv(dev);
9007         mutex_lock(&priv->mutex);
9008         wrqu->sens.fixed = 1;
9009         wrqu->sens.value = priv->roaming_threshold;
9010         mutex_unlock(&priv->mutex);
9011
9012         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9013                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9014
9015         return 0;
9016 }
9017
9018 static int ipw_wx_set_rate(struct net_device *dev,
9019                            struct iw_request_info *info,
9020                            union iwreq_data *wrqu, char *extra)
9021 {
9022         /* TODO: We should use semaphores or locks for access to priv */
9023         struct ipw_priv *priv = ieee80211_priv(dev);
9024         u32 target_rate = wrqu->bitrate.value;
9025         u32 fixed, mask;
9026
9027         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9028         /* value = X, fixed = 1 means only rate X */
9029         /* value = X, fixed = 0 means all rates lower equal X */
9030
9031         if (target_rate == -1) {
9032                 fixed = 0;
9033                 mask = IEEE80211_DEFAULT_RATES_MASK;
9034                 /* Now we should reassociate */
9035                 goto apply;
9036         }
9037
9038         mask = 0;
9039         fixed = wrqu->bitrate.fixed;
9040
9041         if (target_rate == 1000000 || !fixed)
9042                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9043         if (target_rate == 1000000)
9044                 goto apply;
9045
9046         if (target_rate == 2000000 || !fixed)
9047                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9048         if (target_rate == 2000000)
9049                 goto apply;
9050
9051         if (target_rate == 5500000 || !fixed)
9052                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9053         if (target_rate == 5500000)
9054                 goto apply;
9055
9056         if (target_rate == 6000000 || !fixed)
9057                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9058         if (target_rate == 6000000)
9059                 goto apply;
9060
9061         if (target_rate == 9000000 || !fixed)
9062                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9063         if (target_rate == 9000000)
9064                 goto apply;
9065
9066         if (target_rate == 11000000 || !fixed)
9067                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9068         if (target_rate == 11000000)
9069                 goto apply;
9070
9071         if (target_rate == 12000000 || !fixed)
9072                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9073         if (target_rate == 12000000)
9074                 goto apply;
9075
9076         if (target_rate == 18000000 || !fixed)
9077                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9078         if (target_rate == 18000000)
9079                 goto apply;
9080
9081         if (target_rate == 24000000 || !fixed)
9082                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9083         if (target_rate == 24000000)
9084                 goto apply;
9085
9086         if (target_rate == 36000000 || !fixed)
9087                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9088         if (target_rate == 36000000)
9089                 goto apply;
9090
9091         if (target_rate == 48000000 || !fixed)
9092                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9093         if (target_rate == 48000000)
9094                 goto apply;
9095
9096         if (target_rate == 54000000 || !fixed)
9097                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9098         if (target_rate == 54000000)
9099                 goto apply;
9100
9101         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9102         return -EINVAL;
9103
9104       apply:
9105         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9106                      mask, fixed ? "fixed" : "sub-rates");
9107         mutex_lock(&priv->mutex);
9108         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9109                 priv->config &= ~CFG_FIXED_RATE;
9110                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9111         } else
9112                 priv->config |= CFG_FIXED_RATE;
9113
9114         if (priv->rates_mask == mask) {
9115                 IPW_DEBUG_WX("Mask set to current mask.\n");
9116                 mutex_unlock(&priv->mutex);
9117                 return 0;
9118         }
9119
9120         priv->rates_mask = mask;
9121
9122         /* Network configuration changed -- force [re]association */
9123         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9124         if (!ipw_disassociate(priv))
9125                 ipw_associate(priv);
9126
9127         mutex_unlock(&priv->mutex);
9128         return 0;
9129 }
9130
9131 static int ipw_wx_get_rate(struct net_device *dev,
9132                            struct iw_request_info *info,
9133                            union iwreq_data *wrqu, char *extra)
9134 {
9135         struct ipw_priv *priv = ieee80211_priv(dev);
9136         mutex_lock(&priv->mutex);
9137         wrqu->bitrate.value = priv->last_rate;
9138         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9139         mutex_unlock(&priv->mutex);
9140         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9141         return 0;
9142 }
9143
9144 static int ipw_wx_set_rts(struct net_device *dev,
9145                           struct iw_request_info *info,
9146                           union iwreq_data *wrqu, char *extra)
9147 {
9148         struct ipw_priv *priv = ieee80211_priv(dev);
9149         mutex_lock(&priv->mutex);
9150         if (wrqu->rts.disabled)
9151                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9152         else {
9153                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9154                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9155                         mutex_unlock(&priv->mutex);
9156                         return -EINVAL;
9157                 }
9158                 priv->rts_threshold = wrqu->rts.value;
9159         }
9160
9161         ipw_send_rts_threshold(priv, priv->rts_threshold);
9162         mutex_unlock(&priv->mutex);
9163         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9164         return 0;
9165 }
9166
9167 static int ipw_wx_get_rts(struct net_device *dev,
9168                           struct iw_request_info *info,
9169                           union iwreq_data *wrqu, char *extra)
9170 {
9171         struct ipw_priv *priv = ieee80211_priv(dev);
9172         mutex_lock(&priv->mutex);
9173         wrqu->rts.value = priv->rts_threshold;
9174         wrqu->rts.fixed = 0;    /* no auto select */
9175         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9176         mutex_unlock(&priv->mutex);
9177         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9178         return 0;
9179 }
9180
9181 static int ipw_wx_set_txpow(struct net_device *dev,
9182                             struct iw_request_info *info,
9183                             union iwreq_data *wrqu, char *extra)
9184 {
9185         struct ipw_priv *priv = ieee80211_priv(dev);
9186         int err = 0;
9187
9188         mutex_lock(&priv->mutex);
9189         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9190                 err = -EINPROGRESS;
9191                 goto out;
9192         }
9193
9194         if (!wrqu->power.fixed)
9195                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9196
9197         if (wrqu->power.flags != IW_TXPOW_DBM) {
9198                 err = -EINVAL;
9199                 goto out;
9200         }
9201
9202         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9203             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9204                 err = -EINVAL;
9205                 goto out;
9206         }
9207
9208         priv->tx_power = wrqu->power.value;
9209         err = ipw_set_tx_power(priv);
9210       out:
9211         mutex_unlock(&priv->mutex);
9212         return err;
9213 }
9214
9215 static int ipw_wx_get_txpow(struct net_device *dev,
9216                             struct iw_request_info *info,
9217                             union iwreq_data *wrqu, char *extra)
9218 {
9219         struct ipw_priv *priv = ieee80211_priv(dev);
9220         mutex_lock(&priv->mutex);
9221         wrqu->power.value = priv->tx_power;
9222         wrqu->power.fixed = 1;
9223         wrqu->power.flags = IW_TXPOW_DBM;
9224         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9225         mutex_unlock(&priv->mutex);
9226
9227         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9228                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9229
9230         return 0;
9231 }
9232
9233 static int ipw_wx_set_frag(struct net_device *dev,
9234                            struct iw_request_info *info,
9235                            union iwreq_data *wrqu, char *extra)
9236 {
9237         struct ipw_priv *priv = ieee80211_priv(dev);
9238         mutex_lock(&priv->mutex);
9239         if (wrqu->frag.disabled)
9240                 priv->ieee->fts = DEFAULT_FTS;
9241         else {
9242                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9243                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9244                         mutex_unlock(&priv->mutex);
9245                         return -EINVAL;
9246                 }
9247
9248                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9249         }
9250
9251         ipw_send_frag_threshold(priv, wrqu->frag.value);
9252         mutex_unlock(&priv->mutex);
9253         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9254         return 0;
9255 }
9256
9257 static int ipw_wx_get_frag(struct net_device *dev,
9258                            struct iw_request_info *info,
9259                            union iwreq_data *wrqu, char *extra)
9260 {
9261         struct ipw_priv *priv = ieee80211_priv(dev);
9262         mutex_lock(&priv->mutex);
9263         wrqu->frag.value = priv->ieee->fts;
9264         wrqu->frag.fixed = 0;   /* no auto select */
9265         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9266         mutex_unlock(&priv->mutex);
9267         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9268
9269         return 0;
9270 }
9271
9272 static int ipw_wx_set_retry(struct net_device *dev,
9273                             struct iw_request_info *info,
9274                             union iwreq_data *wrqu, char *extra)
9275 {
9276         struct ipw_priv *priv = ieee80211_priv(dev);
9277
9278         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9279                 return -EINVAL;
9280
9281         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9282                 return 0;
9283
9284         if (wrqu->retry.value < 0 || wrqu->retry.value > 255)
9285                 return -EINVAL;
9286
9287         mutex_lock(&priv->mutex);
9288         if (wrqu->retry.flags & IW_RETRY_MIN)
9289                 priv->short_retry_limit = (u8) wrqu->retry.value;
9290         else if (wrqu->retry.flags & IW_RETRY_MAX)
9291                 priv->long_retry_limit = (u8) wrqu->retry.value;
9292         else {
9293                 priv->short_retry_limit = (u8) wrqu->retry.value;
9294                 priv->long_retry_limit = (u8) wrqu->retry.value;
9295         }
9296
9297         ipw_send_retry_limit(priv, priv->short_retry_limit,
9298                              priv->long_retry_limit);
9299         mutex_unlock(&priv->mutex);
9300         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9301                      priv->short_retry_limit, priv->long_retry_limit);
9302         return 0;
9303 }
9304
9305 static int ipw_wx_get_retry(struct net_device *dev,
9306                             struct iw_request_info *info,
9307                             union iwreq_data *wrqu, char *extra)
9308 {
9309         struct ipw_priv *priv = ieee80211_priv(dev);
9310
9311         mutex_lock(&priv->mutex);
9312         wrqu->retry.disabled = 0;
9313
9314         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9315                 mutex_unlock(&priv->mutex);
9316                 return -EINVAL;
9317         }
9318
9319         if (wrqu->retry.flags & IW_RETRY_MAX) {
9320                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
9321                 wrqu->retry.value = priv->long_retry_limit;
9322         } else if (wrqu->retry.flags & IW_RETRY_MIN) {
9323                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MIN;
9324                 wrqu->retry.value = priv->short_retry_limit;
9325         } else {
9326                 wrqu->retry.flags = IW_RETRY_LIMIT;
9327                 wrqu->retry.value = priv->short_retry_limit;
9328         }
9329         mutex_unlock(&priv->mutex);
9330
9331         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9332
9333         return 0;
9334 }
9335
9336 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9337                                    int essid_len)
9338 {
9339         struct ipw_scan_request_ext scan;
9340         int err = 0, scan_type;
9341
9342         if (!(priv->status & STATUS_INIT) ||
9343             (priv->status & STATUS_EXIT_PENDING))
9344                 return 0;
9345
9346         mutex_lock(&priv->mutex);
9347
9348         if (priv->status & STATUS_RF_KILL_MASK) {
9349                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9350                 priv->status |= STATUS_SCAN_PENDING;
9351                 goto done;
9352         }
9353
9354         IPW_DEBUG_HC("starting request direct scan!\n");
9355
9356         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9357                 /* We should not sleep here; otherwise we will block most
9358                  * of the system (for instance, we hold rtnl_lock when we
9359                  * get here).
9360                  */
9361                 err = -EAGAIN;
9362                 goto done;
9363         }
9364         memset(&scan, 0, sizeof(scan));
9365
9366         if (priv->config & CFG_SPEED_SCAN)
9367                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9368                     cpu_to_le16(30);
9369         else
9370                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9371                     cpu_to_le16(20);
9372
9373         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9374             cpu_to_le16(20);
9375         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9376         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9377
9378         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9379
9380         err = ipw_send_ssid(priv, essid, essid_len);
9381         if (err) {
9382                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9383                 goto done;
9384         }
9385         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9386
9387         ipw_add_scan_channels(priv, &scan, scan_type);
9388
9389         err = ipw_send_scan_request_ext(priv, &scan);
9390         if (err) {
9391                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9392                 goto done;
9393         }
9394
9395         priv->status |= STATUS_SCANNING;
9396
9397       done:
9398         mutex_unlock(&priv->mutex);
9399         return err;
9400 }
9401
9402 static int ipw_wx_set_scan(struct net_device *dev,
9403                            struct iw_request_info *info,
9404                            union iwreq_data *wrqu, char *extra)
9405 {
9406         struct ipw_priv *priv = ieee80211_priv(dev);
9407         struct iw_scan_req *req = NULL;
9408         if (wrqu->data.length
9409             && wrqu->data.length == sizeof(struct iw_scan_req)) {
9410                 req = (struct iw_scan_req *)extra;
9411                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9412                         ipw_request_direct_scan(priv, req->essid,
9413                                                 req->essid_len);
9414                         return 0;
9415                 }
9416         }
9417
9418         IPW_DEBUG_WX("Start scan\n");
9419
9420         queue_work(priv->workqueue, &priv->request_scan);
9421
9422         return 0;
9423 }
9424
9425 static int ipw_wx_get_scan(struct net_device *dev,
9426                            struct iw_request_info *info,
9427                            union iwreq_data *wrqu, char *extra)
9428 {
9429         struct ipw_priv *priv = ieee80211_priv(dev);
9430         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9431 }
9432
9433 static int ipw_wx_set_encode(struct net_device *dev,
9434                              struct iw_request_info *info,
9435                              union iwreq_data *wrqu, char *key)
9436 {
9437         struct ipw_priv *priv = ieee80211_priv(dev);
9438         int ret;
9439         u32 cap = priv->capability;
9440
9441         mutex_lock(&priv->mutex);
9442         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9443
9444         /* In IBSS mode, we need to notify the firmware to update
9445          * the beacon info after we changed the capability. */
9446         if (cap != priv->capability &&
9447             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9448             priv->status & STATUS_ASSOCIATED)
9449                 ipw_disassociate(priv);
9450
9451         mutex_unlock(&priv->mutex);
9452         return ret;
9453 }
9454
9455 static int ipw_wx_get_encode(struct net_device *dev,
9456                              struct iw_request_info *info,
9457                              union iwreq_data *wrqu, char *key)
9458 {
9459         struct ipw_priv *priv = ieee80211_priv(dev);
9460         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9461 }
9462
9463 static int ipw_wx_set_power(struct net_device *dev,
9464                             struct iw_request_info *info,
9465                             union iwreq_data *wrqu, char *extra)
9466 {
9467         struct ipw_priv *priv = ieee80211_priv(dev);
9468         int err;
9469         mutex_lock(&priv->mutex);
9470         if (wrqu->power.disabled) {
9471                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9472                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9473                 if (err) {
9474                         IPW_DEBUG_WX("failed setting power mode.\n");
9475                         mutex_unlock(&priv->mutex);
9476                         return err;
9477                 }
9478                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9479                 mutex_unlock(&priv->mutex);
9480                 return 0;
9481         }
9482
9483         switch (wrqu->power.flags & IW_POWER_MODE) {
9484         case IW_POWER_ON:       /* If not specified */
9485         case IW_POWER_MODE:     /* If set all mask */
9486         case IW_POWER_ALL_R:    /* If explicitely state all */
9487                 break;
9488         default:                /* Otherwise we don't support it */
9489                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9490                              wrqu->power.flags);
9491                 mutex_unlock(&priv->mutex);
9492                 return -EOPNOTSUPP;
9493         }
9494
9495         /* If the user hasn't specified a power management mode yet, default
9496          * to BATTERY */
9497         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9498                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9499         else
9500                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9501         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9502         if (err) {
9503                 IPW_DEBUG_WX("failed setting power mode.\n");
9504                 mutex_unlock(&priv->mutex);
9505                 return err;
9506         }
9507
9508         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9509         mutex_unlock(&priv->mutex);
9510         return 0;
9511 }
9512
9513 static int ipw_wx_get_power(struct net_device *dev,
9514                             struct iw_request_info *info,
9515                             union iwreq_data *wrqu, char *extra)
9516 {
9517         struct ipw_priv *priv = ieee80211_priv(dev);
9518         mutex_lock(&priv->mutex);
9519         if (!(priv->power_mode & IPW_POWER_ENABLED))
9520                 wrqu->power.disabled = 1;
9521         else
9522                 wrqu->power.disabled = 0;
9523
9524         mutex_unlock(&priv->mutex);
9525         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9526
9527         return 0;
9528 }
9529
9530 static int ipw_wx_set_powermode(struct net_device *dev,
9531                                 struct iw_request_info *info,
9532                                 union iwreq_data *wrqu, char *extra)
9533 {
9534         struct ipw_priv *priv = ieee80211_priv(dev);
9535         int mode = *(int *)extra;
9536         int err;
9537         mutex_lock(&priv->mutex);
9538         if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9539                 mode = IPW_POWER_AC;
9540                 priv->power_mode = mode;
9541         } else {
9542                 priv->power_mode = IPW_POWER_ENABLED | mode;
9543         }
9544
9545         if (priv->power_mode != mode) {
9546                 err = ipw_send_power_mode(priv, mode);
9547
9548                 if (err) {
9549                         IPW_DEBUG_WX("failed setting power mode.\n");
9550                         mutex_unlock(&priv->mutex);
9551                         return err;
9552                 }
9553         }
9554         mutex_unlock(&priv->mutex);
9555         return 0;
9556 }
9557
9558 #define MAX_WX_STRING 80
9559 static int ipw_wx_get_powermode(struct net_device *dev,
9560                                 struct iw_request_info *info,
9561                                 union iwreq_data *wrqu, char *extra)
9562 {
9563         struct ipw_priv *priv = ieee80211_priv(dev);
9564         int level = IPW_POWER_LEVEL(priv->power_mode);
9565         char *p = extra;
9566
9567         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9568
9569         switch (level) {
9570         case IPW_POWER_AC:
9571                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9572                 break;
9573         case IPW_POWER_BATTERY:
9574                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9575                 break;
9576         default:
9577                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9578                               "(Timeout %dms, Period %dms)",
9579                               timeout_duration[level - 1] / 1000,
9580                               period_duration[level - 1] / 1000);
9581         }
9582
9583         if (!(priv->power_mode & IPW_POWER_ENABLED))
9584                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9585
9586         wrqu->data.length = p - extra + 1;
9587
9588         return 0;
9589 }
9590
9591 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9592                                     struct iw_request_info *info,
9593                                     union iwreq_data *wrqu, char *extra)
9594 {
9595         struct ipw_priv *priv = ieee80211_priv(dev);
9596         int mode = *(int *)extra;
9597         u8 band = 0, modulation = 0;
9598
9599         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9600                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9601                 return -EINVAL;
9602         }
9603         mutex_lock(&priv->mutex);
9604         if (priv->adapter == IPW_2915ABG) {
9605                 priv->ieee->abg_true = 1;
9606                 if (mode & IEEE_A) {
9607                         band |= IEEE80211_52GHZ_BAND;
9608                         modulation |= IEEE80211_OFDM_MODULATION;
9609                 } else
9610                         priv->ieee->abg_true = 0;
9611         } else {
9612                 if (mode & IEEE_A) {
9613                         IPW_WARNING("Attempt to set 2200BG into "
9614                                     "802.11a mode\n");
9615                         mutex_unlock(&priv->mutex);
9616                         return -EINVAL;
9617                 }
9618
9619                 priv->ieee->abg_true = 0;
9620         }
9621
9622         if (mode & IEEE_B) {
9623                 band |= IEEE80211_24GHZ_BAND;
9624                 modulation |= IEEE80211_CCK_MODULATION;
9625         } else
9626                 priv->ieee->abg_true = 0;
9627
9628         if (mode & IEEE_G) {
9629                 band |= IEEE80211_24GHZ_BAND;
9630                 modulation |= IEEE80211_OFDM_MODULATION;
9631         } else
9632                 priv->ieee->abg_true = 0;
9633
9634         priv->ieee->mode = mode;
9635         priv->ieee->freq_band = band;
9636         priv->ieee->modulation = modulation;
9637         init_supported_rates(priv, &priv->rates);
9638
9639         /* Network configuration changed -- force [re]association */
9640         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9641         if (!ipw_disassociate(priv)) {
9642                 ipw_send_supported_rates(priv, &priv->rates);
9643                 ipw_associate(priv);
9644         }
9645
9646         /* Update the band LEDs */
9647         ipw_led_band_on(priv);
9648
9649         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9650                      mode & IEEE_A ? 'a' : '.',
9651                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9652         mutex_unlock(&priv->mutex);
9653         return 0;
9654 }
9655
9656 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9657                                     struct iw_request_info *info,
9658                                     union iwreq_data *wrqu, char *extra)
9659 {
9660         struct ipw_priv *priv = ieee80211_priv(dev);
9661         mutex_lock(&priv->mutex);
9662         switch (priv->ieee->mode) {
9663         case IEEE_A:
9664                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9665                 break;
9666         case IEEE_B:
9667                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9668                 break;
9669         case IEEE_A | IEEE_B:
9670                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9671                 break;
9672         case IEEE_G:
9673                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9674                 break;
9675         case IEEE_A | IEEE_G:
9676                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9677                 break;
9678         case IEEE_B | IEEE_G:
9679                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9680                 break;
9681         case IEEE_A | IEEE_B | IEEE_G:
9682                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9683                 break;
9684         default:
9685                 strncpy(extra, "unknown", MAX_WX_STRING);
9686                 break;
9687         }
9688
9689         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9690
9691         wrqu->data.length = strlen(extra) + 1;
9692         mutex_unlock(&priv->mutex);
9693
9694         return 0;
9695 }
9696
9697 static int ipw_wx_set_preamble(struct net_device *dev,
9698                                struct iw_request_info *info,
9699                                union iwreq_data *wrqu, char *extra)
9700 {
9701         struct ipw_priv *priv = ieee80211_priv(dev);
9702         int mode = *(int *)extra;
9703         mutex_lock(&priv->mutex);
9704         /* Switching from SHORT -> LONG requires a disassociation */
9705         if (mode == 1) {
9706                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9707                         priv->config |= CFG_PREAMBLE_LONG;
9708
9709                         /* Network configuration changed -- force [re]association */
9710                         IPW_DEBUG_ASSOC
9711                             ("[re]association triggered due to preamble change.\n");
9712                         if (!ipw_disassociate(priv))
9713                                 ipw_associate(priv);
9714                 }
9715                 goto done;
9716         }
9717
9718         if (mode == 0) {
9719                 priv->config &= ~CFG_PREAMBLE_LONG;
9720                 goto done;
9721         }
9722         mutex_unlock(&priv->mutex);
9723         return -EINVAL;
9724
9725       done:
9726         mutex_unlock(&priv->mutex);
9727         return 0;
9728 }
9729
9730 static int ipw_wx_get_preamble(struct net_device *dev,
9731                                struct iw_request_info *info,
9732                                union iwreq_data *wrqu, char *extra)
9733 {
9734         struct ipw_priv *priv = ieee80211_priv(dev);
9735         mutex_lock(&priv->mutex);
9736         if (priv->config & CFG_PREAMBLE_LONG)
9737                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9738         else
9739                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9740         mutex_unlock(&priv->mutex);
9741         return 0;
9742 }
9743
9744 #ifdef CONFIG_IPW2200_MONITOR
9745 static int ipw_wx_set_monitor(struct net_device *dev,
9746                               struct iw_request_info *info,
9747                               union iwreq_data *wrqu, char *extra)
9748 {
9749         struct ipw_priv *priv = ieee80211_priv(dev);
9750         int *parms = (int *)extra;
9751         int enable = (parms[0] > 0);
9752         mutex_lock(&priv->mutex);
9753         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9754         if (enable) {
9755                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9756 #ifdef CONFIG_IPW2200_RADIOTAP
9757                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9758 #else
9759                         priv->net_dev->type = ARPHRD_IEEE80211;
9760 #endif
9761                         queue_work(priv->workqueue, &priv->adapter_restart);
9762                 }
9763
9764                 ipw_set_channel(priv, parms[1]);
9765         } else {
9766                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9767                         mutex_unlock(&priv->mutex);
9768                         return 0;
9769                 }
9770                 priv->net_dev->type = ARPHRD_ETHER;
9771                 queue_work(priv->workqueue, &priv->adapter_restart);
9772         }
9773         mutex_unlock(&priv->mutex);
9774         return 0;
9775 }
9776
9777 #endif                          // CONFIG_IPW2200_MONITOR
9778
9779 static int ipw_wx_reset(struct net_device *dev,
9780                         struct iw_request_info *info,
9781                         union iwreq_data *wrqu, char *extra)
9782 {
9783         struct ipw_priv *priv = ieee80211_priv(dev);
9784         IPW_DEBUG_WX("RESET\n");
9785         queue_work(priv->workqueue, &priv->adapter_restart);
9786         return 0;
9787 }
9788
9789 static int ipw_wx_sw_reset(struct net_device *dev,
9790                            struct iw_request_info *info,
9791                            union iwreq_data *wrqu, char *extra)
9792 {
9793         struct ipw_priv *priv = ieee80211_priv(dev);
9794         union iwreq_data wrqu_sec = {
9795                 .encoding = {
9796                              .flags = IW_ENCODE_DISABLED,
9797                              },
9798         };
9799         int ret;
9800
9801         IPW_DEBUG_WX("SW_RESET\n");
9802
9803         mutex_lock(&priv->mutex);
9804
9805         ret = ipw_sw_reset(priv, 2);
9806         if (!ret) {
9807                 free_firmware();
9808                 ipw_adapter_restart(priv);
9809         }
9810
9811         /* The SW reset bit might have been toggled on by the 'disable'
9812          * module parameter, so take appropriate action */
9813         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9814
9815         mutex_unlock(&priv->mutex);
9816         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9817         mutex_lock(&priv->mutex);
9818
9819         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9820                 /* Configuration likely changed -- force [re]association */
9821                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9822                                 "reset.\n");
9823                 if (!ipw_disassociate(priv))
9824                         ipw_associate(priv);
9825         }
9826
9827         mutex_unlock(&priv->mutex);
9828
9829         return 0;
9830 }
9831
9832 /* Rebase the WE IOCTLs to zero for the handler array */
9833 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9834 static iw_handler ipw_wx_handlers[] = {
9835         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9836         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9837         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9838         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9839         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9840         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9841         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9842         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9843         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9844         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9845         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9846         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9847         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9848         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9849         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9850         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9851         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9852         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9853         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9854         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9855         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9856         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9857         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9858         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9859         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9860         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9861         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9862         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9863         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9864         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9865         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9866         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9867         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9868         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9869         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9870         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9871         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9872         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9873         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9874         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9875         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9876 };
9877
9878 enum {
9879         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9880         IPW_PRIV_GET_POWER,
9881         IPW_PRIV_SET_MODE,
9882         IPW_PRIV_GET_MODE,
9883         IPW_PRIV_SET_PREAMBLE,
9884         IPW_PRIV_GET_PREAMBLE,
9885         IPW_PRIV_RESET,
9886         IPW_PRIV_SW_RESET,
9887 #ifdef CONFIG_IPW2200_MONITOR
9888         IPW_PRIV_SET_MONITOR,
9889 #endif
9890 };
9891
9892 static struct iw_priv_args ipw_priv_args[] = {
9893         {
9894          .cmd = IPW_PRIV_SET_POWER,
9895          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9896          .name = "set_power"},
9897         {
9898          .cmd = IPW_PRIV_GET_POWER,
9899          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9900          .name = "get_power"},
9901         {
9902          .cmd = IPW_PRIV_SET_MODE,
9903          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9904          .name = "set_mode"},
9905         {
9906          .cmd = IPW_PRIV_GET_MODE,
9907          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9908          .name = "get_mode"},
9909         {
9910          .cmd = IPW_PRIV_SET_PREAMBLE,
9911          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9912          .name = "set_preamble"},
9913         {
9914          .cmd = IPW_PRIV_GET_PREAMBLE,
9915          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9916          .name = "get_preamble"},
9917         {
9918          IPW_PRIV_RESET,
9919          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9920         {
9921          IPW_PRIV_SW_RESET,
9922          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9923 #ifdef CONFIG_IPW2200_MONITOR
9924         {
9925          IPW_PRIV_SET_MONITOR,
9926          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9927 #endif                          /* CONFIG_IPW2200_MONITOR */
9928 };
9929
9930 static iw_handler ipw_priv_handler[] = {
9931         ipw_wx_set_powermode,
9932         ipw_wx_get_powermode,
9933         ipw_wx_set_wireless_mode,
9934         ipw_wx_get_wireless_mode,
9935         ipw_wx_set_preamble,
9936         ipw_wx_get_preamble,
9937         ipw_wx_reset,
9938         ipw_wx_sw_reset,
9939 #ifdef CONFIG_IPW2200_MONITOR
9940         ipw_wx_set_monitor,
9941 #endif
9942 };
9943
9944 static struct iw_handler_def ipw_wx_handler_def = {
9945         .standard = ipw_wx_handlers,
9946         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9947         .num_private = ARRAY_SIZE(ipw_priv_handler),
9948         .num_private_args = ARRAY_SIZE(ipw_priv_args),
9949         .private = ipw_priv_handler,
9950         .private_args = ipw_priv_args,
9951         .get_wireless_stats = ipw_get_wireless_stats,
9952 };
9953
9954 /*
9955  * Get wireless statistics.
9956  * Called by /proc/net/wireless
9957  * Also called by SIOCGIWSTATS
9958  */
9959 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9960 {
9961         struct ipw_priv *priv = ieee80211_priv(dev);
9962         struct iw_statistics *wstats;
9963
9964         wstats = &priv->wstats;
9965
9966         /* if hw is disabled, then ipw_get_ordinal() can't be called.
9967          * netdev->get_wireless_stats seems to be called before fw is
9968          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
9969          * and associated; if not associcated, the values are all meaningless
9970          * anyway, so set them all to NULL and INVALID */
9971         if (!(priv->status & STATUS_ASSOCIATED)) {
9972                 wstats->miss.beacon = 0;
9973                 wstats->discard.retries = 0;
9974                 wstats->qual.qual = 0;
9975                 wstats->qual.level = 0;
9976                 wstats->qual.noise = 0;
9977                 wstats->qual.updated = 7;
9978                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9979                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9980                 return wstats;
9981         }
9982
9983         wstats->qual.qual = priv->quality;
9984         wstats->qual.level = priv->exp_avg_rssi;
9985         wstats->qual.noise = priv->exp_avg_noise;
9986         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9987             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
9988
9989         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9990         wstats->discard.retries = priv->last_tx_failures;
9991         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9992
9993 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9994         goto fail_get_ordinal;
9995         wstats->discard.retries += tx_retry; */
9996
9997         return wstats;
9998 }
9999
10000 /* net device stuff */
10001
10002 static  void init_sys_config(struct ipw_sys_config *sys_config)
10003 {
10004         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10005         sys_config->bt_coexistence = 0;
10006         sys_config->answer_broadcast_ssid_probe = 0;
10007         sys_config->accept_all_data_frames = 0;
10008         sys_config->accept_non_directed_frames = 1;
10009         sys_config->exclude_unicast_unencrypted = 0;
10010         sys_config->disable_unicast_decryption = 1;
10011         sys_config->exclude_multicast_unencrypted = 0;
10012         sys_config->disable_multicast_decryption = 1;
10013         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10014                 antenna = CFG_SYS_ANTENNA_BOTH;
10015         sys_config->antenna_diversity = antenna;
10016         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10017         sys_config->dot11g_auto_detection = 0;
10018         sys_config->enable_cts_to_self = 0;
10019         sys_config->bt_coexist_collision_thr = 0;
10020         sys_config->pass_noise_stats_to_host = 1;       //1 -- fix for 256
10021         sys_config->silence_threshold = 0x1e;
10022 }
10023
10024 static int ipw_net_open(struct net_device *dev)
10025 {
10026         struct ipw_priv *priv = ieee80211_priv(dev);
10027         IPW_DEBUG_INFO("dev->open\n");
10028         /* we should be verifying the device is ready to be opened */
10029         mutex_lock(&priv->mutex);
10030         if (!(priv->status & STATUS_RF_KILL_MASK) &&
10031             (priv->status & STATUS_ASSOCIATED))
10032                 netif_start_queue(dev);
10033         mutex_unlock(&priv->mutex);
10034         return 0;
10035 }
10036
10037 static int ipw_net_stop(struct net_device *dev)
10038 {
10039         IPW_DEBUG_INFO("dev->close\n");
10040         netif_stop_queue(dev);
10041         return 0;
10042 }
10043
10044 /*
10045 todo:
10046
10047 modify to send one tfd per fragment instead of using chunking.  otherwise
10048 we need to heavily modify the ieee80211_skb_to_txb.
10049 */
10050
10051 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10052                              int pri)
10053 {
10054         struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10055             txb->fragments[0]->data;
10056         int i = 0;
10057         struct tfd_frame *tfd;
10058 #ifdef CONFIG_IPW2200_QOS
10059         int tx_id = ipw_get_tx_queue_number(priv, pri);
10060         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10061 #else
10062         struct clx2_tx_queue *txq = &priv->txq[0];
10063 #endif
10064         struct clx2_queue *q = &txq->q;
10065         u8 id, hdr_len, unicast;
10066         u16 remaining_bytes;
10067         int fc;
10068
10069         hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10070         switch (priv->ieee->iw_mode) {
10071         case IW_MODE_ADHOC:
10072                 unicast = !is_multicast_ether_addr(hdr->addr1);
10073                 id = ipw_find_station(priv, hdr->addr1);
10074                 if (id == IPW_INVALID_STATION) {
10075                         id = ipw_add_station(priv, hdr->addr1);
10076                         if (id == IPW_INVALID_STATION) {
10077                                 IPW_WARNING("Attempt to send data to "
10078                                             "invalid cell: " MAC_FMT "\n",
10079                                             MAC_ARG(hdr->addr1));
10080                                 goto drop;
10081                         }
10082                 }
10083                 break;
10084
10085         case IW_MODE_INFRA:
10086         default:
10087                 unicast = !is_multicast_ether_addr(hdr->addr3);
10088                 id = 0;
10089                 break;
10090         }
10091
10092         tfd = &txq->bd[q->first_empty];
10093         txq->txb[q->first_empty] = txb;
10094         memset(tfd, 0, sizeof(*tfd));
10095         tfd->u.data.station_number = id;
10096
10097         tfd->control_flags.message_type = TX_FRAME_TYPE;
10098         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10099
10100         tfd->u.data.cmd_id = DINO_CMD_TX;
10101         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10102         remaining_bytes = txb->payload_size;
10103
10104         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10105                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10106         else
10107                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10108
10109         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10110                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10111
10112         fc = le16_to_cpu(hdr->frame_ctl);
10113         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10114
10115         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10116
10117         if (likely(unicast))
10118                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10119
10120         if (txb->encrypted && !priv->ieee->host_encrypt) {
10121                 switch (priv->ieee->sec.level) {
10122                 case SEC_LEVEL_3:
10123                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10124                             IEEE80211_FCTL_PROTECTED;
10125                         /* XXX: ACK flag must be set for CCMP even if it
10126                          * is a multicast/broadcast packet, because CCMP
10127                          * group communication encrypted by GTK is
10128                          * actually done by the AP. */
10129                         if (!unicast)
10130                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10131
10132                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10133                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10134                         tfd->u.data.key_index = 0;
10135                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10136                         break;
10137                 case SEC_LEVEL_2:
10138                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10139                             IEEE80211_FCTL_PROTECTED;
10140                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10141                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10142                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10143                         break;
10144                 case SEC_LEVEL_1:
10145                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10146                             IEEE80211_FCTL_PROTECTED;
10147                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
10148                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10149                             40)
10150                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10151                         else
10152                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10153                         break;
10154                 case SEC_LEVEL_0:
10155                         break;
10156                 default:
10157                         printk(KERN_ERR "Unknow security level %d\n",
10158                                priv->ieee->sec.level);
10159                         break;
10160                 }
10161         } else
10162                 /* No hardware encryption */
10163                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10164
10165 #ifdef CONFIG_IPW2200_QOS
10166         if (fc & IEEE80211_STYPE_QOS_DATA)
10167                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10168 #endif                          /* CONFIG_IPW2200_QOS */
10169
10170         /* payload */
10171         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10172                                                  txb->nr_frags));
10173         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10174                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10175         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10176                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10177                                i, le32_to_cpu(tfd->u.data.num_chunks),
10178                                txb->fragments[i]->len - hdr_len);
10179                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10180                              i, tfd->u.data.num_chunks,
10181                              txb->fragments[i]->len - hdr_len);
10182                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10183                            txb->fragments[i]->len - hdr_len);
10184
10185                 tfd->u.data.chunk_ptr[i] =
10186                     cpu_to_le32(pci_map_single
10187                                 (priv->pci_dev,
10188                                  txb->fragments[i]->data + hdr_len,
10189                                  txb->fragments[i]->len - hdr_len,
10190                                  PCI_DMA_TODEVICE));
10191                 tfd->u.data.chunk_len[i] =
10192                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10193         }
10194
10195         if (i != txb->nr_frags) {
10196                 struct sk_buff *skb;
10197                 u16 remaining_bytes = 0;
10198                 int j;
10199
10200                 for (j = i; j < txb->nr_frags; j++)
10201                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10202
10203                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10204                        remaining_bytes);
10205                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10206                 if (skb != NULL) {
10207                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10208                         for (j = i; j < txb->nr_frags; j++) {
10209                                 int size = txb->fragments[j]->len - hdr_len;
10210
10211                                 printk(KERN_INFO "Adding frag %d %d...\n",
10212                                        j, size);
10213                                 memcpy(skb_put(skb, size),
10214                                        txb->fragments[j]->data + hdr_len, size);
10215                         }
10216                         dev_kfree_skb_any(txb->fragments[i]);
10217                         txb->fragments[i] = skb;
10218                         tfd->u.data.chunk_ptr[i] =
10219                             cpu_to_le32(pci_map_single
10220                                         (priv->pci_dev, skb->data,
10221                                          tfd->u.data.chunk_len[i],
10222                                          PCI_DMA_TODEVICE));
10223
10224                         tfd->u.data.num_chunks =
10225                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10226                                         1);
10227                 }
10228         }
10229
10230         /* kick DMA */
10231         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10232         ipw_write32(priv, q->reg_w, q->first_empty);
10233
10234         if (ipw_queue_space(q) < q->high_mark)
10235                 netif_stop_queue(priv->net_dev);
10236
10237         return NETDEV_TX_OK;
10238
10239       drop:
10240         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10241         ieee80211_txb_free(txb);
10242         return NETDEV_TX_OK;
10243 }
10244
10245 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10246 {
10247         struct ipw_priv *priv = ieee80211_priv(dev);
10248 #ifdef CONFIG_IPW2200_QOS
10249         int tx_id = ipw_get_tx_queue_number(priv, pri);
10250         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10251 #else
10252         struct clx2_tx_queue *txq = &priv->txq[0];
10253 #endif                          /* CONFIG_IPW2200_QOS */
10254
10255         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10256                 return 1;
10257
10258         return 0;
10259 }
10260
10261 #ifdef CONFIG_IPW2200_PROMISCUOUS
10262 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10263                                       struct ieee80211_txb *txb)
10264 {
10265         struct ieee80211_rx_stats dummystats;
10266         struct ieee80211_hdr *hdr;
10267         u8 n;
10268         u16 filter = priv->prom_priv->filter;
10269         int hdr_only = 0;
10270
10271         if (filter & IPW_PROM_NO_TX)
10272                 return;
10273
10274         memset(&dummystats, 0, sizeof(dummystats));
10275
10276         /* Filtering of fragment chains is done agains the first fragment */
10277         hdr = (void *)txb->fragments[0]->data;
10278         if (ieee80211_is_management(hdr->frame_ctl)) {
10279                 if (filter & IPW_PROM_NO_MGMT)
10280                         return;
10281                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10282                         hdr_only = 1;
10283         } else if (ieee80211_is_control(hdr->frame_ctl)) {
10284                 if (filter & IPW_PROM_NO_CTL)
10285                         return;
10286                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10287                         hdr_only = 1;
10288         } else if (ieee80211_is_data(hdr->frame_ctl)) {
10289                 if (filter & IPW_PROM_NO_DATA)
10290                         return;
10291                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10292                         hdr_only = 1;
10293         }
10294
10295         for(n=0; n<txb->nr_frags; ++n) {
10296                 struct sk_buff *src = txb->fragments[n];
10297                 struct sk_buff *dst;
10298                 struct ieee80211_radiotap_header *rt_hdr;
10299                 int len;
10300
10301                 if (hdr_only) {
10302                         hdr = (void *)src->data;
10303                         len = ieee80211_get_hdrlen(hdr->frame_ctl);
10304                 } else
10305                         len = src->len;
10306
10307                 dst = alloc_skb(
10308                         len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10309                 if (!dst) continue;
10310
10311                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10312
10313                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10314                 rt_hdr->it_pad = 0;
10315                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10316                 rt_hdr->it_present |=  (1 << IEEE80211_RADIOTAP_CHANNEL);
10317
10318                 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10319                         ieee80211chan2mhz(priv->channel));
10320                 if (priv->channel > 14)         /* 802.11a */
10321                         *(u16*)skb_put(dst, sizeof(u16)) =
10322                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10323                                              IEEE80211_CHAN_5GHZ);
10324                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10325                         *(u16*)skb_put(dst, sizeof(u16)) =
10326                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10327                                              IEEE80211_CHAN_2GHZ);
10328                 else            /* 802.11g */
10329                         *(u16*)skb_put(dst, sizeof(u16)) =
10330                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10331                                  IEEE80211_CHAN_2GHZ);
10332
10333                 rt_hdr->it_len = dst->len;
10334
10335                 memcpy(skb_put(dst, len), src->data, len);
10336
10337                 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10338                         dev_kfree_skb_any(dst);
10339         }
10340 }
10341 #endif
10342
10343 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10344                                    struct net_device *dev, int pri)
10345 {
10346         struct ipw_priv *priv = ieee80211_priv(dev);
10347         unsigned long flags;
10348         int ret;
10349
10350         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10351         spin_lock_irqsave(&priv->lock, flags);
10352
10353         if (!(priv->status & STATUS_ASSOCIATED)) {
10354                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10355                 priv->ieee->stats.tx_carrier_errors++;
10356                 netif_stop_queue(dev);
10357                 goto fail_unlock;
10358         }
10359
10360 #ifdef CONFIG_IPW2200_PROMISCUOUS
10361         if (rtap_iface && netif_running(priv->prom_net_dev))
10362                 ipw_handle_promiscuous_tx(priv, txb);
10363 #endif
10364
10365         ret = ipw_tx_skb(priv, txb, pri);
10366         if (ret == NETDEV_TX_OK)
10367                 __ipw_led_activity_on(priv);
10368         spin_unlock_irqrestore(&priv->lock, flags);
10369
10370         return ret;
10371
10372       fail_unlock:
10373         spin_unlock_irqrestore(&priv->lock, flags);
10374         return 1;
10375 }
10376
10377 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10378 {
10379         struct ipw_priv *priv = ieee80211_priv(dev);
10380
10381         priv->ieee->stats.tx_packets = priv->tx_packets;
10382         priv->ieee->stats.rx_packets = priv->rx_packets;
10383         return &priv->ieee->stats;
10384 }
10385
10386 static void ipw_net_set_multicast_list(struct net_device *dev)
10387 {
10388
10389 }
10390
10391 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10392 {
10393         struct ipw_priv *priv = ieee80211_priv(dev);
10394         struct sockaddr *addr = p;
10395         if (!is_valid_ether_addr(addr->sa_data))
10396                 return -EADDRNOTAVAIL;
10397         mutex_lock(&priv->mutex);
10398         priv->config |= CFG_CUSTOM_MAC;
10399         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10400         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
10401                priv->net_dev->name, MAC_ARG(priv->mac_addr));
10402         queue_work(priv->workqueue, &priv->adapter_restart);
10403         mutex_unlock(&priv->mutex);
10404         return 0;
10405 }
10406
10407 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10408                                     struct ethtool_drvinfo *info)
10409 {
10410         struct ipw_priv *p = ieee80211_priv(dev);
10411         char vers[64];
10412         char date[32];
10413         u32 len;
10414
10415         strcpy(info->driver, DRV_NAME);
10416         strcpy(info->version, DRV_VERSION);
10417
10418         len = sizeof(vers);
10419         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10420         len = sizeof(date);
10421         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10422
10423         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10424                  vers, date);
10425         strcpy(info->bus_info, pci_name(p->pci_dev));
10426         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10427 }
10428
10429 static u32 ipw_ethtool_get_link(struct net_device *dev)
10430 {
10431         struct ipw_priv *priv = ieee80211_priv(dev);
10432         return (priv->status & STATUS_ASSOCIATED) != 0;
10433 }
10434
10435 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10436 {
10437         return IPW_EEPROM_IMAGE_SIZE;
10438 }
10439
10440 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10441                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10442 {
10443         struct ipw_priv *p = ieee80211_priv(dev);
10444
10445         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10446                 return -EINVAL;
10447         mutex_lock(&p->mutex);
10448         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10449         mutex_unlock(&p->mutex);
10450         return 0;
10451 }
10452
10453 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10454                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10455 {
10456         struct ipw_priv *p = ieee80211_priv(dev);
10457         int i;
10458
10459         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10460                 return -EINVAL;
10461         mutex_lock(&p->mutex);
10462         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10463         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10464                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10465         mutex_unlock(&p->mutex);
10466         return 0;
10467 }
10468
10469 static struct ethtool_ops ipw_ethtool_ops = {
10470         .get_link = ipw_ethtool_get_link,
10471         .get_drvinfo = ipw_ethtool_get_drvinfo,
10472         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10473         .get_eeprom = ipw_ethtool_get_eeprom,
10474         .set_eeprom = ipw_ethtool_set_eeprom,
10475 };
10476
10477 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
10478 {
10479         struct ipw_priv *priv = data;
10480         u32 inta, inta_mask;
10481
10482         if (!priv)
10483                 return IRQ_NONE;
10484
10485         spin_lock(&priv->irq_lock);
10486
10487         if (!(priv->status & STATUS_INT_ENABLED)) {
10488                 /* Shared IRQ */
10489                 goto none;
10490         }
10491
10492         inta = ipw_read32(priv, IPW_INTA_RW);
10493         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10494
10495         if (inta == 0xFFFFFFFF) {
10496                 /* Hardware disappeared */
10497                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10498                 goto none;
10499         }
10500
10501         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10502                 /* Shared interrupt */
10503                 goto none;
10504         }
10505
10506         /* tell the device to stop sending interrupts */
10507         __ipw_disable_interrupts(priv);
10508
10509         /* ack current interrupts */
10510         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10511         ipw_write32(priv, IPW_INTA_RW, inta);
10512
10513         /* Cache INTA value for our tasklet */
10514         priv->isr_inta = inta;
10515
10516         tasklet_schedule(&priv->irq_tasklet);
10517
10518         spin_unlock(&priv->irq_lock);
10519
10520         return IRQ_HANDLED;
10521       none:
10522         spin_unlock(&priv->irq_lock);
10523         return IRQ_NONE;
10524 }
10525
10526 static void ipw_rf_kill(void *adapter)
10527 {
10528         struct ipw_priv *priv = adapter;
10529         unsigned long flags;
10530
10531         spin_lock_irqsave(&priv->lock, flags);
10532
10533         if (rf_kill_active(priv)) {
10534                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10535                 if (priv->workqueue)
10536                         queue_delayed_work(priv->workqueue,
10537                                            &priv->rf_kill, 2 * HZ);
10538                 goto exit_unlock;
10539         }
10540
10541         /* RF Kill is now disabled, so bring the device back up */
10542
10543         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10544                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10545                                   "device\n");
10546
10547                 /* we can not do an adapter restart while inside an irq lock */
10548                 queue_work(priv->workqueue, &priv->adapter_restart);
10549         } else
10550                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10551                                   "enabled\n");
10552
10553       exit_unlock:
10554         spin_unlock_irqrestore(&priv->lock, flags);
10555 }
10556
10557 static void ipw_bg_rf_kill(void *data)
10558 {
10559         struct ipw_priv *priv = data;
10560         mutex_lock(&priv->mutex);
10561         ipw_rf_kill(data);
10562         mutex_unlock(&priv->mutex);
10563 }
10564
10565 static void ipw_link_up(struct ipw_priv *priv)
10566 {
10567         priv->last_seq_num = -1;
10568         priv->last_frag_num = -1;
10569         priv->last_packet_time = 0;
10570
10571         netif_carrier_on(priv->net_dev);
10572         if (netif_queue_stopped(priv->net_dev)) {
10573                 IPW_DEBUG_NOTIF("waking queue\n");
10574                 netif_wake_queue(priv->net_dev);
10575         } else {
10576                 IPW_DEBUG_NOTIF("starting queue\n");
10577                 netif_start_queue(priv->net_dev);
10578         }
10579
10580         cancel_delayed_work(&priv->request_scan);
10581         ipw_reset_stats(priv);
10582         /* Ensure the rate is updated immediately */
10583         priv->last_rate = ipw_get_current_rate(priv);
10584         ipw_gather_stats(priv);
10585         ipw_led_link_up(priv);
10586         notify_wx_assoc_event(priv);
10587
10588         if (priv->config & CFG_BACKGROUND_SCAN)
10589                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10590 }
10591
10592 static void ipw_bg_link_up(void *data)
10593 {
10594         struct ipw_priv *priv = data;
10595         mutex_lock(&priv->mutex);
10596         ipw_link_up(data);
10597         mutex_unlock(&priv->mutex);
10598 }
10599
10600 static void ipw_link_down(struct ipw_priv *priv)
10601 {
10602         ipw_led_link_down(priv);
10603         netif_carrier_off(priv->net_dev);
10604         netif_stop_queue(priv->net_dev);
10605         notify_wx_assoc_event(priv);
10606
10607         /* Cancel any queued work ... */
10608         cancel_delayed_work(&priv->request_scan);
10609         cancel_delayed_work(&priv->adhoc_check);
10610         cancel_delayed_work(&priv->gather_stats);
10611
10612         ipw_reset_stats(priv);
10613
10614         if (!(priv->status & STATUS_EXIT_PENDING)) {
10615                 /* Queue up another scan... */
10616                 queue_work(priv->workqueue, &priv->request_scan);
10617         }
10618 }
10619
10620 static void ipw_bg_link_down(void *data)
10621 {
10622         struct ipw_priv *priv = data;
10623         mutex_lock(&priv->mutex);
10624         ipw_link_down(data);
10625         mutex_unlock(&priv->mutex);
10626 }
10627
10628 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10629 {
10630         int ret = 0;
10631
10632         priv->workqueue = create_workqueue(DRV_NAME);
10633         init_waitqueue_head(&priv->wait_command_queue);
10634         init_waitqueue_head(&priv->wait_state);
10635
10636         INIT_WORK(&priv->adhoc_check, ipw_bg_adhoc_check, priv);
10637         INIT_WORK(&priv->associate, ipw_bg_associate, priv);
10638         INIT_WORK(&priv->disassociate, ipw_bg_disassociate, priv);
10639         INIT_WORK(&priv->system_config, ipw_system_config, priv);
10640         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish, priv);
10641         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart, priv);
10642         INIT_WORK(&priv->rf_kill, ipw_bg_rf_kill, priv);
10643         INIT_WORK(&priv->up, (void (*)(void *))ipw_bg_up, priv);
10644         INIT_WORK(&priv->down, (void (*)(void *))ipw_bg_down, priv);
10645         INIT_WORK(&priv->request_scan,
10646                   (void (*)(void *))ipw_request_scan, priv);
10647         INIT_WORK(&priv->gather_stats,
10648                   (void (*)(void *))ipw_bg_gather_stats, priv);
10649         INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_bg_abort_scan, priv);
10650         INIT_WORK(&priv->roam, ipw_bg_roam, priv);
10651         INIT_WORK(&priv->scan_check, ipw_bg_scan_check, priv);
10652         INIT_WORK(&priv->link_up, (void (*)(void *))ipw_bg_link_up, priv);
10653         INIT_WORK(&priv->link_down, (void (*)(void *))ipw_bg_link_down, priv);
10654         INIT_WORK(&priv->led_link_on, (void (*)(void *))ipw_bg_led_link_on,
10655                   priv);
10656         INIT_WORK(&priv->led_link_off, (void (*)(void *))ipw_bg_led_link_off,
10657                   priv);
10658         INIT_WORK(&priv->led_act_off, (void (*)(void *))ipw_bg_led_activity_off,
10659                   priv);
10660         INIT_WORK(&priv->merge_networks,
10661                   (void (*)(void *))ipw_merge_adhoc_network, priv);
10662
10663 #ifdef CONFIG_IPW2200_QOS
10664         INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10665                   priv);
10666 #endif                          /* CONFIG_IPW2200_QOS */
10667
10668         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10669                      ipw_irq_tasklet, (unsigned long)priv);
10670
10671         return ret;
10672 }
10673
10674 static void shim__set_security(struct net_device *dev,
10675                                struct ieee80211_security *sec)
10676 {
10677         struct ipw_priv *priv = ieee80211_priv(dev);
10678         int i;
10679         for (i = 0; i < 4; i++) {
10680                 if (sec->flags & (1 << i)) {
10681                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10682                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10683                         if (sec->key_sizes[i] == 0)
10684                                 priv->ieee->sec.flags &= ~(1 << i);
10685                         else {
10686                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10687                                        sec->key_sizes[i]);
10688                                 priv->ieee->sec.flags |= (1 << i);
10689                         }
10690                         priv->status |= STATUS_SECURITY_UPDATED;
10691                 } else if (sec->level != SEC_LEVEL_1)
10692                         priv->ieee->sec.flags &= ~(1 << i);
10693         }
10694
10695         if (sec->flags & SEC_ACTIVE_KEY) {
10696                 if (sec->active_key <= 3) {
10697                         priv->ieee->sec.active_key = sec->active_key;
10698                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10699                 } else
10700                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10701                 priv->status |= STATUS_SECURITY_UPDATED;
10702         } else
10703                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10704
10705         if ((sec->flags & SEC_AUTH_MODE) &&
10706             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10707                 priv->ieee->sec.auth_mode = sec->auth_mode;
10708                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10709                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10710                         priv->capability |= CAP_SHARED_KEY;
10711                 else
10712                         priv->capability &= ~CAP_SHARED_KEY;
10713                 priv->status |= STATUS_SECURITY_UPDATED;
10714         }
10715
10716         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10717                 priv->ieee->sec.flags |= SEC_ENABLED;
10718                 priv->ieee->sec.enabled = sec->enabled;
10719                 priv->status |= STATUS_SECURITY_UPDATED;
10720                 if (sec->enabled)
10721                         priv->capability |= CAP_PRIVACY_ON;
10722                 else
10723                         priv->capability &= ~CAP_PRIVACY_ON;
10724         }
10725
10726         if (sec->flags & SEC_ENCRYPT)
10727                 priv->ieee->sec.encrypt = sec->encrypt;
10728
10729         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10730                 priv->ieee->sec.level = sec->level;
10731                 priv->ieee->sec.flags |= SEC_LEVEL;
10732                 priv->status |= STATUS_SECURITY_UPDATED;
10733         }
10734
10735         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10736                 ipw_set_hwcrypto_keys(priv);
10737
10738         /* To match current functionality of ipw2100 (which works well w/
10739          * various supplicants, we don't force a disassociate if the
10740          * privacy capability changes ... */
10741 #if 0
10742         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10743             (((priv->assoc_request.capability &
10744                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10745              (!(priv->assoc_request.capability &
10746                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10747                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10748                                 "change.\n");
10749                 ipw_disassociate(priv);
10750         }
10751 #endif
10752 }
10753
10754 static int init_supported_rates(struct ipw_priv *priv,
10755                                 struct ipw_supported_rates *rates)
10756 {
10757         /* TODO: Mask out rates based on priv->rates_mask */
10758
10759         memset(rates, 0, sizeof(*rates));
10760         /* configure supported rates */
10761         switch (priv->ieee->freq_band) {
10762         case IEEE80211_52GHZ_BAND:
10763                 rates->ieee_mode = IPW_A_MODE;
10764                 rates->purpose = IPW_RATE_CAPABILITIES;
10765                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10766                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10767                 break;
10768
10769         default:                /* Mixed or 2.4Ghz */
10770                 rates->ieee_mode = IPW_G_MODE;
10771                 rates->purpose = IPW_RATE_CAPABILITIES;
10772                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10773                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10774                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10775                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10776                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10777                 }
10778                 break;
10779         }
10780
10781         return 0;
10782 }
10783
10784 static int ipw_config(struct ipw_priv *priv)
10785 {
10786         /* This is only called from ipw_up, which resets/reloads the firmware
10787            so, we don't need to first disable the card before we configure
10788            it */
10789         if (ipw_set_tx_power(priv))
10790                 goto error;
10791
10792         /* initialize adapter address */
10793         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10794                 goto error;
10795
10796         /* set basic system config settings */
10797         init_sys_config(&priv->sys_config);
10798
10799         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10800          * Does not support BT priority yet (don't abort or defer our Tx) */
10801         if (bt_coexist) {
10802                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10803
10804                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10805                         priv->sys_config.bt_coexistence
10806                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10807                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10808                         priv->sys_config.bt_coexistence
10809                             |= CFG_BT_COEXISTENCE_OOB;
10810         }
10811
10812 #ifdef CONFIG_IPW2200_PROMISCUOUS
10813         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10814                 priv->sys_config.accept_all_data_frames = 1;
10815                 priv->sys_config.accept_non_directed_frames = 1;
10816                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10817                 priv->sys_config.accept_all_mgmt_frames = 1;
10818         }
10819 #endif
10820
10821         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10822                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10823         else
10824                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10825
10826         if (ipw_send_system_config(priv))
10827                 goto error;
10828
10829         init_supported_rates(priv, &priv->rates);
10830         if (ipw_send_supported_rates(priv, &priv->rates))
10831                 goto error;
10832
10833         /* Set request-to-send threshold */
10834         if (priv->rts_threshold) {
10835                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10836                         goto error;
10837         }
10838 #ifdef CONFIG_IPW2200_QOS
10839         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10840         ipw_qos_activate(priv, NULL);
10841 #endif                          /* CONFIG_IPW2200_QOS */
10842
10843         if (ipw_set_random_seed(priv))
10844                 goto error;
10845
10846         /* final state transition to the RUN state */
10847         if (ipw_send_host_complete(priv))
10848                 goto error;
10849
10850         priv->status |= STATUS_INIT;
10851
10852         ipw_led_init(priv);
10853         ipw_led_radio_on(priv);
10854         priv->notif_missed_beacons = 0;
10855
10856         /* Set hardware WEP key if it is configured. */
10857         if ((priv->capability & CAP_PRIVACY_ON) &&
10858             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10859             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10860                 ipw_set_hwcrypto_keys(priv);
10861
10862         return 0;
10863
10864       error:
10865         return -EIO;
10866 }
10867
10868 /*
10869  * NOTE:
10870  *
10871  * These tables have been tested in conjunction with the
10872  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10873  *
10874  * Altering this values, using it on other hardware, or in geographies
10875  * not intended for resale of the above mentioned Intel adapters has
10876  * not been tested.
10877  *
10878  * Remember to update the table in README.ipw2200 when changing this
10879  * table.
10880  *
10881  */
10882 static const struct ieee80211_geo ipw_geos[] = {
10883         {                       /* Restricted */
10884          "---",
10885          .bg_channels = 11,
10886          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10887                 {2427, 4}, {2432, 5}, {2437, 6},
10888                 {2442, 7}, {2447, 8}, {2452, 9},
10889                 {2457, 10}, {2462, 11}},
10890          },
10891
10892         {                       /* Custom US/Canada */
10893          "ZZF",
10894          .bg_channels = 11,
10895          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10896                 {2427, 4}, {2432, 5}, {2437, 6},
10897                 {2442, 7}, {2447, 8}, {2452, 9},
10898                 {2457, 10}, {2462, 11}},
10899          .a_channels = 8,
10900          .a = {{5180, 36},
10901                {5200, 40},
10902                {5220, 44},
10903                {5240, 48},
10904                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10905                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10906                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10907                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10908          },
10909
10910         {                       /* Rest of World */
10911          "ZZD",
10912          .bg_channels = 13,
10913          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10914                 {2427, 4}, {2432, 5}, {2437, 6},
10915                 {2442, 7}, {2447, 8}, {2452, 9},
10916                 {2457, 10}, {2462, 11}, {2467, 12},
10917                 {2472, 13}},
10918          },
10919
10920         {                       /* Custom USA & Europe & High */
10921          "ZZA",
10922          .bg_channels = 11,
10923          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10924                 {2427, 4}, {2432, 5}, {2437, 6},
10925                 {2442, 7}, {2447, 8}, {2452, 9},
10926                 {2457, 10}, {2462, 11}},
10927          .a_channels = 13,
10928          .a = {{5180, 36},
10929                {5200, 40},
10930                {5220, 44},
10931                {5240, 48},
10932                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10933                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10934                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10935                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10936                {5745, 149},
10937                {5765, 153},
10938                {5785, 157},
10939                {5805, 161},
10940                {5825, 165}},
10941          },
10942
10943         {                       /* Custom NA & Europe */
10944          "ZZB",
10945          .bg_channels = 11,
10946          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10947                 {2427, 4}, {2432, 5}, {2437, 6},
10948                 {2442, 7}, {2447, 8}, {2452, 9},
10949                 {2457, 10}, {2462, 11}},
10950          .a_channels = 13,
10951          .a = {{5180, 36},
10952                {5200, 40},
10953                {5220, 44},
10954                {5240, 48},
10955                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10956                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10957                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10958                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10959                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10960                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10961                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10962                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10963                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10964          },
10965
10966         {                       /* Custom Japan */
10967          "ZZC",
10968          .bg_channels = 11,
10969          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10970                 {2427, 4}, {2432, 5}, {2437, 6},
10971                 {2442, 7}, {2447, 8}, {2452, 9},
10972                 {2457, 10}, {2462, 11}},
10973          .a_channels = 4,
10974          .a = {{5170, 34}, {5190, 38},
10975                {5210, 42}, {5230, 46}},
10976          },
10977
10978         {                       /* Custom */
10979          "ZZM",
10980          .bg_channels = 11,
10981          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10982                 {2427, 4}, {2432, 5}, {2437, 6},
10983                 {2442, 7}, {2447, 8}, {2452, 9},
10984                 {2457, 10}, {2462, 11}},
10985          },
10986
10987         {                       /* Europe */
10988          "ZZE",
10989          .bg_channels = 13,
10990          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10991                 {2427, 4}, {2432, 5}, {2437, 6},
10992                 {2442, 7}, {2447, 8}, {2452, 9},
10993                 {2457, 10}, {2462, 11}, {2467, 12},
10994                 {2472, 13}},
10995          .a_channels = 19,
10996          .a = {{5180, 36},
10997                {5200, 40},
10998                {5220, 44},
10999                {5240, 48},
11000                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11001                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11002                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11003                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11004                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11005                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11006                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11007                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11008                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11009                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11010                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11011                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11012                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11013                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11014                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11015          },
11016
11017         {                       /* Custom Japan */
11018          "ZZJ",
11019          .bg_channels = 14,
11020          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11021                 {2427, 4}, {2432, 5}, {2437, 6},
11022                 {2442, 7}, {2447, 8}, {2452, 9},
11023                 {2457, 10}, {2462, 11}, {2467, 12},
11024                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11025          .a_channels = 4,
11026          .a = {{5170, 34}, {5190, 38},
11027                {5210, 42}, {5230, 46}},
11028          },
11029
11030         {                       /* Rest of World */
11031          "ZZR",
11032          .bg_channels = 14,
11033          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11034                 {2427, 4}, {2432, 5}, {2437, 6},
11035                 {2442, 7}, {2447, 8}, {2452, 9},
11036                 {2457, 10}, {2462, 11}, {2467, 12},
11037                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11038                              IEEE80211_CH_PASSIVE_ONLY}},
11039          },
11040
11041         {                       /* High Band */
11042          "ZZH",
11043          .bg_channels = 13,
11044          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11045                 {2427, 4}, {2432, 5}, {2437, 6},
11046                 {2442, 7}, {2447, 8}, {2452, 9},
11047                 {2457, 10}, {2462, 11},
11048                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11049                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11050          .a_channels = 4,
11051          .a = {{5745, 149}, {5765, 153},
11052                {5785, 157}, {5805, 161}},
11053          },
11054
11055         {                       /* Custom Europe */
11056          "ZZG",
11057          .bg_channels = 13,
11058          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11059                 {2427, 4}, {2432, 5}, {2437, 6},
11060                 {2442, 7}, {2447, 8}, {2452, 9},
11061                 {2457, 10}, {2462, 11},
11062                 {2467, 12}, {2472, 13}},
11063          .a_channels = 4,
11064          .a = {{5180, 36}, {5200, 40},
11065                {5220, 44}, {5240, 48}},
11066          },
11067
11068         {                       /* Europe */
11069          "ZZK",
11070          .bg_channels = 13,
11071          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11072                 {2427, 4}, {2432, 5}, {2437, 6},
11073                 {2442, 7}, {2447, 8}, {2452, 9},
11074                 {2457, 10}, {2462, 11},
11075                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11076                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11077          .a_channels = 24,
11078          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11079                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11080                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11081                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11082                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11083                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11084                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11085                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11086                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11087                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11088                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11089                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11090                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11091                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11092                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11093                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11094                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11095                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11096                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11097                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11098                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11099                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11100                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11101                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11102          },
11103
11104         {                       /* Europe */
11105          "ZZL",
11106          .bg_channels = 11,
11107          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11108                 {2427, 4}, {2432, 5}, {2437, 6},
11109                 {2442, 7}, {2447, 8}, {2452, 9},
11110                 {2457, 10}, {2462, 11}},
11111          .a_channels = 13,
11112          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11113                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11114                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11115                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11116                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11117                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11118                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11119                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11120                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11121                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11122                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11123                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11124                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11125          }
11126 };
11127
11128 #define MAX_HW_RESTARTS 5
11129 static int ipw_up(struct ipw_priv *priv)
11130 {
11131         int rc, i, j;
11132
11133         if (priv->status & STATUS_EXIT_PENDING)
11134                 return -EIO;
11135
11136         if (cmdlog && !priv->cmdlog) {
11137                 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
11138                                        GFP_KERNEL);
11139                 if (priv->cmdlog == NULL) {
11140                         IPW_ERROR("Error allocating %d command log entries.\n",
11141                                   cmdlog);
11142                         return -ENOMEM;
11143                 } else {
11144                         memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
11145                         priv->cmdlog_len = cmdlog;
11146                 }
11147         }
11148
11149         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11150                 /* Load the microcode, firmware, and eeprom.
11151                  * Also start the clocks. */
11152                 rc = ipw_load(priv);
11153                 if (rc) {
11154                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11155                         return rc;
11156                 }
11157
11158                 ipw_init_ordinals(priv);
11159                 if (!(priv->config & CFG_CUSTOM_MAC))
11160                         eeprom_parse_mac(priv, priv->mac_addr);
11161                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11162
11163                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11164                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11165                                     ipw_geos[j].name, 3))
11166                                 break;
11167                 }
11168                 if (j == ARRAY_SIZE(ipw_geos)) {
11169                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11170                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11171                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11172                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11173                         j = 0;
11174                 }
11175                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11176                         IPW_WARNING("Could not set geography.");
11177                         return 0;
11178                 }
11179
11180                 if (priv->status & STATUS_RF_KILL_SW) {
11181                         IPW_WARNING("Radio disabled by module parameter.\n");
11182                         return 0;
11183                 } else if (rf_kill_active(priv)) {
11184                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11185                                     "Kill switch must be turned off for "
11186                                     "wireless networking to work.\n");
11187                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11188                                            2 * HZ);
11189                         return 0;
11190                 }
11191
11192                 rc = ipw_config(priv);
11193                 if (!rc) {
11194                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11195
11196                         /* If configure to try and auto-associate, kick
11197                          * off a scan. */
11198                         queue_work(priv->workqueue, &priv->request_scan);
11199
11200                         return 0;
11201                 }
11202
11203                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11204                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11205                                i, MAX_HW_RESTARTS);
11206
11207                 /* We had an error bringing up the hardware, so take it
11208                  * all the way back down so we can try again */
11209                 ipw_down(priv);
11210         }
11211
11212         /* tried to restart and config the device for as long as our
11213          * patience could withstand */
11214         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11215
11216         return -EIO;
11217 }
11218
11219 static void ipw_bg_up(void *data)
11220 {
11221         struct ipw_priv *priv = data;
11222         mutex_lock(&priv->mutex);
11223         ipw_up(data);
11224         mutex_unlock(&priv->mutex);
11225 }
11226
11227 static void ipw_deinit(struct ipw_priv *priv)
11228 {
11229         int i;
11230
11231         if (priv->status & STATUS_SCANNING) {
11232                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11233                 ipw_abort_scan(priv);
11234         }
11235
11236         if (priv->status & STATUS_ASSOCIATED) {
11237                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11238                 ipw_disassociate(priv);
11239         }
11240
11241         ipw_led_shutdown(priv);
11242
11243         /* Wait up to 1s for status to change to not scanning and not
11244          * associated (disassociation can take a while for a ful 802.11
11245          * exchange */
11246         for (i = 1000; i && (priv->status &
11247                              (STATUS_DISASSOCIATING |
11248                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11249                 udelay(10);
11250
11251         if (priv->status & (STATUS_DISASSOCIATING |
11252                             STATUS_ASSOCIATED | STATUS_SCANNING))
11253                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11254         else
11255                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11256
11257         /* Attempt to disable the card */
11258         ipw_send_card_disable(priv, 0);
11259
11260         priv->status &= ~STATUS_INIT;
11261 }
11262
11263 static void ipw_down(struct ipw_priv *priv)
11264 {
11265         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11266
11267         priv->status |= STATUS_EXIT_PENDING;
11268
11269         if (ipw_is_init(priv))
11270                 ipw_deinit(priv);
11271
11272         /* Wipe out the EXIT_PENDING status bit if we are not actually
11273          * exiting the module */
11274         if (!exit_pending)
11275                 priv->status &= ~STATUS_EXIT_PENDING;
11276
11277         /* tell the device to stop sending interrupts */
11278         ipw_disable_interrupts(priv);
11279
11280         /* Clear all bits but the RF Kill */
11281         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11282         netif_carrier_off(priv->net_dev);
11283         netif_stop_queue(priv->net_dev);
11284
11285         ipw_stop_nic(priv);
11286
11287         ipw_led_radio_off(priv);
11288 }
11289
11290 static void ipw_bg_down(void *data)
11291 {
11292         struct ipw_priv *priv = data;
11293         mutex_lock(&priv->mutex);
11294         ipw_down(data);
11295         mutex_unlock(&priv->mutex);
11296 }
11297
11298 /* Called by register_netdev() */
11299 static int ipw_net_init(struct net_device *dev)
11300 {
11301         struct ipw_priv *priv = ieee80211_priv(dev);
11302         mutex_lock(&priv->mutex);
11303
11304         if (ipw_up(priv)) {
11305                 mutex_unlock(&priv->mutex);
11306                 return -EIO;
11307         }
11308
11309         mutex_unlock(&priv->mutex);
11310         return 0;
11311 }
11312
11313 /* PCI driver stuff */
11314 static struct pci_device_id card_ids[] = {
11315         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11316         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11317         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11318         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11319         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11320         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11321         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11322         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11323         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11324         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11325         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11326         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11327         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11328         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11329         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11330         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11331         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11332         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11333         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11334         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11335         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11336         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11337
11338         /* required last entry */
11339         {0,}
11340 };
11341
11342 MODULE_DEVICE_TABLE(pci, card_ids);
11343
11344 static struct attribute *ipw_sysfs_entries[] = {
11345         &dev_attr_rf_kill.attr,
11346         &dev_attr_direct_dword.attr,
11347         &dev_attr_indirect_byte.attr,
11348         &dev_attr_indirect_dword.attr,
11349         &dev_attr_mem_gpio_reg.attr,
11350         &dev_attr_command_event_reg.attr,
11351         &dev_attr_nic_type.attr,
11352         &dev_attr_status.attr,
11353         &dev_attr_cfg.attr,
11354         &dev_attr_error.attr,
11355         &dev_attr_event_log.attr,
11356         &dev_attr_cmd_log.attr,
11357         &dev_attr_eeprom_delay.attr,
11358         &dev_attr_ucode_version.attr,
11359         &dev_attr_rtc.attr,
11360         &dev_attr_scan_age.attr,
11361         &dev_attr_led.attr,
11362         &dev_attr_speed_scan.attr,
11363         &dev_attr_net_stats.attr,
11364 #ifdef CONFIG_IPW2200_PROMISCUOUS
11365         &dev_attr_rtap_iface.attr,
11366         &dev_attr_rtap_filter.attr,
11367 #endif
11368         NULL
11369 };
11370
11371 static struct attribute_group ipw_attribute_group = {
11372         .name = NULL,           /* put in device directory */
11373         .attrs = ipw_sysfs_entries,
11374 };
11375
11376 #ifdef CONFIG_IPW2200_PROMISCUOUS
11377 static int ipw_prom_open(struct net_device *dev)
11378 {
11379         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11380         struct ipw_priv *priv = prom_priv->priv;
11381
11382         IPW_DEBUG_INFO("prom dev->open\n");
11383         netif_carrier_off(dev);
11384         netif_stop_queue(dev);
11385
11386         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11387                 priv->sys_config.accept_all_data_frames = 1;
11388                 priv->sys_config.accept_non_directed_frames = 1;
11389                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11390                 priv->sys_config.accept_all_mgmt_frames = 1;
11391
11392                 ipw_send_system_config(priv);
11393         }
11394
11395         return 0;
11396 }
11397
11398 static int ipw_prom_stop(struct net_device *dev)
11399 {
11400         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11401         struct ipw_priv *priv = prom_priv->priv;
11402
11403         IPW_DEBUG_INFO("prom dev->stop\n");
11404
11405         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11406                 priv->sys_config.accept_all_data_frames = 0;
11407                 priv->sys_config.accept_non_directed_frames = 0;
11408                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11409                 priv->sys_config.accept_all_mgmt_frames = 0;
11410
11411                 ipw_send_system_config(priv);
11412         }
11413
11414         return 0;
11415 }
11416
11417 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11418 {
11419         IPW_DEBUG_INFO("prom dev->xmit\n");
11420         netif_stop_queue(dev);
11421         return -EOPNOTSUPP;
11422 }
11423
11424 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11425 {
11426         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11427         return &prom_priv->ieee->stats;
11428 }
11429
11430 static int ipw_prom_alloc(struct ipw_priv *priv)
11431 {
11432         int rc = 0;
11433
11434         if (priv->prom_net_dev)
11435                 return -EPERM;
11436
11437         priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11438         if (priv->prom_net_dev == NULL)
11439                 return -ENOMEM;
11440
11441         priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11442         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11443         priv->prom_priv->priv = priv;
11444
11445         strcpy(priv->prom_net_dev->name, "rtap%d");
11446
11447         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11448         priv->prom_net_dev->open = ipw_prom_open;
11449         priv->prom_net_dev->stop = ipw_prom_stop;
11450         priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11451         priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11452
11453         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11454
11455         rc = register_netdev(priv->prom_net_dev);
11456         if (rc) {
11457                 free_ieee80211(priv->prom_net_dev);
11458                 priv->prom_net_dev = NULL;
11459                 return rc;
11460         }
11461
11462         return 0;
11463 }
11464
11465 static void ipw_prom_free(struct ipw_priv *priv)
11466 {
11467         if (!priv->prom_net_dev)
11468                 return;
11469
11470         unregister_netdev(priv->prom_net_dev);
11471         free_ieee80211(priv->prom_net_dev);
11472
11473         priv->prom_net_dev = NULL;
11474 }
11475
11476 #endif
11477
11478
11479 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11480 {
11481         int err = 0;
11482         struct net_device *net_dev;
11483         void __iomem *base;
11484         u32 length, val;
11485         struct ipw_priv *priv;
11486         int i;
11487
11488         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11489         if (net_dev == NULL) {
11490                 err = -ENOMEM;
11491                 goto out;
11492         }
11493
11494         priv = ieee80211_priv(net_dev);
11495         priv->ieee = netdev_priv(net_dev);
11496
11497         priv->net_dev = net_dev;
11498         priv->pci_dev = pdev;
11499 #ifdef CONFIG_IPW2200_DEBUG
11500         ipw_debug_level = debug;
11501 #endif
11502         spin_lock_init(&priv->irq_lock);
11503         spin_lock_init(&priv->lock);
11504         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11505                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11506
11507         mutex_init(&priv->mutex);
11508         if (pci_enable_device(pdev)) {
11509                 err = -ENODEV;
11510                 goto out_free_ieee80211;
11511         }
11512
11513         pci_set_master(pdev);
11514
11515         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11516         if (!err)
11517                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11518         if (err) {
11519                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11520                 goto out_pci_disable_device;
11521         }
11522
11523         pci_set_drvdata(pdev, priv);
11524
11525         err = pci_request_regions(pdev, DRV_NAME);
11526         if (err)
11527                 goto out_pci_disable_device;
11528
11529         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11530          * PCI Tx retries from interfering with C3 CPU state */
11531         pci_read_config_dword(pdev, 0x40, &val);
11532         if ((val & 0x0000ff00) != 0)
11533                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11534
11535         length = pci_resource_len(pdev, 0);
11536         priv->hw_len = length;
11537
11538         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11539         if (!base) {
11540                 err = -ENODEV;
11541                 goto out_pci_release_regions;
11542         }
11543
11544         priv->hw_base = base;
11545         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11546         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11547
11548         err = ipw_setup_deferred_work(priv);
11549         if (err) {
11550                 IPW_ERROR("Unable to setup deferred work\n");
11551                 goto out_iounmap;
11552         }
11553
11554         ipw_sw_reset(priv, 1);
11555
11556         err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, priv);
11557         if (err) {
11558                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11559                 goto out_destroy_workqueue;
11560         }
11561
11562         SET_MODULE_OWNER(net_dev);
11563         SET_NETDEV_DEV(net_dev, &pdev->dev);
11564
11565         mutex_lock(&priv->mutex);
11566
11567         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11568         priv->ieee->set_security = shim__set_security;
11569         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11570
11571 #ifdef CONFIG_IPW2200_QOS
11572         priv->ieee->is_qos_active = ipw_is_qos_active;
11573         priv->ieee->handle_probe_response = ipw_handle_beacon;
11574         priv->ieee->handle_beacon = ipw_handle_probe_response;
11575         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11576 #endif                          /* CONFIG_IPW2200_QOS */
11577
11578         priv->ieee->perfect_rssi = -20;
11579         priv->ieee->worst_rssi = -85;
11580
11581         net_dev->open = ipw_net_open;
11582         net_dev->stop = ipw_net_stop;
11583         net_dev->init = ipw_net_init;
11584         net_dev->get_stats = ipw_net_get_stats;
11585         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11586         net_dev->set_mac_address = ipw_net_set_mac_address;
11587         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11588         net_dev->wireless_data = &priv->wireless_data;
11589         net_dev->wireless_handlers = &ipw_wx_handler_def;
11590         net_dev->ethtool_ops = &ipw_ethtool_ops;
11591         net_dev->irq = pdev->irq;
11592         net_dev->base_addr = (unsigned long)priv->hw_base;
11593         net_dev->mem_start = pci_resource_start(pdev, 0);
11594         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11595
11596         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11597         if (err) {
11598                 IPW_ERROR("failed to create sysfs device attributes\n");
11599                 mutex_unlock(&priv->mutex);
11600                 goto out_release_irq;
11601         }
11602
11603         mutex_unlock(&priv->mutex);
11604         err = register_netdev(net_dev);
11605         if (err) {
11606                 IPW_ERROR("failed to register network device\n");
11607                 goto out_remove_sysfs;
11608         }
11609
11610 #ifdef CONFIG_IPW2200_PROMISCUOUS
11611         if (rtap_iface) {
11612                 err = ipw_prom_alloc(priv);
11613                 if (err) {
11614                         IPW_ERROR("Failed to register promiscuous network "
11615                                   "device (error %d).\n", err);
11616                         unregister_netdev(priv->net_dev);
11617                         goto out_remove_sysfs;
11618                 }
11619         }
11620 #endif
11621
11622         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11623                "channels, %d 802.11a channels)\n",
11624                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11625                priv->ieee->geo.a_channels);
11626
11627         return 0;
11628
11629       out_remove_sysfs:
11630         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11631       out_release_irq:
11632         free_irq(pdev->irq, priv);
11633       out_destroy_workqueue:
11634         destroy_workqueue(priv->workqueue);
11635         priv->workqueue = NULL;
11636       out_iounmap:
11637         iounmap(priv->hw_base);
11638       out_pci_release_regions:
11639         pci_release_regions(pdev);
11640       out_pci_disable_device:
11641         pci_disable_device(pdev);
11642         pci_set_drvdata(pdev, NULL);
11643       out_free_ieee80211:
11644         free_ieee80211(priv->net_dev);
11645       out:
11646         return err;
11647 }
11648
11649 static void ipw_pci_remove(struct pci_dev *pdev)
11650 {
11651         struct ipw_priv *priv = pci_get_drvdata(pdev);
11652         struct list_head *p, *q;
11653         int i;
11654
11655         if (!priv)
11656                 return;
11657
11658         mutex_lock(&priv->mutex);
11659
11660         priv->status |= STATUS_EXIT_PENDING;
11661         ipw_down(priv);
11662         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11663
11664         mutex_unlock(&priv->mutex);
11665
11666         unregister_netdev(priv->net_dev);
11667
11668         if (priv->rxq) {
11669                 ipw_rx_queue_free(priv, priv->rxq);
11670                 priv->rxq = NULL;
11671         }
11672         ipw_tx_queue_free(priv);
11673
11674         if (priv->cmdlog) {
11675                 kfree(priv->cmdlog);
11676                 priv->cmdlog = NULL;
11677         }
11678         /* ipw_down will ensure that there is no more pending work
11679          * in the workqueue's, so we can safely remove them now. */
11680         cancel_delayed_work(&priv->adhoc_check);
11681         cancel_delayed_work(&priv->gather_stats);
11682         cancel_delayed_work(&priv->request_scan);
11683         cancel_delayed_work(&priv->rf_kill);
11684         cancel_delayed_work(&priv->scan_check);
11685         destroy_workqueue(priv->workqueue);
11686         priv->workqueue = NULL;
11687
11688         /* Free MAC hash list for ADHOC */
11689         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11690                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11691                         list_del(p);
11692                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11693                 }
11694         }
11695
11696         if (priv->error) {
11697                 ipw_free_error_log(priv->error);
11698                 priv->error = NULL;
11699         }
11700
11701 #ifdef CONFIG_IPW2200_PROMISCUOUS
11702         ipw_prom_free(priv);
11703 #endif
11704
11705         free_irq(pdev->irq, priv);
11706         iounmap(priv->hw_base);
11707         pci_release_regions(pdev);
11708         pci_disable_device(pdev);
11709         pci_set_drvdata(pdev, NULL);
11710         free_ieee80211(priv->net_dev);
11711         free_firmware();
11712 }
11713
11714 #ifdef CONFIG_PM
11715 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11716 {
11717         struct ipw_priv *priv = pci_get_drvdata(pdev);
11718         struct net_device *dev = priv->net_dev;
11719
11720         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11721
11722         /* Take down the device; powers it off, etc. */
11723         ipw_down(priv);
11724
11725         /* Remove the PRESENT state of the device */
11726         netif_device_detach(dev);
11727
11728         pci_save_state(pdev);
11729         pci_disable_device(pdev);
11730         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11731
11732         return 0;
11733 }
11734
11735 static int ipw_pci_resume(struct pci_dev *pdev)
11736 {
11737         struct ipw_priv *priv = pci_get_drvdata(pdev);
11738         struct net_device *dev = priv->net_dev;
11739         u32 val;
11740
11741         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11742
11743         pci_set_power_state(pdev, PCI_D0);
11744         pci_enable_device(pdev);
11745         pci_restore_state(pdev);
11746
11747         /*
11748          * Suspend/Resume resets the PCI configuration space, so we have to
11749          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11750          * from interfering with C3 CPU state. pci_restore_state won't help
11751          * here since it only restores the first 64 bytes pci config header.
11752          */
11753         pci_read_config_dword(pdev, 0x40, &val);
11754         if ((val & 0x0000ff00) != 0)
11755                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11756
11757         /* Set the device back into the PRESENT state; this will also wake
11758          * the queue of needed */
11759         netif_device_attach(dev);
11760
11761         /* Bring the device back up */
11762         queue_work(priv->workqueue, &priv->up);
11763
11764         return 0;
11765 }
11766 #endif
11767
11768 /* driver initialization stuff */
11769 static struct pci_driver ipw_driver = {
11770         .name = DRV_NAME,
11771         .id_table = card_ids,
11772         .probe = ipw_pci_probe,
11773         .remove = __devexit_p(ipw_pci_remove),
11774 #ifdef CONFIG_PM
11775         .suspend = ipw_pci_suspend,
11776         .resume = ipw_pci_resume,
11777 #endif
11778 };
11779
11780 static int __init ipw_init(void)
11781 {
11782         int ret;
11783
11784         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11785         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11786
11787         ret = pci_module_init(&ipw_driver);
11788         if (ret) {
11789                 IPW_ERROR("Unable to initialize PCI module\n");
11790                 return ret;
11791         }
11792
11793         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11794         if (ret) {
11795                 IPW_ERROR("Unable to create driver sysfs file\n");
11796                 pci_unregister_driver(&ipw_driver);
11797                 return ret;
11798         }
11799
11800         return ret;
11801 }
11802
11803 static void __exit ipw_exit(void)
11804 {
11805         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11806         pci_unregister_driver(&ipw_driver);
11807 }
11808
11809 module_param(disable, int, 0444);
11810 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11811
11812 module_param(associate, int, 0444);
11813 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11814
11815 module_param(auto_create, int, 0444);
11816 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11817
11818 module_param(led, int, 0444);
11819 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11820
11821 #ifdef CONFIG_IPW2200_DEBUG
11822 module_param(debug, int, 0444);
11823 MODULE_PARM_DESC(debug, "debug output mask");
11824 #endif
11825
11826 module_param(channel, int, 0444);
11827 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11828
11829 #ifdef CONFIG_IPW2200_PROMISCUOUS
11830 module_param(rtap_iface, int, 0444);
11831 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11832 #endif
11833
11834 #ifdef CONFIG_IPW2200_QOS
11835 module_param(qos_enable, int, 0444);
11836 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11837
11838 module_param(qos_burst_enable, int, 0444);
11839 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11840
11841 module_param(qos_no_ack_mask, int, 0444);
11842 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11843
11844 module_param(burst_duration_CCK, int, 0444);
11845 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11846
11847 module_param(burst_duration_OFDM, int, 0444);
11848 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11849 #endif                          /* CONFIG_IPW2200_QOS */
11850
11851 #ifdef CONFIG_IPW2200_MONITOR
11852 module_param(mode, int, 0444);
11853 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11854 #else
11855 module_param(mode, int, 0444);
11856 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11857 #endif
11858
11859 module_param(bt_coexist, int, 0444);
11860 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11861
11862 module_param(hwcrypto, int, 0444);
11863 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11864
11865 module_param(cmdlog, int, 0444);
11866 MODULE_PARM_DESC(cmdlog,
11867                  "allocate a ring buffer for logging firmware commands");
11868
11869 module_param(roaming, int, 0444);
11870 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11871
11872 module_param(antenna, int, 0444);
11873 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11874
11875 module_exit(ipw_exit);
11876 module_init(ipw_init);