[PATCH] Duplicate IPW_DEBUG option for ipw2100 and 2200
[safe/jmp/linux-2.6] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <jkmaline@cc.hut.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/config.h>
138 #include <linux/errno.h>
139 #include <linux/if_arp.h>
140 #include <linux/in6.h>
141 #include <linux/in.h>
142 #include <linux/ip.h>
143 #include <linux/kernel.h>
144 #include <linux/kmod.h>
145 #include <linux/module.h>
146 #include <linux/netdevice.h>
147 #include <linux/ethtool.h>
148 #include <linux/pci.h>
149 #include <linux/dma-mapping.h>
150 #include <linux/proc_fs.h>
151 #include <linux/skbuff.h>
152 #include <asm/uaccess.h>
153 #include <asm/io.h>
154 #define __KERNEL_SYSCALLS__
155 #include <linux/fs.h>
156 #include <linux/mm.h>
157 #include <linux/slab.h>
158 #include <linux/unistd.h>
159 #include <linux/stringify.h>
160 #include <linux/tcp.h>
161 #include <linux/types.h>
162 #include <linux/version.h>
163 #include <linux/time.h>
164 #include <linux/firmware.h>
165 #include <linux/acpi.h>
166 #include <linux/ctype.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "1.1.3"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2005 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int mode = 0;
189 static int channel = 0;
190 static int associate = 1;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214         if (ipw2100_debug_level & (level)) { \
215                 printk(KERN_DEBUG "ipw2100: %c %s ", \
216                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
217                 printk(message); \
218         } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif                          /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226         "undefined",
227         "unused",               /* HOST_ATTENTION */
228         "HOST_COMPLETE",
229         "unused",               /* SLEEP */
230         "unused",               /* HOST_POWER_DOWN */
231         "unused",
232         "SYSTEM_CONFIG",
233         "unused",               /* SET_IMR */
234         "SSID",
235         "MANDATORY_BSSID",
236         "AUTHENTICATION_TYPE",
237         "ADAPTER_ADDRESS",
238         "PORT_TYPE",
239         "INTERNATIONAL_MODE",
240         "CHANNEL",
241         "RTS_THRESHOLD",
242         "FRAG_THRESHOLD",
243         "POWER_MODE",
244         "TX_RATES",
245         "BASIC_TX_RATES",
246         "WEP_KEY_INFO",
247         "unused",
248         "unused",
249         "unused",
250         "unused",
251         "WEP_KEY_INDEX",
252         "WEP_FLAGS",
253         "ADD_MULTICAST",
254         "CLEAR_ALL_MULTICAST",
255         "BEACON_INTERVAL",
256         "ATIM_WINDOW",
257         "CLEAR_STATISTICS",
258         "undefined",
259         "undefined",
260         "undefined",
261         "undefined",
262         "TX_POWER_INDEX",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "BROADCAST_SCAN",
270         "CARD_DISABLE",
271         "PREFERRED_BSSID",
272         "SET_SCAN_OPTIONS",
273         "SCAN_DWELL_TIME",
274         "SWEEP_TABLE",
275         "AP_OR_STATION_TABLE",
276         "GROUP_ORDINALS",
277         "SHORT_RETRY_LIMIT",
278         "LONG_RETRY_LIMIT",
279         "unused",               /* SAVE_CALIBRATION */
280         "unused",               /* RESTORE_CALIBRATION */
281         "undefined",
282         "undefined",
283         "undefined",
284         "HOST_PRE_POWER_DOWN",
285         "unused",               /* HOST_INTERRUPT_COALESCING */
286         "undefined",
287         "CARD_DISABLE_PHY_OFF",
288         "MSDU_TX_RATES" "undefined",
289         "undefined",
290         "SET_STATION_STAT_BITS",
291         "CLEAR_STATIONS_STAT_BITS",
292         "LEAP_ROGUE_MODE",
293         "SET_SECURITY_INFORMATION",
294         "DISASSOCIATION_BSSID",
295         "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309                                struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311                                 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313                                  size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315                                     size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317                                      struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319                                   struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326         *val = readl((void __iomem *)(dev->base_addr + reg));
327         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332         writel(val, (void __iomem *)(dev->base_addr + reg));
333         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337                                       u16 * val)
338 {
339         *val = readw((void __iomem *)(dev->base_addr + reg));
340         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345         *val = readb((void __iomem *)(dev->base_addr + reg));
346         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351         writew(val, (void __iomem *)(dev->base_addr + reg));
352         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357         writeb(val, (void __iomem *)(dev->base_addr + reg));
358         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364                        addr & IPW_REG_INDIRECT_ADDR_MASK);
365         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371                        addr & IPW_REG_INDIRECT_ADDR_MASK);
372         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378                        addr & IPW_REG_INDIRECT_ADDR_MASK);
379         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385                        addr & IPW_REG_INDIRECT_ADDR_MASK);
386         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392                        addr & IPW_REG_INDIRECT_ADDR_MASK);
393         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399                        addr & IPW_REG_INDIRECT_ADDR_MASK);
400         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406                        addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static inline void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415                                     const u8 * buf)
416 {
417         u32 aligned_addr;
418         u32 aligned_len;
419         u32 dif_len;
420         u32 i;
421
422         /* read first nibble byte by byte */
423         aligned_addr = addr & (~0x3);
424         dif_len = addr - aligned_addr;
425         if (dif_len) {
426                 /* Start reading at aligned_addr + dif_len */
427                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                                aligned_addr);
429                 for (i = dif_len; i < 4; i++, buf++)
430                         write_register_byte(dev,
431                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
432                                             *buf);
433
434                 len -= dif_len;
435                 aligned_addr += 4;
436         }
437
438         /* read DWs through autoincrement registers */
439         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440         aligned_len = len & (~0x3);
441         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444         /* copy the last nibble */
445         dif_len = len - aligned_len;
446         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447         for (i = 0; i < dif_len; i++, buf++)
448                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449                                     *buf);
450 }
451
452 static inline void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453                                    u8 * buf)
454 {
455         u32 aligned_addr;
456         u32 aligned_len;
457         u32 dif_len;
458         u32 i;
459
460         /* read first nibble byte by byte */
461         aligned_addr = addr & (~0x3);
462         dif_len = addr - aligned_addr;
463         if (dif_len) {
464                 /* Start reading at aligned_addr + dif_len */
465                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466                                aligned_addr);
467                 for (i = dif_len; i < 4; i++, buf++)
468                         read_register_byte(dev,
469                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
470                                            buf);
471
472                 len -= dif_len;
473                 aligned_addr += 4;
474         }
475
476         /* read DWs through autoincrement registers */
477         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478         aligned_len = len & (~0x3);
479         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482         /* copy the last nibble */
483         dif_len = len - aligned_len;
484         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485         for (i = 0; i < dif_len; i++, buf++)
486                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491         return (dev->base_addr &&
492                 (readl
493                  ((void __iomem *)(dev->base_addr +
494                                    IPW_REG_DOA_DEBUG_AREA_START))
495                  == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499                                void *val, u32 * len)
500 {
501         struct ipw2100_ordinals *ordinals = &priv->ordinals;
502         u32 addr;
503         u32 field_info;
504         u16 field_len;
505         u16 field_count;
506         u32 total_length;
507
508         if (ordinals->table1_addr == 0) {
509                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510                        "before they have been loaded.\n");
511                 return -EINVAL;
512         }
513
514         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518                         printk(KERN_WARNING DRV_NAME
519                                ": ordinal buffer length too small, need %zd\n",
520                                IPW_ORD_TAB_1_ENTRY_SIZE);
521
522                         return -EINVAL;
523                 }
524
525                 read_nic_dword(priv->net_dev,
526                                ordinals->table1_addr + (ord << 2), &addr);
527                 read_nic_dword(priv->net_dev, addr, val);
528
529                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531                 return 0;
532         }
533
534         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536                 ord -= IPW_START_ORD_TAB_2;
537
538                 /* get the address of statistic */
539                 read_nic_dword(priv->net_dev,
540                                ordinals->table2_addr + (ord << 3), &addr);
541
542                 /* get the second DW of statistics ;
543                  * two 16-bit words - first is length, second is count */
544                 read_nic_dword(priv->net_dev,
545                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
546                                &field_info);
547
548                 /* get each entry length */
549                 field_len = *((u16 *) & field_info);
550
551                 /* get number of entries */
552                 field_count = *(((u16 *) & field_info) + 1);
553
554                 /* abort if no enought memory */
555                 total_length = field_len * field_count;
556                 if (total_length > *len) {
557                         *len = total_length;
558                         return -EINVAL;
559                 }
560
561                 *len = total_length;
562                 if (!total_length)
563                         return 0;
564
565                 /* read the ordinal data from the SRAM */
566                 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568                 return 0;
569         }
570
571         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572                "in table 2\n", ord);
573
574         return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578                                u32 * len)
579 {
580         struct ipw2100_ordinals *ordinals = &priv->ordinals;
581         u32 addr;
582
583         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586                         IPW_DEBUG_INFO("wrong size\n");
587                         return -EINVAL;
588                 }
589
590                 read_nic_dword(priv->net_dev,
591                                ordinals->table1_addr + (ord << 2), &addr);
592
593                 write_nic_dword(priv->net_dev, addr, *val);
594
595                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597                 return 0;
598         }
599
600         IPW_DEBUG_INFO("wrong table\n");
601         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602                 return -EINVAL;
603
604         return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608                           const u8 * data, u32 len, u32 ofs)
609 {
610         int out, i, j, l;
611         char c;
612
613         out = snprintf(buf, count, "%08X", ofs);
614
615         for (l = 0, i = 0; i < 2; i++) {
616                 out += snprintf(buf + out, count - out, " ");
617                 for (j = 0; j < 8 && l < len; j++, l++)
618                         out += snprintf(buf + out, count - out, "%02X ",
619                                         data[(i * 8 + j)]);
620                 for (; j < 8; j++)
621                         out += snprintf(buf + out, count - out, "   ");
622         }
623
624         out += snprintf(buf + out, count - out, " ");
625         for (l = 0, i = 0; i < 2; i++) {
626                 out += snprintf(buf + out, count - out, " ");
627                 for (j = 0; j < 8 && l < len; j++, l++) {
628                         c = data[(i * 8 + j)];
629                         if (!isascii(c) || !isprint(c))
630                                 c = '.';
631
632                         out += snprintf(buf + out, count - out, "%c", c);
633                 }
634
635                 for (; j < 8; j++)
636                         out += snprintf(buf + out, count - out, " ");
637         }
638
639         return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644         char line[81];
645         u32 ofs = 0;
646         if (!(ipw2100_debug_level & level))
647                 return;
648
649         while (len) {
650                 printk(KERN_DEBUG "%s\n",
651                        snprint_line(line, sizeof(line), &data[ofs],
652                                     min(len, 16U), ofs));
653                 ofs += 16;
654                 len -= min(len, 16U);
655         }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static inline void schedule_reset(struct ipw2100_priv *priv)
661 {
662         unsigned long now = get_seconds();
663
664         /* If we haven't received a reset request within the backoff period,
665          * then we can reset the backoff interval so this reset occurs
666          * immediately */
667         if (priv->reset_backoff &&
668             (now - priv->last_reset > priv->reset_backoff))
669                 priv->reset_backoff = 0;
670
671         priv->last_reset = get_seconds();
672
673         if (!(priv->status & STATUS_RESET_PENDING)) {
674                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675                                priv->net_dev->name, priv->reset_backoff);
676                 netif_carrier_off(priv->net_dev);
677                 netif_stop_queue(priv->net_dev);
678                 priv->status |= STATUS_RESET_PENDING;
679                 if (priv->reset_backoff)
680                         queue_delayed_work(priv->workqueue, &priv->reset_work,
681                                            priv->reset_backoff * HZ);
682                 else
683                         queue_work(priv->workqueue, &priv->reset_work);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static inline int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (i--);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (i--);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         down(&priv->adapter_sem);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         up(&priv->adapter_sem);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standy if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         down(&priv->adapter_sem);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         up(&priv->adapter_sem);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1676 {
1677         unsigned long flags;
1678         int rc = 0;
1679         u32 lock;
1680         u32 ord_len = sizeof(lock);
1681
1682         /* Quite if manually disabled. */
1683         if (priv->status & STATUS_RF_KILL_SW) {
1684                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1685                                "switch\n", priv->net_dev->name);
1686                 return 0;
1687         }
1688
1689         /* If the interrupt is enabled, turn it off... */
1690         spin_lock_irqsave(&priv->low_lock, flags);
1691         ipw2100_disable_interrupts(priv);
1692
1693         /* Reset any fatal_error conditions */
1694         ipw2100_reset_fatalerror(priv);
1695         spin_unlock_irqrestore(&priv->low_lock, flags);
1696
1697         if (priv->status & STATUS_POWERED ||
1698             (priv->status & STATUS_RESET_PENDING)) {
1699                 /* Power cycle the card ... */
1700                 if (ipw2100_power_cycle_adapter(priv)) {
1701                         printk(KERN_WARNING DRV_NAME
1702                                ": %s: Could not cycle adapter.\n",
1703                                priv->net_dev->name);
1704                         rc = 1;
1705                         goto exit;
1706                 }
1707         } else
1708                 priv->status |= STATUS_POWERED;
1709
1710         /* Load the firmware, start the clocks, etc. */
1711         if (ipw2100_start_adapter(priv)) {
1712                 printk(KERN_ERR DRV_NAME
1713                        ": %s: Failed to start the firmware.\n",
1714                        priv->net_dev->name);
1715                 rc = 1;
1716                 goto exit;
1717         }
1718
1719         ipw2100_initialize_ordinals(priv);
1720
1721         /* Determine capabilities of this particular HW configuration */
1722         if (ipw2100_get_hw_features(priv)) {
1723                 printk(KERN_ERR DRV_NAME
1724                        ": %s: Failed to determine HW features.\n",
1725                        priv->net_dev->name);
1726                 rc = 1;
1727                 goto exit;
1728         }
1729
1730         lock = LOCK_NONE;
1731         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1732                 printk(KERN_ERR DRV_NAME
1733                        ": %s: Failed to clear ordinal lock.\n",
1734                        priv->net_dev->name);
1735                 rc = 1;
1736                 goto exit;
1737         }
1738
1739         priv->status &= ~STATUS_SCANNING;
1740
1741         if (rf_kill_active(priv)) {
1742                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1743                        priv->net_dev->name);
1744
1745                 if (priv->stop_rf_kill) {
1746                         priv->stop_rf_kill = 0;
1747                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1748                 }
1749
1750                 deferred = 1;
1751         }
1752
1753         /* Turn on the interrupt so that commands can be processed */
1754         ipw2100_enable_interrupts(priv);
1755
1756         /* Send all of the commands that must be sent prior to
1757          * HOST_COMPLETE */
1758         if (ipw2100_adapter_setup(priv)) {
1759                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1760                        priv->net_dev->name);
1761                 rc = 1;
1762                 goto exit;
1763         }
1764
1765         if (!deferred) {
1766                 /* Enable the adapter - sends HOST_COMPLETE */
1767                 if (ipw2100_enable_adapter(priv)) {
1768                         printk(KERN_ERR DRV_NAME ": "
1769                                "%s: failed in call to enable adapter.\n",
1770                                priv->net_dev->name);
1771                         ipw2100_hw_stop_adapter(priv);
1772                         rc = 1;
1773                         goto exit;
1774                 }
1775
1776                 /* Start a scan . . . */
1777                 ipw2100_set_scan_options(priv);
1778                 ipw2100_start_scan(priv);
1779         }
1780
1781       exit:
1782         return rc;
1783 }
1784
1785 /* Called by register_netdev() */
1786 static int ipw2100_net_init(struct net_device *dev)
1787 {
1788         struct ipw2100_priv *priv = ieee80211_priv(dev);
1789         return ipw2100_up(priv, 1);
1790 }
1791
1792 static void ipw2100_down(struct ipw2100_priv *priv)
1793 {
1794         unsigned long flags;
1795         union iwreq_data wrqu = {
1796                 .ap_addr = {
1797                             .sa_family = ARPHRD_ETHER}
1798         };
1799         int associated = priv->status & STATUS_ASSOCIATED;
1800
1801         /* Kill the RF switch timer */
1802         if (!priv->stop_rf_kill) {
1803                 priv->stop_rf_kill = 1;
1804                 cancel_delayed_work(&priv->rf_kill);
1805         }
1806
1807         /* Kill the firmare hang check timer */
1808         if (!priv->stop_hang_check) {
1809                 priv->stop_hang_check = 1;
1810                 cancel_delayed_work(&priv->hang_check);
1811         }
1812
1813         /* Kill any pending resets */
1814         if (priv->status & STATUS_RESET_PENDING)
1815                 cancel_delayed_work(&priv->reset_work);
1816
1817         /* Make sure the interrupt is on so that FW commands will be
1818          * processed correctly */
1819         spin_lock_irqsave(&priv->low_lock, flags);
1820         ipw2100_enable_interrupts(priv);
1821         spin_unlock_irqrestore(&priv->low_lock, flags);
1822
1823         if (ipw2100_hw_stop_adapter(priv))
1824                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1825                        priv->net_dev->name);
1826
1827         /* Do not disable the interrupt until _after_ we disable
1828          * the adaptor.  Otherwise the CARD_DISABLE command will never
1829          * be ack'd by the firmware */
1830         spin_lock_irqsave(&priv->low_lock, flags);
1831         ipw2100_disable_interrupts(priv);
1832         spin_unlock_irqrestore(&priv->low_lock, flags);
1833
1834 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1835         if (priv->config & CFG_C3_DISABLED) {
1836                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1837                 acpi_set_cstate_limit(priv->cstate_limit);
1838                 priv->config &= ~CFG_C3_DISABLED;
1839         }
1840 #endif
1841
1842         /* We have to signal any supplicant if we are disassociating */
1843         if (associated)
1844                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1845
1846         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1847         netif_carrier_off(priv->net_dev);
1848         netif_stop_queue(priv->net_dev);
1849 }
1850
1851 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1852 {
1853         unsigned long flags;
1854         union iwreq_data wrqu = {
1855                 .ap_addr = {
1856                             .sa_family = ARPHRD_ETHER}
1857         };
1858         int associated = priv->status & STATUS_ASSOCIATED;
1859
1860         spin_lock_irqsave(&priv->low_lock, flags);
1861         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1862         priv->resets++;
1863         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1864         priv->status |= STATUS_SECURITY_UPDATED;
1865
1866         /* Force a power cycle even if interface hasn't been opened
1867          * yet */
1868         cancel_delayed_work(&priv->reset_work);
1869         priv->status |= STATUS_RESET_PENDING;
1870         spin_unlock_irqrestore(&priv->low_lock, flags);
1871
1872         down(&priv->action_sem);
1873         /* stop timed checks so that they don't interfere with reset */
1874         priv->stop_hang_check = 1;
1875         cancel_delayed_work(&priv->hang_check);
1876
1877         /* We have to signal any supplicant if we are disassociating */
1878         if (associated)
1879                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1880
1881         ipw2100_up(priv, 0);
1882         up(&priv->action_sem);
1883
1884 }
1885
1886 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1887 {
1888
1889 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1890         int ret, len, essid_len;
1891         char essid[IW_ESSID_MAX_SIZE];
1892         u32 txrate;
1893         u32 chan;
1894         char *txratename;
1895         u8 bssid[ETH_ALEN];
1896
1897         /*
1898          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1899          *      an actual MAC of the AP. Seems like FW sets this
1900          *      address too late. Read it later and expose through
1901          *      /proc or schedule a later task to query and update
1902          */
1903
1904         essid_len = IW_ESSID_MAX_SIZE;
1905         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1906                                   essid, &essid_len);
1907         if (ret) {
1908                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1909                                __LINE__);
1910                 return;
1911         }
1912
1913         len = sizeof(u32);
1914         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1915         if (ret) {
1916                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1917                                __LINE__);
1918                 return;
1919         }
1920
1921         len = sizeof(u32);
1922         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1923         if (ret) {
1924                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1925                                __LINE__);
1926                 return;
1927         }
1928         len = ETH_ALEN;
1929         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1930         if (ret) {
1931                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1932                                __LINE__);
1933                 return;
1934         }
1935         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1936
1937         switch (txrate) {
1938         case TX_RATE_1_MBIT:
1939                 txratename = "1Mbps";
1940                 break;
1941         case TX_RATE_2_MBIT:
1942                 txratename = "2Mbsp";
1943                 break;
1944         case TX_RATE_5_5_MBIT:
1945                 txratename = "5.5Mbps";
1946                 break;
1947         case TX_RATE_11_MBIT:
1948                 txratename = "11Mbps";
1949                 break;
1950         default:
1951                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1952                 txratename = "unknown rate";
1953                 break;
1954         }
1955
1956         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1957                        MAC_FMT ")\n",
1958                        priv->net_dev->name, escape_essid(essid, essid_len),
1959                        txratename, chan, MAC_ARG(bssid));
1960
1961         /* now we copy read ssid into dev */
1962         if (!(priv->config & CFG_STATIC_ESSID)) {
1963                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1964                 memcpy(priv->essid, essid, priv->essid_len);
1965         }
1966         priv->channel = chan;
1967         memcpy(priv->bssid, bssid, ETH_ALEN);
1968
1969         priv->status |= STATUS_ASSOCIATING;
1970         priv->connect_start = get_seconds();
1971
1972         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1973 }
1974
1975 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1976                              int length, int batch_mode)
1977 {
1978         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
1979         struct host_command cmd = {
1980                 .host_command = SSID,
1981                 .host_command_sequence = 0,
1982                 .host_command_length = ssid_len
1983         };
1984         int err;
1985
1986         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
1987
1988         if (ssid_len)
1989                 memcpy(cmd.host_command_parameters, essid, ssid_len);
1990
1991         if (!batch_mode) {
1992                 err = ipw2100_disable_adapter(priv);
1993                 if (err)
1994                         return err;
1995         }
1996
1997         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
1998          * disable auto association -- so we cheat by setting a bogus SSID */
1999         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2000                 int i;
2001                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2002                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2003                         bogus[i] = 0x18 + i;
2004                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2005         }
2006
2007         /* NOTE:  We always send the SSID command even if the provided ESSID is
2008          * the same as what we currently think is set. */
2009
2010         err = ipw2100_hw_send_command(priv, &cmd);
2011         if (!err) {
2012                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2013                 memcpy(priv->essid, essid, ssid_len);
2014                 priv->essid_len = ssid_len;
2015         }
2016
2017         if (!batch_mode) {
2018                 if (ipw2100_enable_adapter(priv))
2019                         err = -EIO;
2020         }
2021
2022         return err;
2023 }
2024
2025 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2026 {
2027         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2028                   "disassociated: '%s' " MAC_FMT " \n",
2029                   escape_essid(priv->essid, priv->essid_len),
2030                   MAC_ARG(priv->bssid));
2031
2032         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2033
2034         if (priv->status & STATUS_STOPPING) {
2035                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2036                 return;
2037         }
2038
2039         memset(priv->bssid, 0, ETH_ALEN);
2040         memset(priv->ieee->bssid, 0, ETH_ALEN);
2041
2042         netif_carrier_off(priv->net_dev);
2043         netif_stop_queue(priv->net_dev);
2044
2045         if (!(priv->status & STATUS_RUNNING))
2046                 return;
2047
2048         if (priv->status & STATUS_SECURITY_UPDATED)
2049                 queue_work(priv->workqueue, &priv->security_work);
2050
2051         queue_work(priv->workqueue, &priv->wx_event_work);
2052 }
2053
2054 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2055 {
2056         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2057                        priv->net_dev->name);
2058
2059         /* RF_KILL is now enabled (else we wouldn't be here) */
2060         priv->status |= STATUS_RF_KILL_HW;
2061
2062 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2063         if (priv->config & CFG_C3_DISABLED) {
2064                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2065                 acpi_set_cstate_limit(priv->cstate_limit);
2066                 priv->config &= ~CFG_C3_DISABLED;
2067         }
2068 #endif
2069
2070         /* Make sure the RF Kill check timer is running */
2071         priv->stop_rf_kill = 0;
2072         cancel_delayed_work(&priv->rf_kill);
2073         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2074 }
2075
2076 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2077 {
2078         IPW_DEBUG_SCAN("scan complete\n");
2079         /* Age the scan results... */
2080         priv->ieee->scans++;
2081         priv->status &= ~STATUS_SCANNING;
2082 }
2083
2084 #ifdef CONFIG_IPW2100_DEBUG
2085 #define IPW2100_HANDLER(v, f) { v, f, # v }
2086 struct ipw2100_status_indicator {
2087         int status;
2088         void (*cb) (struct ipw2100_priv * priv, u32 status);
2089         char *name;
2090 };
2091 #else
2092 #define IPW2100_HANDLER(v, f) { v, f }
2093 struct ipw2100_status_indicator {
2094         int status;
2095         void (*cb) (struct ipw2100_priv * priv, u32 status);
2096 };
2097 #endif                          /* CONFIG_IPW2100_DEBUG */
2098
2099 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2100 {
2101         IPW_DEBUG_SCAN("Scanning...\n");
2102         priv->status |= STATUS_SCANNING;
2103 }
2104
2105 static const struct ipw2100_status_indicator status_handlers[] = {
2106         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2107         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2108         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2109         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2110         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2111         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2112         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2113         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2114         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2115         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2116         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2117         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2118         IPW2100_HANDLER(-1, NULL)
2119 };
2120
2121 static void isr_status_change(struct ipw2100_priv *priv, int status)
2122 {
2123         int i;
2124
2125         if (status == IPW_STATE_SCANNING &&
2126             priv->status & STATUS_ASSOCIATED &&
2127             !(priv->status & STATUS_SCANNING)) {
2128                 IPW_DEBUG_INFO("Scan detected while associated, with "
2129                                "no scan request.  Restarting firmware.\n");
2130
2131                 /* Wake up any sleeping jobs */
2132                 schedule_reset(priv);
2133         }
2134
2135         for (i = 0; status_handlers[i].status != -1; i++) {
2136                 if (status == status_handlers[i].status) {
2137                         IPW_DEBUG_NOTIF("Status change: %s\n",
2138                                         status_handlers[i].name);
2139                         if (status_handlers[i].cb)
2140                                 status_handlers[i].cb(priv, status);
2141                         priv->wstats.status = status;
2142                         return;
2143                 }
2144         }
2145
2146         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2147 }
2148
2149 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2150                                     struct ipw2100_cmd_header *cmd)
2151 {
2152 #ifdef CONFIG_IPW2100_DEBUG
2153         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2154                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2155                              command_types[cmd->host_command_reg],
2156                              cmd->host_command_reg);
2157         }
2158 #endif
2159         if (cmd->host_command_reg == HOST_COMPLETE)
2160                 priv->status |= STATUS_ENABLED;
2161
2162         if (cmd->host_command_reg == CARD_DISABLE)
2163                 priv->status &= ~STATUS_ENABLED;
2164
2165         priv->status &= ~STATUS_CMD_ACTIVE;
2166
2167         wake_up_interruptible(&priv->wait_command_queue);
2168 }
2169
2170 #ifdef CONFIG_IPW2100_DEBUG
2171 static const char *frame_types[] = {
2172         "COMMAND_STATUS_VAL",
2173         "STATUS_CHANGE_VAL",
2174         "P80211_DATA_VAL",
2175         "P8023_DATA_VAL",
2176         "HOST_NOTIFICATION_VAL"
2177 };
2178 #endif
2179
2180 static inline int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2181                                     struct ipw2100_rx_packet *packet)
2182 {
2183         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2184         if (!packet->skb)
2185                 return -ENOMEM;
2186
2187         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2188         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2189                                           sizeof(struct ipw2100_rx),
2190                                           PCI_DMA_FROMDEVICE);
2191         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2192          *       dma_addr */
2193
2194         return 0;
2195 }
2196
2197 #define SEARCH_ERROR   0xffffffff
2198 #define SEARCH_FAIL    0xfffffffe
2199 #define SEARCH_SUCCESS 0xfffffff0
2200 #define SEARCH_DISCARD 0
2201 #define SEARCH_SNAPSHOT 1
2202
2203 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2204 static inline int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2205 {
2206         int i;
2207         if (priv->snapshot[0])
2208                 return 1;
2209         for (i = 0; i < 0x30; i++) {
2210                 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2211                 if (!priv->snapshot[i]) {
2212                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2213                                        "buffer %d\n", priv->net_dev->name, i);
2214                         while (i > 0)
2215                                 kfree(priv->snapshot[--i]);
2216                         priv->snapshot[0] = NULL;
2217                         return 0;
2218                 }
2219         }
2220
2221         return 1;
2222 }
2223
2224 static inline void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2225 {
2226         int i;
2227         if (!priv->snapshot[0])
2228                 return;
2229         for (i = 0; i < 0x30; i++)
2230                 kfree(priv->snapshot[i]);
2231         priv->snapshot[0] = NULL;
2232 }
2233
2234 static inline u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2235                                     size_t len, int mode)
2236 {
2237         u32 i, j;
2238         u32 tmp;
2239         u8 *s, *d;
2240         u32 ret;
2241
2242         s = in_buf;
2243         if (mode == SEARCH_SNAPSHOT) {
2244                 if (!ipw2100_snapshot_alloc(priv))
2245                         mode = SEARCH_DISCARD;
2246         }
2247
2248         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2249                 read_nic_dword(priv->net_dev, i, &tmp);
2250                 if (mode == SEARCH_SNAPSHOT)
2251                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2252                 if (ret == SEARCH_FAIL) {
2253                         d = (u8 *) & tmp;
2254                         for (j = 0; j < 4; j++) {
2255                                 if (*s != *d) {
2256                                         s = in_buf;
2257                                         continue;
2258                                 }
2259
2260                                 s++;
2261                                 d++;
2262
2263                                 if ((s - in_buf) == len)
2264                                         ret = (i + j) - len + 1;
2265                         }
2266                 } else if (mode == SEARCH_DISCARD)
2267                         return ret;
2268         }
2269
2270         return ret;
2271 }
2272
2273 /*
2274  *
2275  * 0) Disconnect the SKB from the firmware (just unmap)
2276  * 1) Pack the ETH header into the SKB
2277  * 2) Pass the SKB to the network stack
2278  *
2279  * When packet is provided by the firmware, it contains the following:
2280  *
2281  * .  ieee80211_hdr
2282  * .  ieee80211_snap_hdr
2283  *
2284  * The size of the constructed ethernet
2285  *
2286  */
2287 #ifdef CONFIG_IPW2100_RX_DEBUG
2288 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2289 #endif
2290
2291 static inline void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2292 {
2293 #ifdef CONFIG_IPW2100_DEBUG_C3
2294         struct ipw2100_status *status = &priv->status_queue.drv[i];
2295         u32 match, reg;
2296         int j;
2297 #endif
2298 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2299         int limit;
2300 #endif
2301
2302         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2303                        i * sizeof(struct ipw2100_status));
2304
2305 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2306         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2307         limit = acpi_get_cstate_limit();
2308         if (limit > 2) {
2309                 priv->cstate_limit = limit;
2310                 acpi_set_cstate_limit(2);
2311                 priv->config |= CFG_C3_DISABLED;
2312         }
2313 #endif
2314
2315 #ifdef CONFIG_IPW2100_DEBUG_C3
2316         /* Halt the fimrware so we can get a good image */
2317         write_register(priv->net_dev, IPW_REG_RESET_REG,
2318                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2319         j = 5;
2320         do {
2321                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2322                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2323
2324                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2325                         break;
2326         } while (j--);
2327
2328         match = ipw2100_match_buf(priv, (u8 *) status,
2329                                   sizeof(struct ipw2100_status),
2330                                   SEARCH_SNAPSHOT);
2331         if (match < SEARCH_SUCCESS)
2332                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2333                                "offset 0x%06X, length %d:\n",
2334                                priv->net_dev->name, match,
2335                                sizeof(struct ipw2100_status));
2336         else
2337                 IPW_DEBUG_INFO("%s: No DMA status match in "
2338                                "Firmware.\n", priv->net_dev->name);
2339
2340         printk_buf((u8 *) priv->status_queue.drv,
2341                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2342 #endif
2343
2344         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2345         priv->ieee->stats.rx_errors++;
2346         schedule_reset(priv);
2347 }
2348
2349 static inline void isr_rx(struct ipw2100_priv *priv, int i,
2350                           struct ieee80211_rx_stats *stats)
2351 {
2352         struct ipw2100_status *status = &priv->status_queue.drv[i];
2353         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2354
2355         IPW_DEBUG_RX("Handler...\n");
2356
2357         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2358                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2359                                "  Dropping.\n",
2360                                priv->net_dev->name,
2361                                status->frame_size, skb_tailroom(packet->skb));
2362                 priv->ieee->stats.rx_errors++;
2363                 return;
2364         }
2365
2366         if (unlikely(!netif_running(priv->net_dev))) {
2367                 priv->ieee->stats.rx_errors++;
2368                 priv->wstats.discard.misc++;
2369                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2370                 return;
2371         }
2372 #ifdef CONFIG_IPW2100_MONITOR
2373         if (unlikely(priv->ieee->iw_mode == IW_MODE_MONITOR &&
2374                      priv->config & CFG_CRC_CHECK &&
2375                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2376                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2377                 priv->ieee->stats.rx_errors++;
2378                 return;
2379         }
2380 #endif
2381
2382         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2383                      !(priv->status & STATUS_ASSOCIATED))) {
2384                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2385                 priv->wstats.discard.misc++;
2386                 return;
2387         }
2388
2389         pci_unmap_single(priv->pci_dev,
2390                          packet->dma_addr,
2391                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2392
2393         skb_put(packet->skb, status->frame_size);
2394
2395 #ifdef CONFIG_IPW2100_RX_DEBUG
2396         /* Make a copy of the frame so we can dump it to the logs if
2397          * ieee80211_rx fails */
2398         memcpy(packet_data, packet->skb->data,
2399                min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2400 #endif
2401
2402         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2403 #ifdef CONFIG_IPW2100_RX_DEBUG
2404                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2405                                priv->net_dev->name);
2406                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2407 #endif
2408                 priv->ieee->stats.rx_errors++;
2409
2410                 /* ieee80211_rx failed, so it didn't free the SKB */
2411                 dev_kfree_skb_any(packet->skb);
2412                 packet->skb = NULL;
2413         }
2414
2415         /* We need to allocate a new SKB and attach it to the RDB. */
2416         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2417                 printk(KERN_WARNING DRV_NAME ": "
2418                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2419                        "adapter.\n", priv->net_dev->name);
2420                 /* TODO: schedule adapter shutdown */
2421                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2422         }
2423
2424         /* Update the RDB entry */
2425         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2426 }
2427
2428 static inline int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2429 {
2430         struct ipw2100_status *status = &priv->status_queue.drv[i];
2431         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2432         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2433
2434         switch (frame_type) {
2435         case COMMAND_STATUS_VAL:
2436                 return (status->frame_size != sizeof(u->rx_data.command));
2437         case STATUS_CHANGE_VAL:
2438                 return (status->frame_size != sizeof(u->rx_data.status));
2439         case HOST_NOTIFICATION_VAL:
2440                 return (status->frame_size < sizeof(u->rx_data.notification));
2441         case P80211_DATA_VAL:
2442         case P8023_DATA_VAL:
2443 #ifdef CONFIG_IPW2100_MONITOR
2444                 return 0;
2445 #else
2446                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2447                 case IEEE80211_FTYPE_MGMT:
2448                 case IEEE80211_FTYPE_CTL:
2449                         return 0;
2450                 case IEEE80211_FTYPE_DATA:
2451                         return (status->frame_size >
2452                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2453                 }
2454 #endif
2455         }
2456
2457         return 1;
2458 }
2459
2460 /*
2461  * ipw2100 interrupts are disabled at this point, and the ISR
2462  * is the only code that calls this method.  So, we do not need
2463  * to play with any locks.
2464  *
2465  * RX Queue works as follows:
2466  *
2467  * Read index - firmware places packet in entry identified by the
2468  *              Read index and advances Read index.  In this manner,
2469  *              Read index will always point to the next packet to
2470  *              be filled--but not yet valid.
2471  *
2472  * Write index - driver fills this entry with an unused RBD entry.
2473  *               This entry has not filled by the firmware yet.
2474  *
2475  * In between the W and R indexes are the RBDs that have been received
2476  * but not yet processed.
2477  *
2478  * The process of handling packets will start at WRITE + 1 and advance
2479  * until it reaches the READ index.
2480  *
2481  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2482  *
2483  */
2484 static inline void __ipw2100_rx_process(struct ipw2100_priv *priv)
2485 {
2486         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2487         struct ipw2100_status_queue *sq = &priv->status_queue;
2488         struct ipw2100_rx_packet *packet;
2489         u16 frame_type;
2490         u32 r, w, i, s;
2491         struct ipw2100_rx *u;
2492         struct ieee80211_rx_stats stats = {
2493                 .mac_time = jiffies,
2494         };
2495
2496         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2497         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2498
2499         if (r >= rxq->entries) {
2500                 IPW_DEBUG_RX("exit - bad read index\n");
2501                 return;
2502         }
2503
2504         i = (rxq->next + 1) % rxq->entries;
2505         s = i;
2506         while (i != r) {
2507                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2508                    r, rxq->next, i); */
2509
2510                 packet = &priv->rx_buffers[i];
2511
2512                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2513                  * the correct values */
2514                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2515                                             sq->nic +
2516                                             sizeof(struct ipw2100_status) * i,
2517                                             sizeof(struct ipw2100_status),
2518                                             PCI_DMA_FROMDEVICE);
2519
2520                 /* Sync the DMA for the RX buffer so CPU is sure to get
2521                  * the correct values */
2522                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2523                                             sizeof(struct ipw2100_rx),
2524                                             PCI_DMA_FROMDEVICE);
2525
2526                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2527                         ipw2100_corruption_detected(priv, i);
2528                         goto increment;
2529                 }
2530
2531                 u = packet->rxp;
2532                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2533                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2534                 stats.len = sq->drv[i].frame_size;
2535
2536                 stats.mask = 0;
2537                 if (stats.rssi != 0)
2538                         stats.mask |= IEEE80211_STATMASK_RSSI;
2539                 stats.freq = IEEE80211_24GHZ_BAND;
2540
2541                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2542                              priv->net_dev->name, frame_types[frame_type],
2543                              stats.len);
2544
2545                 switch (frame_type) {
2546                 case COMMAND_STATUS_VAL:
2547                         /* Reset Rx watchdog */
2548                         isr_rx_complete_command(priv, &u->rx_data.command);
2549                         break;
2550
2551                 case STATUS_CHANGE_VAL:
2552                         isr_status_change(priv, u->rx_data.status);
2553                         break;
2554
2555                 case P80211_DATA_VAL:
2556                 case P8023_DATA_VAL:
2557 #ifdef CONFIG_IPW2100_MONITOR
2558                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2559                                 isr_rx(priv, i, &stats);
2560                                 break;
2561                         }
2562 #endif
2563                         if (stats.len < sizeof(u->rx_data.header))
2564                                 break;
2565                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2566                         case IEEE80211_FTYPE_MGMT:
2567                                 ieee80211_rx_mgt(priv->ieee,
2568                                                  &u->rx_data.header, &stats);
2569                                 break;
2570
2571                         case IEEE80211_FTYPE_CTL:
2572                                 break;
2573
2574                         case IEEE80211_FTYPE_DATA:
2575                                 isr_rx(priv, i, &stats);
2576                                 break;
2577
2578                         }
2579                         break;
2580                 }
2581
2582               increment:
2583                 /* clear status field associated with this RBD */
2584                 rxq->drv[i].status.info.field = 0;
2585
2586                 i = (i + 1) % rxq->entries;
2587         }
2588
2589         if (i != s) {
2590                 /* backtrack one entry, wrapping to end if at 0 */
2591                 rxq->next = (i ? i : rxq->entries) - 1;
2592
2593                 write_register(priv->net_dev,
2594                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2595         }
2596 }
2597
2598 /*
2599  * __ipw2100_tx_process
2600  *
2601  * This routine will determine whether the next packet on
2602  * the fw_pend_list has been processed by the firmware yet.
2603  *
2604  * If not, then it does nothing and returns.
2605  *
2606  * If so, then it removes the item from the fw_pend_list, frees
2607  * any associated storage, and places the item back on the
2608  * free list of its source (either msg_free_list or tx_free_list)
2609  *
2610  * TX Queue works as follows:
2611  *
2612  * Read index - points to the next TBD that the firmware will
2613  *              process.  The firmware will read the data, and once
2614  *              done processing, it will advance the Read index.
2615  *
2616  * Write index - driver fills this entry with an constructed TBD
2617  *               entry.  The Write index is not advanced until the
2618  *               packet has been configured.
2619  *
2620  * In between the W and R indexes are the TBDs that have NOT been
2621  * processed.  Lagging behind the R index are packets that have
2622  * been processed but have not been freed by the driver.
2623  *
2624  * In order to free old storage, an internal index will be maintained
2625  * that points to the next packet to be freed.  When all used
2626  * packets have been freed, the oldest index will be the same as the
2627  * firmware's read index.
2628  *
2629  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2630  *
2631  * Because the TBD structure can not contain arbitrary data, the
2632  * driver must keep an internal queue of cached allocations such that
2633  * it can put that data back into the tx_free_list and msg_free_list
2634  * for use by future command and data packets.
2635  *
2636  */
2637 static inline int __ipw2100_tx_process(struct ipw2100_priv *priv)
2638 {
2639         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2640         struct ipw2100_bd *tbd;
2641         struct list_head *element;
2642         struct ipw2100_tx_packet *packet;
2643         int descriptors_used;
2644         int e, i;
2645         u32 r, w, frag_num = 0;
2646
2647         if (list_empty(&priv->fw_pend_list))
2648                 return 0;
2649
2650         element = priv->fw_pend_list.next;
2651
2652         packet = list_entry(element, struct ipw2100_tx_packet, list);
2653         tbd = &txq->drv[packet->index];
2654
2655         /* Determine how many TBD entries must be finished... */
2656         switch (packet->type) {
2657         case COMMAND:
2658                 /* COMMAND uses only one slot; don't advance */
2659                 descriptors_used = 1;
2660                 e = txq->oldest;
2661                 break;
2662
2663         case DATA:
2664                 /* DATA uses two slots; advance and loop position. */
2665                 descriptors_used = tbd->num_fragments;
2666                 frag_num = tbd->num_fragments - 1;
2667                 e = txq->oldest + frag_num;
2668                 e %= txq->entries;
2669                 break;
2670
2671         default:
2672                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2673                        priv->net_dev->name);
2674                 return 0;
2675         }
2676
2677         /* if the last TBD is not done by NIC yet, then packet is
2678          * not ready to be released.
2679          *
2680          */
2681         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2682                       &r);
2683         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2684                       &w);
2685         if (w != txq->next)
2686                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2687                        priv->net_dev->name);
2688
2689         /*
2690          * txq->next is the index of the last packet written txq->oldest is
2691          * the index of the r is the index of the next packet to be read by
2692          * firmware
2693          */
2694
2695         /*
2696          * Quick graphic to help you visualize the following
2697          * if / else statement
2698          *
2699          * ===>|                     s---->|===============
2700          *                               e>|
2701          * | a | b | c | d | e | f | g | h | i | j | k | l
2702          *       r---->|
2703          *               w
2704          *
2705          * w - updated by driver
2706          * r - updated by firmware
2707          * s - start of oldest BD entry (txq->oldest)
2708          * e - end of oldest BD entry
2709          *
2710          */
2711         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2712                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2713                 return 0;
2714         }
2715
2716         list_del(element);
2717         DEC_STAT(&priv->fw_pend_stat);
2718
2719 #ifdef CONFIG_IPW2100_DEBUG
2720         {
2721                 int i = txq->oldest;
2722                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2723                              &txq->drv[i],
2724                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2725                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2726
2727                 if (packet->type == DATA) {
2728                         i = (i + 1) % txq->entries;
2729
2730                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2731                                      &txq->drv[i],
2732                                      (u32) (txq->nic + i *
2733                                             sizeof(struct ipw2100_bd)),
2734                                      (u32) txq->drv[i].host_addr,
2735                                      txq->drv[i].buf_length);
2736                 }
2737         }
2738 #endif
2739
2740         switch (packet->type) {
2741         case DATA:
2742                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2743                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2744                                "Expecting DATA TBD but pulled "
2745                                "something else: ids %d=%d.\n",
2746                                priv->net_dev->name, txq->oldest, packet->index);
2747
2748                 /* DATA packet; we have to unmap and free the SKB */
2749                 for (i = 0; i < frag_num; i++) {
2750                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2751
2752                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2753                                      (packet->index + 1 + i) % txq->entries,
2754                                      tbd->host_addr, tbd->buf_length);
2755
2756                         pci_unmap_single(priv->pci_dev,
2757                                          tbd->host_addr,
2758                                          tbd->buf_length, PCI_DMA_TODEVICE);
2759                 }
2760
2761                 ieee80211_txb_free(packet->info.d_struct.txb);
2762                 packet->info.d_struct.txb = NULL;
2763
2764                 list_add_tail(element, &priv->tx_free_list);
2765                 INC_STAT(&priv->tx_free_stat);
2766
2767                 /* We have a free slot in the Tx queue, so wake up the
2768                  * transmit layer if it is stopped. */
2769                 if (priv->status & STATUS_ASSOCIATED)
2770                         netif_wake_queue(priv->net_dev);
2771
2772                 /* A packet was processed by the hardware, so update the
2773                  * watchdog */
2774                 priv->net_dev->trans_start = jiffies;
2775
2776                 break;
2777
2778         case COMMAND:
2779                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2780                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2781                                "Expecting COMMAND TBD but pulled "
2782                                "something else: ids %d=%d.\n",
2783                                priv->net_dev->name, txq->oldest, packet->index);
2784
2785 #ifdef CONFIG_IPW2100_DEBUG
2786                 if (packet->info.c_struct.cmd->host_command_reg <
2787                     sizeof(command_types) / sizeof(*command_types))
2788                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2789                                      command_types[packet->info.c_struct.cmd->
2790                                                    host_command_reg],
2791                                      packet->info.c_struct.cmd->
2792                                      host_command_reg,
2793                                      packet->info.c_struct.cmd->cmd_status_reg);
2794 #endif
2795
2796                 list_add_tail(element, &priv->msg_free_list);
2797                 INC_STAT(&priv->msg_free_stat);
2798                 break;
2799         }
2800
2801         /* advance oldest used TBD pointer to start of next entry */
2802         txq->oldest = (e + 1) % txq->entries;
2803         /* increase available TBDs number */
2804         txq->available += descriptors_used;
2805         SET_STAT(&priv->txq_stat, txq->available);
2806
2807         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2808                      jiffies - packet->jiffy_start);
2809
2810         return (!list_empty(&priv->fw_pend_list));
2811 }
2812
2813 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2814 {
2815         int i = 0;
2816
2817         while (__ipw2100_tx_process(priv) && i < 200)
2818                 i++;
2819
2820         if (i == 200) {
2821                 printk(KERN_WARNING DRV_NAME ": "
2822                        "%s: Driver is running slow (%d iters).\n",
2823                        priv->net_dev->name, i);
2824         }
2825 }
2826
2827 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2828 {
2829         struct list_head *element;
2830         struct ipw2100_tx_packet *packet;
2831         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2832         struct ipw2100_bd *tbd;
2833         int next = txq->next;
2834
2835         while (!list_empty(&priv->msg_pend_list)) {
2836                 /* if there isn't enough space in TBD queue, then
2837                  * don't stuff a new one in.
2838                  * NOTE: 3 are needed as a command will take one,
2839                  *       and there is a minimum of 2 that must be
2840                  *       maintained between the r and w indexes
2841                  */
2842                 if (txq->available <= 3) {
2843                         IPW_DEBUG_TX("no room in tx_queue\n");
2844                         break;
2845                 }
2846
2847                 element = priv->msg_pend_list.next;
2848                 list_del(element);
2849                 DEC_STAT(&priv->msg_pend_stat);
2850
2851                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2852
2853                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2854                              &txq->drv[txq->next],
2855                              (void *)(txq->nic + txq->next *
2856                                       sizeof(struct ipw2100_bd)));
2857
2858                 packet->index = txq->next;
2859
2860                 tbd = &txq->drv[txq->next];
2861
2862                 /* initialize TBD */
2863                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2864                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2865                 /* not marking number of fragments causes problems
2866                  * with f/w debug version */
2867                 tbd->num_fragments = 1;
2868                 tbd->status.info.field =
2869                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2870                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2871
2872                 /* update TBD queue counters */
2873                 txq->next++;
2874                 txq->next %= txq->entries;
2875                 txq->available--;
2876                 DEC_STAT(&priv->txq_stat);
2877
2878                 list_add_tail(element, &priv->fw_pend_list);
2879                 INC_STAT(&priv->fw_pend_stat);
2880         }
2881
2882         if (txq->next != next) {
2883                 /* kick off the DMA by notifying firmware the
2884                  * write index has moved; make sure TBD stores are sync'd */
2885                 wmb();
2886                 write_register(priv->net_dev,
2887                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2888                                txq->next);
2889         }
2890 }
2891
2892 /*
2893  * ipw2100_tx_send_data
2894  *
2895  */
2896 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2897 {
2898         struct list_head *element;
2899         struct ipw2100_tx_packet *packet;
2900         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2901         struct ipw2100_bd *tbd;
2902         int next = txq->next;
2903         int i = 0;
2904         struct ipw2100_data_header *ipw_hdr;
2905         struct ieee80211_hdr_3addr *hdr;
2906
2907         while (!list_empty(&priv->tx_pend_list)) {
2908                 /* if there isn't enough space in TBD queue, then
2909                  * don't stuff a new one in.
2910                  * NOTE: 4 are needed as a data will take two,
2911                  *       and there is a minimum of 2 that must be
2912                  *       maintained between the r and w indexes
2913                  */
2914                 element = priv->tx_pend_list.next;
2915                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2916
2917                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
2918                              IPW_MAX_BDS)) {
2919                         /* TODO: Support merging buffers if more than
2920                          * IPW_MAX_BDS are used */
2921                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
2922                                        "Increase fragmentation level.\n",
2923                                        priv->net_dev->name);
2924                 }
2925
2926                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
2927                         IPW_DEBUG_TX("no room in tx_queue\n");
2928                         break;
2929                 }
2930
2931                 list_del(element);
2932                 DEC_STAT(&priv->tx_pend_stat);
2933
2934                 tbd = &txq->drv[txq->next];
2935
2936                 packet->index = txq->next;
2937
2938                 ipw_hdr = packet->info.d_struct.data;
2939                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
2940                     fragments[0]->data;
2941
2942                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
2943                         /* To DS: Addr1 = BSSID, Addr2 = SA,
2944                            Addr3 = DA */
2945                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2946                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
2947                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
2948                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
2949                            Addr3 = BSSID */
2950                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2951                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
2952                 }
2953
2954                 ipw_hdr->host_command_reg = SEND;
2955                 ipw_hdr->host_command_reg1 = 0;
2956
2957                 /* For now we only support host based encryption */
2958                 ipw_hdr->needs_encryption = 0;
2959                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
2960                 if (packet->info.d_struct.txb->nr_frags > 1)
2961                         ipw_hdr->fragment_size =
2962                             packet->info.d_struct.txb->frag_size -
2963                             IEEE80211_3ADDR_LEN;
2964                 else
2965                         ipw_hdr->fragment_size = 0;
2966
2967                 tbd->host_addr = packet->info.d_struct.data_phys;
2968                 tbd->buf_length = sizeof(struct ipw2100_data_header);
2969                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
2970                 tbd->status.info.field =
2971                     IPW_BD_STATUS_TX_FRAME_802_3 |
2972                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
2973                 txq->next++;
2974                 txq->next %= txq->entries;
2975
2976                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
2977                              packet->index, tbd->host_addr, tbd->buf_length);
2978 #ifdef CONFIG_IPW2100_DEBUG
2979                 if (packet->info.d_struct.txb->nr_frags > 1)
2980                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
2981                                        packet->info.d_struct.txb->nr_frags);
2982 #endif
2983
2984                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
2985                         tbd = &txq->drv[txq->next];
2986                         if (i == packet->info.d_struct.txb->nr_frags - 1)
2987                                 tbd->status.info.field =
2988                                     IPW_BD_STATUS_TX_FRAME_802_3 |
2989                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2990                         else
2991                                 tbd->status.info.field =
2992                                     IPW_BD_STATUS_TX_FRAME_802_3 |
2993                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
2994
2995                         tbd->buf_length = packet->info.d_struct.txb->
2996                             fragments[i]->len - IEEE80211_3ADDR_LEN;
2997
2998                         tbd->host_addr = pci_map_single(priv->pci_dev,
2999                                                         packet->info.d_struct.
3000                                                         txb->fragments[i]->
3001                                                         data +
3002                                                         IEEE80211_3ADDR_LEN,
3003                                                         tbd->buf_length,
3004                                                         PCI_DMA_TODEVICE);
3005
3006                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3007                                      txq->next, tbd->host_addr,
3008                                      tbd->buf_length);
3009
3010                         pci_dma_sync_single_for_device(priv->pci_dev,
3011                                                        tbd->host_addr,
3012                                                        tbd->buf_length,
3013                                                        PCI_DMA_TODEVICE);
3014
3015                         txq->next++;
3016                         txq->next %= txq->entries;
3017                 }
3018
3019                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3020                 SET_STAT(&priv->txq_stat, txq->available);
3021
3022                 list_add_tail(element, &priv->fw_pend_list);
3023                 INC_STAT(&priv->fw_pend_stat);
3024         }
3025
3026         if (txq->next != next) {
3027                 /* kick off the DMA by notifying firmware the
3028                  * write index has moved; make sure TBD stores are sync'd */
3029                 write_register(priv->net_dev,
3030                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3031                                txq->next);
3032         }
3033         return;
3034 }
3035
3036 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3037 {
3038         struct net_device *dev = priv->net_dev;
3039         unsigned long flags;
3040         u32 inta, tmp;
3041
3042         spin_lock_irqsave(&priv->low_lock, flags);
3043         ipw2100_disable_interrupts(priv);
3044
3045         read_register(dev, IPW_REG_INTA, &inta);
3046
3047         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3048                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3049
3050         priv->in_isr++;
3051         priv->interrupts++;
3052
3053         /* We do not loop and keep polling for more interrupts as this
3054          * is frowned upon and doesn't play nicely with other potentially
3055          * chained IRQs */
3056         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3057                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3058
3059         if (inta & IPW2100_INTA_FATAL_ERROR) {
3060                 printk(KERN_WARNING DRV_NAME
3061                        ": Fatal interrupt. Scheduling firmware restart.\n");
3062                 priv->inta_other++;
3063                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3064
3065                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3066                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3067                                priv->net_dev->name, priv->fatal_error);
3068
3069                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3070                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3071                                priv->net_dev->name, tmp);
3072
3073                 /* Wake up any sleeping jobs */
3074                 schedule_reset(priv);
3075         }
3076
3077         if (inta & IPW2100_INTA_PARITY_ERROR) {
3078                 printk(KERN_ERR DRV_NAME
3079                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3080                 priv->inta_other++;
3081                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3082         }
3083
3084         if (inta & IPW2100_INTA_RX_TRANSFER) {
3085                 IPW_DEBUG_ISR("RX interrupt\n");
3086
3087                 priv->rx_interrupts++;
3088
3089                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3090
3091                 __ipw2100_rx_process(priv);
3092                 __ipw2100_tx_complete(priv);
3093         }
3094
3095         if (inta & IPW2100_INTA_TX_TRANSFER) {
3096                 IPW_DEBUG_ISR("TX interrupt\n");
3097
3098                 priv->tx_interrupts++;
3099
3100                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3101
3102                 __ipw2100_tx_complete(priv);
3103                 ipw2100_tx_send_commands(priv);
3104                 ipw2100_tx_send_data(priv);
3105         }
3106
3107         if (inta & IPW2100_INTA_TX_COMPLETE) {
3108                 IPW_DEBUG_ISR("TX complete\n");
3109                 priv->inta_other++;
3110                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3111
3112                 __ipw2100_tx_complete(priv);
3113         }
3114
3115         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3116                 /* ipw2100_handle_event(dev); */
3117                 priv->inta_other++;
3118                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3119         }
3120
3121         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3122                 IPW_DEBUG_ISR("FW init done interrupt\n");
3123                 priv->inta_other++;
3124
3125                 read_register(dev, IPW_REG_INTA, &tmp);
3126                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3127                            IPW2100_INTA_PARITY_ERROR)) {
3128                         write_register(dev, IPW_REG_INTA,
3129                                        IPW2100_INTA_FATAL_ERROR |
3130                                        IPW2100_INTA_PARITY_ERROR);
3131                 }
3132
3133                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3134         }
3135
3136         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3137                 IPW_DEBUG_ISR("Status change interrupt\n");
3138                 priv->inta_other++;
3139                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3140         }
3141
3142         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3143                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3144                 priv->inta_other++;
3145                 write_register(dev, IPW_REG_INTA,
3146                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3147         }
3148
3149         priv->in_isr--;
3150         ipw2100_enable_interrupts(priv);
3151
3152         spin_unlock_irqrestore(&priv->low_lock, flags);
3153
3154         IPW_DEBUG_ISR("exit\n");
3155 }
3156
3157 static irqreturn_t ipw2100_interrupt(int irq, void *data, struct pt_regs *regs)
3158 {
3159         struct ipw2100_priv *priv = data;
3160         u32 inta, inta_mask;
3161
3162         if (!data)
3163                 return IRQ_NONE;
3164
3165         spin_lock(&priv->low_lock);
3166
3167         /* We check to see if we should be ignoring interrupts before
3168          * we touch the hardware.  During ucode load if we try and handle
3169          * an interrupt we can cause keyboard problems as well as cause
3170          * the ucode to fail to initialize */
3171         if (!(priv->status & STATUS_INT_ENABLED)) {
3172                 /* Shared IRQ */
3173                 goto none;
3174         }
3175
3176         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3177         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3178
3179         if (inta == 0xFFFFFFFF) {
3180                 /* Hardware disappeared */
3181                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3182                 goto none;
3183         }
3184
3185         inta &= IPW_INTERRUPT_MASK;
3186
3187         if (!(inta & inta_mask)) {
3188                 /* Shared interrupt */
3189                 goto none;
3190         }
3191
3192         /* We disable the hardware interrupt here just to prevent unneeded
3193          * calls to be made.  We disable this again within the actual
3194          * work tasklet, so if another part of the code re-enables the
3195          * interrupt, that is fine */
3196         ipw2100_disable_interrupts(priv);
3197
3198         tasklet_schedule(&priv->irq_tasklet);
3199         spin_unlock(&priv->low_lock);
3200
3201         return IRQ_HANDLED;
3202       none:
3203         spin_unlock(&priv->low_lock);
3204         return IRQ_NONE;
3205 }
3206
3207 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3208                       int pri)
3209 {
3210         struct ipw2100_priv *priv = ieee80211_priv(dev);
3211         struct list_head *element;
3212         struct ipw2100_tx_packet *packet;
3213         unsigned long flags;
3214
3215         spin_lock_irqsave(&priv->low_lock, flags);
3216
3217         if (!(priv->status & STATUS_ASSOCIATED)) {
3218                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3219                 priv->ieee->stats.tx_carrier_errors++;
3220                 netif_stop_queue(dev);
3221                 goto fail_unlock;
3222         }
3223
3224         if (list_empty(&priv->tx_free_list))
3225                 goto fail_unlock;
3226
3227         element = priv->tx_free_list.next;
3228         packet = list_entry(element, struct ipw2100_tx_packet, list);
3229
3230         packet->info.d_struct.txb = txb;
3231
3232         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3233         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3234
3235         packet->jiffy_start = jiffies;
3236
3237         list_del(element);
3238         DEC_STAT(&priv->tx_free_stat);
3239
3240         list_add_tail(element, &priv->tx_pend_list);
3241         INC_STAT(&priv->tx_pend_stat);
3242
3243         ipw2100_tx_send_data(priv);
3244
3245         spin_unlock_irqrestore(&priv->low_lock, flags);
3246         return 0;
3247
3248       fail_unlock:
3249         netif_stop_queue(dev);
3250         spin_unlock_irqrestore(&priv->low_lock, flags);
3251         return 1;
3252 }
3253
3254 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3255 {
3256         int i, j, err = -EINVAL;
3257         void *v;
3258         dma_addr_t p;
3259
3260         priv->msg_buffers =
3261             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3262                                                 sizeof(struct
3263                                                        ipw2100_tx_packet),
3264                                                 GFP_KERNEL);
3265         if (!priv->msg_buffers) {
3266                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3267                        "buffers.\n", priv->net_dev->name);
3268                 return -ENOMEM;
3269         }
3270
3271         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3272                 v = pci_alloc_consistent(priv->pci_dev,
3273                                          sizeof(struct ipw2100_cmd_header), &p);
3274                 if (!v) {
3275                         printk(KERN_ERR DRV_NAME ": "
3276                                "%s: PCI alloc failed for msg "
3277                                "buffers.\n", priv->net_dev->name);
3278                         err = -ENOMEM;
3279                         break;
3280                 }
3281
3282                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3283
3284                 priv->msg_buffers[i].type = COMMAND;
3285                 priv->msg_buffers[i].info.c_struct.cmd =
3286                     (struct ipw2100_cmd_header *)v;
3287                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3288         }
3289
3290         if (i == IPW_COMMAND_POOL_SIZE)
3291                 return 0;
3292
3293         for (j = 0; j < i; j++) {
3294                 pci_free_consistent(priv->pci_dev,
3295                                     sizeof(struct ipw2100_cmd_header),
3296                                     priv->msg_buffers[j].info.c_struct.cmd,
3297                                     priv->msg_buffers[j].info.c_struct.
3298                                     cmd_phys);
3299         }
3300
3301         kfree(priv->msg_buffers);
3302         priv->msg_buffers = NULL;
3303
3304         return err;
3305 }
3306
3307 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3308 {
3309         int i;
3310
3311         INIT_LIST_HEAD(&priv->msg_free_list);
3312         INIT_LIST_HEAD(&priv->msg_pend_list);
3313
3314         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3315                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3316         SET_STAT(&priv->msg_free_stat, i);
3317
3318         return 0;
3319 }
3320
3321 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3322 {
3323         int i;
3324
3325         if (!priv->msg_buffers)
3326                 return;
3327
3328         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3329                 pci_free_consistent(priv->pci_dev,
3330                                     sizeof(struct ipw2100_cmd_header),
3331                                     priv->msg_buffers[i].info.c_struct.cmd,
3332                                     priv->msg_buffers[i].info.c_struct.
3333                                     cmd_phys);
3334         }
3335
3336         kfree(priv->msg_buffers);
3337         priv->msg_buffers = NULL;
3338 }
3339
3340 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3341                         char *buf)
3342 {
3343         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3344         char *out = buf;
3345         int i, j;
3346         u32 val;
3347
3348         for (i = 0; i < 16; i++) {
3349                 out += sprintf(out, "[%08X] ", i * 16);
3350                 for (j = 0; j < 16; j += 4) {
3351                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3352                         out += sprintf(out, "%08X ", val);
3353                 }
3354                 out += sprintf(out, "\n");
3355         }
3356
3357         return out - buf;
3358 }
3359
3360 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3361
3362 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3363                         char *buf)
3364 {
3365         struct ipw2100_priv *p = d->driver_data;
3366         return sprintf(buf, "0x%08x\n", (int)p->config);
3367 }
3368
3369 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3370
3371 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3372                            char *buf)
3373 {
3374         struct ipw2100_priv *p = d->driver_data;
3375         return sprintf(buf, "0x%08x\n", (int)p->status);
3376 }
3377
3378 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3379
3380 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3381                                char *buf)
3382 {
3383         struct ipw2100_priv *p = d->driver_data;
3384         return sprintf(buf, "0x%08x\n", (int)p->capability);
3385 }
3386
3387 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3388
3389 #define IPW2100_REG(x) { IPW_ ##x, #x }
3390 static const struct {
3391         u32 addr;
3392         const char *name;
3393 } hw_data[] = {
3394 IPW2100_REG(REG_GP_CNTRL),
3395             IPW2100_REG(REG_GPIO),
3396             IPW2100_REG(REG_INTA),
3397             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3398 #define IPW2100_NIC(x, s) { x, #x, s }
3399 static const struct {
3400         u32 addr;
3401         const char *name;
3402         size_t size;
3403 } nic_data[] = {
3404 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3405             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3406 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3407 static const struct {
3408         u8 index;
3409         const char *name;
3410         const char *desc;
3411 } ord_data[] = {
3412 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3413             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3414                                 "successful Host Tx's (MSDU)"),
3415             IPW2100_ORD(STAT_TX_DIR_DATA,
3416                                 "successful Directed Tx's (MSDU)"),
3417             IPW2100_ORD(STAT_TX_DIR_DATA1,
3418                                 "successful Directed Tx's (MSDU) @ 1MB"),
3419             IPW2100_ORD(STAT_TX_DIR_DATA2,
3420                                 "successful Directed Tx's (MSDU) @ 2MB"),
3421             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3422                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3423             IPW2100_ORD(STAT_TX_DIR_DATA11,
3424                                 "successful Directed Tx's (MSDU) @ 11MB"),
3425             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3426                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3427             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3428                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3429             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3430                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3431             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3432                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3433             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3434             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3435             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3436             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3437             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3438             IPW2100_ORD(STAT_TX_ASSN_RESP,
3439                                 "successful Association response Tx's"),
3440             IPW2100_ORD(STAT_TX_REASSN,
3441                                 "successful Reassociation Tx's"),
3442             IPW2100_ORD(STAT_TX_REASSN_RESP,
3443                                 "successful Reassociation response Tx's"),
3444             IPW2100_ORD(STAT_TX_PROBE,
3445                                 "probes successfully transmitted"),
3446             IPW2100_ORD(STAT_TX_PROBE_RESP,
3447                                 "probe responses successfully transmitted"),
3448             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3449             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3450             IPW2100_ORD(STAT_TX_DISASSN,
3451                                 "successful Disassociation TX"),
3452             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3453             IPW2100_ORD(STAT_TX_DEAUTH,
3454                                 "successful Deauthentication TX"),
3455             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3456                                 "Total successful Tx data bytes"),
3457             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3458             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3459             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3460             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3461             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3462             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3463             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3464                                 "times max tries in a hop failed"),
3465             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3466                                 "times disassociation failed"),
3467             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3468             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3469             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3470             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3471             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3472             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3473             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3474                                 "directed packets at 5.5MB"),
3475             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3476             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3477             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3478                                 "nondirected packets at 1MB"),
3479             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3480                                 "nondirected packets at 2MB"),
3481             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3482                                 "nondirected packets at 5.5MB"),
3483             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3484                                 "nondirected packets at 11MB"),
3485             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3486             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3487                                                                     "Rx CTS"),
3488             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3489             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3490             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3491             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3492             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3493             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3494             IPW2100_ORD(STAT_RX_REASSN_RESP,
3495                                 "Reassociation response Rx's"),
3496             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3497             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3498             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3499             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3500             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3501             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3502             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3503             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3504                                 "Total rx data bytes received"),
3505             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3506             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3507             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3508             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3509             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3510             IPW2100_ORD(STAT_RX_DUPLICATE1,
3511                                 "duplicate rx packets at 1MB"),
3512             IPW2100_ORD(STAT_RX_DUPLICATE2,
3513                                 "duplicate rx packets at 2MB"),
3514             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3515                                 "duplicate rx packets at 5.5MB"),
3516             IPW2100_ORD(STAT_RX_DUPLICATE11,
3517                                 "duplicate rx packets at 11MB"),
3518             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3519             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3520             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3521             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3522             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3523                                 "rx frames with invalid protocol"),
3524             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3525             IPW2100_ORD(STAT_RX_NO_BUFFER,
3526                                 "rx frames rejected due to no buffer"),
3527             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3528                                 "rx frames dropped due to missing fragment"),
3529             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3530                                 "rx frames dropped due to non-sequential fragment"),
3531             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3532                                 "rx frames dropped due to unmatched 1st frame"),
3533             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3534                                 "rx frames dropped due to uncompleted frame"),
3535             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3536                                 "ICV errors during decryption"),
3537             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3538             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3539             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3540                                 "poll response timeouts"),
3541             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3542                                 "timeouts waiting for last {broad,multi}cast pkt"),
3543             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3544             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3545             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3546             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3547             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3548                                 "current calculation of % missed beacons"),
3549             IPW2100_ORD(STAT_PERCENT_RETRIES,
3550                                 "current calculation of % missed tx retries"),
3551             IPW2100_ORD(ASSOCIATED_AP_PTR,
3552                                 "0 if not associated, else pointer to AP table entry"),
3553             IPW2100_ORD(AVAILABLE_AP_CNT,
3554                                 "AP's decsribed in the AP table"),
3555             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3556             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3557             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3558             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3559                                 "failures due to response fail"),
3560             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3561             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3562             IPW2100_ORD(STAT_ROAM_INHIBIT,
3563                                 "times roaming was inhibited due to activity"),
3564             IPW2100_ORD(RSSI_AT_ASSN,
3565                                 "RSSI of associated AP at time of association"),
3566             IPW2100_ORD(STAT_ASSN_CAUSE1,
3567                                 "reassociation: no probe response or TX on hop"),
3568             IPW2100_ORD(STAT_ASSN_CAUSE2,
3569                                 "reassociation: poor tx/rx quality"),
3570             IPW2100_ORD(STAT_ASSN_CAUSE3,
3571                                 "reassociation: tx/rx quality (excessive AP load"),
3572             IPW2100_ORD(STAT_ASSN_CAUSE4,
3573                                 "reassociation: AP RSSI level"),
3574             IPW2100_ORD(STAT_ASSN_CAUSE5,
3575                                 "reassociations due to load leveling"),
3576             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3577             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3578                                 "times authentication response failed"),
3579             IPW2100_ORD(STATION_TABLE_CNT,
3580                                 "entries in association table"),
3581             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3582             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3583             IPW2100_ORD(COUNTRY_CODE,
3584                                 "IEEE country code as recv'd from beacon"),
3585             IPW2100_ORD(COUNTRY_CHANNELS,
3586                                 "channels suported by country"),
3587             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3588             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3589             IPW2100_ORD(ANTENNA_DIVERSITY,
3590                                 "TRUE if antenna diversity is disabled"),
3591             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3592             IPW2100_ORD(OUR_FREQ,
3593                                 "current radio freq lower digits - channel ID"),
3594             IPW2100_ORD(RTC_TIME, "current RTC time"),
3595             IPW2100_ORD(PORT_TYPE, "operating mode"),
3596             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3597             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3598             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3599             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3600             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3601             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3602             IPW2100_ORD(CAPABILITIES,
3603                                 "Management frame capability field"),
3604             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3605             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3606             IPW2100_ORD(RTS_THRESHOLD,
3607                                 "Min packet length for RTS handshaking"),
3608             IPW2100_ORD(INT_MODE, "International mode"),
3609             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3610                                 "protocol frag threshold"),
3611             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3612                                 "EEPROM offset in SRAM"),
3613             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3614                                 "EEPROM size in SRAM"),
3615             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3616             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3617                                 "EEPROM IBSS 11b channel set"),
3618             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3619             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3620             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3621             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3622             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3623
3624 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3625                               char *buf)
3626 {
3627         int i;
3628         struct ipw2100_priv *priv = dev_get_drvdata(d);
3629         struct net_device *dev = priv->net_dev;
3630         char *out = buf;
3631         u32 val = 0;
3632
3633         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3634
3635         for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3636                 read_register(dev, hw_data[i].addr, &val);
3637                 out += sprintf(out, "%30s [%08X] : %08X\n",
3638                                hw_data[i].name, hw_data[i].addr, val);
3639         }
3640
3641         return out - buf;
3642 }
3643
3644 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3645
3646 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3647                              char *buf)
3648 {
3649         struct ipw2100_priv *priv = dev_get_drvdata(d);
3650         struct net_device *dev = priv->net_dev;
3651         char *out = buf;
3652         int i;
3653
3654         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3655
3656         for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3657                 u8 tmp8;
3658                 u16 tmp16;
3659                 u32 tmp32;
3660
3661                 switch (nic_data[i].size) {
3662                 case 1:
3663                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3664                         out += sprintf(out, "%30s [%08X] : %02X\n",
3665                                        nic_data[i].name, nic_data[i].addr,
3666                                        tmp8);
3667                         break;
3668                 case 2:
3669                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3670                         out += sprintf(out, "%30s [%08X] : %04X\n",
3671                                        nic_data[i].name, nic_data[i].addr,
3672                                        tmp16);
3673                         break;
3674                 case 4:
3675                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3676                         out += sprintf(out, "%30s [%08X] : %08X\n",
3677                                        nic_data[i].name, nic_data[i].addr,
3678                                        tmp32);
3679                         break;
3680                 }
3681         }
3682         return out - buf;
3683 }
3684
3685 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3686
3687 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3688                            char *buf)
3689 {
3690         struct ipw2100_priv *priv = dev_get_drvdata(d);
3691         struct net_device *dev = priv->net_dev;
3692         static unsigned long loop = 0;
3693         int len = 0;
3694         u32 buffer[4];
3695         int i;
3696         char line[81];
3697
3698         if (loop >= 0x30000)
3699                 loop = 0;
3700
3701         /* sysfs provides us PAGE_SIZE buffer */
3702         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3703
3704                 if (priv->snapshot[0])
3705                         for (i = 0; i < 4; i++)
3706                                 buffer[i] =
3707                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3708                 else
3709                         for (i = 0; i < 4; i++)
3710                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3711
3712                 if (priv->dump_raw)
3713                         len += sprintf(buf + len,
3714                                        "%c%c%c%c"
3715                                        "%c%c%c%c"
3716                                        "%c%c%c%c"
3717                                        "%c%c%c%c",
3718                                        ((u8 *) buffer)[0x0],
3719                                        ((u8 *) buffer)[0x1],
3720                                        ((u8 *) buffer)[0x2],
3721                                        ((u8 *) buffer)[0x3],
3722                                        ((u8 *) buffer)[0x4],
3723                                        ((u8 *) buffer)[0x5],
3724                                        ((u8 *) buffer)[0x6],
3725                                        ((u8 *) buffer)[0x7],
3726                                        ((u8 *) buffer)[0x8],
3727                                        ((u8 *) buffer)[0x9],
3728                                        ((u8 *) buffer)[0xa],
3729                                        ((u8 *) buffer)[0xb],
3730                                        ((u8 *) buffer)[0xc],
3731                                        ((u8 *) buffer)[0xd],
3732                                        ((u8 *) buffer)[0xe],
3733                                        ((u8 *) buffer)[0xf]);
3734                 else
3735                         len += sprintf(buf + len, "%s\n",
3736                                        snprint_line(line, sizeof(line),
3737                                                     (u8 *) buffer, 16, loop));
3738                 loop += 16;
3739         }
3740
3741         return len;
3742 }
3743
3744 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3745                             const char *buf, size_t count)
3746 {
3747         struct ipw2100_priv *priv = dev_get_drvdata(d);
3748         struct net_device *dev = priv->net_dev;
3749         const char *p = buf;
3750
3751         (void) dev; /* kill unused-var warning for debug-only code */
3752
3753         if (count < 1)
3754                 return count;
3755
3756         if (p[0] == '1' ||
3757             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3758                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3759                                dev->name);
3760                 priv->dump_raw = 1;
3761
3762         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3763                                    tolower(p[1]) == 'f')) {
3764                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3765                                dev->name);
3766                 priv->dump_raw = 0;
3767
3768         } else if (tolower(p[0]) == 'r') {
3769                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3770                 ipw2100_snapshot_free(priv);
3771
3772         } else
3773                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3774                                "reset = clear memory snapshot\n", dev->name);
3775
3776         return count;
3777 }
3778
3779 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3780
3781 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3782                              char *buf)
3783 {
3784         struct ipw2100_priv *priv = dev_get_drvdata(d);
3785         u32 val = 0;
3786         int len = 0;
3787         u32 val_len;
3788         static int loop = 0;
3789
3790         if (priv->status & STATUS_RF_KILL_MASK)
3791                 return 0;
3792
3793         if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3794                 loop = 0;
3795
3796         /* sysfs provides us PAGE_SIZE buffer */
3797         while (len < PAGE_SIZE - 128 &&
3798                loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3799
3800                 val_len = sizeof(u32);
3801
3802                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3803                                         &val_len))
3804                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3805                                        ord_data[loop].index,
3806                                        ord_data[loop].desc);
3807                 else
3808                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3809                                        ord_data[loop].index, val,
3810                                        ord_data[loop].desc);
3811                 loop++;
3812         }
3813
3814         return len;
3815 }
3816
3817 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3818
3819 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3820                           char *buf)
3821 {
3822         struct ipw2100_priv *priv = dev_get_drvdata(d);
3823         char *out = buf;
3824
3825         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3826                        priv->interrupts, priv->tx_interrupts,
3827                        priv->rx_interrupts, priv->inta_other);
3828         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3829         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3830 #ifdef CONFIG_IPW2100_DEBUG
3831         out += sprintf(out, "packet mismatch image: %s\n",
3832                        priv->snapshot[0] ? "YES" : "NO");
3833 #endif
3834
3835         return out - buf;
3836 }
3837
3838 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3839
3840 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3841 {
3842         int err;
3843
3844         if (mode == priv->ieee->iw_mode)
3845                 return 0;
3846
3847         err = ipw2100_disable_adapter(priv);
3848         if (err) {
3849                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3850                        priv->net_dev->name, err);
3851                 return err;
3852         }
3853
3854         switch (mode) {
3855         case IW_MODE_INFRA:
3856                 priv->net_dev->type = ARPHRD_ETHER;
3857                 break;
3858         case IW_MODE_ADHOC:
3859                 priv->net_dev->type = ARPHRD_ETHER;
3860                 break;
3861 #ifdef CONFIG_IPW2100_MONITOR
3862         case IW_MODE_MONITOR:
3863                 priv->last_mode = priv->ieee->iw_mode;
3864                 priv->net_dev->type = ARPHRD_IEEE80211;
3865                 break;
3866 #endif                          /* CONFIG_IPW2100_MONITOR */
3867         }
3868
3869         priv->ieee->iw_mode = mode;
3870
3871 #ifdef CONFIG_PM
3872         /* Indicate ipw2100_download_firmware download firmware
3873          * from disk instead of memory. */
3874         ipw2100_firmware.version = 0;
3875 #endif
3876
3877         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3878         priv->reset_backoff = 0;
3879         schedule_reset(priv);
3880
3881         return 0;
3882 }
3883
3884 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3885                               char *buf)
3886 {
3887         struct ipw2100_priv *priv = dev_get_drvdata(d);
3888         int len = 0;
3889
3890 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3891
3892         if (priv->status & STATUS_ASSOCIATED)
3893                 len += sprintf(buf + len, "connected: %lu\n",
3894                                get_seconds() - priv->connect_start);
3895         else
3896                 len += sprintf(buf + len, "not connected\n");
3897
3898         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
3899         DUMP_VAR(status, "08lx");
3900         DUMP_VAR(config, "08lx");
3901         DUMP_VAR(capability, "08lx");
3902
3903         len +=
3904             sprintf(buf + len, "last_rtc: %lu\n",
3905                     (unsigned long)priv->last_rtc);
3906
3907         DUMP_VAR(fatal_error, "d");
3908         DUMP_VAR(stop_hang_check, "d");
3909         DUMP_VAR(stop_rf_kill, "d");
3910         DUMP_VAR(messages_sent, "d");
3911
3912         DUMP_VAR(tx_pend_stat.value, "d");
3913         DUMP_VAR(tx_pend_stat.hi, "d");
3914
3915         DUMP_VAR(tx_free_stat.value, "d");
3916         DUMP_VAR(tx_free_stat.lo, "d");
3917
3918         DUMP_VAR(msg_free_stat.value, "d");
3919         DUMP_VAR(msg_free_stat.lo, "d");
3920
3921         DUMP_VAR(msg_pend_stat.value, "d");
3922         DUMP_VAR(msg_pend_stat.hi, "d");
3923
3924         DUMP_VAR(fw_pend_stat.value, "d");
3925         DUMP_VAR(fw_pend_stat.hi, "d");
3926
3927         DUMP_VAR(txq_stat.value, "d");
3928         DUMP_VAR(txq_stat.lo, "d");
3929
3930         DUMP_VAR(ieee->scans, "d");
3931         DUMP_VAR(reset_backoff, "d");
3932
3933         return len;
3934 }
3935
3936 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
3937
3938 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
3939                             char *buf)
3940 {
3941         struct ipw2100_priv *priv = dev_get_drvdata(d);
3942         char essid[IW_ESSID_MAX_SIZE + 1];
3943         u8 bssid[ETH_ALEN];
3944         u32 chan = 0;
3945         char *out = buf;
3946         int length;
3947         int ret;
3948
3949         if (priv->status & STATUS_RF_KILL_MASK)
3950                 return 0;
3951
3952         memset(essid, 0, sizeof(essid));
3953         memset(bssid, 0, sizeof(bssid));
3954
3955         length = IW_ESSID_MAX_SIZE;
3956         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
3957         if (ret)
3958                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3959                                __LINE__);
3960
3961         length = sizeof(bssid);
3962         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
3963                                   bssid, &length);
3964         if (ret)
3965                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3966                                __LINE__);
3967
3968         length = sizeof(u32);
3969         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
3970         if (ret)
3971                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3972                                __LINE__);
3973
3974         out += sprintf(out, "ESSID: %s\n", essid);
3975         out += sprintf(out, "BSSID:   %02x:%02x:%02x:%02x:%02x:%02x\n",
3976                        bssid[0], bssid[1], bssid[2],
3977                        bssid[3], bssid[4], bssid[5]);
3978         out += sprintf(out, "Channel: %d\n", chan);
3979
3980         return out - buf;
3981 }
3982
3983 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
3984
3985 #ifdef CONFIG_IPW2100_DEBUG
3986 static ssize_t show_debug_level(struct device_driver *d, char *buf)
3987 {
3988         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
3989 }
3990
3991 static ssize_t store_debug_level(struct device_driver *d,
3992                                  const char *buf, size_t count)
3993 {
3994         char *p = (char *)buf;
3995         u32 val;
3996
3997         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
3998                 p++;
3999                 if (p[0] == 'x' || p[0] == 'X')
4000                         p++;
4001                 val = simple_strtoul(p, &p, 16);
4002         } else
4003                 val = simple_strtoul(p, &p, 10);
4004         if (p == buf)
4005                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4006         else
4007                 ipw2100_debug_level = val;
4008
4009         return strnlen(buf, count);
4010 }
4011
4012 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4013                    store_debug_level);
4014 #endif                          /* CONFIG_IPW2100_DEBUG */
4015
4016 static ssize_t show_fatal_error(struct device *d,
4017                                 struct device_attribute *attr, char *buf)
4018 {
4019         struct ipw2100_priv *priv = dev_get_drvdata(d);
4020         char *out = buf;
4021         int i;
4022
4023         if (priv->fatal_error)
4024                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4025         else
4026                 out += sprintf(out, "0\n");
4027
4028         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4029                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4030                                         IPW2100_ERROR_QUEUE])
4031                         continue;
4032
4033                 out += sprintf(out, "%d. 0x%08X\n", i,
4034                                priv->fatal_errors[(priv->fatal_index - i) %
4035                                                   IPW2100_ERROR_QUEUE]);
4036         }
4037
4038         return out - buf;
4039 }
4040
4041 static ssize_t store_fatal_error(struct device *d,
4042                                  struct device_attribute *attr, const char *buf,
4043                                  size_t count)
4044 {
4045         struct ipw2100_priv *priv = dev_get_drvdata(d);
4046         schedule_reset(priv);
4047         return count;
4048 }
4049
4050 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4051                    store_fatal_error);
4052
4053 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4054                              char *buf)
4055 {
4056         struct ipw2100_priv *priv = dev_get_drvdata(d);
4057         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4058 }
4059
4060 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4061                               const char *buf, size_t count)
4062 {
4063         struct ipw2100_priv *priv = dev_get_drvdata(d);
4064         struct net_device *dev = priv->net_dev;
4065         char buffer[] = "00000000";
4066         unsigned long len =
4067             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4068         unsigned long val;
4069         char *p = buffer;
4070
4071         (void) dev; /* kill unused-var warning for debug-only code */
4072
4073         IPW_DEBUG_INFO("enter\n");
4074
4075         strncpy(buffer, buf, len);
4076         buffer[len] = 0;
4077
4078         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4079                 p++;
4080                 if (p[0] == 'x' || p[0] == 'X')
4081                         p++;
4082                 val = simple_strtoul(p, &p, 16);
4083         } else
4084                 val = simple_strtoul(p, &p, 10);
4085         if (p == buffer) {
4086                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4087         } else {
4088                 priv->ieee->scan_age = val;
4089                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4090         }
4091
4092         IPW_DEBUG_INFO("exit\n");
4093         return len;
4094 }
4095
4096 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4097
4098 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4099                             char *buf)
4100 {
4101         /* 0 - RF kill not enabled
4102            1 - SW based RF kill active (sysfs)
4103            2 - HW based RF kill active
4104            3 - Both HW and SW baed RF kill active */
4105         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4106         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4107             (rf_kill_active(priv) ? 0x2 : 0x0);
4108         return sprintf(buf, "%i\n", val);
4109 }
4110
4111 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4112 {
4113         if ((disable_radio ? 1 : 0) ==
4114             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4115                 return 0;
4116
4117         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4118                           disable_radio ? "OFF" : "ON");
4119
4120         down(&priv->action_sem);
4121
4122         if (disable_radio) {
4123                 priv->status |= STATUS_RF_KILL_SW;
4124                 ipw2100_down(priv);
4125         } else {
4126                 priv->status &= ~STATUS_RF_KILL_SW;
4127                 if (rf_kill_active(priv)) {
4128                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4129                                           "disabled by HW switch\n");
4130                         /* Make sure the RF_KILL check timer is running */
4131                         priv->stop_rf_kill = 0;
4132                         cancel_delayed_work(&priv->rf_kill);
4133                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4134                 } else
4135                         schedule_reset(priv);
4136         }
4137
4138         up(&priv->action_sem);
4139         return 1;
4140 }
4141
4142 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4143                              const char *buf, size_t count)
4144 {
4145         struct ipw2100_priv *priv = dev_get_drvdata(d);
4146         ipw_radio_kill_sw(priv, buf[0] == '1');
4147         return count;
4148 }
4149
4150 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4151
4152 static struct attribute *ipw2100_sysfs_entries[] = {
4153         &dev_attr_hardware.attr,
4154         &dev_attr_registers.attr,
4155         &dev_attr_ordinals.attr,
4156         &dev_attr_pci.attr,
4157         &dev_attr_stats.attr,
4158         &dev_attr_internals.attr,
4159         &dev_attr_bssinfo.attr,
4160         &dev_attr_memory.attr,
4161         &dev_attr_scan_age.attr,
4162         &dev_attr_fatal_error.attr,
4163         &dev_attr_rf_kill.attr,
4164         &dev_attr_cfg.attr,
4165         &dev_attr_status.attr,
4166         &dev_attr_capability.attr,
4167         NULL,
4168 };
4169
4170 static struct attribute_group ipw2100_attribute_group = {
4171         .attrs = ipw2100_sysfs_entries,
4172 };
4173
4174 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4175 {
4176         struct ipw2100_status_queue *q = &priv->status_queue;
4177
4178         IPW_DEBUG_INFO("enter\n");
4179
4180         q->size = entries * sizeof(struct ipw2100_status);
4181         q->drv =
4182             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4183                                                           q->size, &q->nic);
4184         if (!q->drv) {
4185                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4186                 return -ENOMEM;
4187         }
4188
4189         memset(q->drv, 0, q->size);
4190
4191         IPW_DEBUG_INFO("exit\n");
4192
4193         return 0;
4194 }
4195
4196 static void status_queue_free(struct ipw2100_priv *priv)
4197 {
4198         IPW_DEBUG_INFO("enter\n");
4199
4200         if (priv->status_queue.drv) {
4201                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4202                                     priv->status_queue.drv,
4203                                     priv->status_queue.nic);
4204                 priv->status_queue.drv = NULL;
4205         }
4206
4207         IPW_DEBUG_INFO("exit\n");
4208 }
4209
4210 static int bd_queue_allocate(struct ipw2100_priv *priv,
4211                              struct ipw2100_bd_queue *q, int entries)
4212 {
4213         IPW_DEBUG_INFO("enter\n");
4214
4215         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4216
4217         q->entries = entries;
4218         q->size = entries * sizeof(struct ipw2100_bd);
4219         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4220         if (!q->drv) {
4221                 IPW_DEBUG_INFO
4222                     ("can't allocate shared memory for buffer descriptors\n");
4223                 return -ENOMEM;
4224         }
4225         memset(q->drv, 0, q->size);
4226
4227         IPW_DEBUG_INFO("exit\n");
4228
4229         return 0;
4230 }
4231
4232 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4233 {
4234         IPW_DEBUG_INFO("enter\n");
4235
4236         if (!q)
4237                 return;
4238
4239         if (q->drv) {
4240                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4241                 q->drv = NULL;
4242         }
4243
4244         IPW_DEBUG_INFO("exit\n");
4245 }
4246
4247 static void bd_queue_initialize(struct ipw2100_priv *priv,
4248                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4249                                 u32 r, u32 w)
4250 {
4251         IPW_DEBUG_INFO("enter\n");
4252
4253         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4254                        (u32) q->nic);
4255
4256         write_register(priv->net_dev, base, q->nic);
4257         write_register(priv->net_dev, size, q->entries);
4258         write_register(priv->net_dev, r, q->oldest);
4259         write_register(priv->net_dev, w, q->next);
4260
4261         IPW_DEBUG_INFO("exit\n");
4262 }
4263
4264 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4265 {
4266         if (priv->workqueue) {
4267                 priv->stop_rf_kill = 1;
4268                 priv->stop_hang_check = 1;
4269                 cancel_delayed_work(&priv->reset_work);
4270                 cancel_delayed_work(&priv->security_work);
4271                 cancel_delayed_work(&priv->wx_event_work);
4272                 cancel_delayed_work(&priv->hang_check);
4273                 cancel_delayed_work(&priv->rf_kill);
4274                 destroy_workqueue(priv->workqueue);
4275                 priv->workqueue = NULL;
4276         }
4277 }
4278
4279 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4280 {
4281         int i, j, err = -EINVAL;
4282         void *v;
4283         dma_addr_t p;
4284
4285         IPW_DEBUG_INFO("enter\n");
4286
4287         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4288         if (err) {
4289                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4290                                 priv->net_dev->name);
4291                 return err;
4292         }
4293
4294         priv->tx_buffers =
4295             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4296                                                 sizeof(struct
4297                                                        ipw2100_tx_packet),
4298                                                 GFP_ATOMIC);
4299         if (!priv->tx_buffers) {
4300                 printk(KERN_ERR DRV_NAME
4301                        ": %s: alloc failed form tx buffers.\n",
4302                        priv->net_dev->name);
4303                 bd_queue_free(priv, &priv->tx_queue);
4304                 return -ENOMEM;
4305         }
4306
4307         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4308                 v = pci_alloc_consistent(priv->pci_dev,
4309                                          sizeof(struct ipw2100_data_header),
4310                                          &p);
4311                 if (!v) {
4312                         printk(KERN_ERR DRV_NAME
4313                                ": %s: PCI alloc failed for tx " "buffers.\n",
4314                                priv->net_dev->name);
4315                         err = -ENOMEM;
4316                         break;
4317                 }
4318
4319                 priv->tx_buffers[i].type = DATA;
4320                 priv->tx_buffers[i].info.d_struct.data =
4321                     (struct ipw2100_data_header *)v;
4322                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4323                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4324         }
4325
4326         if (i == TX_PENDED_QUEUE_LENGTH)
4327                 return 0;
4328
4329         for (j = 0; j < i; j++) {
4330                 pci_free_consistent(priv->pci_dev,
4331                                     sizeof(struct ipw2100_data_header),
4332                                     priv->tx_buffers[j].info.d_struct.data,
4333                                     priv->tx_buffers[j].info.d_struct.
4334                                     data_phys);
4335         }
4336
4337         kfree(priv->tx_buffers);
4338         priv->tx_buffers = NULL;
4339
4340         return err;
4341 }
4342
4343 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4344 {
4345         int i;
4346
4347         IPW_DEBUG_INFO("enter\n");
4348
4349         /*
4350          * reinitialize packet info lists
4351          */
4352         INIT_LIST_HEAD(&priv->fw_pend_list);
4353         INIT_STAT(&priv->fw_pend_stat);
4354
4355         /*
4356          * reinitialize lists
4357          */
4358         INIT_LIST_HEAD(&priv->tx_pend_list);
4359         INIT_LIST_HEAD(&priv->tx_free_list);
4360         INIT_STAT(&priv->tx_pend_stat);
4361         INIT_STAT(&priv->tx_free_stat);
4362
4363         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4364                 /* We simply drop any SKBs that have been queued for
4365                  * transmit */
4366                 if (priv->tx_buffers[i].info.d_struct.txb) {
4367                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4368                                            txb);
4369                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4370                 }
4371
4372                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4373         }
4374
4375         SET_STAT(&priv->tx_free_stat, i);
4376
4377         priv->tx_queue.oldest = 0;
4378         priv->tx_queue.available = priv->tx_queue.entries;
4379         priv->tx_queue.next = 0;
4380         INIT_STAT(&priv->txq_stat);
4381         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4382
4383         bd_queue_initialize(priv, &priv->tx_queue,
4384                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4385                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4386                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4387                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4388
4389         IPW_DEBUG_INFO("exit\n");
4390
4391 }
4392
4393 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4394 {
4395         int i;
4396
4397         IPW_DEBUG_INFO("enter\n");
4398
4399         bd_queue_free(priv, &priv->tx_queue);
4400
4401         if (!priv->tx_buffers)
4402                 return;
4403
4404         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4405                 if (priv->tx_buffers[i].info.d_struct.txb) {
4406                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4407                                            txb);
4408                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4409                 }
4410                 if (priv->tx_buffers[i].info.d_struct.data)
4411                         pci_free_consistent(priv->pci_dev,
4412                                             sizeof(struct ipw2100_data_header),
4413                                             priv->tx_buffers[i].info.d_struct.
4414                                             data,
4415                                             priv->tx_buffers[i].info.d_struct.
4416                                             data_phys);
4417         }
4418
4419         kfree(priv->tx_buffers);
4420         priv->tx_buffers = NULL;
4421
4422         IPW_DEBUG_INFO("exit\n");
4423 }
4424
4425 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4426 {
4427         int i, j, err = -EINVAL;
4428
4429         IPW_DEBUG_INFO("enter\n");
4430
4431         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4432         if (err) {
4433                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4434                 return err;
4435         }
4436
4437         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4438         if (err) {
4439                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4440                 bd_queue_free(priv, &priv->rx_queue);
4441                 return err;
4442         }
4443
4444         /*
4445          * allocate packets
4446          */
4447         priv->rx_buffers = (struct ipw2100_rx_packet *)
4448             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4449                     GFP_KERNEL);
4450         if (!priv->rx_buffers) {
4451                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4452
4453                 bd_queue_free(priv, &priv->rx_queue);
4454
4455                 status_queue_free(priv);
4456
4457                 return -ENOMEM;
4458         }
4459
4460         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4461                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4462
4463                 err = ipw2100_alloc_skb(priv, packet);
4464                 if (unlikely(err)) {
4465                         err = -ENOMEM;
4466                         break;
4467                 }
4468
4469                 /* The BD holds the cache aligned address */
4470                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4471                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4472                 priv->status_queue.drv[i].status_fields = 0;
4473         }
4474
4475         if (i == RX_QUEUE_LENGTH)
4476                 return 0;
4477
4478         for (j = 0; j < i; j++) {
4479                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4480                                  sizeof(struct ipw2100_rx_packet),
4481                                  PCI_DMA_FROMDEVICE);
4482                 dev_kfree_skb(priv->rx_buffers[j].skb);
4483         }
4484
4485         kfree(priv->rx_buffers);
4486         priv->rx_buffers = NULL;
4487
4488         bd_queue_free(priv, &priv->rx_queue);
4489
4490         status_queue_free(priv);
4491
4492         return err;
4493 }
4494
4495 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4496 {
4497         IPW_DEBUG_INFO("enter\n");
4498
4499         priv->rx_queue.oldest = 0;
4500         priv->rx_queue.available = priv->rx_queue.entries - 1;
4501         priv->rx_queue.next = priv->rx_queue.entries - 1;
4502
4503         INIT_STAT(&priv->rxq_stat);
4504         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4505
4506         bd_queue_initialize(priv, &priv->rx_queue,
4507                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4508                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4509                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4510                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4511
4512         /* set up the status queue */
4513         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4514                        priv->status_queue.nic);
4515
4516         IPW_DEBUG_INFO("exit\n");
4517 }
4518
4519 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4520 {
4521         int i;
4522
4523         IPW_DEBUG_INFO("enter\n");
4524
4525         bd_queue_free(priv, &priv->rx_queue);
4526         status_queue_free(priv);
4527
4528         if (!priv->rx_buffers)
4529                 return;
4530
4531         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4532                 if (priv->rx_buffers[i].rxp) {
4533                         pci_unmap_single(priv->pci_dev,
4534                                          priv->rx_buffers[i].dma_addr,
4535                                          sizeof(struct ipw2100_rx),
4536                                          PCI_DMA_FROMDEVICE);
4537                         dev_kfree_skb(priv->rx_buffers[i].skb);
4538                 }
4539         }
4540
4541         kfree(priv->rx_buffers);
4542         priv->rx_buffers = NULL;
4543
4544         IPW_DEBUG_INFO("exit\n");
4545 }
4546
4547 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4548 {
4549         u32 length = ETH_ALEN;
4550         u8 mac[ETH_ALEN];
4551
4552         int err;
4553
4554         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4555         if (err) {
4556                 IPW_DEBUG_INFO("MAC address read failed\n");
4557                 return -EIO;
4558         }
4559         IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4560                        mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4561
4562         memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4563
4564         return 0;
4565 }
4566
4567 /********************************************************************
4568  *
4569  * Firmware Commands
4570  *
4571  ********************************************************************/
4572
4573 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4574 {
4575         struct host_command cmd = {
4576                 .host_command = ADAPTER_ADDRESS,
4577                 .host_command_sequence = 0,
4578                 .host_command_length = ETH_ALEN
4579         };
4580         int err;
4581
4582         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4583
4584         IPW_DEBUG_INFO("enter\n");
4585
4586         if (priv->config & CFG_CUSTOM_MAC) {
4587                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4588                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4589         } else
4590                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4591                        ETH_ALEN);
4592
4593         err = ipw2100_hw_send_command(priv, &cmd);
4594
4595         IPW_DEBUG_INFO("exit\n");
4596         return err;
4597 }
4598
4599 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4600                                  int batch_mode)
4601 {
4602         struct host_command cmd = {
4603                 .host_command = PORT_TYPE,
4604                 .host_command_sequence = 0,
4605                 .host_command_length = sizeof(u32)
4606         };
4607         int err;
4608
4609         switch (port_type) {
4610         case IW_MODE_INFRA:
4611                 cmd.host_command_parameters[0] = IPW_BSS;
4612                 break;
4613         case IW_MODE_ADHOC:
4614                 cmd.host_command_parameters[0] = IPW_IBSS;
4615                 break;
4616         }
4617
4618         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4619                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4620
4621         if (!batch_mode) {
4622                 err = ipw2100_disable_adapter(priv);
4623                 if (err) {
4624                         printk(KERN_ERR DRV_NAME
4625                                ": %s: Could not disable adapter %d\n",
4626                                priv->net_dev->name, err);
4627                         return err;
4628                 }
4629         }
4630
4631         /* send cmd to firmware */
4632         err = ipw2100_hw_send_command(priv, &cmd);
4633
4634         if (!batch_mode)
4635                 ipw2100_enable_adapter(priv);
4636
4637         return err;
4638 }
4639
4640 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4641                                int batch_mode)
4642 {
4643         struct host_command cmd = {
4644                 .host_command = CHANNEL,
4645                 .host_command_sequence = 0,
4646                 .host_command_length = sizeof(u32)
4647         };
4648         int err;
4649
4650         cmd.host_command_parameters[0] = channel;
4651
4652         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4653
4654         /* If BSS then we don't support channel selection */
4655         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4656                 return 0;
4657
4658         if ((channel != 0) &&
4659             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4660                 return -EINVAL;
4661
4662         if (!batch_mode) {
4663                 err = ipw2100_disable_adapter(priv);
4664                 if (err)
4665                         return err;
4666         }
4667
4668         err = ipw2100_hw_send_command(priv, &cmd);
4669         if (err) {
4670                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4671                 return err;
4672         }
4673
4674         if (channel)
4675                 priv->config |= CFG_STATIC_CHANNEL;
4676         else
4677                 priv->config &= ~CFG_STATIC_CHANNEL;
4678
4679         priv->channel = channel;
4680
4681         if (!batch_mode) {
4682                 err = ipw2100_enable_adapter(priv);
4683                 if (err)
4684                         return err;
4685         }
4686
4687         return 0;
4688 }
4689
4690 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4691 {
4692         struct host_command cmd = {
4693                 .host_command = SYSTEM_CONFIG,
4694                 .host_command_sequence = 0,
4695                 .host_command_length = 12,
4696         };
4697         u32 ibss_mask, len = sizeof(u32);
4698         int err;
4699
4700         /* Set system configuration */
4701
4702         if (!batch_mode) {
4703                 err = ipw2100_disable_adapter(priv);
4704                 if (err)
4705                         return err;
4706         }
4707
4708         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4709                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4710
4711         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4712             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4713
4714         if (!(priv->config & CFG_LONG_PREAMBLE))
4715                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4716
4717         err = ipw2100_get_ordinal(priv,
4718                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4719                                   &ibss_mask, &len);
4720         if (err)
4721                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4722
4723         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4724         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4725
4726         /* 11b only */
4727         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4728
4729         err = ipw2100_hw_send_command(priv, &cmd);
4730         if (err)
4731                 return err;
4732
4733 /* If IPv6 is configured in the kernel then we don't want to filter out all
4734  * of the multicast packets as IPv6 needs some. */
4735 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4736         cmd.host_command = ADD_MULTICAST;
4737         cmd.host_command_sequence = 0;
4738         cmd.host_command_length = 0;
4739
4740         ipw2100_hw_send_command(priv, &cmd);
4741 #endif
4742         if (!batch_mode) {
4743                 err = ipw2100_enable_adapter(priv);
4744                 if (err)
4745                         return err;
4746         }
4747
4748         return 0;
4749 }
4750
4751 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4752                                 int batch_mode)
4753 {
4754         struct host_command cmd = {
4755                 .host_command = BASIC_TX_RATES,
4756                 .host_command_sequence = 0,
4757                 .host_command_length = 4
4758         };
4759         int err;
4760
4761         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4762
4763         if (!batch_mode) {
4764                 err = ipw2100_disable_adapter(priv);
4765                 if (err)
4766                         return err;
4767         }
4768
4769         /* Set BASIC TX Rate first */
4770         ipw2100_hw_send_command(priv, &cmd);
4771
4772         /* Set TX Rate */
4773         cmd.host_command = TX_RATES;
4774         ipw2100_hw_send_command(priv, &cmd);
4775
4776         /* Set MSDU TX Rate */
4777         cmd.host_command = MSDU_TX_RATES;
4778         ipw2100_hw_send_command(priv, &cmd);
4779
4780         if (!batch_mode) {
4781                 err = ipw2100_enable_adapter(priv);
4782                 if (err)
4783                         return err;
4784         }
4785
4786         priv->tx_rates = rate;
4787
4788         return 0;
4789 }
4790
4791 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4792 {
4793         struct host_command cmd = {
4794                 .host_command = POWER_MODE,
4795                 .host_command_sequence = 0,
4796                 .host_command_length = 4
4797         };
4798         int err;
4799
4800         cmd.host_command_parameters[0] = power_level;
4801
4802         err = ipw2100_hw_send_command(priv, &cmd);
4803         if (err)
4804                 return err;
4805
4806         if (power_level == IPW_POWER_MODE_CAM)
4807                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4808         else
4809                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4810
4811 #ifdef CONFIG_IPW2100_TX_POWER
4812         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4813                 /* Set beacon interval */
4814                 cmd.host_command = TX_POWER_INDEX;
4815                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4816
4817                 err = ipw2100_hw_send_command(priv, &cmd);
4818                 if (err)
4819                         return err;
4820         }
4821 #endif
4822
4823         return 0;
4824 }
4825
4826 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4827 {
4828         struct host_command cmd = {
4829                 .host_command = RTS_THRESHOLD,
4830                 .host_command_sequence = 0,
4831                 .host_command_length = 4
4832         };
4833         int err;
4834
4835         if (threshold & RTS_DISABLED)
4836                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4837         else
4838                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4839
4840         err = ipw2100_hw_send_command(priv, &cmd);
4841         if (err)
4842                 return err;
4843
4844         priv->rts_threshold = threshold;
4845
4846         return 0;
4847 }
4848
4849 #if 0
4850 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4851                                         u32 threshold, int batch_mode)
4852 {
4853         struct host_command cmd = {
4854                 .host_command = FRAG_THRESHOLD,
4855                 .host_command_sequence = 0,
4856                 .host_command_length = 4,
4857                 .host_command_parameters[0] = 0,
4858         };
4859         int err;
4860
4861         if (!batch_mode) {
4862                 err = ipw2100_disable_adapter(priv);
4863                 if (err)
4864                         return err;
4865         }
4866
4867         if (threshold == 0)
4868                 threshold = DEFAULT_FRAG_THRESHOLD;
4869         else {
4870                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4871                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4872         }
4873
4874         cmd.host_command_parameters[0] = threshold;
4875
4876         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4877
4878         err = ipw2100_hw_send_command(priv, &cmd);
4879
4880         if (!batch_mode)
4881                 ipw2100_enable_adapter(priv);
4882
4883         if (!err)
4884                 priv->frag_threshold = threshold;
4885
4886         return err;
4887 }
4888 #endif
4889
4890 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4891 {
4892         struct host_command cmd = {
4893                 .host_command = SHORT_RETRY_LIMIT,
4894                 .host_command_sequence = 0,
4895                 .host_command_length = 4
4896         };
4897         int err;
4898
4899         cmd.host_command_parameters[0] = retry;
4900
4901         err = ipw2100_hw_send_command(priv, &cmd);
4902         if (err)
4903                 return err;
4904
4905         priv->short_retry_limit = retry;
4906
4907         return 0;
4908 }
4909
4910 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
4911 {
4912         struct host_command cmd = {
4913                 .host_command = LONG_RETRY_LIMIT,
4914                 .host_command_sequence = 0,
4915                 .host_command_length = 4
4916         };
4917         int err;
4918
4919         cmd.host_command_parameters[0] = retry;
4920
4921         err = ipw2100_hw_send_command(priv, &cmd);
4922         if (err)
4923                 return err;
4924
4925         priv->long_retry_limit = retry;
4926
4927         return 0;
4928 }
4929
4930 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
4931                                        int batch_mode)
4932 {
4933         struct host_command cmd = {
4934                 .host_command = MANDATORY_BSSID,
4935                 .host_command_sequence = 0,
4936                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
4937         };
4938         int err;
4939
4940 #ifdef CONFIG_IPW2100_DEBUG
4941         if (bssid != NULL)
4942                 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
4943                              bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
4944                              bssid[5]);
4945         else
4946                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
4947 #endif
4948         /* if BSSID is empty then we disable mandatory bssid mode */
4949         if (bssid != NULL)
4950                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
4951
4952         if (!batch_mode) {
4953                 err = ipw2100_disable_adapter(priv);
4954                 if (err)
4955                         return err;
4956         }
4957
4958         err = ipw2100_hw_send_command(priv, &cmd);
4959
4960         if (!batch_mode)
4961                 ipw2100_enable_adapter(priv);
4962
4963         return err;
4964 }
4965
4966 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
4967 {
4968         struct host_command cmd = {
4969                 .host_command = DISASSOCIATION_BSSID,
4970                 .host_command_sequence = 0,
4971                 .host_command_length = ETH_ALEN
4972         };
4973         int err;
4974         int len;
4975
4976         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
4977
4978         len = ETH_ALEN;
4979         /* The Firmware currently ignores the BSSID and just disassociates from
4980          * the currently associated AP -- but in the off chance that a future
4981          * firmware does use the BSSID provided here, we go ahead and try and
4982          * set it to the currently associated AP's BSSID */
4983         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
4984
4985         err = ipw2100_hw_send_command(priv, &cmd);
4986
4987         return err;
4988 }
4989
4990 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
4991                               struct ipw2100_wpa_assoc_frame *, int)
4992     __attribute__ ((unused));
4993
4994 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
4995                               struct ipw2100_wpa_assoc_frame *wpa_frame,
4996                               int batch_mode)
4997 {
4998         struct host_command cmd = {
4999                 .host_command = SET_WPA_IE,
5000                 .host_command_sequence = 0,
5001                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5002         };
5003         int err;
5004
5005         IPW_DEBUG_HC("SET_WPA_IE\n");
5006
5007         if (!batch_mode) {
5008                 err = ipw2100_disable_adapter(priv);
5009                 if (err)
5010                         return err;
5011         }
5012
5013         memcpy(cmd.host_command_parameters, wpa_frame,
5014                sizeof(struct ipw2100_wpa_assoc_frame));
5015
5016         err = ipw2100_hw_send_command(priv, &cmd);
5017
5018         if (!batch_mode) {
5019                 if (ipw2100_enable_adapter(priv))
5020                         err = -EIO;
5021         }
5022
5023         return err;
5024 }
5025
5026 struct security_info_params {
5027         u32 allowed_ciphers;
5028         u16 version;
5029         u8 auth_mode;
5030         u8 replay_counters_number;
5031         u8 unicast_using_group;
5032 } __attribute__ ((packed));
5033
5034 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5035                                             int auth_mode,
5036                                             int security_level,
5037                                             int unicast_using_group,
5038                                             int batch_mode)
5039 {
5040         struct host_command cmd = {
5041                 .host_command = SET_SECURITY_INFORMATION,
5042                 .host_command_sequence = 0,
5043                 .host_command_length = sizeof(struct security_info_params)
5044         };
5045         struct security_info_params *security =
5046             (struct security_info_params *)&cmd.host_command_parameters;
5047         int err;
5048         memset(security, 0, sizeof(*security));
5049
5050         /* If shared key AP authentication is turned on, then we need to
5051          * configure the firmware to try and use it.
5052          *
5053          * Actual data encryption/decryption is handled by the host. */
5054         security->auth_mode = auth_mode;
5055         security->unicast_using_group = unicast_using_group;
5056
5057         switch (security_level) {
5058         default:
5059         case SEC_LEVEL_0:
5060                 security->allowed_ciphers = IPW_NONE_CIPHER;
5061                 break;
5062         case SEC_LEVEL_1:
5063                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5064                     IPW_WEP104_CIPHER;
5065                 break;
5066         case SEC_LEVEL_2:
5067                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5068                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5069                 break;
5070         case SEC_LEVEL_2_CKIP:
5071                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5072                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5073                 break;
5074         case SEC_LEVEL_3:
5075                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5076                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5077                 break;
5078         }
5079
5080         IPW_DEBUG_HC
5081             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5082              security->auth_mode, security->allowed_ciphers, security_level);
5083
5084         security->replay_counters_number = 0;
5085
5086         if (!batch_mode) {
5087                 err = ipw2100_disable_adapter(priv);
5088                 if (err)
5089                         return err;
5090         }
5091
5092         err = ipw2100_hw_send_command(priv, &cmd);
5093
5094         if (!batch_mode)
5095                 ipw2100_enable_adapter(priv);
5096
5097         return err;
5098 }
5099
5100 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5101 {
5102         struct host_command cmd = {
5103                 .host_command = TX_POWER_INDEX,
5104                 .host_command_sequence = 0,
5105                 .host_command_length = 4
5106         };
5107         int err = 0;
5108
5109         if (tx_power != IPW_TX_POWER_DEFAULT)
5110                 tx_power = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5111                     (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5112
5113         cmd.host_command_parameters[0] = tx_power;
5114
5115         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5116                 err = ipw2100_hw_send_command(priv, &cmd);
5117         if (!err)
5118                 priv->tx_power = tx_power;
5119
5120         return 0;
5121 }
5122
5123 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5124                                             u32 interval, int batch_mode)
5125 {
5126         struct host_command cmd = {
5127                 .host_command = BEACON_INTERVAL,
5128                 .host_command_sequence = 0,
5129                 .host_command_length = 4
5130         };
5131         int err;
5132
5133         cmd.host_command_parameters[0] = interval;
5134
5135         IPW_DEBUG_INFO("enter\n");
5136
5137         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5138                 if (!batch_mode) {
5139                         err = ipw2100_disable_adapter(priv);
5140                         if (err)
5141                                 return err;
5142                 }
5143
5144                 ipw2100_hw_send_command(priv, &cmd);
5145
5146                 if (!batch_mode) {
5147                         err = ipw2100_enable_adapter(priv);
5148                         if (err)
5149                                 return err;
5150                 }
5151         }
5152
5153         IPW_DEBUG_INFO("exit\n");
5154
5155         return 0;
5156 }
5157
5158 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5159 {
5160         ipw2100_tx_initialize(priv);
5161         ipw2100_rx_initialize(priv);
5162         ipw2100_msg_initialize(priv);
5163 }
5164
5165 void ipw2100_queues_free(struct ipw2100_priv *priv)
5166 {
5167         ipw2100_tx_free(priv);
5168         ipw2100_rx_free(priv);
5169         ipw2100_msg_free(priv);
5170 }
5171
5172 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5173 {
5174         if (ipw2100_tx_allocate(priv) ||
5175             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5176                 goto fail;
5177
5178         return 0;
5179
5180       fail:
5181         ipw2100_tx_free(priv);
5182         ipw2100_rx_free(priv);
5183         ipw2100_msg_free(priv);
5184         return -ENOMEM;
5185 }
5186
5187 #define IPW_PRIVACY_CAPABLE 0x0008
5188
5189 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5190                                  int batch_mode)
5191 {
5192         struct host_command cmd = {
5193                 .host_command = WEP_FLAGS,
5194                 .host_command_sequence = 0,
5195                 .host_command_length = 4
5196         };
5197         int err;
5198
5199         cmd.host_command_parameters[0] = flags;
5200
5201         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5202
5203         if (!batch_mode) {
5204                 err = ipw2100_disable_adapter(priv);
5205                 if (err) {
5206                         printk(KERN_ERR DRV_NAME
5207                                ": %s: Could not disable adapter %d\n",
5208                                priv->net_dev->name, err);
5209                         return err;
5210                 }
5211         }
5212
5213         /* send cmd to firmware */
5214         err = ipw2100_hw_send_command(priv, &cmd);
5215
5216         if (!batch_mode)
5217                 ipw2100_enable_adapter(priv);
5218
5219         return err;
5220 }
5221
5222 struct ipw2100_wep_key {
5223         u8 idx;
5224         u8 len;
5225         u8 key[13];
5226 };
5227
5228 /* Macros to ease up priting WEP keys */
5229 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5230 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5231 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5232 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5233
5234 /**
5235  * Set a the wep key
5236  *
5237  * @priv: struct to work on
5238  * @idx: index of the key we want to set
5239  * @key: ptr to the key data to set
5240  * @len: length of the buffer at @key
5241  * @batch_mode: FIXME perform the operation in batch mode, not
5242  *              disabling the device.
5243  *
5244  * @returns 0 if OK, < 0 errno code on error.
5245  *
5246  * Fill out a command structure with the new wep key, length an
5247  * index and send it down the wire.
5248  */
5249 static int ipw2100_set_key(struct ipw2100_priv *priv,
5250                            int idx, char *key, int len, int batch_mode)
5251 {
5252         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5253         struct host_command cmd = {
5254                 .host_command = WEP_KEY_INFO,
5255                 .host_command_sequence = 0,
5256                 .host_command_length = sizeof(struct ipw2100_wep_key),
5257         };
5258         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5259         int err;
5260
5261         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5262                      idx, keylen, len);
5263
5264         /* NOTE: We don't check cached values in case the firmware was reset
5265          * or some other problem is occuring.  If the user is setting the key,
5266          * then we push the change */
5267
5268         wep_key->idx = idx;
5269         wep_key->len = keylen;
5270
5271         if (keylen) {
5272                 memcpy(wep_key->key, key, len);
5273                 memset(wep_key->key + len, 0, keylen - len);
5274         }
5275
5276         /* Will be optimized out on debug not being configured in */
5277         if (keylen == 0)
5278                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5279                               priv->net_dev->name, wep_key->idx);
5280         else if (keylen == 5)
5281                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5282                               priv->net_dev->name, wep_key->idx, wep_key->len,
5283                               WEP_STR_64(wep_key->key));
5284         else
5285                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5286                               "\n",
5287                               priv->net_dev->name, wep_key->idx, wep_key->len,
5288                               WEP_STR_128(wep_key->key));
5289
5290         if (!batch_mode) {
5291                 err = ipw2100_disable_adapter(priv);
5292                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5293                 if (err) {
5294                         printk(KERN_ERR DRV_NAME
5295                                ": %s: Could not disable adapter %d\n",
5296                                priv->net_dev->name, err);
5297                         return err;
5298                 }
5299         }
5300
5301         /* send cmd to firmware */
5302         err = ipw2100_hw_send_command(priv, &cmd);
5303
5304         if (!batch_mode) {
5305                 int err2 = ipw2100_enable_adapter(priv);
5306                 if (err == 0)
5307                         err = err2;
5308         }
5309         return err;
5310 }
5311
5312 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5313                                  int idx, int batch_mode)
5314 {
5315         struct host_command cmd = {
5316                 .host_command = WEP_KEY_INDEX,
5317                 .host_command_sequence = 0,
5318                 .host_command_length = 4,
5319                 .host_command_parameters = {idx},
5320         };
5321         int err;
5322
5323         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5324
5325         if (idx < 0 || idx > 3)
5326                 return -EINVAL;
5327
5328         if (!batch_mode) {
5329                 err = ipw2100_disable_adapter(priv);
5330                 if (err) {
5331                         printk(KERN_ERR DRV_NAME
5332                                ": %s: Could not disable adapter %d\n",
5333                                priv->net_dev->name, err);
5334                         return err;
5335                 }
5336         }
5337
5338         /* send cmd to firmware */
5339         err = ipw2100_hw_send_command(priv, &cmd);
5340
5341         if (!batch_mode)
5342                 ipw2100_enable_adapter(priv);
5343
5344         return err;
5345 }
5346
5347 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5348 {
5349         int i, err, auth_mode, sec_level, use_group;
5350
5351         if (!(priv->status & STATUS_RUNNING))
5352                 return 0;
5353
5354         if (!batch_mode) {
5355                 err = ipw2100_disable_adapter(priv);
5356                 if (err)
5357                         return err;
5358         }
5359
5360         if (!priv->ieee->sec.enabled) {
5361                 err =
5362                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5363                                                      SEC_LEVEL_0, 0, 1);
5364         } else {
5365                 auth_mode = IPW_AUTH_OPEN;
5366                 if ((priv->ieee->sec.flags & SEC_AUTH_MODE) &&
5367                     (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY))
5368                         auth_mode = IPW_AUTH_SHARED;
5369
5370                 sec_level = SEC_LEVEL_0;
5371                 if (priv->ieee->sec.flags & SEC_LEVEL)
5372                         sec_level = priv->ieee->sec.level;
5373
5374                 use_group = 0;
5375                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5376                         use_group = priv->ieee->sec.unicast_uses_group;
5377
5378                 err =
5379                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5380                                                      use_group, 1);
5381         }
5382
5383         if (err)
5384                 goto exit;
5385
5386         if (priv->ieee->sec.enabled) {
5387                 for (i = 0; i < 4; i++) {
5388                         if (!(priv->ieee->sec.flags & (1 << i))) {
5389                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5390                                 priv->ieee->sec.key_sizes[i] = 0;
5391                         } else {
5392                                 err = ipw2100_set_key(priv, i,
5393                                                       priv->ieee->sec.keys[i],
5394                                                       priv->ieee->sec.
5395                                                       key_sizes[i], 1);
5396                                 if (err)
5397                                         goto exit;
5398                         }
5399                 }
5400
5401                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5402         }
5403
5404         /* Always enable privacy so the Host can filter WEP packets if
5405          * encrypted data is sent up */
5406         err =
5407             ipw2100_set_wep_flags(priv,
5408                                   priv->ieee->sec.
5409                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5410         if (err)
5411                 goto exit;
5412
5413         priv->status &= ~STATUS_SECURITY_UPDATED;
5414
5415       exit:
5416         if (!batch_mode)
5417                 ipw2100_enable_adapter(priv);
5418
5419         return err;
5420 }
5421
5422 static void ipw2100_security_work(struct ipw2100_priv *priv)
5423 {
5424         /* If we happen to have reconnected before we get a chance to
5425          * process this, then update the security settings--which causes
5426          * a disassociation to occur */
5427         if (!(priv->status & STATUS_ASSOCIATED) &&
5428             priv->status & STATUS_SECURITY_UPDATED)
5429                 ipw2100_configure_security(priv, 0);
5430 }
5431
5432 static void shim__set_security(struct net_device *dev,
5433                                struct ieee80211_security *sec)
5434 {
5435         struct ipw2100_priv *priv = ieee80211_priv(dev);
5436         int i, force_update = 0;
5437
5438         down(&priv->action_sem);
5439         if (!(priv->status & STATUS_INITIALIZED))
5440                 goto done;
5441
5442         for (i = 0; i < 4; i++) {
5443                 if (sec->flags & (1 << i)) {
5444                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5445                         if (sec->key_sizes[i] == 0)
5446                                 priv->ieee->sec.flags &= ~(1 << i);
5447                         else
5448                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5449                                        sec->key_sizes[i]);
5450                         if (sec->level == SEC_LEVEL_1) {
5451                                 priv->ieee->sec.flags |= (1 << i);
5452                                 priv->status |= STATUS_SECURITY_UPDATED;
5453                         } else
5454                                 priv->ieee->sec.flags &= ~(1 << i);
5455                 }
5456         }
5457
5458         if ((sec->flags & SEC_ACTIVE_KEY) &&
5459             priv->ieee->sec.active_key != sec->active_key) {
5460                 if (sec->active_key <= 3) {
5461                         priv->ieee->sec.active_key = sec->active_key;
5462                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5463                 } else
5464                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5465
5466                 priv->status |= STATUS_SECURITY_UPDATED;
5467         }
5468
5469         if ((sec->flags & SEC_AUTH_MODE) &&
5470             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5471                 priv->ieee->sec.auth_mode = sec->auth_mode;
5472                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5473                 priv->status |= STATUS_SECURITY_UPDATED;
5474         }
5475
5476         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5477                 priv->ieee->sec.flags |= SEC_ENABLED;
5478                 priv->ieee->sec.enabled = sec->enabled;
5479                 priv->status |= STATUS_SECURITY_UPDATED;
5480                 force_update = 1;
5481         }
5482
5483         if (sec->flags & SEC_ENCRYPT)
5484                 priv->ieee->sec.encrypt = sec->encrypt;
5485
5486         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5487                 priv->ieee->sec.level = sec->level;
5488                 priv->ieee->sec.flags |= SEC_LEVEL;
5489                 priv->status |= STATUS_SECURITY_UPDATED;
5490         }
5491
5492         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5493                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5494                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5495                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5496                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5497                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5498                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5499                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5500                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5501                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5502
5503 /* As a temporary work around to enable WPA until we figure out why
5504  * wpa_supplicant toggles the security capability of the driver, which
5505  * forces a disassocation with force_update...
5506  *
5507  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5508         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5509                 ipw2100_configure_security(priv, 0);
5510       done:
5511         up(&priv->action_sem);
5512 }
5513
5514 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5515 {
5516         int err;
5517         int batch_mode = 1;
5518         u8 *bssid;
5519
5520         IPW_DEBUG_INFO("enter\n");
5521
5522         err = ipw2100_disable_adapter(priv);
5523         if (err)
5524                 return err;
5525 #ifdef CONFIG_IPW2100_MONITOR
5526         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5527                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5528                 if (err)
5529                         return err;
5530
5531                 IPW_DEBUG_INFO("exit\n");
5532
5533                 return 0;
5534         }
5535 #endif                          /* CONFIG_IPW2100_MONITOR */
5536
5537         err = ipw2100_read_mac_address(priv);
5538         if (err)
5539                 return -EIO;
5540
5541         err = ipw2100_set_mac_address(priv, batch_mode);
5542         if (err)
5543                 return err;
5544
5545         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5546         if (err)
5547                 return err;
5548
5549         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5550                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5551                 if (err)
5552                         return err;
5553         }
5554
5555         err = ipw2100_system_config(priv, batch_mode);
5556         if (err)
5557                 return err;
5558
5559         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5560         if (err)
5561                 return err;
5562
5563         /* Default to power mode OFF */
5564         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5565         if (err)
5566                 return err;
5567
5568         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5569         if (err)
5570                 return err;
5571
5572         if (priv->config & CFG_STATIC_BSSID)
5573                 bssid = priv->bssid;
5574         else
5575                 bssid = NULL;
5576         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5577         if (err)
5578                 return err;
5579
5580         if (priv->config & CFG_STATIC_ESSID)
5581                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5582                                         batch_mode);
5583         else
5584                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5585         if (err)
5586                 return err;
5587
5588         err = ipw2100_configure_security(priv, batch_mode);
5589         if (err)
5590                 return err;
5591
5592         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5593                 err =
5594                     ipw2100_set_ibss_beacon_interval(priv,
5595                                                      priv->beacon_interval,
5596                                                      batch_mode);
5597                 if (err)
5598                         return err;
5599
5600                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5601                 if (err)
5602                         return err;
5603         }
5604
5605         /*
5606            err = ipw2100_set_fragmentation_threshold(
5607            priv, priv->frag_threshold, batch_mode);
5608            if (err)
5609            return err;
5610          */
5611
5612         IPW_DEBUG_INFO("exit\n");
5613
5614         return 0;
5615 }
5616
5617 /*************************************************************************
5618  *
5619  * EXTERNALLY CALLED METHODS
5620  *
5621  *************************************************************************/
5622
5623 /* This method is called by the network layer -- not to be confused with
5624  * ipw2100_set_mac_address() declared above called by this driver (and this
5625  * method as well) to talk to the firmware */
5626 static int ipw2100_set_address(struct net_device *dev, void *p)
5627 {
5628         struct ipw2100_priv *priv = ieee80211_priv(dev);
5629         struct sockaddr *addr = p;
5630         int err = 0;
5631
5632         if (!is_valid_ether_addr(addr->sa_data))
5633                 return -EADDRNOTAVAIL;
5634
5635         down(&priv->action_sem);
5636
5637         priv->config |= CFG_CUSTOM_MAC;
5638         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5639
5640         err = ipw2100_set_mac_address(priv, 0);
5641         if (err)
5642                 goto done;
5643
5644         priv->reset_backoff = 0;
5645         up(&priv->action_sem);
5646         ipw2100_reset_adapter(priv);
5647         return 0;
5648
5649       done:
5650         up(&priv->action_sem);
5651         return err;
5652 }
5653
5654 static int ipw2100_open(struct net_device *dev)
5655 {
5656         struct ipw2100_priv *priv = ieee80211_priv(dev);
5657         unsigned long flags;
5658         IPW_DEBUG_INFO("dev->open\n");
5659
5660         spin_lock_irqsave(&priv->low_lock, flags);
5661         if (priv->status & STATUS_ASSOCIATED) {
5662                 netif_carrier_on(dev);
5663                 netif_start_queue(dev);
5664         }
5665         spin_unlock_irqrestore(&priv->low_lock, flags);
5666
5667         return 0;
5668 }
5669
5670 static int ipw2100_close(struct net_device *dev)
5671 {
5672         struct ipw2100_priv *priv = ieee80211_priv(dev);
5673         unsigned long flags;
5674         struct list_head *element;
5675         struct ipw2100_tx_packet *packet;
5676
5677         IPW_DEBUG_INFO("enter\n");
5678
5679         spin_lock_irqsave(&priv->low_lock, flags);
5680
5681         if (priv->status & STATUS_ASSOCIATED)
5682                 netif_carrier_off(dev);
5683         netif_stop_queue(dev);
5684
5685         /* Flush the TX queue ... */
5686         while (!list_empty(&priv->tx_pend_list)) {
5687                 element = priv->tx_pend_list.next;
5688                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5689
5690                 list_del(element);
5691                 DEC_STAT(&priv->tx_pend_stat);
5692
5693                 ieee80211_txb_free(packet->info.d_struct.txb);
5694                 packet->info.d_struct.txb = NULL;
5695
5696                 list_add_tail(element, &priv->tx_free_list);
5697                 INC_STAT(&priv->tx_free_stat);
5698         }
5699         spin_unlock_irqrestore(&priv->low_lock, flags);
5700
5701         IPW_DEBUG_INFO("exit\n");
5702
5703         return 0;
5704 }
5705
5706 /*
5707  * TODO:  Fix this function... its just wrong
5708  */
5709 static void ipw2100_tx_timeout(struct net_device *dev)
5710 {
5711         struct ipw2100_priv *priv = ieee80211_priv(dev);
5712
5713         priv->ieee->stats.tx_errors++;
5714
5715 #ifdef CONFIG_IPW2100_MONITOR
5716         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5717                 return;
5718 #endif
5719
5720         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5721                        dev->name);
5722         schedule_reset(priv);
5723 }
5724
5725 /*
5726  * TODO: reimplement it so that it reads statistics
5727  *       from the adapter using ordinal tables
5728  *       instead of/in addition to collecting them
5729  *       in the driver
5730  */
5731 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5732 {
5733         struct ipw2100_priv *priv = ieee80211_priv(dev);
5734
5735         return &priv->ieee->stats;
5736 }
5737
5738 #if WIRELESS_EXT < 18
5739 /* Support for wpa_supplicant before WE-18, deprecated. */
5740
5741 /* following definitions must match definitions in driver_ipw.c */
5742
5743 #define IPW2100_IOCTL_WPA_SUPPLICANT            SIOCIWFIRSTPRIV+30
5744
5745 #define IPW2100_CMD_SET_WPA_PARAM               1
5746 #define IPW2100_CMD_SET_WPA_IE                  2
5747 #define IPW2100_CMD_SET_ENCRYPTION              3
5748 #define IPW2100_CMD_MLME                        4
5749
5750 #define IPW2100_PARAM_WPA_ENABLED               1
5751 #define IPW2100_PARAM_TKIP_COUNTERMEASURES      2
5752 #define IPW2100_PARAM_DROP_UNENCRYPTED          3
5753 #define IPW2100_PARAM_PRIVACY_INVOKED           4
5754 #define IPW2100_PARAM_AUTH_ALGS                 5
5755 #define IPW2100_PARAM_IEEE_802_1X               6
5756
5757 #define IPW2100_MLME_STA_DEAUTH                 1
5758 #define IPW2100_MLME_STA_DISASSOC               2
5759
5760 #define IPW2100_CRYPT_ERR_UNKNOWN_ALG           2
5761 #define IPW2100_CRYPT_ERR_UNKNOWN_ADDR          3
5762 #define IPW2100_CRYPT_ERR_CRYPT_INIT_FAILED     4
5763 #define IPW2100_CRYPT_ERR_KEY_SET_FAILED        5
5764 #define IPW2100_CRYPT_ERR_TX_KEY_SET_FAILED     6
5765 #define IPW2100_CRYPT_ERR_CARD_CONF_FAILED      7
5766
5767 #define IPW2100_CRYPT_ALG_NAME_LEN              16
5768
5769 struct ipw2100_param {
5770         u32 cmd;
5771         u8 sta_addr[ETH_ALEN];
5772         union {
5773                 struct {
5774                         u8 name;
5775                         u32 value;
5776                 } wpa_param;
5777                 struct {
5778                         u32 len;
5779                         u8 reserved[32];
5780                         u8 data[0];
5781                 } wpa_ie;
5782                 struct {
5783                         u32 command;
5784                         u32 reason_code;
5785                 } mlme;
5786                 struct {
5787                         u8 alg[IPW2100_CRYPT_ALG_NAME_LEN];
5788                         u8 set_tx;
5789                         u32 err;
5790                         u8 idx;
5791                         u8 seq[8];      /* sequence counter (set: RX, get: TX) */
5792                         u16 key_len;
5793                         u8 key[0];
5794                 } crypt;
5795
5796         } u;
5797 };
5798
5799 /* end of driver_ipw.c code */
5800 #endif                          /* WIRELESS_EXT < 18 */
5801
5802 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5803 {
5804         /* This is called when wpa_supplicant loads and closes the driver
5805          * interface. */
5806         priv->ieee->wpa_enabled = value;
5807         return 0;
5808 }
5809
5810 #if WIRELESS_EXT < 18
5811 #define IW_AUTH_ALG_OPEN_SYSTEM                 0x1
5812 #define IW_AUTH_ALG_SHARED_KEY                  0x2
5813 #endif
5814
5815 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5816 {
5817
5818         struct ieee80211_device *ieee = priv->ieee;
5819         struct ieee80211_security sec = {
5820                 .flags = SEC_AUTH_MODE,
5821         };
5822         int ret = 0;
5823
5824         if (value & IW_AUTH_ALG_SHARED_KEY) {
5825                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5826                 ieee->open_wep = 0;
5827         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5828                 sec.auth_mode = WLAN_AUTH_OPEN;
5829                 ieee->open_wep = 1;
5830         } else
5831                 return -EINVAL;
5832
5833         if (ieee->set_security)
5834                 ieee->set_security(ieee->dev, &sec);
5835         else
5836                 ret = -EOPNOTSUPP;
5837
5838         return ret;
5839 }
5840
5841 void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5842                              char *wpa_ie, int wpa_ie_len)
5843 {
5844
5845         struct ipw2100_wpa_assoc_frame frame;
5846
5847         frame.fixed_ie_mask = 0;
5848
5849         /* copy WPA IE */
5850         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5851         frame.var_ie_len = wpa_ie_len;
5852
5853         /* make sure WPA is enabled */
5854         ipw2100_wpa_enable(priv, 1);
5855         ipw2100_set_wpa_ie(priv, &frame, 0);
5856 }
5857
5858 #if WIRELESS_EXT < 18
5859 static int ipw2100_wpa_set_param(struct net_device *dev, u8 name, u32 value)
5860 {
5861         struct ipw2100_priv *priv = ieee80211_priv(dev);
5862         struct ieee80211_crypt_data *crypt;
5863         unsigned long flags;
5864         int ret = 0;
5865
5866         switch (name) {
5867         case IPW2100_PARAM_WPA_ENABLED:
5868                 ret = ipw2100_wpa_enable(priv, value);
5869                 break;
5870
5871         case IPW2100_PARAM_TKIP_COUNTERMEASURES:
5872                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
5873                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
5874                         break;
5875
5876                 flags = crypt->ops->get_flags(crypt->priv);
5877
5878                 if (value)
5879                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
5880                 else
5881                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
5882
5883                 crypt->ops->set_flags(flags, crypt->priv);
5884
5885                 break;
5886
5887         case IPW2100_PARAM_DROP_UNENCRYPTED:{
5888                         /* See IW_AUTH_DROP_UNENCRYPTED handling for details */
5889                         struct ieee80211_security sec = {
5890                                 .flags = SEC_ENABLED,
5891                                 .enabled = value,
5892                         };
5893                         priv->ieee->drop_unencrypted = value;
5894                         /* We only change SEC_LEVEL for open mode. Others
5895                          * are set by ipw_wpa_set_encryption.
5896                          */
5897                         if (!value) {
5898                                 sec.flags |= SEC_LEVEL;
5899                                 sec.level = SEC_LEVEL_0;
5900                         } else {
5901                                 sec.flags |= SEC_LEVEL;
5902                                 sec.level = SEC_LEVEL_1;
5903                         }
5904                         if (priv->ieee->set_security)
5905                                 priv->ieee->set_security(priv->ieee->dev, &sec);
5906                         break;
5907                 }
5908
5909         case IPW2100_PARAM_PRIVACY_INVOKED:
5910                 priv->ieee->privacy_invoked = value;
5911                 break;
5912
5913         case IPW2100_PARAM_AUTH_ALGS:
5914                 ret = ipw2100_wpa_set_auth_algs(priv, value);
5915                 break;
5916
5917         case IPW2100_PARAM_IEEE_802_1X:
5918                 priv->ieee->ieee802_1x = value;
5919                 break;
5920
5921         default:
5922                 printk(KERN_ERR DRV_NAME ": %s: Unknown WPA param: %d\n",
5923                        dev->name, name);
5924                 ret = -EOPNOTSUPP;
5925         }
5926
5927         return ret;
5928 }
5929
5930 static int ipw2100_wpa_mlme(struct net_device *dev, int command, int reason)
5931 {
5932
5933         struct ipw2100_priv *priv = ieee80211_priv(dev);
5934         int ret = 0;
5935
5936         switch (command) {
5937         case IPW2100_MLME_STA_DEAUTH:
5938                 // silently ignore
5939                 break;
5940
5941         case IPW2100_MLME_STA_DISASSOC:
5942                 ipw2100_disassociate_bssid(priv);
5943                 break;
5944
5945         default:
5946                 printk(KERN_ERR DRV_NAME ": %s: Unknown MLME request: %d\n",
5947                        dev->name, command);
5948                 ret = -EOPNOTSUPP;
5949         }
5950
5951         return ret;
5952 }
5953
5954 static int ipw2100_wpa_set_wpa_ie(struct net_device *dev,
5955                                   struct ipw2100_param *param, int plen)
5956 {
5957
5958         struct ipw2100_priv *priv = ieee80211_priv(dev);
5959         struct ieee80211_device *ieee = priv->ieee;
5960         u8 *buf;
5961
5962         if (!ieee->wpa_enabled)
5963                 return -EOPNOTSUPP;
5964
5965         if (param->u.wpa_ie.len > MAX_WPA_IE_LEN ||
5966             (param->u.wpa_ie.len && param->u.wpa_ie.data == NULL))
5967                 return -EINVAL;
5968
5969         if (param->u.wpa_ie.len) {
5970                 buf = kmalloc(param->u.wpa_ie.len, GFP_KERNEL);
5971                 if (buf == NULL)
5972                         return -ENOMEM;
5973
5974                 memcpy(buf, param->u.wpa_ie.data, param->u.wpa_ie.len);
5975
5976                 kfree(ieee->wpa_ie);
5977                 ieee->wpa_ie = buf;
5978                 ieee->wpa_ie_len = param->u.wpa_ie.len;
5979
5980         } else {
5981                 kfree(ieee->wpa_ie);
5982                 ieee->wpa_ie = NULL;
5983                 ieee->wpa_ie_len = 0;
5984         }
5985
5986         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
5987
5988         return 0;
5989 }
5990
5991 /* implementation borrowed from hostap driver */
5992
5993 static int ipw2100_wpa_set_encryption(struct net_device *dev,
5994                                       struct ipw2100_param *param,
5995                                       int param_len)
5996 {
5997         int ret = 0;
5998         struct ipw2100_priv *priv = ieee80211_priv(dev);
5999         struct ieee80211_device *ieee = priv->ieee;
6000         struct ieee80211_crypto_ops *ops;
6001         struct ieee80211_crypt_data **crypt;
6002
6003         struct ieee80211_security sec = {
6004                 .flags = 0,
6005         };
6006
6007         param->u.crypt.err = 0;
6008         param->u.crypt.alg[IPW2100_CRYPT_ALG_NAME_LEN - 1] = '\0';
6009
6010         if (param_len !=
6011             (int)((char *)param->u.crypt.key - (char *)param) +
6012             param->u.crypt.key_len) {
6013                 IPW_DEBUG_INFO("Len mismatch %d, %d\n", param_len,
6014                                param->u.crypt.key_len);
6015                 return -EINVAL;
6016         }
6017         if (param->sta_addr[0] == 0xff && param->sta_addr[1] == 0xff &&
6018             param->sta_addr[2] == 0xff && param->sta_addr[3] == 0xff &&
6019             param->sta_addr[4] == 0xff && param->sta_addr[5] == 0xff) {
6020                 if (param->u.crypt.idx >= WEP_KEYS)
6021                         return -EINVAL;
6022                 crypt = &ieee->crypt[param->u.crypt.idx];
6023         } else {
6024                 return -EINVAL;
6025         }
6026
6027         sec.flags |= SEC_ENABLED | SEC_ENCRYPT;
6028         if (strcmp(param->u.crypt.alg, "none") == 0) {
6029                 if (crypt) {
6030                         sec.enabled = 0;
6031                         sec.encrypt = 0;
6032                         sec.level = SEC_LEVEL_0;
6033                         sec.flags |= SEC_LEVEL;
6034                         ieee80211_crypt_delayed_deinit(ieee, crypt);
6035                 }
6036                 goto done;
6037         }
6038         sec.enabled = 1;
6039         sec.encrypt = 1;
6040
6041         ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6042         if (ops == NULL && strcmp(param->u.crypt.alg, "WEP") == 0) {
6043                 request_module("ieee80211_crypt_wep");
6044                 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6045         } else if (ops == NULL && strcmp(param->u.crypt.alg, "TKIP") == 0) {
6046                 request_module("ieee80211_crypt_tkip");
6047                 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6048         } else if (ops == NULL && strcmp(param->u.crypt.alg, "CCMP") == 0) {
6049                 request_module("ieee80211_crypt_ccmp");
6050                 ops = ieee80211_get_crypto_ops(param->u.crypt.alg);
6051         }
6052         if (ops == NULL) {
6053                 IPW_DEBUG_INFO("%s: unknown crypto alg '%s'\n",
6054                                dev->name, param->u.crypt.alg);
6055                 param->u.crypt.err = IPW2100_CRYPT_ERR_UNKNOWN_ALG;
6056                 ret = -EINVAL;
6057                 goto done;
6058         }
6059
6060         if (*crypt == NULL || (*crypt)->ops != ops) {
6061                 struct ieee80211_crypt_data *new_crypt;
6062
6063                 ieee80211_crypt_delayed_deinit(ieee, crypt);
6064
6065                 new_crypt = kzalloc(sizeof(struct ieee80211_crypt_data), GFP_KERNEL);
6066                 if (new_crypt == NULL) {
6067                         ret = -ENOMEM;
6068                         goto done;
6069                 }
6070                 new_crypt->ops = ops;
6071                 if (new_crypt->ops && try_module_get(new_crypt->ops->owner))
6072                         new_crypt->priv =
6073                             new_crypt->ops->init(param->u.crypt.idx);
6074
6075                 if (new_crypt->priv == NULL) {
6076                         kfree(new_crypt);
6077                         param->u.crypt.err =
6078                             IPW2100_CRYPT_ERR_CRYPT_INIT_FAILED;
6079                         ret = -EINVAL;
6080                         goto done;
6081                 }
6082
6083                 *crypt = new_crypt;
6084         }
6085
6086         if (param->u.crypt.key_len > 0 && (*crypt)->ops->set_key &&
6087             (*crypt)->ops->set_key(param->u.crypt.key,
6088                                    param->u.crypt.key_len, param->u.crypt.seq,
6089                                    (*crypt)->priv) < 0) {
6090                 IPW_DEBUG_INFO("%s: key setting failed\n", dev->name);
6091                 param->u.crypt.err = IPW2100_CRYPT_ERR_KEY_SET_FAILED;
6092                 ret = -EINVAL;
6093                 goto done;
6094         }
6095
6096         if (param->u.crypt.set_tx) {
6097                 ieee->tx_keyidx = param->u.crypt.idx;
6098                 sec.active_key = param->u.crypt.idx;
6099                 sec.flags |= SEC_ACTIVE_KEY;
6100         }
6101
6102         if (ops->name != NULL) {
6103
6104                 if (strcmp(ops->name, "WEP") == 0) {
6105                         memcpy(sec.keys[param->u.crypt.idx],
6106                                param->u.crypt.key, param->u.crypt.key_len);
6107                         sec.key_sizes[param->u.crypt.idx] =
6108                             param->u.crypt.key_len;
6109                         sec.flags |= (1 << param->u.crypt.idx);
6110                         sec.flags |= SEC_LEVEL;
6111                         sec.level = SEC_LEVEL_1;
6112                 } else if (strcmp(ops->name, "TKIP") == 0) {
6113                         sec.flags |= SEC_LEVEL;
6114                         sec.level = SEC_LEVEL_2;
6115                 } else if (strcmp(ops->name, "CCMP") == 0) {
6116                         sec.flags |= SEC_LEVEL;
6117                         sec.level = SEC_LEVEL_3;
6118                 }
6119         }
6120       done:
6121         if (ieee->set_security)
6122                 ieee->set_security(ieee->dev, &sec);
6123
6124         /* Do not reset port if card is in Managed mode since resetting will
6125          * generate new IEEE 802.11 authentication which may end up in looping
6126          * with IEEE 802.1X.  If your hardware requires a reset after WEP
6127          * configuration (for example... Prism2), implement the reset_port in
6128          * the callbacks structures used to initialize the 802.11 stack. */
6129         if (ieee->reset_on_keychange &&
6130             ieee->iw_mode != IW_MODE_INFRA &&
6131             ieee->reset_port && ieee->reset_port(dev)) {
6132                 IPW_DEBUG_INFO("%s: reset_port failed\n", dev->name);
6133                 param->u.crypt.err = IPW2100_CRYPT_ERR_CARD_CONF_FAILED;
6134                 return -EINVAL;
6135         }
6136
6137         return ret;
6138 }
6139
6140 static int ipw2100_wpa_supplicant(struct net_device *dev, struct iw_point *p)
6141 {
6142
6143         struct ipw2100_param *param;
6144         int ret = 0;
6145
6146         IPW_DEBUG_IOCTL("wpa_supplicant: len=%d\n", p->length);
6147
6148         if (p->length < sizeof(struct ipw2100_param) || !p->pointer)
6149                 return -EINVAL;
6150
6151         param = (struct ipw2100_param *)kmalloc(p->length, GFP_KERNEL);
6152         if (param == NULL)
6153                 return -ENOMEM;
6154
6155         if (copy_from_user(param, p->pointer, p->length)) {
6156                 kfree(param);
6157                 return -EFAULT;
6158         }
6159
6160         switch (param->cmd) {
6161
6162         case IPW2100_CMD_SET_WPA_PARAM:
6163                 ret = ipw2100_wpa_set_param(dev, param->u.wpa_param.name,
6164                                             param->u.wpa_param.value);
6165                 break;
6166
6167         case IPW2100_CMD_SET_WPA_IE:
6168                 ret = ipw2100_wpa_set_wpa_ie(dev, param, p->length);
6169                 break;
6170
6171         case IPW2100_CMD_SET_ENCRYPTION:
6172                 ret = ipw2100_wpa_set_encryption(dev, param, p->length);
6173                 break;
6174
6175         case IPW2100_CMD_MLME:
6176                 ret = ipw2100_wpa_mlme(dev, param->u.mlme.command,
6177                                        param->u.mlme.reason_code);
6178                 break;
6179
6180         default:
6181                 printk(KERN_ERR DRV_NAME
6182                        ": %s: Unknown WPA supplicant request: %d\n", dev->name,
6183                        param->cmd);
6184                 ret = -EOPNOTSUPP;
6185
6186         }
6187
6188         if (ret == 0 && copy_to_user(p->pointer, param, p->length))
6189                 ret = -EFAULT;
6190
6191         kfree(param);
6192         return ret;
6193 }
6194
6195 static int ipw2100_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6196 {
6197         struct iwreq *wrq = (struct iwreq *)rq;
6198         int ret = -1;
6199         switch (cmd) {
6200         case IPW2100_IOCTL_WPA_SUPPLICANT:
6201                 ret = ipw2100_wpa_supplicant(dev, &wrq->u.data);
6202                 return ret;
6203
6204         default:
6205                 return -EOPNOTSUPP;
6206         }
6207
6208         return -EOPNOTSUPP;
6209 }
6210 #endif                          /* WIRELESS_EXT < 18 */
6211
6212 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
6213                                     struct ethtool_drvinfo *info)
6214 {
6215         struct ipw2100_priv *priv = ieee80211_priv(dev);
6216         char fw_ver[64], ucode_ver[64];
6217
6218         strcpy(info->driver, DRV_NAME);
6219         strcpy(info->version, DRV_VERSION);
6220
6221         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
6222         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
6223
6224         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
6225                  fw_ver, priv->eeprom_version, ucode_ver);
6226
6227         strcpy(info->bus_info, pci_name(priv->pci_dev));
6228 }
6229
6230 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
6231 {
6232         struct ipw2100_priv *priv = ieee80211_priv(dev);
6233         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6234 }
6235
6236 static struct ethtool_ops ipw2100_ethtool_ops = {
6237         .get_link = ipw2100_ethtool_get_link,
6238         .get_drvinfo = ipw_ethtool_get_drvinfo,
6239 };
6240
6241 static void ipw2100_hang_check(void *adapter)
6242 {
6243         struct ipw2100_priv *priv = adapter;
6244         unsigned long flags;
6245         u32 rtc = 0xa5a5a5a5;
6246         u32 len = sizeof(rtc);
6247         int restart = 0;
6248
6249         spin_lock_irqsave(&priv->low_lock, flags);
6250
6251         if (priv->fatal_error != 0) {
6252                 /* If fatal_error is set then we need to restart */
6253                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6254                                priv->net_dev->name);
6255
6256                 restart = 1;
6257         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6258                    (rtc == priv->last_rtc)) {
6259                 /* Check if firmware is hung */
6260                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6261                                priv->net_dev->name);
6262
6263                 restart = 1;
6264         }
6265
6266         if (restart) {
6267                 /* Kill timer */
6268                 priv->stop_hang_check = 1;
6269                 priv->hangs++;
6270
6271                 /* Restart the NIC */
6272                 schedule_reset(priv);
6273         }
6274
6275         priv->last_rtc = rtc;
6276
6277         if (!priv->stop_hang_check)
6278                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
6279
6280         spin_unlock_irqrestore(&priv->low_lock, flags);
6281 }
6282
6283 static void ipw2100_rf_kill(void *adapter)
6284 {
6285         struct ipw2100_priv *priv = adapter;
6286         unsigned long flags;
6287
6288         spin_lock_irqsave(&priv->low_lock, flags);
6289
6290         if (rf_kill_active(priv)) {
6291                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6292                 if (!priv->stop_rf_kill)
6293                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
6294                 goto exit_unlock;
6295         }
6296
6297         /* RF Kill is now disabled, so bring the device back up */
6298
6299         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6300                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6301                                   "device\n");
6302                 schedule_reset(priv);
6303         } else
6304                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6305                                   "enabled\n");
6306
6307       exit_unlock:
6308         spin_unlock_irqrestore(&priv->low_lock, flags);
6309 }
6310
6311 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6312
6313 /* Look into using netdev destructor to shutdown ieee80211? */
6314
6315 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6316                                                void __iomem * base_addr,
6317                                                unsigned long mem_start,
6318                                                unsigned long mem_len)
6319 {
6320         struct ipw2100_priv *priv;
6321         struct net_device *dev;
6322
6323         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6324         if (!dev)
6325                 return NULL;
6326         priv = ieee80211_priv(dev);
6327         priv->ieee = netdev_priv(dev);
6328         priv->pci_dev = pci_dev;
6329         priv->net_dev = dev;
6330
6331         priv->ieee->hard_start_xmit = ipw2100_tx;
6332         priv->ieee->set_security = shim__set_security;
6333
6334         priv->ieee->perfect_rssi = -20;
6335         priv->ieee->worst_rssi = -85;
6336
6337         dev->open = ipw2100_open;
6338         dev->stop = ipw2100_close;
6339         dev->init = ipw2100_net_init;
6340 #if WIRELESS_EXT < 18
6341         dev->do_ioctl = ipw2100_ioctl;
6342 #endif
6343         dev->get_stats = ipw2100_stats;
6344         dev->ethtool_ops = &ipw2100_ethtool_ops;
6345         dev->tx_timeout = ipw2100_tx_timeout;
6346         dev->wireless_handlers = &ipw2100_wx_handler_def;
6347         priv->wireless_data.ieee80211 = priv->ieee;
6348         dev->wireless_data = &priv->wireless_data;
6349         dev->set_mac_address = ipw2100_set_address;
6350         dev->watchdog_timeo = 3 * HZ;
6351         dev->irq = 0;
6352
6353         dev->base_addr = (unsigned long)base_addr;
6354         dev->mem_start = mem_start;
6355         dev->mem_end = dev->mem_start + mem_len - 1;
6356
6357         /* NOTE: We don't use the wireless_handlers hook
6358          * in dev as the system will start throwing WX requests
6359          * to us before we're actually initialized and it just
6360          * ends up causing problems.  So, we just handle
6361          * the WX extensions through the ipw2100_ioctl interface */
6362
6363         /* memset() puts everything to 0, so we only have explicitely set
6364          * those values that need to be something else */
6365
6366         /* If power management is turned on, default to AUTO mode */
6367         priv->power_mode = IPW_POWER_AUTO;
6368
6369 #ifdef CONFIG_IPW2100_MONITOR
6370         priv->config |= CFG_CRC_CHECK;
6371 #endif
6372         priv->ieee->wpa_enabled = 0;
6373         priv->ieee->drop_unencrypted = 0;
6374         priv->ieee->privacy_invoked = 0;
6375         priv->ieee->ieee802_1x = 1;
6376
6377         /* Set module parameters */
6378         switch (mode) {
6379         case 1:
6380                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6381                 break;
6382 #ifdef CONFIG_IPW2100_MONITOR
6383         case 2:
6384                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6385                 break;
6386 #endif
6387         default:
6388         case 0:
6389                 priv->ieee->iw_mode = IW_MODE_INFRA;
6390                 break;
6391         }
6392
6393         if (disable == 1)
6394                 priv->status |= STATUS_RF_KILL_SW;
6395
6396         if (channel != 0 &&
6397             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6398                 priv->config |= CFG_STATIC_CHANNEL;
6399                 priv->channel = channel;
6400         }
6401
6402         if (associate)
6403                 priv->config |= CFG_ASSOCIATE;
6404
6405         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6406         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6407         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6408         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6409         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6410         priv->tx_power = IPW_TX_POWER_DEFAULT;
6411         priv->tx_rates = DEFAULT_TX_RATES;
6412
6413         strcpy(priv->nick, "ipw2100");
6414
6415         spin_lock_init(&priv->low_lock);
6416         sema_init(&priv->action_sem, 1);
6417         sema_init(&priv->adapter_sem, 1);
6418
6419         init_waitqueue_head(&priv->wait_command_queue);
6420
6421         netif_carrier_off(dev);
6422
6423         INIT_LIST_HEAD(&priv->msg_free_list);
6424         INIT_LIST_HEAD(&priv->msg_pend_list);
6425         INIT_STAT(&priv->msg_free_stat);
6426         INIT_STAT(&priv->msg_pend_stat);
6427
6428         INIT_LIST_HEAD(&priv->tx_free_list);
6429         INIT_LIST_HEAD(&priv->tx_pend_list);
6430         INIT_STAT(&priv->tx_free_stat);
6431         INIT_STAT(&priv->tx_pend_stat);
6432
6433         INIT_LIST_HEAD(&priv->fw_pend_list);
6434         INIT_STAT(&priv->fw_pend_stat);
6435
6436         priv->workqueue = create_workqueue(DRV_NAME);
6437
6438         INIT_WORK(&priv->reset_work,
6439                   (void (*)(void *))ipw2100_reset_adapter, priv);
6440         INIT_WORK(&priv->security_work,
6441                   (void (*)(void *))ipw2100_security_work, priv);
6442         INIT_WORK(&priv->wx_event_work,
6443                   (void (*)(void *))ipw2100_wx_event_work, priv);
6444         INIT_WORK(&priv->hang_check, ipw2100_hang_check, priv);
6445         INIT_WORK(&priv->rf_kill, ipw2100_rf_kill, priv);
6446
6447         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6448                      ipw2100_irq_tasklet, (unsigned long)priv);
6449
6450         /* NOTE:  We do not start the deferred work for status checks yet */
6451         priv->stop_rf_kill = 1;
6452         priv->stop_hang_check = 1;
6453
6454         return dev;
6455 }
6456
6457 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6458                                 const struct pci_device_id *ent)
6459 {
6460         unsigned long mem_start, mem_len, mem_flags;
6461         void __iomem *base_addr = NULL;
6462         struct net_device *dev = NULL;
6463         struct ipw2100_priv *priv = NULL;
6464         int err = 0;
6465         int registered = 0;
6466         u32 val;
6467
6468         IPW_DEBUG_INFO("enter\n");
6469
6470         mem_start = pci_resource_start(pci_dev, 0);
6471         mem_len = pci_resource_len(pci_dev, 0);
6472         mem_flags = pci_resource_flags(pci_dev, 0);
6473
6474         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6475                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6476                 err = -ENODEV;
6477                 goto fail;
6478         }
6479
6480         base_addr = ioremap_nocache(mem_start, mem_len);
6481         if (!base_addr) {
6482                 printk(KERN_WARNING DRV_NAME
6483                        "Error calling ioremap_nocache.\n");
6484                 err = -EIO;
6485                 goto fail;
6486         }
6487
6488         /* allocate and initialize our net_device */
6489         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6490         if (!dev) {
6491                 printk(KERN_WARNING DRV_NAME
6492                        "Error calling ipw2100_alloc_device.\n");
6493                 err = -ENOMEM;
6494                 goto fail;
6495         }
6496
6497         /* set up PCI mappings for device */
6498         err = pci_enable_device(pci_dev);
6499         if (err) {
6500                 printk(KERN_WARNING DRV_NAME
6501                        "Error calling pci_enable_device.\n");
6502                 return err;
6503         }
6504
6505         priv = ieee80211_priv(dev);
6506
6507         pci_set_master(pci_dev);
6508         pci_set_drvdata(pci_dev, priv);
6509
6510         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6511         if (err) {
6512                 printk(KERN_WARNING DRV_NAME
6513                        "Error calling pci_set_dma_mask.\n");
6514                 pci_disable_device(pci_dev);
6515                 return err;
6516         }
6517
6518         err = pci_request_regions(pci_dev, DRV_NAME);
6519         if (err) {
6520                 printk(KERN_WARNING DRV_NAME
6521                        "Error calling pci_request_regions.\n");
6522                 pci_disable_device(pci_dev);
6523                 return err;
6524         }
6525
6526         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6527          * PCI Tx retries from interfering with C3 CPU state */
6528         pci_read_config_dword(pci_dev, 0x40, &val);
6529         if ((val & 0x0000ff00) != 0)
6530                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6531
6532         pci_set_power_state(pci_dev, PCI_D0);
6533
6534         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6535                 printk(KERN_WARNING DRV_NAME
6536                        "Device not found via register read.\n");
6537                 err = -ENODEV;
6538                 goto fail;
6539         }
6540
6541         SET_NETDEV_DEV(dev, &pci_dev->dev);
6542
6543         /* Force interrupts to be shut off on the device */
6544         priv->status |= STATUS_INT_ENABLED;
6545         ipw2100_disable_interrupts(priv);
6546
6547         /* Allocate and initialize the Tx/Rx queues and lists */
6548         if (ipw2100_queues_allocate(priv)) {
6549                 printk(KERN_WARNING DRV_NAME
6550                        "Error calilng ipw2100_queues_allocate.\n");
6551                 err = -ENOMEM;
6552                 goto fail;
6553         }
6554         ipw2100_queues_initialize(priv);
6555
6556         err = request_irq(pci_dev->irq,
6557                           ipw2100_interrupt, SA_SHIRQ, dev->name, priv);
6558         if (err) {
6559                 printk(KERN_WARNING DRV_NAME
6560                        "Error calling request_irq: %d.\n", pci_dev->irq);
6561                 goto fail;
6562         }
6563         dev->irq = pci_dev->irq;
6564
6565         IPW_DEBUG_INFO("Attempting to register device...\n");
6566
6567         SET_MODULE_OWNER(dev);
6568
6569         printk(KERN_INFO DRV_NAME
6570                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6571
6572         /* Bring up the interface.  Pre 0.46, after we registered the
6573          * network device we would call ipw2100_up.  This introduced a race
6574          * condition with newer hotplug configurations (network was coming
6575          * up and making calls before the device was initialized).
6576          *
6577          * If we called ipw2100_up before we registered the device, then the
6578          * device name wasn't registered.  So, we instead use the net_dev->init
6579          * member to call a function that then just turns and calls ipw2100_up.
6580          * net_dev->init is called after name allocation but before the
6581          * notifier chain is called */
6582         down(&priv->action_sem);
6583         err = register_netdev(dev);
6584         if (err) {
6585                 printk(KERN_WARNING DRV_NAME
6586                        "Error calling register_netdev.\n");
6587                 goto fail_unlock;
6588         }
6589         registered = 1;
6590
6591         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6592
6593         /* perform this after register_netdev so that dev->name is set */
6594         sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6595
6596         /* If the RF Kill switch is disabled, go ahead and complete the
6597          * startup sequence */
6598         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6599                 /* Enable the adapter - sends HOST_COMPLETE */
6600                 if (ipw2100_enable_adapter(priv)) {
6601                         printk(KERN_WARNING DRV_NAME
6602                                ": %s: failed in call to enable adapter.\n",
6603                                priv->net_dev->name);
6604                         ipw2100_hw_stop_adapter(priv);
6605                         err = -EIO;
6606                         goto fail_unlock;
6607                 }
6608
6609                 /* Start a scan . . . */
6610                 ipw2100_set_scan_options(priv);
6611                 ipw2100_start_scan(priv);
6612         }
6613
6614         IPW_DEBUG_INFO("exit\n");
6615
6616         priv->status |= STATUS_INITIALIZED;
6617
6618         up(&priv->action_sem);
6619
6620         return 0;
6621
6622       fail_unlock:
6623         up(&priv->action_sem);
6624
6625       fail:
6626         if (dev) {
6627                 if (registered)
6628                         unregister_netdev(dev);
6629
6630                 ipw2100_hw_stop_adapter(priv);
6631
6632                 ipw2100_disable_interrupts(priv);
6633
6634                 if (dev->irq)
6635                         free_irq(dev->irq, priv);
6636
6637                 ipw2100_kill_workqueue(priv);
6638
6639                 /* These are safe to call even if they weren't allocated */
6640                 ipw2100_queues_free(priv);
6641                 sysfs_remove_group(&pci_dev->dev.kobj,
6642                                    &ipw2100_attribute_group);
6643
6644                 free_ieee80211(dev);
6645                 pci_set_drvdata(pci_dev, NULL);
6646         }
6647
6648         if (base_addr)
6649                 iounmap(base_addr);
6650
6651         pci_release_regions(pci_dev);
6652         pci_disable_device(pci_dev);
6653
6654         return err;
6655 }
6656
6657 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6658 {
6659         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6660         struct net_device *dev;
6661
6662         if (priv) {
6663                 down(&priv->action_sem);
6664
6665                 priv->status &= ~STATUS_INITIALIZED;
6666
6667                 dev = priv->net_dev;
6668                 sysfs_remove_group(&pci_dev->dev.kobj,
6669                                    &ipw2100_attribute_group);
6670
6671 #ifdef CONFIG_PM
6672                 if (ipw2100_firmware.version)
6673                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6674 #endif
6675                 /* Take down the hardware */
6676                 ipw2100_down(priv);
6677
6678                 /* Release the semaphore so that the network subsystem can
6679                  * complete any needed calls into the driver... */
6680                 up(&priv->action_sem);
6681
6682                 /* Unregister the device first - this results in close()
6683                  * being called if the device is open.  If we free storage
6684                  * first, then close() will crash. */
6685                 unregister_netdev(dev);
6686
6687                 /* ipw2100_down will ensure that there is no more pending work
6688                  * in the workqueue's, so we can safely remove them now. */
6689                 ipw2100_kill_workqueue(priv);
6690
6691                 ipw2100_queues_free(priv);
6692
6693                 /* Free potential debugging firmware snapshot */
6694                 ipw2100_snapshot_free(priv);
6695
6696                 if (dev->irq)
6697                         free_irq(dev->irq, priv);
6698
6699                 if (dev->base_addr)
6700                         iounmap((void __iomem *)dev->base_addr);
6701
6702                 free_ieee80211(dev);
6703         }
6704
6705         pci_release_regions(pci_dev);
6706         pci_disable_device(pci_dev);
6707
6708         IPW_DEBUG_INFO("exit\n");
6709 }
6710
6711 #ifdef CONFIG_PM
6712 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6713 {
6714         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6715         struct net_device *dev = priv->net_dev;
6716
6717         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6718
6719         down(&priv->action_sem);
6720         if (priv->status & STATUS_INITIALIZED) {
6721                 /* Take down the device; powers it off, etc. */
6722                 ipw2100_down(priv);
6723         }
6724
6725         /* Remove the PRESENT state of the device */
6726         netif_device_detach(dev);
6727
6728         pci_save_state(pci_dev);
6729         pci_disable_device(pci_dev);
6730         pci_set_power_state(pci_dev, PCI_D3hot);
6731
6732         up(&priv->action_sem);
6733
6734         return 0;
6735 }
6736
6737 static int ipw2100_resume(struct pci_dev *pci_dev)
6738 {
6739         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6740         struct net_device *dev = priv->net_dev;
6741         u32 val;
6742
6743         if (IPW2100_PM_DISABLED)
6744                 return 0;
6745
6746         down(&priv->action_sem);
6747
6748         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6749
6750         pci_set_power_state(pci_dev, PCI_D0);
6751         pci_enable_device(pci_dev);
6752         pci_restore_state(pci_dev);
6753
6754         /*
6755          * Suspend/Resume resets the PCI configuration space, so we have to
6756          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6757          * from interfering with C3 CPU state. pci_restore_state won't help
6758          * here since it only restores the first 64 bytes pci config header.
6759          */
6760         pci_read_config_dword(pci_dev, 0x40, &val);
6761         if ((val & 0x0000ff00) != 0)
6762                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6763
6764         /* Set the device back into the PRESENT state; this will also wake
6765          * the queue of needed */
6766         netif_device_attach(dev);
6767
6768         /* Bring the device back up */
6769         if (!(priv->status & STATUS_RF_KILL_SW))
6770                 ipw2100_up(priv, 0);
6771
6772         up(&priv->action_sem);
6773
6774         return 0;
6775 }
6776 #endif
6777
6778 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6779
6780 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6781         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6782         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6783         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6784         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6785         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6786         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6787         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6788         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6789         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6790         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6791         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6792         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6793         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6794
6795         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6796         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6797         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6798         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6799         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6800
6801         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6802         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6803         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6804         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6805         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6806         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6807         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6808
6809         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6810
6811         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6812         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6813         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6814         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6815         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6816         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6817         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6818
6819         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6820         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6821         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6822         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6823         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6824         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6825
6826         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6827         {0,},
6828 };
6829
6830 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6831
6832 static struct pci_driver ipw2100_pci_driver = {
6833         .name = DRV_NAME,
6834         .id_table = ipw2100_pci_id_table,
6835         .probe = ipw2100_pci_init_one,
6836         .remove = __devexit_p(ipw2100_pci_remove_one),
6837 #ifdef CONFIG_PM
6838         .suspend = ipw2100_suspend,
6839         .resume = ipw2100_resume,
6840 #endif
6841 };
6842
6843 /**
6844  * Initialize the ipw2100 driver/module
6845  *
6846  * @returns 0 if ok, < 0 errno node con error.
6847  *
6848  * Note: we cannot init the /proc stuff until the PCI driver is there,
6849  * or we risk an unlikely race condition on someone accessing
6850  * uninitialized data in the PCI dev struct through /proc.
6851  */
6852 static int __init ipw2100_init(void)
6853 {
6854         int ret;
6855
6856         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6857         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6858
6859         ret = pci_module_init(&ipw2100_pci_driver);
6860
6861 #ifdef CONFIG_IPW2100_DEBUG
6862         ipw2100_debug_level = debug;
6863         driver_create_file(&ipw2100_pci_driver.driver,
6864                            &driver_attr_debug_level);
6865 #endif
6866
6867         return ret;
6868 }
6869
6870 /**
6871  * Cleanup ipw2100 driver registration
6872  */
6873 static void __exit ipw2100_exit(void)
6874 {
6875         /* FIXME: IPG: check that we have no instances of the devices open */
6876 #ifdef CONFIG_IPW2100_DEBUG
6877         driver_remove_file(&ipw2100_pci_driver.driver,
6878                            &driver_attr_debug_level);
6879 #endif
6880         pci_unregister_driver(&ipw2100_pci_driver);
6881 }
6882
6883 module_init(ipw2100_init);
6884 module_exit(ipw2100_exit);
6885
6886 #define WEXT_USECHANNELS 1
6887
6888 static const long ipw2100_frequencies[] = {
6889         2412, 2417, 2422, 2427,
6890         2432, 2437, 2442, 2447,
6891         2452, 2457, 2462, 2467,
6892         2472, 2484
6893 };
6894
6895 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6896                     sizeof(ipw2100_frequencies[0]))
6897
6898 static const long ipw2100_rates_11b[] = {
6899         1000000,
6900         2000000,
6901         5500000,
6902         11000000
6903 };
6904
6905 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6906
6907 static int ipw2100_wx_get_name(struct net_device *dev,
6908                                struct iw_request_info *info,
6909                                union iwreq_data *wrqu, char *extra)
6910 {
6911         /*
6912          * This can be called at any time.  No action lock required
6913          */
6914
6915         struct ipw2100_priv *priv = ieee80211_priv(dev);
6916         if (!(priv->status & STATUS_ASSOCIATED))
6917                 strcpy(wrqu->name, "unassociated");
6918         else
6919                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6920
6921         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6922         return 0;
6923 }
6924
6925 static int ipw2100_wx_set_freq(struct net_device *dev,
6926                                struct iw_request_info *info,
6927                                union iwreq_data *wrqu, char *extra)
6928 {
6929         struct ipw2100_priv *priv = ieee80211_priv(dev);
6930         struct iw_freq *fwrq = &wrqu->freq;
6931         int err = 0;
6932
6933         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6934                 return -EOPNOTSUPP;
6935
6936         down(&priv->action_sem);
6937         if (!(priv->status & STATUS_INITIALIZED)) {
6938                 err = -EIO;
6939                 goto done;
6940         }
6941
6942         /* if setting by freq convert to channel */
6943         if (fwrq->e == 1) {
6944                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6945                         int f = fwrq->m / 100000;
6946                         int c = 0;
6947
6948                         while ((c < REG_MAX_CHANNEL) &&
6949                                (f != ipw2100_frequencies[c]))
6950                                 c++;
6951
6952                         /* hack to fall through */
6953                         fwrq->e = 0;
6954                         fwrq->m = c + 1;
6955                 }
6956         }
6957
6958         if (fwrq->e > 0 || fwrq->m > 1000) {
6959                 err = -EOPNOTSUPP;
6960                 goto done;
6961         } else {                /* Set the channel */
6962                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6963                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6964         }
6965
6966       done:
6967         up(&priv->action_sem);
6968         return err;
6969 }
6970
6971 static int ipw2100_wx_get_freq(struct net_device *dev,
6972                                struct iw_request_info *info,
6973                                union iwreq_data *wrqu, char *extra)
6974 {
6975         /*
6976          * This can be called at any time.  No action lock required
6977          */
6978
6979         struct ipw2100_priv *priv = ieee80211_priv(dev);
6980
6981         wrqu->freq.e = 0;
6982
6983         /* If we are associated, trying to associate, or have a statically
6984          * configured CHANNEL then return that; otherwise return ANY */
6985         if (priv->config & CFG_STATIC_CHANNEL ||
6986             priv->status & STATUS_ASSOCIATED)
6987                 wrqu->freq.m = priv->channel;
6988         else
6989                 wrqu->freq.m = 0;
6990
6991         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6992         return 0;
6993
6994 }
6995
6996 static int ipw2100_wx_set_mode(struct net_device *dev,
6997                                struct iw_request_info *info,
6998                                union iwreq_data *wrqu, char *extra)
6999 {
7000         struct ipw2100_priv *priv = ieee80211_priv(dev);
7001         int err = 0;
7002
7003         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
7004
7005         if (wrqu->mode == priv->ieee->iw_mode)
7006                 return 0;
7007
7008         down(&priv->action_sem);
7009         if (!(priv->status & STATUS_INITIALIZED)) {
7010                 err = -EIO;
7011                 goto done;
7012         }
7013
7014         switch (wrqu->mode) {
7015 #ifdef CONFIG_IPW2100_MONITOR
7016         case IW_MODE_MONITOR:
7017                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7018                 break;
7019 #endif                          /* CONFIG_IPW2100_MONITOR */
7020         case IW_MODE_ADHOC:
7021                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
7022                 break;
7023         case IW_MODE_INFRA:
7024         case IW_MODE_AUTO:
7025         default:
7026                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
7027                 break;
7028         }
7029
7030       done:
7031         up(&priv->action_sem);
7032         return err;
7033 }
7034
7035 static int ipw2100_wx_get_mode(struct net_device *dev,
7036                                struct iw_request_info *info,
7037                                union iwreq_data *wrqu, char *extra)
7038 {
7039         /*
7040          * This can be called at any time.  No action lock required
7041          */
7042
7043         struct ipw2100_priv *priv = ieee80211_priv(dev);
7044
7045         wrqu->mode = priv->ieee->iw_mode;
7046         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
7047
7048         return 0;
7049 }
7050
7051 #define POWER_MODES 5
7052
7053 /* Values are in microsecond */
7054 static const s32 timeout_duration[POWER_MODES] = {
7055         350000,
7056         250000,
7057         75000,
7058         37000,
7059         25000,
7060 };
7061
7062 static const s32 period_duration[POWER_MODES] = {
7063         400000,
7064         700000,
7065         1000000,
7066         1000000,
7067         1000000
7068 };
7069
7070 static int ipw2100_wx_get_range(struct net_device *dev,
7071                                 struct iw_request_info *info,
7072                                 union iwreq_data *wrqu, char *extra)
7073 {
7074         /*
7075          * This can be called at any time.  No action lock required
7076          */
7077
7078         struct ipw2100_priv *priv = ieee80211_priv(dev);
7079         struct iw_range *range = (struct iw_range *)extra;
7080         u16 val;
7081         int i, level;
7082
7083         wrqu->data.length = sizeof(*range);
7084         memset(range, 0, sizeof(*range));
7085
7086         /* Let's try to keep this struct in the same order as in
7087          * linux/include/wireless.h
7088          */
7089
7090         /* TODO: See what values we can set, and remove the ones we can't
7091          * set, or fill them with some default data.
7092          */
7093
7094         /* ~5 Mb/s real (802.11b) */
7095         range->throughput = 5 * 1000 * 1000;
7096
7097 //      range->sensitivity;     /* signal level threshold range */
7098
7099         range->max_qual.qual = 100;
7100         /* TODO: Find real max RSSI and stick here */
7101         range->max_qual.level = 0;
7102         range->max_qual.noise = 0;
7103         range->max_qual.updated = 7;    /* Updated all three */
7104
7105         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
7106         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
7107         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
7108         range->avg_qual.noise = 0;
7109         range->avg_qual.updated = 7;    /* Updated all three */
7110
7111         range->num_bitrates = RATE_COUNT;
7112
7113         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
7114                 range->bitrate[i] = ipw2100_rates_11b[i];
7115         }
7116
7117         range->min_rts = MIN_RTS_THRESHOLD;
7118         range->max_rts = MAX_RTS_THRESHOLD;
7119         range->min_frag = MIN_FRAG_THRESHOLD;
7120         range->max_frag = MAX_FRAG_THRESHOLD;
7121
7122         range->min_pmp = period_duration[0];    /* Minimal PM period */
7123         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
7124         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
7125         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
7126
7127         /* How to decode max/min PM period */
7128         range->pmp_flags = IW_POWER_PERIOD;
7129         /* How to decode max/min PM period */
7130         range->pmt_flags = IW_POWER_TIMEOUT;
7131         /* What PM options are supported */
7132         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
7133
7134         range->encoding_size[0] = 5;
7135         range->encoding_size[1] = 13;   /* Different token sizes */
7136         range->num_encoding_sizes = 2;  /* Number of entry in the list */
7137         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
7138 //      range->encoding_login_index;            /* token index for login token */
7139
7140         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7141                 range->txpower_capa = IW_TXPOW_DBM;
7142                 range->num_txpower = IW_MAX_TXPOWER;
7143                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
7144                      i < IW_MAX_TXPOWER;
7145                      i++, level -=
7146                      ((IPW_TX_POWER_MAX_DBM -
7147                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
7148                         range->txpower[i] = level / 16;
7149         } else {
7150                 range->txpower_capa = 0;
7151                 range->num_txpower = 0;
7152         }
7153
7154         /* Set the Wireless Extension versions */
7155         range->we_version_compiled = WIRELESS_EXT;
7156         range->we_version_source = 16;
7157
7158 //      range->retry_capa;      /* What retry options are supported */
7159 //      range->retry_flags;     /* How to decode max/min retry limit */
7160 //      range->r_time_flags;    /* How to decode max/min retry life */
7161 //      range->min_retry;       /* Minimal number of retries */
7162 //      range->max_retry;       /* Maximal number of retries */
7163 //      range->min_r_time;      /* Minimal retry lifetime */
7164 //      range->max_r_time;      /* Maximal retry lifetime */
7165
7166         range->num_channels = FREQ_COUNT;
7167
7168         val = 0;
7169         for (i = 0; i < FREQ_COUNT; i++) {
7170                 // TODO: Include only legal frequencies for some countries
7171 //              if (local->channel_mask & (1 << i)) {
7172                 range->freq[val].i = i + 1;
7173                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
7174                 range->freq[val].e = 1;
7175                 val++;
7176 //              }
7177                 if (val == IW_MAX_FREQUENCIES)
7178                         break;
7179         }
7180         range->num_frequency = val;
7181
7182         /* Event capability (kernel + driver) */
7183         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
7184                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
7185         range->event_capa[1] = IW_EVENT_CAPA_K_1;
7186
7187         IPW_DEBUG_WX("GET Range\n");
7188
7189         return 0;
7190 }
7191
7192 static int ipw2100_wx_set_wap(struct net_device *dev,
7193                               struct iw_request_info *info,
7194                               union iwreq_data *wrqu, char *extra)
7195 {
7196         struct ipw2100_priv *priv = ieee80211_priv(dev);
7197         int err = 0;
7198
7199         static const unsigned char any[] = {
7200                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
7201         };
7202         static const unsigned char off[] = {
7203                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
7204         };
7205
7206         // sanity checks
7207         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
7208                 return -EINVAL;
7209
7210         down(&priv->action_sem);
7211         if (!(priv->status & STATUS_INITIALIZED)) {
7212                 err = -EIO;
7213                 goto done;
7214         }
7215
7216         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
7217             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
7218                 /* we disable mandatory BSSID association */
7219                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
7220                 priv->config &= ~CFG_STATIC_BSSID;
7221                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
7222                 goto done;
7223         }
7224
7225         priv->config |= CFG_STATIC_BSSID;
7226         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
7227
7228         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
7229
7230         IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
7231                      wrqu->ap_addr.sa_data[0] & 0xff,
7232                      wrqu->ap_addr.sa_data[1] & 0xff,
7233                      wrqu->ap_addr.sa_data[2] & 0xff,
7234                      wrqu->ap_addr.sa_data[3] & 0xff,
7235                      wrqu->ap_addr.sa_data[4] & 0xff,
7236                      wrqu->ap_addr.sa_data[5] & 0xff);
7237
7238       done:
7239         up(&priv->action_sem);
7240         return err;
7241 }
7242
7243 static int ipw2100_wx_get_wap(struct net_device *dev,
7244                               struct iw_request_info *info,
7245                               union iwreq_data *wrqu, char *extra)
7246 {
7247         /*
7248          * This can be called at any time.  No action lock required
7249          */
7250
7251         struct ipw2100_priv *priv = ieee80211_priv(dev);
7252
7253         /* If we are associated, trying to associate, or have a statically
7254          * configured BSSID then return that; otherwise return ANY */
7255         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7256                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7257                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7258         } else
7259                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7260
7261         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
7262                      MAC_ARG(wrqu->ap_addr.sa_data));
7263         return 0;
7264 }
7265
7266 static int ipw2100_wx_set_essid(struct net_device *dev,
7267                                 struct iw_request_info *info,
7268                                 union iwreq_data *wrqu, char *extra)
7269 {
7270         struct ipw2100_priv *priv = ieee80211_priv(dev);
7271         char *essid = "";       /* ANY */
7272         int length = 0;
7273         int err = 0;
7274
7275         down(&priv->action_sem);
7276         if (!(priv->status & STATUS_INITIALIZED)) {
7277                 err = -EIO;
7278                 goto done;
7279         }
7280
7281         if (wrqu->essid.flags && wrqu->essid.length) {
7282                 length = wrqu->essid.length - 1;
7283                 essid = extra;
7284         }
7285
7286         if (length == 0) {
7287                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7288                 priv->config &= ~CFG_STATIC_ESSID;
7289                 err = ipw2100_set_essid(priv, NULL, 0, 0);
7290                 goto done;
7291         }
7292
7293         length = min(length, IW_ESSID_MAX_SIZE);
7294
7295         priv->config |= CFG_STATIC_ESSID;
7296
7297         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7298                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7299                 err = 0;
7300                 goto done;
7301         }
7302
7303         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
7304                      length);
7305
7306         priv->essid_len = length;
7307         memcpy(priv->essid, essid, priv->essid_len);
7308
7309         err = ipw2100_set_essid(priv, essid, length, 0);
7310
7311       done:
7312         up(&priv->action_sem);
7313         return err;
7314 }
7315
7316 static int ipw2100_wx_get_essid(struct net_device *dev,
7317                                 struct iw_request_info *info,
7318                                 union iwreq_data *wrqu, char *extra)
7319 {
7320         /*
7321          * This can be called at any time.  No action lock required
7322          */
7323
7324         struct ipw2100_priv *priv = ieee80211_priv(dev);
7325
7326         /* If we are associated, trying to associate, or have a statically
7327          * configured ESSID then return that; otherwise return ANY */
7328         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7329                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7330                              escape_essid(priv->essid, priv->essid_len));
7331                 memcpy(extra, priv->essid, priv->essid_len);
7332                 wrqu->essid.length = priv->essid_len;
7333                 wrqu->essid.flags = 1;  /* active */
7334         } else {
7335                 IPW_DEBUG_WX("Getting essid: ANY\n");
7336                 wrqu->essid.length = 0;
7337                 wrqu->essid.flags = 0;  /* active */
7338         }
7339
7340         return 0;
7341 }
7342
7343 static int ipw2100_wx_set_nick(struct net_device *dev,
7344                                struct iw_request_info *info,
7345                                union iwreq_data *wrqu, char *extra)
7346 {
7347         /*
7348          * This can be called at any time.  No action lock required
7349          */
7350
7351         struct ipw2100_priv *priv = ieee80211_priv(dev);
7352
7353         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7354                 return -E2BIG;
7355
7356         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7357         memset(priv->nick, 0, sizeof(priv->nick));
7358         memcpy(priv->nick, extra, wrqu->data.length);
7359
7360         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7361
7362         return 0;
7363 }
7364
7365 static int ipw2100_wx_get_nick(struct net_device *dev,
7366                                struct iw_request_info *info,
7367                                union iwreq_data *wrqu, char *extra)
7368 {
7369         /*
7370          * This can be called at any time.  No action lock required
7371          */
7372
7373         struct ipw2100_priv *priv = ieee80211_priv(dev);
7374
7375         wrqu->data.length = strlen(priv->nick) + 1;
7376         memcpy(extra, priv->nick, wrqu->data.length);
7377         wrqu->data.flags = 1;   /* active */
7378
7379         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7380
7381         return 0;
7382 }
7383
7384 static int ipw2100_wx_set_rate(struct net_device *dev,
7385                                struct iw_request_info *info,
7386                                union iwreq_data *wrqu, char *extra)
7387 {
7388         struct ipw2100_priv *priv = ieee80211_priv(dev);
7389         u32 target_rate = wrqu->bitrate.value;
7390         u32 rate;
7391         int err = 0;
7392
7393         down(&priv->action_sem);
7394         if (!(priv->status & STATUS_INITIALIZED)) {
7395                 err = -EIO;
7396                 goto done;
7397         }
7398
7399         rate = 0;
7400
7401         if (target_rate == 1000000 ||
7402             (!wrqu->bitrate.fixed && target_rate > 1000000))
7403                 rate |= TX_RATE_1_MBIT;
7404         if (target_rate == 2000000 ||
7405             (!wrqu->bitrate.fixed && target_rate > 2000000))
7406                 rate |= TX_RATE_2_MBIT;
7407         if (target_rate == 5500000 ||
7408             (!wrqu->bitrate.fixed && target_rate > 5500000))
7409                 rate |= TX_RATE_5_5_MBIT;
7410         if (target_rate == 11000000 ||
7411             (!wrqu->bitrate.fixed && target_rate > 11000000))
7412                 rate |= TX_RATE_11_MBIT;
7413         if (rate == 0)
7414                 rate = DEFAULT_TX_RATES;
7415
7416         err = ipw2100_set_tx_rates(priv, rate, 0);
7417
7418         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7419       done:
7420         up(&priv->action_sem);
7421         return err;
7422 }
7423
7424 static int ipw2100_wx_get_rate(struct net_device *dev,
7425                                struct iw_request_info *info,
7426                                union iwreq_data *wrqu, char *extra)
7427 {
7428         struct ipw2100_priv *priv = ieee80211_priv(dev);
7429         int val;
7430         int len = sizeof(val);
7431         int err = 0;
7432
7433         if (!(priv->status & STATUS_ENABLED) ||
7434             priv->status & STATUS_RF_KILL_MASK ||
7435             !(priv->status & STATUS_ASSOCIATED)) {
7436                 wrqu->bitrate.value = 0;
7437                 return 0;
7438         }
7439
7440         down(&priv->action_sem);
7441         if (!(priv->status & STATUS_INITIALIZED)) {
7442                 err = -EIO;
7443                 goto done;
7444         }
7445
7446         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7447         if (err) {
7448                 IPW_DEBUG_WX("failed querying ordinals.\n");
7449                 return err;
7450         }
7451
7452         switch (val & TX_RATE_MASK) {
7453         case TX_RATE_1_MBIT:
7454                 wrqu->bitrate.value = 1000000;
7455                 break;
7456         case TX_RATE_2_MBIT:
7457                 wrqu->bitrate.value = 2000000;
7458                 break;
7459         case TX_RATE_5_5_MBIT:
7460                 wrqu->bitrate.value = 5500000;
7461                 break;
7462         case TX_RATE_11_MBIT:
7463                 wrqu->bitrate.value = 11000000;
7464                 break;
7465         default:
7466                 wrqu->bitrate.value = 0;
7467         }
7468
7469         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7470
7471       done:
7472         up(&priv->action_sem);
7473         return err;
7474 }
7475
7476 static int ipw2100_wx_set_rts(struct net_device *dev,
7477                               struct iw_request_info *info,
7478                               union iwreq_data *wrqu, char *extra)
7479 {
7480         struct ipw2100_priv *priv = ieee80211_priv(dev);
7481         int value, err;
7482
7483         /* Auto RTS not yet supported */
7484         if (wrqu->rts.fixed == 0)
7485                 return -EINVAL;
7486
7487         down(&priv->action_sem);
7488         if (!(priv->status & STATUS_INITIALIZED)) {
7489                 err = -EIO;
7490                 goto done;
7491         }
7492
7493         if (wrqu->rts.disabled)
7494                 value = priv->rts_threshold | RTS_DISABLED;
7495         else {
7496                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7497                         err = -EINVAL;
7498                         goto done;
7499                 }
7500                 value = wrqu->rts.value;
7501         }
7502
7503         err = ipw2100_set_rts_threshold(priv, value);
7504
7505         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7506       done:
7507         up(&priv->action_sem);
7508         return err;
7509 }
7510
7511 static int ipw2100_wx_get_rts(struct net_device *dev,
7512                               struct iw_request_info *info,
7513                               union iwreq_data *wrqu, char *extra)
7514 {
7515         /*
7516          * This can be called at any time.  No action lock required
7517          */
7518
7519         struct ipw2100_priv *priv = ieee80211_priv(dev);
7520
7521         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7522         wrqu->rts.fixed = 1;    /* no auto select */
7523
7524         /* If RTS is set to the default value, then it is disabled */
7525         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7526
7527         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7528
7529         return 0;
7530 }
7531
7532 static int ipw2100_wx_set_txpow(struct net_device *dev,
7533                                 struct iw_request_info *info,
7534                                 union iwreq_data *wrqu, char *extra)
7535 {
7536         struct ipw2100_priv *priv = ieee80211_priv(dev);
7537         int err = 0, value;
7538
7539         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7540                 return -EINVAL;
7541
7542         if (wrqu->txpower.disabled == 1 || wrqu->txpower.fixed == 0)
7543                 value = IPW_TX_POWER_DEFAULT;
7544         else {
7545                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7546                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7547                         return -EINVAL;
7548
7549                 value = wrqu->txpower.value;
7550         }
7551
7552         down(&priv->action_sem);
7553         if (!(priv->status & STATUS_INITIALIZED)) {
7554                 err = -EIO;
7555                 goto done;
7556         }
7557
7558         err = ipw2100_set_tx_power(priv, value);
7559
7560         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7561
7562       done:
7563         up(&priv->action_sem);
7564         return err;
7565 }
7566
7567 static int ipw2100_wx_get_txpow(struct net_device *dev,
7568                                 struct iw_request_info *info,
7569                                 union iwreq_data *wrqu, char *extra)
7570 {
7571         /*
7572          * This can be called at any time.  No action lock required
7573          */
7574
7575         struct ipw2100_priv *priv = ieee80211_priv(dev);
7576
7577         if (priv->ieee->iw_mode != IW_MODE_ADHOC) {
7578                 wrqu->power.disabled = 1;
7579                 return 0;
7580         }
7581
7582         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7583                 wrqu->power.fixed = 0;
7584                 wrqu->power.value = IPW_TX_POWER_MAX_DBM;
7585                 wrqu->power.disabled = 1;
7586         } else {
7587                 wrqu->power.disabled = 0;
7588                 wrqu->power.fixed = 1;
7589                 wrqu->power.value = priv->tx_power;
7590         }
7591
7592         wrqu->power.flags = IW_TXPOW_DBM;
7593
7594         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->power.value);
7595
7596         return 0;
7597 }
7598
7599 static int ipw2100_wx_set_frag(struct net_device *dev,
7600                                struct iw_request_info *info,
7601                                union iwreq_data *wrqu, char *extra)
7602 {
7603         /*
7604          * This can be called at any time.  No action lock required
7605          */
7606
7607         struct ipw2100_priv *priv = ieee80211_priv(dev);
7608
7609         if (!wrqu->frag.fixed)
7610                 return -EINVAL;
7611
7612         if (wrqu->frag.disabled) {
7613                 priv->frag_threshold |= FRAG_DISABLED;
7614                 priv->ieee->fts = DEFAULT_FTS;
7615         } else {
7616                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7617                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7618                         return -EINVAL;
7619
7620                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7621                 priv->frag_threshold = priv->ieee->fts;
7622         }
7623
7624         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7625
7626         return 0;
7627 }
7628
7629 static int ipw2100_wx_get_frag(struct net_device *dev,
7630                                struct iw_request_info *info,
7631                                union iwreq_data *wrqu, char *extra)
7632 {
7633         /*
7634          * This can be called at any time.  No action lock required
7635          */
7636
7637         struct ipw2100_priv *priv = ieee80211_priv(dev);
7638         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7639         wrqu->frag.fixed = 0;   /* no auto select */
7640         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7641
7642         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7643
7644         return 0;
7645 }
7646
7647 static int ipw2100_wx_set_retry(struct net_device *dev,
7648                                 struct iw_request_info *info,
7649                                 union iwreq_data *wrqu, char *extra)
7650 {
7651         struct ipw2100_priv *priv = ieee80211_priv(dev);
7652         int err = 0;
7653
7654         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7655                 return -EINVAL;
7656
7657         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7658                 return 0;
7659
7660         down(&priv->action_sem);
7661         if (!(priv->status & STATUS_INITIALIZED)) {
7662                 err = -EIO;
7663                 goto done;
7664         }
7665
7666         if (wrqu->retry.flags & IW_RETRY_MIN) {
7667                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7668                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7669                              wrqu->retry.value);
7670                 goto done;
7671         }
7672
7673         if (wrqu->retry.flags & IW_RETRY_MAX) {
7674                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7675                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7676                              wrqu->retry.value);
7677                 goto done;
7678         }
7679
7680         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7681         if (!err)
7682                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7683
7684         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7685
7686       done:
7687         up(&priv->action_sem);
7688         return err;
7689 }
7690
7691 static int ipw2100_wx_get_retry(struct net_device *dev,
7692                                 struct iw_request_info *info,
7693                                 union iwreq_data *wrqu, char *extra)
7694 {
7695         /*
7696          * This can be called at any time.  No action lock required
7697          */
7698
7699         struct ipw2100_priv *priv = ieee80211_priv(dev);
7700
7701         wrqu->retry.disabled = 0;       /* can't be disabled */
7702
7703         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7704                 return -EINVAL;
7705
7706         if (wrqu->retry.flags & IW_RETRY_MAX) {
7707                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
7708                 wrqu->retry.value = priv->long_retry_limit;
7709         } else {
7710                 wrqu->retry.flags =
7711                     (priv->short_retry_limit !=
7712                      priv->long_retry_limit) ?
7713                     IW_RETRY_LIMIT | IW_RETRY_MIN : IW_RETRY_LIMIT;
7714
7715                 wrqu->retry.value = priv->short_retry_limit;
7716         }
7717
7718         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7719
7720         return 0;
7721 }
7722
7723 static int ipw2100_wx_set_scan(struct net_device *dev,
7724                                struct iw_request_info *info,
7725                                union iwreq_data *wrqu, char *extra)
7726 {
7727         struct ipw2100_priv *priv = ieee80211_priv(dev);
7728         int err = 0;
7729
7730         down(&priv->action_sem);
7731         if (!(priv->status & STATUS_INITIALIZED)) {
7732                 err = -EIO;
7733                 goto done;
7734         }
7735
7736         IPW_DEBUG_WX("Initiating scan...\n");
7737         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7738                 IPW_DEBUG_WX("Start scan failed.\n");
7739
7740                 /* TODO: Mark a scan as pending so when hardware initialized
7741                  *       a scan starts */
7742         }
7743
7744       done:
7745         up(&priv->action_sem);
7746         return err;
7747 }
7748
7749 static int ipw2100_wx_get_scan(struct net_device *dev,
7750                                struct iw_request_info *info,
7751                                union iwreq_data *wrqu, char *extra)
7752 {
7753         /*
7754          * This can be called at any time.  No action lock required
7755          */
7756
7757         struct ipw2100_priv *priv = ieee80211_priv(dev);
7758         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7759 }
7760
7761 /*
7762  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7763  */
7764 static int ipw2100_wx_set_encode(struct net_device *dev,
7765                                  struct iw_request_info *info,
7766                                  union iwreq_data *wrqu, char *key)
7767 {
7768         /*
7769          * No check of STATUS_INITIALIZED required
7770          */
7771
7772         struct ipw2100_priv *priv = ieee80211_priv(dev);
7773         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7774 }
7775
7776 static int ipw2100_wx_get_encode(struct net_device *dev,
7777                                  struct iw_request_info *info,
7778                                  union iwreq_data *wrqu, char *key)
7779 {
7780         /*
7781          * This can be called at any time.  No action lock required
7782          */
7783
7784         struct ipw2100_priv *priv = ieee80211_priv(dev);
7785         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7786 }
7787
7788 static int ipw2100_wx_set_power(struct net_device *dev,
7789                                 struct iw_request_info *info,
7790                                 union iwreq_data *wrqu, char *extra)
7791 {
7792         struct ipw2100_priv *priv = ieee80211_priv(dev);
7793         int err = 0;
7794
7795         down(&priv->action_sem);
7796         if (!(priv->status & STATUS_INITIALIZED)) {
7797                 err = -EIO;
7798                 goto done;
7799         }
7800
7801         if (wrqu->power.disabled) {
7802                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7803                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7804                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7805                 goto done;
7806         }
7807
7808         switch (wrqu->power.flags & IW_POWER_MODE) {
7809         case IW_POWER_ON:       /* If not specified */
7810         case IW_POWER_MODE:     /* If set all mask */
7811         case IW_POWER_ALL_R:    /* If explicitely state all */
7812                 break;
7813         default:                /* Otherwise we don't support it */
7814                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7815                              wrqu->power.flags);
7816                 err = -EOPNOTSUPP;
7817                 goto done;
7818         }
7819
7820         /* If the user hasn't specified a power management mode yet, default
7821          * to BATTERY */
7822         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7823         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7824
7825         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7826
7827       done:
7828         up(&priv->action_sem);
7829         return err;
7830
7831 }
7832
7833 static int ipw2100_wx_get_power(struct net_device *dev,
7834                                 struct iw_request_info *info,
7835                                 union iwreq_data *wrqu, char *extra)
7836 {
7837         /*
7838          * This can be called at any time.  No action lock required
7839          */
7840
7841         struct ipw2100_priv *priv = ieee80211_priv(dev);
7842
7843         if (!(priv->power_mode & IPW_POWER_ENABLED))
7844                 wrqu->power.disabled = 1;
7845         else {
7846                 wrqu->power.disabled = 0;
7847                 wrqu->power.flags = 0;
7848         }
7849
7850         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7851
7852         return 0;
7853 }
7854
7855 #if WIRELESS_EXT > 17
7856 /*
7857  * WE-18 WPA support
7858  */
7859
7860 /* SIOCSIWGENIE */
7861 static int ipw2100_wx_set_genie(struct net_device *dev,
7862                                 struct iw_request_info *info,
7863                                 union iwreq_data *wrqu, char *extra)
7864 {
7865
7866         struct ipw2100_priv *priv = ieee80211_priv(dev);
7867         struct ieee80211_device *ieee = priv->ieee;
7868         u8 *buf;
7869
7870         if (!ieee->wpa_enabled)
7871                 return -EOPNOTSUPP;
7872
7873         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7874             (wrqu->data.length && extra == NULL))
7875                 return -EINVAL;
7876
7877         if (wrqu->data.length) {
7878                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7879                 if (buf == NULL)
7880                         return -ENOMEM;
7881
7882                 memcpy(buf, extra, wrqu->data.length);
7883                 kfree(ieee->wpa_ie);
7884                 ieee->wpa_ie = buf;
7885                 ieee->wpa_ie_len = wrqu->data.length;
7886         } else {
7887                 kfree(ieee->wpa_ie);
7888                 ieee->wpa_ie = NULL;
7889                 ieee->wpa_ie_len = 0;
7890         }
7891
7892         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7893
7894         return 0;
7895 }
7896
7897 /* SIOCGIWGENIE */
7898 static int ipw2100_wx_get_genie(struct net_device *dev,
7899                                 struct iw_request_info *info,
7900                                 union iwreq_data *wrqu, char *extra)
7901 {
7902         struct ipw2100_priv *priv = ieee80211_priv(dev);
7903         struct ieee80211_device *ieee = priv->ieee;
7904
7905         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7906                 wrqu->data.length = 0;
7907                 return 0;
7908         }
7909
7910         if (wrqu->data.length < ieee->wpa_ie_len)
7911                 return -E2BIG;
7912
7913         wrqu->data.length = ieee->wpa_ie_len;
7914         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7915
7916         return 0;
7917 }
7918
7919 /* SIOCSIWAUTH */
7920 static int ipw2100_wx_set_auth(struct net_device *dev,
7921                                struct iw_request_info *info,
7922                                union iwreq_data *wrqu, char *extra)
7923 {
7924         struct ipw2100_priv *priv = ieee80211_priv(dev);
7925         struct ieee80211_device *ieee = priv->ieee;
7926         struct iw_param *param = &wrqu->param;
7927         struct ieee80211_crypt_data *crypt;
7928         unsigned long flags;
7929         int ret = 0;
7930
7931         switch (param->flags & IW_AUTH_INDEX) {
7932         case IW_AUTH_WPA_VERSION:
7933         case IW_AUTH_CIPHER_PAIRWISE:
7934         case IW_AUTH_CIPHER_GROUP:
7935         case IW_AUTH_KEY_MGMT:
7936                 /*
7937                  * ipw2200 does not use these parameters
7938                  */
7939                 break;
7940
7941         case IW_AUTH_TKIP_COUNTERMEASURES:
7942                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7943                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7944                         break;
7945
7946                 flags = crypt->ops->get_flags(crypt->priv);
7947
7948                 if (param->value)
7949                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7950                 else
7951                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7952
7953                 crypt->ops->set_flags(flags, crypt->priv);
7954
7955                 break;
7956
7957         case IW_AUTH_DROP_UNENCRYPTED:{
7958                         /* HACK:
7959                          *
7960                          * wpa_supplicant calls set_wpa_enabled when the driver
7961                          * is loaded and unloaded, regardless of if WPA is being
7962                          * used.  No other calls are made which can be used to
7963                          * determine if encryption will be used or not prior to
7964                          * association being expected.  If encryption is not being
7965                          * used, drop_unencrypted is set to false, else true -- we
7966                          * can use this to determine if the CAP_PRIVACY_ON bit should
7967                          * be set.
7968                          */
7969                         struct ieee80211_security sec = {
7970                                 .flags = SEC_ENABLED,
7971                                 .enabled = param->value,
7972                         };
7973                         priv->ieee->drop_unencrypted = param->value;
7974                         /* We only change SEC_LEVEL for open mode. Others
7975                          * are set by ipw_wpa_set_encryption.
7976                          */
7977                         if (!param->value) {
7978                                 sec.flags |= SEC_LEVEL;
7979                                 sec.level = SEC_LEVEL_0;
7980                         } else {
7981                                 sec.flags |= SEC_LEVEL;
7982                                 sec.level = SEC_LEVEL_1;
7983                         }
7984                         if (priv->ieee->set_security)
7985                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7986                         break;
7987                 }
7988
7989         case IW_AUTH_80211_AUTH_ALG:
7990                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7991                 break;
7992
7993         case IW_AUTH_WPA_ENABLED:
7994                 ret = ipw2100_wpa_enable(priv, param->value);
7995                 break;
7996
7997         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7998                 ieee->ieee802_1x = param->value;
7999                 break;
8000
8001                 //case IW_AUTH_ROAMING_CONTROL:
8002         case IW_AUTH_PRIVACY_INVOKED:
8003                 ieee->privacy_invoked = param->value;
8004                 break;
8005
8006         default:
8007                 return -EOPNOTSUPP;
8008         }
8009         return ret;
8010 }
8011
8012 /* SIOCGIWAUTH */
8013 static int ipw2100_wx_get_auth(struct net_device *dev,
8014                                struct iw_request_info *info,
8015                                union iwreq_data *wrqu, char *extra)
8016 {
8017         struct ipw2100_priv *priv = ieee80211_priv(dev);
8018         struct ieee80211_device *ieee = priv->ieee;
8019         struct ieee80211_crypt_data *crypt;
8020         struct iw_param *param = &wrqu->param;
8021         int ret = 0;
8022
8023         switch (param->flags & IW_AUTH_INDEX) {
8024         case IW_AUTH_WPA_VERSION:
8025         case IW_AUTH_CIPHER_PAIRWISE:
8026         case IW_AUTH_CIPHER_GROUP:
8027         case IW_AUTH_KEY_MGMT:
8028                 /*
8029                  * wpa_supplicant will control these internally
8030                  */
8031                 ret = -EOPNOTSUPP;
8032                 break;
8033
8034         case IW_AUTH_TKIP_COUNTERMEASURES:
8035                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
8036                 if (!crypt || !crypt->ops->get_flags) {
8037                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
8038                                           "crypt not set!\n");
8039                         break;
8040                 }
8041
8042                 param->value = (crypt->ops->get_flags(crypt->priv) &
8043                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
8044
8045                 break;
8046
8047         case IW_AUTH_DROP_UNENCRYPTED:
8048                 param->value = ieee->drop_unencrypted;
8049                 break;
8050
8051         case IW_AUTH_80211_AUTH_ALG:
8052                 param->value = priv->ieee->sec.auth_mode;
8053                 break;
8054
8055         case IW_AUTH_WPA_ENABLED:
8056                 param->value = ieee->wpa_enabled;
8057                 break;
8058
8059         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
8060                 param->value = ieee->ieee802_1x;
8061                 break;
8062
8063         case IW_AUTH_ROAMING_CONTROL:
8064         case IW_AUTH_PRIVACY_INVOKED:
8065                 param->value = ieee->privacy_invoked;
8066                 break;
8067
8068         default:
8069                 return -EOPNOTSUPP;
8070         }
8071         return 0;
8072 }
8073
8074 /* SIOCSIWENCODEEXT */
8075 static int ipw2100_wx_set_encodeext(struct net_device *dev,
8076                                     struct iw_request_info *info,
8077                                     union iwreq_data *wrqu, char *extra)
8078 {
8079         struct ipw2100_priv *priv = ieee80211_priv(dev);
8080         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
8081 }
8082
8083 /* SIOCGIWENCODEEXT */
8084 static int ipw2100_wx_get_encodeext(struct net_device *dev,
8085                                     struct iw_request_info *info,
8086                                     union iwreq_data *wrqu, char *extra)
8087 {
8088         struct ipw2100_priv *priv = ieee80211_priv(dev);
8089         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
8090 }
8091
8092 /* SIOCSIWMLME */
8093 static int ipw2100_wx_set_mlme(struct net_device *dev,
8094                                struct iw_request_info *info,
8095                                union iwreq_data *wrqu, char *extra)
8096 {
8097         struct ipw2100_priv *priv = ieee80211_priv(dev);
8098         struct iw_mlme *mlme = (struct iw_mlme *)extra;
8099         u16 reason;
8100
8101         reason = cpu_to_le16(mlme->reason_code);
8102
8103         switch (mlme->cmd) {
8104         case IW_MLME_DEAUTH:
8105                 // silently ignore
8106                 break;
8107
8108         case IW_MLME_DISASSOC:
8109                 ipw2100_disassociate_bssid(priv);
8110                 break;
8111
8112         default:
8113                 return -EOPNOTSUPP;
8114         }
8115         return 0;
8116 }
8117 #endif                          /* WIRELESS_EXT > 17 */
8118
8119 /*
8120  *
8121  * IWPRIV handlers
8122  *
8123  */
8124 #ifdef CONFIG_IPW2100_MONITOR
8125 static int ipw2100_wx_set_promisc(struct net_device *dev,
8126                                   struct iw_request_info *info,
8127                                   union iwreq_data *wrqu, char *extra)
8128 {
8129         struct ipw2100_priv *priv = ieee80211_priv(dev);
8130         int *parms = (int *)extra;
8131         int enable = (parms[0] > 0);
8132         int err = 0;
8133
8134         down(&priv->action_sem);
8135         if (!(priv->status & STATUS_INITIALIZED)) {
8136                 err = -EIO;
8137                 goto done;
8138         }
8139
8140         if (enable) {
8141                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8142                         err = ipw2100_set_channel(priv, parms[1], 0);
8143                         goto done;
8144                 }
8145                 priv->channel = parms[1];
8146                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
8147         } else {
8148                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8149                         err = ipw2100_switch_mode(priv, priv->last_mode);
8150         }
8151       done:
8152         up(&priv->action_sem);
8153         return err;
8154 }
8155
8156 static int ipw2100_wx_reset(struct net_device *dev,
8157                             struct iw_request_info *info,
8158                             union iwreq_data *wrqu, char *extra)
8159 {
8160         struct ipw2100_priv *priv = ieee80211_priv(dev);
8161         if (priv->status & STATUS_INITIALIZED)
8162                 schedule_reset(priv);
8163         return 0;
8164 }
8165
8166 #endif
8167
8168 static int ipw2100_wx_set_powermode(struct net_device *dev,
8169                                     struct iw_request_info *info,
8170                                     union iwreq_data *wrqu, char *extra)
8171 {
8172         struct ipw2100_priv *priv = ieee80211_priv(dev);
8173         int err = 0, mode = *(int *)extra;
8174
8175         down(&priv->action_sem);
8176         if (!(priv->status & STATUS_INITIALIZED)) {
8177                 err = -EIO;
8178                 goto done;
8179         }
8180
8181         if ((mode < 1) || (mode > POWER_MODES))
8182                 mode = IPW_POWER_AUTO;
8183
8184         if (priv->power_mode != mode)
8185                 err = ipw2100_set_power_mode(priv, mode);
8186       done:
8187         up(&priv->action_sem);
8188         return err;
8189 }
8190
8191 #define MAX_POWER_STRING 80
8192 static int ipw2100_wx_get_powermode(struct net_device *dev,
8193                                     struct iw_request_info *info,
8194                                     union iwreq_data *wrqu, char *extra)
8195 {
8196         /*
8197          * This can be called at any time.  No action lock required
8198          */
8199
8200         struct ipw2100_priv *priv = ieee80211_priv(dev);
8201         int level = IPW_POWER_LEVEL(priv->power_mode);
8202         s32 timeout, period;
8203
8204         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
8205                 snprintf(extra, MAX_POWER_STRING,
8206                          "Power save level: %d (Off)", level);
8207         } else {
8208                 switch (level) {
8209                 case IPW_POWER_MODE_CAM:
8210                         snprintf(extra, MAX_POWER_STRING,
8211                                  "Power save level: %d (None)", level);
8212                         break;
8213                 case IPW_POWER_AUTO:
8214                         snprintf(extra, MAX_POWER_STRING,
8215                                  "Power save level: %d (Auto)", 0);
8216                         break;
8217                 default:
8218                         timeout = timeout_duration[level - 1] / 1000;
8219                         period = period_duration[level - 1] / 1000;
8220                         snprintf(extra, MAX_POWER_STRING,
8221                                  "Power save level: %d "
8222                                  "(Timeout %dms, Period %dms)",
8223                                  level, timeout, period);
8224                 }
8225         }
8226
8227         wrqu->data.length = strlen(extra) + 1;
8228
8229         return 0;
8230 }
8231
8232 static int ipw2100_wx_set_preamble(struct net_device *dev,
8233                                    struct iw_request_info *info,
8234                                    union iwreq_data *wrqu, char *extra)
8235 {
8236         struct ipw2100_priv *priv = ieee80211_priv(dev);
8237         int err, mode = *(int *)extra;
8238
8239         down(&priv->action_sem);
8240         if (!(priv->status & STATUS_INITIALIZED)) {
8241                 err = -EIO;
8242                 goto done;
8243         }
8244
8245         if (mode == 1)
8246                 priv->config |= CFG_LONG_PREAMBLE;
8247         else if (mode == 0)
8248                 priv->config &= ~CFG_LONG_PREAMBLE;
8249         else {
8250                 err = -EINVAL;
8251                 goto done;
8252         }
8253
8254         err = ipw2100_system_config(priv, 0);
8255
8256       done:
8257         up(&priv->action_sem);
8258         return err;
8259 }
8260
8261 static int ipw2100_wx_get_preamble(struct net_device *dev,
8262                                    struct iw_request_info *info,
8263                                    union iwreq_data *wrqu, char *extra)
8264 {
8265         /*
8266          * This can be called at any time.  No action lock required
8267          */
8268
8269         struct ipw2100_priv *priv = ieee80211_priv(dev);
8270
8271         if (priv->config & CFG_LONG_PREAMBLE)
8272                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8273         else
8274                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8275
8276         return 0;
8277 }
8278
8279 #ifdef CONFIG_IPW2100_MONITOR
8280 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8281                                     struct iw_request_info *info,
8282                                     union iwreq_data *wrqu, char *extra)
8283 {
8284         struct ipw2100_priv *priv = ieee80211_priv(dev);
8285         int err, mode = *(int *)extra;
8286
8287         down(&priv->action_sem);
8288         if (!(priv->status & STATUS_INITIALIZED)) {
8289                 err = -EIO;
8290                 goto done;
8291         }
8292
8293         if (mode == 1)
8294                 priv->config |= CFG_CRC_CHECK;
8295         else if (mode == 0)
8296                 priv->config &= ~CFG_CRC_CHECK;
8297         else {
8298                 err = -EINVAL;
8299                 goto done;
8300         }
8301         err = 0;
8302
8303       done:
8304         up(&priv->action_sem);
8305         return err;
8306 }
8307
8308 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8309                                     struct iw_request_info *info,
8310                                     union iwreq_data *wrqu, char *extra)
8311 {
8312         /*
8313          * This can be called at any time.  No action lock required
8314          */
8315
8316         struct ipw2100_priv *priv = ieee80211_priv(dev);
8317
8318         if (priv->config & CFG_CRC_CHECK)
8319                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8320         else
8321                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8322
8323         return 0;
8324 }
8325 #endif                          /* CONFIG_IPW2100_MONITOR */
8326
8327 static iw_handler ipw2100_wx_handlers[] = {
8328         NULL,                   /* SIOCSIWCOMMIT */
8329         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8330         NULL,                   /* SIOCSIWNWID */
8331         NULL,                   /* SIOCGIWNWID */
8332         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8333         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8334         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8335         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8336         NULL,                   /* SIOCSIWSENS */
8337         NULL,                   /* SIOCGIWSENS */
8338         NULL,                   /* SIOCSIWRANGE */
8339         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8340         NULL,                   /* SIOCSIWPRIV */
8341         NULL,                   /* SIOCGIWPRIV */
8342         NULL,                   /* SIOCSIWSTATS */
8343         NULL,                   /* SIOCGIWSTATS */
8344         NULL,                   /* SIOCSIWSPY */
8345         NULL,                   /* SIOCGIWSPY */
8346         NULL,                   /* SIOCGIWTHRSPY */
8347         NULL,                   /* SIOCWIWTHRSPY */
8348         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8349         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8350 #if WIRELESS_EXT > 17
8351         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8352 #else
8353         NULL,                   /* -- hole -- */
8354 #endif
8355         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8356         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8357         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8358         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8359         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8360         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8361         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8362         NULL,                   /* -- hole -- */
8363         NULL,                   /* -- hole -- */
8364         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8365         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8366         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8367         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8368         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8369         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8370         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8371         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8372         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8373         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8374         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8375         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8376         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8377         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8378 #if WIRELESS_EXT > 17
8379         NULL,                   /* -- hole -- */
8380         NULL,                   /* -- hole -- */
8381         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8382         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8383         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8384         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8385         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8386         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8387         NULL,                   /* SIOCSIWPMKSA */
8388 #endif
8389 };
8390
8391 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8392 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8393 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8394 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8395 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8396 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8397 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8398 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8399
8400 static const struct iw_priv_args ipw2100_private_args[] = {
8401
8402 #ifdef CONFIG_IPW2100_MONITOR
8403         {
8404          IPW2100_PRIV_SET_MONITOR,
8405          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8406         {
8407          IPW2100_PRIV_RESET,
8408          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8409 #endif                          /* CONFIG_IPW2100_MONITOR */
8410
8411         {
8412          IPW2100_PRIV_SET_POWER,
8413          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8414         {
8415          IPW2100_PRIV_GET_POWER,
8416          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8417          "get_power"},
8418         {
8419          IPW2100_PRIV_SET_LONGPREAMBLE,
8420          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8421         {
8422          IPW2100_PRIV_GET_LONGPREAMBLE,
8423          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8424 #ifdef CONFIG_IPW2100_MONITOR
8425         {
8426          IPW2100_PRIV_SET_CRC_CHECK,
8427          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8428         {
8429          IPW2100_PRIV_GET_CRC_CHECK,
8430          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8431 #endif                          /* CONFIG_IPW2100_MONITOR */
8432 };
8433
8434 static iw_handler ipw2100_private_handler[] = {
8435 #ifdef CONFIG_IPW2100_MONITOR
8436         ipw2100_wx_set_promisc,
8437         ipw2100_wx_reset,
8438 #else                           /* CONFIG_IPW2100_MONITOR */
8439         NULL,
8440         NULL,
8441 #endif                          /* CONFIG_IPW2100_MONITOR */
8442         ipw2100_wx_set_powermode,
8443         ipw2100_wx_get_powermode,
8444         ipw2100_wx_set_preamble,
8445         ipw2100_wx_get_preamble,
8446 #ifdef CONFIG_IPW2100_MONITOR
8447         ipw2100_wx_set_crc_check,
8448         ipw2100_wx_get_crc_check,
8449 #else                           /* CONFIG_IPW2100_MONITOR */
8450         NULL,
8451         NULL,
8452 #endif                          /* CONFIG_IPW2100_MONITOR */
8453 };
8454
8455 /*
8456  * Get wireless statistics.
8457  * Called by /proc/net/wireless
8458  * Also called by SIOCGIWSTATS
8459  */
8460 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8461 {
8462         enum {
8463                 POOR = 30,
8464                 FAIR = 60,
8465                 GOOD = 80,
8466                 VERY_GOOD = 90,
8467                 EXCELLENT = 95,
8468                 PERFECT = 100
8469         };
8470         int rssi_qual;
8471         int tx_qual;
8472         int beacon_qual;
8473
8474         struct ipw2100_priv *priv = ieee80211_priv(dev);
8475         struct iw_statistics *wstats;
8476         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8477         u32 ord_len = sizeof(u32);
8478
8479         if (!priv)
8480                 return (struct iw_statistics *)NULL;
8481
8482         wstats = &priv->wstats;
8483
8484         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8485          * ipw2100_wx_wireless_stats seems to be called before fw is
8486          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8487          * and associated; if not associcated, the values are all meaningless
8488          * anyway, so set them all to NULL and INVALID */
8489         if (!(priv->status & STATUS_ASSOCIATED)) {
8490                 wstats->miss.beacon = 0;
8491                 wstats->discard.retries = 0;
8492                 wstats->qual.qual = 0;
8493                 wstats->qual.level = 0;
8494                 wstats->qual.noise = 0;
8495                 wstats->qual.updated = 7;
8496                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8497                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8498                 return wstats;
8499         }
8500
8501         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8502                                 &missed_beacons, &ord_len))
8503                 goto fail_get_ordinal;
8504
8505         /* If we don't have a connection the quality and level is 0 */
8506         if (!(priv->status & STATUS_ASSOCIATED)) {
8507                 wstats->qual.qual = 0;
8508                 wstats->qual.level = 0;
8509         } else {
8510                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8511                                         &rssi, &ord_len))
8512                         goto fail_get_ordinal;
8513                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8514                 if (rssi < 10)
8515                         rssi_qual = rssi * POOR / 10;
8516                 else if (rssi < 15)
8517                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8518                 else if (rssi < 20)
8519                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8520                 else if (rssi < 30)
8521                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8522                             10 + GOOD;
8523                 else
8524                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8525                             10 + VERY_GOOD;
8526
8527                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8528                                         &tx_retries, &ord_len))
8529                         goto fail_get_ordinal;
8530
8531                 if (tx_retries > 75)
8532                         tx_qual = (90 - tx_retries) * POOR / 15;
8533                 else if (tx_retries > 70)
8534                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8535                 else if (tx_retries > 65)
8536                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8537                 else if (tx_retries > 50)
8538                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8539                             15 + GOOD;
8540                 else
8541                         tx_qual = (50 - tx_retries) *
8542                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8543
8544                 if (missed_beacons > 50)
8545                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8546                 else if (missed_beacons > 40)
8547                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8548                             10 + POOR;
8549                 else if (missed_beacons > 32)
8550                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8551                             18 + FAIR;
8552                 else if (missed_beacons > 20)
8553                         beacon_qual = (32 - missed_beacons) *
8554                             (VERY_GOOD - GOOD) / 20 + GOOD;
8555                 else
8556                         beacon_qual = (20 - missed_beacons) *
8557                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8558
8559                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8560
8561 #ifdef CONFIG_IPW2100_DEBUG
8562                 if (beacon_qual == quality)
8563                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8564                 else if (tx_qual == quality)
8565                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8566                 else if (quality != 100)
8567                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8568                 else
8569                         IPW_DEBUG_WX("Quality not clamped.\n");
8570 #endif
8571
8572                 wstats->qual.qual = quality;
8573                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8574         }
8575
8576         wstats->qual.noise = 0;
8577         wstats->qual.updated = 7;
8578         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8579
8580         /* FIXME: this is percent and not a # */
8581         wstats->miss.beacon = missed_beacons;
8582
8583         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8584                                 &tx_failures, &ord_len))
8585                 goto fail_get_ordinal;
8586         wstats->discard.retries = tx_failures;
8587
8588         return wstats;
8589
8590       fail_get_ordinal:
8591         IPW_DEBUG_WX("failed querying ordinals.\n");
8592
8593         return (struct iw_statistics *)NULL;
8594 }
8595
8596 static struct iw_handler_def ipw2100_wx_handler_def = {
8597         .standard = ipw2100_wx_handlers,
8598         .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8599         .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8600         .num_private_args = sizeof(ipw2100_private_args) /
8601             sizeof(struct iw_priv_args),
8602         .private = (iw_handler *) ipw2100_private_handler,
8603         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8604         .get_wireless_stats = ipw2100_wx_wireless_stats,
8605 };
8606
8607 static void ipw2100_wx_event_work(struct ipw2100_priv *priv)
8608 {
8609         union iwreq_data wrqu;
8610         int len = ETH_ALEN;
8611
8612         if (priv->status & STATUS_STOPPING)
8613                 return;
8614
8615         down(&priv->action_sem);
8616
8617         IPW_DEBUG_WX("enter\n");
8618
8619         up(&priv->action_sem);
8620
8621         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8622
8623         /* Fetch BSSID from the hardware */
8624         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8625             priv->status & STATUS_RF_KILL_MASK ||
8626             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8627                                 &priv->bssid, &len)) {
8628                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8629         } else {
8630                 /* We now have the BSSID, so can finish setting to the full
8631                  * associated state */
8632                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8633                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8634                 priv->status &= ~STATUS_ASSOCIATING;
8635                 priv->status |= STATUS_ASSOCIATED;
8636                 netif_carrier_on(priv->net_dev);
8637                 netif_wake_queue(priv->net_dev);
8638         }
8639
8640         if (!(priv->status & STATUS_ASSOCIATED)) {
8641                 IPW_DEBUG_WX("Configuring ESSID\n");
8642                 down(&priv->action_sem);
8643                 /* This is a disassociation event, so kick the firmware to
8644                  * look for another AP */
8645                 if (priv->config & CFG_STATIC_ESSID)
8646                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8647                                           0);
8648                 else
8649                         ipw2100_set_essid(priv, NULL, 0, 0);
8650                 up(&priv->action_sem);
8651         }
8652
8653         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8654 }
8655
8656 #define IPW2100_FW_MAJOR_VERSION 1
8657 #define IPW2100_FW_MINOR_VERSION 3
8658
8659 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8660 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8661
8662 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8663                              IPW2100_FW_MAJOR_VERSION)
8664
8665 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8666 "." __stringify(IPW2100_FW_MINOR_VERSION)
8667
8668 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8669
8670 /*
8671
8672 BINARY FIRMWARE HEADER FORMAT
8673
8674 offset      length   desc
8675 0           2        version
8676 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8677 4           4        fw_len
8678 8           4        uc_len
8679 C           fw_len   firmware data
8680 12 + fw_len uc_len   microcode data
8681
8682 */
8683
8684 struct ipw2100_fw_header {
8685         short version;
8686         short mode;
8687         unsigned int fw_size;
8688         unsigned int uc_size;
8689 } __attribute__ ((packed));
8690
8691 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8692 {
8693         struct ipw2100_fw_header *h =
8694             (struct ipw2100_fw_header *)fw->fw_entry->data;
8695
8696         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8697                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8698                        "(detected version id of %u). "
8699                        "See Documentation/networking/README.ipw2100\n",
8700                        h->version);
8701                 return 1;
8702         }
8703
8704         fw->version = h->version;
8705         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8706         fw->fw.size = h->fw_size;
8707         fw->uc.data = fw->fw.data + h->fw_size;
8708         fw->uc.size = h->uc_size;
8709
8710         return 0;
8711 }
8712
8713 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8714                                 struct ipw2100_fw *fw)
8715 {
8716         char *fw_name;
8717         int rc;
8718
8719         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8720                        priv->net_dev->name);
8721
8722         switch (priv->ieee->iw_mode) {
8723         case IW_MODE_ADHOC:
8724                 fw_name = IPW2100_FW_NAME("-i");
8725                 break;
8726 #ifdef CONFIG_IPW2100_MONITOR
8727         case IW_MODE_MONITOR:
8728                 fw_name = IPW2100_FW_NAME("-p");
8729                 break;
8730 #endif
8731         case IW_MODE_INFRA:
8732         default:
8733                 fw_name = IPW2100_FW_NAME("");
8734                 break;
8735         }
8736
8737         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8738
8739         if (rc < 0) {
8740                 printk(KERN_ERR DRV_NAME ": "
8741                        "%s: Firmware '%s' not available or load failed.\n",
8742                        priv->net_dev->name, fw_name);
8743                 return rc;
8744         }
8745         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8746                        fw->fw_entry->size);
8747
8748         ipw2100_mod_firmware_load(fw);
8749
8750         return 0;
8751 }
8752
8753 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8754                                      struct ipw2100_fw *fw)
8755 {
8756         fw->version = 0;
8757         if (fw->fw_entry)
8758                 release_firmware(fw->fw_entry);
8759         fw->fw_entry = NULL;
8760 }
8761
8762 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8763                                  size_t max)
8764 {
8765         char ver[MAX_FW_VERSION_LEN];
8766         u32 len = MAX_FW_VERSION_LEN;
8767         u32 tmp;
8768         int i;
8769         /* firmware version is an ascii string (max len of 14) */
8770         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8771                 return -EIO;
8772         tmp = max;
8773         if (len >= max)
8774                 len = max - 1;
8775         for (i = 0; i < len; i++)
8776                 buf[i] = ver[i];
8777         buf[i] = '\0';
8778         return tmp;
8779 }
8780
8781 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8782                                     size_t max)
8783 {
8784         u32 ver;
8785         u32 len = sizeof(ver);
8786         /* microcode version is a 32 bit integer */
8787         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8788                 return -EIO;
8789         return snprintf(buf, max, "%08X", ver);
8790 }
8791
8792 /*
8793  * On exit, the firmware will have been freed from the fw list
8794  */
8795 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8796 {
8797         /* firmware is constructed of N contiguous entries, each entry is
8798          * structured as:
8799          *
8800          * offset    sie         desc
8801          * 0         4           address to write to
8802          * 4         2           length of data run
8803          * 6         length      data
8804          */
8805         unsigned int addr;
8806         unsigned short len;
8807
8808         const unsigned char *firmware_data = fw->fw.data;
8809         unsigned int firmware_data_left = fw->fw.size;
8810
8811         while (firmware_data_left > 0) {
8812                 addr = *(u32 *) (firmware_data);
8813                 firmware_data += 4;
8814                 firmware_data_left -= 4;
8815
8816                 len = *(u16 *) (firmware_data);
8817                 firmware_data += 2;
8818                 firmware_data_left -= 2;
8819
8820                 if (len > 32) {
8821                         printk(KERN_ERR DRV_NAME ": "
8822                                "Invalid firmware run-length of %d bytes\n",
8823                                len);
8824                         return -EINVAL;
8825                 }
8826
8827                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8828                 firmware_data += len;
8829                 firmware_data_left -= len;
8830         }
8831
8832         return 0;
8833 }
8834
8835 struct symbol_alive_response {
8836         u8 cmd_id;
8837         u8 seq_num;
8838         u8 ucode_rev;
8839         u8 eeprom_valid;
8840         u16 valid_flags;
8841         u8 IEEE_addr[6];
8842         u16 flags;
8843         u16 pcb_rev;
8844         u16 clock_settle_time;  // 1us LSB
8845         u16 powerup_settle_time;        // 1us LSB
8846         u16 hop_settle_time;    // 1us LSB
8847         u8 date[3];             // month, day, year
8848         u8 time[2];             // hours, minutes
8849         u8 ucode_valid;
8850 };
8851
8852 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8853                                   struct ipw2100_fw *fw)
8854 {
8855         struct net_device *dev = priv->net_dev;
8856         const unsigned char *microcode_data = fw->uc.data;
8857         unsigned int microcode_data_left = fw->uc.size;
8858         void __iomem *reg = (void __iomem *)dev->base_addr;
8859
8860         struct symbol_alive_response response;
8861         int i, j;
8862         u8 data;
8863
8864         /* Symbol control */
8865         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8866         readl(reg);
8867         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8868         readl(reg);
8869
8870         /* HW config */
8871         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8872         readl(reg);
8873         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8874         readl(reg);
8875
8876         /* EN_CS_ACCESS bit to reset control store pointer */
8877         write_nic_byte(dev, 0x210000, 0x40);
8878         readl(reg);
8879         write_nic_byte(dev, 0x210000, 0x0);
8880         readl(reg);
8881         write_nic_byte(dev, 0x210000, 0x40);
8882         readl(reg);
8883
8884         /* copy microcode from buffer into Symbol */
8885
8886         while (microcode_data_left > 0) {
8887                 write_nic_byte(dev, 0x210010, *microcode_data++);
8888                 write_nic_byte(dev, 0x210010, *microcode_data++);
8889                 microcode_data_left -= 2;
8890         }
8891
8892         /* EN_CS_ACCESS bit to reset the control store pointer */
8893         write_nic_byte(dev, 0x210000, 0x0);
8894         readl(reg);
8895
8896         /* Enable System (Reg 0)
8897          * first enable causes garbage in RX FIFO */
8898         write_nic_byte(dev, 0x210000, 0x0);
8899         readl(reg);
8900         write_nic_byte(dev, 0x210000, 0x80);
8901         readl(reg);
8902
8903         /* Reset External Baseband Reg */
8904         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8905         readl(reg);
8906         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8907         readl(reg);
8908
8909         /* HW Config (Reg 5) */
8910         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8911         readl(reg);
8912         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8913         readl(reg);
8914
8915         /* Enable System (Reg 0)
8916          * second enable should be OK */
8917         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8918         readl(reg);
8919         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8920
8921         /* check Symbol is enabled - upped this from 5 as it wasn't always
8922          * catching the update */
8923         for (i = 0; i < 10; i++) {
8924                 udelay(10);
8925
8926                 /* check Dino is enabled bit */
8927                 read_nic_byte(dev, 0x210000, &data);
8928                 if (data & 0x1)
8929                         break;
8930         }
8931
8932         if (i == 10) {
8933                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8934                        dev->name);
8935                 return -EIO;
8936         }
8937
8938         /* Get Symbol alive response */
8939         for (i = 0; i < 30; i++) {
8940                 /* Read alive response structure */
8941                 for (j = 0;
8942                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8943                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8944
8945                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8946                         break;
8947                 udelay(10);
8948         }
8949
8950         if (i == 30) {
8951                 printk(KERN_ERR DRV_NAME
8952                        ": %s: No response from Symbol - hw not alive\n",
8953                        dev->name);
8954                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8955                 return -EIO;
8956         }
8957
8958         return 0;
8959 }