WorkStruct: make allyesconfig
[safe/jmp/linux-2.6] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <jkmaline@cc.hut.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME        "ipw2100"
172 #define DRV_VERSION     IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213         if (ipw2100_debug_level & (level)) { \
214                 printk(KERN_DEBUG "ipw2100: %c %s ", \
215                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
216                 printk(message); \
217         } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif                          /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225         "undefined",
226         "unused",               /* HOST_ATTENTION */
227         "HOST_COMPLETE",
228         "unused",               /* SLEEP */
229         "unused",               /* HOST_POWER_DOWN */
230         "unused",
231         "SYSTEM_CONFIG",
232         "unused",               /* SET_IMR */
233         "SSID",
234         "MANDATORY_BSSID",
235         "AUTHENTICATION_TYPE",
236         "ADAPTER_ADDRESS",
237         "PORT_TYPE",
238         "INTERNATIONAL_MODE",
239         "CHANNEL",
240         "RTS_THRESHOLD",
241         "FRAG_THRESHOLD",
242         "POWER_MODE",
243         "TX_RATES",
244         "BASIC_TX_RATES",
245         "WEP_KEY_INFO",
246         "unused",
247         "unused",
248         "unused",
249         "unused",
250         "WEP_KEY_INDEX",
251         "WEP_FLAGS",
252         "ADD_MULTICAST",
253         "CLEAR_ALL_MULTICAST",
254         "BEACON_INTERVAL",
255         "ATIM_WINDOW",
256         "CLEAR_STATISTICS",
257         "undefined",
258         "undefined",
259         "undefined",
260         "undefined",
261         "TX_POWER_INDEX",
262         "undefined",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "BROADCAST_SCAN",
269         "CARD_DISABLE",
270         "PREFERRED_BSSID",
271         "SET_SCAN_OPTIONS",
272         "SCAN_DWELL_TIME",
273         "SWEEP_TABLE",
274         "AP_OR_STATION_TABLE",
275         "GROUP_ORDINALS",
276         "SHORT_RETRY_LIMIT",
277         "LONG_RETRY_LIMIT",
278         "unused",               /* SAVE_CALIBRATION */
279         "unused",               /* RESTORE_CALIBRATION */
280         "undefined",
281         "undefined",
282         "undefined",
283         "HOST_PRE_POWER_DOWN",
284         "unused",               /* HOST_INTERRUPT_COALESCING */
285         "undefined",
286         "CARD_DISABLE_PHY_OFF",
287         "MSDU_TX_RATES" "undefined",
288         "undefined",
289         "SET_STATION_STAT_BITS",
290         "CLEAR_STATIONS_STAT_BITS",
291         "LEAP_ROGUE_MODE",
292         "SET_SECURITY_INFORMATION",
293         "DISASSOCIATION_BSSID",
294         "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308                                struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310                                 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312                                  size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314                                     size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316                                      struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318                                   struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325         *val = readl((void __iomem *)(dev->base_addr + reg));
326         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331         writel(val, (void __iomem *)(dev->base_addr + reg));
332         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336                                       u16 * val)
337 {
338         *val = readw((void __iomem *)(dev->base_addr + reg));
339         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344         *val = readb((void __iomem *)(dev->base_addr + reg));
345         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350         writew(val, (void __iomem *)(dev->base_addr + reg));
351         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356         writeb(val, (void __iomem *)(dev->base_addr + reg));
357         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363                        addr & IPW_REG_INDIRECT_ADDR_MASK);
364         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370                        addr & IPW_REG_INDIRECT_ADDR_MASK);
371         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377                        addr & IPW_REG_INDIRECT_ADDR_MASK);
378         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384                        addr & IPW_REG_INDIRECT_ADDR_MASK);
385         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391                        addr & IPW_REG_INDIRECT_ADDR_MASK);
392         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398                        addr & IPW_REG_INDIRECT_ADDR_MASK);
399         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405                        addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414                                     const u8 * buf)
415 {
416         u32 aligned_addr;
417         u32 aligned_len;
418         u32 dif_len;
419         u32 i;
420
421         /* read first nibble byte by byte */
422         aligned_addr = addr & (~0x3);
423         dif_len = addr - aligned_addr;
424         if (dif_len) {
425                 /* Start reading at aligned_addr + dif_len */
426                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427                                aligned_addr);
428                 for (i = dif_len; i < 4; i++, buf++)
429                         write_register_byte(dev,
430                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
431                                             *buf);
432
433                 len -= dif_len;
434                 aligned_addr += 4;
435         }
436
437         /* read DWs through autoincrement registers */
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439         aligned_len = len & (~0x3);
440         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443         /* copy the last nibble */
444         dif_len = len - aligned_len;
445         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446         for (i = 0; i < dif_len; i++, buf++)
447                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448                                     *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452                                    u8 * buf)
453 {
454         u32 aligned_addr;
455         u32 aligned_len;
456         u32 dif_len;
457         u32 i;
458
459         /* read first nibble byte by byte */
460         aligned_addr = addr & (~0x3);
461         dif_len = addr - aligned_addr;
462         if (dif_len) {
463                 /* Start reading at aligned_addr + dif_len */
464                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465                                aligned_addr);
466                 for (i = dif_len; i < 4; i++, buf++)
467                         read_register_byte(dev,
468                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
469                                            buf);
470
471                 len -= dif_len;
472                 aligned_addr += 4;
473         }
474
475         /* read DWs through autoincrement registers */
476         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477         aligned_len = len & (~0x3);
478         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481         /* copy the last nibble */
482         dif_len = len - aligned_len;
483         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484         for (i = 0; i < dif_len; i++, buf++)
485                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490         return (dev->base_addr &&
491                 (readl
492                  ((void __iomem *)(dev->base_addr +
493                                    IPW_REG_DOA_DEBUG_AREA_START))
494                  == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498                                void *val, u32 * len)
499 {
500         struct ipw2100_ordinals *ordinals = &priv->ordinals;
501         u32 addr;
502         u32 field_info;
503         u16 field_len;
504         u16 field_count;
505         u32 total_length;
506
507         if (ordinals->table1_addr == 0) {
508                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509                        "before they have been loaded.\n");
510                 return -EINVAL;
511         }
512
513         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517                         printk(KERN_WARNING DRV_NAME
518                                ": ordinal buffer length too small, need %zd\n",
519                                IPW_ORD_TAB_1_ENTRY_SIZE);
520
521                         return -EINVAL;
522                 }
523
524                 read_nic_dword(priv->net_dev,
525                                ordinals->table1_addr + (ord << 2), &addr);
526                 read_nic_dword(priv->net_dev, addr, val);
527
528                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530                 return 0;
531         }
532
533         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535                 ord -= IPW_START_ORD_TAB_2;
536
537                 /* get the address of statistic */
538                 read_nic_dword(priv->net_dev,
539                                ordinals->table2_addr + (ord << 3), &addr);
540
541                 /* get the second DW of statistics ;
542                  * two 16-bit words - first is length, second is count */
543                 read_nic_dword(priv->net_dev,
544                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
545                                &field_info);
546
547                 /* get each entry length */
548                 field_len = *((u16 *) & field_info);
549
550                 /* get number of entries */
551                 field_count = *(((u16 *) & field_info) + 1);
552
553                 /* abort if no enought memory */
554                 total_length = field_len * field_count;
555                 if (total_length > *len) {
556                         *len = total_length;
557                         return -EINVAL;
558                 }
559
560                 *len = total_length;
561                 if (!total_length)
562                         return 0;
563
564                 /* read the ordinal data from the SRAM */
565                 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567                 return 0;
568         }
569
570         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571                "in table 2\n", ord);
572
573         return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577                                u32 * len)
578 {
579         struct ipw2100_ordinals *ordinals = &priv->ordinals;
580         u32 addr;
581
582         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585                         IPW_DEBUG_INFO("wrong size\n");
586                         return -EINVAL;
587                 }
588
589                 read_nic_dword(priv->net_dev,
590                                ordinals->table1_addr + (ord << 2), &addr);
591
592                 write_nic_dword(priv->net_dev, addr, *val);
593
594                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596                 return 0;
597         }
598
599         IPW_DEBUG_INFO("wrong table\n");
600         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601                 return -EINVAL;
602
603         return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607                           const u8 * data, u32 len, u32 ofs)
608 {
609         int out, i, j, l;
610         char c;
611
612         out = snprintf(buf, count, "%08X", ofs);
613
614         for (l = 0, i = 0; i < 2; i++) {
615                 out += snprintf(buf + out, count - out, " ");
616                 for (j = 0; j < 8 && l < len; j++, l++)
617                         out += snprintf(buf + out, count - out, "%02X ",
618                                         data[(i * 8 + j)]);
619                 for (; j < 8; j++)
620                         out += snprintf(buf + out, count - out, "   ");
621         }
622
623         out += snprintf(buf + out, count - out, " ");
624         for (l = 0, i = 0; i < 2; i++) {
625                 out += snprintf(buf + out, count - out, " ");
626                 for (j = 0; j < 8 && l < len; j++, l++) {
627                         c = data[(i * 8 + j)];
628                         if (!isascii(c) || !isprint(c))
629                                 c = '.';
630
631                         out += snprintf(buf + out, count - out, "%c", c);
632                 }
633
634                 for (; j < 8; j++)
635                         out += snprintf(buf + out, count - out, " ");
636         }
637
638         return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643         char line[81];
644         u32 ofs = 0;
645         if (!(ipw2100_debug_level & level))
646                 return;
647
648         while (len) {
649                 printk(KERN_DEBUG "%s\n",
650                        snprint_line(line, sizeof(line), &data[ofs],
651                                     min(len, 16U), ofs));
652                 ofs += 16;
653                 len -= min(len, 16U);
654         }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661         unsigned long now = get_seconds();
662
663         /* If we haven't received a reset request within the backoff period,
664          * then we can reset the backoff interval so this reset occurs
665          * immediately */
666         if (priv->reset_backoff &&
667             (now - priv->last_reset > priv->reset_backoff))
668                 priv->reset_backoff = 0;
669
670         priv->last_reset = get_seconds();
671
672         if (!(priv->status & STATUS_RESET_PENDING)) {
673                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674                                priv->net_dev->name, priv->reset_backoff);
675                 netif_carrier_off(priv->net_dev);
676                 netif_stop_queue(priv->net_dev);
677                 priv->status |= STATUS_RESET_PENDING;
678                 if (priv->reset_backoff)
679                         queue_delayed_work(priv->workqueue, &priv->reset_work,
680                                            priv->reset_backoff * HZ);
681                 else
682                         queue_delayed_work(priv->workqueue, &priv->reset_work,
683                                            0);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (i--);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (i--);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         mutex_lock(&priv->adapter_mutex);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         mutex_unlock(&priv->adapter_mutex);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standby if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         mutex_lock(&priv->adapter_mutex);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         mutex_unlock(&priv->adapter_mutex);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676         {                       /* Restricted */
1677          "---",
1678          .bg_channels = 14,
1679          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680                 {2427, 4}, {2432, 5}, {2437, 6},
1681                 {2442, 7}, {2447, 8}, {2452, 9},
1682                 {2457, 10}, {2462, 11}, {2467, 12},
1683                 {2472, 13}, {2484, 14}},
1684          },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689         unsigned long flags;
1690         int rc = 0;
1691         u32 lock;
1692         u32 ord_len = sizeof(lock);
1693
1694         /* Quite if manually disabled. */
1695         if (priv->status & STATUS_RF_KILL_SW) {
1696                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697                                "switch\n", priv->net_dev->name);
1698                 return 0;
1699         }
1700
1701         /* the ipw2100 hardware really doesn't want power management delays
1702          * longer than 175usec
1703          */
1704         modify_acceptable_latency("ipw2100", 175);
1705
1706         /* If the interrupt is enabled, turn it off... */
1707         spin_lock_irqsave(&priv->low_lock, flags);
1708         ipw2100_disable_interrupts(priv);
1709
1710         /* Reset any fatal_error conditions */
1711         ipw2100_reset_fatalerror(priv);
1712         spin_unlock_irqrestore(&priv->low_lock, flags);
1713
1714         if (priv->status & STATUS_POWERED ||
1715             (priv->status & STATUS_RESET_PENDING)) {
1716                 /* Power cycle the card ... */
1717                 if (ipw2100_power_cycle_adapter(priv)) {
1718                         printk(KERN_WARNING DRV_NAME
1719                                ": %s: Could not cycle adapter.\n",
1720                                priv->net_dev->name);
1721                         rc = 1;
1722                         goto exit;
1723                 }
1724         } else
1725                 priv->status |= STATUS_POWERED;
1726
1727         /* Load the firmware, start the clocks, etc. */
1728         if (ipw2100_start_adapter(priv)) {
1729                 printk(KERN_ERR DRV_NAME
1730                        ": %s: Failed to start the firmware.\n",
1731                        priv->net_dev->name);
1732                 rc = 1;
1733                 goto exit;
1734         }
1735
1736         ipw2100_initialize_ordinals(priv);
1737
1738         /* Determine capabilities of this particular HW configuration */
1739         if (ipw2100_get_hw_features(priv)) {
1740                 printk(KERN_ERR DRV_NAME
1741                        ": %s: Failed to determine HW features.\n",
1742                        priv->net_dev->name);
1743                 rc = 1;
1744                 goto exit;
1745         }
1746
1747         /* Initialize the geo */
1748         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750                 return 0;
1751         }
1752         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1753
1754         lock = LOCK_NONE;
1755         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756                 printk(KERN_ERR DRV_NAME
1757                        ": %s: Failed to clear ordinal lock.\n",
1758                        priv->net_dev->name);
1759                 rc = 1;
1760                 goto exit;
1761         }
1762
1763         priv->status &= ~STATUS_SCANNING;
1764
1765         if (rf_kill_active(priv)) {
1766                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767                        priv->net_dev->name);
1768
1769                 if (priv->stop_rf_kill) {
1770                         priv->stop_rf_kill = 0;
1771                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1772                 }
1773
1774                 deferred = 1;
1775         }
1776
1777         /* Turn on the interrupt so that commands can be processed */
1778         ipw2100_enable_interrupts(priv);
1779
1780         /* Send all of the commands that must be sent prior to
1781          * HOST_COMPLETE */
1782         if (ipw2100_adapter_setup(priv)) {
1783                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1784                        priv->net_dev->name);
1785                 rc = 1;
1786                 goto exit;
1787         }
1788
1789         if (!deferred) {
1790                 /* Enable the adapter - sends HOST_COMPLETE */
1791                 if (ipw2100_enable_adapter(priv)) {
1792                         printk(KERN_ERR DRV_NAME ": "
1793                                "%s: failed in call to enable adapter.\n",
1794                                priv->net_dev->name);
1795                         ipw2100_hw_stop_adapter(priv);
1796                         rc = 1;
1797                         goto exit;
1798                 }
1799
1800                 /* Start a scan . . . */
1801                 ipw2100_set_scan_options(priv);
1802                 ipw2100_start_scan(priv);
1803         }
1804
1805       exit:
1806         return rc;
1807 }
1808
1809 /* Called by register_netdev() */
1810 static int ipw2100_net_init(struct net_device *dev)
1811 {
1812         struct ipw2100_priv *priv = ieee80211_priv(dev);
1813         return ipw2100_up(priv, 1);
1814 }
1815
1816 static void ipw2100_down(struct ipw2100_priv *priv)
1817 {
1818         unsigned long flags;
1819         union iwreq_data wrqu = {
1820                 .ap_addr = {
1821                             .sa_family = ARPHRD_ETHER}
1822         };
1823         int associated = priv->status & STATUS_ASSOCIATED;
1824
1825         /* Kill the RF switch timer */
1826         if (!priv->stop_rf_kill) {
1827                 priv->stop_rf_kill = 1;
1828                 cancel_delayed_work(&priv->rf_kill);
1829         }
1830
1831         /* Kill the firmare hang check timer */
1832         if (!priv->stop_hang_check) {
1833                 priv->stop_hang_check = 1;
1834                 cancel_delayed_work(&priv->hang_check);
1835         }
1836
1837         /* Kill any pending resets */
1838         if (priv->status & STATUS_RESET_PENDING)
1839                 cancel_delayed_work(&priv->reset_work);
1840
1841         /* Make sure the interrupt is on so that FW commands will be
1842          * processed correctly */
1843         spin_lock_irqsave(&priv->low_lock, flags);
1844         ipw2100_enable_interrupts(priv);
1845         spin_unlock_irqrestore(&priv->low_lock, flags);
1846
1847         if (ipw2100_hw_stop_adapter(priv))
1848                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1849                        priv->net_dev->name);
1850
1851         /* Do not disable the interrupt until _after_ we disable
1852          * the adaptor.  Otherwise the CARD_DISABLE command will never
1853          * be ack'd by the firmware */
1854         spin_lock_irqsave(&priv->low_lock, flags);
1855         ipw2100_disable_interrupts(priv);
1856         spin_unlock_irqrestore(&priv->low_lock, flags);
1857
1858         modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1859
1860 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1861         if (priv->config & CFG_C3_DISABLED) {
1862                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1863                 acpi_set_cstate_limit(priv->cstate_limit);
1864                 priv->config &= ~CFG_C3_DISABLED;
1865         }
1866 #endif
1867
1868         /* We have to signal any supplicant if we are disassociating */
1869         if (associated)
1870                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1871
1872         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1873         netif_carrier_off(priv->net_dev);
1874         netif_stop_queue(priv->net_dev);
1875 }
1876
1877 static void ipw2100_reset_adapter(struct work_struct *work)
1878 {
1879         struct ipw2100_priv *priv =
1880                 container_of(work, struct ipw2100_priv, reset_work.work);
1881         unsigned long flags;
1882         union iwreq_data wrqu = {
1883                 .ap_addr = {
1884                             .sa_family = ARPHRD_ETHER}
1885         };
1886         int associated = priv->status & STATUS_ASSOCIATED;
1887
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1890         priv->resets++;
1891         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1892         priv->status |= STATUS_SECURITY_UPDATED;
1893
1894         /* Force a power cycle even if interface hasn't been opened
1895          * yet */
1896         cancel_delayed_work(&priv->reset_work);
1897         priv->status |= STATUS_RESET_PENDING;
1898         spin_unlock_irqrestore(&priv->low_lock, flags);
1899
1900         mutex_lock(&priv->action_mutex);
1901         /* stop timed checks so that they don't interfere with reset */
1902         priv->stop_hang_check = 1;
1903         cancel_delayed_work(&priv->hang_check);
1904
1905         /* We have to signal any supplicant if we are disassociating */
1906         if (associated)
1907                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1908
1909         ipw2100_up(priv, 0);
1910         mutex_unlock(&priv->action_mutex);
1911
1912 }
1913
1914 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1915 {
1916
1917 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1918         int ret, len, essid_len;
1919         char essid[IW_ESSID_MAX_SIZE];
1920         u32 txrate;
1921         u32 chan;
1922         char *txratename;
1923         u8 bssid[ETH_ALEN];
1924
1925         /*
1926          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1927          *      an actual MAC of the AP. Seems like FW sets this
1928          *      address too late. Read it later and expose through
1929          *      /proc or schedule a later task to query and update
1930          */
1931
1932         essid_len = IW_ESSID_MAX_SIZE;
1933         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1934                                   essid, &essid_len);
1935         if (ret) {
1936                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1937                                __LINE__);
1938                 return;
1939         }
1940
1941         len = sizeof(u32);
1942         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1943         if (ret) {
1944                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1945                                __LINE__);
1946                 return;
1947         }
1948
1949         len = sizeof(u32);
1950         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1951         if (ret) {
1952                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1953                                __LINE__);
1954                 return;
1955         }
1956         len = ETH_ALEN;
1957         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1958         if (ret) {
1959                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1960                                __LINE__);
1961                 return;
1962         }
1963         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1964
1965         switch (txrate) {
1966         case TX_RATE_1_MBIT:
1967                 txratename = "1Mbps";
1968                 break;
1969         case TX_RATE_2_MBIT:
1970                 txratename = "2Mbsp";
1971                 break;
1972         case TX_RATE_5_5_MBIT:
1973                 txratename = "5.5Mbps";
1974                 break;
1975         case TX_RATE_11_MBIT:
1976                 txratename = "11Mbps";
1977                 break;
1978         default:
1979                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1980                 txratename = "unknown rate";
1981                 break;
1982         }
1983
1984         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1985                        MAC_FMT ")\n",
1986                        priv->net_dev->name, escape_essid(essid, essid_len),
1987                        txratename, chan, MAC_ARG(bssid));
1988
1989         /* now we copy read ssid into dev */
1990         if (!(priv->config & CFG_STATIC_ESSID)) {
1991                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1992                 memcpy(priv->essid, essid, priv->essid_len);
1993         }
1994         priv->channel = chan;
1995         memcpy(priv->bssid, bssid, ETH_ALEN);
1996
1997         priv->status |= STATUS_ASSOCIATING;
1998         priv->connect_start = get_seconds();
1999
2000         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2001 }
2002
2003 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2004                              int length, int batch_mode)
2005 {
2006         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2007         struct host_command cmd = {
2008                 .host_command = SSID,
2009                 .host_command_sequence = 0,
2010                 .host_command_length = ssid_len
2011         };
2012         int err;
2013
2014         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2015
2016         if (ssid_len)
2017                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2018
2019         if (!batch_mode) {
2020                 err = ipw2100_disable_adapter(priv);
2021                 if (err)
2022                         return err;
2023         }
2024
2025         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2026          * disable auto association -- so we cheat by setting a bogus SSID */
2027         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2028                 int i;
2029                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2030                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2031                         bogus[i] = 0x18 + i;
2032                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2033         }
2034
2035         /* NOTE:  We always send the SSID command even if the provided ESSID is
2036          * the same as what we currently think is set. */
2037
2038         err = ipw2100_hw_send_command(priv, &cmd);
2039         if (!err) {
2040                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2041                 memcpy(priv->essid, essid, ssid_len);
2042                 priv->essid_len = ssid_len;
2043         }
2044
2045         if (!batch_mode) {
2046                 if (ipw2100_enable_adapter(priv))
2047                         err = -EIO;
2048         }
2049
2050         return err;
2051 }
2052
2053 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2054 {
2055         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2056                   "disassociated: '%s' " MAC_FMT " \n",
2057                   escape_essid(priv->essid, priv->essid_len),
2058                   MAC_ARG(priv->bssid));
2059
2060         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2061
2062         if (priv->status & STATUS_STOPPING) {
2063                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2064                 return;
2065         }
2066
2067         memset(priv->bssid, 0, ETH_ALEN);
2068         memset(priv->ieee->bssid, 0, ETH_ALEN);
2069
2070         netif_carrier_off(priv->net_dev);
2071         netif_stop_queue(priv->net_dev);
2072
2073         if (!(priv->status & STATUS_RUNNING))
2074                 return;
2075
2076         if (priv->status & STATUS_SECURITY_UPDATED)
2077                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2078
2079         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2080 }
2081
2082 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2083 {
2084         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2085                        priv->net_dev->name);
2086
2087         /* RF_KILL is now enabled (else we wouldn't be here) */
2088         priv->status |= STATUS_RF_KILL_HW;
2089
2090 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2091         if (priv->config & CFG_C3_DISABLED) {
2092                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2093                 acpi_set_cstate_limit(priv->cstate_limit);
2094                 priv->config &= ~CFG_C3_DISABLED;
2095         }
2096 #endif
2097
2098         /* Make sure the RF Kill check timer is running */
2099         priv->stop_rf_kill = 0;
2100         cancel_delayed_work(&priv->rf_kill);
2101         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2102 }
2103
2104 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2105 {
2106         IPW_DEBUG_SCAN("scan complete\n");
2107         /* Age the scan results... */
2108         priv->ieee->scans++;
2109         priv->status &= ~STATUS_SCANNING;
2110 }
2111
2112 #ifdef CONFIG_IPW2100_DEBUG
2113 #define IPW2100_HANDLER(v, f) { v, f, # v }
2114 struct ipw2100_status_indicator {
2115         int status;
2116         void (*cb) (struct ipw2100_priv * priv, u32 status);
2117         char *name;
2118 };
2119 #else
2120 #define IPW2100_HANDLER(v, f) { v, f }
2121 struct ipw2100_status_indicator {
2122         int status;
2123         void (*cb) (struct ipw2100_priv * priv, u32 status);
2124 };
2125 #endif                          /* CONFIG_IPW2100_DEBUG */
2126
2127 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2128 {
2129         IPW_DEBUG_SCAN("Scanning...\n");
2130         priv->status |= STATUS_SCANNING;
2131 }
2132
2133 static const struct ipw2100_status_indicator status_handlers[] = {
2134         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2135         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2136         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2137         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2138         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2139         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2140         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2141         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2142         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2143         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2144         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2145         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2146         IPW2100_HANDLER(-1, NULL)
2147 };
2148
2149 static void isr_status_change(struct ipw2100_priv *priv, int status)
2150 {
2151         int i;
2152
2153         if (status == IPW_STATE_SCANNING &&
2154             priv->status & STATUS_ASSOCIATED &&
2155             !(priv->status & STATUS_SCANNING)) {
2156                 IPW_DEBUG_INFO("Scan detected while associated, with "
2157                                "no scan request.  Restarting firmware.\n");
2158
2159                 /* Wake up any sleeping jobs */
2160                 schedule_reset(priv);
2161         }
2162
2163         for (i = 0; status_handlers[i].status != -1; i++) {
2164                 if (status == status_handlers[i].status) {
2165                         IPW_DEBUG_NOTIF("Status change: %s\n",
2166                                         status_handlers[i].name);
2167                         if (status_handlers[i].cb)
2168                                 status_handlers[i].cb(priv, status);
2169                         priv->wstats.status = status;
2170                         return;
2171                 }
2172         }
2173
2174         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2175 }
2176
2177 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2178                                     struct ipw2100_cmd_header *cmd)
2179 {
2180 #ifdef CONFIG_IPW2100_DEBUG
2181         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2182                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2183                              command_types[cmd->host_command_reg],
2184                              cmd->host_command_reg);
2185         }
2186 #endif
2187         if (cmd->host_command_reg == HOST_COMPLETE)
2188                 priv->status |= STATUS_ENABLED;
2189
2190         if (cmd->host_command_reg == CARD_DISABLE)
2191                 priv->status &= ~STATUS_ENABLED;
2192
2193         priv->status &= ~STATUS_CMD_ACTIVE;
2194
2195         wake_up_interruptible(&priv->wait_command_queue);
2196 }
2197
2198 #ifdef CONFIG_IPW2100_DEBUG
2199 static const char *frame_types[] = {
2200         "COMMAND_STATUS_VAL",
2201         "STATUS_CHANGE_VAL",
2202         "P80211_DATA_VAL",
2203         "P8023_DATA_VAL",
2204         "HOST_NOTIFICATION_VAL"
2205 };
2206 #endif
2207
2208 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2209                                     struct ipw2100_rx_packet *packet)
2210 {
2211         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2212         if (!packet->skb)
2213                 return -ENOMEM;
2214
2215         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2216         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2217                                           sizeof(struct ipw2100_rx),
2218                                           PCI_DMA_FROMDEVICE);
2219         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2220          *       dma_addr */
2221
2222         return 0;
2223 }
2224
2225 #define SEARCH_ERROR   0xffffffff
2226 #define SEARCH_FAIL    0xfffffffe
2227 #define SEARCH_SUCCESS 0xfffffff0
2228 #define SEARCH_DISCARD 0
2229 #define SEARCH_SNAPSHOT 1
2230
2231 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2232 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2233 {
2234         int i;
2235         if (!priv->snapshot[0])
2236                 return;
2237         for (i = 0; i < 0x30; i++)
2238                 kfree(priv->snapshot[i]);
2239         priv->snapshot[0] = NULL;
2240 }
2241
2242 #ifdef CONFIG_IPW2100_DEBUG_C3
2243 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2244 {
2245         int i;
2246         if (priv->snapshot[0])
2247                 return 1;
2248         for (i = 0; i < 0x30; i++) {
2249                 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2250                 if (!priv->snapshot[i]) {
2251                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2252                                        "buffer %d\n", priv->net_dev->name, i);
2253                         while (i > 0)
2254                                 kfree(priv->snapshot[--i]);
2255                         priv->snapshot[0] = NULL;
2256                         return 0;
2257                 }
2258         }
2259
2260         return 1;
2261 }
2262
2263 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2264                                     size_t len, int mode)
2265 {
2266         u32 i, j;
2267         u32 tmp;
2268         u8 *s, *d;
2269         u32 ret;
2270
2271         s = in_buf;
2272         if (mode == SEARCH_SNAPSHOT) {
2273                 if (!ipw2100_snapshot_alloc(priv))
2274                         mode = SEARCH_DISCARD;
2275         }
2276
2277         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2278                 read_nic_dword(priv->net_dev, i, &tmp);
2279                 if (mode == SEARCH_SNAPSHOT)
2280                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2281                 if (ret == SEARCH_FAIL) {
2282                         d = (u8 *) & tmp;
2283                         for (j = 0; j < 4; j++) {
2284                                 if (*s != *d) {
2285                                         s = in_buf;
2286                                         continue;
2287                                 }
2288
2289                                 s++;
2290                                 d++;
2291
2292                                 if ((s - in_buf) == len)
2293                                         ret = (i + j) - len + 1;
2294                         }
2295                 } else if (mode == SEARCH_DISCARD)
2296                         return ret;
2297         }
2298
2299         return ret;
2300 }
2301 #endif
2302
2303 /*
2304  *
2305  * 0) Disconnect the SKB from the firmware (just unmap)
2306  * 1) Pack the ETH header into the SKB
2307  * 2) Pass the SKB to the network stack
2308  *
2309  * When packet is provided by the firmware, it contains the following:
2310  *
2311  * .  ieee80211_hdr
2312  * .  ieee80211_snap_hdr
2313  *
2314  * The size of the constructed ethernet
2315  *
2316  */
2317 #ifdef CONFIG_IPW2100_RX_DEBUG
2318 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2319 #endif
2320
2321 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2322 {
2323 #ifdef CONFIG_IPW2100_DEBUG_C3
2324         struct ipw2100_status *status = &priv->status_queue.drv[i];
2325         u32 match, reg;
2326         int j;
2327 #endif
2328 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2329         int limit;
2330 #endif
2331
2332         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2333                        i * sizeof(struct ipw2100_status));
2334
2335 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2336         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2337         limit = acpi_get_cstate_limit();
2338         if (limit > 2) {
2339                 priv->cstate_limit = limit;
2340                 acpi_set_cstate_limit(2);
2341                 priv->config |= CFG_C3_DISABLED;
2342         }
2343 #endif
2344
2345 #ifdef CONFIG_IPW2100_DEBUG_C3
2346         /* Halt the fimrware so we can get a good image */
2347         write_register(priv->net_dev, IPW_REG_RESET_REG,
2348                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2349         j = 5;
2350         do {
2351                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2352                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2353
2354                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2355                         break;
2356         } while (j--);
2357
2358         match = ipw2100_match_buf(priv, (u8 *) status,
2359                                   sizeof(struct ipw2100_status),
2360                                   SEARCH_SNAPSHOT);
2361         if (match < SEARCH_SUCCESS)
2362                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2363                                "offset 0x%06X, length %d:\n",
2364                                priv->net_dev->name, match,
2365                                sizeof(struct ipw2100_status));
2366         else
2367                 IPW_DEBUG_INFO("%s: No DMA status match in "
2368                                "Firmware.\n", priv->net_dev->name);
2369
2370         printk_buf((u8 *) priv->status_queue.drv,
2371                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2372 #endif
2373
2374         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2375         priv->ieee->stats.rx_errors++;
2376         schedule_reset(priv);
2377 }
2378
2379 static void isr_rx(struct ipw2100_priv *priv, int i,
2380                           struct ieee80211_rx_stats *stats)
2381 {
2382         struct ipw2100_status *status = &priv->status_queue.drv[i];
2383         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2384
2385         IPW_DEBUG_RX("Handler...\n");
2386
2387         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2388                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2389                                "  Dropping.\n",
2390                                priv->net_dev->name,
2391                                status->frame_size, skb_tailroom(packet->skb));
2392                 priv->ieee->stats.rx_errors++;
2393                 return;
2394         }
2395
2396         if (unlikely(!netif_running(priv->net_dev))) {
2397                 priv->ieee->stats.rx_errors++;
2398                 priv->wstats.discard.misc++;
2399                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2400                 return;
2401         }
2402
2403         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2404                      !(priv->status & STATUS_ASSOCIATED))) {
2405                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2406                 priv->wstats.discard.misc++;
2407                 return;
2408         }
2409
2410         pci_unmap_single(priv->pci_dev,
2411                          packet->dma_addr,
2412                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2413
2414         skb_put(packet->skb, status->frame_size);
2415
2416 #ifdef CONFIG_IPW2100_RX_DEBUG
2417         /* Make a copy of the frame so we can dump it to the logs if
2418          * ieee80211_rx fails */
2419         memcpy(packet_data, packet->skb->data,
2420                min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2421 #endif
2422
2423         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2424 #ifdef CONFIG_IPW2100_RX_DEBUG
2425                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2426                                priv->net_dev->name);
2427                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2428 #endif
2429                 priv->ieee->stats.rx_errors++;
2430
2431                 /* ieee80211_rx failed, so it didn't free the SKB */
2432                 dev_kfree_skb_any(packet->skb);
2433                 packet->skb = NULL;
2434         }
2435
2436         /* We need to allocate a new SKB and attach it to the RDB. */
2437         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2438                 printk(KERN_WARNING DRV_NAME ": "
2439                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2440                        "adapter.\n", priv->net_dev->name);
2441                 /* TODO: schedule adapter shutdown */
2442                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2443         }
2444
2445         /* Update the RDB entry */
2446         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2447 }
2448
2449 #ifdef CONFIG_IPW2100_MONITOR
2450
2451 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2452                    struct ieee80211_rx_stats *stats)
2453 {
2454         struct ipw2100_status *status = &priv->status_queue.drv[i];
2455         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2456
2457         /* Magic struct that slots into the radiotap header -- no reason
2458          * to build this manually element by element, we can write it much
2459          * more efficiently than we can parse it. ORDER MATTERS HERE */
2460         struct ipw_rt_hdr {
2461                 struct ieee80211_radiotap_header rt_hdr;
2462                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2463         } *ipw_rt;
2464
2465         IPW_DEBUG_RX("Handler...\n");
2466
2467         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2468                                 sizeof(struct ipw_rt_hdr))) {
2469                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2470                                "  Dropping.\n",
2471                                priv->net_dev->name,
2472                                status->frame_size,
2473                                skb_tailroom(packet->skb));
2474                 priv->ieee->stats.rx_errors++;
2475                 return;
2476         }
2477
2478         if (unlikely(!netif_running(priv->net_dev))) {
2479                 priv->ieee->stats.rx_errors++;
2480                 priv->wstats.discard.misc++;
2481                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2482                 return;
2483         }
2484
2485         if (unlikely(priv->config & CFG_CRC_CHECK &&
2486                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2487                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2488                 priv->ieee->stats.rx_errors++;
2489                 return;
2490         }
2491
2492         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2493                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2494         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2495                 packet->skb->data, status->frame_size);
2496
2497         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2498
2499         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2500         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2501         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2502
2503         ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2504
2505         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2506
2507         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2508
2509         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2510                 priv->ieee->stats.rx_errors++;
2511
2512                 /* ieee80211_rx failed, so it didn't free the SKB */
2513                 dev_kfree_skb_any(packet->skb);
2514                 packet->skb = NULL;
2515         }
2516
2517         /* We need to allocate a new SKB and attach it to the RDB. */
2518         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2519                 IPW_DEBUG_WARNING(
2520                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2521                         "adapter.\n", priv->net_dev->name);
2522                 /* TODO: schedule adapter shutdown */
2523                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2524         }
2525
2526         /* Update the RDB entry */
2527         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2528 }
2529
2530 #endif
2531
2532 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2533 {
2534         struct ipw2100_status *status = &priv->status_queue.drv[i];
2535         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2536         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2537
2538         switch (frame_type) {
2539         case COMMAND_STATUS_VAL:
2540                 return (status->frame_size != sizeof(u->rx_data.command));
2541         case STATUS_CHANGE_VAL:
2542                 return (status->frame_size != sizeof(u->rx_data.status));
2543         case HOST_NOTIFICATION_VAL:
2544                 return (status->frame_size < sizeof(u->rx_data.notification));
2545         case P80211_DATA_VAL:
2546         case P8023_DATA_VAL:
2547 #ifdef CONFIG_IPW2100_MONITOR
2548                 return 0;
2549 #else
2550                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2551                 case IEEE80211_FTYPE_MGMT:
2552                 case IEEE80211_FTYPE_CTL:
2553                         return 0;
2554                 case IEEE80211_FTYPE_DATA:
2555                         return (status->frame_size >
2556                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2557                 }
2558 #endif
2559         }
2560
2561         return 1;
2562 }
2563
2564 /*
2565  * ipw2100 interrupts are disabled at this point, and the ISR
2566  * is the only code that calls this method.  So, we do not need
2567  * to play with any locks.
2568  *
2569  * RX Queue works as follows:
2570  *
2571  * Read index - firmware places packet in entry identified by the
2572  *              Read index and advances Read index.  In this manner,
2573  *              Read index will always point to the next packet to
2574  *              be filled--but not yet valid.
2575  *
2576  * Write index - driver fills this entry with an unused RBD entry.
2577  *               This entry has not filled by the firmware yet.
2578  *
2579  * In between the W and R indexes are the RBDs that have been received
2580  * but not yet processed.
2581  *
2582  * The process of handling packets will start at WRITE + 1 and advance
2583  * until it reaches the READ index.
2584  *
2585  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2586  *
2587  */
2588 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2589 {
2590         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2591         struct ipw2100_status_queue *sq = &priv->status_queue;
2592         struct ipw2100_rx_packet *packet;
2593         u16 frame_type;
2594         u32 r, w, i, s;
2595         struct ipw2100_rx *u;
2596         struct ieee80211_rx_stats stats = {
2597                 .mac_time = jiffies,
2598         };
2599
2600         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2601         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2602
2603         if (r >= rxq->entries) {
2604                 IPW_DEBUG_RX("exit - bad read index\n");
2605                 return;
2606         }
2607
2608         i = (rxq->next + 1) % rxq->entries;
2609         s = i;
2610         while (i != r) {
2611                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2612                    r, rxq->next, i); */
2613
2614                 packet = &priv->rx_buffers[i];
2615
2616                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2617                  * the correct values */
2618                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2619                                             sq->nic +
2620                                             sizeof(struct ipw2100_status) * i,
2621                                             sizeof(struct ipw2100_status),
2622                                             PCI_DMA_FROMDEVICE);
2623
2624                 /* Sync the DMA for the RX buffer so CPU is sure to get
2625                  * the correct values */
2626                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2627                                             sizeof(struct ipw2100_rx),
2628                                             PCI_DMA_FROMDEVICE);
2629
2630                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2631                         ipw2100_corruption_detected(priv, i);
2632                         goto increment;
2633                 }
2634
2635                 u = packet->rxp;
2636                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2637                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2638                 stats.len = sq->drv[i].frame_size;
2639
2640                 stats.mask = 0;
2641                 if (stats.rssi != 0)
2642                         stats.mask |= IEEE80211_STATMASK_RSSI;
2643                 stats.freq = IEEE80211_24GHZ_BAND;
2644
2645                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2646                              priv->net_dev->name, frame_types[frame_type],
2647                              stats.len);
2648
2649                 switch (frame_type) {
2650                 case COMMAND_STATUS_VAL:
2651                         /* Reset Rx watchdog */
2652                         isr_rx_complete_command(priv, &u->rx_data.command);
2653                         break;
2654
2655                 case STATUS_CHANGE_VAL:
2656                         isr_status_change(priv, u->rx_data.status);
2657                         break;
2658
2659                 case P80211_DATA_VAL:
2660                 case P8023_DATA_VAL:
2661 #ifdef CONFIG_IPW2100_MONITOR
2662                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2663                                 isr_rx_monitor(priv, i, &stats);
2664                                 break;
2665                         }
2666 #endif
2667                         if (stats.len < sizeof(u->rx_data.header))
2668                                 break;
2669                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2670                         case IEEE80211_FTYPE_MGMT:
2671                                 ieee80211_rx_mgt(priv->ieee,
2672                                                  &u->rx_data.header, &stats);
2673                                 break;
2674
2675                         case IEEE80211_FTYPE_CTL:
2676                                 break;
2677
2678                         case IEEE80211_FTYPE_DATA:
2679                                 isr_rx(priv, i, &stats);
2680                                 break;
2681
2682                         }
2683                         break;
2684                 }
2685
2686               increment:
2687                 /* clear status field associated with this RBD */
2688                 rxq->drv[i].status.info.field = 0;
2689
2690                 i = (i + 1) % rxq->entries;
2691         }
2692
2693         if (i != s) {
2694                 /* backtrack one entry, wrapping to end if at 0 */
2695                 rxq->next = (i ? i : rxq->entries) - 1;
2696
2697                 write_register(priv->net_dev,
2698                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2699         }
2700 }
2701
2702 /*
2703  * __ipw2100_tx_process
2704  *
2705  * This routine will determine whether the next packet on
2706  * the fw_pend_list has been processed by the firmware yet.
2707  *
2708  * If not, then it does nothing and returns.
2709  *
2710  * If so, then it removes the item from the fw_pend_list, frees
2711  * any associated storage, and places the item back on the
2712  * free list of its source (either msg_free_list or tx_free_list)
2713  *
2714  * TX Queue works as follows:
2715  *
2716  * Read index - points to the next TBD that the firmware will
2717  *              process.  The firmware will read the data, and once
2718  *              done processing, it will advance the Read index.
2719  *
2720  * Write index - driver fills this entry with an constructed TBD
2721  *               entry.  The Write index is not advanced until the
2722  *               packet has been configured.
2723  *
2724  * In between the W and R indexes are the TBDs that have NOT been
2725  * processed.  Lagging behind the R index are packets that have
2726  * been processed but have not been freed by the driver.
2727  *
2728  * In order to free old storage, an internal index will be maintained
2729  * that points to the next packet to be freed.  When all used
2730  * packets have been freed, the oldest index will be the same as the
2731  * firmware's read index.
2732  *
2733  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2734  *
2735  * Because the TBD structure can not contain arbitrary data, the
2736  * driver must keep an internal queue of cached allocations such that
2737  * it can put that data back into the tx_free_list and msg_free_list
2738  * for use by future command and data packets.
2739  *
2740  */
2741 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2742 {
2743         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2744         struct ipw2100_bd *tbd;
2745         struct list_head *element;
2746         struct ipw2100_tx_packet *packet;
2747         int descriptors_used;
2748         int e, i;
2749         u32 r, w, frag_num = 0;
2750
2751         if (list_empty(&priv->fw_pend_list))
2752                 return 0;
2753
2754         element = priv->fw_pend_list.next;
2755
2756         packet = list_entry(element, struct ipw2100_tx_packet, list);
2757         tbd = &txq->drv[packet->index];
2758
2759         /* Determine how many TBD entries must be finished... */
2760         switch (packet->type) {
2761         case COMMAND:
2762                 /* COMMAND uses only one slot; don't advance */
2763                 descriptors_used = 1;
2764                 e = txq->oldest;
2765                 break;
2766
2767         case DATA:
2768                 /* DATA uses two slots; advance and loop position. */
2769                 descriptors_used = tbd->num_fragments;
2770                 frag_num = tbd->num_fragments - 1;
2771                 e = txq->oldest + frag_num;
2772                 e %= txq->entries;
2773                 break;
2774
2775         default:
2776                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2777                        priv->net_dev->name);
2778                 return 0;
2779         }
2780
2781         /* if the last TBD is not done by NIC yet, then packet is
2782          * not ready to be released.
2783          *
2784          */
2785         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2786                       &r);
2787         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2788                       &w);
2789         if (w != txq->next)
2790                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2791                        priv->net_dev->name);
2792
2793         /*
2794          * txq->next is the index of the last packet written txq->oldest is
2795          * the index of the r is the index of the next packet to be read by
2796          * firmware
2797          */
2798
2799         /*
2800          * Quick graphic to help you visualize the following
2801          * if / else statement
2802          *
2803          * ===>|                     s---->|===============
2804          *                               e>|
2805          * | a | b | c | d | e | f | g | h | i | j | k | l
2806          *       r---->|
2807          *               w
2808          *
2809          * w - updated by driver
2810          * r - updated by firmware
2811          * s - start of oldest BD entry (txq->oldest)
2812          * e - end of oldest BD entry
2813          *
2814          */
2815         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2816                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2817                 return 0;
2818         }
2819
2820         list_del(element);
2821         DEC_STAT(&priv->fw_pend_stat);
2822
2823 #ifdef CONFIG_IPW2100_DEBUG
2824         {
2825                 int i = txq->oldest;
2826                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2827                              &txq->drv[i],
2828                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2829                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2830
2831                 if (packet->type == DATA) {
2832                         i = (i + 1) % txq->entries;
2833
2834                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2835                                      &txq->drv[i],
2836                                      (u32) (txq->nic + i *
2837                                             sizeof(struct ipw2100_bd)),
2838                                      (u32) txq->drv[i].host_addr,
2839                                      txq->drv[i].buf_length);
2840                 }
2841         }
2842 #endif
2843
2844         switch (packet->type) {
2845         case DATA:
2846                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2847                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2848                                "Expecting DATA TBD but pulled "
2849                                "something else: ids %d=%d.\n",
2850                                priv->net_dev->name, txq->oldest, packet->index);
2851
2852                 /* DATA packet; we have to unmap and free the SKB */
2853                 for (i = 0; i < frag_num; i++) {
2854                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2855
2856                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2857                                      (packet->index + 1 + i) % txq->entries,
2858                                      tbd->host_addr, tbd->buf_length);
2859
2860                         pci_unmap_single(priv->pci_dev,
2861                                          tbd->host_addr,
2862                                          tbd->buf_length, PCI_DMA_TODEVICE);
2863                 }
2864
2865                 ieee80211_txb_free(packet->info.d_struct.txb);
2866                 packet->info.d_struct.txb = NULL;
2867
2868                 list_add_tail(element, &priv->tx_free_list);
2869                 INC_STAT(&priv->tx_free_stat);
2870
2871                 /* We have a free slot in the Tx queue, so wake up the
2872                  * transmit layer if it is stopped. */
2873                 if (priv->status & STATUS_ASSOCIATED)
2874                         netif_wake_queue(priv->net_dev);
2875
2876                 /* A packet was processed by the hardware, so update the
2877                  * watchdog */
2878                 priv->net_dev->trans_start = jiffies;
2879
2880                 break;
2881
2882         case COMMAND:
2883                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2884                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2885                                "Expecting COMMAND TBD but pulled "
2886                                "something else: ids %d=%d.\n",
2887                                priv->net_dev->name, txq->oldest, packet->index);
2888
2889 #ifdef CONFIG_IPW2100_DEBUG
2890                 if (packet->info.c_struct.cmd->host_command_reg <
2891                     sizeof(command_types) / sizeof(*command_types))
2892                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2893                                      command_types[packet->info.c_struct.cmd->
2894                                                    host_command_reg],
2895                                      packet->info.c_struct.cmd->
2896                                      host_command_reg,
2897                                      packet->info.c_struct.cmd->cmd_status_reg);
2898 #endif
2899
2900                 list_add_tail(element, &priv->msg_free_list);
2901                 INC_STAT(&priv->msg_free_stat);
2902                 break;
2903         }
2904
2905         /* advance oldest used TBD pointer to start of next entry */
2906         txq->oldest = (e + 1) % txq->entries;
2907         /* increase available TBDs number */
2908         txq->available += descriptors_used;
2909         SET_STAT(&priv->txq_stat, txq->available);
2910
2911         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2912                      jiffies - packet->jiffy_start);
2913
2914         return (!list_empty(&priv->fw_pend_list));
2915 }
2916
2917 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2918 {
2919         int i = 0;
2920
2921         while (__ipw2100_tx_process(priv) && i < 200)
2922                 i++;
2923
2924         if (i == 200) {
2925                 printk(KERN_WARNING DRV_NAME ": "
2926                        "%s: Driver is running slow (%d iters).\n",
2927                        priv->net_dev->name, i);
2928         }
2929 }
2930
2931 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2932 {
2933         struct list_head *element;
2934         struct ipw2100_tx_packet *packet;
2935         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2936         struct ipw2100_bd *tbd;
2937         int next = txq->next;
2938
2939         while (!list_empty(&priv->msg_pend_list)) {
2940                 /* if there isn't enough space in TBD queue, then
2941                  * don't stuff a new one in.
2942                  * NOTE: 3 are needed as a command will take one,
2943                  *       and there is a minimum of 2 that must be
2944                  *       maintained between the r and w indexes
2945                  */
2946                 if (txq->available <= 3) {
2947                         IPW_DEBUG_TX("no room in tx_queue\n");
2948                         break;
2949                 }
2950
2951                 element = priv->msg_pend_list.next;
2952                 list_del(element);
2953                 DEC_STAT(&priv->msg_pend_stat);
2954
2955                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2956
2957                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2958                              &txq->drv[txq->next],
2959                              (void *)(txq->nic + txq->next *
2960                                       sizeof(struct ipw2100_bd)));
2961
2962                 packet->index = txq->next;
2963
2964                 tbd = &txq->drv[txq->next];
2965
2966                 /* initialize TBD */
2967                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2968                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2969                 /* not marking number of fragments causes problems
2970                  * with f/w debug version */
2971                 tbd->num_fragments = 1;
2972                 tbd->status.info.field =
2973                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2974                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2975
2976                 /* update TBD queue counters */
2977                 txq->next++;
2978                 txq->next %= txq->entries;
2979                 txq->available--;
2980                 DEC_STAT(&priv->txq_stat);
2981
2982                 list_add_tail(element, &priv->fw_pend_list);
2983                 INC_STAT(&priv->fw_pend_stat);
2984         }
2985
2986         if (txq->next != next) {
2987                 /* kick off the DMA by notifying firmware the
2988                  * write index has moved; make sure TBD stores are sync'd */
2989                 wmb();
2990                 write_register(priv->net_dev,
2991                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2992                                txq->next);
2993         }
2994 }
2995
2996 /*
2997  * ipw2100_tx_send_data
2998  *
2999  */
3000 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3001 {
3002         struct list_head *element;
3003         struct ipw2100_tx_packet *packet;
3004         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3005         struct ipw2100_bd *tbd;
3006         int next = txq->next;
3007         int i = 0;
3008         struct ipw2100_data_header *ipw_hdr;
3009         struct ieee80211_hdr_3addr *hdr;
3010
3011         while (!list_empty(&priv->tx_pend_list)) {
3012                 /* if there isn't enough space in TBD queue, then
3013                  * don't stuff a new one in.
3014                  * NOTE: 4 are needed as a data will take two,
3015                  *       and there is a minimum of 2 that must be
3016                  *       maintained between the r and w indexes
3017                  */
3018                 element = priv->tx_pend_list.next;
3019                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3020
3021                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3022                              IPW_MAX_BDS)) {
3023                         /* TODO: Support merging buffers if more than
3024                          * IPW_MAX_BDS are used */
3025                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3026                                        "Increase fragmentation level.\n",
3027                                        priv->net_dev->name);
3028                 }
3029
3030                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3031                         IPW_DEBUG_TX("no room in tx_queue\n");
3032                         break;
3033                 }
3034
3035                 list_del(element);
3036                 DEC_STAT(&priv->tx_pend_stat);
3037
3038                 tbd = &txq->drv[txq->next];
3039
3040                 packet->index = txq->next;
3041
3042                 ipw_hdr = packet->info.d_struct.data;
3043                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3044                     fragments[0]->data;
3045
3046                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3047                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3048                            Addr3 = DA */
3049                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3050                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3051                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3052                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3053                            Addr3 = BSSID */
3054                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3055                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3056                 }
3057
3058                 ipw_hdr->host_command_reg = SEND;
3059                 ipw_hdr->host_command_reg1 = 0;
3060
3061                 /* For now we only support host based encryption */
3062                 ipw_hdr->needs_encryption = 0;
3063                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3064                 if (packet->info.d_struct.txb->nr_frags > 1)
3065                         ipw_hdr->fragment_size =
3066                             packet->info.d_struct.txb->frag_size -
3067                             IEEE80211_3ADDR_LEN;
3068                 else
3069                         ipw_hdr->fragment_size = 0;
3070
3071                 tbd->host_addr = packet->info.d_struct.data_phys;
3072                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3073                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3074                 tbd->status.info.field =
3075                     IPW_BD_STATUS_TX_FRAME_802_3 |
3076                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3077                 txq->next++;
3078                 txq->next %= txq->entries;
3079
3080                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3081                              packet->index, tbd->host_addr, tbd->buf_length);
3082 #ifdef CONFIG_IPW2100_DEBUG
3083                 if (packet->info.d_struct.txb->nr_frags > 1)
3084                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3085                                        packet->info.d_struct.txb->nr_frags);
3086 #endif
3087
3088                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3089                         tbd = &txq->drv[txq->next];
3090                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3091                                 tbd->status.info.field =
3092                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3093                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3094                         else
3095                                 tbd->status.info.field =
3096                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3097                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3098
3099                         tbd->buf_length = packet->info.d_struct.txb->
3100                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3101
3102                         tbd->host_addr = pci_map_single(priv->pci_dev,
3103                                                         packet->info.d_struct.
3104                                                         txb->fragments[i]->
3105                                                         data +
3106                                                         IEEE80211_3ADDR_LEN,
3107                                                         tbd->buf_length,
3108                                                         PCI_DMA_TODEVICE);
3109
3110                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3111                                      txq->next, tbd->host_addr,
3112                                      tbd->buf_length);
3113
3114                         pci_dma_sync_single_for_device(priv->pci_dev,
3115                                                        tbd->host_addr,
3116                                                        tbd->buf_length,
3117                                                        PCI_DMA_TODEVICE);
3118
3119                         txq->next++;
3120                         txq->next %= txq->entries;
3121                 }
3122
3123                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3124                 SET_STAT(&priv->txq_stat, txq->available);
3125
3126                 list_add_tail(element, &priv->fw_pend_list);
3127                 INC_STAT(&priv->fw_pend_stat);
3128         }
3129
3130         if (txq->next != next) {
3131                 /* kick off the DMA by notifying firmware the
3132                  * write index has moved; make sure TBD stores are sync'd */
3133                 write_register(priv->net_dev,
3134                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3135                                txq->next);
3136         }
3137         return;
3138 }
3139
3140 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3141 {
3142         struct net_device *dev = priv->net_dev;
3143         unsigned long flags;
3144         u32 inta, tmp;
3145
3146         spin_lock_irqsave(&priv->low_lock, flags);
3147         ipw2100_disable_interrupts(priv);
3148
3149         read_register(dev, IPW_REG_INTA, &inta);
3150
3151         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3152                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3153
3154         priv->in_isr++;
3155         priv->interrupts++;
3156
3157         /* We do not loop and keep polling for more interrupts as this
3158          * is frowned upon and doesn't play nicely with other potentially
3159          * chained IRQs */
3160         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3161                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3162
3163         if (inta & IPW2100_INTA_FATAL_ERROR) {
3164                 printk(KERN_WARNING DRV_NAME
3165                        ": Fatal interrupt. Scheduling firmware restart.\n");
3166                 priv->inta_other++;
3167                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3168
3169                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3170                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3171                                priv->net_dev->name, priv->fatal_error);
3172
3173                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3174                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3175                                priv->net_dev->name, tmp);
3176
3177                 /* Wake up any sleeping jobs */
3178                 schedule_reset(priv);
3179         }
3180
3181         if (inta & IPW2100_INTA_PARITY_ERROR) {
3182                 printk(KERN_ERR DRV_NAME
3183                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3184                 priv->inta_other++;
3185                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3186         }
3187
3188         if (inta & IPW2100_INTA_RX_TRANSFER) {
3189                 IPW_DEBUG_ISR("RX interrupt\n");
3190
3191                 priv->rx_interrupts++;
3192
3193                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3194
3195                 __ipw2100_rx_process(priv);
3196                 __ipw2100_tx_complete(priv);
3197         }
3198
3199         if (inta & IPW2100_INTA_TX_TRANSFER) {
3200                 IPW_DEBUG_ISR("TX interrupt\n");
3201
3202                 priv->tx_interrupts++;
3203
3204                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3205
3206                 __ipw2100_tx_complete(priv);
3207                 ipw2100_tx_send_commands(priv);
3208                 ipw2100_tx_send_data(priv);
3209         }
3210
3211         if (inta & IPW2100_INTA_TX_COMPLETE) {
3212                 IPW_DEBUG_ISR("TX complete\n");
3213                 priv->inta_other++;
3214                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3215
3216                 __ipw2100_tx_complete(priv);
3217         }
3218
3219         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3220                 /* ipw2100_handle_event(dev); */
3221                 priv->inta_other++;
3222                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3223         }
3224
3225         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3226                 IPW_DEBUG_ISR("FW init done interrupt\n");
3227                 priv->inta_other++;
3228
3229                 read_register(dev, IPW_REG_INTA, &tmp);
3230                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3231                            IPW2100_INTA_PARITY_ERROR)) {
3232                         write_register(dev, IPW_REG_INTA,
3233                                        IPW2100_INTA_FATAL_ERROR |
3234                                        IPW2100_INTA_PARITY_ERROR);
3235                 }
3236
3237                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3238         }
3239
3240         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3241                 IPW_DEBUG_ISR("Status change interrupt\n");
3242                 priv->inta_other++;
3243                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3244         }
3245
3246         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3247                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3248                 priv->inta_other++;
3249                 write_register(dev, IPW_REG_INTA,
3250                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3251         }
3252
3253         priv->in_isr--;
3254         ipw2100_enable_interrupts(priv);
3255
3256         spin_unlock_irqrestore(&priv->low_lock, flags);
3257
3258         IPW_DEBUG_ISR("exit\n");
3259 }
3260
3261 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3262 {
3263         struct ipw2100_priv *priv = data;
3264         u32 inta, inta_mask;
3265
3266         if (!data)
3267                 return IRQ_NONE;
3268
3269         spin_lock(&priv->low_lock);
3270
3271         /* We check to see if we should be ignoring interrupts before
3272          * we touch the hardware.  During ucode load if we try and handle
3273          * an interrupt we can cause keyboard problems as well as cause
3274          * the ucode to fail to initialize */
3275         if (!(priv->status & STATUS_INT_ENABLED)) {
3276                 /* Shared IRQ */
3277                 goto none;
3278         }
3279
3280         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3281         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3282
3283         if (inta == 0xFFFFFFFF) {
3284                 /* Hardware disappeared */
3285                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3286                 goto none;
3287         }
3288
3289         inta &= IPW_INTERRUPT_MASK;
3290
3291         if (!(inta & inta_mask)) {
3292                 /* Shared interrupt */
3293                 goto none;
3294         }
3295
3296         /* We disable the hardware interrupt here just to prevent unneeded
3297          * calls to be made.  We disable this again within the actual
3298          * work tasklet, so if another part of the code re-enables the
3299          * interrupt, that is fine */
3300         ipw2100_disable_interrupts(priv);
3301
3302         tasklet_schedule(&priv->irq_tasklet);
3303         spin_unlock(&priv->low_lock);
3304
3305         return IRQ_HANDLED;
3306       none:
3307         spin_unlock(&priv->low_lock);
3308         return IRQ_NONE;
3309 }
3310
3311 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3312                       int pri)
3313 {
3314         struct ipw2100_priv *priv = ieee80211_priv(dev);
3315         struct list_head *element;
3316         struct ipw2100_tx_packet *packet;
3317         unsigned long flags;
3318
3319         spin_lock_irqsave(&priv->low_lock, flags);
3320
3321         if (!(priv->status & STATUS_ASSOCIATED)) {
3322                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3323                 priv->ieee->stats.tx_carrier_errors++;
3324                 netif_stop_queue(dev);
3325                 goto fail_unlock;
3326         }
3327
3328         if (list_empty(&priv->tx_free_list))
3329                 goto fail_unlock;
3330
3331         element = priv->tx_free_list.next;
3332         packet = list_entry(element, struct ipw2100_tx_packet, list);
3333
3334         packet->info.d_struct.txb = txb;
3335
3336         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3337         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3338
3339         packet->jiffy_start = jiffies;
3340
3341         list_del(element);
3342         DEC_STAT(&priv->tx_free_stat);
3343
3344         list_add_tail(element, &priv->tx_pend_list);
3345         INC_STAT(&priv->tx_pend_stat);
3346
3347         ipw2100_tx_send_data(priv);
3348
3349         spin_unlock_irqrestore(&priv->low_lock, flags);
3350         return 0;
3351
3352       fail_unlock:
3353         netif_stop_queue(dev);
3354         spin_unlock_irqrestore(&priv->low_lock, flags);
3355         return 1;
3356 }
3357
3358 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3359 {
3360         int i, j, err = -EINVAL;
3361         void *v;
3362         dma_addr_t p;
3363
3364         priv->msg_buffers =
3365             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3366                                                 sizeof(struct
3367                                                        ipw2100_tx_packet),
3368                                                 GFP_KERNEL);
3369         if (!priv->msg_buffers) {
3370                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3371                        "buffers.\n", priv->net_dev->name);
3372                 return -ENOMEM;
3373         }
3374
3375         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3376                 v = pci_alloc_consistent(priv->pci_dev,
3377                                          sizeof(struct ipw2100_cmd_header), &p);
3378                 if (!v) {
3379                         printk(KERN_ERR DRV_NAME ": "
3380                                "%s: PCI alloc failed for msg "
3381                                "buffers.\n", priv->net_dev->name);
3382                         err = -ENOMEM;
3383                         break;
3384                 }
3385
3386                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3387
3388                 priv->msg_buffers[i].type = COMMAND;
3389                 priv->msg_buffers[i].info.c_struct.cmd =
3390                     (struct ipw2100_cmd_header *)v;
3391                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3392         }
3393
3394         if (i == IPW_COMMAND_POOL_SIZE)
3395                 return 0;
3396
3397         for (j = 0; j < i; j++) {
3398                 pci_free_consistent(priv->pci_dev,
3399                                     sizeof(struct ipw2100_cmd_header),
3400                                     priv->msg_buffers[j].info.c_struct.cmd,
3401                                     priv->msg_buffers[j].info.c_struct.
3402                                     cmd_phys);
3403         }
3404
3405         kfree(priv->msg_buffers);
3406         priv->msg_buffers = NULL;
3407
3408         return err;
3409 }
3410
3411 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3412 {
3413         int i;
3414
3415         INIT_LIST_HEAD(&priv->msg_free_list);
3416         INIT_LIST_HEAD(&priv->msg_pend_list);
3417
3418         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3419                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3420         SET_STAT(&priv->msg_free_stat, i);
3421
3422         return 0;
3423 }
3424
3425 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3426 {
3427         int i;
3428
3429         if (!priv->msg_buffers)
3430                 return;
3431
3432         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3433                 pci_free_consistent(priv->pci_dev,
3434                                     sizeof(struct ipw2100_cmd_header),
3435                                     priv->msg_buffers[i].info.c_struct.cmd,
3436                                     priv->msg_buffers[i].info.c_struct.
3437                                     cmd_phys);
3438         }
3439
3440         kfree(priv->msg_buffers);
3441         priv->msg_buffers = NULL;
3442 }
3443
3444 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3445                         char *buf)
3446 {
3447         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3448         char *out = buf;
3449         int i, j;
3450         u32 val;
3451
3452         for (i = 0; i < 16; i++) {
3453                 out += sprintf(out, "[%08X] ", i * 16);
3454                 for (j = 0; j < 16; j += 4) {
3455                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3456                         out += sprintf(out, "%08X ", val);
3457                 }
3458                 out += sprintf(out, "\n");
3459         }
3460
3461         return out - buf;
3462 }
3463
3464 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3465
3466 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3467                         char *buf)
3468 {
3469         struct ipw2100_priv *p = d->driver_data;
3470         return sprintf(buf, "0x%08x\n", (int)p->config);
3471 }
3472
3473 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3474
3475 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3476                            char *buf)
3477 {
3478         struct ipw2100_priv *p = d->driver_data;
3479         return sprintf(buf, "0x%08x\n", (int)p->status);
3480 }
3481
3482 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3483
3484 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3485                                char *buf)
3486 {
3487         struct ipw2100_priv *p = d->driver_data;
3488         return sprintf(buf, "0x%08x\n", (int)p->capability);
3489 }
3490
3491 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3492
3493 #define IPW2100_REG(x) { IPW_ ##x, #x }
3494 static const struct {
3495         u32 addr;
3496         const char *name;
3497 } hw_data[] = {
3498 IPW2100_REG(REG_GP_CNTRL),
3499             IPW2100_REG(REG_GPIO),
3500             IPW2100_REG(REG_INTA),
3501             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3502 #define IPW2100_NIC(x, s) { x, #x, s }
3503 static const struct {
3504         u32 addr;
3505         const char *name;
3506         size_t size;
3507 } nic_data[] = {
3508 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3509             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3510 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3511 static const struct {
3512         u8 index;
3513         const char *name;
3514         const char *desc;
3515 } ord_data[] = {
3516 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3517             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3518                                 "successful Host Tx's (MSDU)"),
3519             IPW2100_ORD(STAT_TX_DIR_DATA,
3520                                 "successful Directed Tx's (MSDU)"),
3521             IPW2100_ORD(STAT_TX_DIR_DATA1,
3522                                 "successful Directed Tx's (MSDU) @ 1MB"),
3523             IPW2100_ORD(STAT_TX_DIR_DATA2,
3524                                 "successful Directed Tx's (MSDU) @ 2MB"),
3525             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3526                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3527             IPW2100_ORD(STAT_TX_DIR_DATA11,
3528                                 "successful Directed Tx's (MSDU) @ 11MB"),
3529             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3530                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3531             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3532                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3533             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3534                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3535             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3536                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3537             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3538             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3539             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3540             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3541             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3542             IPW2100_ORD(STAT_TX_ASSN_RESP,
3543                                 "successful Association response Tx's"),
3544             IPW2100_ORD(STAT_TX_REASSN,
3545                                 "successful Reassociation Tx's"),
3546             IPW2100_ORD(STAT_TX_REASSN_RESP,
3547                                 "successful Reassociation response Tx's"),
3548             IPW2100_ORD(STAT_TX_PROBE,
3549                                 "probes successfully transmitted"),
3550             IPW2100_ORD(STAT_TX_PROBE_RESP,
3551                                 "probe responses successfully transmitted"),
3552             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3553             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3554             IPW2100_ORD(STAT_TX_DISASSN,
3555                                 "successful Disassociation TX"),
3556             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3557             IPW2100_ORD(STAT_TX_DEAUTH,
3558                                 "successful Deauthentication TX"),
3559             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3560                                 "Total successful Tx data bytes"),
3561             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3562             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3563             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3564             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3565             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3566             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3567             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3568                                 "times max tries in a hop failed"),
3569             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3570                                 "times disassociation failed"),
3571             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3572             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3573             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3574             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3575             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3576             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3577             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3578                                 "directed packets at 5.5MB"),
3579             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3580             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3581             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3582                                 "nondirected packets at 1MB"),
3583             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3584                                 "nondirected packets at 2MB"),
3585             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3586                                 "nondirected packets at 5.5MB"),
3587             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3588                                 "nondirected packets at 11MB"),
3589             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3590             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3591                                                                     "Rx CTS"),
3592             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3593             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3594             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3595             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3596             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3597             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3598             IPW2100_ORD(STAT_RX_REASSN_RESP,
3599                                 "Reassociation response Rx's"),
3600             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3601             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3602             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3603             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3604             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3605             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3606             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3607             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3608                                 "Total rx data bytes received"),
3609             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3610             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3611             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3612             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3613             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3614             IPW2100_ORD(STAT_RX_DUPLICATE1,
3615                                 "duplicate rx packets at 1MB"),
3616             IPW2100_ORD(STAT_RX_DUPLICATE2,
3617                                 "duplicate rx packets at 2MB"),
3618             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3619                                 "duplicate rx packets at 5.5MB"),
3620             IPW2100_ORD(STAT_RX_DUPLICATE11,
3621                                 "duplicate rx packets at 11MB"),
3622             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3623             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3624             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3625             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3626             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3627                                 "rx frames with invalid protocol"),
3628             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3629             IPW2100_ORD(STAT_RX_NO_BUFFER,
3630                                 "rx frames rejected due to no buffer"),
3631             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3632                                 "rx frames dropped due to missing fragment"),
3633             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3634                                 "rx frames dropped due to non-sequential fragment"),
3635             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3636                                 "rx frames dropped due to unmatched 1st frame"),
3637             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3638                                 "rx frames dropped due to uncompleted frame"),
3639             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3640                                 "ICV errors during decryption"),
3641             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3642             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3643             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3644                                 "poll response timeouts"),
3645             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3646                                 "timeouts waiting for last {broad,multi}cast pkt"),
3647             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3648             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3649             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3650             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3651             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3652                                 "current calculation of % missed beacons"),
3653             IPW2100_ORD(STAT_PERCENT_RETRIES,
3654                                 "current calculation of % missed tx retries"),
3655             IPW2100_ORD(ASSOCIATED_AP_PTR,
3656                                 "0 if not associated, else pointer to AP table entry"),
3657             IPW2100_ORD(AVAILABLE_AP_CNT,
3658                                 "AP's decsribed in the AP table"),
3659             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3660             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3661             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3662             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3663                                 "failures due to response fail"),
3664             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3665             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3666             IPW2100_ORD(STAT_ROAM_INHIBIT,
3667                                 "times roaming was inhibited due to activity"),
3668             IPW2100_ORD(RSSI_AT_ASSN,
3669                                 "RSSI of associated AP at time of association"),
3670             IPW2100_ORD(STAT_ASSN_CAUSE1,
3671                                 "reassociation: no probe response or TX on hop"),
3672             IPW2100_ORD(STAT_ASSN_CAUSE2,
3673                                 "reassociation: poor tx/rx quality"),
3674             IPW2100_ORD(STAT_ASSN_CAUSE3,
3675                                 "reassociation: tx/rx quality (excessive AP load"),
3676             IPW2100_ORD(STAT_ASSN_CAUSE4,
3677                                 "reassociation: AP RSSI level"),
3678             IPW2100_ORD(STAT_ASSN_CAUSE5,
3679                                 "reassociations due to load leveling"),
3680             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3681             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3682                                 "times authentication response failed"),
3683             IPW2100_ORD(STATION_TABLE_CNT,
3684                                 "entries in association table"),
3685             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3686             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3687             IPW2100_ORD(COUNTRY_CODE,
3688                                 "IEEE country code as recv'd from beacon"),
3689             IPW2100_ORD(COUNTRY_CHANNELS,
3690                                 "channels suported by country"),
3691             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3692             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3693             IPW2100_ORD(ANTENNA_DIVERSITY,
3694                                 "TRUE if antenna diversity is disabled"),
3695             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3696             IPW2100_ORD(OUR_FREQ,
3697                                 "current radio freq lower digits - channel ID"),
3698             IPW2100_ORD(RTC_TIME, "current RTC time"),
3699             IPW2100_ORD(PORT_TYPE, "operating mode"),
3700             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3701             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3702             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3703             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3704             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3705             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3706             IPW2100_ORD(CAPABILITIES,
3707                                 "Management frame capability field"),
3708             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3709             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3710             IPW2100_ORD(RTS_THRESHOLD,
3711                                 "Min packet length for RTS handshaking"),
3712             IPW2100_ORD(INT_MODE, "International mode"),
3713             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3714                                 "protocol frag threshold"),
3715             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3716                                 "EEPROM offset in SRAM"),
3717             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3718                                 "EEPROM size in SRAM"),
3719             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3720             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3721                                 "EEPROM IBSS 11b channel set"),
3722             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3723             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3724             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3725             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3726             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3727
3728 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3729                               char *buf)
3730 {
3731         int i;
3732         struct ipw2100_priv *priv = dev_get_drvdata(d);
3733         struct net_device *dev = priv->net_dev;
3734         char *out = buf;
3735         u32 val = 0;
3736
3737         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3738
3739         for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3740                 read_register(dev, hw_data[i].addr, &val);
3741                 out += sprintf(out, "%30s [%08X] : %08X\n",
3742                                hw_data[i].name, hw_data[i].addr, val);
3743         }
3744
3745         return out - buf;
3746 }
3747
3748 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3749
3750 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3751                              char *buf)
3752 {
3753         struct ipw2100_priv *priv = dev_get_drvdata(d);
3754         struct net_device *dev = priv->net_dev;
3755         char *out = buf;
3756         int i;
3757
3758         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3759
3760         for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3761                 u8 tmp8;
3762                 u16 tmp16;
3763                 u32 tmp32;
3764
3765                 switch (nic_data[i].size) {
3766                 case 1:
3767                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3768                         out += sprintf(out, "%30s [%08X] : %02X\n",
3769                                        nic_data[i].name, nic_data[i].addr,
3770                                        tmp8);
3771                         break;
3772                 case 2:
3773                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3774                         out += sprintf(out, "%30s [%08X] : %04X\n",
3775                                        nic_data[i].name, nic_data[i].addr,
3776                                        tmp16);
3777                         break;
3778                 case 4:
3779                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3780                         out += sprintf(out, "%30s [%08X] : %08X\n",
3781                                        nic_data[i].name, nic_data[i].addr,
3782                                        tmp32);
3783                         break;
3784                 }
3785         }
3786         return out - buf;
3787 }
3788
3789 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3790
3791 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3792                            char *buf)
3793 {
3794         struct ipw2100_priv *priv = dev_get_drvdata(d);
3795         struct net_device *dev = priv->net_dev;
3796         static unsigned long loop = 0;
3797         int len = 0;
3798         u32 buffer[4];
3799         int i;
3800         char line[81];
3801
3802         if (loop >= 0x30000)
3803                 loop = 0;
3804
3805         /* sysfs provides us PAGE_SIZE buffer */
3806         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3807
3808                 if (priv->snapshot[0])
3809                         for (i = 0; i < 4; i++)
3810                                 buffer[i] =
3811                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3812                 else
3813                         for (i = 0; i < 4; i++)
3814                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3815
3816                 if (priv->dump_raw)
3817                         len += sprintf(buf + len,
3818                                        "%c%c%c%c"
3819                                        "%c%c%c%c"
3820                                        "%c%c%c%c"
3821                                        "%c%c%c%c",
3822                                        ((u8 *) buffer)[0x0],
3823                                        ((u8 *) buffer)[0x1],
3824                                        ((u8 *) buffer)[0x2],
3825                                        ((u8 *) buffer)[0x3],
3826                                        ((u8 *) buffer)[0x4],
3827                                        ((u8 *) buffer)[0x5],
3828                                        ((u8 *) buffer)[0x6],
3829                                        ((u8 *) buffer)[0x7],
3830                                        ((u8 *) buffer)[0x8],
3831                                        ((u8 *) buffer)[0x9],
3832                                        ((u8 *) buffer)[0xa],
3833                                        ((u8 *) buffer)[0xb],
3834                                        ((u8 *) buffer)[0xc],
3835                                        ((u8 *) buffer)[0xd],
3836                                        ((u8 *) buffer)[0xe],
3837                                        ((u8 *) buffer)[0xf]);
3838                 else
3839                         len += sprintf(buf + len, "%s\n",
3840                                        snprint_line(line, sizeof(line),
3841                                                     (u8 *) buffer, 16, loop));
3842                 loop += 16;
3843         }
3844
3845         return len;
3846 }
3847
3848 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3849                             const char *buf, size_t count)
3850 {
3851         struct ipw2100_priv *priv = dev_get_drvdata(d);
3852         struct net_device *dev = priv->net_dev;
3853         const char *p = buf;
3854
3855         (void)dev;              /* kill unused-var warning for debug-only code */
3856
3857         if (count < 1)
3858                 return count;
3859
3860         if (p[0] == '1' ||
3861             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3862                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3863                                dev->name);
3864                 priv->dump_raw = 1;
3865
3866         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3867                                    tolower(p[1]) == 'f')) {
3868                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3869                                dev->name);
3870                 priv->dump_raw = 0;
3871
3872         } else if (tolower(p[0]) == 'r') {
3873                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3874                 ipw2100_snapshot_free(priv);
3875
3876         } else
3877                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3878                                "reset = clear memory snapshot\n", dev->name);
3879
3880         return count;
3881 }
3882
3883 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3884
3885 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3886                              char *buf)
3887 {
3888         struct ipw2100_priv *priv = dev_get_drvdata(d);
3889         u32 val = 0;
3890         int len = 0;
3891         u32 val_len;
3892         static int loop = 0;
3893
3894         if (priv->status & STATUS_RF_KILL_MASK)
3895                 return 0;
3896
3897         if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3898                 loop = 0;
3899
3900         /* sysfs provides us PAGE_SIZE buffer */
3901         while (len < PAGE_SIZE - 128 &&
3902                loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3903
3904                 val_len = sizeof(u32);
3905
3906                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3907                                         &val_len))
3908                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3909                                        ord_data[loop].index,
3910                                        ord_data[loop].desc);
3911                 else
3912                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3913                                        ord_data[loop].index, val,
3914                                        ord_data[loop].desc);
3915                 loop++;
3916         }
3917
3918         return len;
3919 }
3920
3921 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3922
3923 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3924                           char *buf)
3925 {
3926         struct ipw2100_priv *priv = dev_get_drvdata(d);
3927         char *out = buf;
3928
3929         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3930                        priv->interrupts, priv->tx_interrupts,
3931                        priv->rx_interrupts, priv->inta_other);
3932         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3933         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3934 #ifdef CONFIG_IPW2100_DEBUG
3935         out += sprintf(out, "packet mismatch image: %s\n",
3936                        priv->snapshot[0] ? "YES" : "NO");
3937 #endif
3938
3939         return out - buf;
3940 }
3941
3942 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3943
3944 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3945 {
3946         int err;
3947
3948         if (mode == priv->ieee->iw_mode)
3949                 return 0;
3950
3951         err = ipw2100_disable_adapter(priv);
3952         if (err) {
3953                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3954                        priv->net_dev->name, err);
3955                 return err;
3956         }
3957
3958         switch (mode) {
3959         case IW_MODE_INFRA:
3960                 priv->net_dev->type = ARPHRD_ETHER;
3961                 break;
3962         case IW_MODE_ADHOC:
3963                 priv->net_dev->type = ARPHRD_ETHER;
3964                 break;
3965 #ifdef CONFIG_IPW2100_MONITOR
3966         case IW_MODE_MONITOR:
3967                 priv->last_mode = priv->ieee->iw_mode;
3968                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3969                 break;
3970 #endif                          /* CONFIG_IPW2100_MONITOR */
3971         }
3972
3973         priv->ieee->iw_mode = mode;
3974
3975 #ifdef CONFIG_PM
3976         /* Indicate ipw2100_download_firmware download firmware
3977          * from disk instead of memory. */
3978         ipw2100_firmware.version = 0;
3979 #endif
3980
3981         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3982         priv->reset_backoff = 0;
3983         schedule_reset(priv);
3984
3985         return 0;
3986 }
3987
3988 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3989                               char *buf)
3990 {
3991         struct ipw2100_priv *priv = dev_get_drvdata(d);
3992         int len = 0;
3993
3994 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3995
3996         if (priv->status & STATUS_ASSOCIATED)
3997                 len += sprintf(buf + len, "connected: %lu\n",
3998                                get_seconds() - priv->connect_start);
3999         else
4000                 len += sprintf(buf + len, "not connected\n");
4001
4002         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4003         DUMP_VAR(status, "08lx");
4004         DUMP_VAR(config, "08lx");
4005         DUMP_VAR(capability, "08lx");
4006
4007         len +=
4008             sprintf(buf + len, "last_rtc: %lu\n",
4009                     (unsigned long)priv->last_rtc);
4010
4011         DUMP_VAR(fatal_error, "d");
4012         DUMP_VAR(stop_hang_check, "d");
4013         DUMP_VAR(stop_rf_kill, "d");
4014         DUMP_VAR(messages_sent, "d");
4015
4016         DUMP_VAR(tx_pend_stat.value, "d");
4017         DUMP_VAR(tx_pend_stat.hi, "d");
4018
4019         DUMP_VAR(tx_free_stat.value, "d");
4020         DUMP_VAR(tx_free_stat.lo, "d");
4021
4022         DUMP_VAR(msg_free_stat.value, "d");
4023         DUMP_VAR(msg_free_stat.lo, "d");
4024
4025         DUMP_VAR(msg_pend_stat.value, "d");
4026         DUMP_VAR(msg_pend_stat.hi, "d");
4027
4028         DUMP_VAR(fw_pend_stat.value, "d");
4029         DUMP_VAR(fw_pend_stat.hi, "d");
4030
4031         DUMP_VAR(txq_stat.value, "d");
4032         DUMP_VAR(txq_stat.lo, "d");
4033
4034         DUMP_VAR(ieee->scans, "d");
4035         DUMP_VAR(reset_backoff, "d");
4036
4037         return len;
4038 }
4039
4040 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4041
4042 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4043                             char *buf)
4044 {
4045         struct ipw2100_priv *priv = dev_get_drvdata(d);
4046         char essid[IW_ESSID_MAX_SIZE + 1];
4047         u8 bssid[ETH_ALEN];
4048         u32 chan = 0;
4049         char *out = buf;
4050         int length;
4051         int ret;
4052
4053         if (priv->status & STATUS_RF_KILL_MASK)
4054                 return 0;
4055
4056         memset(essid, 0, sizeof(essid));
4057         memset(bssid, 0, sizeof(bssid));
4058
4059         length = IW_ESSID_MAX_SIZE;
4060         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4061         if (ret)
4062                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4063                                __LINE__);
4064
4065         length = sizeof(bssid);
4066         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4067                                   bssid, &length);
4068         if (ret)
4069                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4070                                __LINE__);
4071
4072         length = sizeof(u32);
4073         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4074         if (ret)
4075                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4076                                __LINE__);
4077
4078         out += sprintf(out, "ESSID: %s\n", essid);
4079         out += sprintf(out, "BSSID:   %02x:%02x:%02x:%02x:%02x:%02x\n",
4080                        bssid[0], bssid[1], bssid[2],
4081                        bssid[3], bssid[4], bssid[5]);
4082         out += sprintf(out, "Channel: %d\n", chan);
4083
4084         return out - buf;
4085 }
4086
4087 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4088
4089 #ifdef CONFIG_IPW2100_DEBUG
4090 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4091 {
4092         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4093 }
4094
4095 static ssize_t store_debug_level(struct device_driver *d,
4096                                  const char *buf, size_t count)
4097 {
4098         char *p = (char *)buf;
4099         u32 val;
4100
4101         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4102                 p++;
4103                 if (p[0] == 'x' || p[0] == 'X')
4104                         p++;
4105                 val = simple_strtoul(p, &p, 16);
4106         } else
4107                 val = simple_strtoul(p, &p, 10);
4108         if (p == buf)
4109                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4110         else
4111                 ipw2100_debug_level = val;
4112
4113         return strnlen(buf, count);
4114 }
4115
4116 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4117                    store_debug_level);
4118 #endif                          /* CONFIG_IPW2100_DEBUG */
4119
4120 static ssize_t show_fatal_error(struct device *d,
4121                                 struct device_attribute *attr, char *buf)
4122 {
4123         struct ipw2100_priv *priv = dev_get_drvdata(d);
4124         char *out = buf;
4125         int i;
4126
4127         if (priv->fatal_error)
4128                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4129         else
4130                 out += sprintf(out, "0\n");
4131
4132         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4133                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4134                                         IPW2100_ERROR_QUEUE])
4135                         continue;
4136
4137                 out += sprintf(out, "%d. 0x%08X\n", i,
4138                                priv->fatal_errors[(priv->fatal_index - i) %
4139                                                   IPW2100_ERROR_QUEUE]);
4140         }
4141
4142         return out - buf;
4143 }
4144
4145 static ssize_t store_fatal_error(struct device *d,
4146                                  struct device_attribute *attr, const char *buf,
4147                                  size_t count)
4148 {
4149         struct ipw2100_priv *priv = dev_get_drvdata(d);
4150         schedule_reset(priv);
4151         return count;
4152 }
4153
4154 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4155                    store_fatal_error);
4156
4157 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4158                              char *buf)
4159 {
4160         struct ipw2100_priv *priv = dev_get_drvdata(d);
4161         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4162 }
4163
4164 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4165                               const char *buf, size_t count)
4166 {
4167         struct ipw2100_priv *priv = dev_get_drvdata(d);
4168         struct net_device *dev = priv->net_dev;
4169         char buffer[] = "00000000";
4170         unsigned long len =
4171             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4172         unsigned long val;
4173         char *p = buffer;
4174
4175         (void)dev;              /* kill unused-var warning for debug-only code */
4176
4177         IPW_DEBUG_INFO("enter\n");
4178
4179         strncpy(buffer, buf, len);
4180         buffer[len] = 0;
4181
4182         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4183                 p++;
4184                 if (p[0] == 'x' || p[0] == 'X')
4185                         p++;
4186                 val = simple_strtoul(p, &p, 16);
4187         } else
4188                 val = simple_strtoul(p, &p, 10);
4189         if (p == buffer) {
4190                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4191         } else {
4192                 priv->ieee->scan_age = val;
4193                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4194         }
4195
4196         IPW_DEBUG_INFO("exit\n");
4197         return len;
4198 }
4199
4200 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4201
4202 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4203                             char *buf)
4204 {
4205         /* 0 - RF kill not enabled
4206            1 - SW based RF kill active (sysfs)
4207            2 - HW based RF kill active
4208            3 - Both HW and SW baed RF kill active */
4209         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4210         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4211             (rf_kill_active(priv) ? 0x2 : 0x0);
4212         return sprintf(buf, "%i\n", val);
4213 }
4214
4215 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4216 {
4217         if ((disable_radio ? 1 : 0) ==
4218             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4219                 return 0;
4220
4221         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4222                           disable_radio ? "OFF" : "ON");
4223
4224         mutex_lock(&priv->action_mutex);
4225
4226         if (disable_radio) {
4227                 priv->status |= STATUS_RF_KILL_SW;
4228                 ipw2100_down(priv);
4229         } else {
4230                 priv->status &= ~STATUS_RF_KILL_SW;
4231                 if (rf_kill_active(priv)) {
4232                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4233                                           "disabled by HW switch\n");
4234                         /* Make sure the RF_KILL check timer is running */
4235                         priv->stop_rf_kill = 0;
4236                         cancel_delayed_work(&priv->rf_kill);
4237                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4238                 } else
4239                         schedule_reset(priv);
4240         }
4241
4242         mutex_unlock(&priv->action_mutex);
4243         return 1;
4244 }
4245
4246 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4247                              const char *buf, size_t count)
4248 {
4249         struct ipw2100_priv *priv = dev_get_drvdata(d);
4250         ipw_radio_kill_sw(priv, buf[0] == '1');
4251         return count;
4252 }
4253
4254 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4255
4256 static struct attribute *ipw2100_sysfs_entries[] = {
4257         &dev_attr_hardware.attr,
4258         &dev_attr_registers.attr,
4259         &dev_attr_ordinals.attr,
4260         &dev_attr_pci.attr,
4261         &dev_attr_stats.attr,
4262         &dev_attr_internals.attr,
4263         &dev_attr_bssinfo.attr,
4264         &dev_attr_memory.attr,
4265         &dev_attr_scan_age.attr,
4266         &dev_attr_fatal_error.attr,
4267         &dev_attr_rf_kill.attr,
4268         &dev_attr_cfg.attr,
4269         &dev_attr_status.attr,
4270         &dev_attr_capability.attr,
4271         NULL,
4272 };
4273
4274 static struct attribute_group ipw2100_attribute_group = {
4275         .attrs = ipw2100_sysfs_entries,
4276 };
4277
4278 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4279 {
4280         struct ipw2100_status_queue *q = &priv->status_queue;
4281
4282         IPW_DEBUG_INFO("enter\n");
4283
4284         q->size = entries * sizeof(struct ipw2100_status);
4285         q->drv =
4286             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4287                                                           q->size, &q->nic);
4288         if (!q->drv) {
4289                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4290                 return -ENOMEM;
4291         }
4292
4293         memset(q->drv, 0, q->size);
4294
4295         IPW_DEBUG_INFO("exit\n");
4296
4297         return 0;
4298 }
4299
4300 static void status_queue_free(struct ipw2100_priv *priv)
4301 {
4302         IPW_DEBUG_INFO("enter\n");
4303
4304         if (priv->status_queue.drv) {
4305                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4306                                     priv->status_queue.drv,
4307                                     priv->status_queue.nic);
4308                 priv->status_queue.drv = NULL;
4309         }
4310
4311         IPW_DEBUG_INFO("exit\n");
4312 }
4313
4314 static int bd_queue_allocate(struct ipw2100_priv *priv,
4315                              struct ipw2100_bd_queue *q, int entries)
4316 {
4317         IPW_DEBUG_INFO("enter\n");
4318
4319         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4320
4321         q->entries = entries;
4322         q->size = entries * sizeof(struct ipw2100_bd);
4323         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4324         if (!q->drv) {
4325                 IPW_DEBUG_INFO
4326                     ("can't allocate shared memory for buffer descriptors\n");
4327                 return -ENOMEM;
4328         }
4329         memset(q->drv, 0, q->size);
4330
4331         IPW_DEBUG_INFO("exit\n");
4332
4333         return 0;
4334 }
4335
4336 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4337 {
4338         IPW_DEBUG_INFO("enter\n");
4339
4340         if (!q)
4341                 return;
4342
4343         if (q->drv) {
4344                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4345                 q->drv = NULL;
4346         }
4347
4348         IPW_DEBUG_INFO("exit\n");
4349 }
4350
4351 static void bd_queue_initialize(struct ipw2100_priv *priv,
4352                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4353                                 u32 r, u32 w)
4354 {
4355         IPW_DEBUG_INFO("enter\n");
4356
4357         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4358                        (u32) q->nic);
4359
4360         write_register(priv->net_dev, base, q->nic);
4361         write_register(priv->net_dev, size, q->entries);
4362         write_register(priv->net_dev, r, q->oldest);
4363         write_register(priv->net_dev, w, q->next);
4364
4365         IPW_DEBUG_INFO("exit\n");
4366 }
4367
4368 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4369 {
4370         if (priv->workqueue) {
4371                 priv->stop_rf_kill = 1;
4372                 priv->stop_hang_check = 1;
4373                 cancel_delayed_work(&priv->reset_work);
4374                 cancel_delayed_work(&priv->security_work);
4375                 cancel_delayed_work(&priv->wx_event_work);
4376                 cancel_delayed_work(&priv->hang_check);
4377                 cancel_delayed_work(&priv->rf_kill);
4378                 destroy_workqueue(priv->workqueue);
4379                 priv->workqueue = NULL;
4380         }
4381 }
4382
4383 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4384 {
4385         int i, j, err = -EINVAL;
4386         void *v;
4387         dma_addr_t p;
4388
4389         IPW_DEBUG_INFO("enter\n");
4390
4391         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4392         if (err) {
4393                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4394                                 priv->net_dev->name);
4395                 return err;
4396         }
4397
4398         priv->tx_buffers =
4399             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4400                                                 sizeof(struct
4401                                                        ipw2100_tx_packet),
4402                                                 GFP_ATOMIC);
4403         if (!priv->tx_buffers) {
4404                 printk(KERN_ERR DRV_NAME
4405                        ": %s: alloc failed form tx buffers.\n",
4406                        priv->net_dev->name);
4407                 bd_queue_free(priv, &priv->tx_queue);
4408                 return -ENOMEM;
4409         }
4410
4411         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4412                 v = pci_alloc_consistent(priv->pci_dev,
4413                                          sizeof(struct ipw2100_data_header),
4414                                          &p);
4415                 if (!v) {
4416                         printk(KERN_ERR DRV_NAME
4417                                ": %s: PCI alloc failed for tx " "buffers.\n",
4418                                priv->net_dev->name);
4419                         err = -ENOMEM;
4420                         break;
4421                 }
4422
4423                 priv->tx_buffers[i].type = DATA;
4424                 priv->tx_buffers[i].info.d_struct.data =
4425                     (struct ipw2100_data_header *)v;
4426                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4427                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4428         }
4429
4430         if (i == TX_PENDED_QUEUE_LENGTH)
4431                 return 0;
4432
4433         for (j = 0; j < i; j++) {
4434                 pci_free_consistent(priv->pci_dev,
4435                                     sizeof(struct ipw2100_data_header),
4436                                     priv->tx_buffers[j].info.d_struct.data,
4437                                     priv->tx_buffers[j].info.d_struct.
4438                                     data_phys);
4439         }
4440
4441         kfree(priv->tx_buffers);
4442         priv->tx_buffers = NULL;
4443
4444         return err;
4445 }
4446
4447 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4448 {
4449         int i;
4450
4451         IPW_DEBUG_INFO("enter\n");
4452
4453         /*
4454          * reinitialize packet info lists
4455          */
4456         INIT_LIST_HEAD(&priv->fw_pend_list);
4457         INIT_STAT(&priv->fw_pend_stat);
4458
4459         /*
4460          * reinitialize lists
4461          */
4462         INIT_LIST_HEAD(&priv->tx_pend_list);
4463         INIT_LIST_HEAD(&priv->tx_free_list);
4464         INIT_STAT(&priv->tx_pend_stat);
4465         INIT_STAT(&priv->tx_free_stat);
4466
4467         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4468                 /* We simply drop any SKBs that have been queued for
4469                  * transmit */
4470                 if (priv->tx_buffers[i].info.d_struct.txb) {
4471                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4472                                            txb);
4473                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4474                 }
4475
4476                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4477         }
4478
4479         SET_STAT(&priv->tx_free_stat, i);
4480
4481         priv->tx_queue.oldest = 0;
4482         priv->tx_queue.available = priv->tx_queue.entries;
4483         priv->tx_queue.next = 0;
4484         INIT_STAT(&priv->txq_stat);
4485         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4486
4487         bd_queue_initialize(priv, &priv->tx_queue,
4488                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4489                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4490                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4491                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4492
4493         IPW_DEBUG_INFO("exit\n");
4494
4495 }
4496
4497 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4498 {
4499         int i;
4500
4501         IPW_DEBUG_INFO("enter\n");
4502
4503         bd_queue_free(priv, &priv->tx_queue);
4504
4505         if (!priv->tx_buffers)
4506                 return;
4507
4508         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4509                 if (priv->tx_buffers[i].info.d_struct.txb) {
4510                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4511                                            txb);
4512                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4513                 }
4514                 if (priv->tx_buffers[i].info.d_struct.data)
4515                         pci_free_consistent(priv->pci_dev,
4516                                             sizeof(struct ipw2100_data_header),
4517                                             priv->tx_buffers[i].info.d_struct.
4518                                             data,
4519                                             priv->tx_buffers[i].info.d_struct.
4520                                             data_phys);
4521         }
4522
4523         kfree(priv->tx_buffers);
4524         priv->tx_buffers = NULL;
4525
4526         IPW_DEBUG_INFO("exit\n");
4527 }
4528
4529 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4530 {
4531         int i, j, err = -EINVAL;
4532
4533         IPW_DEBUG_INFO("enter\n");
4534
4535         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4536         if (err) {
4537                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4538                 return err;
4539         }
4540
4541         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4542         if (err) {
4543                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4544                 bd_queue_free(priv, &priv->rx_queue);
4545                 return err;
4546         }
4547
4548         /*
4549          * allocate packets
4550          */
4551         priv->rx_buffers = (struct ipw2100_rx_packet *)
4552             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4553                     GFP_KERNEL);
4554         if (!priv->rx_buffers) {
4555                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4556
4557                 bd_queue_free(priv, &priv->rx_queue);
4558
4559                 status_queue_free(priv);
4560
4561                 return -ENOMEM;
4562         }
4563
4564         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4565                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4566
4567                 err = ipw2100_alloc_skb(priv, packet);
4568                 if (unlikely(err)) {
4569                         err = -ENOMEM;
4570                         break;
4571                 }
4572
4573                 /* The BD holds the cache aligned address */
4574                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4575                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4576                 priv->status_queue.drv[i].status_fields = 0;
4577         }
4578
4579         if (i == RX_QUEUE_LENGTH)
4580                 return 0;
4581
4582         for (j = 0; j < i; j++) {
4583                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4584                                  sizeof(struct ipw2100_rx_packet),
4585                                  PCI_DMA_FROMDEVICE);
4586                 dev_kfree_skb(priv->rx_buffers[j].skb);
4587         }
4588
4589         kfree(priv->rx_buffers);
4590         priv->rx_buffers = NULL;
4591
4592         bd_queue_free(priv, &priv->rx_queue);
4593
4594         status_queue_free(priv);
4595
4596         return err;
4597 }
4598
4599 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4600 {
4601         IPW_DEBUG_INFO("enter\n");
4602
4603         priv->rx_queue.oldest = 0;
4604         priv->rx_queue.available = priv->rx_queue.entries - 1;
4605         priv->rx_queue.next = priv->rx_queue.entries - 1;
4606
4607         INIT_STAT(&priv->rxq_stat);
4608         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4609
4610         bd_queue_initialize(priv, &priv->rx_queue,
4611                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4612                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4613                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4614                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4615
4616         /* set up the status queue */
4617         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4618                        priv->status_queue.nic);
4619
4620         IPW_DEBUG_INFO("exit\n");
4621 }
4622
4623 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4624 {
4625         int i;
4626
4627         IPW_DEBUG_INFO("enter\n");
4628
4629         bd_queue_free(priv, &priv->rx_queue);
4630         status_queue_free(priv);
4631
4632         if (!priv->rx_buffers)
4633                 return;
4634
4635         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4636                 if (priv->rx_buffers[i].rxp) {
4637                         pci_unmap_single(priv->pci_dev,
4638                                          priv->rx_buffers[i].dma_addr,
4639                                          sizeof(struct ipw2100_rx),
4640                                          PCI_DMA_FROMDEVICE);
4641                         dev_kfree_skb(priv->rx_buffers[i].skb);
4642                 }
4643         }
4644
4645         kfree(priv->rx_buffers);
4646         priv->rx_buffers = NULL;
4647
4648         IPW_DEBUG_INFO("exit\n");
4649 }
4650
4651 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4652 {
4653         u32 length = ETH_ALEN;
4654         u8 mac[ETH_ALEN];
4655
4656         int err;
4657
4658         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4659         if (err) {
4660                 IPW_DEBUG_INFO("MAC address read failed\n");
4661                 return -EIO;
4662         }
4663         IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4664                        mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4665
4666         memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4667
4668         return 0;
4669 }
4670
4671 /********************************************************************
4672  *
4673  * Firmware Commands
4674  *
4675  ********************************************************************/
4676
4677 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4678 {
4679         struct host_command cmd = {
4680                 .host_command = ADAPTER_ADDRESS,
4681                 .host_command_sequence = 0,
4682                 .host_command_length = ETH_ALEN
4683         };
4684         int err;
4685
4686         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4687
4688         IPW_DEBUG_INFO("enter\n");
4689
4690         if (priv->config & CFG_CUSTOM_MAC) {
4691                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4692                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4693         } else
4694                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4695                        ETH_ALEN);
4696
4697         err = ipw2100_hw_send_command(priv, &cmd);
4698
4699         IPW_DEBUG_INFO("exit\n");
4700         return err;
4701 }
4702
4703 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4704                                  int batch_mode)
4705 {
4706         struct host_command cmd = {
4707                 .host_command = PORT_TYPE,
4708                 .host_command_sequence = 0,
4709                 .host_command_length = sizeof(u32)
4710         };
4711         int err;
4712
4713         switch (port_type) {
4714         case IW_MODE_INFRA:
4715                 cmd.host_command_parameters[0] = IPW_BSS;
4716                 break;
4717         case IW_MODE_ADHOC:
4718                 cmd.host_command_parameters[0] = IPW_IBSS;
4719                 break;
4720         }
4721
4722         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4723                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4724
4725         if (!batch_mode) {
4726                 err = ipw2100_disable_adapter(priv);
4727                 if (err) {
4728                         printk(KERN_ERR DRV_NAME
4729                                ": %s: Could not disable adapter %d\n",
4730                                priv->net_dev->name, err);
4731                         return err;
4732                 }
4733         }
4734
4735         /* send cmd to firmware */
4736         err = ipw2100_hw_send_command(priv, &cmd);
4737
4738         if (!batch_mode)
4739                 ipw2100_enable_adapter(priv);
4740
4741         return err;
4742 }
4743
4744 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4745                                int batch_mode)
4746 {
4747         struct host_command cmd = {
4748                 .host_command = CHANNEL,
4749                 .host_command_sequence = 0,
4750                 .host_command_length = sizeof(u32)
4751         };
4752         int err;
4753
4754         cmd.host_command_parameters[0] = channel;
4755
4756         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4757
4758         /* If BSS then we don't support channel selection */
4759         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4760                 return 0;
4761
4762         if ((channel != 0) &&
4763             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4764                 return -EINVAL;
4765
4766         if (!batch_mode) {
4767                 err = ipw2100_disable_adapter(priv);
4768                 if (err)
4769                         return err;
4770         }
4771
4772         err = ipw2100_hw_send_command(priv, &cmd);
4773         if (err) {
4774                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4775                 return err;
4776         }
4777
4778         if (channel)
4779                 priv->config |= CFG_STATIC_CHANNEL;
4780         else
4781                 priv->config &= ~CFG_STATIC_CHANNEL;
4782
4783         priv->channel = channel;
4784
4785         if (!batch_mode) {
4786                 err = ipw2100_enable_adapter(priv);
4787                 if (err)
4788                         return err;
4789         }
4790
4791         return 0;
4792 }
4793
4794 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4795 {
4796         struct host_command cmd = {
4797                 .host_command = SYSTEM_CONFIG,
4798                 .host_command_sequence = 0,
4799                 .host_command_length = 12,
4800         };
4801         u32 ibss_mask, len = sizeof(u32);
4802         int err;
4803
4804         /* Set system configuration */
4805
4806         if (!batch_mode) {
4807                 err = ipw2100_disable_adapter(priv);
4808                 if (err)
4809                         return err;
4810         }
4811
4812         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4813                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4814
4815         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4816             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4817
4818         if (!(priv->config & CFG_LONG_PREAMBLE))
4819                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4820
4821         err = ipw2100_get_ordinal(priv,
4822                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4823                                   &ibss_mask, &len);
4824         if (err)
4825                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4826
4827         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4828         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4829
4830         /* 11b only */
4831         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4832
4833         err = ipw2100_hw_send_command(priv, &cmd);
4834         if (err)
4835                 return err;
4836
4837 /* If IPv6 is configured in the kernel then we don't want to filter out all
4838  * of the multicast packets as IPv6 needs some. */
4839 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4840         cmd.host_command = ADD_MULTICAST;
4841         cmd.host_command_sequence = 0;
4842         cmd.host_command_length = 0;
4843
4844         ipw2100_hw_send_command(priv, &cmd);
4845 #endif
4846         if (!batch_mode) {
4847                 err = ipw2100_enable_adapter(priv);
4848                 if (err)
4849                         return err;
4850         }
4851
4852         return 0;
4853 }
4854
4855 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4856                                 int batch_mode)
4857 {
4858         struct host_command cmd = {
4859                 .host_command = BASIC_TX_RATES,
4860                 .host_command_sequence = 0,
4861                 .host_command_length = 4
4862         };
4863         int err;
4864
4865         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4866
4867         if (!batch_mode) {
4868                 err = ipw2100_disable_adapter(priv);
4869                 if (err)
4870                         return err;
4871         }
4872
4873         /* Set BASIC TX Rate first */
4874         ipw2100_hw_send_command(priv, &cmd);
4875
4876         /* Set TX Rate */
4877         cmd.host_command = TX_RATES;
4878         ipw2100_hw_send_command(priv, &cmd);
4879
4880         /* Set MSDU TX Rate */
4881         cmd.host_command = MSDU_TX_RATES;
4882         ipw2100_hw_send_command(priv, &cmd);
4883
4884         if (!batch_mode) {
4885                 err = ipw2100_enable_adapter(priv);
4886                 if (err)
4887                         return err;
4888         }
4889
4890         priv->tx_rates = rate;
4891
4892         return 0;
4893 }
4894
4895 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4896 {
4897         struct host_command cmd = {
4898                 .host_command = POWER_MODE,
4899                 .host_command_sequence = 0,
4900                 .host_command_length = 4
4901         };
4902         int err;
4903
4904         cmd.host_command_parameters[0] = power_level;
4905
4906         err = ipw2100_hw_send_command(priv, &cmd);
4907         if (err)
4908                 return err;
4909
4910         if (power_level == IPW_POWER_MODE_CAM)
4911                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4912         else
4913                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4914
4915 #ifdef CONFIG_IPW2100_TX_POWER
4916         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4917                 /* Set beacon interval */
4918                 cmd.host_command = TX_POWER_INDEX;
4919                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4920
4921                 err = ipw2100_hw_send_command(priv, &cmd);
4922                 if (err)
4923                         return err;
4924         }
4925 #endif
4926
4927         return 0;
4928 }
4929
4930 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4931 {
4932         struct host_command cmd = {
4933                 .host_command = RTS_THRESHOLD,
4934                 .host_command_sequence = 0,
4935                 .host_command_length = 4
4936         };
4937         int err;
4938
4939         if (threshold & RTS_DISABLED)
4940                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4941         else
4942                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4943
4944         err = ipw2100_hw_send_command(priv, &cmd);
4945         if (err)
4946                 return err;
4947
4948         priv->rts_threshold = threshold;
4949
4950         return 0;
4951 }
4952
4953 #if 0
4954 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4955                                         u32 threshold, int batch_mode)
4956 {
4957         struct host_command cmd = {
4958                 .host_command = FRAG_THRESHOLD,
4959                 .host_command_sequence = 0,
4960                 .host_command_length = 4,
4961                 .host_command_parameters[0] = 0,
4962         };
4963         int err;
4964
4965         if (!batch_mode) {
4966                 err = ipw2100_disable_adapter(priv);
4967                 if (err)
4968                         return err;
4969         }
4970
4971         if (threshold == 0)
4972                 threshold = DEFAULT_FRAG_THRESHOLD;
4973         else {
4974                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4975                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4976         }
4977
4978         cmd.host_command_parameters[0] = threshold;
4979
4980         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4981
4982         err = ipw2100_hw_send_command(priv, &cmd);
4983
4984         if (!batch_mode)
4985                 ipw2100_enable_adapter(priv);
4986
4987         if (!err)
4988                 priv->frag_threshold = threshold;
4989
4990         return err;
4991 }
4992 #endif
4993
4994 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4995 {
4996         struct host_command cmd = {
4997                 .host_command = SHORT_RETRY_LIMIT,
4998                 .host_command_sequence = 0,
4999                 .host_command_length = 4
5000         };
5001         int err;
5002
5003         cmd.host_command_parameters[0] = retry;
5004
5005         err = ipw2100_hw_send_command(priv, &cmd);
5006         if (err)
5007                 return err;
5008
5009         priv->short_retry_limit = retry;
5010
5011         return 0;
5012 }
5013
5014 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5015 {
5016         struct host_command cmd = {
5017                 .host_command = LONG_RETRY_LIMIT,
5018                 .host_command_sequence = 0,
5019                 .host_command_length = 4
5020         };
5021         int err;
5022
5023         cmd.host_command_parameters[0] = retry;
5024
5025         err = ipw2100_hw_send_command(priv, &cmd);
5026         if (err)
5027                 return err;
5028
5029         priv->long_retry_limit = retry;
5030
5031         return 0;
5032 }
5033
5034 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5035                                        int batch_mode)
5036 {
5037         struct host_command cmd = {
5038                 .host_command = MANDATORY_BSSID,
5039                 .host_command_sequence = 0,
5040                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5041         };
5042         int err;
5043
5044 #ifdef CONFIG_IPW2100_DEBUG
5045         if (bssid != NULL)
5046                 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5047                              bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5048                              bssid[5]);
5049         else
5050                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5051 #endif
5052         /* if BSSID is empty then we disable mandatory bssid mode */
5053         if (bssid != NULL)
5054                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5055
5056         if (!batch_mode) {
5057                 err = ipw2100_disable_adapter(priv);
5058                 if (err)
5059                         return err;
5060         }
5061
5062         err = ipw2100_hw_send_command(priv, &cmd);
5063
5064         if (!batch_mode)
5065                 ipw2100_enable_adapter(priv);
5066
5067         return err;
5068 }
5069
5070 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5071 {
5072         struct host_command cmd = {
5073                 .host_command = DISASSOCIATION_BSSID,
5074                 .host_command_sequence = 0,
5075                 .host_command_length = ETH_ALEN
5076         };
5077         int err;
5078         int len;
5079
5080         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5081
5082         len = ETH_ALEN;
5083         /* The Firmware currently ignores the BSSID and just disassociates from
5084          * the currently associated AP -- but in the off chance that a future
5085          * firmware does use the BSSID provided here, we go ahead and try and
5086          * set it to the currently associated AP's BSSID */
5087         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5088
5089         err = ipw2100_hw_send_command(priv, &cmd);
5090
5091         return err;
5092 }
5093
5094 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5095                               struct ipw2100_wpa_assoc_frame *, int)
5096     __attribute__ ((unused));
5097
5098 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5099                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5100                               int batch_mode)
5101 {
5102         struct host_command cmd = {
5103                 .host_command = SET_WPA_IE,
5104                 .host_command_sequence = 0,
5105                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5106         };
5107         int err;
5108
5109         IPW_DEBUG_HC("SET_WPA_IE\n");
5110
5111         if (!batch_mode) {
5112                 err = ipw2100_disable_adapter(priv);
5113                 if (err)
5114                         return err;
5115         }
5116
5117         memcpy(cmd.host_command_parameters, wpa_frame,
5118                sizeof(struct ipw2100_wpa_assoc_frame));
5119
5120         err = ipw2100_hw_send_command(priv, &cmd);
5121
5122         if (!batch_mode) {
5123                 if (ipw2100_enable_adapter(priv))
5124                         err = -EIO;
5125         }
5126
5127         return err;
5128 }
5129
5130 struct security_info_params {
5131         u32 allowed_ciphers;
5132         u16 version;
5133         u8 auth_mode;
5134         u8 replay_counters_number;
5135         u8 unicast_using_group;
5136 } __attribute__ ((packed));
5137
5138 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5139                                             int auth_mode,
5140                                             int security_level,
5141                                             int unicast_using_group,
5142                                             int batch_mode)
5143 {
5144         struct host_command cmd = {
5145                 .host_command = SET_SECURITY_INFORMATION,
5146                 .host_command_sequence = 0,
5147                 .host_command_length = sizeof(struct security_info_params)
5148         };
5149         struct security_info_params *security =
5150             (struct security_info_params *)&cmd.host_command_parameters;
5151         int err;
5152         memset(security, 0, sizeof(*security));
5153
5154         /* If shared key AP authentication is turned on, then we need to
5155          * configure the firmware to try and use it.
5156          *
5157          * Actual data encryption/decryption is handled by the host. */
5158         security->auth_mode = auth_mode;
5159         security->unicast_using_group = unicast_using_group;
5160
5161         switch (security_level) {
5162         default:
5163         case SEC_LEVEL_0:
5164                 security->allowed_ciphers = IPW_NONE_CIPHER;
5165                 break;
5166         case SEC_LEVEL_1:
5167                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5168                     IPW_WEP104_CIPHER;
5169                 break;
5170         case SEC_LEVEL_2:
5171                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5172                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5173                 break;
5174         case SEC_LEVEL_2_CKIP:
5175                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5176                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5177                 break;
5178         case SEC_LEVEL_3:
5179                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5180                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5181                 break;
5182         }
5183
5184         IPW_DEBUG_HC
5185             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5186              security->auth_mode, security->allowed_ciphers, security_level);
5187
5188         security->replay_counters_number = 0;
5189
5190         if (!batch_mode) {
5191                 err = ipw2100_disable_adapter(priv);
5192                 if (err)
5193                         return err;
5194         }
5195
5196         err = ipw2100_hw_send_command(priv, &cmd);
5197
5198         if (!batch_mode)
5199                 ipw2100_enable_adapter(priv);
5200
5201         return err;
5202 }
5203
5204 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5205 {
5206         struct host_command cmd = {
5207                 .host_command = TX_POWER_INDEX,
5208                 .host_command_sequence = 0,
5209                 .host_command_length = 4
5210         };
5211         int err = 0;
5212         u32 tmp = tx_power;
5213
5214         if (tx_power != IPW_TX_POWER_DEFAULT)
5215                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5216                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5217
5218         cmd.host_command_parameters[0] = tmp;
5219
5220         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5221                 err = ipw2100_hw_send_command(priv, &cmd);
5222         if (!err)
5223                 priv->tx_power = tx_power;
5224
5225         return 0;
5226 }
5227
5228 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5229                                             u32 interval, int batch_mode)
5230 {
5231         struct host_command cmd = {
5232                 .host_command = BEACON_INTERVAL,
5233                 .host_command_sequence = 0,
5234                 .host_command_length = 4
5235         };
5236         int err;
5237
5238         cmd.host_command_parameters[0] = interval;
5239
5240         IPW_DEBUG_INFO("enter\n");
5241
5242         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5243                 if (!batch_mode) {
5244                         err = ipw2100_disable_adapter(priv);
5245                         if (err)
5246                                 return err;
5247                 }
5248
5249                 ipw2100_hw_send_command(priv, &cmd);
5250
5251                 if (!batch_mode) {
5252                         err = ipw2100_enable_adapter(priv);
5253                         if (err)
5254                                 return err;
5255                 }
5256         }
5257
5258         IPW_DEBUG_INFO("exit\n");
5259
5260         return 0;
5261 }
5262
5263 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5264 {
5265         ipw2100_tx_initialize(priv);
5266         ipw2100_rx_initialize(priv);
5267         ipw2100_msg_initialize(priv);
5268 }
5269
5270 void ipw2100_queues_free(struct ipw2100_priv *priv)
5271 {
5272         ipw2100_tx_free(priv);
5273         ipw2100_rx_free(priv);
5274         ipw2100_msg_free(priv);
5275 }
5276
5277 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5278 {
5279         if (ipw2100_tx_allocate(priv) ||
5280             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5281                 goto fail;
5282
5283         return 0;
5284
5285       fail:
5286         ipw2100_tx_free(priv);
5287         ipw2100_rx_free(priv);
5288         ipw2100_msg_free(priv);
5289         return -ENOMEM;
5290 }
5291
5292 #define IPW_PRIVACY_CAPABLE 0x0008
5293
5294 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5295                                  int batch_mode)
5296 {
5297         struct host_command cmd = {
5298                 .host_command = WEP_FLAGS,
5299                 .host_command_sequence = 0,
5300                 .host_command_length = 4
5301         };
5302         int err;
5303
5304         cmd.host_command_parameters[0] = flags;
5305
5306         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5307
5308         if (!batch_mode) {
5309                 err = ipw2100_disable_adapter(priv);
5310                 if (err) {
5311                         printk(KERN_ERR DRV_NAME
5312                                ": %s: Could not disable adapter %d\n",
5313                                priv->net_dev->name, err);
5314                         return err;
5315                 }
5316         }
5317
5318         /* send cmd to firmware */
5319         err = ipw2100_hw_send_command(priv, &cmd);
5320
5321         if (!batch_mode)
5322                 ipw2100_enable_adapter(priv);
5323
5324         return err;
5325 }
5326
5327 struct ipw2100_wep_key {
5328         u8 idx;
5329         u8 len;
5330         u8 key[13];
5331 };
5332
5333 /* Macros to ease up priting WEP keys */
5334 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5335 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5336 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5337 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5338
5339 /**
5340  * Set a the wep key
5341  *
5342  * @priv: struct to work on
5343  * @idx: index of the key we want to set
5344  * @key: ptr to the key data to set
5345  * @len: length of the buffer at @key
5346  * @batch_mode: FIXME perform the operation in batch mode, not
5347  *              disabling the device.
5348  *
5349  * @returns 0 if OK, < 0 errno code on error.
5350  *
5351  * Fill out a command structure with the new wep key, length an
5352  * index and send it down the wire.
5353  */
5354 static int ipw2100_set_key(struct ipw2100_priv *priv,
5355                            int idx, char *key, int len, int batch_mode)
5356 {
5357         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5358         struct host_command cmd = {
5359                 .host_command = WEP_KEY_INFO,
5360                 .host_command_sequence = 0,
5361                 .host_command_length = sizeof(struct ipw2100_wep_key),
5362         };
5363         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5364         int err;
5365
5366         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5367                      idx, keylen, len);
5368
5369         /* NOTE: We don't check cached values in case the firmware was reset
5370          * or some other problem is occurring.  If the user is setting the key,
5371          * then we push the change */
5372
5373         wep_key->idx = idx;
5374         wep_key->len = keylen;
5375
5376         if (keylen) {
5377                 memcpy(wep_key->key, key, len);
5378                 memset(wep_key->key + len, 0, keylen - len);
5379         }
5380
5381         /* Will be optimized out on debug not being configured in */
5382         if (keylen == 0)
5383                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5384                               priv->net_dev->name, wep_key->idx);
5385         else if (keylen == 5)
5386                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5387                               priv->net_dev->name, wep_key->idx, wep_key->len,
5388                               WEP_STR_64(wep_key->key));
5389         else
5390                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5391                               "\n",
5392                               priv->net_dev->name, wep_key->idx, wep_key->len,
5393                               WEP_STR_128(wep_key->key));
5394
5395         if (!batch_mode) {
5396                 err = ipw2100_disable_adapter(priv);
5397                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5398                 if (err) {
5399                         printk(KERN_ERR DRV_NAME
5400                                ": %s: Could not disable adapter %d\n",
5401                                priv->net_dev->name, err);
5402                         return err;
5403                 }
5404         }
5405
5406         /* send cmd to firmware */
5407         err = ipw2100_hw_send_command(priv, &cmd);
5408
5409         if (!batch_mode) {
5410                 int err2 = ipw2100_enable_adapter(priv);
5411                 if (err == 0)
5412                         err = err2;
5413         }
5414         return err;
5415 }
5416
5417 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5418                                  int idx, int batch_mode)
5419 {
5420         struct host_command cmd = {
5421                 .host_command = WEP_KEY_INDEX,
5422                 .host_command_sequence = 0,
5423                 .host_command_length = 4,
5424                 .host_command_parameters = {idx},
5425         };
5426         int err;
5427
5428         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5429
5430         if (idx < 0 || idx > 3)
5431                 return -EINVAL;
5432
5433         if (!batch_mode) {
5434                 err = ipw2100_disable_adapter(priv);
5435                 if (err) {
5436                         printk(KERN_ERR DRV_NAME
5437                                ": %s: Could not disable adapter %d\n",
5438                                priv->net_dev->name, err);
5439                         return err;
5440                 }
5441         }
5442
5443         /* send cmd to firmware */
5444         err = ipw2100_hw_send_command(priv, &cmd);
5445
5446         if (!batch_mode)
5447                 ipw2100_enable_adapter(priv);
5448
5449         return err;
5450 }
5451
5452 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5453 {
5454         int i, err, auth_mode, sec_level, use_group;
5455
5456         if (!(priv->status & STATUS_RUNNING))
5457                 return 0;
5458
5459         if (!batch_mode) {
5460                 err = ipw2100_disable_adapter(priv);
5461                 if (err)
5462                         return err;
5463         }
5464
5465         if (!priv->ieee->sec.enabled) {
5466                 err =
5467                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5468                                                      SEC_LEVEL_0, 0, 1);
5469         } else {
5470                 auth_mode = IPW_AUTH_OPEN;
5471                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5472                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5473                                 auth_mode = IPW_AUTH_SHARED;
5474                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5475                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5476                 }
5477
5478                 sec_level = SEC_LEVEL_0;
5479                 if (priv->ieee->sec.flags & SEC_LEVEL)
5480                         sec_level = priv->ieee->sec.level;
5481
5482                 use_group = 0;
5483                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5484                         use_group = priv->ieee->sec.unicast_uses_group;
5485
5486                 err =
5487                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5488                                                      use_group, 1);
5489         }
5490
5491         if (err)
5492                 goto exit;
5493
5494         if (priv->ieee->sec.enabled) {
5495                 for (i = 0; i < 4; i++) {
5496                         if (!(priv->ieee->sec.flags & (1 << i))) {
5497                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5498                                 priv->ieee->sec.key_sizes[i] = 0;
5499                         } else {
5500                                 err = ipw2100_set_key(priv, i,
5501                                                       priv->ieee->sec.keys[i],
5502                                                       priv->ieee->sec.
5503                                                       key_sizes[i], 1);
5504                                 if (err)
5505                                         goto exit;
5506                         }
5507                 }
5508
5509                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5510         }
5511
5512         /* Always enable privacy so the Host can filter WEP packets if
5513          * encrypted data is sent up */
5514         err =
5515             ipw2100_set_wep_flags(priv,
5516                                   priv->ieee->sec.
5517                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5518         if (err)
5519                 goto exit;
5520
5521         priv->status &= ~STATUS_SECURITY_UPDATED;
5522
5523       exit:
5524         if (!batch_mode)
5525                 ipw2100_enable_adapter(priv);
5526
5527         return err;
5528 }
5529
5530 static void ipw2100_security_work(struct work_struct *work)
5531 {
5532         struct ipw2100_priv *priv =
5533                 container_of(work, struct ipw2100_priv, security_work.work);
5534
5535         /* If we happen to have reconnected before we get a chance to
5536          * process this, then update the security settings--which causes
5537          * a disassociation to occur */
5538         if (!(priv->status & STATUS_ASSOCIATED) &&
5539             priv->status & STATUS_SECURITY_UPDATED)
5540                 ipw2100_configure_security(priv, 0);
5541 }
5542
5543 static void shim__set_security(struct net_device *dev,
5544                                struct ieee80211_security *sec)
5545 {
5546         struct ipw2100_priv *priv = ieee80211_priv(dev);
5547         int i, force_update = 0;
5548
5549         mutex_lock(&priv->action_mutex);
5550         if (!(priv->status & STATUS_INITIALIZED))
5551                 goto done;
5552
5553         for (i = 0; i < 4; i++) {
5554                 if (sec->flags & (1 << i)) {
5555                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5556                         if (sec->key_sizes[i] == 0)
5557                                 priv->ieee->sec.flags &= ~(1 << i);
5558                         else
5559                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5560                                        sec->key_sizes[i]);
5561                         if (sec->level == SEC_LEVEL_1) {
5562                                 priv->ieee->sec.flags |= (1 << i);
5563                                 priv->status |= STATUS_SECURITY_UPDATED;
5564                         } else
5565                                 priv->ieee->sec.flags &= ~(1 << i);
5566                 }
5567         }
5568
5569         if ((sec->flags & SEC_ACTIVE_KEY) &&
5570             priv->ieee->sec.active_key != sec->active_key) {
5571                 if (sec->active_key <= 3) {
5572                         priv->ieee->sec.active_key = sec->active_key;
5573                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5574                 } else
5575                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5576
5577                 priv->status |= STATUS_SECURITY_UPDATED;
5578         }
5579
5580         if ((sec->flags & SEC_AUTH_MODE) &&
5581             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5582                 priv->ieee->sec.auth_mode = sec->auth_mode;
5583                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5584                 priv->status |= STATUS_SECURITY_UPDATED;
5585         }
5586
5587         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5588                 priv->ieee->sec.flags |= SEC_ENABLED;
5589                 priv->ieee->sec.enabled = sec->enabled;
5590                 priv->status |= STATUS_SECURITY_UPDATED;
5591                 force_update = 1;
5592         }
5593
5594         if (sec->flags & SEC_ENCRYPT)
5595                 priv->ieee->sec.encrypt = sec->encrypt;
5596
5597         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5598                 priv->ieee->sec.level = sec->level;
5599                 priv->ieee->sec.flags |= SEC_LEVEL;
5600                 priv->status |= STATUS_SECURITY_UPDATED;
5601         }
5602
5603         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5604                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5605                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5606                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5607                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5608                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5609                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5610                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5611                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5612                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5613
5614 /* As a temporary work around to enable WPA until we figure out why
5615  * wpa_supplicant toggles the security capability of the driver, which
5616  * forces a disassocation with force_update...
5617  *
5618  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5619         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5620                 ipw2100_configure_security(priv, 0);
5621       done:
5622         mutex_unlock(&priv->action_mutex);
5623 }
5624
5625 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5626 {
5627         int err;
5628         int batch_mode = 1;
5629         u8 *bssid;
5630
5631         IPW_DEBUG_INFO("enter\n");
5632
5633         err = ipw2100_disable_adapter(priv);
5634         if (err)
5635                 return err;
5636 #ifdef CONFIG_IPW2100_MONITOR
5637         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5638                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5639                 if (err)
5640                         return err;
5641
5642                 IPW_DEBUG_INFO("exit\n");
5643
5644                 return 0;
5645         }
5646 #endif                          /* CONFIG_IPW2100_MONITOR */
5647
5648         err = ipw2100_read_mac_address(priv);
5649         if (err)
5650                 return -EIO;
5651
5652         err = ipw2100_set_mac_address(priv, batch_mode);
5653         if (err)
5654                 return err;
5655
5656         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5657         if (err)
5658                 return err;
5659
5660         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5661                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5662                 if (err)
5663                         return err;
5664         }
5665
5666         err = ipw2100_system_config(priv, batch_mode);
5667         if (err)
5668                 return err;
5669
5670         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5671         if (err)
5672                 return err;
5673
5674         /* Default to power mode OFF */
5675         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5676         if (err)
5677                 return err;
5678
5679         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5680         if (err)
5681                 return err;
5682
5683         if (priv->config & CFG_STATIC_BSSID)
5684                 bssid = priv->bssid;
5685         else
5686                 bssid = NULL;
5687         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5688         if (err)
5689                 return err;
5690
5691         if (priv->config & CFG_STATIC_ESSID)
5692                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5693                                         batch_mode);
5694         else
5695                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5696         if (err)
5697                 return err;
5698
5699         err = ipw2100_configure_security(priv, batch_mode);
5700         if (err)
5701                 return err;
5702
5703         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5704                 err =
5705                     ipw2100_set_ibss_beacon_interval(priv,
5706                                                      priv->beacon_interval,
5707                                                      batch_mode);
5708                 if (err)
5709                         return err;
5710
5711                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5712                 if (err)
5713                         return err;
5714         }
5715
5716         /*
5717            err = ipw2100_set_fragmentation_threshold(
5718            priv, priv->frag_threshold, batch_mode);
5719            if (err)
5720            return err;
5721          */
5722
5723         IPW_DEBUG_INFO("exit\n");
5724
5725         return 0;
5726 }
5727
5728 /*************************************************************************
5729  *
5730  * EXTERNALLY CALLED METHODS
5731  *
5732  *************************************************************************/
5733
5734 /* This method is called by the network layer -- not to be confused with
5735  * ipw2100_set_mac_address() declared above called by this driver (and this
5736  * method as well) to talk to the firmware */
5737 static int ipw2100_set_address(struct net_device *dev, void *p)
5738 {
5739         struct ipw2100_priv *priv = ieee80211_priv(dev);
5740         struct sockaddr *addr = p;
5741         int err = 0;
5742
5743         if (!is_valid_ether_addr(addr->sa_data))
5744                 return -EADDRNOTAVAIL;
5745
5746         mutex_lock(&priv->action_mutex);
5747
5748         priv->config |= CFG_CUSTOM_MAC;
5749         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5750
5751         err = ipw2100_set_mac_address(priv, 0);
5752         if (err)
5753                 goto done;
5754
5755         priv->reset_backoff = 0;
5756         mutex_unlock(&priv->action_mutex);
5757         ipw2100_reset_adapter(&priv->reset_work.work);
5758         return 0;
5759
5760       done:
5761         mutex_unlock(&priv->action_mutex);
5762         return err;
5763 }
5764
5765 static int ipw2100_open(struct net_device *dev)
5766 {
5767         struct ipw2100_priv *priv = ieee80211_priv(dev);
5768         unsigned long flags;
5769         IPW_DEBUG_INFO("dev->open\n");
5770
5771         spin_lock_irqsave(&priv->low_lock, flags);
5772         if (priv->status & STATUS_ASSOCIATED) {
5773                 netif_carrier_on(dev);
5774                 netif_start_queue(dev);
5775         }
5776         spin_unlock_irqrestore(&priv->low_lock, flags);
5777
5778         return 0;
5779 }
5780
5781 static int ipw2100_close(struct net_device *dev)
5782 {
5783         struct ipw2100_priv *priv = ieee80211_priv(dev);
5784         unsigned long flags;
5785         struct list_head *element;
5786         struct ipw2100_tx_packet *packet;
5787
5788         IPW_DEBUG_INFO("enter\n");
5789
5790         spin_lock_irqsave(&priv->low_lock, flags);
5791
5792         if (priv->status & STATUS_ASSOCIATED)
5793                 netif_carrier_off(dev);
5794         netif_stop_queue(dev);
5795
5796         /* Flush the TX queue ... */
5797         while (!list_empty(&priv->tx_pend_list)) {
5798                 element = priv->tx_pend_list.next;
5799                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5800
5801                 list_del(element);
5802                 DEC_STAT(&priv->tx_pend_stat);
5803
5804                 ieee80211_txb_free(packet->info.d_struct.txb);
5805                 packet->info.d_struct.txb = NULL;
5806
5807                 list_add_tail(element, &priv->tx_free_list);
5808                 INC_STAT(&priv->tx_free_stat);
5809         }
5810         spin_unlock_irqrestore(&priv->low_lock, flags);
5811
5812         IPW_DEBUG_INFO("exit\n");
5813
5814         return 0;
5815 }
5816
5817 /*
5818  * TODO:  Fix this function... its just wrong
5819  */
5820 static void ipw2100_tx_timeout(struct net_device *dev)
5821 {
5822         struct ipw2100_priv *priv = ieee80211_priv(dev);
5823
5824         priv->ieee->stats.tx_errors++;
5825
5826 #ifdef CONFIG_IPW2100_MONITOR
5827         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5828                 return;
5829 #endif
5830
5831         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5832                        dev->name);
5833         schedule_reset(priv);
5834 }
5835
5836 /*
5837  * TODO: reimplement it so that it reads statistics
5838  *       from the adapter using ordinal tables
5839  *       instead of/in addition to collecting them
5840  *       in the driver
5841  */
5842 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5843 {
5844         struct ipw2100_priv *priv = ieee80211_priv(dev);
5845
5846         return &priv->ieee->stats;
5847 }
5848
5849 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5850 {
5851         /* This is called when wpa_supplicant loads and closes the driver
5852          * interface. */
5853         priv->ieee->wpa_enabled = value;
5854         return 0;
5855 }
5856
5857 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5858 {
5859
5860         struct ieee80211_device *ieee = priv->ieee;
5861         struct ieee80211_security sec = {
5862                 .flags = SEC_AUTH_MODE,
5863         };
5864         int ret = 0;
5865
5866         if (value & IW_AUTH_ALG_SHARED_KEY) {
5867                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5868                 ieee->open_wep = 0;
5869         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5870                 sec.auth_mode = WLAN_AUTH_OPEN;
5871                 ieee->open_wep = 1;
5872         } else if (value & IW_AUTH_ALG_LEAP) {
5873                 sec.auth_mode = WLAN_AUTH_LEAP;
5874                 ieee->open_wep = 1;
5875         } else
5876                 return -EINVAL;
5877
5878         if (ieee->set_security)
5879                 ieee->set_security(ieee->dev, &sec);
5880         else
5881                 ret = -EOPNOTSUPP;
5882
5883         return ret;
5884 }
5885
5886 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5887                                     char *wpa_ie, int wpa_ie_len)
5888 {
5889
5890         struct ipw2100_wpa_assoc_frame frame;
5891
5892         frame.fixed_ie_mask = 0;
5893
5894         /* copy WPA IE */
5895         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5896         frame.var_ie_len = wpa_ie_len;
5897
5898         /* make sure WPA is enabled */
5899         ipw2100_wpa_enable(priv, 1);
5900         ipw2100_set_wpa_ie(priv, &frame, 0);
5901 }
5902
5903 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5904                                     struct ethtool_drvinfo *info)
5905 {
5906         struct ipw2100_priv *priv = ieee80211_priv(dev);
5907         char fw_ver[64], ucode_ver[64];
5908
5909         strcpy(info->driver, DRV_NAME);
5910         strcpy(info->version, DRV_VERSION);
5911
5912         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5913         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5914
5915         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5916                  fw_ver, priv->eeprom_version, ucode_ver);
5917
5918         strcpy(info->bus_info, pci_name(priv->pci_dev));
5919 }
5920
5921 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5922 {
5923         struct ipw2100_priv *priv = ieee80211_priv(dev);
5924         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5925 }
5926
5927 static const struct ethtool_ops ipw2100_ethtool_ops = {
5928         .get_link = ipw2100_ethtool_get_link,
5929         .get_drvinfo = ipw_ethtool_get_drvinfo,
5930 };
5931
5932 static void ipw2100_hang_check(struct work_struct *work)
5933 {
5934         struct ipw2100_priv *priv =
5935                 container_of(work, struct ipw2100_priv, hang_check.work);
5936         unsigned long flags;
5937         u32 rtc = 0xa5a5a5a5;
5938         u32 len = sizeof(rtc);
5939         int restart = 0;
5940
5941         spin_lock_irqsave(&priv->low_lock, flags);
5942
5943         if (priv->fatal_error != 0) {
5944                 /* If fatal_error is set then we need to restart */
5945                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5946                                priv->net_dev->name);
5947
5948                 restart = 1;
5949         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5950                    (rtc == priv->last_rtc)) {
5951                 /* Check if firmware is hung */
5952                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5953                                priv->net_dev->name);
5954
5955                 restart = 1;
5956         }
5957
5958         if (restart) {
5959                 /* Kill timer */
5960                 priv->stop_hang_check = 1;
5961                 priv->hangs++;
5962
5963                 /* Restart the NIC */
5964                 schedule_reset(priv);
5965         }
5966
5967         priv->last_rtc = rtc;
5968
5969         if (!priv->stop_hang_check)
5970                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5971
5972         spin_unlock_irqrestore(&priv->low_lock, flags);
5973 }
5974
5975 static void ipw2100_rf_kill(struct work_struct *work)
5976 {
5977         struct ipw2100_priv *priv =
5978                 container_of(work, struct ipw2100_priv, rf_kill.work);
5979         unsigned long flags;
5980
5981         spin_lock_irqsave(&priv->low_lock, flags);
5982
5983         if (rf_kill_active(priv)) {
5984                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5985                 if (!priv->stop_rf_kill)
5986                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5987                 goto exit_unlock;
5988         }
5989
5990         /* RF Kill is now disabled, so bring the device back up */
5991
5992         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5993                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5994                                   "device\n");
5995                 schedule_reset(priv);
5996         } else
5997                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
5998                                   "enabled\n");
5999
6000       exit_unlock:
6001         spin_unlock_irqrestore(&priv->low_lock, flags);
6002 }
6003
6004 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6005
6006 /* Look into using netdev destructor to shutdown ieee80211? */
6007
6008 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6009                                                void __iomem * base_addr,
6010                                                unsigned long mem_start,
6011                                                unsigned long mem_len)
6012 {
6013         struct ipw2100_priv *priv;
6014         struct net_device *dev;
6015
6016         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6017         if (!dev)
6018                 return NULL;
6019         priv = ieee80211_priv(dev);
6020         priv->ieee = netdev_priv(dev);
6021         priv->pci_dev = pci_dev;
6022         priv->net_dev = dev;
6023
6024         priv->ieee->hard_start_xmit = ipw2100_tx;
6025         priv->ieee->set_security = shim__set_security;
6026
6027         priv->ieee->perfect_rssi = -20;
6028         priv->ieee->worst_rssi = -85;
6029
6030         dev->open = ipw2100_open;
6031         dev->stop = ipw2100_close;
6032         dev->init = ipw2100_net_init;
6033         dev->get_stats = ipw2100_stats;
6034         dev->ethtool_ops = &ipw2100_ethtool_ops;
6035         dev->tx_timeout = ipw2100_tx_timeout;
6036         dev->wireless_handlers = &ipw2100_wx_handler_def;
6037         priv->wireless_data.ieee80211 = priv->ieee;
6038         dev->wireless_data = &priv->wireless_data;
6039         dev->set_mac_address = ipw2100_set_address;
6040         dev->watchdog_timeo = 3 * HZ;
6041         dev->irq = 0;
6042
6043         dev->base_addr = (unsigned long)base_addr;
6044         dev->mem_start = mem_start;
6045         dev->mem_end = dev->mem_start + mem_len - 1;
6046
6047         /* NOTE: We don't use the wireless_handlers hook
6048          * in dev as the system will start throwing WX requests
6049          * to us before we're actually initialized and it just
6050          * ends up causing problems.  So, we just handle
6051          * the WX extensions through the ipw2100_ioctl interface */
6052
6053         /* memset() puts everything to 0, so we only have explicitely set
6054          * those values that need to be something else */
6055
6056         /* If power management is turned on, default to AUTO mode */
6057         priv->power_mode = IPW_POWER_AUTO;
6058
6059 #ifdef CONFIG_IPW2100_MONITOR
6060         priv->config |= CFG_CRC_CHECK;
6061 #endif
6062         priv->ieee->wpa_enabled = 0;
6063         priv->ieee->drop_unencrypted = 0;
6064         priv->ieee->privacy_invoked = 0;
6065         priv->ieee->ieee802_1x = 1;
6066
6067         /* Set module parameters */
6068         switch (mode) {
6069         case 1:
6070                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6071                 break;
6072 #ifdef CONFIG_IPW2100_MONITOR
6073         case 2:
6074                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6075                 break;
6076 #endif
6077         default:
6078         case 0:
6079                 priv->ieee->iw_mode = IW_MODE_INFRA;
6080                 break;
6081         }
6082
6083         if (disable == 1)
6084                 priv->status |= STATUS_RF_KILL_SW;
6085
6086         if (channel != 0 &&
6087             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6088                 priv->config |= CFG_STATIC_CHANNEL;
6089                 priv->channel = channel;
6090         }
6091
6092         if (associate)
6093                 priv->config |= CFG_ASSOCIATE;
6094
6095         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6096         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6097         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6098         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6099         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6100         priv->tx_power = IPW_TX_POWER_DEFAULT;
6101         priv->tx_rates = DEFAULT_TX_RATES;
6102
6103         strcpy(priv->nick, "ipw2100");
6104
6105         spin_lock_init(&priv->low_lock);
6106         mutex_init(&priv->action_mutex);
6107         mutex_init(&priv->adapter_mutex);
6108
6109         init_waitqueue_head(&priv->wait_command_queue);
6110
6111         netif_carrier_off(dev);
6112
6113         INIT_LIST_HEAD(&priv->msg_free_list);
6114         INIT_LIST_HEAD(&priv->msg_pend_list);
6115         INIT_STAT(&priv->msg_free_stat);
6116         INIT_STAT(&priv->msg_pend_stat);
6117
6118         INIT_LIST_HEAD(&priv->tx_free_list);
6119         INIT_LIST_HEAD(&priv->tx_pend_list);
6120         INIT_STAT(&priv->tx_free_stat);
6121         INIT_STAT(&priv->tx_pend_stat);
6122
6123         INIT_LIST_HEAD(&priv->fw_pend_list);
6124         INIT_STAT(&priv->fw_pend_stat);
6125
6126         priv->workqueue = create_workqueue(DRV_NAME);
6127
6128         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6129         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6130         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6131         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6132         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6133
6134         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6135                      ipw2100_irq_tasklet, (unsigned long)priv);
6136
6137         /* NOTE:  We do not start the deferred work for status checks yet */
6138         priv->stop_rf_kill = 1;
6139         priv->stop_hang_check = 1;
6140
6141         return dev;
6142 }
6143
6144 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6145                                 const struct pci_device_id *ent)
6146 {
6147         unsigned long mem_start, mem_len, mem_flags;
6148         void __iomem *base_addr = NULL;
6149         struct net_device *dev = NULL;
6150         struct ipw2100_priv *priv = NULL;
6151         int err = 0;
6152         int registered = 0;
6153         u32 val;
6154
6155         IPW_DEBUG_INFO("enter\n");
6156
6157         mem_start = pci_resource_start(pci_dev, 0);
6158         mem_len = pci_resource_len(pci_dev, 0);
6159         mem_flags = pci_resource_flags(pci_dev, 0);
6160
6161         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6162                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6163                 err = -ENODEV;
6164                 goto fail;
6165         }
6166
6167         base_addr = ioremap_nocache(mem_start, mem_len);
6168         if (!base_addr) {
6169                 printk(KERN_WARNING DRV_NAME
6170                        "Error calling ioremap_nocache.\n");
6171                 err = -EIO;
6172                 goto fail;
6173         }
6174
6175         /* allocate and initialize our net_device */
6176         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6177         if (!dev) {
6178                 printk(KERN_WARNING DRV_NAME
6179                        "Error calling ipw2100_alloc_device.\n");
6180                 err = -ENOMEM;
6181                 goto fail;
6182         }
6183
6184         /* set up PCI mappings for device */
6185         err = pci_enable_device(pci_dev);
6186         if (err) {
6187                 printk(KERN_WARNING DRV_NAME
6188                        "Error calling pci_enable_device.\n");
6189                 return err;
6190         }
6191
6192         priv = ieee80211_priv(dev);
6193
6194         pci_set_master(pci_dev);
6195         pci_set_drvdata(pci_dev, priv);
6196
6197         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6198         if (err) {
6199                 printk(KERN_WARNING DRV_NAME
6200                        "Error calling pci_set_dma_mask.\n");
6201                 pci_disable_device(pci_dev);
6202                 return err;
6203         }
6204
6205         err = pci_request_regions(pci_dev, DRV_NAME);
6206         if (err) {
6207                 printk(KERN_WARNING DRV_NAME
6208                        "Error calling pci_request_regions.\n");
6209                 pci_disable_device(pci_dev);
6210                 return err;
6211         }
6212
6213         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6214          * PCI Tx retries from interfering with C3 CPU state */
6215         pci_read_config_dword(pci_dev, 0x40, &val);
6216         if ((val & 0x0000ff00) != 0)
6217                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6218
6219         pci_set_power_state(pci_dev, PCI_D0);
6220
6221         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6222                 printk(KERN_WARNING DRV_NAME
6223                        "Device not found via register read.\n");
6224                 err = -ENODEV;
6225                 goto fail;
6226         }
6227
6228         SET_NETDEV_DEV(dev, &pci_dev->dev);
6229
6230         /* Force interrupts to be shut off on the device */
6231         priv->status |= STATUS_INT_ENABLED;
6232         ipw2100_disable_interrupts(priv);
6233
6234         /* Allocate and initialize the Tx/Rx queues and lists */
6235         if (ipw2100_queues_allocate(priv)) {
6236                 printk(KERN_WARNING DRV_NAME
6237                        "Error calilng ipw2100_queues_allocate.\n");
6238                 err = -ENOMEM;
6239                 goto fail;
6240         }
6241         ipw2100_queues_initialize(priv);
6242
6243         err = request_irq(pci_dev->irq,
6244                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6245         if (err) {
6246                 printk(KERN_WARNING DRV_NAME
6247                        "Error calling request_irq: %d.\n", pci_dev->irq);
6248                 goto fail;
6249         }
6250         dev->irq = pci_dev->irq;
6251
6252         IPW_DEBUG_INFO("Attempting to register device...\n");
6253
6254         SET_MODULE_OWNER(dev);
6255
6256         printk(KERN_INFO DRV_NAME
6257                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6258
6259         /* Bring up the interface.  Pre 0.46, after we registered the
6260          * network device we would call ipw2100_up.  This introduced a race
6261          * condition with newer hotplug configurations (network was coming
6262          * up and making calls before the device was initialized).
6263          *
6264          * If we called ipw2100_up before we registered the device, then the
6265          * device name wasn't registered.  So, we instead use the net_dev->init
6266          * member to call a function that then just turns and calls ipw2100_up.
6267          * net_dev->init is called after name allocation but before the
6268          * notifier chain is called */
6269         err = register_netdev(dev);
6270         if (err) {
6271                 printk(KERN_WARNING DRV_NAME
6272                        "Error calling register_netdev.\n");
6273                 goto fail;
6274         }
6275
6276         mutex_lock(&priv->action_mutex);
6277         registered = 1;
6278
6279         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6280
6281         /* perform this after register_netdev so that dev->name is set */
6282         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6283         if (err)
6284                 goto fail_unlock;
6285
6286         /* If the RF Kill switch is disabled, go ahead and complete the
6287          * startup sequence */
6288         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6289                 /* Enable the adapter - sends HOST_COMPLETE */
6290                 if (ipw2100_enable_adapter(priv)) {
6291                         printk(KERN_WARNING DRV_NAME
6292                                ": %s: failed in call to enable adapter.\n",
6293                                priv->net_dev->name);
6294                         ipw2100_hw_stop_adapter(priv);
6295                         err = -EIO;
6296                         goto fail_unlock;
6297                 }
6298
6299                 /* Start a scan . . . */
6300                 ipw2100_set_scan_options(priv);
6301                 ipw2100_start_scan(priv);
6302         }
6303
6304         IPW_DEBUG_INFO("exit\n");
6305
6306         priv->status |= STATUS_INITIALIZED;
6307
6308         mutex_unlock(&priv->action_mutex);
6309
6310         return 0;
6311
6312       fail_unlock:
6313         mutex_unlock(&priv->action_mutex);
6314
6315       fail:
6316         if (dev) {
6317                 if (registered)
6318                         unregister_netdev(dev);
6319
6320                 ipw2100_hw_stop_adapter(priv);
6321
6322                 ipw2100_disable_interrupts(priv);
6323
6324                 if (dev->irq)
6325                         free_irq(dev->irq, priv);
6326
6327                 ipw2100_kill_workqueue(priv);
6328
6329                 /* These are safe to call even if they weren't allocated */
6330                 ipw2100_queues_free(priv);
6331                 sysfs_remove_group(&pci_dev->dev.kobj,
6332                                    &ipw2100_attribute_group);
6333
6334                 free_ieee80211(dev);
6335                 pci_set_drvdata(pci_dev, NULL);
6336         }
6337
6338         if (base_addr)
6339                 iounmap(base_addr);
6340
6341         pci_release_regions(pci_dev);
6342         pci_disable_device(pci_dev);
6343
6344         return err;
6345 }
6346
6347 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6348 {
6349         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6350         struct net_device *dev;
6351
6352         if (priv) {
6353                 mutex_lock(&priv->action_mutex);
6354
6355                 priv->status &= ~STATUS_INITIALIZED;
6356
6357                 dev = priv->net_dev;
6358                 sysfs_remove_group(&pci_dev->dev.kobj,
6359                                    &ipw2100_attribute_group);
6360
6361 #ifdef CONFIG_PM
6362                 if (ipw2100_firmware.version)
6363                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6364 #endif
6365                 /* Take down the hardware */
6366                 ipw2100_down(priv);
6367
6368                 /* Release the mutex so that the network subsystem can
6369                  * complete any needed calls into the driver... */
6370                 mutex_unlock(&priv->action_mutex);
6371
6372                 /* Unregister the device first - this results in close()
6373                  * being called if the device is open.  If we free storage
6374                  * first, then close() will crash. */
6375                 unregister_netdev(dev);
6376
6377                 /* ipw2100_down will ensure that there is no more pending work
6378                  * in the workqueue's, so we can safely remove them now. */
6379                 ipw2100_kill_workqueue(priv);
6380
6381                 ipw2100_queues_free(priv);
6382
6383                 /* Free potential debugging firmware snapshot */
6384                 ipw2100_snapshot_free(priv);
6385
6386                 if (dev->irq)
6387                         free_irq(dev->irq, priv);
6388
6389                 if (dev->base_addr)
6390                         iounmap((void __iomem *)dev->base_addr);
6391
6392                 free_ieee80211(dev);
6393         }
6394
6395         pci_release_regions(pci_dev);
6396         pci_disable_device(pci_dev);
6397
6398         IPW_DEBUG_INFO("exit\n");
6399 }
6400
6401 #ifdef CONFIG_PM
6402 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6403 {
6404         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6405         struct net_device *dev = priv->net_dev;
6406
6407         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6408
6409         mutex_lock(&priv->action_mutex);
6410         if (priv->status & STATUS_INITIALIZED) {
6411                 /* Take down the device; powers it off, etc. */
6412                 ipw2100_down(priv);
6413         }
6414
6415         /* Remove the PRESENT state of the device */
6416         netif_device_detach(dev);
6417
6418         pci_save_state(pci_dev);
6419         pci_disable_device(pci_dev);
6420         pci_set_power_state(pci_dev, PCI_D3hot);
6421
6422         mutex_unlock(&priv->action_mutex);
6423
6424         return 0;
6425 }
6426
6427 static int ipw2100_resume(struct pci_dev *pci_dev)
6428 {
6429         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6430         struct net_device *dev = priv->net_dev;
6431         u32 val;
6432
6433         if (IPW2100_PM_DISABLED)
6434                 return 0;
6435
6436         mutex_lock(&priv->action_mutex);
6437
6438         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6439
6440         pci_set_power_state(pci_dev, PCI_D0);
6441         pci_enable_device(pci_dev);
6442         pci_restore_state(pci_dev);
6443
6444         /*
6445          * Suspend/Resume resets the PCI configuration space, so we have to
6446          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6447          * from interfering with C3 CPU state. pci_restore_state won't help
6448          * here since it only restores the first 64 bytes pci config header.
6449          */
6450         pci_read_config_dword(pci_dev, 0x40, &val);
6451         if ((val & 0x0000ff00) != 0)
6452                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6453
6454         /* Set the device back into the PRESENT state; this will also wake
6455          * the queue of needed */
6456         netif_device_attach(dev);
6457
6458         /* Bring the device back up */
6459         if (!(priv->status & STATUS_RF_KILL_SW))
6460                 ipw2100_up(priv, 0);
6461
6462         mutex_unlock(&priv->action_mutex);
6463
6464         return 0;
6465 }
6466 #endif
6467
6468 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6469
6470 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6471         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6472         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6473         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6474         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6475         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6476         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6477         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6478         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6479         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6480         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6481         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6482         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6483         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6484
6485         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6486         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6487         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6488         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6489         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6490
6491         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6492         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6493         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6494         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6495         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6496         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6497         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6498
6499         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6500
6501         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6502         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6503         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6504         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6505         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6506         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6507         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6508
6509         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6510         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6511         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6512         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6513         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6514         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6515
6516         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6517         {0,},
6518 };
6519
6520 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6521
6522 static struct pci_driver ipw2100_pci_driver = {
6523         .name = DRV_NAME,
6524         .id_table = ipw2100_pci_id_table,
6525         .probe = ipw2100_pci_init_one,
6526         .remove = __devexit_p(ipw2100_pci_remove_one),
6527 #ifdef CONFIG_PM
6528         .suspend = ipw2100_suspend,
6529         .resume = ipw2100_resume,
6530 #endif
6531 };
6532
6533 /**
6534  * Initialize the ipw2100 driver/module
6535  *
6536  * @returns 0 if ok, < 0 errno node con error.
6537  *
6538  * Note: we cannot init the /proc stuff until the PCI driver is there,
6539  * or we risk an unlikely race condition on someone accessing
6540  * uninitialized data in the PCI dev struct through /proc.
6541  */
6542 static int __init ipw2100_init(void)
6543 {
6544         int ret;
6545
6546         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6547         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6548
6549         ret = pci_register_driver(&ipw2100_pci_driver);
6550         if (ret)
6551                 goto out;
6552
6553         set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6554 #ifdef CONFIG_IPW2100_DEBUG
6555         ipw2100_debug_level = debug;
6556         ret = driver_create_file(&ipw2100_pci_driver.driver,
6557                                  &driver_attr_debug_level);
6558 #endif
6559
6560 out:
6561         return ret;
6562 }
6563
6564 /**
6565  * Cleanup ipw2100 driver registration
6566  */
6567 static void __exit ipw2100_exit(void)
6568 {
6569         /* FIXME: IPG: check that we have no instances of the devices open */
6570 #ifdef CONFIG_IPW2100_DEBUG
6571         driver_remove_file(&ipw2100_pci_driver.driver,
6572                            &driver_attr_debug_level);
6573 #endif
6574         pci_unregister_driver(&ipw2100_pci_driver);
6575         remove_acceptable_latency("ipw2100");
6576 }
6577
6578 module_init(ipw2100_init);
6579 module_exit(ipw2100_exit);
6580
6581 #define WEXT_USECHANNELS 1
6582
6583 static const long ipw2100_frequencies[] = {
6584         2412, 2417, 2422, 2427,
6585         2432, 2437, 2442, 2447,
6586         2452, 2457, 2462, 2467,
6587         2472, 2484
6588 };
6589
6590 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6591                     sizeof(ipw2100_frequencies[0]))
6592
6593 static const long ipw2100_rates_11b[] = {
6594         1000000,
6595         2000000,
6596         5500000,
6597         11000000
6598 };
6599
6600 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6601
6602 static int ipw2100_wx_get_name(struct net_device *dev,
6603                                struct iw_request_info *info,
6604                                union iwreq_data *wrqu, char *extra)
6605 {
6606         /*
6607          * This can be called at any time.  No action lock required
6608          */
6609
6610         struct ipw2100_priv *priv = ieee80211_priv(dev);
6611         if (!(priv->status & STATUS_ASSOCIATED))
6612                 strcpy(wrqu->name, "unassociated");
6613         else
6614                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6615
6616         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6617         return 0;
6618 }
6619
6620 static int ipw2100_wx_set_freq(struct net_device *dev,
6621                                struct iw_request_info *info,
6622                                union iwreq_data *wrqu, char *extra)
6623 {
6624         struct ipw2100_priv *priv = ieee80211_priv(dev);
6625         struct iw_freq *fwrq = &wrqu->freq;
6626         int err = 0;
6627
6628         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6629                 return -EOPNOTSUPP;
6630
6631         mutex_lock(&priv->action_mutex);
6632         if (!(priv->status & STATUS_INITIALIZED)) {
6633                 err = -EIO;
6634                 goto done;
6635         }
6636
6637         /* if setting by freq convert to channel */
6638         if (fwrq->e == 1) {
6639                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6640                         int f = fwrq->m / 100000;
6641                         int c = 0;
6642
6643                         while ((c < REG_MAX_CHANNEL) &&
6644                                (f != ipw2100_frequencies[c]))
6645                                 c++;
6646
6647                         /* hack to fall through */
6648                         fwrq->e = 0;
6649                         fwrq->m = c + 1;
6650                 }
6651         }
6652
6653         if (fwrq->e > 0 || fwrq->m > 1000) {
6654                 err = -EOPNOTSUPP;
6655                 goto done;
6656         } else {                /* Set the channel */
6657                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6658                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6659         }
6660
6661       done:
6662         mutex_unlock(&priv->action_mutex);
6663         return err;
6664 }
6665
6666 static int ipw2100_wx_get_freq(struct net_device *dev,
6667                                struct iw_request_info *info,
6668                                union iwreq_data *wrqu, char *extra)
6669 {
6670         /*
6671          * This can be called at any time.  No action lock required
6672          */
6673
6674         struct ipw2100_priv *priv = ieee80211_priv(dev);
6675
6676         wrqu->freq.e = 0;
6677
6678         /* If we are associated, trying to associate, or have a statically
6679          * configured CHANNEL then return that; otherwise return ANY */
6680         if (priv->config & CFG_STATIC_CHANNEL ||
6681             priv->status & STATUS_ASSOCIATED)
6682                 wrqu->freq.m = priv->channel;
6683         else
6684                 wrqu->freq.m = 0;
6685
6686         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6687         return 0;
6688
6689 }
6690
6691 static int ipw2100_wx_set_mode(struct net_device *dev,
6692                                struct iw_request_info *info,
6693                                union iwreq_data *wrqu, char *extra)
6694 {
6695         struct ipw2100_priv *priv = ieee80211_priv(dev);
6696         int err = 0;
6697
6698         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6699
6700         if (wrqu->mode == priv->ieee->iw_mode)
6701                 return 0;
6702
6703         mutex_lock(&priv->action_mutex);
6704         if (!(priv->status & STATUS_INITIALIZED)) {
6705                 err = -EIO;
6706                 goto done;
6707         }
6708
6709         switch (wrqu->mode) {
6710 #ifdef CONFIG_IPW2100_MONITOR
6711         case IW_MODE_MONITOR:
6712                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6713                 break;
6714 #endif                          /* CONFIG_IPW2100_MONITOR */
6715         case IW_MODE_ADHOC:
6716                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6717                 break;
6718         case IW_MODE_INFRA:
6719         case IW_MODE_AUTO:
6720         default:
6721                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6722                 break;
6723         }
6724
6725       done:
6726         mutex_unlock(&priv->action_mutex);
6727         return err;
6728 }
6729
6730 static int ipw2100_wx_get_mode(struct net_device *dev,
6731                                struct iw_request_info *info,
6732                                union iwreq_data *wrqu, char *extra)
6733 {
6734         /*
6735          * This can be called at any time.  No action lock required
6736          */
6737
6738         struct ipw2100_priv *priv = ieee80211_priv(dev);
6739
6740         wrqu->mode = priv->ieee->iw_mode;
6741         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6742
6743         return 0;
6744 }
6745
6746 #define POWER_MODES 5
6747
6748 /* Values are in microsecond */
6749 static const s32 timeout_duration[POWER_MODES] = {
6750         350000,
6751         250000,
6752         75000,
6753         37000,
6754         25000,
6755 };
6756
6757 static const s32 period_duration[POWER_MODES] = {
6758         400000,
6759         700000,
6760         1000000,
6761         1000000,
6762         1000000
6763 };
6764
6765 static int ipw2100_wx_get_range(struct net_device *dev,
6766                                 struct iw_request_info *info,
6767                                 union iwreq_data *wrqu, char *extra)
6768 {
6769         /*
6770          * This can be called at any time.  No action lock required
6771          */
6772
6773         struct ipw2100_priv *priv = ieee80211_priv(dev);
6774         struct iw_range *range = (struct iw_range *)extra;
6775         u16 val;
6776         int i, level;
6777
6778         wrqu->data.length = sizeof(*range);
6779         memset(range, 0, sizeof(*range));
6780
6781         /* Let's try to keep this struct in the same order as in
6782          * linux/include/wireless.h
6783          */
6784
6785         /* TODO: See what values we can set, and remove the ones we can't
6786          * set, or fill them with some default data.
6787          */
6788
6789         /* ~5 Mb/s real (802.11b) */
6790         range->throughput = 5 * 1000 * 1000;
6791
6792 //      range->sensitivity;     /* signal level threshold range */
6793
6794         range->max_qual.qual = 100;
6795         /* TODO: Find real max RSSI and stick here */
6796         range->max_qual.level = 0;
6797         range->max_qual.noise = 0;
6798         range->max_qual.updated = 7;    /* Updated all three */
6799
6800         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6801         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6802         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6803         range->avg_qual.noise = 0;
6804         range->avg_qual.updated = 7;    /* Updated all three */
6805
6806         range->num_bitrates = RATE_COUNT;
6807
6808         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6809                 range->bitrate[i] = ipw2100_rates_11b[i];
6810         }
6811
6812         range->min_rts = MIN_RTS_THRESHOLD;
6813         range->max_rts = MAX_RTS_THRESHOLD;
6814         range->min_frag = MIN_FRAG_THRESHOLD;
6815         range->max_frag = MAX_FRAG_THRESHOLD;
6816
6817         range->min_pmp = period_duration[0];    /* Minimal PM period */
6818         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6819         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6820         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6821
6822         /* How to decode max/min PM period */
6823         range->pmp_flags = IW_POWER_PERIOD;
6824         /* How to decode max/min PM period */
6825         range->pmt_flags = IW_POWER_TIMEOUT;
6826         /* What PM options are supported */
6827         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6828
6829         range->encoding_size[0] = 5;
6830         range->encoding_size[1] = 13;   /* Different token sizes */
6831         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6832         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6833 //      range->encoding_login_index;            /* token index for login token */
6834
6835         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6836                 range->txpower_capa = IW_TXPOW_DBM;
6837                 range->num_txpower = IW_MAX_TXPOWER;
6838                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6839                      i < IW_MAX_TXPOWER;
6840                      i++, level -=
6841                      ((IPW_TX_POWER_MAX_DBM -
6842                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6843                         range->txpower[i] = level / 16;
6844         } else {
6845                 range->txpower_capa = 0;
6846                 range->num_txpower = 0;
6847         }
6848
6849         /* Set the Wireless Extension versions */
6850         range->we_version_compiled = WIRELESS_EXT;
6851         range->we_version_source = 18;
6852
6853 //      range->retry_capa;      /* What retry options are supported */
6854 //      range->retry_flags;     /* How to decode max/min retry limit */
6855 //      range->r_time_flags;    /* How to decode max/min retry life */
6856 //      range->min_retry;       /* Minimal number of retries */
6857 //      range->max_retry;       /* Maximal number of retries */
6858 //      range->min_r_time;      /* Minimal retry lifetime */
6859 //      range->max_r_time;      /* Maximal retry lifetime */
6860
6861         range->num_channels = FREQ_COUNT;
6862
6863         val = 0;
6864         for (i = 0; i < FREQ_COUNT; i++) {
6865                 // TODO: Include only legal frequencies for some countries
6866 //              if (local->channel_mask & (1 << i)) {
6867                 range->freq[val].i = i + 1;
6868                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6869                 range->freq[val].e = 1;
6870                 val++;
6871 //              }
6872                 if (val == IW_MAX_FREQUENCIES)
6873                         break;
6874         }
6875         range->num_frequency = val;
6876
6877         /* Event capability (kernel + driver) */
6878         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6879                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6880         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6881
6882         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6883                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6884
6885         IPW_DEBUG_WX("GET Range\n");
6886
6887         return 0;
6888 }
6889
6890 static int ipw2100_wx_set_wap(struct net_device *dev,
6891                               struct iw_request_info *info,
6892                               union iwreq_data *wrqu, char *extra)
6893 {
6894         struct ipw2100_priv *priv = ieee80211_priv(dev);
6895         int err = 0;
6896
6897         static const unsigned char any[] = {
6898                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6899         };
6900         static const unsigned char off[] = {
6901                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6902         };
6903
6904         // sanity checks
6905         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6906                 return -EINVAL;
6907
6908         mutex_lock(&priv->action_mutex);
6909         if (!(priv->status & STATUS_INITIALIZED)) {
6910                 err = -EIO;
6911                 goto done;
6912         }
6913
6914         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6915             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6916                 /* we disable mandatory BSSID association */
6917                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6918                 priv->config &= ~CFG_STATIC_BSSID;
6919                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6920                 goto done;
6921         }
6922
6923         priv->config |= CFG_STATIC_BSSID;
6924         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6925
6926         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6927
6928         IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6929                      wrqu->ap_addr.sa_data[0] & 0xff,
6930                      wrqu->ap_addr.sa_data[1] & 0xff,
6931                      wrqu->ap_addr.sa_data[2] & 0xff,
6932                      wrqu->ap_addr.sa_data[3] & 0xff,
6933                      wrqu->ap_addr.sa_data[4] & 0xff,
6934                      wrqu->ap_addr.sa_data[5] & 0xff);
6935
6936       done:
6937         mutex_unlock(&priv->action_mutex);
6938         return err;
6939 }
6940
6941 static int ipw2100_wx_get_wap(struct net_device *dev,
6942                               struct iw_request_info *info,
6943                               union iwreq_data *wrqu, char *extra)
6944 {
6945         /*
6946          * This can be called at any time.  No action lock required
6947          */
6948
6949         struct ipw2100_priv *priv = ieee80211_priv(dev);
6950
6951         /* If we are associated, trying to associate, or have a statically
6952          * configured BSSID then return that; otherwise return ANY */
6953         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6954                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6955                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6956         } else
6957                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6958
6959         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6960                      MAC_ARG(wrqu->ap_addr.sa_data));
6961         return 0;
6962 }
6963
6964 static int ipw2100_wx_set_essid(struct net_device *dev,
6965                                 struct iw_request_info *info,
6966                                 union iwreq_data *wrqu, char *extra)
6967 {
6968         struct ipw2100_priv *priv = ieee80211_priv(dev);
6969         char *essid = "";       /* ANY */
6970         int length = 0;
6971         int err = 0;
6972
6973         mutex_lock(&priv->action_mutex);
6974         if (!(priv->status & STATUS_INITIALIZED)) {
6975                 err = -EIO;
6976                 goto done;
6977         }
6978
6979         if (wrqu->essid.flags && wrqu->essid.length) {
6980                 length = wrqu->essid.length;
6981                 essid = extra;
6982         }
6983
6984         if (length == 0) {
6985                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6986                 priv->config &= ~CFG_STATIC_ESSID;
6987                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6988                 goto done;
6989         }
6990
6991         length = min(length, IW_ESSID_MAX_SIZE);
6992
6993         priv->config |= CFG_STATIC_ESSID;
6994
6995         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6996                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6997                 err = 0;
6998                 goto done;
6999         }
7000
7001         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
7002                      length);
7003
7004         priv->essid_len = length;
7005         memcpy(priv->essid, essid, priv->essid_len);
7006
7007         err = ipw2100_set_essid(priv, essid, length, 0);
7008
7009       done:
7010         mutex_unlock(&priv->action_mutex);
7011         return err;
7012 }
7013
7014 static int ipw2100_wx_get_essid(struct net_device *dev,
7015                                 struct iw_request_info *info,
7016                                 union iwreq_data *wrqu, char *extra)
7017 {
7018         /*
7019          * This can be called at any time.  No action lock required
7020          */
7021
7022         struct ipw2100_priv *priv = ieee80211_priv(dev);
7023
7024         /* If we are associated, trying to associate, or have a statically
7025          * configured ESSID then return that; otherwise return ANY */
7026         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7027                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7028                              escape_essid(priv->essid, priv->essid_len));
7029                 memcpy(extra, priv->essid, priv->essid_len);
7030                 wrqu->essid.length = priv->essid_len;
7031                 wrqu->essid.flags = 1;  /* active */
7032         } else {
7033                 IPW_DEBUG_WX("Getting essid: ANY\n");
7034                 wrqu->essid.length = 0;
7035                 wrqu->essid.flags = 0;  /* active */
7036         }
7037
7038         return 0;
7039 }
7040
7041 static int ipw2100_wx_set_nick(struct net_device *dev,
7042                                struct iw_request_info *info,
7043                                union iwreq_data *wrqu, char *extra)
7044 {
7045         /*
7046          * This can be called at any time.  No action lock required
7047          */
7048
7049         struct ipw2100_priv *priv = ieee80211_priv(dev);
7050
7051         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7052                 return -E2BIG;
7053
7054         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7055         memset(priv->nick, 0, sizeof(priv->nick));
7056         memcpy(priv->nick, extra, wrqu->data.length);
7057
7058         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7059
7060         return 0;
7061 }
7062
7063 static int ipw2100_wx_get_nick(struct net_device *dev,
7064                                struct iw_request_info *info,
7065                                union iwreq_data *wrqu, char *extra)
7066 {
7067         /*
7068          * This can be called at any time.  No action lock required
7069          */
7070
7071         struct ipw2100_priv *priv = ieee80211_priv(dev);
7072
7073         wrqu->data.length = strlen(priv->nick);
7074         memcpy(extra, priv->nick, wrqu->data.length);
7075         wrqu->data.flags = 1;   /* active */
7076
7077         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7078
7079         return 0;
7080 }
7081
7082 static int ipw2100_wx_set_rate(struct net_device *dev,
7083                                struct iw_request_info *info,
7084                                union iwreq_data *wrqu, char *extra)
7085 {
7086         struct ipw2100_priv *priv = ieee80211_priv(dev);
7087         u32 target_rate = wrqu->bitrate.value;
7088         u32 rate;
7089         int err = 0;
7090
7091         mutex_lock(&priv->action_mutex);
7092         if (!(priv->status & STATUS_INITIALIZED)) {
7093                 err = -EIO;
7094                 goto done;
7095         }
7096
7097         rate = 0;
7098
7099         if (target_rate == 1000000 ||
7100             (!wrqu->bitrate.fixed && target_rate > 1000000))
7101                 rate |= TX_RATE_1_MBIT;
7102         if (target_rate == 2000000 ||
7103             (!wrqu->bitrate.fixed && target_rate > 2000000))
7104                 rate |= TX_RATE_2_MBIT;
7105         if (target_rate == 5500000 ||
7106             (!wrqu->bitrate.fixed && target_rate > 5500000))
7107                 rate |= TX_RATE_5_5_MBIT;
7108         if (target_rate == 11000000 ||
7109             (!wrqu->bitrate.fixed && target_rate > 11000000))
7110                 rate |= TX_RATE_11_MBIT;
7111         if (rate == 0)
7112                 rate = DEFAULT_TX_RATES;
7113
7114         err = ipw2100_set_tx_rates(priv, rate, 0);
7115
7116         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7117       done:
7118         mutex_unlock(&priv->action_mutex);
7119         return err;
7120 }
7121
7122 static int ipw2100_wx_get_rate(struct net_device *dev,
7123                                struct iw_request_info *info,
7124                                union iwreq_data *wrqu, char *extra)
7125 {
7126         struct ipw2100_priv *priv = ieee80211_priv(dev);
7127         int val;
7128         int len = sizeof(val);
7129         int err = 0;
7130
7131         if (!(priv->status & STATUS_ENABLED) ||
7132             priv->status & STATUS_RF_KILL_MASK ||
7133             !(priv->status & STATUS_ASSOCIATED)) {
7134                 wrqu->bitrate.value = 0;
7135                 return 0;
7136         }
7137
7138         mutex_lock(&priv->action_mutex);
7139         if (!(priv->status & STATUS_INITIALIZED)) {
7140                 err = -EIO;
7141                 goto done;
7142         }
7143
7144         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7145         if (err) {
7146                 IPW_DEBUG_WX("failed querying ordinals.\n");
7147                 return err;
7148         }
7149
7150         switch (val & TX_RATE_MASK) {
7151         case TX_RATE_1_MBIT:
7152                 wrqu->bitrate.value = 1000000;
7153                 break;
7154         case TX_RATE_2_MBIT:
7155                 wrqu->bitrate.value = 2000000;
7156                 break;
7157         case TX_RATE_5_5_MBIT:
7158                 wrqu->bitrate.value = 5500000;
7159                 break;
7160         case TX_RATE_11_MBIT:
7161                 wrqu->bitrate.value = 11000000;
7162                 break;
7163         default:
7164                 wrqu->bitrate.value = 0;
7165         }
7166
7167         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7168
7169       done:
7170         mutex_unlock(&priv->action_mutex);
7171         return err;
7172 }
7173
7174 static int ipw2100_wx_set_rts(struct net_device *dev,
7175                               struct iw_request_info *info,
7176                               union iwreq_data *wrqu, char *extra)
7177 {
7178         struct ipw2100_priv *priv = ieee80211_priv(dev);
7179         int value, err;
7180
7181         /* Auto RTS not yet supported */
7182         if (wrqu->rts.fixed == 0)
7183                 return -EINVAL;
7184
7185         mutex_lock(&priv->action_mutex);
7186         if (!(priv->status & STATUS_INITIALIZED)) {
7187                 err = -EIO;
7188                 goto done;
7189         }
7190
7191         if (wrqu->rts.disabled)
7192                 value = priv->rts_threshold | RTS_DISABLED;
7193         else {
7194                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7195                         err = -EINVAL;
7196                         goto done;
7197                 }
7198                 value = wrqu->rts.value;
7199         }
7200
7201         err = ipw2100_set_rts_threshold(priv, value);
7202
7203         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7204       done:
7205         mutex_unlock(&priv->action_mutex);
7206         return err;
7207 }
7208
7209 static int ipw2100_wx_get_rts(struct net_device *dev,
7210                               struct iw_request_info *info,
7211                               union iwreq_data *wrqu, char *extra)
7212 {
7213         /*
7214          * This can be called at any time.  No action lock required
7215          */
7216
7217         struct ipw2100_priv *priv = ieee80211_priv(dev);
7218
7219         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7220         wrqu->rts.fixed = 1;    /* no auto select */
7221
7222         /* If RTS is set to the default value, then it is disabled */
7223         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7224
7225         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7226
7227         return 0;
7228 }
7229
7230 static int ipw2100_wx_set_txpow(struct net_device *dev,
7231                                 struct iw_request_info *info,
7232                                 union iwreq_data *wrqu, char *extra)
7233 {
7234         struct ipw2100_priv *priv = ieee80211_priv(dev);
7235         int err = 0, value;
7236         
7237         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7238                 return -EINPROGRESS;
7239
7240         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7241                 return 0;
7242
7243         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7244                 return -EINVAL;
7245
7246         if (wrqu->txpower.fixed == 0)
7247                 value = IPW_TX_POWER_DEFAULT;
7248         else {
7249                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7250                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7251                         return -EINVAL;
7252
7253                 value = wrqu->txpower.value;
7254         }
7255
7256         mutex_lock(&priv->action_mutex);
7257         if (!(priv->status & STATUS_INITIALIZED)) {
7258                 err = -EIO;
7259                 goto done;
7260         }
7261
7262         err = ipw2100_set_tx_power(priv, value);
7263
7264         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7265
7266       done:
7267         mutex_unlock(&priv->action_mutex);
7268         return err;
7269 }
7270
7271 static int ipw2100_wx_get_txpow(struct net_device *dev,
7272                                 struct iw_request_info *info,
7273                                 union iwreq_data *wrqu, char *extra)
7274 {
7275         /*
7276          * This can be called at any time.  No action lock required
7277          */
7278
7279         struct ipw2100_priv *priv = ieee80211_priv(dev);
7280
7281         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7282
7283         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7284                 wrqu->txpower.fixed = 0;
7285                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7286         } else {
7287                 wrqu->txpower.fixed = 1;
7288                 wrqu->txpower.value = priv->tx_power;
7289         }
7290
7291         wrqu->txpower.flags = IW_TXPOW_DBM;
7292
7293         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7294
7295         return 0;
7296 }
7297
7298 static int ipw2100_wx_set_frag(struct net_device *dev,
7299                                struct iw_request_info *info,
7300                                union iwreq_data *wrqu, char *extra)
7301 {
7302         /*
7303          * This can be called at any time.  No action lock required
7304          */
7305
7306         struct ipw2100_priv *priv = ieee80211_priv(dev);
7307
7308         if (!wrqu->frag.fixed)
7309                 return -EINVAL;
7310
7311         if (wrqu->frag.disabled) {
7312                 priv->frag_threshold |= FRAG_DISABLED;
7313                 priv->ieee->fts = DEFAULT_FTS;
7314         } else {
7315                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7316                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7317                         return -EINVAL;
7318
7319                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7320                 priv->frag_threshold = priv->ieee->fts;
7321         }
7322
7323         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7324
7325         return 0;
7326 }
7327
7328 static int ipw2100_wx_get_frag(struct net_device *dev,
7329                                struct iw_request_info *info,
7330                                union iwreq_data *wrqu, char *extra)
7331 {
7332         /*
7333          * This can be called at any time.  No action lock required
7334          */
7335
7336         struct ipw2100_priv *priv = ieee80211_priv(dev);
7337         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7338         wrqu->frag.fixed = 0;   /* no auto select */
7339         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7340
7341         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7342
7343         return 0;
7344 }
7345
7346 static int ipw2100_wx_set_retry(struct net_device *dev,
7347                                 struct iw_request_info *info,
7348                                 union iwreq_data *wrqu, char *extra)
7349 {
7350         struct ipw2100_priv *priv = ieee80211_priv(dev);
7351         int err = 0;
7352
7353         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7354                 return -EINVAL;
7355
7356         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7357                 return 0;
7358
7359         mutex_lock(&priv->action_mutex);
7360         if (!(priv->status & STATUS_INITIALIZED)) {
7361                 err = -EIO;
7362                 goto done;
7363         }
7364
7365         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7366                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7367                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7368                              wrqu->retry.value);
7369                 goto done;
7370         }
7371
7372         if (wrqu->retry.flags & IW_RETRY_LONG) {
7373                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7374                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7375                              wrqu->retry.value);
7376                 goto done;
7377         }
7378
7379         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7380         if (!err)
7381                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7382
7383         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7384
7385       done:
7386         mutex_unlock(&priv->action_mutex);
7387         return err;
7388 }
7389
7390 static int ipw2100_wx_get_retry(struct net_device *dev,
7391                                 struct iw_request_info *info,
7392                                 union iwreq_data *wrqu, char *extra)
7393 {
7394         /*
7395          * This can be called at any time.  No action lock required
7396          */
7397
7398         struct ipw2100_priv *priv = ieee80211_priv(dev);
7399
7400         wrqu->retry.disabled = 0;       /* can't be disabled */
7401
7402         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7403                 return -EINVAL;
7404
7405         if (wrqu->retry.flags & IW_RETRY_LONG) {
7406                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7407                 wrqu->retry.value = priv->long_retry_limit;
7408         } else {
7409                 wrqu->retry.flags =
7410                     (priv->short_retry_limit !=
7411                      priv->long_retry_limit) ?
7412                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7413
7414                 wrqu->retry.value = priv->short_retry_limit;
7415         }
7416
7417         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7418
7419         return 0;
7420 }
7421
7422 static int ipw2100_wx_set_scan(struct net_device *dev,
7423                                struct iw_request_info *info,
7424                                union iwreq_data *wrqu, char *extra)
7425 {
7426         struct ipw2100_priv *priv = ieee80211_priv(dev);
7427         int err = 0;
7428
7429         mutex_lock(&priv->action_mutex);
7430         if (!(priv->status & STATUS_INITIALIZED)) {
7431                 err = -EIO;
7432                 goto done;
7433         }
7434
7435         IPW_DEBUG_WX("Initiating scan...\n");
7436         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7437                 IPW_DEBUG_WX("Start scan failed.\n");
7438
7439                 /* TODO: Mark a scan as pending so when hardware initialized
7440                  *       a scan starts */
7441         }
7442
7443       done:
7444         mutex_unlock(&priv->action_mutex);
7445         return err;
7446 }
7447
7448 static int ipw2100_wx_get_scan(struct net_device *dev,
7449                                struct iw_request_info *info,
7450                                union iwreq_data *wrqu, char *extra)
7451 {
7452         /*
7453          * This can be called at any time.  No action lock required
7454          */
7455
7456         struct ipw2100_priv *priv = ieee80211_priv(dev);
7457         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7458 }
7459
7460 /*
7461  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7462  */
7463 static int ipw2100_wx_set_encode(struct net_device *dev,
7464                                  struct iw_request_info *info,
7465                                  union iwreq_data *wrqu, char *key)
7466 {
7467         /*
7468          * No check of STATUS_INITIALIZED required
7469          */
7470
7471         struct ipw2100_priv *priv = ieee80211_priv(dev);
7472         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7473 }
7474
7475 static int ipw2100_wx_get_encode(struct net_device *dev,
7476                                  struct iw_request_info *info,
7477                                  union iwreq_data *wrqu, char *key)
7478 {
7479         /*
7480          * This can be called at any time.  No action lock required
7481          */
7482
7483         struct ipw2100_priv *priv = ieee80211_priv(dev);
7484         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7485 }
7486
7487 static int ipw2100_wx_set_power(struct net_device *dev,
7488                                 struct iw_request_info *info,
7489                                 union iwreq_data *wrqu, char *extra)
7490 {
7491         struct ipw2100_priv *priv = ieee80211_priv(dev);
7492         int err = 0;
7493
7494         mutex_lock(&priv->action_mutex);
7495         if (!(priv->status & STATUS_INITIALIZED)) {
7496                 err = -EIO;
7497                 goto done;
7498         }
7499
7500         if (wrqu->power.disabled) {
7501                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7502                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7503                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7504                 goto done;
7505         }
7506
7507         switch (wrqu->power.flags & IW_POWER_MODE) {
7508         case IW_POWER_ON:       /* If not specified */
7509         case IW_POWER_MODE:     /* If set all mask */
7510         case IW_POWER_ALL_R:    /* If explicitely state all */
7511                 break;
7512         default:                /* Otherwise we don't support it */
7513                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7514                              wrqu->power.flags);
7515                 err = -EOPNOTSUPP;
7516                 goto done;
7517         }
7518
7519         /* If the user hasn't specified a power management mode yet, default
7520          * to BATTERY */
7521         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7522         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7523
7524         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7525
7526       done:
7527         mutex_unlock(&priv->action_mutex);
7528         return err;
7529
7530 }
7531
7532 static int ipw2100_wx_get_power(struct net_device *dev,
7533                                 struct iw_request_info *info,
7534                                 union iwreq_data *wrqu, char *extra)
7535 {
7536         /*
7537          * This can be called at any time.  No action lock required
7538          */
7539
7540         struct ipw2100_priv *priv = ieee80211_priv(dev);
7541
7542         if (!(priv->power_mode & IPW_POWER_ENABLED))
7543                 wrqu->power.disabled = 1;
7544         else {
7545                 wrqu->power.disabled = 0;
7546                 wrqu->power.flags = 0;
7547         }
7548
7549         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7550
7551         return 0;
7552 }
7553
7554 /*
7555  * WE-18 WPA support
7556  */
7557
7558 /* SIOCSIWGENIE */
7559 static int ipw2100_wx_set_genie(struct net_device *dev,
7560                                 struct iw_request_info *info,
7561                                 union iwreq_data *wrqu, char *extra)
7562 {
7563
7564         struct ipw2100_priv *priv = ieee80211_priv(dev);
7565         struct ieee80211_device *ieee = priv->ieee;
7566         u8 *buf;
7567
7568         if (!ieee->wpa_enabled)
7569                 return -EOPNOTSUPP;
7570
7571         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7572             (wrqu->data.length && extra == NULL))
7573                 return -EINVAL;
7574
7575         if (wrqu->data.length) {
7576                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7577                 if (buf == NULL)
7578                         return -ENOMEM;
7579
7580                 memcpy(buf, extra, wrqu->data.length);
7581                 kfree(ieee->wpa_ie);
7582                 ieee->wpa_ie = buf;
7583                 ieee->wpa_ie_len = wrqu->data.length;
7584         } else {
7585                 kfree(ieee->wpa_ie);
7586                 ieee->wpa_ie = NULL;
7587                 ieee->wpa_ie_len = 0;
7588         }
7589
7590         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7591
7592         return 0;
7593 }
7594
7595 /* SIOCGIWGENIE */
7596 static int ipw2100_wx_get_genie(struct net_device *dev,
7597                                 struct iw_request_info *info,
7598                                 union iwreq_data *wrqu, char *extra)
7599 {
7600         struct ipw2100_priv *priv = ieee80211_priv(dev);
7601         struct ieee80211_device *ieee = priv->ieee;
7602
7603         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7604                 wrqu->data.length = 0;
7605                 return 0;
7606         }
7607
7608         if (wrqu->data.length < ieee->wpa_ie_len)
7609                 return -E2BIG;
7610
7611         wrqu->data.length = ieee->wpa_ie_len;
7612         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7613
7614         return 0;
7615 }
7616
7617 /* SIOCSIWAUTH */
7618 static int ipw2100_wx_set_auth(struct net_device *dev,
7619                                struct iw_request_info *info,
7620                                union iwreq_data *wrqu, char *extra)
7621 {
7622         struct ipw2100_priv *priv = ieee80211_priv(dev);
7623         struct ieee80211_device *ieee = priv->ieee;
7624         struct iw_param *param = &wrqu->param;
7625         struct ieee80211_crypt_data *crypt;
7626         unsigned long flags;
7627         int ret = 0;
7628
7629         switch (param->flags & IW_AUTH_INDEX) {
7630         case IW_AUTH_WPA_VERSION:
7631         case IW_AUTH_CIPHER_PAIRWISE:
7632         case IW_AUTH_CIPHER_GROUP:
7633         case IW_AUTH_KEY_MGMT:
7634                 /*
7635                  * ipw2200 does not use these parameters
7636                  */
7637                 break;
7638
7639         case IW_AUTH_TKIP_COUNTERMEASURES:
7640                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7641                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7642                         break;
7643
7644                 flags = crypt->ops->get_flags(crypt->priv);
7645
7646                 if (param->value)
7647                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7648                 else
7649                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7650
7651                 crypt->ops->set_flags(flags, crypt->priv);
7652
7653                 break;
7654
7655         case IW_AUTH_DROP_UNENCRYPTED:{
7656                         /* HACK:
7657                          *
7658                          * wpa_supplicant calls set_wpa_enabled when the driver
7659                          * is loaded and unloaded, regardless of if WPA is being
7660                          * used.  No other calls are made which can be used to
7661                          * determine if encryption will be used or not prior to
7662                          * association being expected.  If encryption is not being
7663                          * used, drop_unencrypted is set to false, else true -- we
7664                          * can use this to determine if the CAP_PRIVACY_ON bit should
7665                          * be set.
7666                          */
7667                         struct ieee80211_security sec = {
7668                                 .flags = SEC_ENABLED,
7669                                 .enabled = param->value,
7670                         };
7671                         priv->ieee->drop_unencrypted = param->value;
7672                         /* We only change SEC_LEVEL for open mode. Others
7673                          * are set by ipw_wpa_set_encryption.
7674                          */
7675                         if (!param->value) {
7676                                 sec.flags |= SEC_LEVEL;
7677                                 sec.level = SEC_LEVEL_0;
7678                         } else {
7679                                 sec.flags |= SEC_LEVEL;
7680                                 sec.level = SEC_LEVEL_1;
7681                         }
7682                         if (priv->ieee->set_security)
7683                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7684                         break;
7685                 }
7686
7687         case IW_AUTH_80211_AUTH_ALG:
7688                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7689                 break;
7690
7691         case IW_AUTH_WPA_ENABLED:
7692                 ret = ipw2100_wpa_enable(priv, param->value);
7693                 break;
7694
7695         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7696                 ieee->ieee802_1x = param->value;
7697                 break;
7698
7699                 //case IW_AUTH_ROAMING_CONTROL:
7700         case IW_AUTH_PRIVACY_INVOKED:
7701                 ieee->privacy_invoked = param->value;
7702                 break;
7703
7704         default:
7705                 return -EOPNOTSUPP;
7706         }
7707         return ret;
7708 }
7709
7710 /* SIOCGIWAUTH */
7711 static int ipw2100_wx_get_auth(struct net_device *dev,
7712                                struct iw_request_info *info,
7713                                union iwreq_data *wrqu, char *extra)
7714 {
7715         struct ipw2100_priv *priv = ieee80211_priv(dev);
7716         struct ieee80211_device *ieee = priv->ieee;
7717         struct ieee80211_crypt_data *crypt;
7718         struct iw_param *param = &wrqu->param;
7719         int ret = 0;
7720
7721         switch (param->flags & IW_AUTH_INDEX) {
7722         case IW_AUTH_WPA_VERSION:
7723         case IW_AUTH_CIPHER_PAIRWISE:
7724         case IW_AUTH_CIPHER_GROUP:
7725         case IW_AUTH_KEY_MGMT:
7726                 /*
7727                  * wpa_supplicant will control these internally
7728                  */
7729                 ret = -EOPNOTSUPP;
7730                 break;
7731
7732         case IW_AUTH_TKIP_COUNTERMEASURES:
7733                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7734                 if (!crypt || !crypt->ops->get_flags) {
7735                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7736                                           "crypt not set!\n");
7737                         break;
7738                 }
7739
7740                 param->value = (crypt->ops->get_flags(crypt->priv) &
7741                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7742
7743                 break;
7744
7745         case IW_AUTH_DROP_UNENCRYPTED:
7746                 param->value = ieee->drop_unencrypted;
7747                 break;
7748
7749         case IW_AUTH_80211_AUTH_ALG:
7750                 param->value = priv->ieee->sec.auth_mode;
7751                 break;
7752
7753         case IW_AUTH_WPA_ENABLED:
7754                 param->value = ieee->wpa_enabled;
7755                 break;
7756
7757         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7758                 param->value = ieee->ieee802_1x;
7759                 break;
7760
7761         case IW_AUTH_ROAMING_CONTROL:
7762         case IW_AUTH_PRIVACY_INVOKED:
7763                 param->value = ieee->privacy_invoked;
7764                 break;
7765
7766         default:
7767                 return -EOPNOTSUPP;
7768         }
7769         return 0;
7770 }
7771
7772 /* SIOCSIWENCODEEXT */
7773 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7774                                     struct iw_request_info *info,
7775                                     union iwreq_data *wrqu, char *extra)
7776 {
7777         struct ipw2100_priv *priv = ieee80211_priv(dev);
7778         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7779 }
7780
7781 /* SIOCGIWENCODEEXT */
7782 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7783                                     struct iw_request_info *info,
7784                                     union iwreq_data *wrqu, char *extra)
7785 {
7786         struct ipw2100_priv *priv = ieee80211_priv(dev);
7787         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7788 }
7789
7790 /* SIOCSIWMLME */
7791 static int ipw2100_wx_set_mlme(struct net_device *dev,
7792                                struct iw_request_info *info,
7793                                union iwreq_data *wrqu, char *extra)
7794 {
7795         struct ipw2100_priv *priv = ieee80211_priv(dev);
7796         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7797         u16 reason;
7798
7799         reason = cpu_to_le16(mlme->reason_code);
7800
7801         switch (mlme->cmd) {
7802         case IW_MLME_DEAUTH:
7803                 // silently ignore
7804                 break;
7805
7806         case IW_MLME_DISASSOC:
7807                 ipw2100_disassociate_bssid(priv);
7808                 break;
7809
7810         default:
7811                 return -EOPNOTSUPP;
7812         }
7813         return 0;
7814 }
7815
7816 /*
7817  *
7818  * IWPRIV handlers
7819  *
7820  */
7821 #ifdef CONFIG_IPW2100_MONITOR
7822 static int ipw2100_wx_set_promisc(struct net_device *dev,
7823                                   struct iw_request_info *info,
7824                                   union iwreq_data *wrqu, char *extra)
7825 {
7826         struct ipw2100_priv *priv = ieee80211_priv(dev);
7827         int *parms = (int *)extra;
7828         int enable = (parms[0] > 0);
7829         int err = 0;
7830
7831         mutex_lock(&priv->action_mutex);
7832         if (!(priv->status & STATUS_INITIALIZED)) {
7833                 err = -EIO;
7834                 goto done;
7835         }
7836
7837         if (enable) {
7838                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7839                         err = ipw2100_set_channel(priv, parms[1], 0);
7840                         goto done;
7841                 }
7842                 priv->channel = parms[1];
7843                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7844         } else {
7845                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7846                         err = ipw2100_switch_mode(priv, priv->last_mode);
7847         }
7848       done:
7849         mutex_unlock(&priv->action_mutex);
7850         return err;
7851 }
7852
7853 static int ipw2100_wx_reset(struct net_device *dev,
7854                             struct iw_request_info *info,
7855                             union iwreq_data *wrqu, char *extra)
7856 {
7857         struct ipw2100_priv *priv = ieee80211_priv(dev);
7858         if (priv->status & STATUS_INITIALIZED)
7859                 schedule_reset(priv);
7860         return 0;
7861 }
7862
7863 #endif
7864
7865 static int ipw2100_wx_set_powermode(struct net_device *dev,
7866                                     struct iw_request_info *info,
7867                                     union iwreq_data *wrqu, char *extra)
7868 {
7869         struct ipw2100_priv *priv = ieee80211_priv(dev);
7870         int err = 0, mode = *(int *)extra;
7871
7872         mutex_lock(&priv->action_mutex);
7873         if (!(priv->status & STATUS_INITIALIZED)) {
7874                 err = -EIO;
7875                 goto done;
7876         }
7877
7878         if ((mode < 1) || (mode > POWER_MODES))
7879                 mode = IPW_POWER_AUTO;
7880
7881         if (priv->power_mode != mode)
7882                 err = ipw2100_set_power_mode(priv, mode);
7883       done:
7884         mutex_unlock(&priv->action_mutex);
7885         return err;
7886 }
7887
7888 #define MAX_POWER_STRING 80
7889 static int ipw2100_wx_get_powermode(struct net_device *dev,
7890                                     struct iw_request_info *info,
7891                                     union iwreq_data *wrqu, char *extra)
7892 {
7893         /*
7894          * This can be called at any time.  No action lock required
7895          */
7896
7897         struct ipw2100_priv *priv = ieee80211_priv(dev);
7898         int level = IPW_POWER_LEVEL(priv->power_mode);
7899         s32 timeout, period;
7900
7901         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7902                 snprintf(extra, MAX_POWER_STRING,
7903                          "Power save level: %d (Off)", level);
7904         } else {
7905                 switch (level) {
7906                 case IPW_POWER_MODE_CAM:
7907                         snprintf(extra, MAX_POWER_STRING,
7908                                  "Power save level: %d (None)", level);
7909                         break;
7910                 case IPW_POWER_AUTO:
7911                         snprintf(extra, MAX_POWER_STRING,
7912                                  "Power save level: %d (Auto)", 0);
7913                         break;
7914                 default:
7915                         timeout = timeout_duration[level - 1] / 1000;
7916                         period = period_duration[level - 1] / 1000;
7917                         snprintf(extra, MAX_POWER_STRING,
7918                                  "Power save level: %d "
7919                                  "(Timeout %dms, Period %dms)",
7920                                  level, timeout, period);
7921                 }
7922         }
7923
7924         wrqu->data.length = strlen(extra) + 1;
7925
7926         return 0;
7927 }
7928
7929 static int ipw2100_wx_set_preamble(struct net_device *dev,
7930                                    struct iw_request_info *info,
7931                                    union iwreq_data *wrqu, char *extra)
7932 {
7933         struct ipw2100_priv *priv = ieee80211_priv(dev);
7934         int err, mode = *(int *)extra;
7935
7936         mutex_lock(&priv->action_mutex);
7937         if (!(priv->status & STATUS_INITIALIZED)) {
7938                 err = -EIO;
7939                 goto done;
7940         }
7941
7942         if (mode == 1)
7943                 priv->config |= CFG_LONG_PREAMBLE;
7944         else if (mode == 0)
7945                 priv->config &= ~CFG_LONG_PREAMBLE;
7946         else {
7947                 err = -EINVAL;
7948                 goto done;
7949         }
7950
7951         err = ipw2100_system_config(priv, 0);
7952
7953       done:
7954         mutex_unlock(&priv->action_mutex);
7955         return err;
7956 }
7957
7958 static int ipw2100_wx_get_preamble(struct net_device *dev,
7959                                    struct iw_request_info *info,
7960                                    union iwreq_data *wrqu, char *extra)
7961 {
7962         /*
7963          * This can be called at any time.  No action lock required
7964          */
7965
7966         struct ipw2100_priv *priv = ieee80211_priv(dev);
7967
7968         if (priv->config & CFG_LONG_PREAMBLE)
7969                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7970         else
7971                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7972
7973         return 0;
7974 }
7975
7976 #ifdef CONFIG_IPW2100_MONITOR
7977 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7978                                     struct iw_request_info *info,
7979                                     union iwreq_data *wrqu, char *extra)
7980 {
7981         struct ipw2100_priv *priv = ieee80211_priv(dev);
7982         int err, mode = *(int *)extra;
7983
7984         mutex_lock(&priv->action_mutex);
7985         if (!(priv->status & STATUS_INITIALIZED)) {
7986                 err = -EIO;
7987                 goto done;
7988         }
7989
7990         if (mode == 1)
7991                 priv->config |= CFG_CRC_CHECK;
7992         else if (mode == 0)
7993                 priv->config &= ~CFG_CRC_CHECK;
7994         else {
7995                 err = -EINVAL;
7996                 goto done;
7997         }
7998         err = 0;
7999
8000       done:
8001         mutex_unlock(&priv->action_mutex);
8002         return err;
8003 }
8004
8005 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8006                                     struct iw_request_info *info,
8007                                     union iwreq_data *wrqu, char *extra)
8008 {
8009         /*
8010          * This can be called at any time.  No action lock required
8011          */
8012
8013         struct ipw2100_priv *priv = ieee80211_priv(dev);
8014
8015         if (priv->config & CFG_CRC_CHECK)
8016                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8017         else
8018                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8019
8020         return 0;
8021 }
8022 #endif                          /* CONFIG_IPW2100_MONITOR */
8023
8024 static iw_handler ipw2100_wx_handlers[] = {
8025         NULL,                   /* SIOCSIWCOMMIT */
8026         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8027         NULL,                   /* SIOCSIWNWID */
8028         NULL,                   /* SIOCGIWNWID */
8029         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8030         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8031         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8032         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8033         NULL,                   /* SIOCSIWSENS */
8034         NULL,                   /* SIOCGIWSENS */
8035         NULL,                   /* SIOCSIWRANGE */
8036         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8037         NULL,                   /* SIOCSIWPRIV */
8038         NULL,                   /* SIOCGIWPRIV */
8039         NULL,                   /* SIOCSIWSTATS */
8040         NULL,                   /* SIOCGIWSTATS */
8041         NULL,                   /* SIOCSIWSPY */
8042         NULL,                   /* SIOCGIWSPY */
8043         NULL,                   /* SIOCGIWTHRSPY */
8044         NULL,                   /* SIOCWIWTHRSPY */
8045         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8046         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8047         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8048         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8049         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8050         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8051         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8052         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8053         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8054         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8055         NULL,                   /* -- hole -- */
8056         NULL,                   /* -- hole -- */
8057         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8058         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8059         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8060         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8061         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8062         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8063         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8064         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8065         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8066         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8067         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8068         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8069         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8070         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8071         NULL,                   /* -- hole -- */
8072         NULL,                   /* -- hole -- */
8073         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8074         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8075         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8076         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8077         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8078         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8079         NULL,                   /* SIOCSIWPMKSA */
8080 };
8081
8082 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8083 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8084 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8085 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8086 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8087 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8088 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8089 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8090
8091 static const struct iw_priv_args ipw2100_private_args[] = {
8092
8093 #ifdef CONFIG_IPW2100_MONITOR
8094         {
8095          IPW2100_PRIV_SET_MONITOR,
8096          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8097         {
8098          IPW2100_PRIV_RESET,
8099          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8100 #endif                          /* CONFIG_IPW2100_MONITOR */
8101
8102         {
8103          IPW2100_PRIV_SET_POWER,
8104          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8105         {
8106          IPW2100_PRIV_GET_POWER,
8107          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8108          "get_power"},
8109         {
8110          IPW2100_PRIV_SET_LONGPREAMBLE,
8111          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8112         {
8113          IPW2100_PRIV_GET_LONGPREAMBLE,
8114          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8115 #ifdef CONFIG_IPW2100_MONITOR
8116         {
8117          IPW2100_PRIV_SET_CRC_CHECK,
8118          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8119         {
8120          IPW2100_PRIV_GET_CRC_CHECK,
8121          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8122 #endif                          /* CONFIG_IPW2100_MONITOR */
8123 };
8124
8125 static iw_handler ipw2100_private_handler[] = {
8126 #ifdef CONFIG_IPW2100_MONITOR
8127         ipw2100_wx_set_promisc,
8128         ipw2100_wx_reset,
8129 #else                           /* CONFIG_IPW2100_MONITOR */
8130         NULL,
8131         NULL,
8132 #endif                          /* CONFIG_IPW2100_MONITOR */
8133         ipw2100_wx_set_powermode,
8134         ipw2100_wx_get_powermode,
8135         ipw2100_wx_set_preamble,
8136         ipw2100_wx_get_preamble,
8137 #ifdef CONFIG_IPW2100_MONITOR
8138         ipw2100_wx_set_crc_check,
8139         ipw2100_wx_get_crc_check,
8140 #else                           /* CONFIG_IPW2100_MONITOR */
8141         NULL,
8142         NULL,
8143 #endif                          /* CONFIG_IPW2100_MONITOR */
8144 };
8145
8146 /*
8147  * Get wireless statistics.
8148  * Called by /proc/net/wireless
8149  * Also called by SIOCGIWSTATS
8150  */
8151 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8152 {
8153         enum {
8154                 POOR = 30,
8155                 FAIR = 60,
8156                 GOOD = 80,
8157                 VERY_GOOD = 90,
8158                 EXCELLENT = 95,
8159                 PERFECT = 100
8160         };
8161         int rssi_qual;
8162         int tx_qual;
8163         int beacon_qual;
8164
8165         struct ipw2100_priv *priv = ieee80211_priv(dev);
8166         struct iw_statistics *wstats;
8167         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8168         u32 ord_len = sizeof(u32);
8169
8170         if (!priv)
8171                 return (struct iw_statistics *)NULL;
8172
8173         wstats = &priv->wstats;
8174
8175         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8176          * ipw2100_wx_wireless_stats seems to be called before fw is
8177          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8178          * and associated; if not associcated, the values are all meaningless
8179          * anyway, so set them all to NULL and INVALID */
8180         if (!(priv->status & STATUS_ASSOCIATED)) {
8181                 wstats->miss.beacon = 0;
8182                 wstats->discard.retries = 0;
8183                 wstats->qual.qual = 0;
8184                 wstats->qual.level = 0;
8185                 wstats->qual.noise = 0;
8186                 wstats->qual.updated = 7;
8187                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8188                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8189                 return wstats;
8190         }
8191
8192         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8193                                 &missed_beacons, &ord_len))
8194                 goto fail_get_ordinal;
8195
8196         /* If we don't have a connection the quality and level is 0 */
8197         if (!(priv->status & STATUS_ASSOCIATED)) {
8198                 wstats->qual.qual = 0;
8199                 wstats->qual.level = 0;
8200         } else {
8201                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8202                                         &rssi, &ord_len))
8203                         goto fail_get_ordinal;
8204                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8205                 if (rssi < 10)
8206                         rssi_qual = rssi * POOR / 10;
8207                 else if (rssi < 15)
8208                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8209                 else if (rssi < 20)
8210                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8211                 else if (rssi < 30)
8212                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8213                             10 + GOOD;
8214                 else
8215                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8216                             10 + VERY_GOOD;
8217
8218                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8219                                         &tx_retries, &ord_len))
8220                         goto fail_get_ordinal;
8221
8222                 if (tx_retries > 75)
8223                         tx_qual = (90 - tx_retries) * POOR / 15;
8224                 else if (tx_retries > 70)
8225                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8226                 else if (tx_retries > 65)
8227                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8228                 else if (tx_retries > 50)
8229                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8230                             15 + GOOD;
8231                 else
8232                         tx_qual = (50 - tx_retries) *
8233                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8234
8235                 if (missed_beacons > 50)
8236                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8237                 else if (missed_beacons > 40)
8238                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8239                             10 + POOR;
8240                 else if (missed_beacons > 32)
8241                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8242                             18 + FAIR;
8243                 else if (missed_beacons > 20)
8244                         beacon_qual = (32 - missed_beacons) *
8245                             (VERY_GOOD - GOOD) / 20 + GOOD;
8246                 else
8247                         beacon_qual = (20 - missed_beacons) *
8248                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8249
8250                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8251
8252 #ifdef CONFIG_IPW2100_DEBUG
8253                 if (beacon_qual == quality)
8254                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8255                 else if (tx_qual == quality)
8256                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8257                 else if (quality != 100)
8258                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8259                 else
8260                         IPW_DEBUG_WX("Quality not clamped.\n");
8261 #endif
8262
8263                 wstats->qual.qual = quality;
8264                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8265         }
8266
8267         wstats->qual.noise = 0;
8268         wstats->qual.updated = 7;
8269         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8270
8271         /* FIXME: this is percent and not a # */
8272         wstats->miss.beacon = missed_beacons;
8273
8274         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8275                                 &tx_failures, &ord_len))
8276                 goto fail_get_ordinal;
8277         wstats->discard.retries = tx_failures;
8278
8279         return wstats;
8280
8281       fail_get_ordinal:
8282         IPW_DEBUG_WX("failed querying ordinals.\n");
8283
8284         return (struct iw_statistics *)NULL;
8285 }
8286
8287 static struct iw_handler_def ipw2100_wx_handler_def = {
8288         .standard = ipw2100_wx_handlers,
8289         .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8290         .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8291         .num_private_args = sizeof(ipw2100_private_args) /
8292             sizeof(struct iw_priv_args),
8293         .private = (iw_handler *) ipw2100_private_handler,
8294         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8295         .get_wireless_stats = ipw2100_wx_wireless_stats,
8296 };
8297
8298 static void ipw2100_wx_event_work(struct work_struct *work)
8299 {
8300         struct ipw2100_priv *priv =
8301                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8302         union iwreq_data wrqu;
8303         int len = ETH_ALEN;
8304
8305         if (priv->status & STATUS_STOPPING)
8306                 return;
8307
8308         mutex_lock(&priv->action_mutex);
8309
8310         IPW_DEBUG_WX("enter\n");
8311
8312         mutex_unlock(&priv->action_mutex);
8313
8314         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8315
8316         /* Fetch BSSID from the hardware */
8317         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8318             priv->status & STATUS_RF_KILL_MASK ||
8319             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8320                                 &priv->bssid, &len)) {
8321                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8322         } else {
8323                 /* We now have the BSSID, so can finish setting to the full
8324                  * associated state */
8325                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8326                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8327                 priv->status &= ~STATUS_ASSOCIATING;
8328                 priv->status |= STATUS_ASSOCIATED;
8329                 netif_carrier_on(priv->net_dev);
8330                 netif_wake_queue(priv->net_dev);
8331         }
8332
8333         if (!(priv->status & STATUS_ASSOCIATED)) {
8334                 IPW_DEBUG_WX("Configuring ESSID\n");
8335                 mutex_lock(&priv->action_mutex);
8336                 /* This is a disassociation event, so kick the firmware to
8337                  * look for another AP */
8338                 if (priv->config & CFG_STATIC_ESSID)
8339                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8340                                           0);
8341                 else
8342                         ipw2100_set_essid(priv, NULL, 0, 0);
8343                 mutex_unlock(&priv->action_mutex);
8344         }
8345
8346         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8347 }
8348
8349 #define IPW2100_FW_MAJOR_VERSION 1
8350 #define IPW2100_FW_MINOR_VERSION 3
8351
8352 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8353 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8354
8355 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8356                              IPW2100_FW_MAJOR_VERSION)
8357
8358 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8359 "." __stringify(IPW2100_FW_MINOR_VERSION)
8360
8361 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8362
8363 /*
8364
8365 BINARY FIRMWARE HEADER FORMAT
8366
8367 offset      length   desc
8368 0           2        version
8369 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8370 4           4        fw_len
8371 8           4        uc_len
8372 C           fw_len   firmware data
8373 12 + fw_len uc_len   microcode data
8374
8375 */
8376
8377 struct ipw2100_fw_header {
8378         short version;
8379         short mode;
8380         unsigned int fw_size;
8381         unsigned int uc_size;
8382 } __attribute__ ((packed));
8383
8384 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8385 {
8386         struct ipw2100_fw_header *h =
8387             (struct ipw2100_fw_header *)fw->fw_entry->data;
8388
8389         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8390                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8391                        "(detected version id of %u). "
8392                        "See Documentation/networking/README.ipw2100\n",
8393                        h->version);
8394                 return 1;
8395         }
8396
8397         fw->version = h->version;
8398         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8399         fw->fw.size = h->fw_size;
8400         fw->uc.data = fw->fw.data + h->fw_size;
8401         fw->uc.size = h->uc_size;
8402
8403         return 0;
8404 }
8405
8406 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8407                                 struct ipw2100_fw *fw)
8408 {
8409         char *fw_name;
8410         int rc;
8411
8412         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8413                        priv->net_dev->name);
8414
8415         switch (priv->ieee->iw_mode) {
8416         case IW_MODE_ADHOC:
8417                 fw_name = IPW2100_FW_NAME("-i");
8418                 break;
8419 #ifdef CONFIG_IPW2100_MONITOR
8420         case IW_MODE_MONITOR:
8421                 fw_name = IPW2100_FW_NAME("-p");
8422                 break;
8423 #endif
8424         case IW_MODE_INFRA:
8425         default:
8426                 fw_name = IPW2100_FW_NAME("");
8427                 break;
8428         }
8429
8430         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8431
8432         if (rc < 0) {
8433                 printk(KERN_ERR DRV_NAME ": "
8434                        "%s: Firmware '%s' not available or load failed.\n",
8435                        priv->net_dev->name, fw_name);
8436                 return rc;
8437         }
8438         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8439                        fw->fw_entry->size);
8440
8441         ipw2100_mod_firmware_load(fw);
8442
8443         return 0;
8444 }
8445
8446 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8447                                      struct ipw2100_fw *fw)
8448 {
8449         fw->version = 0;
8450         if (fw->fw_entry)
8451                 release_firmware(fw->fw_entry);
8452         fw->fw_entry = NULL;
8453 }
8454
8455 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8456                                  size_t max)
8457 {
8458         char ver[MAX_FW_VERSION_LEN];
8459         u32 len = MAX_FW_VERSION_LEN;
8460         u32 tmp;
8461         int i;
8462         /* firmware version is an ascii string (max len of 14) */
8463         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8464                 return -EIO;
8465         tmp = max;
8466         if (len >= max)
8467                 len = max - 1;
8468         for (i = 0; i < len; i++)
8469                 buf[i] = ver[i];
8470         buf[i] = '\0';
8471         return tmp;
8472 }
8473
8474 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8475                                     size_t max)
8476 {
8477         u32 ver;
8478         u32 len = sizeof(ver);
8479         /* microcode version is a 32 bit integer */
8480         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8481                 return -EIO;
8482         return snprintf(buf, max, "%08X", ver);
8483 }
8484
8485 /*
8486  * On exit, the firmware will have been freed from the fw list
8487  */
8488 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8489 {
8490         /* firmware is constructed of N contiguous entries, each entry is
8491          * structured as:
8492          *
8493          * offset    sie         desc
8494          * 0         4           address to write to
8495          * 4         2           length of data run
8496          * 6         length      data
8497          */
8498         unsigned int addr;
8499         unsigned short len;
8500
8501         const unsigned char *firmware_data = fw->fw.data;
8502         unsigned int firmware_data_left = fw->fw.size;
8503
8504         while (firmware_data_left > 0) {
8505                 addr = *(u32 *) (firmware_data);
8506                 firmware_data += 4;
8507                 firmware_data_left -= 4;
8508
8509                 len = *(u16 *) (firmware_data);
8510                 firmware_data += 2;
8511                 firmware_data_left -= 2;
8512
8513                 if (len > 32) {
8514                         printk(KERN_ERR DRV_NAME ": "
8515                                "Invalid firmware run-length of %d bytes\n",
8516                                len);
8517                         return -EINVAL;
8518                 }
8519
8520                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8521                 firmware_data += len;
8522                 firmware_data_left -= len;
8523         }
8524
8525         return 0;
8526 }
8527
8528 struct symbol_alive_response {
8529         u8 cmd_id;
8530         u8 seq_num;
8531         u8 ucode_rev;
8532         u8 eeprom_valid;
8533         u16 valid_flags;
8534         u8 IEEE_addr[6];
8535         u16 flags;
8536         u16 pcb_rev;
8537         u16 clock_settle_time;  // 1us LSB
8538         u16 powerup_settle_time;        // 1us LSB
8539         u16 hop_settle_time;    // 1us LSB
8540         u8 date[3];             // month, day, year
8541         u8 time[2];             // hours, minutes
8542         u8 ucode_valid;
8543 };
8544
8545 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8546                                   struct ipw2100_fw *fw)
8547 {
8548         struct net_device *dev = priv->net_dev;
8549         const unsigned char *microcode_data = fw->uc.data;
8550         unsigned int microcode_data_left = fw->uc.size;
8551         void __iomem *reg = (void __iomem *)dev->base_addr;
8552
8553         struct symbol_alive_response response;
8554         int i, j;
8555         u8 data;
8556
8557         /* Symbol control */
8558         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8559         readl(reg);
8560         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8561         readl(reg);
8562
8563         /* HW config */
8564         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8565         readl(reg);
8566         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8567         readl(reg);
8568
8569         /* EN_CS_ACCESS bit to reset control store pointer */
8570         write_nic_byte(dev, 0x210000, 0x40);
8571         readl(reg);
8572         write_nic_byte(dev, 0x210000, 0x0);
8573         readl(reg);
8574         write_nic_byte(dev, 0x210000, 0x40);
8575         readl(reg);
8576
8577         /* copy microcode from buffer into Symbol */
8578
8579         while (microcode_data_left > 0) {
8580                 write_nic_byte(dev, 0x210010, *microcode_data++);
8581                 write_nic_byte(dev, 0x210010, *microcode_data++);
8582                 microcode_data_left -= 2;
8583         }
8584
8585         /* EN_CS_ACCESS bit to reset the control store pointer */
8586         write_nic_byte(dev, 0x210000, 0x0);
8587         readl(reg);
8588
8589         /* Enable System (Reg 0)
8590          * first enable causes garbage in RX FIFO */
8591         write_nic_byte(dev, 0x210000, 0x0);
8592         readl(reg);
8593         write_nic_byte(dev, 0x210000, 0x80);
8594         readl(reg);
8595
8596         /* Reset External Baseband Reg */
8597         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8598         readl(reg);
8599         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8600         readl(reg);
8601
8602         /* HW Config (Reg 5) */
8603         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8604         readl(reg);
8605         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8606         readl(reg);
8607
8608         /* Enable System (Reg 0)
8609          * second enable should be OK */
8610         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8611         readl(reg);
8612         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8613
8614         /* check Symbol is enabled - upped this from 5 as it wasn't always
8615          * catching the update */
8616         for (i = 0; i < 10; i++) {
8617                 udelay(10);
8618
8619                 /* check Dino is enabled bit */
8620                 read_nic_byte(dev, 0x210000, &data);
8621                 if (data & 0x1)
8622                         break;
8623         }
8624
8625         if (i == 10) {
8626                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8627                        dev->name);
8628                 return -EIO;
8629         }
8630
8631         /* Get Symbol alive response */
8632         for (i = 0; i < 30; i++) {
8633                 /* Read alive response structure */
8634                 for (j = 0;
8635                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8636                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8637
8638                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8639                         break;
8640                 udelay(10);
8641         }
8642
8643         if (i == 30) {
8644                 printk(KERN_ERR DRV_NAME
8645                        ": %s: No response from Symbol - hw not alive\n",
8646                        dev->name);
8647                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8648                 return -EIO;
8649         }
8650
8651         return 0;
8652 }