ath9k: Fix channelFlags for 2GHZ
[safe/jmp/linux-2.6] / drivers / net / wireless / ath / ath9k / main.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19
20 static char *dev_info = "ath9k";
21
22 MODULE_AUTHOR("Atheros Communications");
23 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
24 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
25 MODULE_LICENSE("Dual BSD/GPL");
26
27 static int modparam_nohwcrypt;
28 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
29 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
30
31 /* We use the hw_value as an index into our private channel structure */
32
33 #define CHAN2G(_freq, _idx)  { \
34         .center_freq = (_freq), \
35         .hw_value = (_idx), \
36         .max_power = 20, \
37 }
38
39 #define CHAN5G(_freq, _idx) { \
40         .band = IEEE80211_BAND_5GHZ, \
41         .center_freq = (_freq), \
42         .hw_value = (_idx), \
43         .max_power = 20, \
44 }
45
46 /* Some 2 GHz radios are actually tunable on 2312-2732
47  * on 5 MHz steps, we support the channels which we know
48  * we have calibration data for all cards though to make
49  * this static */
50 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
51         CHAN2G(2412, 0), /* Channel 1 */
52         CHAN2G(2417, 1), /* Channel 2 */
53         CHAN2G(2422, 2), /* Channel 3 */
54         CHAN2G(2427, 3), /* Channel 4 */
55         CHAN2G(2432, 4), /* Channel 5 */
56         CHAN2G(2437, 5), /* Channel 6 */
57         CHAN2G(2442, 6), /* Channel 7 */
58         CHAN2G(2447, 7), /* Channel 8 */
59         CHAN2G(2452, 8), /* Channel 9 */
60         CHAN2G(2457, 9), /* Channel 10 */
61         CHAN2G(2462, 10), /* Channel 11 */
62         CHAN2G(2467, 11), /* Channel 12 */
63         CHAN2G(2472, 12), /* Channel 13 */
64         CHAN2G(2484, 13), /* Channel 14 */
65 };
66
67 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
68  * on 5 MHz steps, we support the channels which we know
69  * we have calibration data for all cards though to make
70  * this static */
71 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
72         /* _We_ call this UNII 1 */
73         CHAN5G(5180, 14), /* Channel 36 */
74         CHAN5G(5200, 15), /* Channel 40 */
75         CHAN5G(5220, 16), /* Channel 44 */
76         CHAN5G(5240, 17), /* Channel 48 */
77         /* _We_ call this UNII 2 */
78         CHAN5G(5260, 18), /* Channel 52 */
79         CHAN5G(5280, 19), /* Channel 56 */
80         CHAN5G(5300, 20), /* Channel 60 */
81         CHAN5G(5320, 21), /* Channel 64 */
82         /* _We_ call this "Middle band" */
83         CHAN5G(5500, 22), /* Channel 100 */
84         CHAN5G(5520, 23), /* Channel 104 */
85         CHAN5G(5540, 24), /* Channel 108 */
86         CHAN5G(5560, 25), /* Channel 112 */
87         CHAN5G(5580, 26), /* Channel 116 */
88         CHAN5G(5600, 27), /* Channel 120 */
89         CHAN5G(5620, 28), /* Channel 124 */
90         CHAN5G(5640, 29), /* Channel 128 */
91         CHAN5G(5660, 30), /* Channel 132 */
92         CHAN5G(5680, 31), /* Channel 136 */
93         CHAN5G(5700, 32), /* Channel 140 */
94         /* _We_ call this UNII 3 */
95         CHAN5G(5745, 33), /* Channel 149 */
96         CHAN5G(5765, 34), /* Channel 153 */
97         CHAN5G(5785, 35), /* Channel 157 */
98         CHAN5G(5805, 36), /* Channel 161 */
99         CHAN5G(5825, 37), /* Channel 165 */
100 };
101
102 static void ath_cache_conf_rate(struct ath_softc *sc,
103                                 struct ieee80211_conf *conf)
104 {
105         switch (conf->channel->band) {
106         case IEEE80211_BAND_2GHZ:
107                 if (conf_is_ht20(conf))
108                         sc->cur_rate_table =
109                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
110                 else if (conf_is_ht40_minus(conf))
111                         sc->cur_rate_table =
112                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
113                 else if (conf_is_ht40_plus(conf))
114                         sc->cur_rate_table =
115                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
116                 else
117                         sc->cur_rate_table =
118                           sc->hw_rate_table[ATH9K_MODE_11G];
119                 break;
120         case IEEE80211_BAND_5GHZ:
121                 if (conf_is_ht20(conf))
122                         sc->cur_rate_table =
123                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
124                 else if (conf_is_ht40_minus(conf))
125                         sc->cur_rate_table =
126                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
127                 else if (conf_is_ht40_plus(conf))
128                         sc->cur_rate_table =
129                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
130                 else
131                         sc->cur_rate_table =
132                           sc->hw_rate_table[ATH9K_MODE_11A];
133                 break;
134         default:
135                 BUG_ON(1);
136                 break;
137         }
138 }
139
140 static void ath_update_txpow(struct ath_softc *sc)
141 {
142         struct ath_hw *ah = sc->sc_ah;
143         u32 txpow;
144
145         if (sc->curtxpow != sc->config.txpowlimit) {
146                 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
147                 /* read back in case value is clamped */
148                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
149                 sc->curtxpow = txpow;
150         }
151 }
152
153 static u8 parse_mpdudensity(u8 mpdudensity)
154 {
155         /*
156          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
157          *   0 for no restriction
158          *   1 for 1/4 us
159          *   2 for 1/2 us
160          *   3 for 1 us
161          *   4 for 2 us
162          *   5 for 4 us
163          *   6 for 8 us
164          *   7 for 16 us
165          */
166         switch (mpdudensity) {
167         case 0:
168                 return 0;
169         case 1:
170         case 2:
171         case 3:
172                 /* Our lower layer calculations limit our precision to
173                    1 microsecond */
174                 return 1;
175         case 4:
176                 return 2;
177         case 5:
178                 return 4;
179         case 6:
180                 return 8;
181         case 7:
182                 return 16;
183         default:
184                 return 0;
185         }
186 }
187
188 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
189 {
190         const struct ath_rate_table *rate_table = NULL;
191         struct ieee80211_supported_band *sband;
192         struct ieee80211_rate *rate;
193         int i, maxrates;
194
195         switch (band) {
196         case IEEE80211_BAND_2GHZ:
197                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
198                 break;
199         case IEEE80211_BAND_5GHZ:
200                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
201                 break;
202         default:
203                 break;
204         }
205
206         if (rate_table == NULL)
207                 return;
208
209         sband = &sc->sbands[band];
210         rate = sc->rates[band];
211
212         if (rate_table->rate_cnt > ATH_RATE_MAX)
213                 maxrates = ATH_RATE_MAX;
214         else
215                 maxrates = rate_table->rate_cnt;
216
217         for (i = 0; i < maxrates; i++) {
218                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
219                 rate[i].hw_value = rate_table->info[i].ratecode;
220                 if (rate_table->info[i].short_preamble) {
221                         rate[i].hw_value_short = rate_table->info[i].ratecode |
222                                 rate_table->info[i].short_preamble;
223                         rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
224                 }
225                 sband->n_bitrates++;
226
227                 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
228                         rate[i].bitrate / 10, rate[i].hw_value);
229         }
230 }
231
232 static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
233                                                 struct ieee80211_hw *hw)
234 {
235         struct ieee80211_channel *curchan = hw->conf.channel;
236         struct ath9k_channel *channel;
237         u8 chan_idx;
238
239         chan_idx = curchan->hw_value;
240         channel = &sc->sc_ah->channels[chan_idx];
241         ath9k_update_ichannel(sc, hw, channel);
242         return channel;
243 }
244
245 /*
246  * Set/change channels.  If the channel is really being changed, it's done
247  * by reseting the chip.  To accomplish this we must first cleanup any pending
248  * DMA, then restart stuff.
249 */
250 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
251                     struct ath9k_channel *hchan)
252 {
253         struct ath_hw *ah = sc->sc_ah;
254         bool fastcc = true, stopped;
255         struct ieee80211_channel *channel = hw->conf.channel;
256         int r;
257
258         if (sc->sc_flags & SC_OP_INVALID)
259                 return -EIO;
260
261         ath9k_ps_wakeup(sc);
262
263         /*
264          * This is only performed if the channel settings have
265          * actually changed.
266          *
267          * To switch channels clear any pending DMA operations;
268          * wait long enough for the RX fifo to drain, reset the
269          * hardware at the new frequency, and then re-enable
270          * the relevant bits of the h/w.
271          */
272         ath9k_hw_set_interrupts(ah, 0);
273         ath_drain_all_txq(sc, false);
274         stopped = ath_stoprecv(sc);
275
276         /* XXX: do not flush receive queue here. We don't want
277          * to flush data frames already in queue because of
278          * changing channel. */
279
280         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
281                 fastcc = false;
282
283         DPRINTF(sc, ATH_DBG_CONFIG,
284                 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
285                 sc->sc_ah->curchan->channel,
286                 channel->center_freq, sc->tx_chan_width);
287
288         spin_lock_bh(&sc->sc_resetlock);
289
290         r = ath9k_hw_reset(ah, hchan, fastcc);
291         if (r) {
292                 DPRINTF(sc, ATH_DBG_FATAL,
293                         "Unable to reset channel (%u Mhz) "
294                         "reset status %d\n",
295                         channel->center_freq, r);
296                 spin_unlock_bh(&sc->sc_resetlock);
297                 goto ps_restore;
298         }
299         spin_unlock_bh(&sc->sc_resetlock);
300
301         sc->sc_flags &= ~SC_OP_FULL_RESET;
302
303         if (ath_startrecv(sc) != 0) {
304                 DPRINTF(sc, ATH_DBG_FATAL,
305                         "Unable to restart recv logic\n");
306                 r = -EIO;
307                 goto ps_restore;
308         }
309
310         ath_cache_conf_rate(sc, &hw->conf);
311         ath_update_txpow(sc);
312         ath9k_hw_set_interrupts(ah, sc->imask);
313
314  ps_restore:
315         ath9k_ps_restore(sc);
316         return r;
317 }
318
319 /*
320  *  This routine performs the periodic noise floor calibration function
321  *  that is used to adjust and optimize the chip performance.  This
322  *  takes environmental changes (location, temperature) into account.
323  *  When the task is complete, it reschedules itself depending on the
324  *  appropriate interval that was calculated.
325  */
326 static void ath_ani_calibrate(unsigned long data)
327 {
328         struct ath_softc *sc = (struct ath_softc *)data;
329         struct ath_hw *ah = sc->sc_ah;
330         bool longcal = false;
331         bool shortcal = false;
332         bool aniflag = false;
333         unsigned int timestamp = jiffies_to_msecs(jiffies);
334         u32 cal_interval, short_cal_interval;
335
336         short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
337                 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
338
339         /*
340         * don't calibrate when we're scanning.
341         * we are most likely not on our home channel.
342         */
343         spin_lock(&sc->ani_lock);
344         if (sc->sc_flags & SC_OP_SCANNING)
345                 goto set_timer;
346
347         /* Only calibrate if awake */
348         if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
349                 goto set_timer;
350
351         ath9k_ps_wakeup(sc);
352
353         /* Long calibration runs independently of short calibration. */
354         if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
355                 longcal = true;
356                 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
357                 sc->ani.longcal_timer = timestamp;
358         }
359
360         /* Short calibration applies only while caldone is false */
361         if (!sc->ani.caldone) {
362                 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
363                         shortcal = true;
364                         DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
365                         sc->ani.shortcal_timer = timestamp;
366                         sc->ani.resetcal_timer = timestamp;
367                 }
368         } else {
369                 if ((timestamp - sc->ani.resetcal_timer) >=
370                     ATH_RESTART_CALINTERVAL) {
371                         sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
372                         if (sc->ani.caldone)
373                                 sc->ani.resetcal_timer = timestamp;
374                 }
375         }
376
377         /* Verify whether we must check ANI */
378         if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
379                 aniflag = true;
380                 sc->ani.checkani_timer = timestamp;
381         }
382
383         /* Skip all processing if there's nothing to do. */
384         if (longcal || shortcal || aniflag) {
385                 /* Call ANI routine if necessary */
386                 if (aniflag)
387                         ath9k_hw_ani_monitor(ah, ah->curchan);
388
389                 /* Perform calibration if necessary */
390                 if (longcal || shortcal) {
391                         sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
392                                                      sc->rx_chainmask, longcal);
393
394                         if (longcal)
395                                 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
396                                                                      ah->curchan);
397
398                         DPRINTF(sc, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
399                                 ah->curchan->channel, ah->curchan->channelFlags,
400                                 sc->ani.noise_floor);
401                 }
402         }
403
404         ath9k_ps_restore(sc);
405
406 set_timer:
407         spin_unlock(&sc->ani_lock);
408         /*
409         * Set timer interval based on previous results.
410         * The interval must be the shortest necessary to satisfy ANI,
411         * short calibration and long calibration.
412         */
413         cal_interval = ATH_LONG_CALINTERVAL;
414         if (sc->sc_ah->config.enable_ani)
415                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
416         if (!sc->ani.caldone)
417                 cal_interval = min(cal_interval, (u32)short_cal_interval);
418
419         mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
420 }
421
422 static void ath_start_ani(struct ath_softc *sc)
423 {
424         unsigned long timestamp = jiffies_to_msecs(jiffies);
425
426         sc->ani.longcal_timer = timestamp;
427         sc->ani.shortcal_timer = timestamp;
428         sc->ani.checkani_timer = timestamp;
429
430         mod_timer(&sc->ani.timer,
431                   jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
432 }
433
434 /*
435  * Update tx/rx chainmask. For legacy association,
436  * hard code chainmask to 1x1, for 11n association, use
437  * the chainmask configuration, for bt coexistence, use
438  * the chainmask configuration even in legacy mode.
439  */
440 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
441 {
442         if ((sc->sc_flags & SC_OP_SCANNING) || is_ht ||
443             (sc->btcoex_info.btcoex_scheme != ATH_BTCOEX_CFG_NONE)) {
444                 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
445                 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
446         } else {
447                 sc->tx_chainmask = 1;
448                 sc->rx_chainmask = 1;
449         }
450
451         DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
452                 sc->tx_chainmask, sc->rx_chainmask);
453 }
454
455 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
456 {
457         struct ath_node *an;
458
459         an = (struct ath_node *)sta->drv_priv;
460
461         if (sc->sc_flags & SC_OP_TXAGGR) {
462                 ath_tx_node_init(sc, an);
463                 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
464                                      sta->ht_cap.ampdu_factor);
465                 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
466                 an->last_rssi = ATH_RSSI_DUMMY_MARKER;
467         }
468 }
469
470 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
471 {
472         struct ath_node *an = (struct ath_node *)sta->drv_priv;
473
474         if (sc->sc_flags & SC_OP_TXAGGR)
475                 ath_tx_node_cleanup(sc, an);
476 }
477
478 static void ath9k_tasklet(unsigned long data)
479 {
480         struct ath_softc *sc = (struct ath_softc *)data;
481         u32 status = sc->intrstatus;
482
483         ath9k_ps_wakeup(sc);
484
485         if (status & ATH9K_INT_FATAL) {
486                 ath_reset(sc, false);
487                 ath9k_ps_restore(sc);
488                 return;
489         }
490
491         if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
492                 spin_lock_bh(&sc->rx.rxflushlock);
493                 ath_rx_tasklet(sc, 0);
494                 spin_unlock_bh(&sc->rx.rxflushlock);
495         }
496
497         if (status & ATH9K_INT_TX)
498                 ath_tx_tasklet(sc);
499
500         if ((status & ATH9K_INT_TSFOOR) && sc->ps_enabled) {
501                 /*
502                  * TSF sync does not look correct; remain awake to sync with
503                  * the next Beacon.
504                  */
505                 DPRINTF(sc, ATH_DBG_PS, "TSFOOR - Sync with next Beacon\n");
506                 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
507         }
508
509         if (sc->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
510                 if (status & ATH9K_INT_GENTIMER)
511                         ath_gen_timer_isr(sc->sc_ah);
512
513         /* re-enable hardware interrupt */
514         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
515         ath9k_ps_restore(sc);
516 }
517
518 irqreturn_t ath_isr(int irq, void *dev)
519 {
520 #define SCHED_INTR (                            \
521                 ATH9K_INT_FATAL |               \
522                 ATH9K_INT_RXORN |               \
523                 ATH9K_INT_RXEOL |               \
524                 ATH9K_INT_RX |                  \
525                 ATH9K_INT_TX |                  \
526                 ATH9K_INT_BMISS |               \
527                 ATH9K_INT_CST |                 \
528                 ATH9K_INT_TSFOOR |              \
529                 ATH9K_INT_GENTIMER)
530
531         struct ath_softc *sc = dev;
532         struct ath_hw *ah = sc->sc_ah;
533         enum ath9k_int status;
534         bool sched = false;
535
536         /*
537          * The hardware is not ready/present, don't
538          * touch anything. Note this can happen early
539          * on if the IRQ is shared.
540          */
541         if (sc->sc_flags & SC_OP_INVALID)
542                 return IRQ_NONE;
543
544
545         /* shared irq, not for us */
546
547         if (!ath9k_hw_intrpend(ah))
548                 return IRQ_NONE;
549
550         /*
551          * Figure out the reason(s) for the interrupt.  Note
552          * that the hal returns a pseudo-ISR that may include
553          * bits we haven't explicitly enabled so we mask the
554          * value to insure we only process bits we requested.
555          */
556         ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
557         status &= sc->imask;    /* discard unasked-for bits */
558
559         /*
560          * If there are no status bits set, then this interrupt was not
561          * for me (should have been caught above).
562          */
563         if (!status)
564                 return IRQ_NONE;
565
566         /* Cache the status */
567         sc->intrstatus = status;
568
569         if (status & SCHED_INTR)
570                 sched = true;
571
572         /*
573          * If a FATAL or RXORN interrupt is received, we have to reset the
574          * chip immediately.
575          */
576         if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
577                 goto chip_reset;
578
579         if (status & ATH9K_INT_SWBA)
580                 tasklet_schedule(&sc->bcon_tasklet);
581
582         if (status & ATH9K_INT_TXURN)
583                 ath9k_hw_updatetxtriglevel(ah, true);
584
585         if (status & ATH9K_INT_MIB) {
586                 /*
587                  * Disable interrupts until we service the MIB
588                  * interrupt; otherwise it will continue to
589                  * fire.
590                  */
591                 ath9k_hw_set_interrupts(ah, 0);
592                 /*
593                  * Let the hal handle the event. We assume
594                  * it will clear whatever condition caused
595                  * the interrupt.
596                  */
597                 ath9k_hw_procmibevent(ah);
598                 ath9k_hw_set_interrupts(ah, sc->imask);
599         }
600
601         if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
602                 if (status & ATH9K_INT_TIM_TIMER) {
603                         /* Clear RxAbort bit so that we can
604                          * receive frames */
605                         ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
606                         ath9k_hw_setrxabort(sc->sc_ah, 0);
607                         sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
608                 }
609
610 chip_reset:
611
612         ath_debug_stat_interrupt(sc, status);
613
614         if (sched) {
615                 /* turn off every interrupt except SWBA */
616                 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
617                 tasklet_schedule(&sc->intr_tq);
618         }
619
620         return IRQ_HANDLED;
621
622 #undef SCHED_INTR
623 }
624
625 static u32 ath_get_extchanmode(struct ath_softc *sc,
626                                struct ieee80211_channel *chan,
627                                enum nl80211_channel_type channel_type)
628 {
629         u32 chanmode = 0;
630
631         switch (chan->band) {
632         case IEEE80211_BAND_2GHZ:
633                 switch(channel_type) {
634                 case NL80211_CHAN_NO_HT:
635                 case NL80211_CHAN_HT20:
636                         chanmode = CHANNEL_G_HT20;
637                         break;
638                 case NL80211_CHAN_HT40PLUS:
639                         chanmode = CHANNEL_G_HT40PLUS;
640                         break;
641                 case NL80211_CHAN_HT40MINUS:
642                         chanmode = CHANNEL_G_HT40MINUS;
643                         break;
644                 }
645                 break;
646         case IEEE80211_BAND_5GHZ:
647                 switch(channel_type) {
648                 case NL80211_CHAN_NO_HT:
649                 case NL80211_CHAN_HT20:
650                         chanmode = CHANNEL_A_HT20;
651                         break;
652                 case NL80211_CHAN_HT40PLUS:
653                         chanmode = CHANNEL_A_HT40PLUS;
654                         break;
655                 case NL80211_CHAN_HT40MINUS:
656                         chanmode = CHANNEL_A_HT40MINUS;
657                         break;
658                 }
659                 break;
660         default:
661                 break;
662         }
663
664         return chanmode;
665 }
666
667 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
668                            struct ath9k_keyval *hk, const u8 *addr,
669                            bool authenticator)
670 {
671         const u8 *key_rxmic;
672         const u8 *key_txmic;
673
674         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
675         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
676
677         if (addr == NULL) {
678                 /*
679                  * Group key installation - only two key cache entries are used
680                  * regardless of splitmic capability since group key is only
681                  * used either for TX or RX.
682                  */
683                 if (authenticator) {
684                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
685                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
686                 } else {
687                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
688                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
689                 }
690                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
691         }
692         if (!sc->splitmic) {
693                 /* TX and RX keys share the same key cache entry. */
694                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
695                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
696                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
697         }
698
699         /* Separate key cache entries for TX and RX */
700
701         /* TX key goes at first index, RX key at +32. */
702         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
703         if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
704                 /* TX MIC entry failed. No need to proceed further */
705                 DPRINTF(sc, ATH_DBG_FATAL,
706                         "Setting TX MIC Key Failed\n");
707                 return 0;
708         }
709
710         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
711         /* XXX delete tx key on failure? */
712         return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
713 }
714
715 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
716 {
717         int i;
718
719         for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
720                 if (test_bit(i, sc->keymap) ||
721                     test_bit(i + 64, sc->keymap))
722                         continue; /* At least one part of TKIP key allocated */
723                 if (sc->splitmic &&
724                     (test_bit(i + 32, sc->keymap) ||
725                      test_bit(i + 64 + 32, sc->keymap)))
726                         continue; /* At least one part of TKIP key allocated */
727
728                 /* Found a free slot for a TKIP key */
729                 return i;
730         }
731         return -1;
732 }
733
734 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
735 {
736         int i;
737
738         /* First, try to find slots that would not be available for TKIP. */
739         if (sc->splitmic) {
740                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
741                         if (!test_bit(i, sc->keymap) &&
742                             (test_bit(i + 32, sc->keymap) ||
743                              test_bit(i + 64, sc->keymap) ||
744                              test_bit(i + 64 + 32, sc->keymap)))
745                                 return i;
746                         if (!test_bit(i + 32, sc->keymap) &&
747                             (test_bit(i, sc->keymap) ||
748                              test_bit(i + 64, sc->keymap) ||
749                              test_bit(i + 64 + 32, sc->keymap)))
750                                 return i + 32;
751                         if (!test_bit(i + 64, sc->keymap) &&
752                             (test_bit(i , sc->keymap) ||
753                              test_bit(i + 32, sc->keymap) ||
754                              test_bit(i + 64 + 32, sc->keymap)))
755                                 return i + 64;
756                         if (!test_bit(i + 64 + 32, sc->keymap) &&
757                             (test_bit(i, sc->keymap) ||
758                              test_bit(i + 32, sc->keymap) ||
759                              test_bit(i + 64, sc->keymap)))
760                                 return i + 64 + 32;
761                 }
762         } else {
763                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
764                         if (!test_bit(i, sc->keymap) &&
765                             test_bit(i + 64, sc->keymap))
766                                 return i;
767                         if (test_bit(i, sc->keymap) &&
768                             !test_bit(i + 64, sc->keymap))
769                                 return i + 64;
770                 }
771         }
772
773         /* No partially used TKIP slots, pick any available slot */
774         for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
775                 /* Do not allow slots that could be needed for TKIP group keys
776                  * to be used. This limitation could be removed if we know that
777                  * TKIP will not be used. */
778                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
779                         continue;
780                 if (sc->splitmic) {
781                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
782                                 continue;
783                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
784                                 continue;
785                 }
786
787                 if (!test_bit(i, sc->keymap))
788                         return i; /* Found a free slot for a key */
789         }
790
791         /* No free slot found */
792         return -1;
793 }
794
795 static int ath_key_config(struct ath_softc *sc,
796                           struct ieee80211_vif *vif,
797                           struct ieee80211_sta *sta,
798                           struct ieee80211_key_conf *key)
799 {
800         struct ath9k_keyval hk;
801         const u8 *mac = NULL;
802         int ret = 0;
803         int idx;
804
805         memset(&hk, 0, sizeof(hk));
806
807         switch (key->alg) {
808         case ALG_WEP:
809                 hk.kv_type = ATH9K_CIPHER_WEP;
810                 break;
811         case ALG_TKIP:
812                 hk.kv_type = ATH9K_CIPHER_TKIP;
813                 break;
814         case ALG_CCMP:
815                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
816                 break;
817         default:
818                 return -EOPNOTSUPP;
819         }
820
821         hk.kv_len = key->keylen;
822         memcpy(hk.kv_val, key->key, key->keylen);
823
824         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
825                 /* For now, use the default keys for broadcast keys. This may
826                  * need to change with virtual interfaces. */
827                 idx = key->keyidx;
828         } else if (key->keyidx) {
829                 if (WARN_ON(!sta))
830                         return -EOPNOTSUPP;
831                 mac = sta->addr;
832
833                 if (vif->type != NL80211_IFTYPE_AP) {
834                         /* Only keyidx 0 should be used with unicast key, but
835                          * allow this for client mode for now. */
836                         idx = key->keyidx;
837                 } else
838                         return -EIO;
839         } else {
840                 if (WARN_ON(!sta))
841                         return -EOPNOTSUPP;
842                 mac = sta->addr;
843
844                 if (key->alg == ALG_TKIP)
845                         idx = ath_reserve_key_cache_slot_tkip(sc);
846                 else
847                         idx = ath_reserve_key_cache_slot(sc);
848                 if (idx < 0)
849                         return -ENOSPC; /* no free key cache entries */
850         }
851
852         if (key->alg == ALG_TKIP)
853                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
854                                       vif->type == NL80211_IFTYPE_AP);
855         else
856                 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
857
858         if (!ret)
859                 return -EIO;
860
861         set_bit(idx, sc->keymap);
862         if (key->alg == ALG_TKIP) {
863                 set_bit(idx + 64, sc->keymap);
864                 if (sc->splitmic) {
865                         set_bit(idx + 32, sc->keymap);
866                         set_bit(idx + 64 + 32, sc->keymap);
867                 }
868         }
869
870         return idx;
871 }
872
873 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
874 {
875         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
876         if (key->hw_key_idx < IEEE80211_WEP_NKID)
877                 return;
878
879         clear_bit(key->hw_key_idx, sc->keymap);
880         if (key->alg != ALG_TKIP)
881                 return;
882
883         clear_bit(key->hw_key_idx + 64, sc->keymap);
884         if (sc->splitmic) {
885                 clear_bit(key->hw_key_idx + 32, sc->keymap);
886                 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
887         }
888 }
889
890 static void setup_ht_cap(struct ath_softc *sc,
891                          struct ieee80211_sta_ht_cap *ht_info)
892 {
893         u8 tx_streams, rx_streams;
894
895         ht_info->ht_supported = true;
896         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
897                        IEEE80211_HT_CAP_SM_PS |
898                        IEEE80211_HT_CAP_SGI_40 |
899                        IEEE80211_HT_CAP_DSSSCCK40;
900
901         ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
902         ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
903
904         /* set up supported mcs set */
905         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
906         tx_streams = !(sc->tx_chainmask & (sc->tx_chainmask - 1)) ? 1 : 2;
907         rx_streams = !(sc->rx_chainmask & (sc->rx_chainmask - 1)) ? 1 : 2;
908
909         if (tx_streams != rx_streams) {
910                 DPRINTF(sc, ATH_DBG_CONFIG, "TX streams %d, RX streams: %d\n",
911                         tx_streams, rx_streams);
912                 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
913                 ht_info->mcs.tx_params |= ((tx_streams - 1) <<
914                                 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
915         }
916
917         ht_info->mcs.rx_mask[0] = 0xff;
918         if (rx_streams >= 2)
919                 ht_info->mcs.rx_mask[1] = 0xff;
920
921         ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
922 }
923
924 static void ath9k_bss_assoc_info(struct ath_softc *sc,
925                                  struct ieee80211_vif *vif,
926                                  struct ieee80211_bss_conf *bss_conf)
927 {
928
929         if (bss_conf->assoc) {
930                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
931                         bss_conf->aid, sc->curbssid);
932
933                 /* New association, store aid */
934                 sc->curaid = bss_conf->aid;
935                 ath9k_hw_write_associd(sc);
936
937                 /*
938                  * Request a re-configuration of Beacon related timers
939                  * on the receipt of the first Beacon frame (i.e.,
940                  * after time sync with the AP).
941                  */
942                 sc->sc_flags |= SC_OP_BEACON_SYNC;
943
944                 /* Configure the beacon */
945                 ath_beacon_config(sc, vif);
946
947                 /* Reset rssi stats */
948                 sc->sc_ah->stats.avgbrssi = ATH_RSSI_DUMMY_MARKER;
949
950                 ath_start_ani(sc);
951         } else {
952                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
953                 sc->curaid = 0;
954                 /* Stop ANI */
955                 del_timer_sync(&sc->ani.timer);
956         }
957 }
958
959 /********************************/
960 /*       LED functions          */
961 /********************************/
962
963 static void ath_led_blink_work(struct work_struct *work)
964 {
965         struct ath_softc *sc = container_of(work, struct ath_softc,
966                                             ath_led_blink_work.work);
967
968         if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
969                 return;
970
971         if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
972             (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
973                 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
974         else
975                 ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
976                                   (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
977
978         ieee80211_queue_delayed_work(sc->hw,
979                                      &sc->ath_led_blink_work,
980                                      (sc->sc_flags & SC_OP_LED_ON) ?
981                                         msecs_to_jiffies(sc->led_off_duration) :
982                                         msecs_to_jiffies(sc->led_on_duration));
983
984         sc->led_on_duration = sc->led_on_cnt ?
985                         max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
986                         ATH_LED_ON_DURATION_IDLE;
987         sc->led_off_duration = sc->led_off_cnt ?
988                         max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
989                         ATH_LED_OFF_DURATION_IDLE;
990         sc->led_on_cnt = sc->led_off_cnt = 0;
991         if (sc->sc_flags & SC_OP_LED_ON)
992                 sc->sc_flags &= ~SC_OP_LED_ON;
993         else
994                 sc->sc_flags |= SC_OP_LED_ON;
995 }
996
997 static void ath_led_brightness(struct led_classdev *led_cdev,
998                                enum led_brightness brightness)
999 {
1000         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
1001         struct ath_softc *sc = led->sc;
1002
1003         switch (brightness) {
1004         case LED_OFF:
1005                 if (led->led_type == ATH_LED_ASSOC ||
1006                     led->led_type == ATH_LED_RADIO) {
1007                         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin,
1008                                 (led->led_type == ATH_LED_RADIO));
1009                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1010                         if (led->led_type == ATH_LED_RADIO)
1011                                 sc->sc_flags &= ~SC_OP_LED_ON;
1012                 } else {
1013                         sc->led_off_cnt++;
1014                 }
1015                 break;
1016         case LED_FULL:
1017                 if (led->led_type == ATH_LED_ASSOC) {
1018                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
1019                         ieee80211_queue_delayed_work(sc->hw,
1020                                                      &sc->ath_led_blink_work, 0);
1021                 } else if (led->led_type == ATH_LED_RADIO) {
1022                         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0);
1023                         sc->sc_flags |= SC_OP_LED_ON;
1024                 } else {
1025                         sc->led_on_cnt++;
1026                 }
1027                 break;
1028         default:
1029                 break;
1030         }
1031 }
1032
1033 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1034                             char *trigger)
1035 {
1036         int ret;
1037
1038         led->sc = sc;
1039         led->led_cdev.name = led->name;
1040         led->led_cdev.default_trigger = trigger;
1041         led->led_cdev.brightness_set = ath_led_brightness;
1042
1043         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1044         if (ret)
1045                 DPRINTF(sc, ATH_DBG_FATAL,
1046                         "Failed to register led:%s", led->name);
1047         else
1048                 led->registered = 1;
1049         return ret;
1050 }
1051
1052 static void ath_unregister_led(struct ath_led *led)
1053 {
1054         if (led->registered) {
1055                 led_classdev_unregister(&led->led_cdev);
1056                 led->registered = 0;
1057         }
1058 }
1059
1060 static void ath_deinit_leds(struct ath_softc *sc)
1061 {
1062         ath_unregister_led(&sc->assoc_led);
1063         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1064         ath_unregister_led(&sc->tx_led);
1065         ath_unregister_led(&sc->rx_led);
1066         ath_unregister_led(&sc->radio_led);
1067         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1068 }
1069
1070 static void ath_init_leds(struct ath_softc *sc)
1071 {
1072         char *trigger;
1073         int ret;
1074
1075         if (AR_SREV_9287(sc->sc_ah))
1076                 sc->sc_ah->led_pin = ATH_LED_PIN_9287;
1077         else
1078                 sc->sc_ah->led_pin = ATH_LED_PIN_DEF;
1079
1080         /* Configure gpio 1 for output */
1081         ath9k_hw_cfg_output(sc->sc_ah, sc->sc_ah->led_pin,
1082                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1083         /* LED off, active low */
1084         ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1);
1085
1086         INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1087
1088         trigger = ieee80211_get_radio_led_name(sc->hw);
1089         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1090                 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1091         ret = ath_register_led(sc, &sc->radio_led, trigger);
1092         sc->radio_led.led_type = ATH_LED_RADIO;
1093         if (ret)
1094                 goto fail;
1095
1096         trigger = ieee80211_get_assoc_led_name(sc->hw);
1097         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1098                 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1099         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1100         sc->assoc_led.led_type = ATH_LED_ASSOC;
1101         if (ret)
1102                 goto fail;
1103
1104         trigger = ieee80211_get_tx_led_name(sc->hw);
1105         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1106                 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1107         ret = ath_register_led(sc, &sc->tx_led, trigger);
1108         sc->tx_led.led_type = ATH_LED_TX;
1109         if (ret)
1110                 goto fail;
1111
1112         trigger = ieee80211_get_rx_led_name(sc->hw);
1113         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1114                 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1115         ret = ath_register_led(sc, &sc->rx_led, trigger);
1116         sc->rx_led.led_type = ATH_LED_RX;
1117         if (ret)
1118                 goto fail;
1119
1120         return;
1121
1122 fail:
1123         cancel_delayed_work_sync(&sc->ath_led_blink_work);
1124         ath_deinit_leds(sc);
1125 }
1126
1127 void ath_radio_enable(struct ath_softc *sc)
1128 {
1129         struct ath_hw *ah = sc->sc_ah;
1130         struct ieee80211_channel *channel = sc->hw->conf.channel;
1131         int r;
1132
1133         ath9k_ps_wakeup(sc);
1134         ath9k_hw_configpcipowersave(ah, 0);
1135
1136         if (!ah->curchan)
1137                 ah->curchan = ath_get_curchannel(sc, sc->hw);
1138
1139         spin_lock_bh(&sc->sc_resetlock);
1140         r = ath9k_hw_reset(ah, ah->curchan, false);
1141         if (r) {
1142                 DPRINTF(sc, ATH_DBG_FATAL,
1143                         "Unable to reset channel %u (%uMhz) ",
1144                         "reset status %d\n",
1145                         channel->center_freq, r);
1146         }
1147         spin_unlock_bh(&sc->sc_resetlock);
1148
1149         ath_update_txpow(sc);
1150         if (ath_startrecv(sc) != 0) {
1151                 DPRINTF(sc, ATH_DBG_FATAL,
1152                         "Unable to restart recv logic\n");
1153                 return;
1154         }
1155
1156         if (sc->sc_flags & SC_OP_BEACONS)
1157                 ath_beacon_config(sc, NULL);    /* restart beacons */
1158
1159         /* Re-Enable  interrupts */
1160         ath9k_hw_set_interrupts(ah, sc->imask);
1161
1162         /* Enable LED */
1163         ath9k_hw_cfg_output(ah, ah->led_pin,
1164                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1165         ath9k_hw_set_gpio(ah, ah->led_pin, 0);
1166
1167         ieee80211_wake_queues(sc->hw);
1168         ath9k_ps_restore(sc);
1169 }
1170
1171 void ath_radio_disable(struct ath_softc *sc)
1172 {
1173         struct ath_hw *ah = sc->sc_ah;
1174         struct ieee80211_channel *channel = sc->hw->conf.channel;
1175         int r;
1176
1177         ath9k_ps_wakeup(sc);
1178         ieee80211_stop_queues(sc->hw);
1179
1180         /* Disable LED */
1181         ath9k_hw_set_gpio(ah, ah->led_pin, 1);
1182         ath9k_hw_cfg_gpio_input(ah, ah->led_pin);
1183
1184         /* Disable interrupts */
1185         ath9k_hw_set_interrupts(ah, 0);
1186
1187         ath_drain_all_txq(sc, false);   /* clear pending tx frames */
1188         ath_stoprecv(sc);               /* turn off frame recv */
1189         ath_flushrecv(sc);              /* flush recv queue */
1190
1191         if (!ah->curchan)
1192                 ah->curchan = ath_get_curchannel(sc, sc->hw);
1193
1194         spin_lock_bh(&sc->sc_resetlock);
1195         r = ath9k_hw_reset(ah, ah->curchan, false);
1196         if (r) {
1197                 DPRINTF(sc, ATH_DBG_FATAL,
1198                         "Unable to reset channel %u (%uMhz) "
1199                         "reset status %d\n",
1200                         channel->center_freq, r);
1201         }
1202         spin_unlock_bh(&sc->sc_resetlock);
1203
1204         ath9k_hw_phy_disable(ah);
1205         ath9k_hw_configpcipowersave(ah, 1);
1206         ath9k_ps_restore(sc);
1207         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1208 }
1209
1210 /*******************/
1211 /*      Rfkill     */
1212 /*******************/
1213
1214 static bool ath_is_rfkill_set(struct ath_softc *sc)
1215 {
1216         struct ath_hw *ah = sc->sc_ah;
1217
1218         return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1219                                   ah->rfkill_polarity;
1220 }
1221
1222 static void ath9k_rfkill_poll_state(struct ieee80211_hw *hw)
1223 {
1224         struct ath_wiphy *aphy = hw->priv;
1225         struct ath_softc *sc = aphy->sc;
1226         bool blocked = !!ath_is_rfkill_set(sc);
1227
1228         wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
1229
1230         if (blocked)
1231                 ath_radio_disable(sc);
1232         else
1233                 ath_radio_enable(sc);
1234 }
1235
1236 static void ath_start_rfkill_poll(struct ath_softc *sc)
1237 {
1238         struct ath_hw *ah = sc->sc_ah;
1239
1240         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1241                 wiphy_rfkill_start_polling(sc->hw->wiphy);
1242 }
1243
1244 void ath_cleanup(struct ath_softc *sc)
1245 {
1246         ath_detach(sc);
1247         free_irq(sc->irq, sc);
1248         ath_bus_cleanup(sc);
1249         kfree(sc->sec_wiphy);
1250         ieee80211_free_hw(sc->hw);
1251 }
1252
1253 void ath_detach(struct ath_softc *sc)
1254 {
1255         struct ieee80211_hw *hw = sc->hw;
1256         int i = 0;
1257
1258         ath9k_ps_wakeup(sc);
1259
1260         DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1261
1262         ath_deinit_leds(sc);
1263
1264         for (i = 0; i < sc->num_sec_wiphy; i++) {
1265                 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1266                 if (aphy == NULL)
1267                         continue;
1268                 sc->sec_wiphy[i] = NULL;
1269                 ieee80211_unregister_hw(aphy->hw);
1270                 ieee80211_free_hw(aphy->hw);
1271         }
1272         ieee80211_unregister_hw(hw);
1273         ath_rx_cleanup(sc);
1274         ath_tx_cleanup(sc);
1275
1276         tasklet_kill(&sc->intr_tq);
1277         tasklet_kill(&sc->bcon_tasklet);
1278
1279         if (!(sc->sc_flags & SC_OP_INVALID))
1280                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1281
1282         /* cleanup tx queues */
1283         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1284                 if (ATH_TXQ_SETUP(sc, i))
1285                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1286
1287         if ((sc->btcoex_info.no_stomp_timer) &&
1288             sc->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
1289                 ath_gen_timer_free(sc->sc_ah, sc->btcoex_info.no_stomp_timer);
1290
1291         ath9k_hw_detach(sc->sc_ah);
1292         sc->sc_ah = NULL;
1293         ath9k_exit_debug(sc);
1294 }
1295
1296 static int ath9k_reg_notifier(struct wiphy *wiphy,
1297                               struct regulatory_request *request)
1298 {
1299         struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1300         struct ath_wiphy *aphy = hw->priv;
1301         struct ath_softc *sc = aphy->sc;
1302         struct ath_regulatory *reg = &sc->common.regulatory;
1303
1304         return ath_reg_notifier_apply(wiphy, request, reg);
1305 }
1306
1307 /*
1308  * Initialize and fill ath_softc, ath_sofct is the
1309  * "Software Carrier" struct. Historically it has existed
1310  * to allow the separation between hardware specific
1311  * variables (now in ath_hw) and driver specific variables.
1312  */
1313 static int ath_init_softc(u16 devid, struct ath_softc *sc)
1314 {
1315         struct ath_hw *ah = NULL;
1316         int r = 0, i;
1317         int csz = 0;
1318
1319         /* XXX: hardware will not be ready until ath_open() being called */
1320         sc->sc_flags |= SC_OP_INVALID;
1321
1322         if (ath9k_init_debug(sc) < 0)
1323                 printk(KERN_ERR "Unable to create debugfs files\n");
1324
1325         spin_lock_init(&sc->wiphy_lock);
1326         spin_lock_init(&sc->sc_resetlock);
1327         spin_lock_init(&sc->sc_serial_rw);
1328         spin_lock_init(&sc->ani_lock);
1329         spin_lock_init(&sc->sc_pm_lock);
1330         mutex_init(&sc->mutex);
1331         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1332         tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1333                      (unsigned long)sc);
1334
1335         /*
1336          * Cache line size is used to size and align various
1337          * structures used to communicate with the hardware.
1338          */
1339         ath_read_cachesize(sc, &csz);
1340         /* XXX assert csz is non-zero */
1341         sc->common.cachelsz = csz << 2; /* convert to bytes */
1342
1343         ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
1344         if (!ah) {
1345                 r = -ENOMEM;
1346                 goto bad_no_ah;
1347         }
1348
1349         ah->ah_sc = sc;
1350         ah->hw_version.devid = devid;
1351         sc->sc_ah = ah;
1352
1353         r = ath9k_hw_init(ah);
1354         if (r) {
1355                 DPRINTF(sc, ATH_DBG_FATAL,
1356                         "Unable to initialize hardware; "
1357                         "initialization status: %d\n", r);
1358                 goto bad;
1359         }
1360
1361         /* Get the hardware key cache size. */
1362         sc->keymax = ah->caps.keycache_size;
1363         if (sc->keymax > ATH_KEYMAX) {
1364                 DPRINTF(sc, ATH_DBG_ANY,
1365                         "Warning, using only %u entries in %u key cache\n",
1366                         ATH_KEYMAX, sc->keymax);
1367                 sc->keymax = ATH_KEYMAX;
1368         }
1369
1370         /*
1371          * Reset the key cache since some parts do not
1372          * reset the contents on initial power up.
1373          */
1374         for (i = 0; i < sc->keymax; i++)
1375                 ath9k_hw_keyreset(ah, (u16) i);
1376
1377         /* default to MONITOR mode */
1378         sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1379
1380         /* Setup rate tables */
1381
1382         ath_rate_attach(sc);
1383         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1384         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1385
1386         /*
1387          * Allocate hardware transmit queues: one queue for
1388          * beacon frames and one data queue for each QoS
1389          * priority.  Note that the hal handles reseting
1390          * these queues at the needed time.
1391          */
1392         sc->beacon.beaconq = ath_beaconq_setup(ah);
1393         if (sc->beacon.beaconq == -1) {
1394                 DPRINTF(sc, ATH_DBG_FATAL,
1395                         "Unable to setup a beacon xmit queue\n");
1396                 r = -EIO;
1397                 goto bad2;
1398         }
1399         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1400         if (sc->beacon.cabq == NULL) {
1401                 DPRINTF(sc, ATH_DBG_FATAL,
1402                         "Unable to setup CAB xmit queue\n");
1403                 r = -EIO;
1404                 goto bad2;
1405         }
1406
1407         sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1408         ath_cabq_update(sc);
1409
1410         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1411                 sc->tx.hwq_map[i] = -1;
1412
1413         /* Setup data queues */
1414         /* NB: ensure BK queue is the lowest priority h/w queue */
1415         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1416                 DPRINTF(sc, ATH_DBG_FATAL,
1417                         "Unable to setup xmit queue for BK traffic\n");
1418                 r = -EIO;
1419                 goto bad2;
1420         }
1421
1422         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1423                 DPRINTF(sc, ATH_DBG_FATAL,
1424                         "Unable to setup xmit queue for BE traffic\n");
1425                 r = -EIO;
1426                 goto bad2;
1427         }
1428         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1429                 DPRINTF(sc, ATH_DBG_FATAL,
1430                         "Unable to setup xmit queue for VI traffic\n");
1431                 r = -EIO;
1432                 goto bad2;
1433         }
1434         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1435                 DPRINTF(sc, ATH_DBG_FATAL,
1436                         "Unable to setup xmit queue for VO traffic\n");
1437                 r = -EIO;
1438                 goto bad2;
1439         }
1440
1441         /* Initializes the noise floor to a reasonable default value.
1442          * Later on this will be updated during ANI processing. */
1443
1444         sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1445         setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1446
1447         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1448                                    ATH9K_CIPHER_TKIP, NULL)) {
1449                 /*
1450                  * Whether we should enable h/w TKIP MIC.
1451                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1452                  * report WMM capable, so it's always safe to turn on
1453                  * TKIP MIC in this case.
1454                  */
1455                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1456                                        0, 1, NULL);
1457         }
1458
1459         /*
1460          * Check whether the separate key cache entries
1461          * are required to handle both tx+rx MIC keys.
1462          * With split mic keys the number of stations is limited
1463          * to 27 otherwise 59.
1464          */
1465         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1466                                    ATH9K_CIPHER_TKIP, NULL)
1467             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1468                                       ATH9K_CIPHER_MIC, NULL)
1469             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1470                                       0, NULL))
1471                 sc->splitmic = 1;
1472
1473         /* turn on mcast key search if possible */
1474         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1475                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1476                                              1, NULL);
1477
1478         sc->config.txpowlimit = ATH_TXPOWER_MAX;
1479
1480         /* 11n Capabilities */
1481         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1482                 sc->sc_flags |= SC_OP_TXAGGR;
1483                 sc->sc_flags |= SC_OP_RXAGGR;
1484         }
1485
1486         sc->tx_chainmask = ah->caps.tx_chainmask;
1487         sc->rx_chainmask = ah->caps.rx_chainmask;
1488
1489         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1490         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1491
1492         if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1493                 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1494
1495         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1496
1497         /* initialize beacon slots */
1498         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1499                 sc->beacon.bslot[i] = NULL;
1500                 sc->beacon.bslot_aphy[i] = NULL;
1501         }
1502
1503         /* setup channels and rates */
1504
1505         sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1506         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1507                 sc->rates[IEEE80211_BAND_2GHZ];
1508         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1509         sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1510                 ARRAY_SIZE(ath9k_2ghz_chantable);
1511
1512         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1513                 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1514                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1515                         sc->rates[IEEE80211_BAND_5GHZ];
1516                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1517                 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1518                         ARRAY_SIZE(ath9k_5ghz_chantable);
1519         }
1520
1521         if (sc->btcoex_info.btcoex_scheme != ATH_BTCOEX_CFG_NONE) {
1522                 r = ath9k_hw_btcoex_init(ah);
1523                 if (r)
1524                         goto bad2;
1525         }
1526
1527         return 0;
1528 bad2:
1529         /* cleanup tx queues */
1530         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1531                 if (ATH_TXQ_SETUP(sc, i))
1532                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1533 bad:
1534         ath9k_hw_detach(ah);
1535         sc->sc_ah = NULL;
1536 bad_no_ah:
1537         ath9k_exit_debug(sc);
1538
1539         return r;
1540 }
1541
1542 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1543 {
1544         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1545                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1546                 IEEE80211_HW_SIGNAL_DBM |
1547                 IEEE80211_HW_AMPDU_AGGREGATION |
1548                 IEEE80211_HW_SUPPORTS_PS |
1549                 IEEE80211_HW_PS_NULLFUNC_STACK |
1550                 IEEE80211_HW_SPECTRUM_MGMT;
1551
1552         if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1553                 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1554
1555         hw->wiphy->interface_modes =
1556                 BIT(NL80211_IFTYPE_AP) |
1557                 BIT(NL80211_IFTYPE_STATION) |
1558                 BIT(NL80211_IFTYPE_ADHOC) |
1559                 BIT(NL80211_IFTYPE_MESH_POINT);
1560
1561         hw->queues = 4;
1562         hw->max_rates = 4;
1563         hw->channel_change_time = 5000;
1564         hw->max_listen_interval = 10;
1565         /* Hardware supports 10 but we use 4 */
1566         hw->max_rate_tries = 4;
1567         hw->sta_data_size = sizeof(struct ath_node);
1568         hw->vif_data_size = sizeof(struct ath_vif);
1569
1570         hw->rate_control_algorithm = "ath9k_rate_control";
1571
1572         hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1573                 &sc->sbands[IEEE80211_BAND_2GHZ];
1574         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1575                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1576                         &sc->sbands[IEEE80211_BAND_5GHZ];
1577 }
1578
1579 /* Device driver core initialization */
1580 int ath_init_device(u16 devid, struct ath_softc *sc)
1581 {
1582         struct ieee80211_hw *hw = sc->hw;
1583         int error = 0, i;
1584         struct ath_regulatory *reg;
1585
1586         DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1587
1588         error = ath_init_softc(devid, sc);
1589         if (error != 0)
1590                 return error;
1591
1592         /* get mac address from hardware and set in mac80211 */
1593
1594         SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1595
1596         ath_set_hw_capab(sc, hw);
1597
1598         error = ath_regd_init(&sc->common.regulatory, sc->hw->wiphy,
1599                               ath9k_reg_notifier);
1600         if (error)
1601                 return error;
1602
1603         reg = &sc->common.regulatory;
1604
1605         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1606                 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1607                 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1608                         setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1609         }
1610
1611         /* initialize tx/rx engine */
1612         error = ath_tx_init(sc, ATH_TXBUF);
1613         if (error != 0)
1614                 goto error_attach;
1615
1616         error = ath_rx_init(sc, ATH_RXBUF);
1617         if (error != 0)
1618                 goto error_attach;
1619
1620         INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1621         INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1622         sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1623
1624         error = ieee80211_register_hw(hw);
1625
1626         if (!ath_is_world_regd(reg)) {
1627                 error = regulatory_hint(hw->wiphy, reg->alpha2);
1628                 if (error)
1629                         goto error_attach;
1630         }
1631
1632         /* Initialize LED control */
1633         ath_init_leds(sc);
1634
1635         ath_start_rfkill_poll(sc);
1636
1637         return 0;
1638
1639 error_attach:
1640         /* cleanup tx queues */
1641         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1642                 if (ATH_TXQ_SETUP(sc, i))
1643                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1644
1645         ath9k_hw_detach(sc->sc_ah);
1646         sc->sc_ah = NULL;
1647         ath9k_exit_debug(sc);
1648
1649         return error;
1650 }
1651
1652 int ath_reset(struct ath_softc *sc, bool retry_tx)
1653 {
1654         struct ath_hw *ah = sc->sc_ah;
1655         struct ieee80211_hw *hw = sc->hw;
1656         int r;
1657
1658         ath9k_hw_set_interrupts(ah, 0);
1659         ath_drain_all_txq(sc, retry_tx);
1660         ath_stoprecv(sc);
1661         ath_flushrecv(sc);
1662
1663         spin_lock_bh(&sc->sc_resetlock);
1664         r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1665         if (r)
1666                 DPRINTF(sc, ATH_DBG_FATAL,
1667                         "Unable to reset hardware; reset status %d\n", r);
1668         spin_unlock_bh(&sc->sc_resetlock);
1669
1670         if (ath_startrecv(sc) != 0)
1671                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1672
1673         /*
1674          * We may be doing a reset in response to a request
1675          * that changes the channel so update any state that
1676          * might change as a result.
1677          */
1678         ath_cache_conf_rate(sc, &hw->conf);
1679
1680         ath_update_txpow(sc);
1681
1682         if (sc->sc_flags & SC_OP_BEACONS)
1683                 ath_beacon_config(sc, NULL);    /* restart beacons */
1684
1685         ath9k_hw_set_interrupts(ah, sc->imask);
1686
1687         if (retry_tx) {
1688                 int i;
1689                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1690                         if (ATH_TXQ_SETUP(sc, i)) {
1691                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1692                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
1693                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1694                         }
1695                 }
1696         }
1697
1698         return r;
1699 }
1700
1701 /*
1702  *  This function will allocate both the DMA descriptor structure, and the
1703  *  buffers it contains.  These are used to contain the descriptors used
1704  *  by the system.
1705 */
1706 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1707                       struct list_head *head, const char *name,
1708                       int nbuf, int ndesc)
1709 {
1710 #define DS2PHYS(_dd, _ds)                                               \
1711         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1712 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1713 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1714
1715         struct ath_desc *ds;
1716         struct ath_buf *bf;
1717         int i, bsize, error;
1718
1719         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1720                 name, nbuf, ndesc);
1721
1722         INIT_LIST_HEAD(head);
1723         /* ath_desc must be a multiple of DWORDs */
1724         if ((sizeof(struct ath_desc) % 4) != 0) {
1725                 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1726                 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1727                 error = -ENOMEM;
1728                 goto fail;
1729         }
1730
1731         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1732
1733         /*
1734          * Need additional DMA memory because we can't use
1735          * descriptors that cross the 4K page boundary. Assume
1736          * one skipped descriptor per 4K page.
1737          */
1738         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1739                 u32 ndesc_skipped =
1740                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1741                 u32 dma_len;
1742
1743                 while (ndesc_skipped) {
1744                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
1745                         dd->dd_desc_len += dma_len;
1746
1747                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1748                 };
1749         }
1750
1751         /* allocate descriptors */
1752         dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1753                                          &dd->dd_desc_paddr, GFP_KERNEL);
1754         if (dd->dd_desc == NULL) {
1755                 error = -ENOMEM;
1756                 goto fail;
1757         }
1758         ds = dd->dd_desc;
1759         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1760                 name, ds, (u32) dd->dd_desc_len,
1761                 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1762
1763         /* allocate buffers */
1764         bsize = sizeof(struct ath_buf) * nbuf;
1765         bf = kzalloc(bsize, GFP_KERNEL);
1766         if (bf == NULL) {
1767                 error = -ENOMEM;
1768                 goto fail2;
1769         }
1770         dd->dd_bufptr = bf;
1771
1772         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1773                 bf->bf_desc = ds;
1774                 bf->bf_daddr = DS2PHYS(dd, ds);
1775
1776                 if (!(sc->sc_ah->caps.hw_caps &
1777                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1778                         /*
1779                          * Skip descriptor addresses which can cause 4KB
1780                          * boundary crossing (addr + length) with a 32 dword
1781                          * descriptor fetch.
1782                          */
1783                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1784                                 ASSERT((caddr_t) bf->bf_desc <
1785                                        ((caddr_t) dd->dd_desc +
1786                                         dd->dd_desc_len));
1787
1788                                 ds += ndesc;
1789                                 bf->bf_desc = ds;
1790                                 bf->bf_daddr = DS2PHYS(dd, ds);
1791                         }
1792                 }
1793                 list_add_tail(&bf->list, head);
1794         }
1795         return 0;
1796 fail2:
1797         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1798                           dd->dd_desc_paddr);
1799 fail:
1800         memset(dd, 0, sizeof(*dd));
1801         return error;
1802 #undef ATH_DESC_4KB_BOUND_CHECK
1803 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1804 #undef DS2PHYS
1805 }
1806
1807 void ath_descdma_cleanup(struct ath_softc *sc,
1808                          struct ath_descdma *dd,
1809                          struct list_head *head)
1810 {
1811         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1812                           dd->dd_desc_paddr);
1813
1814         INIT_LIST_HEAD(head);
1815         kfree(dd->dd_bufptr);
1816         memset(dd, 0, sizeof(*dd));
1817 }
1818
1819 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1820 {
1821         int qnum;
1822
1823         switch (queue) {
1824         case 0:
1825                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1826                 break;
1827         case 1:
1828                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1829                 break;
1830         case 2:
1831                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1832                 break;
1833         case 3:
1834                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1835                 break;
1836         default:
1837                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1838                 break;
1839         }
1840
1841         return qnum;
1842 }
1843
1844 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1845 {
1846         int qnum;
1847
1848         switch (queue) {
1849         case ATH9K_WME_AC_VO:
1850                 qnum = 0;
1851                 break;
1852         case ATH9K_WME_AC_VI:
1853                 qnum = 1;
1854                 break;
1855         case ATH9K_WME_AC_BE:
1856                 qnum = 2;
1857                 break;
1858         case ATH9K_WME_AC_BK:
1859                 qnum = 3;
1860                 break;
1861         default:
1862                 qnum = -1;
1863                 break;
1864         }
1865
1866         return qnum;
1867 }
1868
1869 /* XXX: Remove me once we don't depend on ath9k_channel for all
1870  * this redundant data */
1871 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1872                            struct ath9k_channel *ichan)
1873 {
1874         struct ieee80211_channel *chan = hw->conf.channel;
1875         struct ieee80211_conf *conf = &hw->conf;
1876
1877         ichan->channel = chan->center_freq;
1878         ichan->chan = chan;
1879
1880         if (chan->band == IEEE80211_BAND_2GHZ) {
1881                 ichan->chanmode = CHANNEL_G;
1882                 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM | CHANNEL_G;
1883         } else {
1884                 ichan->chanmode = CHANNEL_A;
1885                 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1886         }
1887
1888         sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1889
1890         if (conf_is_ht(conf)) {
1891                 if (conf_is_ht40(conf))
1892                         sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1893
1894                 ichan->chanmode = ath_get_extchanmode(sc, chan,
1895                                             conf->channel_type);
1896         }
1897 }
1898
1899 /**********************/
1900 /* mac80211 callbacks */
1901 /**********************/
1902
1903 static int ath9k_start(struct ieee80211_hw *hw)
1904 {
1905         struct ath_wiphy *aphy = hw->priv;
1906         struct ath_softc *sc = aphy->sc;
1907         struct ieee80211_channel *curchan = hw->conf.channel;
1908         struct ath9k_channel *init_channel;
1909         int r;
1910
1911         DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1912                 "initial channel: %d MHz\n", curchan->center_freq);
1913
1914         mutex_lock(&sc->mutex);
1915
1916         if (ath9k_wiphy_started(sc)) {
1917                 if (sc->chan_idx == curchan->hw_value) {
1918                         /*
1919                          * Already on the operational channel, the new wiphy
1920                          * can be marked active.
1921                          */
1922                         aphy->state = ATH_WIPHY_ACTIVE;
1923                         ieee80211_wake_queues(hw);
1924                 } else {
1925                         /*
1926                          * Another wiphy is on another channel, start the new
1927                          * wiphy in paused state.
1928                          */
1929                         aphy->state = ATH_WIPHY_PAUSED;
1930                         ieee80211_stop_queues(hw);
1931                 }
1932                 mutex_unlock(&sc->mutex);
1933                 return 0;
1934         }
1935         aphy->state = ATH_WIPHY_ACTIVE;
1936
1937         /* setup initial channel */
1938
1939         sc->chan_idx = curchan->hw_value;
1940
1941         init_channel = ath_get_curchannel(sc, hw);
1942
1943         /* Reset SERDES registers */
1944         ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1945
1946         /*
1947          * The basic interface to setting the hardware in a good
1948          * state is ``reset''.  On return the hardware is known to
1949          * be powered up and with interrupts disabled.  This must
1950          * be followed by initialization of the appropriate bits
1951          * and then setup of the interrupt mask.
1952          */
1953         spin_lock_bh(&sc->sc_resetlock);
1954         r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1955         if (r) {
1956                 DPRINTF(sc, ATH_DBG_FATAL,
1957                         "Unable to reset hardware; reset status %d "
1958                         "(freq %u MHz)\n", r,
1959                         curchan->center_freq);
1960                 spin_unlock_bh(&sc->sc_resetlock);
1961                 goto mutex_unlock;
1962         }
1963         spin_unlock_bh(&sc->sc_resetlock);
1964
1965         /*
1966          * This is needed only to setup initial state
1967          * but it's best done after a reset.
1968          */
1969         ath_update_txpow(sc);
1970
1971         /*
1972          * Setup the hardware after reset:
1973          * The receive engine is set going.
1974          * Frame transmit is handled entirely
1975          * in the frame output path; there's nothing to do
1976          * here except setup the interrupt mask.
1977          */
1978         if (ath_startrecv(sc) != 0) {
1979                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1980                 r = -EIO;
1981                 goto mutex_unlock;
1982         }
1983
1984         /* Setup our intr mask. */
1985         sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
1986                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1987                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1988
1989         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
1990                 sc->imask |= ATH9K_INT_GTT;
1991
1992         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
1993                 sc->imask |= ATH9K_INT_CST;
1994
1995         ath_cache_conf_rate(sc, &hw->conf);
1996
1997         sc->sc_flags &= ~SC_OP_INVALID;
1998
1999         /* Disable BMISS interrupt when we're not associated */
2000         sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2001         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2002
2003         ieee80211_wake_queues(hw);
2004
2005         ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0);
2006
2007         if ((sc->btcoex_info.btcoex_scheme != ATH_BTCOEX_CFG_NONE) &&
2008             !(sc->sc_flags & SC_OP_BTCOEX_ENABLED)) {
2009                 ath_btcoex_set_weight(&sc->btcoex_info, AR_BT_COEX_WGHT,
2010                                       AR_STOMP_LOW_WLAN_WGHT);
2011                 ath9k_hw_btcoex_enable(sc->sc_ah);
2012
2013                 if (sc->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
2014                         ath_btcoex_timer_resume(sc, &sc->btcoex_info);
2015         }
2016
2017 mutex_unlock:
2018         mutex_unlock(&sc->mutex);
2019
2020         return r;
2021 }
2022
2023 static int ath9k_tx(struct ieee80211_hw *hw,
2024                     struct sk_buff *skb)
2025 {
2026         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2027         struct ath_wiphy *aphy = hw->priv;
2028         struct ath_softc *sc = aphy->sc;
2029         struct ath_tx_control txctl;
2030         int hdrlen, padsize;
2031
2032         if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2033                 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2034                        "%d\n", wiphy_name(hw->wiphy), aphy->state);
2035                 goto exit;
2036         }
2037
2038         if (sc->ps_enabled) {
2039                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2040                 /*
2041                  * mac80211 does not set PM field for normal data frames, so we
2042                  * need to update that based on the current PS mode.
2043                  */
2044                 if (ieee80211_is_data(hdr->frame_control) &&
2045                     !ieee80211_is_nullfunc(hdr->frame_control) &&
2046                     !ieee80211_has_pm(hdr->frame_control)) {
2047                         DPRINTF(sc, ATH_DBG_PS, "Add PM=1 for a TX frame "
2048                                 "while in PS mode\n");
2049                         hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2050                 }
2051         }
2052
2053         if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2054                 /*
2055                  * We are using PS-Poll and mac80211 can request TX while in
2056                  * power save mode. Need to wake up hardware for the TX to be
2057                  * completed and if needed, also for RX of buffered frames.
2058                  */
2059                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2060                 ath9k_ps_wakeup(sc);
2061                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2062                 if (ieee80211_is_pspoll(hdr->frame_control)) {
2063                         DPRINTF(sc, ATH_DBG_PS, "Sending PS-Poll to pick a "
2064                                 "buffered frame\n");
2065                         sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2066                 } else {
2067                         DPRINTF(sc, ATH_DBG_PS, "Wake up to complete TX\n");
2068                         sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2069                 }
2070                 /*
2071                  * The actual restore operation will happen only after
2072                  * the sc_flags bit is cleared. We are just dropping
2073                  * the ps_usecount here.
2074                  */
2075                 ath9k_ps_restore(sc);
2076         }
2077
2078         memset(&txctl, 0, sizeof(struct ath_tx_control));
2079
2080         /*
2081          * As a temporary workaround, assign seq# here; this will likely need
2082          * to be cleaned up to work better with Beacon transmission and virtual
2083          * BSSes.
2084          */
2085         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2086                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2087                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2088                         sc->tx.seq_no += 0x10;
2089                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2090                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2091         }
2092
2093         /* Add the padding after the header if this is not already done */
2094         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2095         if (hdrlen & 3) {
2096                 padsize = hdrlen % 4;
2097                 if (skb_headroom(skb) < padsize)
2098                         return -1;
2099                 skb_push(skb, padsize);
2100                 memmove(skb->data, skb->data + padsize, hdrlen);
2101         }
2102
2103         /* Check if a tx queue is available */
2104
2105         txctl.txq = ath_test_get_txq(sc, skb);
2106         if (!txctl.txq)
2107                 goto exit;
2108
2109         DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2110
2111         if (ath_tx_start(hw, skb, &txctl) != 0) {
2112                 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2113                 goto exit;
2114         }
2115
2116         return 0;
2117 exit:
2118         dev_kfree_skb_any(skb);
2119         return 0;
2120 }
2121
2122 static void ath9k_stop(struct ieee80211_hw *hw)
2123 {
2124         struct ath_wiphy *aphy = hw->priv;
2125         struct ath_softc *sc = aphy->sc;
2126
2127         mutex_lock(&sc->mutex);
2128
2129         aphy->state = ATH_WIPHY_INACTIVE;
2130
2131         cancel_delayed_work_sync(&sc->ath_led_blink_work);
2132         cancel_delayed_work_sync(&sc->tx_complete_work);
2133
2134         if (!sc->num_sec_wiphy) {
2135                 cancel_delayed_work_sync(&sc->wiphy_work);
2136                 cancel_work_sync(&sc->chan_work);
2137         }
2138
2139         if (sc->sc_flags & SC_OP_INVALID) {
2140                 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2141                 mutex_unlock(&sc->mutex);
2142                 return;
2143         }
2144
2145         if (ath9k_wiphy_started(sc)) {
2146                 mutex_unlock(&sc->mutex);
2147                 return; /* another wiphy still in use */
2148         }
2149
2150         if (sc->sc_flags & SC_OP_BTCOEX_ENABLED) {
2151                 ath9k_hw_btcoex_disable(sc->sc_ah);
2152                 if (sc->btcoex_info.btcoex_scheme == ATH_BTCOEX_CFG_3WIRE)
2153                         ath_btcoex_timer_pause(sc, &sc->btcoex_info);
2154         }
2155
2156         /* make sure h/w will not generate any interrupt
2157          * before setting the invalid flag. */
2158         ath9k_hw_set_interrupts(sc->sc_ah, 0);
2159
2160         if (!(sc->sc_flags & SC_OP_INVALID)) {
2161                 ath_drain_all_txq(sc, false);
2162                 ath_stoprecv(sc);
2163                 ath9k_hw_phy_disable(sc->sc_ah);
2164         } else
2165                 sc->rx.rxlink = NULL;
2166
2167         wiphy_rfkill_stop_polling(sc->hw->wiphy);
2168
2169         /* disable HAL and put h/w to sleep */
2170         ath9k_hw_disable(sc->sc_ah);
2171         ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2172         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_FULL_SLEEP);
2173
2174         sc->sc_flags |= SC_OP_INVALID;
2175
2176         mutex_unlock(&sc->mutex);
2177
2178         DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2179 }
2180
2181 static int ath9k_add_interface(struct ieee80211_hw *hw,
2182                                struct ieee80211_if_init_conf *conf)
2183 {
2184         struct ath_wiphy *aphy = hw->priv;
2185         struct ath_softc *sc = aphy->sc;
2186         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2187         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2188         int ret = 0;
2189
2190         mutex_lock(&sc->mutex);
2191
2192         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2193             sc->nvifs > 0) {
2194                 ret = -ENOBUFS;
2195                 goto out;
2196         }
2197
2198         switch (conf->type) {
2199         case NL80211_IFTYPE_STATION:
2200                 ic_opmode = NL80211_IFTYPE_STATION;
2201                 break;
2202         case NL80211_IFTYPE_ADHOC:
2203         case NL80211_IFTYPE_AP:
2204         case NL80211_IFTYPE_MESH_POINT:
2205                 if (sc->nbcnvifs >= ATH_BCBUF) {
2206                         ret = -ENOBUFS;
2207                         goto out;
2208                 }
2209                 ic_opmode = conf->type;
2210                 break;
2211         default:
2212                 DPRINTF(sc, ATH_DBG_FATAL,
2213                         "Interface type %d not yet supported\n", conf->type);
2214                 ret = -EOPNOTSUPP;
2215                 goto out;
2216         }
2217
2218         DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2219
2220         /* Set the VIF opmode */
2221         avp->av_opmode = ic_opmode;
2222         avp->av_bslot = -1;
2223
2224         sc->nvifs++;
2225
2226         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2227                 ath9k_set_bssid_mask(hw);
2228
2229         if (sc->nvifs > 1)
2230                 goto out; /* skip global settings for secondary vif */
2231
2232         if (ic_opmode == NL80211_IFTYPE_AP) {
2233                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2234                 sc->sc_flags |= SC_OP_TSF_RESET;
2235         }
2236
2237         /* Set the device opmode */
2238         sc->sc_ah->opmode = ic_opmode;
2239
2240         /*
2241          * Enable MIB interrupts when there are hardware phy counters.
2242          * Note we only do this (at the moment) for station mode.
2243          */
2244         if ((conf->type == NL80211_IFTYPE_STATION) ||
2245             (conf->type == NL80211_IFTYPE_ADHOC) ||
2246             (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2247                 sc->imask |= ATH9K_INT_MIB;
2248                 sc->imask |= ATH9K_INT_TSFOOR;
2249         }
2250
2251         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2252
2253         if (conf->type == NL80211_IFTYPE_AP    ||
2254             conf->type == NL80211_IFTYPE_ADHOC ||
2255             conf->type == NL80211_IFTYPE_MONITOR)
2256                 ath_start_ani(sc);
2257
2258 out:
2259         mutex_unlock(&sc->mutex);
2260         return ret;
2261 }
2262
2263 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2264                                    struct ieee80211_if_init_conf *conf)
2265 {
2266         struct ath_wiphy *aphy = hw->priv;
2267         struct ath_softc *sc = aphy->sc;
2268         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2269         int i;
2270
2271         DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2272
2273         mutex_lock(&sc->mutex);
2274
2275         /* Stop ANI */
2276         del_timer_sync(&sc->ani.timer);
2277
2278         /* Reclaim beacon resources */
2279         if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2280             (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2281             (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2282                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2283                 ath_beacon_return(sc, avp);
2284         }
2285
2286         sc->sc_flags &= ~SC_OP_BEACONS;
2287
2288         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2289                 if (sc->beacon.bslot[i] == conf->vif) {
2290                         printk(KERN_DEBUG "%s: vif had allocated beacon "
2291                                "slot\n", __func__);
2292                         sc->beacon.bslot[i] = NULL;
2293                         sc->beacon.bslot_aphy[i] = NULL;
2294                 }
2295         }
2296
2297         sc->nvifs--;
2298
2299         mutex_unlock(&sc->mutex);
2300 }
2301
2302 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2303 {
2304         struct ath_wiphy *aphy = hw->priv;
2305         struct ath_softc *sc = aphy->sc;
2306         struct ieee80211_conf *conf = &hw->conf;
2307         struct ath_hw *ah = sc->sc_ah;
2308         bool all_wiphys_idle = false, disable_radio = false;
2309
2310         mutex_lock(&sc->mutex);
2311
2312         /* Leave this as the first check */
2313         if (changed & IEEE80211_CONF_CHANGE_IDLE) {
2314
2315                 spin_lock_bh(&sc->wiphy_lock);
2316                 all_wiphys_idle =  ath9k_all_wiphys_idle(sc);
2317                 spin_unlock_bh(&sc->wiphy_lock);
2318
2319                 if (conf->flags & IEEE80211_CONF_IDLE){
2320                         if (all_wiphys_idle)
2321                                 disable_radio = true;
2322                 }
2323                 else if (all_wiphys_idle) {
2324                         ath_radio_enable(sc);
2325                         DPRINTF(sc, ATH_DBG_CONFIG,
2326                                 "not-idle: enabling radio\n");
2327                 }
2328         }
2329
2330         if (changed & IEEE80211_CONF_CHANGE_PS) {
2331                 if (conf->flags & IEEE80211_CONF_PS) {
2332                         if (!(ah->caps.hw_caps &
2333                               ATH9K_HW_CAP_AUTOSLEEP)) {
2334                                 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2335                                         sc->imask |= ATH9K_INT_TIM_TIMER;
2336                                         ath9k_hw_set_interrupts(sc->sc_ah,
2337                                                         sc->imask);
2338                                 }
2339                                 ath9k_hw_setrxabort(sc->sc_ah, 1);
2340                         }
2341                         sc->ps_enabled = true;
2342                 } else {
2343                         sc->ps_enabled = false;
2344                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2345                         if (!(ah->caps.hw_caps &
2346                               ATH9K_HW_CAP_AUTOSLEEP)) {
2347                                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2348                                 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2349                                                   SC_OP_WAIT_FOR_CAB |
2350                                                   SC_OP_WAIT_FOR_PSPOLL_DATA |
2351                                                   SC_OP_WAIT_FOR_TX_ACK);
2352                                 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2353                                         sc->imask &= ~ATH9K_INT_TIM_TIMER;
2354                                         ath9k_hw_set_interrupts(sc->sc_ah,
2355                                                         sc->imask);
2356                                 }
2357                         }
2358                 }
2359         }
2360
2361         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2362                 struct ieee80211_channel *curchan = hw->conf.channel;
2363                 int pos = curchan->hw_value;
2364
2365                 aphy->chan_idx = pos;
2366                 aphy->chan_is_ht = conf_is_ht(conf);
2367
2368                 if (aphy->state == ATH_WIPHY_SCAN ||
2369                     aphy->state == ATH_WIPHY_ACTIVE)
2370                         ath9k_wiphy_pause_all_forced(sc, aphy);
2371                 else {
2372                         /*
2373                          * Do not change operational channel based on a paused
2374                          * wiphy changes.
2375                          */
2376                         goto skip_chan_change;
2377                 }
2378
2379                 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2380                         curchan->center_freq);
2381
2382                 /* XXX: remove me eventualy */
2383                 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2384
2385                 ath_update_chainmask(sc, conf_is_ht(conf));
2386
2387                 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2388                         DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2389                         mutex_unlock(&sc->mutex);
2390                         return -EINVAL;
2391                 }
2392         }
2393
2394 skip_chan_change:
2395         if (changed & IEEE80211_CONF_CHANGE_POWER)
2396                 sc->config.txpowlimit = 2 * conf->power_level;
2397
2398         if (disable_radio) {
2399                 DPRINTF(sc, ATH_DBG_CONFIG, "idle: disabling radio\n");
2400                 ath_radio_disable(sc);
2401         }
2402
2403         mutex_unlock(&sc->mutex);
2404
2405         return 0;
2406 }
2407
2408 #define SUPPORTED_FILTERS                       \
2409         (FIF_PROMISC_IN_BSS |                   \
2410         FIF_ALLMULTI |                          \
2411         FIF_CONTROL |                           \
2412         FIF_PSPOLL |                            \
2413         FIF_OTHER_BSS |                         \
2414         FIF_BCN_PRBRESP_PROMISC |               \
2415         FIF_FCSFAIL)
2416
2417 /* FIXME: sc->sc_full_reset ? */
2418 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2419                                    unsigned int changed_flags,
2420                                    unsigned int *total_flags,
2421                                    u64 multicast)
2422 {
2423         struct ath_wiphy *aphy = hw->priv;
2424         struct ath_softc *sc = aphy->sc;
2425         u32 rfilt;
2426
2427         changed_flags &= SUPPORTED_FILTERS;
2428         *total_flags &= SUPPORTED_FILTERS;
2429
2430         sc->rx.rxfilter = *total_flags;
2431         ath9k_ps_wakeup(sc);
2432         rfilt = ath_calcrxfilter(sc);
2433         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2434         ath9k_ps_restore(sc);
2435
2436         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", rfilt);
2437 }
2438
2439 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2440                              struct ieee80211_vif *vif,
2441                              enum sta_notify_cmd cmd,
2442                              struct ieee80211_sta *sta)
2443 {
2444         struct ath_wiphy *aphy = hw->priv;
2445         struct ath_softc *sc = aphy->sc;
2446
2447         switch (cmd) {
2448         case STA_NOTIFY_ADD:
2449                 ath_node_attach(sc, sta);
2450                 break;
2451         case STA_NOTIFY_REMOVE:
2452                 ath_node_detach(sc, sta);
2453                 break;
2454         default:
2455                 break;
2456         }
2457 }
2458
2459 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2460                          const struct ieee80211_tx_queue_params *params)
2461 {
2462         struct ath_wiphy *aphy = hw->priv;
2463         struct ath_softc *sc = aphy->sc;
2464         struct ath9k_tx_queue_info qi;
2465         int ret = 0, qnum;
2466
2467         if (queue >= WME_NUM_AC)
2468                 return 0;
2469
2470         mutex_lock(&sc->mutex);
2471
2472         memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2473
2474         qi.tqi_aifs = params->aifs;
2475         qi.tqi_cwmin = params->cw_min;
2476         qi.tqi_cwmax = params->cw_max;
2477         qi.tqi_burstTime = params->txop;
2478         qnum = ath_get_hal_qnum(queue, sc);
2479
2480         DPRINTF(sc, ATH_DBG_CONFIG,
2481                 "Configure tx [queue/halq] [%d/%d],  "
2482                 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2483                 queue, qnum, params->aifs, params->cw_min,
2484                 params->cw_max, params->txop);
2485
2486         ret = ath_txq_update(sc, qnum, &qi);
2487         if (ret)
2488                 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2489
2490         mutex_unlock(&sc->mutex);
2491
2492         return ret;
2493 }
2494
2495 static int ath9k_set_key(struct ieee80211_hw *hw,
2496                          enum set_key_cmd cmd,
2497                          struct ieee80211_vif *vif,
2498                          struct ieee80211_sta *sta,
2499                          struct ieee80211_key_conf *key)
2500 {
2501         struct ath_wiphy *aphy = hw->priv;
2502         struct ath_softc *sc = aphy->sc;
2503         int ret = 0;
2504
2505         if (modparam_nohwcrypt)
2506                 return -ENOSPC;
2507
2508         mutex_lock(&sc->mutex);
2509         ath9k_ps_wakeup(sc);
2510         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
2511
2512         switch (cmd) {
2513         case SET_KEY:
2514                 ret = ath_key_config(sc, vif, sta, key);
2515                 if (ret >= 0) {
2516                         key->hw_key_idx = ret;
2517                         /* push IV and Michael MIC generation to stack */
2518                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2519                         if (key->alg == ALG_TKIP)
2520                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2521                         if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2522                                 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2523                         ret = 0;
2524                 }
2525                 break;
2526         case DISABLE_KEY:
2527                 ath_key_delete(sc, key);
2528                 break;
2529         default:
2530                 ret = -EINVAL;
2531         }
2532
2533         ath9k_ps_restore(sc);
2534         mutex_unlock(&sc->mutex);
2535
2536         return ret;
2537 }
2538
2539 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2540                                    struct ieee80211_vif *vif,
2541                                    struct ieee80211_bss_conf *bss_conf,
2542                                    u32 changed)
2543 {
2544         struct ath_wiphy *aphy = hw->priv;
2545         struct ath_softc *sc = aphy->sc;
2546         struct ath_hw *ah = sc->sc_ah;
2547         struct ath_vif *avp = (void *)vif->drv_priv;
2548         u32 rfilt = 0;
2549         int error, i;
2550
2551         mutex_lock(&sc->mutex);
2552
2553         /*
2554          * TODO: Need to decide which hw opmode to use for
2555          *       multi-interface cases
2556          * XXX: This belongs into add_interface!
2557          */
2558         if (vif->type == NL80211_IFTYPE_AP &&
2559             ah->opmode != NL80211_IFTYPE_AP) {
2560                 ah->opmode = NL80211_IFTYPE_STATION;
2561                 ath9k_hw_setopmode(ah);
2562                 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2563                 sc->curaid = 0;
2564                 ath9k_hw_write_associd(sc);
2565                 /* Request full reset to get hw opmode changed properly */
2566                 sc->sc_flags |= SC_OP_FULL_RESET;
2567         }
2568
2569         if ((changed & BSS_CHANGED_BSSID) &&
2570             !is_zero_ether_addr(bss_conf->bssid)) {
2571                 switch (vif->type) {
2572                 case NL80211_IFTYPE_STATION:
2573                 case NL80211_IFTYPE_ADHOC:
2574                 case NL80211_IFTYPE_MESH_POINT:
2575                         /* Set BSSID */
2576                         memcpy(sc->curbssid, bss_conf->bssid, ETH_ALEN);
2577                         memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2578                         sc->curaid = 0;
2579                         ath9k_hw_write_associd(sc);
2580
2581                         /* Set aggregation protection mode parameters */
2582                         sc->config.ath_aggr_prot = 0;
2583
2584                         DPRINTF(sc, ATH_DBG_CONFIG,
2585                                 "RX filter 0x%x bssid %pM aid 0x%x\n",
2586                                 rfilt, sc->curbssid, sc->curaid);
2587
2588                         /* need to reconfigure the beacon */
2589                         sc->sc_flags &= ~SC_OP_BEACONS ;
2590
2591                         break;
2592                 default:
2593                         break;
2594                 }
2595         }
2596
2597         if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2598             (vif->type == NL80211_IFTYPE_AP) ||
2599             (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2600                 if ((changed & BSS_CHANGED_BEACON) ||
2601                     (changed & BSS_CHANGED_BEACON_ENABLED &&
2602                      bss_conf->enable_beacon)) {
2603                         /*
2604                          * Allocate and setup the beacon frame.
2605                          *
2606                          * Stop any previous beacon DMA.  This may be
2607                          * necessary, for example, when an ibss merge
2608                          * causes reconfiguration; we may be called
2609                          * with beacon transmission active.
2610                          */
2611                         ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2612
2613                         error = ath_beacon_alloc(aphy, vif);
2614                         if (!error)
2615                                 ath_beacon_config(sc, vif);
2616                 }
2617         }
2618
2619         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2620         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2621                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2622                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2623                                 ath9k_hw_keysetmac(sc->sc_ah,
2624                                                    (u16)i,
2625                                                    sc->curbssid);
2626         }
2627
2628         /* Only legacy IBSS for now */
2629         if (vif->type == NL80211_IFTYPE_ADHOC)
2630                 ath_update_chainmask(sc, 0);
2631
2632         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2633                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2634                         bss_conf->use_short_preamble);
2635                 if (bss_conf->use_short_preamble)
2636                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2637                 else
2638                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2639         }
2640
2641         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2642                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2643                         bss_conf->use_cts_prot);
2644                 if (bss_conf->use_cts_prot &&
2645                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2646                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2647                 else
2648                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2649         }
2650
2651         if (changed & BSS_CHANGED_ASSOC) {
2652                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2653                         bss_conf->assoc);
2654                 ath9k_bss_assoc_info(sc, vif, bss_conf);
2655         }
2656
2657         /*
2658          * The HW TSF has to be reset when the beacon interval changes.
2659          * We set the flag here, and ath_beacon_config_ap() would take this
2660          * into account when it gets called through the subsequent
2661          * config_interface() call - with IFCC_BEACON in the changed field.
2662          */
2663
2664         if (changed & BSS_CHANGED_BEACON_INT) {
2665                 sc->sc_flags |= SC_OP_TSF_RESET;
2666                 sc->beacon_interval = bss_conf->beacon_int;
2667         }
2668
2669         mutex_unlock(&sc->mutex);
2670 }
2671
2672 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2673 {
2674         u64 tsf;
2675         struct ath_wiphy *aphy = hw->priv;
2676         struct ath_softc *sc = aphy->sc;
2677
2678         mutex_lock(&sc->mutex);
2679         tsf = ath9k_hw_gettsf64(sc->sc_ah);
2680         mutex_unlock(&sc->mutex);
2681
2682         return tsf;
2683 }
2684
2685 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2686 {
2687         struct ath_wiphy *aphy = hw->priv;
2688         struct ath_softc *sc = aphy->sc;
2689
2690         mutex_lock(&sc->mutex);
2691         ath9k_hw_settsf64(sc->sc_ah, tsf);
2692         mutex_unlock(&sc->mutex);
2693 }
2694
2695 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2696 {
2697         struct ath_wiphy *aphy = hw->priv;
2698         struct ath_softc *sc = aphy->sc;
2699
2700         mutex_lock(&sc->mutex);
2701         ath9k_hw_reset_tsf(sc->sc_ah);
2702         mutex_unlock(&sc->mutex);
2703 }
2704
2705 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2706                               enum ieee80211_ampdu_mlme_action action,
2707                               struct ieee80211_sta *sta,
2708                               u16 tid, u16 *ssn)
2709 {
2710         struct ath_wiphy *aphy = hw->priv;
2711         struct ath_softc *sc = aphy->sc;
2712         int ret = 0;
2713
2714         switch (action) {
2715         case IEEE80211_AMPDU_RX_START:
2716                 if (!(sc->sc_flags & SC_OP_RXAGGR))
2717                         ret = -ENOTSUPP;
2718                 break;
2719         case IEEE80211_AMPDU_RX_STOP:
2720                 break;
2721         case IEEE80211_AMPDU_TX_START:
2722                 ath_tx_aggr_start(sc, sta, tid, ssn);
2723                 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2724                 break;
2725         case IEEE80211_AMPDU_TX_STOP:
2726                 ath_tx_aggr_stop(sc, sta, tid);
2727                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2728                 break;
2729         case IEEE80211_AMPDU_TX_OPERATIONAL:
2730                 ath_tx_aggr_resume(sc, sta, tid);
2731                 break;
2732         default:
2733                 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2734         }
2735
2736         return ret;
2737 }
2738
2739 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2740 {
2741         struct ath_wiphy *aphy = hw->priv;
2742         struct ath_softc *sc = aphy->sc;
2743
2744         mutex_lock(&sc->mutex);
2745         if (ath9k_wiphy_scanning(sc)) {
2746                 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2747                        "same time\n");
2748                 /*
2749                  * Do not allow the concurrent scanning state for now. This
2750                  * could be improved with scanning control moved into ath9k.
2751                  */
2752                 mutex_unlock(&sc->mutex);
2753                 return;
2754         }
2755
2756         aphy->state = ATH_WIPHY_SCAN;
2757         ath9k_wiphy_pause_all_forced(sc, aphy);
2758
2759         spin_lock_bh(&sc->ani_lock);
2760         sc->sc_flags |= SC_OP_SCANNING;
2761         spin_unlock_bh(&sc->ani_lock);
2762         mutex_unlock(&sc->mutex);
2763 }
2764
2765 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2766 {
2767         struct ath_wiphy *aphy = hw->priv;
2768         struct ath_softc *sc = aphy->sc;
2769
2770         mutex_lock(&sc->mutex);
2771         spin_lock_bh(&sc->ani_lock);
2772         aphy->state = ATH_WIPHY_ACTIVE;
2773         sc->sc_flags &= ~SC_OP_SCANNING;
2774         sc->sc_flags |= SC_OP_FULL_RESET;
2775         spin_unlock_bh(&sc->ani_lock);
2776         ath_beacon_config(sc, NULL);
2777         mutex_unlock(&sc->mutex);
2778 }
2779
2780 struct ieee80211_ops ath9k_ops = {
2781         .tx                 = ath9k_tx,
2782         .start              = ath9k_start,
2783         .stop               = ath9k_stop,
2784         .add_interface      = ath9k_add_interface,
2785         .remove_interface   = ath9k_remove_interface,
2786         .config             = ath9k_config,
2787         .configure_filter   = ath9k_configure_filter,
2788         .sta_notify         = ath9k_sta_notify,
2789         .conf_tx            = ath9k_conf_tx,
2790         .bss_info_changed   = ath9k_bss_info_changed,
2791         .set_key            = ath9k_set_key,
2792         .get_tsf            = ath9k_get_tsf,
2793         .set_tsf            = ath9k_set_tsf,
2794         .reset_tsf          = ath9k_reset_tsf,
2795         .ampdu_action       = ath9k_ampdu_action,
2796         .sw_scan_start      = ath9k_sw_scan_start,
2797         .sw_scan_complete   = ath9k_sw_scan_complete,
2798         .rfkill_poll        = ath9k_rfkill_poll_state,
2799 };
2800
2801 static struct {
2802         u32 version;
2803         const char * name;
2804 } ath_mac_bb_names[] = {
2805         { AR_SREV_VERSION_5416_PCI,     "5416" },
2806         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2807         { AR_SREV_VERSION_9100,         "9100" },
2808         { AR_SREV_VERSION_9160,         "9160" },
2809         { AR_SREV_VERSION_9280,         "9280" },
2810         { AR_SREV_VERSION_9285,         "9285" },
2811         { AR_SREV_VERSION_9287,         "9287" }
2812 };
2813
2814 static struct {
2815         u16 version;
2816         const char * name;
2817 } ath_rf_names[] = {
2818         { 0,                            "5133" },
2819         { AR_RAD5133_SREV_MAJOR,        "5133" },
2820         { AR_RAD5122_SREV_MAJOR,        "5122" },
2821         { AR_RAD2133_SREV_MAJOR,        "2133" },
2822         { AR_RAD2122_SREV_MAJOR,        "2122" }
2823 };
2824
2825 /*
2826  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2827  */
2828 const char *
2829 ath_mac_bb_name(u32 mac_bb_version)
2830 {
2831         int i;
2832
2833         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2834                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2835                         return ath_mac_bb_names[i].name;
2836                 }
2837         }
2838
2839         return "????";
2840 }
2841
2842 /*
2843  * Return the RF name. "????" is returned if the RF is unknown.
2844  */
2845 const char *
2846 ath_rf_name(u16 rf_version)
2847 {
2848         int i;
2849
2850         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2851                 if (ath_rf_names[i].version == rf_version) {
2852                         return ath_rf_names[i].name;
2853                 }
2854         }
2855
2856         return "????";
2857 }
2858
2859 static int __init ath9k_init(void)
2860 {
2861         int error;
2862
2863         /* Register rate control algorithm */
2864         error = ath_rate_control_register();
2865         if (error != 0) {
2866                 printk(KERN_ERR
2867                         "ath9k: Unable to register rate control "
2868                         "algorithm: %d\n",
2869                         error);
2870                 goto err_out;
2871         }
2872
2873         error = ath9k_debug_create_root();
2874         if (error) {
2875                 printk(KERN_ERR
2876                         "ath9k: Unable to create debugfs root: %d\n",
2877                         error);
2878                 goto err_rate_unregister;
2879         }
2880
2881         error = ath_pci_init();
2882         if (error < 0) {
2883                 printk(KERN_ERR
2884                         "ath9k: No PCI devices found, driver not installed.\n");
2885                 error = -ENODEV;
2886                 goto err_remove_root;
2887         }
2888
2889         error = ath_ahb_init();
2890         if (error < 0) {
2891                 error = -ENODEV;
2892                 goto err_pci_exit;
2893         }
2894
2895         return 0;
2896
2897  err_pci_exit:
2898         ath_pci_exit();
2899
2900  err_remove_root:
2901         ath9k_debug_remove_root();
2902  err_rate_unregister:
2903         ath_rate_control_unregister();
2904  err_out:
2905         return error;
2906 }
2907 module_init(ath9k_init);
2908
2909 static void __exit ath9k_exit(void)
2910 {
2911         ath_ahb_exit();
2912         ath_pci_exit();
2913         ath9k_debug_remove_root();
2914         ath_rate_control_unregister();
2915         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2916 }
2917 module_exit(ath9k_exit);