ath9k: make private driver rate tables const
[safe/jmp/linux-2.6] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "ath9k.h"
21 #include "initvals.h"
22
23 static int btcoex_enable;
24 module_param(btcoex_enable, bool, 0);
25 MODULE_PARM_DESC(btcoex_enable, "Enable Bluetooth coexistence support");
26
27 #define ATH9K_CLOCK_RATE_CCK            22
28 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
29 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
30
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
33                               enum ath9k_ht_macmode macmode);
34 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
35                               struct ar5416_eeprom_def *pEepData,
36                               u32 reg, u32 value);
37 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
38 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
39
40 /********************/
41 /* Helper Functions */
42 /********************/
43
44 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
45 {
46         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
47
48         if (!ah->curchan) /* should really check for CCK instead */
49                 return clks / ATH9K_CLOCK_RATE_CCK;
50         if (conf->channel->band == IEEE80211_BAND_2GHZ)
51                 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
52
53         return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
54 }
55
56 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
57 {
58         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
59
60         if (conf_is_ht40(conf))
61                 return ath9k_hw_mac_usec(ah, clks) / 2;
62         else
63                 return ath9k_hw_mac_usec(ah, clks);
64 }
65
66 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
67 {
68         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
69
70         if (!ah->curchan) /* should really check for CCK instead */
71                 return usecs *ATH9K_CLOCK_RATE_CCK;
72         if (conf->channel->band == IEEE80211_BAND_2GHZ)
73                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
74         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
75 }
76
77 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
78 {
79         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
80
81         if (conf_is_ht40(conf))
82                 return ath9k_hw_mac_clks(ah, usecs) * 2;
83         else
84                 return ath9k_hw_mac_clks(ah, usecs);
85 }
86
87 /*
88  * Read and write, they both share the same lock. We do this to serialize
89  * reads and writes on Atheros 802.11n PCI devices only. This is required
90  * as the FIFO on these devices can only accept sanely 2 requests. After
91  * that the device goes bananas. Serializing the reads/writes prevents this
92  * from happening.
93  */
94
95 void ath9k_iowrite32(struct ath_hw *ah, u32 reg_offset, u32 val)
96 {
97         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
98                 unsigned long flags;
99                 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
100                 iowrite32(val, ah->ah_sc->mem + reg_offset);
101                 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
102         } else
103                 iowrite32(val, ah->ah_sc->mem + reg_offset);
104 }
105
106 unsigned int ath9k_ioread32(struct ath_hw *ah, u32 reg_offset)
107 {
108         u32 val;
109         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
110                 unsigned long flags;
111                 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
112                 val = ioread32(ah->ah_sc->mem + reg_offset);
113                 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
114         } else
115                 val = ioread32(ah->ah_sc->mem + reg_offset);
116         return val;
117 }
118
119 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
120 {
121         int i;
122
123         BUG_ON(timeout < AH_TIME_QUANTUM);
124
125         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
126                 if ((REG_READ(ah, reg) & mask) == val)
127                         return true;
128
129                 udelay(AH_TIME_QUANTUM);
130         }
131
132         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
133                 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
134                 timeout, reg, REG_READ(ah, reg), mask, val);
135
136         return false;
137 }
138
139 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
140 {
141         u32 retval;
142         int i;
143
144         for (i = 0, retval = 0; i < n; i++) {
145                 retval = (retval << 1) | (val & 1);
146                 val >>= 1;
147         }
148         return retval;
149 }
150
151 bool ath9k_get_channel_edges(struct ath_hw *ah,
152                              u16 flags, u16 *low,
153                              u16 *high)
154 {
155         struct ath9k_hw_capabilities *pCap = &ah->caps;
156
157         if (flags & CHANNEL_5GHZ) {
158                 *low = pCap->low_5ghz_chan;
159                 *high = pCap->high_5ghz_chan;
160                 return true;
161         }
162         if ((flags & CHANNEL_2GHZ)) {
163                 *low = pCap->low_2ghz_chan;
164                 *high = pCap->high_2ghz_chan;
165                 return true;
166         }
167         return false;
168 }
169
170 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
171                            const struct ath_rate_table *rates,
172                            u32 frameLen, u16 rateix,
173                            bool shortPreamble)
174 {
175         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
176         u32 kbps;
177
178         kbps = rates->info[rateix].ratekbps;
179
180         if (kbps == 0)
181                 return 0;
182
183         switch (rates->info[rateix].phy) {
184         case WLAN_RC_PHY_CCK:
185                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
186                 if (shortPreamble && rates->info[rateix].short_preamble)
187                         phyTime >>= 1;
188                 numBits = frameLen << 3;
189                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
190                 break;
191         case WLAN_RC_PHY_OFDM:
192                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
193                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
194                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
195                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
196                         txTime = OFDM_SIFS_TIME_QUARTER
197                                 + OFDM_PREAMBLE_TIME_QUARTER
198                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
199                 } else if (ah->curchan &&
200                            IS_CHAN_HALF_RATE(ah->curchan)) {
201                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
202                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
203                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
204                         txTime = OFDM_SIFS_TIME_HALF +
205                                 OFDM_PREAMBLE_TIME_HALF
206                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
207                 } else {
208                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
209                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
210                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
211                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
212                                 + (numSymbols * OFDM_SYMBOL_TIME);
213                 }
214                 break;
215         default:
216                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
217                         "Unknown phy %u (rate ix %u)\n",
218                         rates->info[rateix].phy, rateix);
219                 txTime = 0;
220                 break;
221         }
222
223         return txTime;
224 }
225
226 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
227                                   struct ath9k_channel *chan,
228                                   struct chan_centers *centers)
229 {
230         int8_t extoff;
231
232         if (!IS_CHAN_HT40(chan)) {
233                 centers->ctl_center = centers->ext_center =
234                         centers->synth_center = chan->channel;
235                 return;
236         }
237
238         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
239             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
240                 centers->synth_center =
241                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
242                 extoff = 1;
243         } else {
244                 centers->synth_center =
245                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
246                 extoff = -1;
247         }
248
249         centers->ctl_center =
250                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
251         centers->ext_center =
252                 centers->synth_center + (extoff *
253                          ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
254                           HT40_CHANNEL_CENTER_SHIFT : 15));
255 }
256
257 /******************/
258 /* Chip Revisions */
259 /******************/
260
261 static void ath9k_hw_read_revisions(struct ath_hw *ah)
262 {
263         u32 val;
264
265         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
266
267         if (val == 0xFF) {
268                 val = REG_READ(ah, AR_SREV);
269                 ah->hw_version.macVersion =
270                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
271                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
272                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
273         } else {
274                 if (!AR_SREV_9100(ah))
275                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
276
277                 ah->hw_version.macRev = val & AR_SREV_REVISION;
278
279                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
280                         ah->is_pciexpress = true;
281         }
282 }
283
284 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
285 {
286         u32 val;
287         int i;
288
289         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
290
291         for (i = 0; i < 8; i++)
292                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
293         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
294         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
295
296         return ath9k_hw_reverse_bits(val, 8);
297 }
298
299 /************************************/
300 /* HW Attach, Detach, Init Routines */
301 /************************************/
302
303 static void ath9k_hw_disablepcie(struct ath_hw *ah)
304 {
305         if (AR_SREV_9100(ah))
306                 return;
307
308         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
309         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
310         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
311         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
312         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
313         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
314         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
315         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
316         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
317
318         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
319 }
320
321 static bool ath9k_hw_chip_test(struct ath_hw *ah)
322 {
323         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
324         u32 regHold[2];
325         u32 patternData[4] = { 0x55555555,
326                                0xaaaaaaaa,
327                                0x66666666,
328                                0x99999999 };
329         int i, j;
330
331         for (i = 0; i < 2; i++) {
332                 u32 addr = regAddr[i];
333                 u32 wrData, rdData;
334
335                 regHold[i] = REG_READ(ah, addr);
336                 for (j = 0; j < 0x100; j++) {
337                         wrData = (j << 16) | j;
338                         REG_WRITE(ah, addr, wrData);
339                         rdData = REG_READ(ah, addr);
340                         if (rdData != wrData) {
341                                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
342                                         "address test failed "
343                                         "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
344                                         addr, wrData, rdData);
345                                 return false;
346                         }
347                 }
348                 for (j = 0; j < 4; j++) {
349                         wrData = patternData[j];
350                         REG_WRITE(ah, addr, wrData);
351                         rdData = REG_READ(ah, addr);
352                         if (wrData != rdData) {
353                                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
354                                         "address test failed "
355                                         "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
356                                         addr, wrData, rdData);
357                                 return false;
358                         }
359                 }
360                 REG_WRITE(ah, regAddr[i], regHold[i]);
361         }
362         udelay(100);
363
364         return true;
365 }
366
367 static const char *ath9k_hw_devname(u16 devid)
368 {
369         switch (devid) {
370         case AR5416_DEVID_PCI:
371                 return "Atheros 5416";
372         case AR5416_DEVID_PCIE:
373                 return "Atheros 5418";
374         case AR9160_DEVID_PCI:
375                 return "Atheros 9160";
376         case AR5416_AR9100_DEVID:
377                 return "Atheros 9100";
378         case AR9280_DEVID_PCI:
379         case AR9280_DEVID_PCIE:
380                 return "Atheros 9280";
381         case AR9285_DEVID_PCIE:
382                 return "Atheros 9285";
383         }
384
385         return NULL;
386 }
387
388 static void ath9k_hw_set_defaults(struct ath_hw *ah)
389 {
390         int i;
391
392         ah->config.dma_beacon_response_time = 2;
393         ah->config.sw_beacon_response_time = 10;
394         ah->config.additional_swba_backoff = 0;
395         ah->config.ack_6mb = 0x0;
396         ah->config.cwm_ignore_extcca = 0;
397         ah->config.pcie_powersave_enable = 0;
398         ah->config.pcie_clock_req = 0;
399         ah->config.pcie_waen = 0;
400         ah->config.analog_shiftreg = 1;
401         ah->config.ht_enable = 1;
402         ah->config.ofdm_trig_low = 200;
403         ah->config.ofdm_trig_high = 500;
404         ah->config.cck_trig_high = 200;
405         ah->config.cck_trig_low = 100;
406         ah->config.enable_ani = 1;
407         ah->config.diversity_control = 0;
408         ah->config.antenna_switch_swap = 0;
409
410         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
411                 ah->config.spurchans[i][0] = AR_NO_SPUR;
412                 ah->config.spurchans[i][1] = AR_NO_SPUR;
413         }
414
415         ah->config.intr_mitigation = true;
416
417         /*
418          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
419          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
420          * This means we use it for all AR5416 devices, and the few
421          * minor PCI AR9280 devices out there.
422          *
423          * Serialization is required because these devices do not handle
424          * well the case of two concurrent reads/writes due to the latency
425          * involved. During one read/write another read/write can be issued
426          * on another CPU while the previous read/write may still be working
427          * on our hardware, if we hit this case the hardware poops in a loop.
428          * We prevent this by serializing reads and writes.
429          *
430          * This issue is not present on PCI-Express devices or pre-AR5416
431          * devices (legacy, 802.11abg).
432          */
433         if (num_possible_cpus() > 1)
434                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
435 }
436
437 static struct ath_hw *ath9k_hw_newstate(u16 devid, struct ath_softc *sc,
438                                         int *status)
439 {
440         struct ath_hw *ah;
441
442         ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
443         if (ah == NULL) {
444                 DPRINTF(sc, ATH_DBG_FATAL,
445                         "Cannot allocate memory for state block\n");
446                 *status = -ENOMEM;
447                 return NULL;
448         }
449
450         ah->ah_sc = sc;
451         ah->hw_version.magic = AR5416_MAGIC;
452         ah->regulatory.country_code = CTRY_DEFAULT;
453         ah->hw_version.devid = devid;
454         ah->hw_version.subvendorid = 0;
455
456         ah->ah_flags = 0;
457         if ((devid == AR5416_AR9100_DEVID))
458                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
459         if (!AR_SREV_9100(ah))
460                 ah->ah_flags = AH_USE_EEPROM;
461
462         ah->regulatory.power_limit = MAX_RATE_POWER;
463         ah->regulatory.tp_scale = ATH9K_TP_SCALE_MAX;
464         ah->atim_window = 0;
465         ah->diversity_control = ah->config.diversity_control;
466         ah->antenna_switch_swap =
467                 ah->config.antenna_switch_swap;
468         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
469         ah->beacon_interval = 100;
470         ah->enable_32kHz_clock = DONT_USE_32KHZ;
471         ah->slottime = (u32) -1;
472         ah->acktimeout = (u32) -1;
473         ah->ctstimeout = (u32) -1;
474         ah->globaltxtimeout = (u32) -1;
475
476         ah->gbeacon_rate = 0;
477
478         return ah;
479 }
480
481 static int ath9k_hw_rfattach(struct ath_hw *ah)
482 {
483         bool rfStatus = false;
484         int ecode = 0;
485
486         rfStatus = ath9k_hw_init_rf(ah, &ecode);
487         if (!rfStatus) {
488                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
489                         "RF setup failed, status: %u\n", ecode);
490                 return ecode;
491         }
492
493         return 0;
494 }
495
496 static int ath9k_hw_rf_claim(struct ath_hw *ah)
497 {
498         u32 val;
499
500         REG_WRITE(ah, AR_PHY(0), 0x00000007);
501
502         val = ath9k_hw_get_radiorev(ah);
503         switch (val & AR_RADIO_SREV_MAJOR) {
504         case 0:
505                 val = AR_RAD5133_SREV_MAJOR;
506                 break;
507         case AR_RAD5133_SREV_MAJOR:
508         case AR_RAD5122_SREV_MAJOR:
509         case AR_RAD2133_SREV_MAJOR:
510         case AR_RAD2122_SREV_MAJOR:
511                 break;
512         default:
513                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
514                         "Radio Chip Rev 0x%02X not supported\n",
515                         val & AR_RADIO_SREV_MAJOR);
516                 return -EOPNOTSUPP;
517         }
518
519         ah->hw_version.analog5GhzRev = val;
520
521         return 0;
522 }
523
524 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
525 {
526         u32 sum;
527         int i;
528         u16 eeval;
529
530         sum = 0;
531         for (i = 0; i < 3; i++) {
532                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
533                 sum += eeval;
534                 ah->macaddr[2 * i] = eeval >> 8;
535                 ah->macaddr[2 * i + 1] = eeval & 0xff;
536         }
537         if (sum == 0 || sum == 0xffff * 3)
538                 return -EADDRNOTAVAIL;
539
540         return 0;
541 }
542
543 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
544 {
545         u32 rxgain_type;
546
547         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
548                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
549
550                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
551                         INIT_INI_ARRAY(&ah->iniModesRxGain,
552                         ar9280Modes_backoff_13db_rxgain_9280_2,
553                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
554                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
555                         INIT_INI_ARRAY(&ah->iniModesRxGain,
556                         ar9280Modes_backoff_23db_rxgain_9280_2,
557                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
558                 else
559                         INIT_INI_ARRAY(&ah->iniModesRxGain,
560                         ar9280Modes_original_rxgain_9280_2,
561                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
562         } else {
563                 INIT_INI_ARRAY(&ah->iniModesRxGain,
564                         ar9280Modes_original_rxgain_9280_2,
565                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
566         }
567 }
568
569 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
570 {
571         u32 txgain_type;
572
573         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
574                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
575
576                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
577                         INIT_INI_ARRAY(&ah->iniModesTxGain,
578                         ar9280Modes_high_power_tx_gain_9280_2,
579                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
580                 else
581                         INIT_INI_ARRAY(&ah->iniModesTxGain,
582                         ar9280Modes_original_tx_gain_9280_2,
583                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
584         } else {
585                 INIT_INI_ARRAY(&ah->iniModesTxGain,
586                 ar9280Modes_original_tx_gain_9280_2,
587                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
588         }
589 }
590
591 static int ath9k_hw_post_attach(struct ath_hw *ah)
592 {
593         int ecode;
594
595         if (!ath9k_hw_chip_test(ah))
596                 return -ENODEV;
597
598         ecode = ath9k_hw_rf_claim(ah);
599         if (ecode != 0)
600                 return ecode;
601
602         ecode = ath9k_hw_eeprom_attach(ah);
603         if (ecode != 0)
604                 return ecode;
605
606         DPRINTF(ah->ah_sc, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n",
607                 ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah));
608
609         ecode = ath9k_hw_rfattach(ah);
610         if (ecode != 0)
611                 return ecode;
612
613         if (!AR_SREV_9100(ah)) {
614                 ath9k_hw_ani_setup(ah);
615                 ath9k_hw_ani_attach(ah);
616         }
617
618         return 0;
619 }
620
621 static struct ath_hw *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc,
622                                          int *status)
623 {
624         struct ath_hw *ah;
625         int ecode;
626         u32 i, j;
627
628         ah = ath9k_hw_newstate(devid, sc, status);
629         if (ah == NULL)
630                 return NULL;
631
632         ath9k_hw_set_defaults(ah);
633
634         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
635                 DPRINTF(sc, ATH_DBG_FATAL, "Couldn't reset chip\n");
636                 ecode = -EIO;
637                 goto bad;
638         }
639
640         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
641                 DPRINTF(sc, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
642                 ecode = -EIO;
643                 goto bad;
644         }
645
646         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
647                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
648                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
649                         ah->config.serialize_regmode =
650                                 SER_REG_MODE_ON;
651                 } else {
652                         ah->config.serialize_regmode =
653                                 SER_REG_MODE_OFF;
654                 }
655         }
656
657         DPRINTF(sc, ATH_DBG_RESET, "serialize_regmode is %d\n",
658                 ah->config.serialize_regmode);
659
660         if ((ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCI) &&
661             (ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCIE) &&
662             (ah->hw_version.macVersion != AR_SREV_VERSION_9160) &&
663             (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah)) && (!AR_SREV_9285(ah))) {
664                 DPRINTF(sc, ATH_DBG_FATAL,
665                         "Mac Chip Rev 0x%02x.%x is not supported by "
666                         "this driver\n", ah->hw_version.macVersion,
667                         ah->hw_version.macRev);
668                 ecode = -EOPNOTSUPP;
669                 goto bad;
670         }
671
672         if (AR_SREV_9100(ah)) {
673                 ah->iq_caldata.calData = &iq_cal_multi_sample;
674                 ah->supp_cals = IQ_MISMATCH_CAL;
675                 ah->is_pciexpress = false;
676         }
677         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
678
679         if (AR_SREV_9160_10_OR_LATER(ah)) {
680                 if (AR_SREV_9280_10_OR_LATER(ah)) {
681                         ah->iq_caldata.calData = &iq_cal_single_sample;
682                         ah->adcgain_caldata.calData =
683                                 &adc_gain_cal_single_sample;
684                         ah->adcdc_caldata.calData =
685                                 &adc_dc_cal_single_sample;
686                         ah->adcdc_calinitdata.calData =
687                                 &adc_init_dc_cal;
688                 } else {
689                         ah->iq_caldata.calData = &iq_cal_multi_sample;
690                         ah->adcgain_caldata.calData =
691                                 &adc_gain_cal_multi_sample;
692                         ah->adcdc_caldata.calData =
693                                 &adc_dc_cal_multi_sample;
694                         ah->adcdc_calinitdata.calData =
695                                 &adc_init_dc_cal;
696                 }
697                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
698         }
699
700         ah->ani_function = ATH9K_ANI_ALL;
701         if (AR_SREV_9280_10_OR_LATER(ah))
702                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
703
704         if (AR_SREV_9285_12_OR_LATER(ah)) {
705
706                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
707                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
708                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
709                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
710
711                 if (ah->config.pcie_clock_req) {
712                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
713                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
714                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
715                 } else {
716                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
717                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
718                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
719                                   2);
720                 }
721         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
722                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
723                                ARRAY_SIZE(ar9285Modes_9285), 6);
724                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
725                                ARRAY_SIZE(ar9285Common_9285), 2);
726
727                 if (ah->config.pcie_clock_req) {
728                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
729                         ar9285PciePhy_clkreq_off_L1_9285,
730                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
731                 } else {
732                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
733                         ar9285PciePhy_clkreq_always_on_L1_9285,
734                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
735                 }
736         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
737                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
738                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
739                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
740                                ARRAY_SIZE(ar9280Common_9280_2), 2);
741
742                 if (ah->config.pcie_clock_req) {
743                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
744                                ar9280PciePhy_clkreq_off_L1_9280,
745                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
746                 } else {
747                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
748                                ar9280PciePhy_clkreq_always_on_L1_9280,
749                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
750                 }
751                 INIT_INI_ARRAY(&ah->iniModesAdditional,
752                                ar9280Modes_fast_clock_9280_2,
753                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
754         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
755                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
756                                ARRAY_SIZE(ar9280Modes_9280), 6);
757                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
758                                ARRAY_SIZE(ar9280Common_9280), 2);
759         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
760                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
761                                ARRAY_SIZE(ar5416Modes_9160), 6);
762                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
763                                ARRAY_SIZE(ar5416Common_9160), 2);
764                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
765                                ARRAY_SIZE(ar5416Bank0_9160), 2);
766                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
767                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
768                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
769                                ARRAY_SIZE(ar5416Bank1_9160), 2);
770                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
771                                ARRAY_SIZE(ar5416Bank2_9160), 2);
772                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
773                                ARRAY_SIZE(ar5416Bank3_9160), 3);
774                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
775                                ARRAY_SIZE(ar5416Bank6_9160), 3);
776                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
777                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
778                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
779                                ARRAY_SIZE(ar5416Bank7_9160), 2);
780                 if (AR_SREV_9160_11(ah)) {
781                         INIT_INI_ARRAY(&ah->iniAddac,
782                                        ar5416Addac_91601_1,
783                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
784                 } else {
785                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
786                                        ARRAY_SIZE(ar5416Addac_9160), 2);
787                 }
788         } else if (AR_SREV_9100_OR_LATER(ah)) {
789                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
790                                ARRAY_SIZE(ar5416Modes_9100), 6);
791                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
792                                ARRAY_SIZE(ar5416Common_9100), 2);
793                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
794                                ARRAY_SIZE(ar5416Bank0_9100), 2);
795                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
796                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
797                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
798                                ARRAY_SIZE(ar5416Bank1_9100), 2);
799                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
800                                ARRAY_SIZE(ar5416Bank2_9100), 2);
801                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
802                                ARRAY_SIZE(ar5416Bank3_9100), 3);
803                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
804                                ARRAY_SIZE(ar5416Bank6_9100), 3);
805                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
806                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
807                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
808                                ARRAY_SIZE(ar5416Bank7_9100), 2);
809                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
810                                ARRAY_SIZE(ar5416Addac_9100), 2);
811         } else {
812                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
813                                ARRAY_SIZE(ar5416Modes), 6);
814                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
815                                ARRAY_SIZE(ar5416Common), 2);
816                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
817                                ARRAY_SIZE(ar5416Bank0), 2);
818                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
819                                ARRAY_SIZE(ar5416BB_RfGain), 3);
820                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
821                                ARRAY_SIZE(ar5416Bank1), 2);
822                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
823                                ARRAY_SIZE(ar5416Bank2), 2);
824                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
825                                ARRAY_SIZE(ar5416Bank3), 3);
826                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
827                                ARRAY_SIZE(ar5416Bank6), 3);
828                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
829                                ARRAY_SIZE(ar5416Bank6TPC), 3);
830                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
831                                ARRAY_SIZE(ar5416Bank7), 2);
832                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
833                                ARRAY_SIZE(ar5416Addac), 2);
834         }
835
836         if (ah->is_pciexpress)
837                 ath9k_hw_configpcipowersave(ah, 0);
838         else
839                 ath9k_hw_disablepcie(ah);
840
841         ecode = ath9k_hw_post_attach(ah);
842         if (ecode != 0)
843                 goto bad;
844
845         if (AR_SREV_9285_12_OR_LATER(ah)) {
846                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
847
848                 /* txgain table */
849                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
850                         INIT_INI_ARRAY(&ah->iniModesTxGain,
851                         ar9285Modes_high_power_tx_gain_9285_1_2,
852                         ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
853                 } else {
854                         INIT_INI_ARRAY(&ah->iniModesTxGain,
855                         ar9285Modes_original_tx_gain_9285_1_2,
856                         ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
857                 }
858
859         }
860
861         /* rxgain table */
862         if (AR_SREV_9280_20(ah))
863                 ath9k_hw_init_rxgain_ini(ah);
864
865         /* txgain table */
866         if (AR_SREV_9280_20(ah))
867                 ath9k_hw_init_txgain_ini(ah);
868
869         ath9k_hw_fill_cap_info(ah);
870
871         if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
872             test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
873
874                 /* EEPROM Fixup */
875                 for (i = 0; i < ah->iniModes.ia_rows; i++) {
876                         u32 reg = INI_RA(&ah->iniModes, i, 0);
877
878                         for (j = 1; j < ah->iniModes.ia_columns; j++) {
879                                 u32 val = INI_RA(&ah->iniModes, i, j);
880
881                                 INI_RA(&ah->iniModes, i, j) =
882                                         ath9k_hw_ini_fixup(ah,
883                                                            &ah->eeprom.def,
884                                                            reg, val);
885                         }
886                 }
887         }
888
889         ecode = ath9k_hw_init_macaddr(ah);
890         if (ecode != 0) {
891                 DPRINTF(sc, ATH_DBG_FATAL,
892                         "Failed to initialize MAC address\n");
893                 goto bad;
894         }
895
896         if (AR_SREV_9285(ah))
897                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
898         else
899                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
900
901         ath9k_init_nfcal_hist_buffer(ah);
902
903         return ah;
904 bad:
905         if (ah)
906                 ath9k_hw_detach(ah);
907         if (status)
908                 *status = ecode;
909
910         return NULL;
911 }
912
913 static void ath9k_hw_init_bb(struct ath_hw *ah,
914                              struct ath9k_channel *chan)
915 {
916         u32 synthDelay;
917
918         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
919         if (IS_CHAN_B(chan))
920                 synthDelay = (4 * synthDelay) / 22;
921         else
922                 synthDelay /= 10;
923
924         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
925
926         udelay(synthDelay + BASE_ACTIVATE_DELAY);
927 }
928
929 static void ath9k_hw_init_qos(struct ath_hw *ah)
930 {
931         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
932         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
933
934         REG_WRITE(ah, AR_QOS_NO_ACK,
935                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
936                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
937                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
938
939         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
940         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
941         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
942         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
943         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
944 }
945
946 static void ath9k_hw_init_pll(struct ath_hw *ah,
947                               struct ath9k_channel *chan)
948 {
949         u32 pll;
950
951         if (AR_SREV_9100(ah)) {
952                 if (chan && IS_CHAN_5GHZ(chan))
953                         pll = 0x1450;
954                 else
955                         pll = 0x1458;
956         } else {
957                 if (AR_SREV_9280_10_OR_LATER(ah)) {
958                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
959
960                         if (chan && IS_CHAN_HALF_RATE(chan))
961                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
962                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
963                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
964
965                         if (chan && IS_CHAN_5GHZ(chan)) {
966                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
967
968
969                                 if (AR_SREV_9280_20(ah)) {
970                                         if (((chan->channel % 20) == 0)
971                                             || ((chan->channel % 10) == 0))
972                                                 pll = 0x2850;
973                                         else
974                                                 pll = 0x142c;
975                                 }
976                         } else {
977                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
978                         }
979
980                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
981
982                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
983
984                         if (chan && IS_CHAN_HALF_RATE(chan))
985                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
986                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
987                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
988
989                         if (chan && IS_CHAN_5GHZ(chan))
990                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
991                         else
992                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
993                 } else {
994                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
995
996                         if (chan && IS_CHAN_HALF_RATE(chan))
997                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
998                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
999                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1000
1001                         if (chan && IS_CHAN_5GHZ(chan))
1002                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
1003                         else
1004                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
1005                 }
1006         }
1007         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1008
1009         udelay(RTC_PLL_SETTLE_DELAY);
1010
1011         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1012 }
1013
1014 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1015 {
1016         int rx_chainmask, tx_chainmask;
1017
1018         rx_chainmask = ah->rxchainmask;
1019         tx_chainmask = ah->txchainmask;
1020
1021         switch (rx_chainmask) {
1022         case 0x5:
1023                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1024                             AR_PHY_SWAP_ALT_CHAIN);
1025         case 0x3:
1026                 if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1027                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1028                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1029                         break;
1030                 }
1031         case 0x1:
1032         case 0x2:
1033         case 0x7:
1034                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1035                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1036                 break;
1037         default:
1038                 break;
1039         }
1040
1041         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1042         if (tx_chainmask == 0x5) {
1043                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1044                             AR_PHY_SWAP_ALT_CHAIN);
1045         }
1046         if (AR_SREV_9100(ah))
1047                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1048                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1049 }
1050
1051 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1052                                           enum nl80211_iftype opmode)
1053 {
1054         ah->mask_reg = AR_IMR_TXERR |
1055                 AR_IMR_TXURN |
1056                 AR_IMR_RXERR |
1057                 AR_IMR_RXORN |
1058                 AR_IMR_BCNMISC;
1059
1060         if (ah->config.intr_mitigation)
1061                 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1062         else
1063                 ah->mask_reg |= AR_IMR_RXOK;
1064
1065         ah->mask_reg |= AR_IMR_TXOK;
1066
1067         if (opmode == NL80211_IFTYPE_AP)
1068                 ah->mask_reg |= AR_IMR_MIB;
1069
1070         REG_WRITE(ah, AR_IMR, ah->mask_reg);
1071         REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1072
1073         if (!AR_SREV_9100(ah)) {
1074                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1075                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1076                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1077         }
1078 }
1079
1080 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1081 {
1082         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1083                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
1084                 ah->acktimeout = (u32) -1;
1085                 return false;
1086         } else {
1087                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1088                               AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1089                 ah->acktimeout = us;
1090                 return true;
1091         }
1092 }
1093
1094 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1095 {
1096         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1097                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
1098                 ah->ctstimeout = (u32) -1;
1099                 return false;
1100         } else {
1101                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1102                               AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1103                 ah->ctstimeout = us;
1104                 return true;
1105         }
1106 }
1107
1108 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1109 {
1110         if (tu > 0xFFFF) {
1111                 DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
1112                         "bad global tx timeout %u\n", tu);
1113                 ah->globaltxtimeout = (u32) -1;
1114                 return false;
1115         } else {
1116                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1117                 ah->globaltxtimeout = tu;
1118                 return true;
1119         }
1120 }
1121
1122 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1123 {
1124         DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1125                 ah->misc_mode);
1126
1127         if (ah->misc_mode != 0)
1128                 REG_WRITE(ah, AR_PCU_MISC,
1129                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1130         if (ah->slottime != (u32) -1)
1131                 ath9k_hw_setslottime(ah, ah->slottime);
1132         if (ah->acktimeout != (u32) -1)
1133                 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1134         if (ah->ctstimeout != (u32) -1)
1135                 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1136         if (ah->globaltxtimeout != (u32) -1)
1137                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1138 }
1139
1140 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1141 {
1142         return vendorid == ATHEROS_VENDOR_ID ?
1143                 ath9k_hw_devname(devid) : NULL;
1144 }
1145
1146 void ath9k_hw_detach(struct ath_hw *ah)
1147 {
1148         if (!AR_SREV_9100(ah))
1149                 ath9k_hw_ani_detach(ah);
1150
1151         ath9k_hw_rfdetach(ah);
1152         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1153         kfree(ah);
1154 }
1155
1156 struct ath_hw *ath9k_hw_attach(u16 devid, struct ath_softc *sc, int *error)
1157 {
1158         struct ath_hw *ah = NULL;
1159
1160         switch (devid) {
1161         case AR5416_DEVID_PCI:
1162         case AR5416_DEVID_PCIE:
1163         case AR5416_AR9100_DEVID:
1164         case AR9160_DEVID_PCI:
1165         case AR9280_DEVID_PCI:
1166         case AR9280_DEVID_PCIE:
1167         case AR9285_DEVID_PCIE:
1168                 ah = ath9k_hw_do_attach(devid, sc, error);
1169                 break;
1170         default:
1171                 *error = -ENXIO;
1172                 break;
1173         }
1174
1175         return ah;
1176 }
1177
1178 /*******/
1179 /* INI */
1180 /*******/
1181
1182 static void ath9k_hw_override_ini(struct ath_hw *ah,
1183                                   struct ath9k_channel *chan)
1184 {
1185         /*
1186          * Set the RX_ABORT and RX_DIS and clear if off only after
1187          * RXE is set for MAC. This prevents frames with corrupted
1188          * descriptor status.
1189          */
1190         REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1191
1192
1193         if (!AR_SREV_5416_20_OR_LATER(ah) ||
1194             AR_SREV_9280_10_OR_LATER(ah))
1195                 return;
1196
1197         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1198 }
1199
1200 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1201                               struct ar5416_eeprom_def *pEepData,
1202                               u32 reg, u32 value)
1203 {
1204         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1205
1206         switch (ah->hw_version.devid) {
1207         case AR9280_DEVID_PCI:
1208                 if (reg == 0x7894) {
1209                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1210                                 "ini VAL: %x  EEPROM: %x\n", value,
1211                                 (pBase->version & 0xff));
1212
1213                         if ((pBase->version & 0xff) > 0x0a) {
1214                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1215                                         "PWDCLKIND: %d\n",
1216                                         pBase->pwdclkind);
1217                                 value &= ~AR_AN_TOP2_PWDCLKIND;
1218                                 value |= AR_AN_TOP2_PWDCLKIND &
1219                                         (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1220                         } else {
1221                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1222                                         "PWDCLKIND Earlier Rev\n");
1223                         }
1224
1225                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1226                                 "final ini VAL: %x\n", value);
1227                 }
1228                 break;
1229         }
1230
1231         return value;
1232 }
1233
1234 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1235                               struct ar5416_eeprom_def *pEepData,
1236                               u32 reg, u32 value)
1237 {
1238         if (ah->eep_map == EEP_MAP_4KBITS)
1239                 return value;
1240         else
1241                 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1242 }
1243
1244 static void ath9k_olc_init(struct ath_hw *ah)
1245 {
1246         u32 i;
1247
1248         for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1249                 ah->originalGain[i] =
1250                         MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1251                                         AR_PHY_TX_GAIN);
1252         ah->PDADCdelta = 0;
1253 }
1254
1255 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1256                               struct ath9k_channel *chan)
1257 {
1258         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1259
1260         if (IS_CHAN_B(chan))
1261                 ctl |= CTL_11B;
1262         else if (IS_CHAN_G(chan))
1263                 ctl |= CTL_11G;
1264         else
1265                 ctl |= CTL_11A;
1266
1267         return ctl;
1268 }
1269
1270 static int ath9k_hw_process_ini(struct ath_hw *ah,
1271                                 struct ath9k_channel *chan,
1272                                 enum ath9k_ht_macmode macmode)
1273 {
1274         int i, regWrites = 0;
1275         struct ieee80211_channel *channel = chan->chan;
1276         u32 modesIndex, freqIndex;
1277         int status;
1278
1279         switch (chan->chanmode) {
1280         case CHANNEL_A:
1281         case CHANNEL_A_HT20:
1282                 modesIndex = 1;
1283                 freqIndex = 1;
1284                 break;
1285         case CHANNEL_A_HT40PLUS:
1286         case CHANNEL_A_HT40MINUS:
1287                 modesIndex = 2;
1288                 freqIndex = 1;
1289                 break;
1290         case CHANNEL_G:
1291         case CHANNEL_G_HT20:
1292         case CHANNEL_B:
1293                 modesIndex = 4;
1294                 freqIndex = 2;
1295                 break;
1296         case CHANNEL_G_HT40PLUS:
1297         case CHANNEL_G_HT40MINUS:
1298                 modesIndex = 3;
1299                 freqIndex = 2;
1300                 break;
1301
1302         default:
1303                 return -EINVAL;
1304         }
1305
1306         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1307         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1308         ah->eep_ops->set_addac(ah, chan);
1309
1310         if (AR_SREV_5416_22_OR_LATER(ah)) {
1311                 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1312         } else {
1313                 struct ar5416IniArray temp;
1314                 u32 addacSize =
1315                         sizeof(u32) * ah->iniAddac.ia_rows *
1316                         ah->iniAddac.ia_columns;
1317
1318                 memcpy(ah->addac5416_21,
1319                        ah->iniAddac.ia_array, addacSize);
1320
1321                 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1322
1323                 temp.ia_array = ah->addac5416_21;
1324                 temp.ia_columns = ah->iniAddac.ia_columns;
1325                 temp.ia_rows = ah->iniAddac.ia_rows;
1326                 REG_WRITE_ARRAY(&temp, 1, regWrites);
1327         }
1328
1329         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1330
1331         for (i = 0; i < ah->iniModes.ia_rows; i++) {
1332                 u32 reg = INI_RA(&ah->iniModes, i, 0);
1333                 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1334
1335                 REG_WRITE(ah, reg, val);
1336
1337                 if (reg >= 0x7800 && reg < 0x78a0
1338                     && ah->config.analog_shiftreg) {
1339                         udelay(100);
1340                 }
1341
1342                 DO_DELAY(regWrites);
1343         }
1344
1345         if (AR_SREV_9280(ah))
1346                 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1347
1348         if (AR_SREV_9280(ah) || (AR_SREV_9285(ah) &&
1349             AR_SREV_9285_12_OR_LATER(ah)))
1350                 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1351
1352         for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1353                 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1354                 u32 val = INI_RA(&ah->iniCommon, i, 1);
1355
1356                 REG_WRITE(ah, reg, val);
1357
1358                 if (reg >= 0x7800 && reg < 0x78a0
1359                     && ah->config.analog_shiftreg) {
1360                         udelay(100);
1361                 }
1362
1363                 DO_DELAY(regWrites);
1364         }
1365
1366         ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1367
1368         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1369                 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1370                                 regWrites);
1371         }
1372
1373         ath9k_hw_override_ini(ah, chan);
1374         ath9k_hw_set_regs(ah, chan, macmode);
1375         ath9k_hw_init_chain_masks(ah);
1376
1377         if (OLC_FOR_AR9280_20_LATER)
1378                 ath9k_olc_init(ah);
1379
1380         status = ah->eep_ops->set_txpower(ah, chan,
1381                                   ath9k_regd_get_ctl(&ah->regulatory, chan),
1382                                   channel->max_antenna_gain * 2,
1383                                   channel->max_power * 2,
1384                                   min((u32) MAX_RATE_POWER,
1385                                       (u32) ah->regulatory.power_limit));
1386         if (status != 0) {
1387                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1388                         "Error initializing transmit power\n");
1389                 return -EIO;
1390         }
1391
1392         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1393                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1394                         "ar5416SetRfRegs failed\n");
1395                 return -EIO;
1396         }
1397
1398         return 0;
1399 }
1400
1401 /****************************************/
1402 /* Reset and Channel Switching Routines */
1403 /****************************************/
1404
1405 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1406 {
1407         u32 rfMode = 0;
1408
1409         if (chan == NULL)
1410                 return;
1411
1412         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1413                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1414
1415         if (!AR_SREV_9280_10_OR_LATER(ah))
1416                 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1417                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1418
1419         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1420                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1421
1422         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1423 }
1424
1425 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1426 {
1427         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1428 }
1429
1430 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1431 {
1432         u32 regval;
1433
1434         regval = REG_READ(ah, AR_AHB_MODE);
1435         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1436
1437         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1438         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1439
1440         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1441
1442         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1443         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1444
1445         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1446
1447         if (AR_SREV_9285(ah)) {
1448                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1449                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1450         } else {
1451                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1452                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1453         }
1454 }
1455
1456 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1457 {
1458         u32 val;
1459
1460         val = REG_READ(ah, AR_STA_ID1);
1461         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1462         switch (opmode) {
1463         case NL80211_IFTYPE_AP:
1464                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1465                           | AR_STA_ID1_KSRCH_MODE);
1466                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1467                 break;
1468         case NL80211_IFTYPE_ADHOC:
1469         case NL80211_IFTYPE_MESH_POINT:
1470                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1471                           | AR_STA_ID1_KSRCH_MODE);
1472                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1473                 break;
1474         case NL80211_IFTYPE_STATION:
1475         case NL80211_IFTYPE_MONITOR:
1476                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1477                 break;
1478         }
1479 }
1480
1481 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1482                                                  u32 coef_scaled,
1483                                                  u32 *coef_mantissa,
1484                                                  u32 *coef_exponent)
1485 {
1486         u32 coef_exp, coef_man;
1487
1488         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1489                 if ((coef_scaled >> coef_exp) & 0x1)
1490                         break;
1491
1492         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1493
1494         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1495
1496         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1497         *coef_exponent = coef_exp - 16;
1498 }
1499
1500 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1501                                      struct ath9k_channel *chan)
1502 {
1503         u32 coef_scaled, ds_coef_exp, ds_coef_man;
1504         u32 clockMhzScaled = 0x64000000;
1505         struct chan_centers centers;
1506
1507         if (IS_CHAN_HALF_RATE(chan))
1508                 clockMhzScaled = clockMhzScaled >> 1;
1509         else if (IS_CHAN_QUARTER_RATE(chan))
1510                 clockMhzScaled = clockMhzScaled >> 2;
1511
1512         ath9k_hw_get_channel_centers(ah, chan, &centers);
1513         coef_scaled = clockMhzScaled / centers.synth_center;
1514
1515         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1516                                       &ds_coef_exp);
1517
1518         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1519                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1520         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1521                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1522
1523         coef_scaled = (9 * coef_scaled) / 10;
1524
1525         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1526                                       &ds_coef_exp);
1527
1528         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1529                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1530         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1531                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1532 }
1533
1534 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1535 {
1536         u32 rst_flags;
1537         u32 tmpReg;
1538
1539         if (AR_SREV_9100(ah)) {
1540                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1541                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1542                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1543                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1544                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1545         }
1546
1547         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1548                   AR_RTC_FORCE_WAKE_ON_INT);
1549
1550         if (AR_SREV_9100(ah)) {
1551                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1552                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1553         } else {
1554                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1555                 if (tmpReg &
1556                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1557                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1558                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1559                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1560                 } else {
1561                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1562                 }
1563
1564                 rst_flags = AR_RTC_RC_MAC_WARM;
1565                 if (type == ATH9K_RESET_COLD)
1566                         rst_flags |= AR_RTC_RC_MAC_COLD;
1567         }
1568
1569         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1570         udelay(50);
1571
1572         REG_WRITE(ah, AR_RTC_RC, 0);
1573         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1574                 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1575                         "RTC stuck in MAC reset\n");
1576                 return false;
1577         }
1578
1579         if (!AR_SREV_9100(ah))
1580                 REG_WRITE(ah, AR_RC, 0);
1581
1582         ath9k_hw_init_pll(ah, NULL);
1583
1584         if (AR_SREV_9100(ah))
1585                 udelay(50);
1586
1587         return true;
1588 }
1589
1590 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1591 {
1592         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1593                   AR_RTC_FORCE_WAKE_ON_INT);
1594
1595         REG_WRITE(ah, AR_RTC_RESET, 0);
1596         udelay(2);
1597         REG_WRITE(ah, AR_RTC_RESET, 1);
1598
1599         if (!ath9k_hw_wait(ah,
1600                            AR_RTC_STATUS,
1601                            AR_RTC_STATUS_M,
1602                            AR_RTC_STATUS_ON,
1603                            AH_WAIT_TIMEOUT)) {
1604                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
1605                 return false;
1606         }
1607
1608         ath9k_hw_read_revisions(ah);
1609
1610         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1611 }
1612
1613 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1614 {
1615         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1616                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1617
1618         switch (type) {
1619         case ATH9K_RESET_POWER_ON:
1620                 return ath9k_hw_set_reset_power_on(ah);
1621                 break;
1622         case ATH9K_RESET_WARM:
1623         case ATH9K_RESET_COLD:
1624                 return ath9k_hw_set_reset(ah, type);
1625                 break;
1626         default:
1627                 return false;
1628         }
1629 }
1630
1631 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
1632                               enum ath9k_ht_macmode macmode)
1633 {
1634         u32 phymode;
1635         u32 enableDacFifo = 0;
1636
1637         if (AR_SREV_9285_10_OR_LATER(ah))
1638                 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1639                                          AR_PHY_FC_ENABLE_DAC_FIFO);
1640
1641         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1642                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1643
1644         if (IS_CHAN_HT40(chan)) {
1645                 phymode |= AR_PHY_FC_DYN2040_EN;
1646
1647                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1648                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1649                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1650
1651                 if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1652                         phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1653         }
1654         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1655
1656         ath9k_hw_set11nmac2040(ah, macmode);
1657
1658         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1659         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1660 }
1661
1662 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1663                                 struct ath9k_channel *chan)
1664 {
1665         if (OLC_FOR_AR9280_20_LATER) {
1666                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1667                         return false;
1668         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1669                 return false;
1670
1671         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1672                 return false;
1673
1674         ah->chip_fullsleep = false;
1675         ath9k_hw_init_pll(ah, chan);
1676         ath9k_hw_set_rfmode(ah, chan);
1677
1678         return true;
1679 }
1680
1681 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1682                                     struct ath9k_channel *chan,
1683                                     enum ath9k_ht_macmode macmode)
1684 {
1685         struct ieee80211_channel *channel = chan->chan;
1686         u32 synthDelay, qnum;
1687
1688         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1689                 if (ath9k_hw_numtxpending(ah, qnum)) {
1690                         DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
1691                                 "Transmit frames pending on queue %d\n", qnum);
1692                         return false;
1693                 }
1694         }
1695
1696         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1697         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1698                            AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1699                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1700                         "Could not kill baseband RX\n");
1701                 return false;
1702         }
1703
1704         ath9k_hw_set_regs(ah, chan, macmode);
1705
1706         if (AR_SREV_9280_10_OR_LATER(ah)) {
1707                 if (!(ath9k_hw_ar9280_set_channel(ah, chan))) {
1708                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1709                                 "Failed to set channel\n");
1710                         return false;
1711                 }
1712         } else {
1713                 if (!(ath9k_hw_set_channel(ah, chan))) {
1714                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1715                                 "Failed to set channel\n");
1716                         return false;
1717                 }
1718         }
1719
1720         if (ah->eep_ops->set_txpower(ah, chan,
1721                              ath9k_regd_get_ctl(&ah->regulatory, chan),
1722                              channel->max_antenna_gain * 2,
1723                              channel->max_power * 2,
1724                              min((u32) MAX_RATE_POWER,
1725                                  (u32) ah->regulatory.power_limit)) != 0) {
1726                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1727                         "Error initializing transmit power\n");
1728                 return false;
1729         }
1730
1731         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1732         if (IS_CHAN_B(chan))
1733                 synthDelay = (4 * synthDelay) / 22;
1734         else
1735                 synthDelay /= 10;
1736
1737         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1738
1739         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1740
1741         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1742                 ath9k_hw_set_delta_slope(ah, chan);
1743
1744         if (AR_SREV_9280_10_OR_LATER(ah))
1745                 ath9k_hw_9280_spur_mitigate(ah, chan);
1746         else
1747                 ath9k_hw_spur_mitigate(ah, chan);
1748
1749         if (!chan->oneTimeCalsDone)
1750                 chan->oneTimeCalsDone = true;
1751
1752         return true;
1753 }
1754
1755 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1756 {
1757         int bb_spur = AR_NO_SPUR;
1758         int freq;
1759         int bin, cur_bin;
1760         int bb_spur_off, spur_subchannel_sd;
1761         int spur_freq_sd;
1762         int spur_delta_phase;
1763         int denominator;
1764         int upper, lower, cur_vit_mask;
1765         int tmp, newVal;
1766         int i;
1767         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1768                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1769         };
1770         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1771                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1772         };
1773         int inc[4] = { 0, 100, 0, 0 };
1774         struct chan_centers centers;
1775
1776         int8_t mask_m[123];
1777         int8_t mask_p[123];
1778         int8_t mask_amt;
1779         int tmp_mask;
1780         int cur_bb_spur;
1781         bool is2GHz = IS_CHAN_2GHZ(chan);
1782
1783         memset(&mask_m, 0, sizeof(int8_t) * 123);
1784         memset(&mask_p, 0, sizeof(int8_t) * 123);
1785
1786         ath9k_hw_get_channel_centers(ah, chan, &centers);
1787         freq = centers.synth_center;
1788
1789         ah->config.spurmode = SPUR_ENABLE_EEPROM;
1790         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1791                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1792
1793                 if (is2GHz)
1794                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1795                 else
1796                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1797
1798                 if (AR_NO_SPUR == cur_bb_spur)
1799                         break;
1800                 cur_bb_spur = cur_bb_spur - freq;
1801
1802                 if (IS_CHAN_HT40(chan)) {
1803                         if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1804                             (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1805                                 bb_spur = cur_bb_spur;
1806                                 break;
1807                         }
1808                 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1809                            (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1810                         bb_spur = cur_bb_spur;
1811                         break;
1812                 }
1813         }
1814
1815         if (AR_NO_SPUR == bb_spur) {
1816                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1817                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1818                 return;
1819         } else {
1820                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1821                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1822         }
1823
1824         bin = bb_spur * 320;
1825
1826         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1827
1828         newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1829                         AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1830                         AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1831                         AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1832         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1833
1834         newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1835                   AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1836                   AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1837                   AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1838                   SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1839         REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1840
1841         if (IS_CHAN_HT40(chan)) {
1842                 if (bb_spur < 0) {
1843                         spur_subchannel_sd = 1;
1844                         bb_spur_off = bb_spur + 10;
1845                 } else {
1846                         spur_subchannel_sd = 0;
1847                         bb_spur_off = bb_spur - 10;
1848                 }
1849         } else {
1850                 spur_subchannel_sd = 0;
1851                 bb_spur_off = bb_spur;
1852         }
1853
1854         if (IS_CHAN_HT40(chan))
1855                 spur_delta_phase =
1856                         ((bb_spur * 262144) /
1857                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1858         else
1859                 spur_delta_phase =
1860                         ((bb_spur * 524288) /
1861                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1862
1863         denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
1864         spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1865
1866         newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1867                   SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1868                   SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1869         REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1870
1871         newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1872         REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1873
1874         cur_bin = -6000;
1875         upper = bin + 100;
1876         lower = bin - 100;
1877
1878         for (i = 0; i < 4; i++) {
1879                 int pilot_mask = 0;
1880                 int chan_mask = 0;
1881                 int bp = 0;
1882                 for (bp = 0; bp < 30; bp++) {
1883                         if ((cur_bin > lower) && (cur_bin < upper)) {
1884                                 pilot_mask = pilot_mask | 0x1 << bp;
1885                                 chan_mask = chan_mask | 0x1 << bp;
1886                         }
1887                         cur_bin += 100;
1888                 }
1889                 cur_bin += inc[i];
1890                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
1891                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
1892         }
1893
1894         cur_vit_mask = 6100;
1895         upper = bin + 120;
1896         lower = bin - 120;
1897
1898         for (i = 0; i < 123; i++) {
1899                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1900
1901                         /* workaround for gcc bug #37014 */
1902                         volatile int tmp_v = abs(cur_vit_mask - bin);
1903
1904                         if (tmp_v < 75)
1905                                 mask_amt = 1;
1906                         else
1907                                 mask_amt = 0;
1908                         if (cur_vit_mask < 0)
1909                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1910                         else
1911                                 mask_p[cur_vit_mask / 100] = mask_amt;
1912                 }
1913                 cur_vit_mask -= 100;
1914         }
1915
1916         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1917                 | (mask_m[48] << 26) | (mask_m[49] << 24)
1918                 | (mask_m[50] << 22) | (mask_m[51] << 20)
1919                 | (mask_m[52] << 18) | (mask_m[53] << 16)
1920                 | (mask_m[54] << 14) | (mask_m[55] << 12)
1921                 | (mask_m[56] << 10) | (mask_m[57] << 8)
1922                 | (mask_m[58] << 6) | (mask_m[59] << 4)
1923                 | (mask_m[60] << 2) | (mask_m[61] << 0);
1924         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1925         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1926
1927         tmp_mask = (mask_m[31] << 28)
1928                 | (mask_m[32] << 26) | (mask_m[33] << 24)
1929                 | (mask_m[34] << 22) | (mask_m[35] << 20)
1930                 | (mask_m[36] << 18) | (mask_m[37] << 16)
1931                 | (mask_m[48] << 14) | (mask_m[39] << 12)
1932                 | (mask_m[40] << 10) | (mask_m[41] << 8)
1933                 | (mask_m[42] << 6) | (mask_m[43] << 4)
1934                 | (mask_m[44] << 2) | (mask_m[45] << 0);
1935         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1936         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1937
1938         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1939                 | (mask_m[18] << 26) | (mask_m[18] << 24)
1940                 | (mask_m[20] << 22) | (mask_m[20] << 20)
1941                 | (mask_m[22] << 18) | (mask_m[22] << 16)
1942                 | (mask_m[24] << 14) | (mask_m[24] << 12)
1943                 | (mask_m[25] << 10) | (mask_m[26] << 8)
1944                 | (mask_m[27] << 6) | (mask_m[28] << 4)
1945                 | (mask_m[29] << 2) | (mask_m[30] << 0);
1946         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1947         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1948
1949         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
1950                 | (mask_m[2] << 26) | (mask_m[3] << 24)
1951                 | (mask_m[4] << 22) | (mask_m[5] << 20)
1952                 | (mask_m[6] << 18) | (mask_m[7] << 16)
1953                 | (mask_m[8] << 14) | (mask_m[9] << 12)
1954                 | (mask_m[10] << 10) | (mask_m[11] << 8)
1955                 | (mask_m[12] << 6) | (mask_m[13] << 4)
1956                 | (mask_m[14] << 2) | (mask_m[15] << 0);
1957         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
1958         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
1959
1960         tmp_mask = (mask_p[15] << 28)
1961                 | (mask_p[14] << 26) | (mask_p[13] << 24)
1962                 | (mask_p[12] << 22) | (mask_p[11] << 20)
1963                 | (mask_p[10] << 18) | (mask_p[9] << 16)
1964                 | (mask_p[8] << 14) | (mask_p[7] << 12)
1965                 | (mask_p[6] << 10) | (mask_p[5] << 8)
1966                 | (mask_p[4] << 6) | (mask_p[3] << 4)
1967                 | (mask_p[2] << 2) | (mask_p[1] << 0);
1968         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
1969         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
1970
1971         tmp_mask = (mask_p[30] << 28)
1972                 | (mask_p[29] << 26) | (mask_p[28] << 24)
1973                 | (mask_p[27] << 22) | (mask_p[26] << 20)
1974                 | (mask_p[25] << 18) | (mask_p[24] << 16)
1975                 | (mask_p[23] << 14) | (mask_p[22] << 12)
1976                 | (mask_p[21] << 10) | (mask_p[20] << 8)
1977                 | (mask_p[19] << 6) | (mask_p[18] << 4)
1978                 | (mask_p[17] << 2) | (mask_p[16] << 0);
1979         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
1980         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
1981
1982         tmp_mask = (mask_p[45] << 28)
1983                 | (mask_p[44] << 26) | (mask_p[43] << 24)
1984                 | (mask_p[42] << 22) | (mask_p[41] << 20)
1985                 | (mask_p[40] << 18) | (mask_p[39] << 16)
1986                 | (mask_p[38] << 14) | (mask_p[37] << 12)
1987                 | (mask_p[36] << 10) | (mask_p[35] << 8)
1988                 | (mask_p[34] << 6) | (mask_p[33] << 4)
1989                 | (mask_p[32] << 2) | (mask_p[31] << 0);
1990         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
1991         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
1992
1993         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
1994                 | (mask_p[59] << 26) | (mask_p[58] << 24)
1995                 | (mask_p[57] << 22) | (mask_p[56] << 20)
1996                 | (mask_p[55] << 18) | (mask_p[54] << 16)
1997                 | (mask_p[53] << 14) | (mask_p[52] << 12)
1998                 | (mask_p[51] << 10) | (mask_p[50] << 8)
1999                 | (mask_p[49] << 6) | (mask_p[48] << 4)
2000                 | (mask_p[47] << 2) | (mask_p[46] << 0);
2001         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2002         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2003 }
2004
2005 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
2006 {
2007         int bb_spur = AR_NO_SPUR;
2008         int bin, cur_bin;
2009         int spur_freq_sd;
2010         int spur_delta_phase;
2011         int denominator;
2012         int upper, lower, cur_vit_mask;
2013         int tmp, new;
2014         int i;
2015         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
2016                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
2017         };
2018         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
2019                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
2020         };
2021         int inc[4] = { 0, 100, 0, 0 };
2022
2023         int8_t mask_m[123];
2024         int8_t mask_p[123];
2025         int8_t mask_amt;
2026         int tmp_mask;
2027         int cur_bb_spur;
2028         bool is2GHz = IS_CHAN_2GHZ(chan);
2029
2030         memset(&mask_m, 0, sizeof(int8_t) * 123);
2031         memset(&mask_p, 0, sizeof(int8_t) * 123);
2032
2033         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2034                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
2035                 if (AR_NO_SPUR == cur_bb_spur)
2036                         break;
2037                 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2038                 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2039                         bb_spur = cur_bb_spur;
2040                         break;
2041                 }
2042         }
2043
2044         if (AR_NO_SPUR == bb_spur)
2045                 return;
2046
2047         bin = bb_spur * 32;
2048
2049         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2050         new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2051                      AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2052                      AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2053                      AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2054
2055         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2056
2057         new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2058                AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2059                AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2060                AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2061                SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2062         REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2063
2064         spur_delta_phase = ((bb_spur * 524288) / 100) &
2065                 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2066
2067         denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2068         spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2069
2070         new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2071                SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2072                SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2073         REG_WRITE(ah, AR_PHY_TIMING11, new);
2074
2075         cur_bin = -6000;
2076         upper = bin + 100;
2077         lower = bin - 100;
2078
2079         for (i = 0; i < 4; i++) {
2080                 int pilot_mask = 0;
2081                 int chan_mask = 0;
2082                 int bp = 0;
2083                 for (bp = 0; bp < 30; bp++) {
2084                         if ((cur_bin > lower) && (cur_bin < upper)) {
2085                                 pilot_mask = pilot_mask | 0x1 << bp;
2086                                 chan_mask = chan_mask | 0x1 << bp;
2087                         }
2088                         cur_bin += 100;
2089                 }
2090                 cur_bin += inc[i];
2091                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2092                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2093         }
2094
2095         cur_vit_mask = 6100;
2096         upper = bin + 120;
2097         lower = bin - 120;
2098
2099         for (i = 0; i < 123; i++) {
2100                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2101
2102                         /* workaround for gcc bug #37014 */
2103                         volatile int tmp_v = abs(cur_vit_mask - bin);
2104
2105                         if (tmp_v < 75)
2106                                 mask_amt = 1;
2107                         else
2108                                 mask_amt = 0;
2109                         if (cur_vit_mask < 0)
2110                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2111                         else
2112                                 mask_p[cur_vit_mask / 100] = mask_amt;
2113                 }
2114                 cur_vit_mask -= 100;
2115         }
2116
2117         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2118                 | (mask_m[48] << 26) | (mask_m[49] << 24)
2119                 | (mask_m[50] << 22) | (mask_m[51] << 20)
2120                 | (mask_m[52] << 18) | (mask_m[53] << 16)
2121                 | (mask_m[54] << 14) | (mask_m[55] << 12)
2122                 | (mask_m[56] << 10) | (mask_m[57] << 8)
2123                 | (mask_m[58] << 6) | (mask_m[59] << 4)
2124                 | (mask_m[60] << 2) | (mask_m[61] << 0);
2125         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2126         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2127
2128         tmp_mask = (mask_m[31] << 28)
2129                 | (mask_m[32] << 26) | (mask_m[33] << 24)
2130                 | (mask_m[34] << 22) | (mask_m[35] << 20)
2131                 | (mask_m[36] << 18) | (mask_m[37] << 16)
2132                 | (mask_m[48] << 14) | (mask_m[39] << 12)
2133                 | (mask_m[40] << 10) | (mask_m[41] << 8)
2134                 | (mask_m[42] << 6) | (mask_m[43] << 4)
2135                 | (mask_m[44] << 2) | (mask_m[45] << 0);
2136         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2137         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2138
2139         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2140                 | (mask_m[18] << 26) | (mask_m[18] << 24)
2141                 | (mask_m[20] << 22) | (mask_m[20] << 20)
2142                 | (mask_m[22] << 18) | (mask_m[22] << 16)
2143                 | (mask_m[24] << 14) | (mask_m[24] << 12)
2144                 | (mask_m[25] << 10) | (mask_m[26] << 8)
2145                 | (mask_m[27] << 6) | (mask_m[28] << 4)
2146                 | (mask_m[29] << 2) | (mask_m[30] << 0);
2147         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2148         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2149
2150         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2151                 | (mask_m[2] << 26) | (mask_m[3] << 24)
2152                 | (mask_m[4] << 22) | (mask_m[5] << 20)
2153                 | (mask_m[6] << 18) | (mask_m[7] << 16)
2154                 | (mask_m[8] << 14) | (mask_m[9] << 12)
2155                 | (mask_m[10] << 10) | (mask_m[11] << 8)
2156                 | (mask_m[12] << 6) | (mask_m[13] << 4)
2157                 | (mask_m[14] << 2) | (mask_m[15] << 0);
2158         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2159         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2160
2161         tmp_mask = (mask_p[15] << 28)
2162                 | (mask_p[14] << 26) | (mask_p[13] << 24)
2163                 | (mask_p[12] << 22) | (mask_p[11] << 20)
2164                 | (mask_p[10] << 18) | (mask_p[9] << 16)
2165                 | (mask_p[8] << 14) | (mask_p[7] << 12)
2166                 | (mask_p[6] << 10) | (mask_p[5] << 8)
2167                 | (mask_p[4] << 6) | (mask_p[3] << 4)
2168                 | (mask_p[2] << 2) | (mask_p[1] << 0);
2169         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2170         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2171
2172         tmp_mask = (mask_p[30] << 28)
2173                 | (mask_p[29] << 26) | (mask_p[28] << 24)
2174                 | (mask_p[27] << 22) | (mask_p[26] << 20)
2175                 | (mask_p[25] << 18) | (mask_p[24] << 16)
2176                 | (mask_p[23] << 14) | (mask_p[22] << 12)
2177                 | (mask_p[21] << 10) | (mask_p[20] << 8)
2178                 | (mask_p[19] << 6) | (mask_p[18] << 4)
2179                 | (mask_p[17] << 2) | (mask_p[16] << 0);
2180         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2181         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2182
2183         tmp_mask = (mask_p[45] << 28)
2184                 | (mask_p[44] << 26) | (mask_p[43] << 24)
2185                 | (mask_p[42] << 22) | (mask_p[41] << 20)
2186                 | (mask_p[40] << 18) | (mask_p[39] << 16)
2187                 | (mask_p[38] << 14) | (mask_p[37] << 12)
2188                 | (mask_p[36] << 10) | (mask_p[35] << 8)
2189                 | (mask_p[34] << 6) | (mask_p[33] << 4)
2190                 | (mask_p[32] << 2) | (mask_p[31] << 0);
2191         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2192         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2193
2194         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2195                 | (mask_p[59] << 26) | (mask_p[58] << 24)
2196                 | (mask_p[57] << 22) | (mask_p[56] << 20)
2197                 | (mask_p[55] << 18) | (mask_p[54] << 16)
2198                 | (mask_p[53] << 14) | (mask_p[52] << 12)
2199                 | (mask_p[51] << 10) | (mask_p[50] << 8)
2200                 | (mask_p[49] << 6) | (mask_p[48] << 4)
2201                 | (mask_p[47] << 2) | (mask_p[46] << 0);
2202         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2203         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2204 }
2205
2206 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2207                     bool bChannelChange)
2208 {
2209         u32 saveLedState;
2210         struct ath_softc *sc = ah->ah_sc;
2211         struct ath9k_channel *curchan = ah->curchan;
2212         u32 saveDefAntenna;
2213         u32 macStaId1;
2214         int i, rx_chainmask, r;
2215
2216         ah->extprotspacing = sc->ht_extprotspacing;
2217         ah->txchainmask = sc->tx_chainmask;
2218         ah->rxchainmask = sc->rx_chainmask;
2219
2220         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2221                 return -EIO;
2222
2223         if (curchan)
2224                 ath9k_hw_getnf(ah, curchan);
2225
2226         if (bChannelChange &&
2227             (ah->chip_fullsleep != true) &&
2228             (ah->curchan != NULL) &&
2229             (chan->channel != ah->curchan->channel) &&
2230             ((chan->channelFlags & CHANNEL_ALL) ==
2231              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2232             (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
2233                                    !IS_CHAN_A_5MHZ_SPACED(ah->curchan)))) {
2234
2235                 if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
2236                         ath9k_hw_loadnf(ah, ah->curchan);
2237                         ath9k_hw_start_nfcal(ah);
2238                         return 0;
2239                 }
2240         }
2241
2242         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2243         if (saveDefAntenna == 0)
2244                 saveDefAntenna = 1;
2245
2246         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2247
2248         saveLedState = REG_READ(ah, AR_CFG_LED) &
2249                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2250                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2251
2252         ath9k_hw_mark_phy_inactive(ah);
2253
2254         if (!ath9k_hw_chip_reset(ah, chan)) {
2255                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Chip reset failed\n");
2256                 return -EINVAL;
2257         }
2258
2259         if (AR_SREV_9280_10_OR_LATER(ah))
2260                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2261
2262         r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
2263         if (r)
2264                 return r;
2265
2266         /* Setup MFP options for CCMP */
2267         if (AR_SREV_9280_20_OR_LATER(ah)) {
2268                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2269                  * frames when constructing CCMP AAD. */
2270                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2271                               0xc7ff);
2272                 ah->sw_mgmt_crypto = false;
2273         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2274                 /* Disable hardware crypto for management frames */
2275                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2276                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2277                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2278                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2279                 ah->sw_mgmt_crypto = true;
2280         } else
2281                 ah->sw_mgmt_crypto = true;
2282
2283         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2284                 ath9k_hw_set_delta_slope(ah, chan);
2285
2286         if (AR_SREV_9280_10_OR_LATER(ah))
2287                 ath9k_hw_9280_spur_mitigate(ah, chan);
2288         else
2289                 ath9k_hw_spur_mitigate(ah, chan);
2290
2291         ah->eep_ops->set_board_values(ah, chan);
2292
2293         ath9k_hw_decrease_chain_power(ah, chan);
2294
2295         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr));
2296         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4)
2297                   | macStaId1
2298                   | AR_STA_ID1_RTS_USE_DEF
2299                   | (ah->config.
2300                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2301                   | ah->sta_id1_defaults);
2302         ath9k_hw_set_operating_mode(ah, ah->opmode);
2303
2304         REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
2305         REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
2306
2307         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2308
2309         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
2310         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
2311                   ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2312
2313         REG_WRITE(ah, AR_ISR, ~0);
2314
2315         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2316
2317         if (AR_SREV_9280_10_OR_LATER(ah)) {
2318                 if (!(ath9k_hw_ar9280_set_channel(ah, chan)))
2319                         return -EIO;
2320         } else {
2321                 if (!(ath9k_hw_set_channel(ah, chan)))
2322                         return -EIO;
2323         }
2324
2325         for (i = 0; i < AR_NUM_DCU; i++)
2326                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2327
2328         ah->intr_txqs = 0;
2329         for (i = 0; i < ah->caps.total_queues; i++)
2330                 ath9k_hw_resettxqueue(ah, i);
2331
2332         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2333         ath9k_hw_init_qos(ah);
2334
2335 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2336         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2337                 ath9k_enable_rfkill(ah);
2338 #endif
2339         ath9k_hw_init_user_settings(ah);
2340
2341         REG_WRITE(ah, AR_STA_ID1,
2342                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2343
2344         ath9k_hw_set_dma(ah);
2345
2346         REG_WRITE(ah, AR_OBS, 8);
2347
2348         if (ah->config.intr_mitigation) {
2349                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2350                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2351         }
2352
2353         ath9k_hw_init_bb(ah, chan);
2354
2355         if (!ath9k_hw_init_cal(ah, chan))
2356                 return -EIO;;
2357
2358         rx_chainmask = ah->rxchainmask;
2359         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2360                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2361                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2362         }
2363
2364         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2365
2366         if (AR_SREV_9100(ah)) {
2367                 u32 mask;
2368                 mask = REG_READ(ah, AR_CFG);
2369                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2370                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2371                                 "CFG Byte Swap Set 0x%x\n", mask);
2372                 } else {
2373                         mask =
2374                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2375                         REG_WRITE(ah, AR_CFG, mask);
2376                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2377                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2378                 }
2379         } else {
2380 #ifdef __BIG_ENDIAN
2381                 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2382 #endif
2383         }
2384
2385         return 0;
2386 }
2387
2388 /************************/
2389 /* Key Cache Management */
2390 /************************/
2391
2392 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2393 {
2394         u32 keyType;
2395
2396         if (entry >= ah->caps.keycache_size) {
2397                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2398                         "keychache entry %u out of range\n", entry);
2399                 return false;
2400         }
2401
2402         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2403
2404         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2405         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2406         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2407         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2408         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2409         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2410         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2411         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2412
2413         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2414                 u16 micentry = entry + 64;
2415
2416                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2417                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2418                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2419                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2420
2421         }
2422
2423         if (ah->curchan == NULL)
2424                 return true;
2425
2426         return true;
2427 }
2428
2429 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2430 {
2431         u32 macHi, macLo;
2432
2433         if (entry >= ah->caps.keycache_size) {
2434                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2435                         "keychache entry %u out of range\n", entry);
2436                 return false;
2437         }
2438
2439         if (mac != NULL) {
2440                 macHi = (mac[5] << 8) | mac[4];
2441                 macLo = (mac[3] << 24) |
2442                         (mac[2] << 16) |
2443                         (mac[1] << 8) |
2444                         mac[0];
2445                 macLo >>= 1;
2446                 macLo |= (macHi & 1) << 31;
2447                 macHi >>= 1;
2448         } else {
2449                 macLo = macHi = 0;
2450         }
2451         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2452         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2453
2454         return true;
2455 }
2456
2457 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2458                                  const struct ath9k_keyval *k,
2459                                  const u8 *mac)
2460 {
2461         const struct ath9k_hw_capabilities *pCap = &ah->caps;
2462         u32 key0, key1, key2, key3, key4;
2463         u32 keyType;
2464
2465         if (entry >= pCap->keycache_size) {
2466                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2467                         "keycache entry %u out of range\n", entry);
2468                 return false;
2469         }
2470
2471         switch (k->kv_type) {
2472         case ATH9K_CIPHER_AES_OCB:
2473                 keyType = AR_KEYTABLE_TYPE_AES;
2474                 break;
2475         case ATH9K_CIPHER_AES_CCM:
2476                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2477                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2478                                 "AES-CCM not supported by mac rev 0x%x\n",
2479                                 ah->hw_version.macRev);
2480                         return false;
2481                 }
2482                 keyType = AR_KEYTABLE_TYPE_CCM;
2483                 break;
2484         case ATH9K_CIPHER_TKIP:
2485                 keyType = AR_KEYTABLE_TYPE_TKIP;
2486                 if (ATH9K_IS_MIC_ENABLED(ah)
2487                     && entry + 64 >= pCap->keycache_size) {
2488                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2489                                 "entry %u inappropriate for TKIP\n", entry);
2490                         return false;
2491                 }
2492                 break;
2493         case ATH9K_CIPHER_WEP:
2494                 if (k->kv_len < LEN_WEP40) {
2495                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2496                                 "WEP key length %u too small\n", k->kv_len);
2497                         return false;
2498                 }
2499                 if (k->kv_len <= LEN_WEP40)
2500                         keyType = AR_KEYTABLE_TYPE_40;
2501                 else if (k->kv_len <= LEN_WEP104)
2502                         keyType = AR_KEYTABLE_TYPE_104;
2503                 else
2504                         keyType = AR_KEYTABLE_TYPE_128;
2505                 break;
2506         case ATH9K_CIPHER_CLR:
2507                 keyType = AR_KEYTABLE_TYPE_CLR;
2508                 break;
2509         default:
2510                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2511                         "cipher %u not supported\n", k->kv_type);
2512                 return false;
2513         }
2514
2515         key0 = get_unaligned_le32(k->kv_val + 0);
2516         key1 = get_unaligned_le16(k->kv_val + 4);
2517         key2 = get_unaligned_le32(k->kv_val + 6);
2518         key3 = get_unaligned_le16(k->kv_val + 10);
2519         key4 = get_unaligned_le32(k->kv_val + 12);
2520         if (k->kv_len <= LEN_WEP104)
2521                 key4 &= 0xff;
2522
2523         /*
2524          * Note: Key cache registers access special memory area that requires
2525          * two 32-bit writes to actually update the values in the internal
2526          * memory. Consequently, the exact order and pairs used here must be
2527          * maintained.
2528          */
2529
2530         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2531                 u16 micentry = entry + 64;
2532
2533                 /*
2534                  * Write inverted key[47:0] first to avoid Michael MIC errors
2535                  * on frames that could be sent or received at the same time.
2536                  * The correct key will be written in the end once everything
2537                  * else is ready.
2538                  */
2539                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2540                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2541
2542                 /* Write key[95:48] */
2543                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2544                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2545
2546                 /* Write key[127:96] and key type */
2547                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2548                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2549
2550                 /* Write MAC address for the entry */
2551                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2552
2553                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2554                         /*
2555                          * TKIP uses two key cache entries:
2556                          * Michael MIC TX/RX keys in the same key cache entry
2557                          * (idx = main index + 64):
2558                          * key0 [31:0] = RX key [31:0]
2559                          * key1 [15:0] = TX key [31:16]
2560                          * key1 [31:16] = reserved
2561                          * key2 [31:0] = RX key [63:32]
2562                          * key3 [15:0] = TX key [15:0]
2563                          * key3 [31:16] = reserved
2564                          * key4 [31:0] = TX key [63:32]
2565                          */
2566                         u32 mic0, mic1, mic2, mic3, mic4;
2567
2568                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2569                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2570                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2571                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2572                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
2573
2574                         /* Write RX[31:0] and TX[31:16] */
2575                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2576                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2577
2578                         /* Write RX[63:32] and TX[15:0] */
2579                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2580                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2581
2582                         /* Write TX[63:32] and keyType(reserved) */
2583                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2584                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2585                                   AR_KEYTABLE_TYPE_CLR);
2586
2587                 } else {
2588                         /*
2589                          * TKIP uses four key cache entries (two for group
2590                          * keys):
2591                          * Michael MIC TX/RX keys are in different key cache
2592                          * entries (idx = main index + 64 for TX and
2593                          * main index + 32 + 96 for RX):
2594                          * key0 [31:0] = TX/RX MIC key [31:0]
2595                          * key1 [31:0] = reserved
2596                          * key2 [31:0] = TX/RX MIC key [63:32]
2597                          * key3 [31:0] = reserved
2598                          * key4 [31:0] = reserved
2599                          *
2600                          * Upper layer code will call this function separately
2601                          * for TX and RX keys when these registers offsets are
2602                          * used.
2603                          */
2604                         u32 mic0, mic2;
2605
2606                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2607                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2608
2609                         /* Write MIC key[31:0] */
2610                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2611                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2612
2613                         /* Write MIC key[63:32] */
2614                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2615                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2616
2617                         /* Write TX[63:32] and keyType(reserved) */
2618                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2619                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2620                                   AR_KEYTABLE_TYPE_CLR);
2621                 }
2622
2623                 /* MAC address registers are reserved for the MIC entry */
2624                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2625                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2626
2627                 /*
2628                  * Write the correct (un-inverted) key[47:0] last to enable
2629                  * TKIP now that all other registers are set with correct
2630                  * values.
2631                  */
2632                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2633                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2634         } else {
2635                 /* Write key[47:0] */
2636                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2637                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2638
2639                 /* Write key[95:48] */
2640                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2641                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2642
2643                 /* Write key[127:96] and key type */
2644                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2645                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2646
2647                 /* Write MAC address for the entry */
2648                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2649         }
2650
2651         return true;
2652 }
2653
2654 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2655 {
2656         if (entry < ah->caps.keycache_size) {
2657                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2658                 if (val & AR_KEYTABLE_VALID)
2659                         return true;
2660         }
2661         return false;
2662 }
2663
2664 /******************************/
2665 /* Power Management (Chipset) */
2666 /******************************/
2667
2668 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2669 {
2670         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2671         if (setChip) {
2672                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2673                             AR_RTC_FORCE_WAKE_EN);
2674                 if (!AR_SREV_9100(ah))
2675                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2676
2677                 REG_CLR_BIT(ah, (AR_RTC_RESET),
2678                             AR_RTC_RESET_EN);
2679         }
2680 }
2681
2682 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2683 {
2684         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2685         if (setChip) {
2686                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2687
2688                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2689                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2690                                   AR_RTC_FORCE_WAKE_ON_INT);
2691                 } else {
2692                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2693                                     AR_RTC_FORCE_WAKE_EN);
2694                 }
2695         }
2696 }
2697
2698 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2699 {
2700         u32 val;
2701         int i;
2702
2703         if (setChip) {
2704                 if ((REG_READ(ah, AR_RTC_STATUS) &
2705                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2706                         if (ath9k_hw_set_reset_reg(ah,
2707                                            ATH9K_RESET_POWER_ON) != true) {
2708                                 return false;
2709                         }
2710                 }
2711                 if (AR_SREV_9100(ah))
2712                         REG_SET_BIT(ah, AR_RTC_RESET,
2713                                     AR_RTC_RESET_EN);
2714
2715                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2716                             AR_RTC_FORCE_WAKE_EN);
2717                 udelay(50);
2718
2719                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2720                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2721                         if (val == AR_RTC_STATUS_ON)
2722                                 break;
2723                         udelay(50);
2724                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2725                                     AR_RTC_FORCE_WAKE_EN);
2726                 }
2727                 if (i == 0) {
2728                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2729                                 "Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
2730                         return false;
2731                 }
2732         }
2733
2734         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2735
2736         return true;
2737 }
2738
2739 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2740 {
2741         int status = true, setChip = true;
2742         static const char *modes[] = {
2743                 "AWAKE",
2744                 "FULL-SLEEP",
2745                 "NETWORK SLEEP",
2746                 "UNDEFINED"
2747         };
2748
2749         DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s -> %s\n",
2750                 modes[ah->power_mode], modes[mode]);
2751
2752         switch (mode) {
2753         case ATH9K_PM_AWAKE:
2754                 status = ath9k_hw_set_power_awake(ah, setChip);
2755                 break;
2756         case ATH9K_PM_FULL_SLEEP:
2757                 ath9k_set_power_sleep(ah, setChip);
2758                 ah->chip_fullsleep = true;
2759                 break;
2760         case ATH9K_PM_NETWORK_SLEEP:
2761                 ath9k_set_power_network_sleep(ah, setChip);
2762                 break;
2763         default:
2764                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2765                         "Unknown power mode %u\n", mode);
2766                 return false;
2767         }
2768         ah->power_mode = mode;
2769
2770         return status;
2771 }
2772
2773 /*
2774  * Helper for ASPM support.
2775  *
2776  * Disable PLL when in L0s as well as receiver clock when in L1.
2777  * This power saving option must be enabled through the SerDes.
2778  *
2779  * Programming the SerDes must go through the same 288 bit serial shift
2780  * register as the other analog registers.  Hence the 9 writes.
2781  */
2782 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore)
2783 {
2784         u8 i;
2785
2786         if (ah->is_pciexpress != true)
2787                 return;
2788
2789         /* Do not touch SerDes registers */
2790         if (ah->config.pcie_powersave_enable == 2)
2791                 return;
2792
2793         /* Nothing to do on restore for 11N */
2794         if (restore)
2795                 return;
2796
2797         if (AR_SREV_9280_20_OR_LATER(ah)) {
2798                 /*
2799                  * AR9280 2.0 or later chips use SerDes values from the
2800                  * initvals.h initialized depending on chipset during
2801                  * ath9k_hw_do_attach()
2802                  */
2803                 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2804                         REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2805                                   INI_RA(&ah->iniPcieSerdes, i, 1));
2806                 }
2807         } else if (AR_SREV_9280(ah) &&
2808                    (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2809                 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2810                 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2811
2812                 /* RX shut off when elecidle is asserted */
2813                 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2814                 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2815                 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2816
2817                 /* Shut off CLKREQ active in L1 */
2818                 if (ah->config.pcie_clock_req)
2819                         REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2820                 else
2821                         REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2822
2823                 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2824                 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2825                 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2826
2827                 /* Load the new settings */
2828                 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2829
2830         } else {
2831                 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2832                 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2833
2834                 /* RX shut off when elecidle is asserted */
2835                 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2836                 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2837                 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2838
2839                 /*
2840                  * Ignore ah->ah_config.pcie_clock_req setting for
2841                  * pre-AR9280 11n
2842                  */
2843                 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2844
2845                 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2846                 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2847                 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2848
2849                 /* Load the new settings */
2850                 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2851         }
2852
2853         udelay(1000);
2854
2855         /* set bit 19 to allow forcing of pcie core into L1 state */
2856         REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2857
2858         /* Several PCIe massages to ensure proper behaviour */
2859         if (ah->config.pcie_waen) {
2860                 REG_WRITE(ah, AR_WA, ah->config.pcie_waen);
2861         } else {
2862                 if (AR_SREV_9285(ah))
2863                         REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
2864                 /*
2865                  * On AR9280 chips bit 22 of 0x4004 needs to be set to
2866                  * otherwise card may disappear.
2867                  */
2868                 else if (AR_SREV_9280(ah))
2869                         REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT);
2870                 else
2871                         REG_WRITE(ah, AR_WA, AR_WA_DEFAULT);
2872         }
2873 }
2874
2875 /**********************/
2876 /* Interrupt Handling */
2877 /**********************/
2878
2879 bool ath9k_hw_intrpend(struct ath_hw *ah)
2880 {
2881         u32 host_isr;
2882
2883         if (AR_SREV_9100(ah))
2884                 return true;
2885
2886         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2887         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2888                 return true;
2889
2890         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2891         if ((host_isr & AR_INTR_SYNC_DEFAULT)
2892             && (host_isr != AR_INTR_SPURIOUS))
2893                 return true;
2894
2895         return false;
2896 }
2897
2898 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2899 {
2900         u32 isr = 0;
2901         u32 mask2 = 0;
2902         struct ath9k_hw_capabilities *pCap = &ah->caps;
2903         u32 sync_cause = 0;
2904         bool fatal_int = false;
2905
2906         if (!AR_SREV_9100(ah)) {
2907                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2908                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2909                             == AR_RTC_STATUS_ON) {
2910                                 isr = REG_READ(ah, AR_ISR);
2911                         }
2912                 }
2913
2914                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2915                         AR_INTR_SYNC_DEFAULT;
2916
2917                 *masked = 0;
2918
2919                 if (!isr && !sync_cause)
2920                         return false;
2921         } else {
2922                 *masked = 0;
2923                 isr = REG_READ(ah, AR_ISR);
2924         }
2925
2926         if (isr) {
2927                 if (isr & AR_ISR_BCNMISC) {
2928                         u32 isr2;
2929                         isr2 = REG_READ(ah, AR_ISR_S2);
2930                         if (isr2 & AR_ISR_S2_TIM)
2931                                 mask2 |= ATH9K_INT_TIM;
2932                         if (isr2 & AR_ISR_S2_DTIM)
2933                                 mask2 |= ATH9K_INT_DTIM;
2934                         if (isr2 & AR_ISR_S2_DTIMSYNC)
2935                                 mask2 |= ATH9K_INT_DTIMSYNC;
2936                         if (isr2 & (AR_ISR_S2_CABEND))
2937                                 mask2 |= ATH9K_INT_CABEND;
2938                         if (isr2 & AR_ISR_S2_GTT)
2939                                 mask2 |= ATH9K_INT_GTT;
2940                         if (isr2 & AR_ISR_S2_CST)
2941                                 mask2 |= ATH9K_INT_CST;
2942                         if (isr2 & AR_ISR_S2_TSFOOR)
2943                                 mask2 |= ATH9K_INT_TSFOOR;
2944                 }
2945
2946                 isr = REG_READ(ah, AR_ISR_RAC);
2947                 if (isr == 0xffffffff) {
2948                         *masked = 0;
2949                         return false;
2950                 }
2951
2952                 *masked = isr & ATH9K_INT_COMMON;
2953
2954                 if (ah->config.intr_mitigation) {
2955                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2956                                 *masked |= ATH9K_INT_RX;
2957                 }
2958
2959                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2960                         *masked |= ATH9K_INT_RX;
2961                 if (isr &
2962                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2963                      AR_ISR_TXEOL)) {
2964                         u32 s0_s, s1_s;
2965
2966                         *masked |= ATH9K_INT_TX;
2967
2968                         s0_s = REG_READ(ah, AR_ISR_S0_S);
2969                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2970                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2971
2972                         s1_s = REG_READ(ah, AR_ISR_S1_S);
2973                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2974                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2975                 }
2976
2977                 if (isr & AR_ISR_RXORN) {
2978                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
2979                                 "receive FIFO overrun interrupt\n");
2980                 }
2981
2982                 if (!AR_SREV_9100(ah)) {
2983                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2984                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2985                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
2986                                         *masked |= ATH9K_INT_TIM_TIMER;
2987                         }
2988                 }
2989
2990                 *masked |= mask2;
2991         }
2992
2993         if (AR_SREV_9100(ah))
2994                 return true;
2995
2996         if (sync_cause) {
2997                 fatal_int =
2998                         (sync_cause &
2999                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
3000                         ? true : false;
3001
3002                 if (fatal_int) {
3003                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
3004                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3005                                         "received PCI FATAL interrupt\n");
3006                         }
3007                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
3008                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3009                                         "received PCI PERR interrupt\n");
3010                         }
3011                         *masked |= ATH9K_INT_FATAL;
3012                 }
3013                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
3014                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3015                                 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3016                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
3017                         REG_WRITE(ah, AR_RC, 0);
3018                         *masked |= ATH9K_INT_FATAL;
3019                 }
3020                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
3021                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3022                                 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3023                 }
3024
3025                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
3026                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
3027         }
3028
3029         return true;
3030 }
3031
3032 enum ath9k_int ath9k_hw_intrget(struct ath_hw *ah)
3033 {
3034         return ah->mask_reg;
3035 }
3036
3037 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
3038 {
3039         u32 omask = ah->mask_reg;
3040         u32 mask, mask2;
3041         struct ath9k_hw_capabilities *pCap = &ah->caps;
3042
3043         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3044
3045         if (omask & ATH9K_INT_GLOBAL) {
3046                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
3047                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3048                 (void) REG_READ(ah, AR_IER);
3049                 if (!AR_SREV_9100(ah)) {
3050                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3051                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3052
3053                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3054                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3055                 }
3056         }
3057
3058         mask = ints & ATH9K_INT_COMMON;
3059         mask2 = 0;
3060
3061         if (ints & ATH9K_INT_TX) {
3062                 if (ah->txok_interrupt_mask)
3063                         mask |= AR_IMR_TXOK;
3064                 if (ah->txdesc_interrupt_mask)
3065                         mask |= AR_IMR_TXDESC;
3066                 if (ah->txerr_interrupt_mask)
3067                         mask |= AR_IMR_TXERR;
3068                 if (ah->txeol_interrupt_mask)
3069                         mask |= AR_IMR_TXEOL;
3070         }
3071         if (ints & ATH9K_INT_RX) {
3072                 mask |= AR_IMR_RXERR;
3073                 if (ah->config.intr_mitigation)
3074                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3075                 else
3076                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3077                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3078                         mask |= AR_IMR_GENTMR;
3079         }
3080
3081         if (ints & (ATH9K_INT_BMISC)) {
3082                 mask |= AR_IMR_BCNMISC;
3083                 if (ints & ATH9K_INT_TIM)
3084                         mask2 |= AR_IMR_S2_TIM;
3085                 if (ints & ATH9K_INT_DTIM)
3086                         mask2 |= AR_IMR_S2_DTIM;
3087                 if (ints & ATH9K_INT_DTIMSYNC)
3088                         mask2 |= AR_IMR_S2_DTIMSYNC;
3089                 if (ints & ATH9K_INT_CABEND)
3090                         mask2 |= AR_IMR_S2_CABEND;
3091                 if (ints & ATH9K_INT_TSFOOR)
3092                         mask2 |= AR_IMR_S2_TSFOOR;
3093         }
3094
3095         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3096                 mask |= AR_IMR_BCNMISC;
3097                 if (ints & ATH9K_INT_GTT)
3098                         mask2 |= AR_IMR_S2_GTT;
3099                 if (ints & ATH9K_INT_CST)
3100                         mask2 |= AR_IMR_S2_CST;
3101         }
3102
3103         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3104         REG_WRITE(ah, AR_IMR, mask);
3105         mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3106                                            AR_IMR_S2_DTIM |
3107                                            AR_IMR_S2_DTIMSYNC |
3108                                            AR_IMR_S2_CABEND |
3109                                            AR_IMR_S2_CABTO |
3110                                            AR_IMR_S2_TSFOOR |
3111                                            AR_IMR_S2_GTT | AR_IMR_S2_CST);
3112         REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3113         ah->mask_reg = ints;
3114
3115         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3116                 if (ints & ATH9K_INT_TIM_TIMER)
3117                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3118                 else
3119                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3120         }
3121
3122         if (ints & ATH9K_INT_GLOBAL) {
3123                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
3124                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3125                 if (!AR_SREV_9100(ah)) {
3126                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3127                                   AR_INTR_MAC_IRQ);
3128                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3129
3130
3131                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3132                                   AR_INTR_SYNC_DEFAULT);
3133                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
3134                                   AR_INTR_SYNC_DEFAULT);
3135                 }
3136                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3137                          REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3138         }
3139
3140         return omask;
3141 }
3142
3143 /*******************/
3144 /* Beacon Handling */
3145 /*******************/
3146
3147 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
3148 {
3149         int flags = 0;
3150
3151         ah->beacon_interval = beacon_period;
3152
3153         switch (ah->opmode) {
3154         case NL80211_IFTYPE_STATION:
3155         case NL80211_IFTYPE_MONITOR:
3156                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3157                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3158                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3159                 flags |= AR_TBTT_TIMER_EN;
3160                 break;
3161         case NL80211_IFTYPE_ADHOC:
3162         case NL80211_IFTYPE_MESH_POINT:
3163                 REG_SET_BIT(ah, AR_TXCFG,
3164                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3165                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3166                           TU_TO_USEC(next_beacon +
3167                                      (ah->atim_window ? ah->
3168                                       atim_window : 1)));
3169                 flags |= AR_NDP_TIMER_EN;
3170         case NL80211_IFTYPE_AP:
3171                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3172                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3173                           TU_TO_USEC(next_beacon -
3174                                      ah->config.
3175                                      dma_beacon_response_time));
3176                 REG_WRITE(ah, AR_NEXT_SWBA,
3177                           TU_TO_USEC(next_beacon -
3178                                      ah->config.
3179                                      sw_beacon_response_time));
3180                 flags |=
3181                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3182                 break;
3183         default:
3184                 DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
3185                         "%s: unsupported opmode: %d\n",
3186                         __func__, ah->opmode);
3187                 return;
3188                 break;
3189         }
3190
3191         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3192         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3193         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3194         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3195
3196         beacon_period &= ~ATH9K_BEACON_ENA;
3197         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3198                 beacon_period &= ~ATH9K_BEACON_RESET_TSF;
3199                 ath9k_hw_reset_tsf(ah);
3200         }
3201
3202         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3203 }
3204
3205 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3206                                     const struct ath9k_beacon_state *bs)
3207 {
3208         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3209         struct ath9k_hw_capabilities *pCap = &ah->caps;
3210
3211         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3212
3213         REG_WRITE(ah, AR_BEACON_PERIOD,
3214                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3215         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3216                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3217
3218         REG_RMW_FIELD(ah, AR_RSSI_THR,
3219                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3220
3221         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3222
3223         if (bs->bs_sleepduration > beaconintval)
3224                 beaconintval = bs->bs_sleepduration;
3225
3226         dtimperiod = bs->bs_dtimperiod;
3227         if (bs->bs_sleepduration > dtimperiod)
3228                 dtimperiod = bs->bs_sleepduration;
3229
3230         if (beaconintval == dtimperiod)
3231                 nextTbtt = bs->bs_nextdtim;
3232         else
3233                 nextTbtt = bs->bs_nexttbtt;
3234
3235         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3236         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3237         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3238         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3239
3240         REG_WRITE(ah, AR_NEXT_DTIM,
3241                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3242         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3243
3244         REG_WRITE(ah, AR_SLEEP1,
3245                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3246                   | AR_SLEEP1_ASSUME_DTIM);
3247
3248         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3249                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3250         else
3251                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3252
3253         REG_WRITE(ah, AR_SLEEP2,
3254                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3255
3256         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3257         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3258
3259         REG_SET_BIT(ah, AR_TIMER_MODE,
3260                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3261                     AR_DTIM_TIMER_EN);
3262
3263         /* TSF Out of Range Threshold */
3264         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3265 }
3266
3267 /*******************/
3268 /* HW Capabilities */
3269 /*******************/
3270
3271 void ath9k_hw_fill_cap_info(struct ath_hw *ah)
3272 {
3273         struct ath9k_hw_capabilities *pCap = &ah->caps;
3274         u16 capField = 0, eeval;
3275
3276         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3277         ah->regulatory.current_rd = eeval;
3278
3279         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3280         if (AR_SREV_9285_10_OR_LATER(ah))
3281                 eeval |= AR9285_RDEXT_DEFAULT;
3282         ah->regulatory.current_rd_ext = eeval;
3283
3284         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3285
3286         if (ah->opmode != NL80211_IFTYPE_AP &&
3287             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3288                 if (ah->regulatory.current_rd == 0x64 ||
3289                     ah->regulatory.current_rd == 0x65)
3290                         ah->regulatory.current_rd += 5;
3291                 else if (ah->regulatory.current_rd == 0x41)
3292                         ah->regulatory.current_rd = 0x43;
3293                 DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
3294                         "regdomain mapped to 0x%x\n", ah->regulatory.current_rd);
3295         }
3296
3297         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3298         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3299
3300         if (eeval & AR5416_OPFLAGS_11A) {
3301                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3302                 if (ah->config.ht_enable) {
3303                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3304                                 set_bit(ATH9K_MODE_11NA_HT20,
3305                                         pCap->wireless_modes);
3306                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3307                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3308                                         pCap->wireless_modes);
3309                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3310                                         pCap->wireless_modes);
3311                         }
3312                 }
3313         }
3314
3315         if (eeval & AR5416_OPFLAGS_11G) {
3316                 set_bit(ATH9K_MODE_11B, pCap->wireless_modes);
3317                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3318                 if (ah->config.ht_enable) {
3319                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3320                                 set_bit(ATH9K_MODE_11NG_HT20,
3321                                         pCap->wireless_modes);
3322                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3323                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3324                                         pCap->wireless_modes);
3325                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3326                                         pCap->wireless_modes);
3327                         }
3328                 }
3329         }
3330
3331         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3332         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3333             !(eeval & AR5416_OPFLAGS_11A))
3334                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3335         else
3336                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3337
3338         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3339                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3340
3341         pCap->low_2ghz_chan = 2312;
3342         pCap->high_2ghz_chan = 2732;
3343
3344         pCap->low_5ghz_chan = 4920;
3345         pCap->high_5ghz_chan = 6100;
3346
3347         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3348         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3349         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3350
3351         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3352         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3353         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3354
3355         if (ah->config.ht_enable)
3356                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3357         else
3358                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3359
3360         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3361         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3362         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3363         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3364
3365         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3366                 pCap->total_queues =
3367                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3368         else
3369                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3370
3371         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3372                 pCap->keycache_size =
3373                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3374         else
3375                 pCap->keycache_size = AR_KEYTABLE_SIZE;
3376
3377         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3378         pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3379
3380         if (AR_SREV_9285_10_OR_LATER(ah))
3381                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3382         else if (AR_SREV_9280_10_OR_LATER(ah))
3383                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3384         else
3385                 pCap->num_gpio_pins = AR_NUM_GPIO;
3386
3387         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3388                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3389                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3390         } else {
3391                 pCap->rts_aggr_limit = (8 * 1024);
3392         }
3393
3394         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3395
3396 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3397         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3398         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3399                 ah->rfkill_gpio =
3400                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3401                 ah->rfkill_polarity =
3402                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3403
3404                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3405         }
3406 #endif
3407
3408         if ((ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI) ||
3409             (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) ||
3410             (ah->hw_version.macVersion == AR_SREV_VERSION_9160) ||
3411             (ah->hw_version.macVersion == AR_SREV_VERSION_9100) ||
3412             (ah->hw_version.macVersion == AR_SREV_VERSION_9280) ||
3413             (ah->hw_version.macVersion == AR_SREV_VERSION_9285))
3414                 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3415         else
3416                 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
3417
3418         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3419                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3420         else
3421                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3422
3423         if (ah->regulatory.current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3424                 pCap->reg_cap =
3425                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3426                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3427                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
3428                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3429         } else {
3430                 pCap->reg_cap =
3431                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3432                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3433         }
3434
3435         pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3436
3437         pCap->num_antcfg_5ghz =
3438                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3439         pCap->num_antcfg_2ghz =
3440                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3441
3442         if (AR_SREV_9280_10_OR_LATER(ah) && btcoex_enable) {
3443                 pCap->hw_caps |= ATH9K_HW_CAP_BT_COEX;
3444                 ah->btactive_gpio = 6;
3445                 ah->wlanactive_gpio = 5;
3446         }
3447 }
3448
3449 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3450                             u32 capability, u32 *result)
3451 {
3452         switch (type) {
3453         case ATH9K_CAP_CIPHER:
3454                 switch (capability) {
3455                 case ATH9K_CIPHER_AES_CCM:
3456                 case ATH9K_CIPHER_AES_OCB:
3457                 case ATH9K_CIPHER_TKIP:
3458                 case ATH9K_CIPHER_WEP:
3459                 case ATH9K_CIPHER_MIC:
3460                 case ATH9K_CIPHER_CLR:
3461                         return true;
3462                 default:
3463                         return false;
3464                 }
3465         case ATH9K_CAP_TKIP_MIC:
3466                 switch (capability) {
3467                 case 0:
3468                         return true;
3469                 case 1:
3470                         return (ah->sta_id1_defaults &
3471                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3472                         false;
3473                 }
3474         case ATH9K_CAP_TKIP_SPLIT:
3475                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3476                         false : true;
3477         case ATH9K_CAP_DIVERSITY:
3478                 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3479                         AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3480                         true : false;
3481         case ATH9K_CAP_MCAST_KEYSRCH:
3482                 switch (capability) {
3483                 case 0:
3484                         return true;
3485                 case 1:
3486                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3487                                 return false;
3488                         } else {
3489                                 return (ah->sta_id1_defaults &
3490                                         AR_STA_ID1_MCAST_KSRCH) ? true :
3491                                         false;
3492                         }
3493                 }
3494                 return false;
3495         case ATH9K_CAP_TXPOW:
3496                 switch (capability) {
3497                 case 0:
3498                         return 0;
3499                 case 1:
3500                         *result = ah->regulatory.power_limit;
3501                         return 0;
3502                 case 2:
3503                         *result = ah->regulatory.max_power_level;
3504                         return 0;
3505                 case 3:
3506                         *result = ah->regulatory.tp_scale;
3507                         return 0;
3508                 }
3509                 return false;
3510         case ATH9K_CAP_DS:
3511                 return (AR_SREV_9280_20_OR_LATER(ah) &&
3512                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3513                         ? false : true;
3514         default:
3515                 return false;
3516         }
3517 }
3518
3519 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3520                             u32 capability, u32 setting, int *status)
3521 {
3522         u32 v;
3523
3524         switch (type) {
3525         case ATH9K_CAP_TKIP_MIC:
3526                 if (setting)
3527                         ah->sta_id1_defaults |=
3528                                 AR_STA_ID1_CRPT_MIC_ENABLE;
3529                 else
3530                         ah->sta_id1_defaults &=
3531                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3532                 return true;
3533         case ATH9K_CAP_DIVERSITY:
3534                 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3535                 if (setting)
3536                         v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3537                 else
3538                         v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3539                 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3540                 return true;
3541         case ATH9K_CAP_MCAST_KEYSRCH:
3542                 if (setting)
3543                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3544                 else
3545                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3546                 return true;
3547         default:
3548                 return false;
3549         }
3550 }
3551
3552 /****************************/
3553 /* GPIO / RFKILL / Antennae */
3554 /****************************/
3555
3556 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3557                                          u32 gpio, u32 type)
3558 {
3559         int addr;
3560         u32 gpio_shift, tmp;
3561
3562         if (gpio > 11)
3563                 addr = AR_GPIO_OUTPUT_MUX3;
3564         else if (gpio > 5)
3565                 addr = AR_GPIO_OUTPUT_MUX2;
3566         else
3567                 addr = AR_GPIO_OUTPUT_MUX1;
3568
3569         gpio_shift = (gpio % 6) * 5;
3570
3571         if (AR_SREV_9280_20_OR_LATER(ah)
3572             || (addr != AR_GPIO_OUTPUT_MUX1)) {
3573                 REG_RMW(ah, addr, (type << gpio_shift),
3574                         (0x1f << gpio_shift));
3575         } else {
3576                 tmp = REG_READ(ah, addr);
3577                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3578                 tmp &= ~(0x1f << gpio_shift);
3579                 tmp |= (type << gpio_shift);
3580                 REG_WRITE(ah, addr, tmp);
3581         }
3582 }
3583
3584 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3585 {
3586         u32 gpio_shift;
3587
3588         ASSERT(gpio < ah->caps.num_gpio_pins);
3589
3590         gpio_shift = gpio << 1;
3591
3592         REG_RMW(ah,
3593                 AR_GPIO_OE_OUT,
3594                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3595                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3596 }
3597
3598 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3599 {
3600 #define MS_REG_READ(x, y) \
3601         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3602
3603         if (gpio >= ah->caps.num_gpio_pins)
3604                 return 0xffffffff;
3605
3606         if (AR_SREV_9285_10_OR_LATER(ah))
3607                 return MS_REG_READ(AR9285, gpio) != 0;
3608         else if (AR_SREV_9280_10_OR_LATER(ah))
3609                 return MS_REG_READ(AR928X, gpio) != 0;
3610         else
3611                 return MS_REG_READ(AR, gpio) != 0;
3612 }
3613
3614 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3615                          u32 ah_signal_type)
3616 {
3617         u32 gpio_shift;
3618
3619         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3620
3621         gpio_shift = 2 * gpio;
3622
3623         REG_RMW(ah,
3624                 AR_GPIO_OE_OUT,
3625                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3626                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3627 }
3628
3629 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3630 {
3631         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3632                 AR_GPIO_BIT(gpio));
3633 }
3634
3635 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3636 void ath9k_enable_rfkill(struct ath_hw *ah)
3637 {
3638         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3639                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
3640
3641         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
3642                     AR_GPIO_INPUT_MUX2_RFSILENT);
3643
3644         ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
3645         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
3646 }
3647 #endif
3648
3649 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3650 {
3651         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3652 }
3653
3654 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3655 {
3656         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3657 }
3658
3659 bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3660                                enum ath9k_ant_setting settings,
3661                                struct ath9k_channel *chan,
3662                                u8 *tx_chainmask,
3663                                u8 *rx_chainmask,
3664                                u8 *antenna_cfgd)
3665 {
3666         static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3667
3668         if (AR_SREV_9280(ah)) {
3669                 if (!tx_chainmask_cfg) {
3670
3671                         tx_chainmask_cfg = *tx_chainmask;
3672                         rx_chainmask_cfg = *rx_chainmask;
3673                 }
3674
3675                 switch (settings) {
3676                 case ATH9K_ANT_FIXED_A:
3677                         *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3678                         *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3679                         *antenna_cfgd = true;
3680                         break;
3681                 case ATH9K_ANT_FIXED_B:
3682                         if (ah->caps.tx_chainmask >
3683                             ATH9K_ANTENNA1_CHAINMASK) {
3684                                 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3685                         }
3686                         *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3687                         *antenna_cfgd = true;
3688                         break;
3689                 case ATH9K_ANT_VARIABLE:
3690                         *tx_chainmask = tx_chainmask_cfg;
3691                         *rx_chainmask = rx_chainmask_cfg;
3692                         *antenna_cfgd = true;
3693                         break;
3694                 default:
3695                         break;
3696                 }
3697         } else {
3698                 ah->diversity_control = settings;
3699         }
3700
3701         return true;
3702 }
3703
3704 /*********************/
3705 /* General Operation */
3706 /*********************/
3707
3708 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3709 {
3710         u32 bits = REG_READ(ah, AR_RX_FILTER);
3711         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3712
3713         if (phybits & AR_PHY_ERR_RADAR)
3714                 bits |= ATH9K_RX_FILTER_PHYRADAR;
3715         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3716                 bits |= ATH9K_RX_FILTER_PHYERR;
3717
3718         return bits;
3719 }
3720
3721 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3722 {
3723         u32 phybits;
3724
3725         REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
3726         phybits = 0;
3727         if (bits & ATH9K_RX_FILTER_PHYRADAR)
3728                 phybits |= AR_PHY_ERR_RADAR;
3729         if (bits & ATH9K_RX_FILTER_PHYERR)
3730                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3731         REG_WRITE(ah, AR_PHY_ERR, phybits);
3732
3733         if (phybits)
3734                 REG_WRITE(ah, AR_RXCFG,
3735                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3736         else
3737                 REG_WRITE(ah, AR_RXCFG,
3738                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3739 }
3740
3741 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3742 {
3743         return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
3744 }
3745
3746 bool ath9k_hw_disable(struct ath_hw *ah)
3747 {
3748         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3749                 return false;
3750
3751         return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
3752 }
3753
3754 bool ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3755 {
3756         struct ath9k_channel *chan = ah->curchan;
3757         struct ieee80211_channel *channel = chan->chan;
3758
3759         ah->regulatory.power_limit = min(limit, (u32) MAX_RATE_POWER);
3760
3761         if (ah->eep_ops->set_txpower(ah, chan,
3762                              ath9k_regd_get_ctl(&ah->regulatory, chan),
3763                              channel->max_antenna_gain * 2,
3764                              channel->max_power * 2,
3765                              min((u32) MAX_RATE_POWER,
3766                                  (u32) ah->regulatory.power_limit)) != 0)
3767                 return false;
3768
3769         return true;
3770 }
3771
3772 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3773 {
3774         memcpy(ah->macaddr, mac, ETH_ALEN);
3775 }
3776
3777 void ath9k_hw_setopmode(struct ath_hw *ah)
3778 {
3779         ath9k_hw_set_operating_mode(ah, ah->opmode);
3780 }
3781
3782 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3783 {
3784         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3785         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3786 }
3787
3788 void ath9k_hw_setbssidmask(struct ath_softc *sc)
3789 {
3790         REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
3791         REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
3792 }
3793
3794 void ath9k_hw_write_associd(struct ath_softc *sc)
3795 {
3796         REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
3797         REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
3798                   ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3799 }
3800
3801 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3802 {
3803         u64 tsf;
3804
3805         tsf = REG_READ(ah, AR_TSF_U32);
3806         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3807
3808         return tsf;
3809 }
3810
3811 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3812 {
3813         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3814         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3815 }
3816
3817 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3818 {
3819         int count;
3820
3821         count = 0;
3822         while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
3823                 count++;
3824                 if (count > 10) {
3825                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3826                                 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3827                         break;
3828                 }
3829                 udelay(10);
3830         }
3831         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3832 }
3833
3834 bool ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3835 {
3836         if (setting)
3837                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3838         else
3839                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3840
3841         return true;
3842 }
3843
3844 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
3845 {
3846         if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
3847                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
3848                 ah->slottime = (u32) -1;
3849                 return false;
3850         } else {
3851                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
3852                 ah->slottime = us;
3853                 return true;
3854         }
3855 }
3856
3857 void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode)
3858 {
3859         u32 macmode;
3860
3861         if (mode == ATH9K_HT_MACMODE_2040 &&
3862             !ah->config.cwm_ignore_extcca)
3863                 macmode = AR_2040_JOINED_RX_CLEAR;
3864         else
3865                 macmode = 0;
3866
3867         REG_WRITE(ah, AR_2040_MODE, macmode);
3868 }
3869
3870 /***************************/
3871 /*  Bluetooth Coexistence  */
3872 /***************************/
3873
3874 void ath9k_hw_btcoex_enable(struct ath_hw *ah)
3875 {
3876         /* connect bt_active to baseband */
3877         REG_CLR_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3878                         (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
3879                          AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
3880
3881         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3882                         AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
3883
3884         /* Set input mux for bt_active to gpio pin */
3885         REG_RMW_FIELD(ah, AR_GPIO_INPUT_MUX1,
3886                         AR_GPIO_INPUT_MUX1_BT_ACTIVE,
3887                         ah->btactive_gpio);
3888
3889         /* Configure the desired gpio port for input */
3890         ath9k_hw_cfg_gpio_input(ah, ah->btactive_gpio);
3891
3892         /* Configure the desired GPIO port for TX_FRAME output */
3893         ath9k_hw_cfg_output(ah, ah->wlanactive_gpio,
3894                             AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
3895 }