ath5k: fix NULL pointer in antenna configuration
[safe/jmp/linux-2.6] / drivers / net / wireless / ath / ath5k / phy.c
1 /*
2  * PHY functions
3  *
4  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "base.h"
29 #include "rfbuffer.h"
30 #include "rfgain.h"
31
32 /*
33  * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
34  */
35 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
36                                         const struct ath5k_rf_reg *rf_regs,
37                                         u32 val, u8 reg_id, bool set)
38 {
39         const struct ath5k_rf_reg *rfreg = NULL;
40         u8 offset, bank, num_bits, col, position;
41         u16 entry;
42         u32 mask, data, last_bit, bits_shifted, first_bit;
43         u32 *rfb;
44         s32 bits_left;
45         int i;
46
47         data = 0;
48         rfb = ah->ah_rf_banks;
49
50         for (i = 0; i < ah->ah_rf_regs_count; i++) {
51                 if (rf_regs[i].index == reg_id) {
52                         rfreg = &rf_regs[i];
53                         break;
54                 }
55         }
56
57         if (rfb == NULL || rfreg == NULL) {
58                 ATH5K_PRINTF("Rf register not found!\n");
59                 /* should not happen */
60                 return 0;
61         }
62
63         bank = rfreg->bank;
64         num_bits = rfreg->field.len;
65         first_bit = rfreg->field.pos;
66         col = rfreg->field.col;
67
68         /* first_bit is an offset from bank's
69          * start. Since we have all banks on
70          * the same array, we use this offset
71          * to mark each bank's start */
72         offset = ah->ah_offset[bank];
73
74         /* Boundary check */
75         if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
76                 ATH5K_PRINTF("invalid values at offset %u\n", offset);
77                 return 0;
78         }
79
80         entry = ((first_bit - 1) / 8) + offset;
81         position = (first_bit - 1) % 8;
82
83         if (set)
84                 data = ath5k_hw_bitswap(val, num_bits);
85
86         for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
87         position = 0, entry++) {
88
89                 last_bit = (position + bits_left > 8) ? 8 :
90                                         position + bits_left;
91
92                 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
93                                                                 (col * 8);
94
95                 if (set) {
96                         rfb[entry] &= ~mask;
97                         rfb[entry] |= ((data << position) << (col * 8)) & mask;
98                         data >>= (8 - position);
99                 } else {
100                         data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
101                                 << bits_shifted;
102                         bits_shifted += last_bit - position;
103                 }
104
105                 bits_left -= 8 - position;
106         }
107
108         data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
109
110         return data;
111 }
112
113 /**********************\
114 * RF Gain optimization *
115 \**********************/
116
117 /*
118  * This code is used to optimize rf gain on different environments
119  * (temperature mostly) based on feedback from a power detector.
120  *
121  * It's only used on RF5111 and RF5112, later RF chips seem to have
122  * auto adjustment on hw -notice they have a much smaller BANK 7 and
123  * no gain optimization ladder-.
124  *
125  * For more infos check out this patent doc
126  * http://www.freepatentsonline.com/7400691.html
127  *
128  * This paper describes power drops as seen on the receiver due to
129  * probe packets
130  * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
131  * %20of%20Power%20Control.pdf
132  *
133  * And this is the MadWiFi bug entry related to the above
134  * http://madwifi-project.org/ticket/1659
135  * with various measurements and diagrams
136  *
137  * TODO: Deal with power drops due to probes by setting an apropriate
138  * tx power on the probe packets ! Make this part of the calibration process.
139  */
140
141 /* Initialize ah_gain durring attach */
142 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
143 {
144         /* Initialize the gain optimization values */
145         switch (ah->ah_radio) {
146         case AR5K_RF5111:
147                 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
148                 ah->ah_gain.g_low = 20;
149                 ah->ah_gain.g_high = 35;
150                 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
151                 break;
152         case AR5K_RF5112:
153                 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
154                 ah->ah_gain.g_low = 20;
155                 ah->ah_gain.g_high = 85;
156                 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
157                 break;
158         default:
159                 return -EINVAL;
160         }
161
162         return 0;
163 }
164
165 /* Schedule a gain probe check on the next transmited packet.
166  * That means our next packet is going to be sent with lower
167  * tx power and a Peak to Average Power Detector (PAPD) will try
168  * to measure the gain.
169  *
170  * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
171  * just after we enable the probe so that we don't mess with
172  * standard traffic ? Maybe it's time to use sw interrupts and
173  * a probe tasklet !!!
174  */
175 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
176 {
177
178         /* Skip if gain calibration is inactive or
179          * we already handle a probe request */
180         if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
181                 return;
182
183         /* Send the packet with 2dB below max power as
184          * patent doc suggest */
185         ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
186                         AR5K_PHY_PAPD_PROBE_TXPOWER) |
187                         AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
188
189         ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
190
191 }
192
193 /* Calculate gain_F measurement correction
194  * based on the current step for RF5112 rev. 2 */
195 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
196 {
197         u32 mix, step;
198         u32 *rf;
199         const struct ath5k_gain_opt *go;
200         const struct ath5k_gain_opt_step *g_step;
201         const struct ath5k_rf_reg *rf_regs;
202
203         /* Only RF5112 Rev. 2 supports it */
204         if ((ah->ah_radio != AR5K_RF5112) ||
205         (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
206                 return 0;
207
208         go = &rfgain_opt_5112;
209         rf_regs = rf_regs_5112a;
210         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
211
212         g_step = &go->go_step[ah->ah_gain.g_step_idx];
213
214         if (ah->ah_rf_banks == NULL)
215                 return 0;
216
217         rf = ah->ah_rf_banks;
218         ah->ah_gain.g_f_corr = 0;
219
220         /* No VGA (Variable Gain Amplifier) override, skip */
221         if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
222                 return 0;
223
224         /* Mix gain stepping */
225         step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
226
227         /* Mix gain override */
228         mix = g_step->gos_param[0];
229
230         switch (mix) {
231         case 3:
232                 ah->ah_gain.g_f_corr = step * 2;
233                 break;
234         case 2:
235                 ah->ah_gain.g_f_corr = (step - 5) * 2;
236                 break;
237         case 1:
238                 ah->ah_gain.g_f_corr = step;
239                 break;
240         default:
241                 ah->ah_gain.g_f_corr = 0;
242                 break;
243         }
244
245         return ah->ah_gain.g_f_corr;
246 }
247
248 /* Check if current gain_F measurement is in the range of our
249  * power detector windows. If we get a measurement outside range
250  * we know it's not accurate (detectors can't measure anything outside
251  * their detection window) so we must ignore it */
252 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
253 {
254         const struct ath5k_rf_reg *rf_regs;
255         u32 step, mix_ovr, level[4];
256         u32 *rf;
257
258         if (ah->ah_rf_banks == NULL)
259                 return false;
260
261         rf = ah->ah_rf_banks;
262
263         if (ah->ah_radio == AR5K_RF5111) {
264
265                 rf_regs = rf_regs_5111;
266                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
267
268                 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
269                         false);
270
271                 level[0] = 0;
272                 level[1] = (step == 63) ? 50 : step + 4;
273                 level[2] = (step != 63) ? 64 : level[0];
274                 level[3] = level[2] + 50 ;
275
276                 ah->ah_gain.g_high = level[3] -
277                         (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
278                 ah->ah_gain.g_low = level[0] +
279                         (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
280         } else {
281
282                 rf_regs = rf_regs_5112;
283                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
284
285                 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
286                         false);
287
288                 level[0] = level[2] = 0;
289
290                 if (mix_ovr == 1) {
291                         level[1] = level[3] = 83;
292                 } else {
293                         level[1] = level[3] = 107;
294                         ah->ah_gain.g_high = 55;
295                 }
296         }
297
298         return (ah->ah_gain.g_current >= level[0] &&
299                         ah->ah_gain.g_current <= level[1]) ||
300                 (ah->ah_gain.g_current >= level[2] &&
301                         ah->ah_gain.g_current <= level[3]);
302 }
303
304 /* Perform gain_F adjustment by choosing the right set
305  * of parameters from rf gain optimization ladder */
306 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
307 {
308         const struct ath5k_gain_opt *go;
309         const struct ath5k_gain_opt_step *g_step;
310         int ret = 0;
311
312         switch (ah->ah_radio) {
313         case AR5K_RF5111:
314                 go = &rfgain_opt_5111;
315                 break;
316         case AR5K_RF5112:
317                 go = &rfgain_opt_5112;
318                 break;
319         default:
320                 return 0;
321         }
322
323         g_step = &go->go_step[ah->ah_gain.g_step_idx];
324
325         if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
326
327                 /* Reached maximum */
328                 if (ah->ah_gain.g_step_idx == 0)
329                         return -1;
330
331                 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
332                                 ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
333                                 ah->ah_gain.g_step_idx > 0;
334                                 g_step = &go->go_step[ah->ah_gain.g_step_idx])
335                         ah->ah_gain.g_target -= 2 *
336                             (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
337                             g_step->gos_gain);
338
339                 ret = 1;
340                 goto done;
341         }
342
343         if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
344
345                 /* Reached minimum */
346                 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
347                         return -2;
348
349                 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
350                                 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
351                                 ah->ah_gain.g_step_idx < go->go_steps_count-1;
352                                 g_step = &go->go_step[ah->ah_gain.g_step_idx])
353                         ah->ah_gain.g_target -= 2 *
354                             (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
355                             g_step->gos_gain);
356
357                 ret = 2;
358                 goto done;
359         }
360
361 done:
362         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
363                 "ret %d, gain step %u, current gain %u, target gain %u\n",
364                 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
365                 ah->ah_gain.g_target);
366
367         return ret;
368 }
369
370 /* Main callback for thermal rf gain calibration engine
371  * Check for a new gain reading and schedule an adjustment
372  * if needed.
373  *
374  * TODO: Use sw interrupt to schedule reset if gain_F needs
375  * adjustment */
376 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
377 {
378         u32 data, type;
379         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
380
381         ATH5K_TRACE(ah->ah_sc);
382
383         if (ah->ah_rf_banks == NULL ||
384         ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
385                 return AR5K_RFGAIN_INACTIVE;
386
387         /* No check requested, either engine is inactive
388          * or an adjustment is already requested */
389         if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
390                 goto done;
391
392         /* Read the PAPD (Peak to Average Power Detector)
393          * register */
394         data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
395
396         /* No probe is scheduled, read gain_F measurement */
397         if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
398                 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
399                 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
400
401                 /* If tx packet is CCK correct the gain_F measurement
402                  * by cck ofdm gain delta */
403                 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
404                         if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
405                                 ah->ah_gain.g_current +=
406                                         ee->ee_cck_ofdm_gain_delta;
407                         else
408                                 ah->ah_gain.g_current +=
409                                         AR5K_GAIN_CCK_PROBE_CORR;
410                 }
411
412                 /* Further correct gain_F measurement for
413                  * RF5112A radios */
414                 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
415                         ath5k_hw_rf_gainf_corr(ah);
416                         ah->ah_gain.g_current =
417                                 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
418                                 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
419                                 0;
420                 }
421
422                 /* Check if measurement is ok and if we need
423                  * to adjust gain, schedule a gain adjustment,
424                  * else switch back to the acive state */
425                 if (ath5k_hw_rf_check_gainf_readback(ah) &&
426                 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
427                 ath5k_hw_rf_gainf_adjust(ah)) {
428                         ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
429                 } else {
430                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
431                 }
432         }
433
434 done:
435         return ah->ah_gain.g_state;
436 }
437
438 /* Write initial rf gain table to set the RF sensitivity
439  * this one works on all RF chips and has nothing to do
440  * with gain_F calibration */
441 int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
442 {
443         const struct ath5k_ini_rfgain *ath5k_rfg;
444         unsigned int i, size;
445
446         switch (ah->ah_radio) {
447         case AR5K_RF5111:
448                 ath5k_rfg = rfgain_5111;
449                 size = ARRAY_SIZE(rfgain_5111);
450                 break;
451         case AR5K_RF5112:
452                 ath5k_rfg = rfgain_5112;
453                 size = ARRAY_SIZE(rfgain_5112);
454                 break;
455         case AR5K_RF2413:
456                 ath5k_rfg = rfgain_2413;
457                 size = ARRAY_SIZE(rfgain_2413);
458                 break;
459         case AR5K_RF2316:
460                 ath5k_rfg = rfgain_2316;
461                 size = ARRAY_SIZE(rfgain_2316);
462                 break;
463         case AR5K_RF5413:
464                 ath5k_rfg = rfgain_5413;
465                 size = ARRAY_SIZE(rfgain_5413);
466                 break;
467         case AR5K_RF2317:
468         case AR5K_RF2425:
469                 ath5k_rfg = rfgain_2425;
470                 size = ARRAY_SIZE(rfgain_2425);
471                 break;
472         default:
473                 return -EINVAL;
474         }
475
476         switch (freq) {
477         case AR5K_INI_RFGAIN_2GHZ:
478         case AR5K_INI_RFGAIN_5GHZ:
479                 break;
480         default:
481                 return -EINVAL;
482         }
483
484         for (i = 0; i < size; i++) {
485                 AR5K_REG_WAIT(i);
486                 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
487                         (u32)ath5k_rfg[i].rfg_register);
488         }
489
490         return 0;
491 }
492
493
494
495 /********************\
496 * RF Registers setup *
497 \********************/
498
499
500 /*
501  * Setup RF registers by writing rf buffer on hw
502  */
503 int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
504                 unsigned int mode)
505 {
506         const struct ath5k_rf_reg *rf_regs;
507         const struct ath5k_ini_rfbuffer *ini_rfb;
508         const struct ath5k_gain_opt *go = NULL;
509         const struct ath5k_gain_opt_step *g_step;
510         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
511         u8 ee_mode = 0;
512         u32 *rfb;
513         int i, obdb = -1, bank = -1;
514
515         switch (ah->ah_radio) {
516         case AR5K_RF5111:
517                 rf_regs = rf_regs_5111;
518                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
519                 ini_rfb = rfb_5111;
520                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
521                 go = &rfgain_opt_5111;
522                 break;
523         case AR5K_RF5112:
524                 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
525                         rf_regs = rf_regs_5112a;
526                         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
527                         ini_rfb = rfb_5112a;
528                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
529                 } else {
530                         rf_regs = rf_regs_5112;
531                         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
532                         ini_rfb = rfb_5112;
533                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
534                 }
535                 go = &rfgain_opt_5112;
536                 break;
537         case AR5K_RF2413:
538                 rf_regs = rf_regs_2413;
539                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
540                 ini_rfb = rfb_2413;
541                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
542                 break;
543         case AR5K_RF2316:
544                 rf_regs = rf_regs_2316;
545                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
546                 ini_rfb = rfb_2316;
547                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
548                 break;
549         case AR5K_RF5413:
550                 rf_regs = rf_regs_5413;
551                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
552                 ini_rfb = rfb_5413;
553                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
554                 break;
555         case AR5K_RF2317:
556                 rf_regs = rf_regs_2425;
557                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
558                 ini_rfb = rfb_2317;
559                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
560                 break;
561         case AR5K_RF2425:
562                 rf_regs = rf_regs_2425;
563                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
564                 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
565                         ini_rfb = rfb_2425;
566                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
567                 } else {
568                         ini_rfb = rfb_2417;
569                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
570                 }
571                 break;
572         default:
573                 return -EINVAL;
574         }
575
576         /* If it's the first time we set rf buffer, allocate
577          * ah->ah_rf_banks based on ah->ah_rf_banks_size
578          * we set above */
579         if (ah->ah_rf_banks == NULL) {
580                 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
581                                                                 GFP_KERNEL);
582                 if (ah->ah_rf_banks == NULL) {
583                         ATH5K_ERR(ah->ah_sc, "out of memory\n");
584                         return -ENOMEM;
585                 }
586         }
587
588         /* Copy values to modify them */
589         rfb = ah->ah_rf_banks;
590
591         for (i = 0; i < ah->ah_rf_banks_size; i++) {
592                 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
593                         ATH5K_ERR(ah->ah_sc, "invalid bank\n");
594                         return -EINVAL;
595                 }
596
597                 /* Bank changed, write down the offset */
598                 if (bank != ini_rfb[i].rfb_bank) {
599                         bank = ini_rfb[i].rfb_bank;
600                         ah->ah_offset[bank] = i;
601                 }
602
603                 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
604         }
605
606         /* Set Output and Driver bias current (OB/DB) */
607         if (channel->hw_value & CHANNEL_2GHZ) {
608
609                 if (channel->hw_value & CHANNEL_CCK)
610                         ee_mode = AR5K_EEPROM_MODE_11B;
611                 else
612                         ee_mode = AR5K_EEPROM_MODE_11G;
613
614                 /* For RF511X/RF211X combination we
615                  * use b_OB and b_DB parameters stored
616                  * in eeprom on ee->ee_ob[ee_mode][0]
617                  *
618                  * For all other chips we use OB/DB for 2Ghz
619                  * stored in the b/g modal section just like
620                  * 802.11a on ee->ee_ob[ee_mode][1] */
621                 if ((ah->ah_radio == AR5K_RF5111) ||
622                 (ah->ah_radio == AR5K_RF5112))
623                         obdb = 0;
624                 else
625                         obdb = 1;
626
627                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
628                                                 AR5K_RF_OB_2GHZ, true);
629
630                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
631                                                 AR5K_RF_DB_2GHZ, true);
632
633         /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
634         } else if ((channel->hw_value & CHANNEL_5GHZ) ||
635                         (ah->ah_radio == AR5K_RF5111)) {
636
637                 /* For 11a, Turbo and XR we need to choose
638                  * OB/DB based on frequency range */
639                 ee_mode = AR5K_EEPROM_MODE_11A;
640                 obdb =   channel->center_freq >= 5725 ? 3 :
641                         (channel->center_freq >= 5500 ? 2 :
642                         (channel->center_freq >= 5260 ? 1 :
643                          (channel->center_freq > 4000 ? 0 : -1)));
644
645                 if (obdb < 0)
646                         return -EINVAL;
647
648                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
649                                                 AR5K_RF_OB_5GHZ, true);
650
651                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
652                                                 AR5K_RF_DB_5GHZ, true);
653         }
654
655         g_step = &go->go_step[ah->ah_gain.g_step_idx];
656
657         /* Bank Modifications (chip-specific) */
658         if (ah->ah_radio == AR5K_RF5111) {
659
660                 /* Set gain_F settings according to current step */
661                 if (channel->hw_value & CHANNEL_OFDM) {
662
663                         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
664                                         AR5K_PHY_FRAME_CTL_TX_CLIP,
665                                         g_step->gos_param[0]);
666
667                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
668                                                         AR5K_RF_PWD_90, true);
669
670                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
671                                                         AR5K_RF_PWD_84, true);
672
673                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
674                                                 AR5K_RF_RFGAIN_SEL, true);
675
676                         /* We programmed gain_F parameters, switch back
677                          * to active state */
678                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
679
680                 }
681
682                 /* Bank 6/7 setup */
683
684                 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
685                                                 AR5K_RF_PWD_XPD, true);
686
687                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
688                                                 AR5K_RF_XPD_GAIN, true);
689
690                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
691                                                 AR5K_RF_GAIN_I, true);
692
693                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
694                                                 AR5K_RF_PLO_SEL, true);
695
696                 /* TODO: Half/quarter channel support */
697         }
698
699         if (ah->ah_radio == AR5K_RF5112) {
700
701                 /* Set gain_F settings according to current step */
702                 if (channel->hw_value & CHANNEL_OFDM) {
703
704                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
705                                                 AR5K_RF_MIXGAIN_OVR, true);
706
707                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
708                                                 AR5K_RF_PWD_138, true);
709
710                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
711                                                 AR5K_RF_PWD_137, true);
712
713                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
714                                                 AR5K_RF_PWD_136, true);
715
716                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
717                                                 AR5K_RF_PWD_132, true);
718
719                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
720                                                 AR5K_RF_PWD_131, true);
721
722                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
723                                                 AR5K_RF_PWD_130, true);
724
725                         /* We programmed gain_F parameters, switch back
726                          * to active state */
727                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
728                 }
729
730                 /* Bank 6/7 setup */
731
732                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
733                                                 AR5K_RF_XPD_SEL, true);
734
735                 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
736                         /* Rev. 1 supports only one xpd */
737                         ath5k_hw_rfb_op(ah, rf_regs,
738                                                 ee->ee_x_gain[ee_mode],
739                                                 AR5K_RF_XPD_GAIN, true);
740
741                 } else {
742                         u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
743                         if (ee->ee_pd_gains[ee_mode] > 1) {
744                                 ath5k_hw_rfb_op(ah, rf_regs,
745                                                 pdg_curve_to_idx[0],
746                                                 AR5K_RF_PD_GAIN_LO, true);
747                                 ath5k_hw_rfb_op(ah, rf_regs,
748                                                 pdg_curve_to_idx[1],
749                                                 AR5K_RF_PD_GAIN_HI, true);
750                         } else {
751                                 ath5k_hw_rfb_op(ah, rf_regs,
752                                                 pdg_curve_to_idx[0],
753                                                 AR5K_RF_PD_GAIN_LO, true);
754                                 ath5k_hw_rfb_op(ah, rf_regs,
755                                                 pdg_curve_to_idx[0],
756                                                 AR5K_RF_PD_GAIN_HI, true);
757                         }
758
759                         /* Lower synth voltage on Rev 2 */
760                         ath5k_hw_rfb_op(ah, rf_regs, 2,
761                                         AR5K_RF_HIGH_VC_CP, true);
762
763                         ath5k_hw_rfb_op(ah, rf_regs, 2,
764                                         AR5K_RF_MID_VC_CP, true);
765
766                         ath5k_hw_rfb_op(ah, rf_regs, 2,
767                                         AR5K_RF_LOW_VC_CP, true);
768
769                         ath5k_hw_rfb_op(ah, rf_regs, 2,
770                                         AR5K_RF_PUSH_UP, true);
771
772                         /* Decrease power consumption on 5213+ BaseBand */
773                         if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
774                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
775                                                 AR5K_RF_PAD2GND, true);
776
777                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
778                                                 AR5K_RF_XB2_LVL, true);
779
780                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
781                                                 AR5K_RF_XB5_LVL, true);
782
783                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
784                                                 AR5K_RF_PWD_167, true);
785
786                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
787                                                 AR5K_RF_PWD_166, true);
788                         }
789                 }
790
791                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
792                                                 AR5K_RF_GAIN_I, true);
793
794                 /* TODO: Half/quarter channel support */
795
796         }
797
798         if (ah->ah_radio == AR5K_RF5413 &&
799         channel->hw_value & CHANNEL_2GHZ) {
800
801                 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
802                                                                         true);
803
804                 /* Set optimum value for early revisions (on pci-e chips) */
805                 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
806                 ah->ah_mac_srev < AR5K_SREV_AR5413)
807                         ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
808                                                 AR5K_RF_PWD_ICLOBUF_2G, true);
809
810         }
811
812         /* Write RF banks on hw */
813         for (i = 0; i < ah->ah_rf_banks_size; i++) {
814                 AR5K_REG_WAIT(i);
815                 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
816         }
817
818         return 0;
819 }
820
821
822 /**************************\
823   PHY/RF channel functions
824 \**************************/
825
826 /*
827  * Check if a channel is supported
828  */
829 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
830 {
831         /* Check if the channel is in our supported range */
832         if (flags & CHANNEL_2GHZ) {
833                 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
834                     (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
835                         return true;
836         } else if (flags & CHANNEL_5GHZ)
837                 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
838                     (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
839                         return true;
840
841         return false;
842 }
843
844 /*
845  * Convertion needed for RF5110
846  */
847 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
848 {
849         u32 athchan;
850
851         /*
852          * Convert IEEE channel/MHz to an internal channel value used
853          * by the AR5210 chipset. This has not been verified with
854          * newer chipsets like the AR5212A who have a completely
855          * different RF/PHY part.
856          */
857         athchan = (ath5k_hw_bitswap(
858                         (ieee80211_frequency_to_channel(
859                                 channel->center_freq) - 24) / 2, 5)
860                                 << 1) | (1 << 6) | 0x1;
861         return athchan;
862 }
863
864 /*
865  * Set channel on RF5110
866  */
867 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
868                 struct ieee80211_channel *channel)
869 {
870         u32 data;
871
872         /*
873          * Set the channel and wait
874          */
875         data = ath5k_hw_rf5110_chan2athchan(channel);
876         ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
877         ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
878         mdelay(1);
879
880         return 0;
881 }
882
883 /*
884  * Convertion needed for 5111
885  */
886 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
887                 struct ath5k_athchan_2ghz *athchan)
888 {
889         int channel;
890
891         /* Cast this value to catch negative channel numbers (>= -19) */
892         channel = (int)ieee;
893
894         /*
895          * Map 2GHz IEEE channel to 5GHz Atheros channel
896          */
897         if (channel <= 13) {
898                 athchan->a2_athchan = 115 + channel;
899                 athchan->a2_flags = 0x46;
900         } else if (channel == 14) {
901                 athchan->a2_athchan = 124;
902                 athchan->a2_flags = 0x44;
903         } else if (channel >= 15 && channel <= 26) {
904                 athchan->a2_athchan = ((channel - 14) * 4) + 132;
905                 athchan->a2_flags = 0x46;
906         } else
907                 return -EINVAL;
908
909         return 0;
910 }
911
912 /*
913  * Set channel on 5111
914  */
915 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
916                 struct ieee80211_channel *channel)
917 {
918         struct ath5k_athchan_2ghz ath5k_channel_2ghz;
919         unsigned int ath5k_channel =
920                 ieee80211_frequency_to_channel(channel->center_freq);
921         u32 data0, data1, clock;
922         int ret;
923
924         /*
925          * Set the channel on the RF5111 radio
926          */
927         data0 = data1 = 0;
928
929         if (channel->hw_value & CHANNEL_2GHZ) {
930                 /* Map 2GHz channel to 5GHz Atheros channel ID */
931                 ret = ath5k_hw_rf5111_chan2athchan(
932                         ieee80211_frequency_to_channel(channel->center_freq),
933                         &ath5k_channel_2ghz);
934                 if (ret)
935                         return ret;
936
937                 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
938                 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
939                     << 5) | (1 << 4);
940         }
941
942         if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
943                 clock = 1;
944                 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
945                         (clock << 1) | (1 << 10) | 1;
946         } else {
947                 clock = 0;
948                 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
949                         << 2) | (clock << 1) | (1 << 10) | 1;
950         }
951
952         ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
953                         AR5K_RF_BUFFER);
954         ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
955                         AR5K_RF_BUFFER_CONTROL_3);
956
957         return 0;
958 }
959
960 /*
961  * Set channel on 5112 and newer
962  */
963 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
964                 struct ieee80211_channel *channel)
965 {
966         u32 data, data0, data1, data2;
967         u16 c;
968
969         data = data0 = data1 = data2 = 0;
970         c = channel->center_freq;
971
972         if (c < 4800) {
973                 if (!((c - 2224) % 5)) {
974                         data0 = ((2 * (c - 704)) - 3040) / 10;
975                         data1 = 1;
976                 } else if (!((c - 2192) % 5)) {
977                         data0 = ((2 * (c - 672)) - 3040) / 10;
978                         data1 = 0;
979                 } else
980                         return -EINVAL;
981
982                 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
983         } else if ((c % 5) != 2 || c > 5435) {
984                 if (!(c % 20) && c >= 5120) {
985                         data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
986                         data2 = ath5k_hw_bitswap(3, 2);
987                 } else if (!(c % 10)) {
988                         data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
989                         data2 = ath5k_hw_bitswap(2, 2);
990                 } else if (!(c % 5)) {
991                         data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
992                         data2 = ath5k_hw_bitswap(1, 2);
993                 } else
994                         return -EINVAL;
995         } else {
996                 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
997                 data2 = ath5k_hw_bitswap(0, 2);
998         }
999
1000         data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1001
1002         ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1003         ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1004
1005         return 0;
1006 }
1007
1008 /*
1009  * Set the channel on the RF2425
1010  */
1011 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1012                 struct ieee80211_channel *channel)
1013 {
1014         u32 data, data0, data2;
1015         u16 c;
1016
1017         data = data0 = data2 = 0;
1018         c = channel->center_freq;
1019
1020         if (c < 4800) {
1021                 data0 = ath5k_hw_bitswap((c - 2272), 8);
1022                 data2 = 0;
1023         /* ? 5GHz ? */
1024         } else if ((c % 5) != 2 || c > 5435) {
1025                 if (!(c % 20) && c < 5120)
1026                         data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1027                 else if (!(c % 10))
1028                         data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1029                 else if (!(c % 5))
1030                         data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1031                 else
1032                         return -EINVAL;
1033                 data2 = ath5k_hw_bitswap(1, 2);
1034         } else {
1035                 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1036                 data2 = ath5k_hw_bitswap(0, 2);
1037         }
1038
1039         data = (data0 << 4) | data2 << 2 | 0x1001;
1040
1041         ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1042         ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1043
1044         return 0;
1045 }
1046
1047 /*
1048  * Set a channel on the radio chip
1049  */
1050 int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1051 {
1052         int ret;
1053         /*
1054          * Check bounds supported by the PHY (we don't care about regultory
1055          * restrictions at this point). Note: hw_value already has the band
1056          * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1057          * of the band by that */
1058         if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1059                 ATH5K_ERR(ah->ah_sc,
1060                         "channel frequency (%u MHz) out of supported "
1061                         "band range\n",
1062                         channel->center_freq);
1063                         return -EINVAL;
1064         }
1065
1066         /*
1067          * Set the channel and wait
1068          */
1069         switch (ah->ah_radio) {
1070         case AR5K_RF5110:
1071                 ret = ath5k_hw_rf5110_channel(ah, channel);
1072                 break;
1073         case AR5K_RF5111:
1074                 ret = ath5k_hw_rf5111_channel(ah, channel);
1075                 break;
1076         case AR5K_RF2425:
1077                 ret = ath5k_hw_rf2425_channel(ah, channel);
1078                 break;
1079         default:
1080                 ret = ath5k_hw_rf5112_channel(ah, channel);
1081                 break;
1082         }
1083
1084         if (ret)
1085                 return ret;
1086
1087         /* Set JAPAN setting for channel 14 */
1088         if (channel->center_freq == 2484) {
1089                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1090                                 AR5K_PHY_CCKTXCTL_JAPAN);
1091         } else {
1092                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1093                                 AR5K_PHY_CCKTXCTL_WORLD);
1094         }
1095
1096         ah->ah_current_channel = channel;
1097         ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1098
1099         return 0;
1100 }
1101
1102 /*****************\
1103   PHY calibration
1104 \*****************/
1105
1106 static int sign_extend(int val, const int nbits)
1107 {
1108         int order = BIT(nbits-1);
1109         return (val ^ order) - order;
1110 }
1111
1112 static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1113 {
1114         s32 val;
1115
1116         val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1117         return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1118 }
1119
1120 void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1121 {
1122         int i;
1123
1124         ah->ah_nfcal_hist.index = 0;
1125         for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1126                 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1127 }
1128
1129 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1130 {
1131         struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1132         hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1133         hist->nfval[hist->index] = noise_floor;
1134 }
1135
1136 static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1137 {
1138         s16 sort[ATH5K_NF_CAL_HIST_MAX];
1139         s16 tmp;
1140         int i, j;
1141
1142         memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1143         for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1144                 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1145                         if (sort[j] > sort[j-1]) {
1146                                 tmp = sort[j];
1147                                 sort[j] = sort[j-1];
1148                                 sort[j-1] = tmp;
1149                         }
1150                 }
1151         }
1152         for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1153                 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1154                         "cal %d:%d\n", i, sort[i]);
1155         }
1156         return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1157 }
1158
1159 /*
1160  * When we tell the hardware to perform a noise floor calibration
1161  * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1162  * sample-and-hold the minimum noise level seen at the antennas.
1163  * This value is then stored in a ring buffer of recently measured
1164  * noise floor values so we have a moving window of the last few
1165  * samples.
1166  *
1167  * The median of the values in the history is then loaded into the
1168  * hardware for its own use for RSSI and CCA measurements.
1169  */
1170 static void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1171 {
1172         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1173         u32 val;
1174         s16 nf, threshold;
1175         u8 ee_mode;
1176
1177         /* keep last value if calibration hasn't completed */
1178         if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1179                 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1180                         "NF did not complete in calibration window\n");
1181
1182                 return;
1183         }
1184
1185         switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1186         case CHANNEL_A:
1187         case CHANNEL_T:
1188         case CHANNEL_XR:
1189                 ee_mode = AR5K_EEPROM_MODE_11A;
1190                 break;
1191         case CHANNEL_G:
1192         case CHANNEL_TG:
1193                 ee_mode = AR5K_EEPROM_MODE_11G;
1194                 break;
1195         default:
1196         case CHANNEL_B:
1197                 ee_mode = AR5K_EEPROM_MODE_11B;
1198                 break;
1199         }
1200
1201
1202         /* completed NF calibration, test threshold */
1203         nf = ath5k_hw_read_measured_noise_floor(ah);
1204         threshold = ee->ee_noise_floor_thr[ee_mode];
1205
1206         if (nf > threshold) {
1207                 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1208                         "noise floor failure detected; "
1209                         "read %d, threshold %d\n",
1210                         nf, threshold);
1211
1212                 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1213         }
1214
1215         ath5k_hw_update_nfcal_hist(ah, nf);
1216         nf = ath5k_hw_get_median_noise_floor(ah);
1217
1218         /* load noise floor (in .5 dBm) so the hardware will use it */
1219         val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1220         val |= (nf * 2) & AR5K_PHY_NF_M;
1221         ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1222
1223         AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1224                 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1225
1226         ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1227                 0, false);
1228
1229         /*
1230          * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1231          * so that we're not capped by the median we just loaded.
1232          * This will be used as the initial value for the next noise
1233          * floor calibration.
1234          */
1235         val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1236         ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1237         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1238                 AR5K_PHY_AGCCTL_NF_EN |
1239                 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1240                 AR5K_PHY_AGCCTL_NF);
1241
1242         ah->ah_noise_floor = nf;
1243
1244         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1245                 "noise floor calibrated: %d\n", nf);
1246 }
1247
1248 /*
1249  * Perform a PHY calibration on RF5110
1250  * -Fix BPSK/QAM Constellation (I/Q correction)
1251  * -Calculate Noise Floor
1252  */
1253 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1254                 struct ieee80211_channel *channel)
1255 {
1256         u32 phy_sig, phy_agc, phy_sat, beacon;
1257         int ret;
1258
1259         /*
1260          * Disable beacons and RX/TX queues, wait
1261          */
1262         AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1263                 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1264         beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1265         ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1266
1267         mdelay(2);
1268
1269         /*
1270          * Set the channel (with AGC turned off)
1271          */
1272         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1273         udelay(10);
1274         ret = ath5k_hw_channel(ah, channel);
1275
1276         /*
1277          * Activate PHY and wait
1278          */
1279         ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1280         mdelay(1);
1281
1282         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1283
1284         if (ret)
1285                 return ret;
1286
1287         /*
1288          * Calibrate the radio chip
1289          */
1290
1291         /* Remember normal state */
1292         phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1293         phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1294         phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1295
1296         /* Update radio registers */
1297         ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1298                 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1299
1300         ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1301                         AR5K_PHY_AGCCOARSE_LO)) |
1302                 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1303                 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1304
1305         ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1306                         AR5K_PHY_ADCSAT_THR)) |
1307                 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1308                 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1309
1310         udelay(20);
1311
1312         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1313         udelay(10);
1314         ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1315         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1316
1317         mdelay(1);
1318
1319         /*
1320          * Enable calibration and wait until completion
1321          */
1322         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1323
1324         ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1325                         AR5K_PHY_AGCCTL_CAL, 0, false);
1326
1327         /* Reset to normal state */
1328         ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1329         ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1330         ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1331
1332         if (ret) {
1333                 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1334                                 channel->center_freq);
1335                 return ret;
1336         }
1337
1338         ath5k_hw_update_noise_floor(ah);
1339
1340         /*
1341          * Re-enable RX/TX and beacons
1342          */
1343         AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1344                 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1345         ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1346
1347         return 0;
1348 }
1349
1350 /*
1351  * Perform a PHY calibration on RF5111/5112 and newer chips
1352  */
1353 static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1354                 struct ieee80211_channel *channel)
1355 {
1356         u32 i_pwr, q_pwr;
1357         s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1358         int i;
1359         ATH5K_TRACE(ah->ah_sc);
1360
1361         if (!ah->ah_calibration ||
1362                 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1363                 goto done;
1364
1365         /* Calibration has finished, get the results and re-run */
1366
1367         /* work around empty results which can apparently happen on 5212 */
1368         for (i = 0; i <= 10; i++) {
1369                 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1370                 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1371                 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1372                 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1373                         "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1374                 if (i_pwr && q_pwr)
1375                         break;
1376         }
1377
1378         i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1379
1380         if (ah->ah_version == AR5K_AR5211)
1381                 q_coffd = q_pwr >> 6;
1382         else
1383                 q_coffd = q_pwr >> 7;
1384
1385         /* protect against divide by 0 and loss of sign bits */
1386         if (i_coffd == 0 || q_coffd < 2)
1387                 goto done;
1388
1389         i_coff = (-iq_corr) / i_coffd;
1390         i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1391
1392         if (ah->ah_version == AR5K_AR5211)
1393                 q_coff = (i_pwr / q_coffd) - 64;
1394         else
1395                 q_coff = (i_pwr / q_coffd) - 128;
1396         q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1397
1398         ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1399                         "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1400                         i_coff, q_coff, i_coffd, q_coffd);
1401
1402         /* Commit new I/Q values (set enable bit last to match HAL sources) */
1403         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1404         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1405         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1406
1407         /* Re-enable calibration -if we don't we'll commit
1408          * the same values again and again */
1409         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1410                         AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1411         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1412
1413 done:
1414
1415         /* TODO: Separate noise floor calibration from I/Q calibration
1416          * since noise floor calibration interrupts rx path while I/Q
1417          * calibration doesn't. We don't need to run noise floor calibration
1418          * as often as I/Q calibration.*/
1419         ath5k_hw_update_noise_floor(ah);
1420
1421         /* Initiate a gain_F calibration */
1422         ath5k_hw_request_rfgain_probe(ah);
1423
1424         return 0;
1425 }
1426
1427 /*
1428  * Perform a PHY calibration
1429  */
1430 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1431                 struct ieee80211_channel *channel)
1432 {
1433         int ret;
1434
1435         if (ah->ah_radio == AR5K_RF5110)
1436                 ret = ath5k_hw_rf5110_calibrate(ah, channel);
1437         else
1438                 ret = ath5k_hw_rf511x_calibrate(ah, channel);
1439
1440         return ret;
1441 }
1442
1443 /***************************\
1444 * Spur mitigation functions *
1445 \***************************/
1446
1447 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1448                                 struct ieee80211_channel *channel)
1449 {
1450         u8 refclk_freq;
1451
1452         if ((ah->ah_radio == AR5K_RF5112) ||
1453         (ah->ah_radio == AR5K_RF5413) ||
1454         (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1455                 refclk_freq = 40;
1456         else
1457                 refclk_freq = 32;
1458
1459         if ((channel->center_freq % refclk_freq != 0) &&
1460         ((channel->center_freq % refclk_freq < 10) ||
1461         (channel->center_freq % refclk_freq > 22)))
1462                 return true;
1463         else
1464                 return false;
1465 }
1466
1467 void
1468 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1469                                 struct ieee80211_channel *channel)
1470 {
1471         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1472         u32 mag_mask[4] = {0, 0, 0, 0};
1473         u32 pilot_mask[2] = {0, 0};
1474         /* Note: fbin values are scaled up by 2 */
1475         u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1476         s32 spur_delta_phase, spur_freq_sigma_delta;
1477         s32 spur_offset, num_symbols_x16;
1478         u8 num_symbol_offsets, i, freq_band;
1479
1480         /* Convert current frequency to fbin value (the same way channels
1481          * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1482          * up by 2 so we can compare it later */
1483         if (channel->hw_value & CHANNEL_2GHZ) {
1484                 chan_fbin = (channel->center_freq - 2300) * 10;
1485                 freq_band = AR5K_EEPROM_BAND_2GHZ;
1486         } else {
1487                 chan_fbin = (channel->center_freq - 4900) * 10;
1488                 freq_band = AR5K_EEPROM_BAND_5GHZ;
1489         }
1490
1491         /* Check if any spur_chan_fbin from EEPROM is
1492          * within our current channel's spur detection range */
1493         spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1494         spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1495         /* XXX: Half/Quarter channels ?*/
1496         if (channel->hw_value & CHANNEL_TURBO)
1497                 spur_detection_window *= 2;
1498
1499         for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1500                 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1501
1502                 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1503                  * so it's zero if we got nothing from EEPROM */
1504                 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1505                         spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1506                         break;
1507                 }
1508
1509                 if ((chan_fbin - spur_detection_window <=
1510                 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1511                 (chan_fbin + spur_detection_window >=
1512                 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1513                         spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1514                         break;
1515                 }
1516         }
1517
1518         /* We need to enable spur filter for this channel */
1519         if (spur_chan_fbin) {
1520                 spur_offset = spur_chan_fbin - chan_fbin;
1521                 /*
1522                  * Calculate deltas:
1523                  * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1524                  * spur_delta_phase -> spur_offset / chip_freq << 11
1525                  * Note: Both values have 100KHz resolution
1526                  */
1527                 /* XXX: Half/Quarter rate channels ? */
1528                 switch (channel->hw_value) {
1529                 case CHANNEL_A:
1530                         /* Both sample_freq and chip_freq are 40MHz */
1531                         spur_delta_phase = (spur_offset << 17) / 25;
1532                         spur_freq_sigma_delta = (spur_delta_phase >> 10);
1533                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1534                         break;
1535                 case CHANNEL_G:
1536                         /* sample_freq -> 40MHz chip_freq -> 44MHz
1537                          * (for b compatibility) */
1538                         spur_freq_sigma_delta = (spur_offset << 8) / 55;
1539                         spur_delta_phase = (spur_offset << 17) / 25;
1540                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1541                         break;
1542                 case CHANNEL_T:
1543                 case CHANNEL_TG:
1544                         /* Both sample_freq and chip_freq are 80MHz */
1545                         spur_delta_phase = (spur_offset << 16) / 25;
1546                         spur_freq_sigma_delta = (spur_delta_phase >> 10);
1547                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1548                         break;
1549                 default:
1550                         return;
1551                 }
1552
1553                 /* Calculate pilot and magnitude masks */
1554
1555                 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1556                  * and divide by symbol_width to find how many symbols we have
1557                  * Note: number of symbols is scaled up by 16 */
1558                 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1559
1560                 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1561                 if (!(num_symbols_x16 & 0xF))
1562                         /* _X_ */
1563                         num_symbol_offsets = 3;
1564                 else
1565                         /* _xx_ */
1566                         num_symbol_offsets = 4;
1567
1568                 for (i = 0; i < num_symbol_offsets; i++) {
1569
1570                         /* Calculate pilot mask */
1571                         s32 curr_sym_off =
1572                                 (num_symbols_x16 / 16) + i + 25;
1573
1574                         /* Pilot magnitude mask seems to be a way to
1575                          * declare the boundaries for our detection
1576                          * window or something, it's 2 for the middle
1577                          * value(s) where the symbol is expected to be
1578                          * and 1 on the boundary values */
1579                         u8 plt_mag_map =
1580                                 (i == 0 || i == (num_symbol_offsets - 1))
1581                                                                 ? 1 : 2;
1582
1583                         if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1584                                 if (curr_sym_off <= 25)
1585                                         pilot_mask[0] |= 1 << curr_sym_off;
1586                                 else if (curr_sym_off >= 27)
1587                                         pilot_mask[0] |= 1 << (curr_sym_off - 1);
1588                         } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1589                                 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1590
1591                         /* Calculate magnitude mask (for viterbi decoder) */
1592                         if (curr_sym_off >= -1 && curr_sym_off <= 14)
1593                                 mag_mask[0] |=
1594                                         plt_mag_map << (curr_sym_off + 1) * 2;
1595                         else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1596                                 mag_mask[1] |=
1597                                         plt_mag_map << (curr_sym_off - 15) * 2;
1598                         else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1599                                 mag_mask[2] |=
1600                                         plt_mag_map << (curr_sym_off - 31) * 2;
1601                         else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1602                                 mag_mask[3] |=
1603                                         plt_mag_map << (curr_sym_off - 47) * 2;
1604
1605                 }
1606
1607                 /* Write settings on hw to enable spur filter */
1608                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1609                                         AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1610                 /* XXX: Self correlator also ? */
1611                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1612                                         AR5K_PHY_IQ_PILOT_MASK_EN |
1613                                         AR5K_PHY_IQ_CHAN_MASK_EN |
1614                                         AR5K_PHY_IQ_SPUR_FILT_EN);
1615
1616                 /* Set delta phase and freq sigma delta */
1617                 ath5k_hw_reg_write(ah,
1618                                 AR5K_REG_SM(spur_delta_phase,
1619                                         AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1620                                 AR5K_REG_SM(spur_freq_sigma_delta,
1621                                 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1622                                 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1623                                 AR5K_PHY_TIMING_11);
1624
1625                 /* Write pilot masks */
1626                 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1627                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1628                                         AR5K_PHY_TIMING_8_PILOT_MASK_2,
1629                                         pilot_mask[1]);
1630
1631                 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1632                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1633                                         AR5K_PHY_TIMING_10_PILOT_MASK_2,
1634                                         pilot_mask[1]);
1635
1636                 /* Write magnitude masks */
1637                 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1638                 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1639                 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1640                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1641                                         AR5K_PHY_BIN_MASK_CTL_MASK_4,
1642                                         mag_mask[3]);
1643
1644                 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1645                 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1646                 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1647                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1648                                         AR5K_PHY_BIN_MASK2_4_MASK_4,
1649                                         mag_mask[3]);
1650
1651         } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1652         AR5K_PHY_IQ_SPUR_FILT_EN) {
1653                 /* Clean up spur mitigation settings and disable fliter */
1654                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1655                                         AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1656                 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1657                                         AR5K_PHY_IQ_PILOT_MASK_EN |
1658                                         AR5K_PHY_IQ_CHAN_MASK_EN |
1659                                         AR5K_PHY_IQ_SPUR_FILT_EN);
1660                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1661
1662                 /* Clear pilot masks */
1663                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1664                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1665                                         AR5K_PHY_TIMING_8_PILOT_MASK_2,
1666                                         0);
1667
1668                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1669                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1670                                         AR5K_PHY_TIMING_10_PILOT_MASK_2,
1671                                         0);
1672
1673                 /* Clear magnitude masks */
1674                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1675                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1676                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1677                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1678                                         AR5K_PHY_BIN_MASK_CTL_MASK_4,
1679                                         0);
1680
1681                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1682                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1683                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1684                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1685                                         AR5K_PHY_BIN_MASK2_4_MASK_4,
1686                                         0);
1687         }
1688 }
1689
1690 /********************\
1691   Misc PHY functions
1692 \********************/
1693
1694 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1695 {
1696         ATH5K_TRACE(ah->ah_sc);
1697         /*Just a try M.F.*/
1698         ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1699
1700         return 0;
1701 }
1702
1703 /*
1704  * Get the PHY Chip revision
1705  */
1706 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1707 {
1708         unsigned int i;
1709         u32 srev;
1710         u16 ret;
1711
1712         ATH5K_TRACE(ah->ah_sc);
1713
1714         /*
1715          * Set the radio chip access register
1716          */
1717         switch (chan) {
1718         case CHANNEL_2GHZ:
1719                 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1720                 break;
1721         case CHANNEL_5GHZ:
1722                 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1723                 break;
1724         default:
1725                 return 0;
1726         }
1727
1728         mdelay(2);
1729
1730         /* ...wait until PHY is ready and read the selected radio revision */
1731         ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1732
1733         for (i = 0; i < 8; i++)
1734                 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1735
1736         if (ah->ah_version == AR5K_AR5210) {
1737                 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1738                 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1739         } else {
1740                 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1741                 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1742                                 ((srev & 0x0f) << 4), 8);
1743         }
1744
1745         /* Reset to the 5GHz mode */
1746         ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1747
1748         return ret;
1749 }
1750
1751 /*****************\
1752 * Antenna control *
1753 \*****************/
1754
1755 static void /*TODO:Boundary check*/
1756 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1757 {
1758         ATH5K_TRACE(ah->ah_sc);
1759
1760         if (ah->ah_version != AR5K_AR5210)
1761                 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1762 }
1763
1764 /*
1765  * Enable/disable fast rx antenna diversity
1766  */
1767 static void
1768 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1769 {
1770         switch (ee_mode) {
1771         case AR5K_EEPROM_MODE_11G:
1772                 /* XXX: This is set to
1773                  * disabled on initvals !!! */
1774         case AR5K_EEPROM_MODE_11A:
1775                 if (enable)
1776                         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1777                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1778                 else
1779                         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1780                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1781                 break;
1782         case AR5K_EEPROM_MODE_11B:
1783                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1784                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1785                 break;
1786         default:
1787                 return;
1788         }
1789
1790         if (enable) {
1791                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1792                                 AR5K_PHY_RESTART_DIV_GC, 0xc);
1793
1794                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1795                                         AR5K_PHY_FAST_ANT_DIV_EN);
1796         } else {
1797                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1798                                 AR5K_PHY_RESTART_DIV_GC, 0x8);
1799
1800                 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1801                                         AR5K_PHY_FAST_ANT_DIV_EN);
1802         }
1803 }
1804
1805 /*
1806  * Set antenna operating mode
1807  */
1808 void
1809 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1810 {
1811         struct ieee80211_channel *channel = ah->ah_current_channel;
1812         bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1813         bool use_def_for_sg;
1814         u8 def_ant, tx_ant, ee_mode;
1815         u32 sta_id1 = 0;
1816
1817         /* if channel is not initialized yet we can't set the antennas
1818          * so just store the mode. it will be set on the next reset */
1819         if (channel == NULL) {
1820                 ah->ah_ant_mode = ant_mode;
1821                 return;
1822         }
1823
1824         def_ant = ah->ah_def_ant;
1825
1826         ATH5K_TRACE(ah->ah_sc);
1827
1828         switch (channel->hw_value & CHANNEL_MODES) {
1829         case CHANNEL_A:
1830         case CHANNEL_T:
1831         case CHANNEL_XR:
1832                 ee_mode = AR5K_EEPROM_MODE_11A;
1833                 break;
1834         case CHANNEL_G:
1835         case CHANNEL_TG:
1836                 ee_mode = AR5K_EEPROM_MODE_11G;
1837                 break;
1838         case CHANNEL_B:
1839                 ee_mode = AR5K_EEPROM_MODE_11B;
1840                 break;
1841         default:
1842                 ATH5K_ERR(ah->ah_sc,
1843                         "invalid channel: %d\n", channel->center_freq);
1844                 return;
1845         }
1846
1847         switch (ant_mode) {
1848         case AR5K_ANTMODE_DEFAULT:
1849                 tx_ant = 0;
1850                 use_def_for_tx = false;
1851                 update_def_on_tx = false;
1852                 use_def_for_rts = false;
1853                 use_def_for_sg = false;
1854                 fast_div = true;
1855                 break;
1856         case AR5K_ANTMODE_FIXED_A:
1857                 def_ant = 1;
1858                 tx_ant = 1;
1859                 use_def_for_tx = true;
1860                 update_def_on_tx = false;
1861                 use_def_for_rts = true;
1862                 use_def_for_sg = true;
1863                 fast_div = false;
1864                 break;
1865         case AR5K_ANTMODE_FIXED_B:
1866                 def_ant = 2;
1867                 tx_ant = 2;
1868                 use_def_for_tx = true;
1869                 update_def_on_tx = false;
1870                 use_def_for_rts = true;
1871                 use_def_for_sg = true;
1872                 fast_div = false;
1873                 break;
1874         case AR5K_ANTMODE_SINGLE_AP:
1875                 def_ant = 1;    /* updated on tx */
1876                 tx_ant = 0;
1877                 use_def_for_tx = true;
1878                 update_def_on_tx = true;
1879                 use_def_for_rts = true;
1880                 use_def_for_sg = true;
1881                 fast_div = true;
1882                 break;
1883         case AR5K_ANTMODE_SECTOR_AP:
1884                 tx_ant = 1;     /* variable */
1885                 use_def_for_tx = false;
1886                 update_def_on_tx = false;
1887                 use_def_for_rts = true;
1888                 use_def_for_sg = false;
1889                 fast_div = false;
1890                 break;
1891         case AR5K_ANTMODE_SECTOR_STA:
1892                 tx_ant = 1;     /* variable */
1893                 use_def_for_tx = true;
1894                 update_def_on_tx = false;
1895                 use_def_for_rts = true;
1896                 use_def_for_sg = false;
1897                 fast_div = true;
1898                 break;
1899         case AR5K_ANTMODE_DEBUG:
1900                 def_ant = 1;
1901                 tx_ant = 2;
1902                 use_def_for_tx = false;
1903                 update_def_on_tx = false;
1904                 use_def_for_rts = false;
1905                 use_def_for_sg = false;
1906                 fast_div = false;
1907                 break;
1908         default:
1909                 return;
1910         }
1911
1912         ah->ah_tx_ant = tx_ant;
1913         ah->ah_ant_mode = ant_mode;
1914         ah->ah_def_ant = def_ant;
1915
1916         sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1917         sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1918         sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1919         sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1920
1921         AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1922
1923         if (sta_id1)
1924                 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1925
1926         /* Note: set diversity before default antenna
1927          * because it won't work correctly */
1928         ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1929         ath5k_hw_set_def_antenna(ah, def_ant);
1930 }
1931
1932
1933 /****************\
1934 * TX power setup *
1935 \****************/
1936
1937 /*
1938  * Helper functions
1939  */
1940
1941 /*
1942  * Do linear interpolation between two given (x, y) points
1943  */
1944 static s16
1945 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1946                                         s16 y_left, s16 y_right)
1947 {
1948         s16 ratio, result;
1949
1950         /* Avoid divide by zero and skip interpolation
1951          * if we have the same point */
1952         if ((x_left == x_right) || (y_left == y_right))
1953                 return y_left;
1954
1955         /*
1956          * Since we use ints and not fps, we need to scale up in
1957          * order to get a sane ratio value (or else we 'll eg. get
1958          * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1959          * to have some accuracy both for 0.5 and 0.25 steps.
1960          */
1961         ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1962
1963         /* Now scale down to be in range */
1964         result = y_left + (ratio * (target - x_left) / 100);
1965
1966         return result;
1967 }
1968
1969 /*
1970  * Find vertical boundary (min pwr) for the linear PCDAC curve.
1971  *
1972  * Since we have the top of the curve and we draw the line below
1973  * until we reach 1 (1 pcdac step) we need to know which point
1974  * (x value) that is so that we don't go below y axis and have negative
1975  * pcdac values when creating the curve, or fill the table with zeroes.
1976  */
1977 static s16
1978 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1979                                 const s16 *pwrL, const s16 *pwrR)
1980 {
1981         s8 tmp;
1982         s16 min_pwrL, min_pwrR;
1983         s16 pwr_i;
1984
1985         /* Some vendors write the same pcdac value twice !!! */
1986         if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
1987                 return max(pwrL[0], pwrR[0]);
1988
1989         if (pwrL[0] == pwrL[1])
1990                 min_pwrL = pwrL[0];
1991         else {
1992                 pwr_i = pwrL[0];
1993                 do {
1994                         pwr_i--;
1995                         tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1996                                                         pwrL[0], pwrL[1],
1997                                                         stepL[0], stepL[1]);
1998                 } while (tmp > 1);
1999
2000                 min_pwrL = pwr_i;
2001         }
2002
2003         if (pwrR[0] == pwrR[1])
2004                 min_pwrR = pwrR[0];
2005         else {
2006                 pwr_i = pwrR[0];
2007                 do {
2008                         pwr_i--;
2009                         tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2010                                                         pwrR[0], pwrR[1],
2011                                                         stepR[0], stepR[1]);
2012                 } while (tmp > 1);
2013
2014                 min_pwrR = pwr_i;
2015         }
2016
2017         /* Keep the right boundary so that it works for both curves */
2018         return max(min_pwrL, min_pwrR);
2019 }
2020
2021 /*
2022  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2023  * Power to PCDAC curve.
2024  *
2025  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2026  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2027  * PCDAC/PDADC step for each curve is 64 but we can write more than
2028  * one curves on hw so we can go up to 128 (which is the max step we
2029  * can write on the final table).
2030  *
2031  * We write y values (PCDAC/PDADC steps) on hw.
2032  */
2033 static void
2034 ath5k_create_power_curve(s16 pmin, s16 pmax,
2035                         const s16 *pwr, const u8 *vpd,
2036                         u8 num_points,
2037                         u8 *vpd_table, u8 type)
2038 {
2039         u8 idx[2] = { 0, 1 };
2040         s16 pwr_i = 2*pmin;
2041         int i;
2042
2043         if (num_points < 2)
2044                 return;
2045
2046         /* We want the whole line, so adjust boundaries
2047          * to cover the entire power range. Note that
2048          * power values are already 0.25dB so no need
2049          * to multiply pwr_i by 2 */
2050         if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2051                 pwr_i = pmin;
2052                 pmin = 0;
2053                 pmax = 63;
2054         }
2055
2056         /* Find surrounding turning points (TPs)
2057          * and interpolate between them */
2058         for (i = 0; (i <= (u16) (pmax - pmin)) &&
2059         (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2060
2061                 /* We passed the right TP, move to the next set of TPs
2062                  * if we pass the last TP, extrapolate above using the last
2063                  * two TPs for ratio */
2064                 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2065                         idx[0]++;
2066                         idx[1]++;
2067                 }
2068
2069                 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2070                                                 pwr[idx[0]], pwr[idx[1]],
2071                                                 vpd[idx[0]], vpd[idx[1]]);
2072
2073                 /* Increase by 0.5dB
2074                  * (0.25 dB units) */
2075                 pwr_i += 2;
2076         }
2077 }
2078
2079 /*
2080  * Get the surrounding per-channel power calibration piers
2081  * for a given frequency so that we can interpolate between
2082  * them and come up with an apropriate dataset for our current
2083  * channel.
2084  */
2085 static void
2086 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2087                         struct ieee80211_channel *channel,
2088                         struct ath5k_chan_pcal_info **pcinfo_l,
2089                         struct ath5k_chan_pcal_info **pcinfo_r)
2090 {
2091         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2092         struct ath5k_chan_pcal_info *pcinfo;
2093         u8 idx_l, idx_r;
2094         u8 mode, max, i;
2095         u32 target = channel->center_freq;
2096
2097         idx_l = 0;
2098         idx_r = 0;
2099
2100         if (!(channel->hw_value & CHANNEL_OFDM)) {
2101                 pcinfo = ee->ee_pwr_cal_b;
2102                 mode = AR5K_EEPROM_MODE_11B;
2103         } else if (channel->hw_value & CHANNEL_2GHZ) {
2104                 pcinfo = ee->ee_pwr_cal_g;
2105                 mode = AR5K_EEPROM_MODE_11G;
2106         } else {
2107                 pcinfo = ee->ee_pwr_cal_a;
2108                 mode = AR5K_EEPROM_MODE_11A;
2109         }
2110         max = ee->ee_n_piers[mode] - 1;
2111
2112         /* Frequency is below our calibrated
2113          * range. Use the lowest power curve
2114          * we have */
2115         if (target < pcinfo[0].freq) {
2116                 idx_l = idx_r = 0;
2117                 goto done;
2118         }
2119
2120         /* Frequency is above our calibrated
2121          * range. Use the highest power curve
2122          * we have */
2123         if (target > pcinfo[max].freq) {
2124                 idx_l = idx_r = max;
2125                 goto done;
2126         }
2127
2128         /* Frequency is inside our calibrated
2129          * channel range. Pick the surrounding
2130          * calibration piers so that we can
2131          * interpolate */
2132         for (i = 0; i <= max; i++) {
2133
2134                 /* Frequency matches one of our calibration
2135                  * piers, no need to interpolate, just use
2136                  * that calibration pier */
2137                 if (pcinfo[i].freq == target) {
2138                         idx_l = idx_r = i;
2139                         goto done;
2140                 }
2141
2142                 /* We found a calibration pier that's above
2143                  * frequency, use this pier and the previous
2144                  * one to interpolate */
2145                 if (target < pcinfo[i].freq) {
2146                         idx_r = i;
2147                         idx_l = idx_r - 1;
2148                         goto done;
2149                 }
2150         }
2151
2152 done:
2153         *pcinfo_l = &pcinfo[idx_l];
2154         *pcinfo_r = &pcinfo[idx_r];
2155 }
2156
2157 /*
2158  * Get the surrounding per-rate power calibration data
2159  * for a given frequency and interpolate between power
2160  * values to set max target power supported by hw for
2161  * each rate.
2162  */
2163 static void
2164 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2165                         struct ieee80211_channel *channel,
2166                         struct ath5k_rate_pcal_info *rates)
2167 {
2168         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2169         struct ath5k_rate_pcal_info *rpinfo;
2170         u8 idx_l, idx_r;
2171         u8 mode, max, i;
2172         u32 target = channel->center_freq;
2173
2174         idx_l = 0;
2175         idx_r = 0;
2176
2177         if (!(channel->hw_value & CHANNEL_OFDM)) {
2178                 rpinfo = ee->ee_rate_tpwr_b;
2179                 mode = AR5K_EEPROM_MODE_11B;
2180         } else if (channel->hw_value & CHANNEL_2GHZ) {
2181                 rpinfo = ee->ee_rate_tpwr_g;
2182                 mode = AR5K_EEPROM_MODE_11G;
2183         } else {
2184                 rpinfo = ee->ee_rate_tpwr_a;
2185                 mode = AR5K_EEPROM_MODE_11A;
2186         }
2187         max = ee->ee_rate_target_pwr_num[mode] - 1;
2188
2189         /* Get the surrounding calibration
2190          * piers - same as above */
2191         if (target < rpinfo[0].freq) {
2192                 idx_l = idx_r = 0;
2193                 goto done;
2194         }
2195
2196         if (target > rpinfo[max].freq) {
2197                 idx_l = idx_r = max;
2198                 goto done;
2199         }
2200
2201         for (i = 0; i <= max; i++) {
2202
2203                 if (rpinfo[i].freq == target) {
2204                         idx_l = idx_r = i;
2205                         goto done;
2206                 }
2207
2208                 if (target < rpinfo[i].freq) {
2209                         idx_r = i;
2210                         idx_l = idx_r - 1;
2211                         goto done;
2212                 }
2213         }
2214
2215 done:
2216         /* Now interpolate power value, based on the frequency */
2217         rates->freq = target;
2218
2219         rates->target_power_6to24 =
2220                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2221                                         rpinfo[idx_r].freq,
2222                                         rpinfo[idx_l].target_power_6to24,
2223                                         rpinfo[idx_r].target_power_6to24);
2224
2225         rates->target_power_36 =
2226                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2227                                         rpinfo[idx_r].freq,
2228                                         rpinfo[idx_l].target_power_36,
2229                                         rpinfo[idx_r].target_power_36);
2230
2231         rates->target_power_48 =
2232                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2233                                         rpinfo[idx_r].freq,
2234                                         rpinfo[idx_l].target_power_48,
2235                                         rpinfo[idx_r].target_power_48);
2236
2237         rates->target_power_54 =
2238                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2239                                         rpinfo[idx_r].freq,
2240                                         rpinfo[idx_l].target_power_54,
2241                                         rpinfo[idx_r].target_power_54);
2242 }
2243
2244 /*
2245  * Get the max edge power for this channel if
2246  * we have such data from EEPROM's Conformance Test
2247  * Limits (CTL), and limit max power if needed.
2248  */
2249 static void
2250 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2251                         struct ieee80211_channel *channel)
2252 {
2253         struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2254         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2255         struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2256         u8 *ctl_val = ee->ee_ctl;
2257         s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2258         s16 edge_pwr = 0;
2259         u8 rep_idx;
2260         u8 i, ctl_mode;
2261         u8 ctl_idx = 0xFF;
2262         u32 target = channel->center_freq;
2263
2264         ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2265
2266         switch (channel->hw_value & CHANNEL_MODES) {
2267         case CHANNEL_A:
2268                 ctl_mode |= AR5K_CTL_11A;
2269                 break;
2270         case CHANNEL_G:
2271                 ctl_mode |= AR5K_CTL_11G;
2272                 break;
2273         case CHANNEL_B:
2274                 ctl_mode |= AR5K_CTL_11B;
2275                 break;
2276         case CHANNEL_T:
2277                 ctl_mode |= AR5K_CTL_TURBO;
2278                 break;
2279         case CHANNEL_TG:
2280                 ctl_mode |= AR5K_CTL_TURBOG;
2281                 break;
2282         case CHANNEL_XR:
2283                 /* Fall through */
2284         default:
2285                 return;
2286         }
2287
2288         for (i = 0; i < ee->ee_ctls; i++) {
2289                 if (ctl_val[i] == ctl_mode) {
2290                         ctl_idx = i;
2291                         break;
2292                 }
2293         }
2294
2295         /* If we have a CTL dataset available grab it and find the
2296          * edge power for our frequency */
2297         if (ctl_idx == 0xFF)
2298                 return;
2299
2300         /* Edge powers are sorted by frequency from lower
2301          * to higher. Each CTL corresponds to 8 edge power
2302          * measurements. */
2303         rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2304
2305         /* Don't do boundaries check because we
2306          * might have more that one bands defined
2307          * for this mode */
2308
2309         /* Get the edge power that's closer to our
2310          * frequency */
2311         for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2312                 rep_idx += i;
2313                 if (target <= rep[rep_idx].freq)
2314                         edge_pwr = (s16) rep[rep_idx].edge;
2315         }
2316
2317         if (edge_pwr)
2318                 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2319 }
2320
2321
2322 /*
2323  * Power to PCDAC table functions
2324  */
2325
2326 /*
2327  * Fill Power to PCDAC table on RF5111
2328  *
2329  * No further processing is needed for RF5111, the only thing we have to
2330  * do is fill the values below and above calibration range since eeprom data
2331  * may not cover the entire PCDAC table.
2332  */
2333 static void
2334 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2335                                                         s16 *table_max)
2336 {
2337         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2338         u8      *pcdac_tmp = ah->ah_txpower.tmpL[0];
2339         u8      pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2340         s16     min_pwr, max_pwr;
2341
2342         /* Get table boundaries */
2343         min_pwr = table_min[0];
2344         pcdac_0 = pcdac_tmp[0];
2345
2346         max_pwr = table_max[0];
2347         pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2348
2349         /* Extrapolate below minimum using pcdac_0 */
2350         pcdac_i = 0;
2351         for (i = 0; i < min_pwr; i++)
2352                 pcdac_out[pcdac_i++] = pcdac_0;
2353
2354         /* Copy values from pcdac_tmp */
2355         pwr_idx = min_pwr;
2356         for (i = 0 ; pwr_idx <= max_pwr &&
2357         pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2358                 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2359                 pwr_idx++;
2360         }
2361
2362         /* Extrapolate above maximum */
2363         while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2364                 pcdac_out[pcdac_i++] = pcdac_n;
2365
2366 }
2367
2368 /*
2369  * Combine available XPD Curves and fill Linear Power to PCDAC table
2370  * on RF5112
2371  *
2372  * RFX112 can have up to 2 curves (one for low txpower range and one for
2373  * higher txpower range). We need to put them both on pcdac_out and place
2374  * them in the correct location. In case we only have one curve available
2375  * just fit it on pcdac_out (it's supposed to cover the entire range of
2376  * available pwr levels since it's always the higher power curve). Extrapolate
2377  * below and above final table if needed.
2378  */
2379 static void
2380 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2381                                                 s16 *table_max, u8 pdcurves)
2382 {
2383         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2384         u8      *pcdac_low_pwr;
2385         u8      *pcdac_high_pwr;
2386         u8      *pcdac_tmp;
2387         u8      pwr;
2388         s16     max_pwr_idx;
2389         s16     min_pwr_idx;
2390         s16     mid_pwr_idx = 0;
2391         /* Edge flag turs on the 7nth bit on the PCDAC
2392          * to delcare the higher power curve (force values
2393          * to be greater than 64). If we only have one curve
2394          * we don't need to set this, if we have 2 curves and
2395          * fill the table backwards this can also be used to
2396          * switch from higher power curve to lower power curve */
2397         u8      edge_flag;
2398         int     i;
2399
2400         /* When we have only one curve available
2401          * that's the higher power curve. If we have
2402          * two curves the first is the high power curve
2403          * and the next is the low power curve. */
2404         if (pdcurves > 1) {
2405                 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2406                 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2407                 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2408                 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2409
2410                 /* If table size goes beyond 31.5dB, keep the
2411                  * upper 31.5dB range when setting tx power.
2412                  * Note: 126 = 31.5 dB in quarter dB steps */
2413                 if (table_max[0] - table_min[1] > 126)
2414                         min_pwr_idx = table_max[0] - 126;
2415                 else
2416                         min_pwr_idx = table_min[1];
2417
2418                 /* Since we fill table backwards
2419                  * start from high power curve */
2420                 pcdac_tmp = pcdac_high_pwr;
2421
2422                 edge_flag = 0x40;
2423         } else {
2424                 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2425                 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2426                 min_pwr_idx = table_min[0];
2427                 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2428                 pcdac_tmp = pcdac_high_pwr;
2429                 edge_flag = 0;
2430         }
2431
2432         /* This is used when setting tx power*/
2433         ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2434
2435         /* Fill Power to PCDAC table backwards */
2436         pwr = max_pwr_idx;
2437         for (i = 63; i >= 0; i--) {
2438                 /* Entering lower power range, reset
2439                  * edge flag and set pcdac_tmp to lower
2440                  * power curve.*/
2441                 if (edge_flag == 0x40 &&
2442                 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2443                         edge_flag = 0x00;
2444                         pcdac_tmp = pcdac_low_pwr;
2445                         pwr = mid_pwr_idx/2;
2446                 }
2447
2448                 /* Don't go below 1, extrapolate below if we have
2449                  * already swithced to the lower power curve -or
2450                  * we only have one curve and edge_flag is zero
2451                  * anyway */
2452                 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2453                         while (i >= 0) {
2454                                 pcdac_out[i] = pcdac_out[i + 1];
2455                                 i--;
2456                         }
2457                         break;
2458                 }
2459
2460                 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2461
2462                 /* Extrapolate above if pcdac is greater than
2463                  * 126 -this can happen because we OR pcdac_out
2464                  * value with edge_flag on high power curve */
2465                 if (pcdac_out[i] > 126)
2466                         pcdac_out[i] = 126;
2467
2468                 /* Decrease by a 0.5dB step */
2469                 pwr--;
2470         }
2471 }
2472
2473 /* Write PCDAC values on hw */
2474 static void
2475 ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2476 {
2477         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2478         int     i;
2479
2480         /*
2481          * Write TX power values
2482          */
2483         for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2484                 ath5k_hw_reg_write(ah,
2485                         (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2486                         (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2487                         AR5K_PHY_PCDAC_TXPOWER(i));
2488         }
2489 }
2490
2491
2492 /*
2493  * Power to PDADC table functions
2494  */
2495
2496 /*
2497  * Set the gain boundaries and create final Power to PDADC table
2498  *
2499  * We can have up to 4 pd curves, we need to do a simmilar process
2500  * as we do for RF5112. This time we don't have an edge_flag but we
2501  * set the gain boundaries on a separate register.
2502  */
2503 static void
2504 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2505                         s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2506 {
2507         u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2508         u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2509         u8 *pdadc_tmp;
2510         s16 pdadc_0;
2511         u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2512         u8 pd_gain_overlap;
2513
2514         /* Note: Register value is initialized on initvals
2515          * there is no feedback from hw.
2516          * XXX: What about pd_gain_overlap from EEPROM ? */
2517         pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2518                 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2519
2520         /* Create final PDADC table */
2521         for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2522                 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2523
2524                 if (pdg == pdcurves - 1)
2525                         /* 2 dB boundary stretch for last
2526                          * (higher power) curve */
2527                         gain_boundaries[pdg] = pwr_max[pdg] + 4;
2528                 else
2529                         /* Set gain boundary in the middle
2530                          * between this curve and the next one */
2531                         gain_boundaries[pdg] =
2532                                 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2533
2534                 /* Sanity check in case our 2 db stretch got out of
2535                  * range. */
2536                 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2537                         gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2538
2539                 /* For the first curve (lower power)
2540                  * start from 0 dB */
2541                 if (pdg == 0)
2542                         pdadc_0 = 0;
2543                 else
2544                         /* For the other curves use the gain overlap */
2545                         pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2546                                                         pd_gain_overlap;
2547
2548                 /* Force each power step to be at least 0.5 dB */
2549                 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2550                         pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2551                 else
2552                         pwr_step = 1;
2553
2554                 /* If pdadc_0 is negative, we need to extrapolate
2555                  * below this pdgain by a number of pwr_steps */
2556                 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2557                         s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2558                         pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2559                         pdadc_0++;
2560                 }
2561
2562                 /* Set last pwr level, using gain boundaries */
2563                 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2564                 /* Limit it to be inside pwr range */
2565                 table_size = pwr_max[pdg] - pwr_min[pdg];
2566                 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2567
2568                 /* Fill pdadc_out table */
2569                 while (pdadc_0 < max_idx && pdadc_i < 128)
2570                         pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2571
2572                 /* Need to extrapolate above this pdgain? */
2573                 if (pdadc_n <= max_idx)
2574                         continue;
2575
2576                 /* Force each power step to be at least 0.5 dB */
2577                 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2578                         pwr_step = pdadc_tmp[table_size - 1] -
2579                                                 pdadc_tmp[table_size - 2];
2580                 else
2581                         pwr_step = 1;
2582
2583                 /* Extrapolate above */
2584                 while ((pdadc_0 < (s16) pdadc_n) &&
2585                 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2586                         s16 tmp = pdadc_tmp[table_size - 1] +
2587                                         (pdadc_0 - max_idx) * pwr_step;
2588                         pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2589                         pdadc_0++;
2590                 }
2591         }
2592
2593         while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2594                 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2595                 pdg++;
2596         }
2597
2598         while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2599                 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2600                 pdadc_i++;
2601         }
2602
2603         /* Set gain boundaries */
2604         ath5k_hw_reg_write(ah,
2605                 AR5K_REG_SM(pd_gain_overlap,
2606                         AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2607                 AR5K_REG_SM(gain_boundaries[0],
2608                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2609                 AR5K_REG_SM(gain_boundaries[1],
2610                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2611                 AR5K_REG_SM(gain_boundaries[2],
2612                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2613                 AR5K_REG_SM(gain_boundaries[3],
2614                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2615                 AR5K_PHY_TPC_RG5);
2616
2617         /* Used for setting rate power table */
2618         ah->ah_txpower.txp_min_idx = pwr_min[0];
2619
2620 }
2621
2622 /* Write PDADC values on hw */
2623 static void
2624 ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2625                         u8 pdcurves, u8 *pdg_to_idx)
2626 {
2627         u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2628         u32 reg;
2629         u8 i;
2630
2631         /* Select the right pdgain curves */
2632
2633         /* Clear current settings */
2634         reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2635         reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2636                 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2637                 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2638                 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2639
2640         /*
2641          * Use pd_gains curve from eeprom
2642          *
2643          * This overrides the default setting from initvals
2644          * in case some vendors (e.g. Zcomax) don't use the default
2645          * curves. If we don't honor their settings we 'll get a
2646          * 5dB (1 * gain overlap ?) drop.
2647          */
2648         reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2649
2650         switch (pdcurves) {
2651         case 3:
2652                 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2653                 /* Fall through */
2654         case 2:
2655                 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2656                 /* Fall through */
2657         case 1:
2658                 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2659                 break;
2660         }
2661         ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2662
2663         /*
2664          * Write TX power values
2665          */
2666         for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2667                 ath5k_hw_reg_write(ah,
2668                         ((pdadc_out[4*i + 0] & 0xff) << 0) |
2669                         ((pdadc_out[4*i + 1] & 0xff) << 8) |
2670                         ((pdadc_out[4*i + 2] & 0xff) << 16) |
2671                         ((pdadc_out[4*i + 3] & 0xff) << 24),
2672                         AR5K_PHY_PDADC_TXPOWER(i));
2673         }
2674 }
2675
2676
2677 /*
2678  * Common code for PCDAC/PDADC tables
2679  */
2680
2681 /*
2682  * This is the main function that uses all of the above
2683  * to set PCDAC/PDADC table on hw for the current channel.
2684  * This table is used for tx power calibration on the basband,
2685  * without it we get weird tx power levels and in some cases
2686  * distorted spectral mask
2687  */
2688 static int
2689 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2690                         struct ieee80211_channel *channel,
2691                         u8 ee_mode, u8 type)
2692 {
2693         struct ath5k_pdgain_info *pdg_L, *pdg_R;
2694         struct ath5k_chan_pcal_info *pcinfo_L;
2695         struct ath5k_chan_pcal_info *pcinfo_R;
2696         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2697         u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2698         s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2699         s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2700         u8 *tmpL;
2701         u8 *tmpR;
2702         u32 target = channel->center_freq;
2703         int pdg, i;
2704
2705         /* Get surounding freq piers for this channel */
2706         ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2707                                                 &pcinfo_L,
2708                                                 &pcinfo_R);
2709
2710         /* Loop over pd gain curves on
2711          * surounding freq piers by index */
2712         for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2713
2714                 /* Fill curves in reverse order
2715                  * from lower power (max gain)
2716                  * to higher power. Use curve -> idx
2717                  * backmapping we did on eeprom init */
2718                 u8 idx = pdg_curve_to_idx[pdg];
2719
2720                 /* Grab the needed curves by index */
2721                 pdg_L = &pcinfo_L->pd_curves[idx];
2722                 pdg_R = &pcinfo_R->pd_curves[idx];
2723
2724                 /* Initialize the temp tables */
2725                 tmpL = ah->ah_txpower.tmpL[pdg];
2726                 tmpR = ah->ah_txpower.tmpR[pdg];
2727
2728                 /* Set curve's x boundaries and create
2729                  * curves so that they cover the same
2730                  * range (if we don't do that one table
2731                  * will have values on some range and the
2732                  * other one won't have any so interpolation
2733                  * will fail) */
2734                 table_min[pdg] = min(pdg_L->pd_pwr[0],
2735                                         pdg_R->pd_pwr[0]) / 2;
2736
2737                 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2738                                 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2739
2740                 /* Now create the curves on surrounding channels
2741                  * and interpolate if needed to get the final
2742                  * curve for this gain on this channel */
2743                 switch (type) {
2744                 case AR5K_PWRTABLE_LINEAR_PCDAC:
2745                         /* Override min/max so that we don't loose
2746                          * accuracy (don't divide by 2) */
2747                         table_min[pdg] = min(pdg_L->pd_pwr[0],
2748                                                 pdg_R->pd_pwr[0]);
2749
2750                         table_max[pdg] =
2751                                 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2752                                         pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2753
2754                         /* Override minimum so that we don't get
2755                          * out of bounds while extrapolating
2756                          * below. Don't do this when we have 2
2757                          * curves and we are on the high power curve
2758                          * because table_min is ok in this case */
2759                         if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2760
2761                                 table_min[pdg] =
2762                                         ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2763                                                                 pdg_R->pd_step,
2764                                                                 pdg_L->pd_pwr,
2765                                                                 pdg_R->pd_pwr);
2766
2767                                 /* Don't go too low because we will
2768                                  * miss the upper part of the curve.
2769                                  * Note: 126 = 31.5dB (max power supported)
2770                                  * in 0.25dB units */
2771                                 if (table_max[pdg] - table_min[pdg] > 126)
2772                                         table_min[pdg] = table_max[pdg] - 126;
2773                         }
2774
2775                         /* Fall through */
2776                 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2777                 case AR5K_PWRTABLE_PWR_TO_PDADC:
2778
2779                         ath5k_create_power_curve(table_min[pdg],
2780                                                 table_max[pdg],
2781                                                 pdg_L->pd_pwr,
2782                                                 pdg_L->pd_step,
2783                                                 pdg_L->pd_points, tmpL, type);
2784
2785                         /* We are in a calibration
2786                          * pier, no need to interpolate
2787                          * between freq piers */
2788                         if (pcinfo_L == pcinfo_R)
2789                                 continue;
2790
2791                         ath5k_create_power_curve(table_min[pdg],
2792                                                 table_max[pdg],
2793                                                 pdg_R->pd_pwr,
2794                                                 pdg_R->pd_step,
2795                                                 pdg_R->pd_points, tmpR, type);
2796                         break;
2797                 default:
2798                         return -EINVAL;
2799                 }
2800
2801                 /* Interpolate between curves
2802                  * of surounding freq piers to
2803                  * get the final curve for this
2804                  * pd gain. Re-use tmpL for interpolation
2805                  * output */
2806                 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2807                 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2808                         tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2809                                                         (s16) pcinfo_L->freq,
2810                                                         (s16) pcinfo_R->freq,
2811                                                         (s16) tmpL[i],
2812                                                         (s16) tmpR[i]);
2813                 }
2814         }
2815
2816         /* Now we have a set of curves for this
2817          * channel on tmpL (x range is table_max - table_min
2818          * and y values are tmpL[pdg][]) sorted in the same
2819          * order as EEPROM (because we've used the backmapping).
2820          * So for RF5112 it's from higher power to lower power
2821          * and for RF2413 it's from lower power to higher power.
2822          * For RF5111 we only have one curve. */
2823
2824         /* Fill min and max power levels for this
2825          * channel by interpolating the values on
2826          * surounding channels to complete the dataset */
2827         ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2828                                         (s16) pcinfo_L->freq,
2829                                         (s16) pcinfo_R->freq,
2830                                         pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2831
2832         ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2833                                         (s16) pcinfo_L->freq,
2834                                         (s16) pcinfo_R->freq,
2835                                         pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2836
2837         /* We are ready to go, fill PCDAC/PDADC
2838          * table and write settings on hardware */
2839         switch (type) {
2840         case AR5K_PWRTABLE_LINEAR_PCDAC:
2841                 /* For RF5112 we can have one or two curves
2842                  * and each curve covers a certain power lvl
2843                  * range so we need to do some more processing */
2844                 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2845                                                 ee->ee_pd_gains[ee_mode]);
2846
2847                 /* Set txp.offset so that we can
2848                  * match max power value with max
2849                  * table index */
2850                 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2851
2852                 /* Write settings on hw */
2853                 ath5k_setup_pcdac_table(ah);
2854                 break;
2855         case AR5K_PWRTABLE_PWR_TO_PCDAC:
2856                 /* We are done for RF5111 since it has only
2857                  * one curve, just fit the curve on the table */
2858                 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2859
2860                 /* No rate powertable adjustment for RF5111 */
2861                 ah->ah_txpower.txp_min_idx = 0;
2862                 ah->ah_txpower.txp_offset = 0;
2863
2864                 /* Write settings on hw */
2865                 ath5k_setup_pcdac_table(ah);
2866                 break;
2867         case AR5K_PWRTABLE_PWR_TO_PDADC:
2868                 /* Set PDADC boundaries and fill
2869                  * final PDADC table */
2870                 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2871                                                 ee->ee_pd_gains[ee_mode]);
2872
2873                 /* Write settings on hw */
2874                 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2875
2876                 /* Set txp.offset, note that table_min
2877                  * can be negative */
2878                 ah->ah_txpower.txp_offset = table_min[0];
2879                 break;
2880         default:
2881                 return -EINVAL;
2882         }
2883
2884         return 0;
2885 }
2886
2887
2888 /*
2889  * Per-rate tx power setting
2890  *
2891  * This is the code that sets the desired tx power (below
2892  * maximum) on hw for each rate (we also have TPC that sets
2893  * power per packet). We do that by providing an index on the
2894  * PCDAC/PDADC table we set up.
2895  */
2896
2897 /*
2898  * Set rate power table
2899  *
2900  * For now we only limit txpower based on maximum tx power
2901  * supported by hw (what's inside rate_info). We need to limit
2902  * this even more, based on regulatory domain etc.
2903  *
2904  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2905  * and is indexed as follows:
2906  * rates[0] - rates[7] -> OFDM rates
2907  * rates[8] - rates[14] -> CCK rates
2908  * rates[15] -> XR rates (they all have the same power)
2909  */
2910 static void
2911 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2912                         struct ath5k_rate_pcal_info *rate_info,
2913                         u8 ee_mode)
2914 {
2915         unsigned int i;
2916         u16 *rates;
2917
2918         /* max_pwr is power level we got from driver/user in 0.5dB
2919          * units, switch to 0.25dB units so we can compare */
2920         max_pwr *= 2;
2921         max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2922
2923         /* apply rate limits */
2924         rates = ah->ah_txpower.txp_rates_power_table;
2925
2926         /* OFDM rates 6 to 24Mb/s */
2927         for (i = 0; i < 5; i++)
2928                 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2929
2930         /* Rest OFDM rates */
2931         rates[5] = min(rates[0], rate_info->target_power_36);
2932         rates[6] = min(rates[0], rate_info->target_power_48);
2933         rates[7] = min(rates[0], rate_info->target_power_54);
2934
2935         /* CCK rates */
2936         /* 1L */
2937         rates[8] = min(rates[0], rate_info->target_power_6to24);
2938         /* 2L */
2939         rates[9] = min(rates[0], rate_info->target_power_36);
2940         /* 2S */
2941         rates[10] = min(rates[0], rate_info->target_power_36);
2942         /* 5L */
2943         rates[11] = min(rates[0], rate_info->target_power_48);
2944         /* 5S */
2945         rates[12] = min(rates[0], rate_info->target_power_48);
2946         /* 11L */
2947         rates[13] = min(rates[0], rate_info->target_power_54);
2948         /* 11S */
2949         rates[14] = min(rates[0], rate_info->target_power_54);
2950
2951         /* XR rates */
2952         rates[15] = min(rates[0], rate_info->target_power_6to24);
2953
2954         /* CCK rates have different peak to average ratio
2955          * so we have to tweak their power so that gainf
2956          * correction works ok. For this we use OFDM to
2957          * CCK delta from eeprom */
2958         if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2959         (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2960                 for (i = 8; i <= 15; i++)
2961                         rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2962
2963         /* Now that we have all rates setup use table offset to
2964          * match the power range set by user with the power indices
2965          * on PCDAC/PDADC table */
2966         for (i = 0; i < 16; i++) {
2967                 rates[i] += ah->ah_txpower.txp_offset;
2968                 /* Don't get out of bounds */
2969                 if (rates[i] > 63)
2970                         rates[i] = 63;
2971         }
2972
2973         /* Min/max in 0.25dB units */
2974         ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2975         ah->ah_txpower.txp_max_pwr = 2 * rates[0];
2976         ah->ah_txpower.txp_ofdm = rates[7];
2977 }
2978
2979
2980 /*
2981  * Set transmition power
2982  */
2983 int
2984 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2985                 u8 ee_mode, u8 txpower)
2986 {
2987         struct ath5k_rate_pcal_info rate_info;
2988         u8 type;
2989         int ret;
2990
2991         ATH5K_TRACE(ah->ah_sc);
2992         if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2993                 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2994                 return -EINVAL;
2995         }
2996
2997         /* Reset TX power values */
2998         memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2999         ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3000         ah->ah_txpower.txp_min_pwr = 0;
3001         ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3002
3003         /* Initialize TX power table */
3004         switch (ah->ah_radio) {
3005         case AR5K_RF5111:
3006                 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3007                 break;
3008         case AR5K_RF5112:
3009                 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3010                 break;
3011         case AR5K_RF2413:
3012         case AR5K_RF5413:
3013         case AR5K_RF2316:
3014         case AR5K_RF2317:
3015         case AR5K_RF2425:
3016                 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3017                 break;
3018         default:
3019                 return -EINVAL;
3020         }
3021
3022         /* FIXME: Only on channel/mode change */
3023         ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3024         if (ret)
3025                 return ret;
3026
3027         /* Limit max power if we have a CTL available */
3028         ath5k_get_max_ctl_power(ah, channel);
3029
3030         /* FIXME: Tx power limit for this regdomain
3031          * XXX: Mac80211/CRDA will do that anyway ? */
3032
3033         /* FIXME: Antenna reduction stuff */
3034
3035         /* FIXME: Limit power on turbo modes */
3036
3037         /* FIXME: TPC scale reduction */
3038
3039         /* Get surounding channels for per-rate power table
3040          * calibration */
3041         ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3042
3043         /* Setup rate power table */
3044         ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3045
3046         /* Write rate power table on hw */
3047         ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3048                 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3049                 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3050
3051         ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3052                 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3053                 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3054
3055         ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3056                 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3057                 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3058
3059         ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3060                 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3061                 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3062
3063         /* FIXME: TPC support */
3064         if (ah->ah_txpower.txp_tpc) {
3065                 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3066                         AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3067
3068                 ath5k_hw_reg_write(ah,
3069                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3070                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3071                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3072                         AR5K_TPC);
3073         } else {
3074                 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3075                         AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3076         }
3077
3078         return 0;
3079 }
3080
3081 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3082 {
3083         /*Just a try M.F.*/
3084         struct ieee80211_channel *channel = ah->ah_current_channel;
3085         u8 ee_mode;
3086
3087         ATH5K_TRACE(ah->ah_sc);
3088
3089         switch (channel->hw_value & CHANNEL_MODES) {
3090         case CHANNEL_A:
3091         case CHANNEL_T:
3092         case CHANNEL_XR:
3093                 ee_mode = AR5K_EEPROM_MODE_11A;
3094                 break;
3095         case CHANNEL_G:
3096         case CHANNEL_TG:
3097                 ee_mode = AR5K_EEPROM_MODE_11G;
3098                 break;
3099         case CHANNEL_B:
3100                 ee_mode = AR5K_EEPROM_MODE_11B;
3101                 break;
3102         default:
3103                 ATH5K_ERR(ah->ah_sc,
3104                         "invalid channel: %d\n", channel->center_freq);
3105                 return -EINVAL;
3106         }
3107
3108         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3109                 "changing txpower to %d\n", txpower);
3110
3111         return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3112 }