sfc: Implement TSO for TCP/IPv6
[safe/jmp/linux-2.6] / drivers / net / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <net/ipv6.h>
17 #include <linux/if_ether.h>
18 #include <linux/highmem.h>
19 #include "net_driver.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "workarounds.h"
23
24 /*
25  * TX descriptor ring full threshold
26  *
27  * The tx_queue descriptor ring fill-level must fall below this value
28  * before we restart the netif queue
29  */
30 #define EFX_TXQ_THRESHOLD (EFX_TXQ_MASK / 2u)
31
32 /* We want to be able to nest calls to netif_stop_queue(), since each
33  * channel can have an individual stop on the queue.
34  */
35 void efx_stop_queue(struct efx_nic *efx)
36 {
37         spin_lock_bh(&efx->netif_stop_lock);
38         EFX_TRACE(efx, "stop TX queue\n");
39
40         atomic_inc(&efx->netif_stop_count);
41         netif_stop_queue(efx->net_dev);
42
43         spin_unlock_bh(&efx->netif_stop_lock);
44 }
45
46 /* Wake netif's TX queue
47  * We want to be able to nest calls to netif_stop_queue(), since each
48  * channel can have an individual stop on the queue.
49  */
50 void efx_wake_queue(struct efx_nic *efx)
51 {
52         local_bh_disable();
53         if (atomic_dec_and_lock(&efx->netif_stop_count,
54                                 &efx->netif_stop_lock)) {
55                 EFX_TRACE(efx, "waking TX queue\n");
56                 netif_wake_queue(efx->net_dev);
57                 spin_unlock(&efx->netif_stop_lock);
58         }
59         local_bh_enable();
60 }
61
62 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
63                                struct efx_tx_buffer *buffer)
64 {
65         if (buffer->unmap_len) {
66                 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
67                 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
68                                          buffer->unmap_len);
69                 if (buffer->unmap_single)
70                         pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
71                                          PCI_DMA_TODEVICE);
72                 else
73                         pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
74                                        PCI_DMA_TODEVICE);
75                 buffer->unmap_len = 0;
76                 buffer->unmap_single = false;
77         }
78
79         if (buffer->skb) {
80                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
81                 buffer->skb = NULL;
82                 EFX_TRACE(tx_queue->efx, "TX queue %d transmission id %x "
83                           "complete\n", tx_queue->queue, read_ptr);
84         }
85 }
86
87 /**
88  * struct efx_tso_header - a DMA mapped buffer for packet headers
89  * @next: Linked list of free ones.
90  *      The list is protected by the TX queue lock.
91  * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
92  * @dma_addr: The DMA address of the header below.
93  *
94  * This controls the memory used for a TSO header.  Use TSOH_DATA()
95  * to find the packet header data.  Use TSOH_SIZE() to calculate the
96  * total size required for a given packet header length.  TSO headers
97  * in the free list are exactly %TSOH_STD_SIZE bytes in size.
98  */
99 struct efx_tso_header {
100         union {
101                 struct efx_tso_header *next;
102                 size_t unmap_len;
103         };
104         dma_addr_t dma_addr;
105 };
106
107 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
108                                struct sk_buff *skb);
109 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
110 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
111                                struct efx_tso_header *tsoh);
112
113 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
114                           struct efx_tx_buffer *buffer)
115 {
116         if (buffer->tsoh) {
117                 if (likely(!buffer->tsoh->unmap_len)) {
118                         buffer->tsoh->next = tx_queue->tso_headers_free;
119                         tx_queue->tso_headers_free = buffer->tsoh;
120                 } else {
121                         efx_tsoh_heap_free(tx_queue, buffer->tsoh);
122                 }
123                 buffer->tsoh = NULL;
124         }
125 }
126
127
128 static inline unsigned
129 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
130 {
131         /* Depending on the NIC revision, we can use descriptor
132          * lengths up to 8K or 8K-1.  However, since PCI Express
133          * devices must split read requests at 4K boundaries, there is
134          * little benefit from using descriptors that cross those
135          * boundaries and we keep things simple by not doing so.
136          */
137         unsigned len = (~dma_addr & 0xfff) + 1;
138
139         /* Work around hardware bug for unaligned buffers. */
140         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
141                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
142
143         return len;
144 }
145
146 /*
147  * Add a socket buffer to a TX queue
148  *
149  * This maps all fragments of a socket buffer for DMA and adds them to
150  * the TX queue.  The queue's insert pointer will be incremented by
151  * the number of fragments in the socket buffer.
152  *
153  * If any DMA mapping fails, any mapped fragments will be unmapped,
154  * the queue's insert pointer will be restored to its original value.
155  *
156  * This function is split out from efx_hard_start_xmit to allow the
157  * loopback test to direct packets via specific TX queues.
158  *
159  * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
160  * You must hold netif_tx_lock() to call this function.
161  */
162 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
163 {
164         struct efx_nic *efx = tx_queue->efx;
165         struct pci_dev *pci_dev = efx->pci_dev;
166         struct efx_tx_buffer *buffer;
167         skb_frag_t *fragment;
168         struct page *page;
169         int page_offset;
170         unsigned int len, unmap_len = 0, fill_level, insert_ptr;
171         dma_addr_t dma_addr, unmap_addr = 0;
172         unsigned int dma_len;
173         bool unmap_single;
174         int q_space, i = 0;
175         netdev_tx_t rc = NETDEV_TX_OK;
176
177         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
178
179         if (skb_shinfo(skb)->gso_size)
180                 return efx_enqueue_skb_tso(tx_queue, skb);
181
182         /* Get size of the initial fragment */
183         len = skb_headlen(skb);
184
185         /* Pad if necessary */
186         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
187                 EFX_BUG_ON_PARANOID(skb->data_len);
188                 len = 32 + 1;
189                 if (skb_pad(skb, len - skb->len))
190                         return NETDEV_TX_OK;
191         }
192
193         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
194         q_space = EFX_TXQ_MASK - 1 - fill_level;
195
196         /* Map for DMA.  Use pci_map_single rather than pci_map_page
197          * since this is more efficient on machines with sparse
198          * memory.
199          */
200         unmap_single = true;
201         dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
202
203         /* Process all fragments */
204         while (1) {
205                 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
206                         goto pci_err;
207
208                 /* Store fields for marking in the per-fragment final
209                  * descriptor */
210                 unmap_len = len;
211                 unmap_addr = dma_addr;
212
213                 /* Add to TX queue, splitting across DMA boundaries */
214                 do {
215                         if (unlikely(q_space-- <= 0)) {
216                                 /* It might be that completions have
217                                  * happened since the xmit path last
218                                  * checked.  Update the xmit path's
219                                  * copy of read_count.
220                                  */
221                                 ++tx_queue->stopped;
222                                 /* This memory barrier protects the
223                                  * change of stopped from the access
224                                  * of read_count. */
225                                 smp_mb();
226                                 tx_queue->old_read_count =
227                                         *(volatile unsigned *)
228                                         &tx_queue->read_count;
229                                 fill_level = (tx_queue->insert_count
230                                               - tx_queue->old_read_count);
231                                 q_space = EFX_TXQ_MASK - 1 - fill_level;
232                                 if (unlikely(q_space-- <= 0))
233                                         goto stop;
234                                 smp_mb();
235                                 --tx_queue->stopped;
236                         }
237
238                         insert_ptr = tx_queue->insert_count & EFX_TXQ_MASK;
239                         buffer = &tx_queue->buffer[insert_ptr];
240                         efx_tsoh_free(tx_queue, buffer);
241                         EFX_BUG_ON_PARANOID(buffer->tsoh);
242                         EFX_BUG_ON_PARANOID(buffer->skb);
243                         EFX_BUG_ON_PARANOID(buffer->len);
244                         EFX_BUG_ON_PARANOID(!buffer->continuation);
245                         EFX_BUG_ON_PARANOID(buffer->unmap_len);
246
247                         dma_len = efx_max_tx_len(efx, dma_addr);
248                         if (likely(dma_len >= len))
249                                 dma_len = len;
250
251                         /* Fill out per descriptor fields */
252                         buffer->len = dma_len;
253                         buffer->dma_addr = dma_addr;
254                         len -= dma_len;
255                         dma_addr += dma_len;
256                         ++tx_queue->insert_count;
257                 } while (len);
258
259                 /* Transfer ownership of the unmapping to the final buffer */
260                 buffer->unmap_single = unmap_single;
261                 buffer->unmap_len = unmap_len;
262                 unmap_len = 0;
263
264                 /* Get address and size of next fragment */
265                 if (i >= skb_shinfo(skb)->nr_frags)
266                         break;
267                 fragment = &skb_shinfo(skb)->frags[i];
268                 len = fragment->size;
269                 page = fragment->page;
270                 page_offset = fragment->page_offset;
271                 i++;
272                 /* Map for DMA */
273                 unmap_single = false;
274                 dma_addr = pci_map_page(pci_dev, page, page_offset, len,
275                                         PCI_DMA_TODEVICE);
276         }
277
278         /* Transfer ownership of the skb to the final buffer */
279         buffer->skb = skb;
280         buffer->continuation = false;
281
282         /* Pass off to hardware */
283         efx_nic_push_buffers(tx_queue);
284
285         return NETDEV_TX_OK;
286
287  pci_err:
288         EFX_ERR_RL(efx, " TX queue %d could not map skb with %d bytes %d "
289                    "fragments for DMA\n", tx_queue->queue, skb->len,
290                    skb_shinfo(skb)->nr_frags + 1);
291
292         /* Mark the packet as transmitted, and free the SKB ourselves */
293         dev_kfree_skb_any(skb);
294         goto unwind;
295
296  stop:
297         rc = NETDEV_TX_BUSY;
298
299         if (tx_queue->stopped == 1)
300                 efx_stop_queue(efx);
301
302  unwind:
303         /* Work backwards until we hit the original insert pointer value */
304         while (tx_queue->insert_count != tx_queue->write_count) {
305                 --tx_queue->insert_count;
306                 insert_ptr = tx_queue->insert_count & EFX_TXQ_MASK;
307                 buffer = &tx_queue->buffer[insert_ptr];
308                 efx_dequeue_buffer(tx_queue, buffer);
309                 buffer->len = 0;
310         }
311
312         /* Free the fragment we were mid-way through pushing */
313         if (unmap_len) {
314                 if (unmap_single)
315                         pci_unmap_single(pci_dev, unmap_addr, unmap_len,
316                                          PCI_DMA_TODEVICE);
317                 else
318                         pci_unmap_page(pci_dev, unmap_addr, unmap_len,
319                                        PCI_DMA_TODEVICE);
320         }
321
322         return rc;
323 }
324
325 /* Remove packets from the TX queue
326  *
327  * This removes packets from the TX queue, up to and including the
328  * specified index.
329  */
330 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
331                                 unsigned int index)
332 {
333         struct efx_nic *efx = tx_queue->efx;
334         unsigned int stop_index, read_ptr;
335
336         stop_index = (index + 1) & EFX_TXQ_MASK;
337         read_ptr = tx_queue->read_count & EFX_TXQ_MASK;
338
339         while (read_ptr != stop_index) {
340                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
341                 if (unlikely(buffer->len == 0)) {
342                         EFX_ERR(tx_queue->efx, "TX queue %d spurious TX "
343                                 "completion id %x\n", tx_queue->queue,
344                                 read_ptr);
345                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
346                         return;
347                 }
348
349                 efx_dequeue_buffer(tx_queue, buffer);
350                 buffer->continuation = true;
351                 buffer->len = 0;
352
353                 ++tx_queue->read_count;
354                 read_ptr = tx_queue->read_count & EFX_TXQ_MASK;
355         }
356 }
357
358 /* Initiate a packet transmission.  We use one channel per CPU
359  * (sharing when we have more CPUs than channels).  On Falcon, the TX
360  * completion events will be directed back to the CPU that transmitted
361  * the packet, which should be cache-efficient.
362  *
363  * Context: non-blocking.
364  * Note that returning anything other than NETDEV_TX_OK will cause the
365  * OS to free the skb.
366  */
367 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
368                                       struct net_device *net_dev)
369 {
370         struct efx_nic *efx = netdev_priv(net_dev);
371         struct efx_tx_queue *tx_queue;
372
373         if (unlikely(efx->port_inhibited))
374                 return NETDEV_TX_BUSY;
375
376         if (likely(skb->ip_summed == CHECKSUM_PARTIAL))
377                 tx_queue = &efx->tx_queue[EFX_TX_QUEUE_OFFLOAD_CSUM];
378         else
379                 tx_queue = &efx->tx_queue[EFX_TX_QUEUE_NO_CSUM];
380
381         return efx_enqueue_skb(tx_queue, skb);
382 }
383
384 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
385 {
386         unsigned fill_level;
387         struct efx_nic *efx = tx_queue->efx;
388
389         EFX_BUG_ON_PARANOID(index > EFX_TXQ_MASK);
390
391         efx_dequeue_buffers(tx_queue, index);
392
393         /* See if we need to restart the netif queue.  This barrier
394          * separates the update of read_count from the test of
395          * stopped. */
396         smp_mb();
397         if (unlikely(tx_queue->stopped) && likely(efx->port_enabled)) {
398                 fill_level = tx_queue->insert_count - tx_queue->read_count;
399                 if (fill_level < EFX_TXQ_THRESHOLD) {
400                         EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
401
402                         /* Do this under netif_tx_lock(), to avoid racing
403                          * with efx_xmit(). */
404                         netif_tx_lock(efx->net_dev);
405                         if (tx_queue->stopped) {
406                                 tx_queue->stopped = 0;
407                                 efx_wake_queue(efx);
408                         }
409                         netif_tx_unlock(efx->net_dev);
410                 }
411         }
412 }
413
414 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
415 {
416         struct efx_nic *efx = tx_queue->efx;
417         unsigned int txq_size;
418         int i, rc;
419
420         EFX_LOG(efx, "creating TX queue %d\n", tx_queue->queue);
421
422         /* Allocate software ring */
423         txq_size = EFX_TXQ_SIZE * sizeof(*tx_queue->buffer);
424         tx_queue->buffer = kzalloc(txq_size, GFP_KERNEL);
425         if (!tx_queue->buffer)
426                 return -ENOMEM;
427         for (i = 0; i <= EFX_TXQ_MASK; ++i)
428                 tx_queue->buffer[i].continuation = true;
429
430         /* Allocate hardware ring */
431         rc = efx_nic_probe_tx(tx_queue);
432         if (rc)
433                 goto fail;
434
435         return 0;
436
437  fail:
438         kfree(tx_queue->buffer);
439         tx_queue->buffer = NULL;
440         return rc;
441 }
442
443 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
444 {
445         EFX_LOG(tx_queue->efx, "initialising TX queue %d\n", tx_queue->queue);
446
447         tx_queue->insert_count = 0;
448         tx_queue->write_count = 0;
449         tx_queue->read_count = 0;
450         tx_queue->old_read_count = 0;
451         BUG_ON(tx_queue->stopped);
452
453         /* Set up TX descriptor ring */
454         efx_nic_init_tx(tx_queue);
455 }
456
457 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
458 {
459         struct efx_tx_buffer *buffer;
460
461         if (!tx_queue->buffer)
462                 return;
463
464         /* Free any buffers left in the ring */
465         while (tx_queue->read_count != tx_queue->write_count) {
466                 buffer = &tx_queue->buffer[tx_queue->read_count & EFX_TXQ_MASK];
467                 efx_dequeue_buffer(tx_queue, buffer);
468                 buffer->continuation = true;
469                 buffer->len = 0;
470
471                 ++tx_queue->read_count;
472         }
473 }
474
475 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
476 {
477         EFX_LOG(tx_queue->efx, "shutting down TX queue %d\n", tx_queue->queue);
478
479         /* Flush TX queue, remove descriptor ring */
480         efx_nic_fini_tx(tx_queue);
481
482         efx_release_tx_buffers(tx_queue);
483
484         /* Free up TSO header cache */
485         efx_fini_tso(tx_queue);
486
487         /* Release queue's stop on port, if any */
488         if (tx_queue->stopped) {
489                 tx_queue->stopped = 0;
490                 efx_wake_queue(tx_queue->efx);
491         }
492 }
493
494 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
495 {
496         EFX_LOG(tx_queue->efx, "destroying TX queue %d\n", tx_queue->queue);
497         efx_nic_remove_tx(tx_queue);
498
499         kfree(tx_queue->buffer);
500         tx_queue->buffer = NULL;
501 }
502
503
504 /* Efx TCP segmentation acceleration.
505  *
506  * Why?  Because by doing it here in the driver we can go significantly
507  * faster than the GSO.
508  *
509  * Requires TX checksum offload support.
510  */
511
512 /* Number of bytes inserted at the start of a TSO header buffer,
513  * similar to NET_IP_ALIGN.
514  */
515 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
516 #define TSOH_OFFSET     0
517 #else
518 #define TSOH_OFFSET     NET_IP_ALIGN
519 #endif
520
521 #define TSOH_BUFFER(tsoh)       ((u8 *)(tsoh + 1) + TSOH_OFFSET)
522
523 /* Total size of struct efx_tso_header, buffer and padding */
524 #define TSOH_SIZE(hdr_len)                                      \
525         (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
526
527 /* Size of blocks on free list.  Larger blocks must be allocated from
528  * the heap.
529  */
530 #define TSOH_STD_SIZE           128
531
532 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
533 #define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
534 #define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
535 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
536 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
537
538 /**
539  * struct tso_state - TSO state for an SKB
540  * @out_len: Remaining length in current segment
541  * @seqnum: Current sequence number
542  * @ipv4_id: Current IPv4 ID, host endian
543  * @packet_space: Remaining space in current packet
544  * @dma_addr: DMA address of current position
545  * @in_len: Remaining length in current SKB fragment
546  * @unmap_len: Length of SKB fragment
547  * @unmap_addr: DMA address of SKB fragment
548  * @unmap_single: DMA single vs page mapping flag
549  * @protocol: Network protocol (after any VLAN header)
550  * @header_len: Number of bytes of header
551  * @full_packet_size: Number of bytes to put in each outgoing segment
552  *
553  * The state used during segmentation.  It is put into this data structure
554  * just to make it easy to pass into inline functions.
555  */
556 struct tso_state {
557         /* Output position */
558         unsigned out_len;
559         unsigned seqnum;
560         unsigned ipv4_id;
561         unsigned packet_space;
562
563         /* Input position */
564         dma_addr_t dma_addr;
565         unsigned in_len;
566         unsigned unmap_len;
567         dma_addr_t unmap_addr;
568         bool unmap_single;
569
570         __be16 protocol;
571         unsigned header_len;
572         int full_packet_size;
573 };
574
575
576 /*
577  * Verify that our various assumptions about sk_buffs and the conditions
578  * under which TSO will be attempted hold true.  Return the protocol number.
579  */
580 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
581 {
582         __be16 protocol = skb->protocol;
583
584         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
585                             protocol);
586         if (protocol == htons(ETH_P_8021Q)) {
587                 /* Find the encapsulated protocol; reset network header
588                  * and transport header based on that. */
589                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
590                 protocol = veh->h_vlan_encapsulated_proto;
591                 skb_set_network_header(skb, sizeof(*veh));
592                 if (protocol == htons(ETH_P_IP))
593                         skb_set_transport_header(skb, sizeof(*veh) +
594                                                  4 * ip_hdr(skb)->ihl);
595                 else if (protocol == htons(ETH_P_IPV6))
596                         skb_set_transport_header(skb, sizeof(*veh) +
597                                                  sizeof(struct ipv6hdr));
598         }
599
600         if (protocol == htons(ETH_P_IP)) {
601                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
602         } else {
603                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
604                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
605         }
606         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
607                              + (tcp_hdr(skb)->doff << 2u)) >
608                             skb_headlen(skb));
609
610         return protocol;
611 }
612
613
614 /*
615  * Allocate a page worth of efx_tso_header structures, and string them
616  * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
617  */
618 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
619 {
620
621         struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
622         struct efx_tso_header *tsoh;
623         dma_addr_t dma_addr;
624         u8 *base_kva, *kva;
625
626         base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
627         if (base_kva == NULL) {
628                 EFX_ERR(tx_queue->efx, "Unable to allocate page for TSO"
629                         " headers\n");
630                 return -ENOMEM;
631         }
632
633         /* pci_alloc_consistent() allocates pages. */
634         EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
635
636         for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
637                 tsoh = (struct efx_tso_header *)kva;
638                 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
639                 tsoh->next = tx_queue->tso_headers_free;
640                 tx_queue->tso_headers_free = tsoh;
641         }
642
643         return 0;
644 }
645
646
647 /* Free up a TSO header, and all others in the same page. */
648 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
649                                 struct efx_tso_header *tsoh,
650                                 struct pci_dev *pci_dev)
651 {
652         struct efx_tso_header **p;
653         unsigned long base_kva;
654         dma_addr_t base_dma;
655
656         base_kva = (unsigned long)tsoh & PAGE_MASK;
657         base_dma = tsoh->dma_addr & PAGE_MASK;
658
659         p = &tx_queue->tso_headers_free;
660         while (*p != NULL) {
661                 if (((unsigned long)*p & PAGE_MASK) == base_kva)
662                         *p = (*p)->next;
663                 else
664                         p = &(*p)->next;
665         }
666
667         pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
668 }
669
670 static struct efx_tso_header *
671 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
672 {
673         struct efx_tso_header *tsoh;
674
675         tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
676         if (unlikely(!tsoh))
677                 return NULL;
678
679         tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
680                                         TSOH_BUFFER(tsoh), header_len,
681                                         PCI_DMA_TODEVICE);
682         if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
683                                            tsoh->dma_addr))) {
684                 kfree(tsoh);
685                 return NULL;
686         }
687
688         tsoh->unmap_len = header_len;
689         return tsoh;
690 }
691
692 static void
693 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
694 {
695         pci_unmap_single(tx_queue->efx->pci_dev,
696                          tsoh->dma_addr, tsoh->unmap_len,
697                          PCI_DMA_TODEVICE);
698         kfree(tsoh);
699 }
700
701 /**
702  * efx_tx_queue_insert - push descriptors onto the TX queue
703  * @tx_queue:           Efx TX queue
704  * @dma_addr:           DMA address of fragment
705  * @len:                Length of fragment
706  * @final_buffer:       The final buffer inserted into the queue
707  *
708  * Push descriptors onto the TX queue.  Return 0 on success or 1 if
709  * @tx_queue full.
710  */
711 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
712                                dma_addr_t dma_addr, unsigned len,
713                                struct efx_tx_buffer **final_buffer)
714 {
715         struct efx_tx_buffer *buffer;
716         struct efx_nic *efx = tx_queue->efx;
717         unsigned dma_len, fill_level, insert_ptr;
718         int q_space;
719
720         EFX_BUG_ON_PARANOID(len <= 0);
721
722         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
723         /* -1 as there is no way to represent all descriptors used */
724         q_space = EFX_TXQ_MASK - 1 - fill_level;
725
726         while (1) {
727                 if (unlikely(q_space-- <= 0)) {
728                         /* It might be that completions have happened
729                          * since the xmit path last checked.  Update
730                          * the xmit path's copy of read_count.
731                          */
732                         ++tx_queue->stopped;
733                         /* This memory barrier protects the change of
734                          * stopped from the access of read_count. */
735                         smp_mb();
736                         tx_queue->old_read_count =
737                                 *(volatile unsigned *)&tx_queue->read_count;
738                         fill_level = (tx_queue->insert_count
739                                       - tx_queue->old_read_count);
740                         q_space = EFX_TXQ_MASK - 1 - fill_level;
741                         if (unlikely(q_space-- <= 0)) {
742                                 *final_buffer = NULL;
743                                 return 1;
744                         }
745                         smp_mb();
746                         --tx_queue->stopped;
747                 }
748
749                 insert_ptr = tx_queue->insert_count & EFX_TXQ_MASK;
750                 buffer = &tx_queue->buffer[insert_ptr];
751                 ++tx_queue->insert_count;
752
753                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
754                                     tx_queue->read_count >
755                                     EFX_TXQ_MASK);
756
757                 efx_tsoh_free(tx_queue, buffer);
758                 EFX_BUG_ON_PARANOID(buffer->len);
759                 EFX_BUG_ON_PARANOID(buffer->unmap_len);
760                 EFX_BUG_ON_PARANOID(buffer->skb);
761                 EFX_BUG_ON_PARANOID(!buffer->continuation);
762                 EFX_BUG_ON_PARANOID(buffer->tsoh);
763
764                 buffer->dma_addr = dma_addr;
765
766                 dma_len = efx_max_tx_len(efx, dma_addr);
767
768                 /* If there is enough space to send then do so */
769                 if (dma_len >= len)
770                         break;
771
772                 buffer->len = dma_len; /* Don't set the other members */
773                 dma_addr += dma_len;
774                 len -= dma_len;
775         }
776
777         EFX_BUG_ON_PARANOID(!len);
778         buffer->len = len;
779         *final_buffer = buffer;
780         return 0;
781 }
782
783
784 /*
785  * Put a TSO header into the TX queue.
786  *
787  * This is special-cased because we know that it is small enough to fit in
788  * a single fragment, and we know it doesn't cross a page boundary.  It
789  * also allows us to not worry about end-of-packet etc.
790  */
791 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
792                                struct efx_tso_header *tsoh, unsigned len)
793 {
794         struct efx_tx_buffer *buffer;
795
796         buffer = &tx_queue->buffer[tx_queue->insert_count & EFX_TXQ_MASK];
797         efx_tsoh_free(tx_queue, buffer);
798         EFX_BUG_ON_PARANOID(buffer->len);
799         EFX_BUG_ON_PARANOID(buffer->unmap_len);
800         EFX_BUG_ON_PARANOID(buffer->skb);
801         EFX_BUG_ON_PARANOID(!buffer->continuation);
802         EFX_BUG_ON_PARANOID(buffer->tsoh);
803         buffer->len = len;
804         buffer->dma_addr = tsoh->dma_addr;
805         buffer->tsoh = tsoh;
806
807         ++tx_queue->insert_count;
808 }
809
810
811 /* Remove descriptors put into a tx_queue. */
812 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
813 {
814         struct efx_tx_buffer *buffer;
815         dma_addr_t unmap_addr;
816
817         /* Work backwards until we hit the original insert pointer value */
818         while (tx_queue->insert_count != tx_queue->write_count) {
819                 --tx_queue->insert_count;
820                 buffer = &tx_queue->buffer[tx_queue->insert_count &
821                                            EFX_TXQ_MASK];
822                 efx_tsoh_free(tx_queue, buffer);
823                 EFX_BUG_ON_PARANOID(buffer->skb);
824                 buffer->len = 0;
825                 buffer->continuation = true;
826                 if (buffer->unmap_len) {
827                         unmap_addr = (buffer->dma_addr + buffer->len -
828                                       buffer->unmap_len);
829                         if (buffer->unmap_single)
830                                 pci_unmap_single(tx_queue->efx->pci_dev,
831                                                  unmap_addr, buffer->unmap_len,
832                                                  PCI_DMA_TODEVICE);
833                         else
834                                 pci_unmap_page(tx_queue->efx->pci_dev,
835                                                unmap_addr, buffer->unmap_len,
836                                                PCI_DMA_TODEVICE);
837                         buffer->unmap_len = 0;
838                 }
839         }
840 }
841
842
843 /* Parse the SKB header and initialise state. */
844 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
845 {
846         /* All ethernet/IP/TCP headers combined size is TCP header size
847          * plus offset of TCP header relative to start of packet.
848          */
849         st->header_len = ((tcp_hdr(skb)->doff << 2u)
850                           + PTR_DIFF(tcp_hdr(skb), skb->data));
851         st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
852
853         if (st->protocol == htons(ETH_P_IP))
854                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
855         else
856                 st->ipv4_id = 0;
857         st->seqnum = ntohl(tcp_hdr(skb)->seq);
858
859         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
860         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
861         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
862
863         st->packet_space = st->full_packet_size;
864         st->out_len = skb->len - st->header_len;
865         st->unmap_len = 0;
866         st->unmap_single = false;
867 }
868
869 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
870                             skb_frag_t *frag)
871 {
872         st->unmap_addr = pci_map_page(efx->pci_dev, frag->page,
873                                       frag->page_offset, frag->size,
874                                       PCI_DMA_TODEVICE);
875         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
876                 st->unmap_single = false;
877                 st->unmap_len = frag->size;
878                 st->in_len = frag->size;
879                 st->dma_addr = st->unmap_addr;
880                 return 0;
881         }
882         return -ENOMEM;
883 }
884
885 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
886                                  const struct sk_buff *skb)
887 {
888         int hl = st->header_len;
889         int len = skb_headlen(skb) - hl;
890
891         st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
892                                         len, PCI_DMA_TODEVICE);
893         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
894                 st->unmap_single = true;
895                 st->unmap_len = len;
896                 st->in_len = len;
897                 st->dma_addr = st->unmap_addr;
898                 return 0;
899         }
900         return -ENOMEM;
901 }
902
903
904 /**
905  * tso_fill_packet_with_fragment - form descriptors for the current fragment
906  * @tx_queue:           Efx TX queue
907  * @skb:                Socket buffer
908  * @st:                 TSO state
909  *
910  * Form descriptors for the current fragment, until we reach the end
911  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
912  * space in @tx_queue.
913  */
914 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
915                                          const struct sk_buff *skb,
916                                          struct tso_state *st)
917 {
918         struct efx_tx_buffer *buffer;
919         int n, end_of_packet, rc;
920
921         if (st->in_len == 0)
922                 return 0;
923         if (st->packet_space == 0)
924                 return 0;
925
926         EFX_BUG_ON_PARANOID(st->in_len <= 0);
927         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
928
929         n = min(st->in_len, st->packet_space);
930
931         st->packet_space -= n;
932         st->out_len -= n;
933         st->in_len -= n;
934
935         rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
936         if (likely(rc == 0)) {
937                 if (st->out_len == 0)
938                         /* Transfer ownership of the skb */
939                         buffer->skb = skb;
940
941                 end_of_packet = st->out_len == 0 || st->packet_space == 0;
942                 buffer->continuation = !end_of_packet;
943
944                 if (st->in_len == 0) {
945                         /* Transfer ownership of the pci mapping */
946                         buffer->unmap_len = st->unmap_len;
947                         buffer->unmap_single = st->unmap_single;
948                         st->unmap_len = 0;
949                 }
950         }
951
952         st->dma_addr += n;
953         return rc;
954 }
955
956
957 /**
958  * tso_start_new_packet - generate a new header and prepare for the new packet
959  * @tx_queue:           Efx TX queue
960  * @skb:                Socket buffer
961  * @st:                 TSO state
962  *
963  * Generate a new header and prepare for the new packet.  Return 0 on
964  * success, or -1 if failed to alloc header.
965  */
966 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
967                                 const struct sk_buff *skb,
968                                 struct tso_state *st)
969 {
970         struct efx_tso_header *tsoh;
971         struct tcphdr *tsoh_th;
972         unsigned ip_length;
973         u8 *header;
974
975         /* Allocate a DMA-mapped header buffer. */
976         if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
977                 if (tx_queue->tso_headers_free == NULL) {
978                         if (efx_tsoh_block_alloc(tx_queue))
979                                 return -1;
980                 }
981                 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
982                 tsoh = tx_queue->tso_headers_free;
983                 tx_queue->tso_headers_free = tsoh->next;
984                 tsoh->unmap_len = 0;
985         } else {
986                 tx_queue->tso_long_headers++;
987                 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
988                 if (unlikely(!tsoh))
989                         return -1;
990         }
991
992         header = TSOH_BUFFER(tsoh);
993         tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
994
995         /* Copy and update the headers. */
996         memcpy(header, skb->data, st->header_len);
997
998         tsoh_th->seq = htonl(st->seqnum);
999         st->seqnum += skb_shinfo(skb)->gso_size;
1000         if (st->out_len > skb_shinfo(skb)->gso_size) {
1001                 /* This packet will not finish the TSO burst. */
1002                 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1003                 tsoh_th->fin = 0;
1004                 tsoh_th->psh = 0;
1005         } else {
1006                 /* This packet will be the last in the TSO burst. */
1007                 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1008                 tsoh_th->fin = tcp_hdr(skb)->fin;
1009                 tsoh_th->psh = tcp_hdr(skb)->psh;
1010         }
1011
1012         if (st->protocol == htons(ETH_P_IP)) {
1013                 struct iphdr *tsoh_iph =
1014                         (struct iphdr *)(header + SKB_IPV4_OFF(skb));
1015
1016                 tsoh_iph->tot_len = htons(ip_length);
1017
1018                 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1019                 tsoh_iph->id = htons(st->ipv4_id);
1020                 st->ipv4_id++;
1021         } else {
1022                 struct ipv6hdr *tsoh_iph =
1023                         (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1024
1025                 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1026         }
1027
1028         st->packet_space = skb_shinfo(skb)->gso_size;
1029         ++tx_queue->tso_packets;
1030
1031         /* Form a descriptor for this header. */
1032         efx_tso_put_header(tx_queue, tsoh, st->header_len);
1033
1034         return 0;
1035 }
1036
1037
1038 /**
1039  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1040  * @tx_queue:           Efx TX queue
1041  * @skb:                Socket buffer
1042  *
1043  * Context: You must hold netif_tx_lock() to call this function.
1044  *
1045  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1046  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1047  * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1048  */
1049 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1050                                struct sk_buff *skb)
1051 {
1052         struct efx_nic *efx = tx_queue->efx;
1053         int frag_i, rc, rc2 = NETDEV_TX_OK;
1054         struct tso_state state;
1055
1056         /* Find the packet protocol and sanity-check it */
1057         state.protocol = efx_tso_check_protocol(skb);
1058
1059         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1060
1061         tso_start(&state, skb);
1062
1063         /* Assume that skb header area contains exactly the headers, and
1064          * all payload is in the frag list.
1065          */
1066         if (skb_headlen(skb) == state.header_len) {
1067                 /* Grab the first payload fragment. */
1068                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1069                 frag_i = 0;
1070                 rc = tso_get_fragment(&state, efx,
1071                                       skb_shinfo(skb)->frags + frag_i);
1072                 if (rc)
1073                         goto mem_err;
1074         } else {
1075                 rc = tso_get_head_fragment(&state, efx, skb);
1076                 if (rc)
1077                         goto mem_err;
1078                 frag_i = -1;
1079         }
1080
1081         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1082                 goto mem_err;
1083
1084         while (1) {
1085                 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1086                 if (unlikely(rc))
1087                         goto stop;
1088
1089                 /* Move onto the next fragment? */
1090                 if (state.in_len == 0) {
1091                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1092                                 /* End of payload reached. */
1093                                 break;
1094                         rc = tso_get_fragment(&state, efx,
1095                                               skb_shinfo(skb)->frags + frag_i);
1096                         if (rc)
1097                                 goto mem_err;
1098                 }
1099
1100                 /* Start at new packet? */
1101                 if (state.packet_space == 0 &&
1102                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1103                         goto mem_err;
1104         }
1105
1106         /* Pass off to hardware */
1107         efx_nic_push_buffers(tx_queue);
1108
1109         tx_queue->tso_bursts++;
1110         return NETDEV_TX_OK;
1111
1112  mem_err:
1113         EFX_ERR(efx, "Out of memory for TSO headers, or PCI mapping error\n");
1114         dev_kfree_skb_any(skb);
1115         goto unwind;
1116
1117  stop:
1118         rc2 = NETDEV_TX_BUSY;
1119
1120         /* Stop the queue if it wasn't stopped before. */
1121         if (tx_queue->stopped == 1)
1122                 efx_stop_queue(efx);
1123
1124  unwind:
1125         /* Free the DMA mapping we were in the process of writing out */
1126         if (state.unmap_len) {
1127                 if (state.unmap_single)
1128                         pci_unmap_single(efx->pci_dev, state.unmap_addr,
1129                                          state.unmap_len, PCI_DMA_TODEVICE);
1130                 else
1131                         pci_unmap_page(efx->pci_dev, state.unmap_addr,
1132                                        state.unmap_len, PCI_DMA_TODEVICE);
1133         }
1134
1135         efx_enqueue_unwind(tx_queue);
1136         return rc2;
1137 }
1138
1139
1140 /*
1141  * Free up all TSO datastructures associated with tx_queue. This
1142  * routine should be called only once the tx_queue is both empty and
1143  * will no longer be used.
1144  */
1145 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1146 {
1147         unsigned i;
1148
1149         if (tx_queue->buffer) {
1150                 for (i = 0; i <= EFX_TXQ_MASK; ++i)
1151                         efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1152         }
1153
1154         while (tx_queue->tso_headers_free != NULL)
1155                 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1156                                     tx_queue->efx->pci_dev);
1157 }