sfc: Reduce I2C udelay to 5 resulting in a clock frequency of 100 kHz
[safe/jmp/linux-2.6] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/i2c-algo-bit.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "mac.h"
22 #include "gmii.h"
23 #include "spi.h"
24 #include "falcon.h"
25 #include "falcon_hwdefs.h"
26 #include "falcon_io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "boards.h"
30 #include "workarounds.h"
31
32 /* Falcon hardware control.
33  * Falcon is the internal codename for the SFC4000 controller that is
34  * present in SFE400X evaluation boards
35  */
36
37 /**
38  * struct falcon_nic_data - Falcon NIC state
39  * @next_buffer_table: First available buffer table id
40  * @pci_dev2: The secondary PCI device if present
41  * @i2c_data: Operations and state for I2C bit-bashing algorithm
42  */
43 struct falcon_nic_data {
44         unsigned next_buffer_table;
45         struct pci_dev *pci_dev2;
46         struct i2c_algo_bit_data i2c_data;
47 };
48
49 /**************************************************************************
50  *
51  * Configurable values
52  *
53  **************************************************************************
54  */
55
56 static int disable_dma_stats;
57
58 /* This is set to 16 for a good reason.  In summary, if larger than
59  * 16, the descriptor cache holds more than a default socket
60  * buffer's worth of packets (for UDP we can only have at most one
61  * socket buffer's worth outstanding).  This combined with the fact
62  * that we only get 1 TX event per descriptor cache means the NIC
63  * goes idle.
64  */
65 #define TX_DC_ENTRIES 16
66 #define TX_DC_ENTRIES_ORDER 0
67 #define TX_DC_BASE 0x130000
68
69 #define RX_DC_ENTRIES 64
70 #define RX_DC_ENTRIES_ORDER 2
71 #define RX_DC_BASE 0x100000
72
73 /* RX FIFO XOFF watermark
74  *
75  * When the amount of the RX FIFO increases used increases past this
76  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
77  * This also has an effect on RX/TX arbitration
78  */
79 static int rx_xoff_thresh_bytes = -1;
80 module_param(rx_xoff_thresh_bytes, int, 0644);
81 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
82
83 /* RX FIFO XON watermark
84  *
85  * When the amount of the RX FIFO used decreases below this
86  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
87  * This also has an effect on RX/TX arbitration
88  */
89 static int rx_xon_thresh_bytes = -1;
90 module_param(rx_xon_thresh_bytes, int, 0644);
91 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
92
93 /* TX descriptor ring size - min 512 max 4k */
94 #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
95 #define FALCON_TXD_RING_SIZE 1024
96 #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
97
98 /* RX descriptor ring size - min 512 max 4k */
99 #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
100 #define FALCON_RXD_RING_SIZE 1024
101 #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
102
103 /* Event queue size - max 32k */
104 #define FALCON_EVQ_ORDER EVQ_SIZE_4K
105 #define FALCON_EVQ_SIZE 4096
106 #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
107
108 /* Max number of internal errors. After this resets will not be performed */
109 #define FALCON_MAX_INT_ERRORS 4
110
111 /* Maximum period that we wait for flush events. If the flush event
112  * doesn't arrive in this period of time then we check if the queue
113  * was disabled anyway. */
114 #define FALCON_FLUSH_TIMEOUT 10 /* 10ms */
115
116 /**************************************************************************
117  *
118  * Falcon constants
119  *
120  **************************************************************************
121  */
122
123 /* DMA address mask */
124 #define FALCON_DMA_MASK DMA_BIT_MASK(46)
125
126 /* TX DMA length mask (13-bit) */
127 #define FALCON_TX_DMA_MASK (4096 - 1)
128
129 /* Size and alignment of special buffers (4KB) */
130 #define FALCON_BUF_SIZE 4096
131
132 /* Dummy SRAM size code */
133 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
134
135 /* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
136 #define PCI_EXP_DEVCAP_PWR_VAL_LBN      18
137 #define PCI_EXP_DEVCAP_PWR_SCL_LBN      26
138 #define PCI_EXP_DEVCTL_PAYLOAD_LBN      5
139 #define PCI_EXP_LNKSTA_LNK_WID          0x3f0
140 #define PCI_EXP_LNKSTA_LNK_WID_LBN      4
141
142 #define FALCON_IS_DUAL_FUNC(efx)                \
143         (falcon_rev(efx) < FALCON_REV_B0)
144
145 /**************************************************************************
146  *
147  * Falcon hardware access
148  *
149  **************************************************************************/
150
151 /* Read the current event from the event queue */
152 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
153                                         unsigned int index)
154 {
155         return (((efx_qword_t *) (channel->eventq.addr)) + index);
156 }
157
158 /* See if an event is present
159  *
160  * We check both the high and low dword of the event for all ones.  We
161  * wrote all ones when we cleared the event, and no valid event can
162  * have all ones in either its high or low dwords.  This approach is
163  * robust against reordering.
164  *
165  * Note that using a single 64-bit comparison is incorrect; even
166  * though the CPU read will be atomic, the DMA write may not be.
167  */
168 static inline int falcon_event_present(efx_qword_t *event)
169 {
170         return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
171                   EFX_DWORD_IS_ALL_ONES(event->dword[1])));
172 }
173
174 /**************************************************************************
175  *
176  * I2C bus - this is a bit-bashing interface using GPIO pins
177  * Note that it uses the output enables to tristate the outputs
178  * SDA is the data pin and SCL is the clock
179  *
180  **************************************************************************
181  */
182 static void falcon_setsda(void *data, int state)
183 {
184         struct efx_nic *efx = (struct efx_nic *)data;
185         efx_oword_t reg;
186
187         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
188         EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
189         falcon_write(efx, &reg, GPIO_CTL_REG_KER);
190 }
191
192 static void falcon_setscl(void *data, int state)
193 {
194         struct efx_nic *efx = (struct efx_nic *)data;
195         efx_oword_t reg;
196
197         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
198         EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
199         falcon_write(efx, &reg, GPIO_CTL_REG_KER);
200 }
201
202 static int falcon_getsda(void *data)
203 {
204         struct efx_nic *efx = (struct efx_nic *)data;
205         efx_oword_t reg;
206
207         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
208         return EFX_OWORD_FIELD(reg, GPIO3_IN);
209 }
210
211 static int falcon_getscl(void *data)
212 {
213         struct efx_nic *efx = (struct efx_nic *)data;
214         efx_oword_t reg;
215
216         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
217         return EFX_OWORD_FIELD(reg, GPIO0_IN);
218 }
219
220 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
221         .setsda         = falcon_setsda,
222         .setscl         = falcon_setscl,
223         .getsda         = falcon_getsda,
224         .getscl         = falcon_getscl,
225         .udelay         = 5,
226         /*
227          * This is the number of system clock ticks after which
228          * i2c-algo-bit gives up waiting for SCL to become high.
229          * It must be at least 2 since the first tick can happen
230          * immediately after it starts waiting.
231          */
232         .timeout        = 2,
233 };
234
235 /**************************************************************************
236  *
237  * Falcon special buffer handling
238  * Special buffers are used for event queues and the TX and RX
239  * descriptor rings.
240  *
241  *************************************************************************/
242
243 /*
244  * Initialise a Falcon special buffer
245  *
246  * This will define a buffer (previously allocated via
247  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
248  * it to be used for event queues, descriptor rings etc.
249  */
250 static int
251 falcon_init_special_buffer(struct efx_nic *efx,
252                            struct efx_special_buffer *buffer)
253 {
254         efx_qword_t buf_desc;
255         int index;
256         dma_addr_t dma_addr;
257         int i;
258
259         EFX_BUG_ON_PARANOID(!buffer->addr);
260
261         /* Write buffer descriptors to NIC */
262         for (i = 0; i < buffer->entries; i++) {
263                 index = buffer->index + i;
264                 dma_addr = buffer->dma_addr + (i * 4096);
265                 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
266                         index, (unsigned long long)dma_addr);
267                 EFX_POPULATE_QWORD_4(buf_desc,
268                                      IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
269                                      BUF_ADR_REGION, 0,
270                                      BUF_ADR_FBUF, (dma_addr >> 12),
271                                      BUF_OWNER_ID_FBUF, 0);
272                 falcon_write_sram(efx, &buf_desc, index);
273         }
274
275         return 0;
276 }
277
278 /* Unmaps a buffer from Falcon and clears the buffer table entries */
279 static void
280 falcon_fini_special_buffer(struct efx_nic *efx,
281                            struct efx_special_buffer *buffer)
282 {
283         efx_oword_t buf_tbl_upd;
284         unsigned int start = buffer->index;
285         unsigned int end = (buffer->index + buffer->entries - 1);
286
287         if (!buffer->entries)
288                 return;
289
290         EFX_LOG(efx, "unmapping special buffers %d-%d\n",
291                 buffer->index, buffer->index + buffer->entries - 1);
292
293         EFX_POPULATE_OWORD_4(buf_tbl_upd,
294                              BUF_UPD_CMD, 0,
295                              BUF_CLR_CMD, 1,
296                              BUF_CLR_END_ID, end,
297                              BUF_CLR_START_ID, start);
298         falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
299 }
300
301 /*
302  * Allocate a new Falcon special buffer
303  *
304  * This allocates memory for a new buffer, clears it and allocates a
305  * new buffer ID range.  It does not write into Falcon's buffer table.
306  *
307  * This call will allocate 4KB buffers, since Falcon can't use 8KB
308  * buffers for event queues and descriptor rings.
309  */
310 static int falcon_alloc_special_buffer(struct efx_nic *efx,
311                                        struct efx_special_buffer *buffer,
312                                        unsigned int len)
313 {
314         struct falcon_nic_data *nic_data = efx->nic_data;
315
316         len = ALIGN(len, FALCON_BUF_SIZE);
317
318         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
319                                             &buffer->dma_addr);
320         if (!buffer->addr)
321                 return -ENOMEM;
322         buffer->len = len;
323         buffer->entries = len / FALCON_BUF_SIZE;
324         BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
325
326         /* All zeros is a potentially valid event so memset to 0xff */
327         memset(buffer->addr, 0xff, len);
328
329         /* Select new buffer ID */
330         buffer->index = nic_data->next_buffer_table;
331         nic_data->next_buffer_table += buffer->entries;
332
333         EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
334                 "(virt %p phys %lx)\n", buffer->index,
335                 buffer->index + buffer->entries - 1,
336                 (unsigned long long)buffer->dma_addr, len,
337                 buffer->addr, virt_to_phys(buffer->addr));
338
339         return 0;
340 }
341
342 static void falcon_free_special_buffer(struct efx_nic *efx,
343                                        struct efx_special_buffer *buffer)
344 {
345         if (!buffer->addr)
346                 return;
347
348         EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
349                 "(virt %p phys %lx)\n", buffer->index,
350                 buffer->index + buffer->entries - 1,
351                 (unsigned long long)buffer->dma_addr, buffer->len,
352                 buffer->addr, virt_to_phys(buffer->addr));
353
354         pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
355                             buffer->dma_addr);
356         buffer->addr = NULL;
357         buffer->entries = 0;
358 }
359
360 /**************************************************************************
361  *
362  * Falcon generic buffer handling
363  * These buffers are used for interrupt status and MAC stats
364  *
365  **************************************************************************/
366
367 static int falcon_alloc_buffer(struct efx_nic *efx,
368                                struct efx_buffer *buffer, unsigned int len)
369 {
370         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
371                                             &buffer->dma_addr);
372         if (!buffer->addr)
373                 return -ENOMEM;
374         buffer->len = len;
375         memset(buffer->addr, 0, len);
376         return 0;
377 }
378
379 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
380 {
381         if (buffer->addr) {
382                 pci_free_consistent(efx->pci_dev, buffer->len,
383                                     buffer->addr, buffer->dma_addr);
384                 buffer->addr = NULL;
385         }
386 }
387
388 /**************************************************************************
389  *
390  * Falcon TX path
391  *
392  **************************************************************************/
393
394 /* Returns a pointer to the specified transmit descriptor in the TX
395  * descriptor queue belonging to the specified channel.
396  */
397 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
398                                                unsigned int index)
399 {
400         return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
401 }
402
403 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
404 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
405 {
406         unsigned write_ptr;
407         efx_dword_t reg;
408
409         write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
410         EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
411         falcon_writel_page(tx_queue->efx, &reg,
412                            TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
413 }
414
415
416 /* For each entry inserted into the software descriptor ring, create a
417  * descriptor in the hardware TX descriptor ring (in host memory), and
418  * write a doorbell.
419  */
420 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
421 {
422
423         struct efx_tx_buffer *buffer;
424         efx_qword_t *txd;
425         unsigned write_ptr;
426
427         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
428
429         do {
430                 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
431                 buffer = &tx_queue->buffer[write_ptr];
432                 txd = falcon_tx_desc(tx_queue, write_ptr);
433                 ++tx_queue->write_count;
434
435                 /* Create TX descriptor ring entry */
436                 EFX_POPULATE_QWORD_5(*txd,
437                                      TX_KER_PORT, 0,
438                                      TX_KER_CONT, buffer->continuation,
439                                      TX_KER_BYTE_CNT, buffer->len,
440                                      TX_KER_BUF_REGION, 0,
441                                      TX_KER_BUF_ADR, buffer->dma_addr);
442         } while (tx_queue->write_count != tx_queue->insert_count);
443
444         wmb(); /* Ensure descriptors are written before they are fetched */
445         falcon_notify_tx_desc(tx_queue);
446 }
447
448 /* Allocate hardware resources for a TX queue */
449 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
450 {
451         struct efx_nic *efx = tx_queue->efx;
452         return falcon_alloc_special_buffer(efx, &tx_queue->txd,
453                                            FALCON_TXD_RING_SIZE *
454                                            sizeof(efx_qword_t));
455 }
456
457 int falcon_init_tx(struct efx_tx_queue *tx_queue)
458 {
459         efx_oword_t tx_desc_ptr;
460         struct efx_nic *efx = tx_queue->efx;
461         int rc;
462
463         /* Pin TX descriptor ring */
464         rc = falcon_init_special_buffer(efx, &tx_queue->txd);
465         if (rc)
466                 return rc;
467
468         /* Push TX descriptor ring to card */
469         EFX_POPULATE_OWORD_10(tx_desc_ptr,
470                               TX_DESCQ_EN, 1,
471                               TX_ISCSI_DDIG_EN, 0,
472                               TX_ISCSI_HDIG_EN, 0,
473                               TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
474                               TX_DESCQ_EVQ_ID, tx_queue->channel->evqnum,
475                               TX_DESCQ_OWNER_ID, 0,
476                               TX_DESCQ_LABEL, tx_queue->queue,
477                               TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
478                               TX_DESCQ_TYPE, 0,
479                               TX_NON_IP_DROP_DIS_B0, 1);
480
481         if (falcon_rev(efx) >= FALCON_REV_B0) {
482                 int csum = !(efx->net_dev->features & NETIF_F_IP_CSUM);
483                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, csum);
484                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, csum);
485         }
486
487         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
488                            tx_queue->queue);
489
490         if (falcon_rev(efx) < FALCON_REV_B0) {
491                 efx_oword_t reg;
492
493                 BUG_ON(tx_queue->queue >= 128); /* HW limit */
494
495                 falcon_read(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
496                 if (efx->net_dev->features & NETIF_F_IP_CSUM)
497                         clear_bit_le(tx_queue->queue, (void *)&reg);
498                 else
499                         set_bit_le(tx_queue->queue, (void *)&reg);
500                 falcon_write(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
501         }
502
503         return 0;
504 }
505
506 static int falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
507 {
508         struct efx_nic *efx = tx_queue->efx;
509         struct efx_channel *channel = &efx->channel[0];
510         efx_oword_t tx_flush_descq;
511         unsigned int read_ptr, i;
512
513         /* Post a flush command */
514         EFX_POPULATE_OWORD_2(tx_flush_descq,
515                              TX_FLUSH_DESCQ_CMD, 1,
516                              TX_FLUSH_DESCQ, tx_queue->queue);
517         falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
518         msleep(FALCON_FLUSH_TIMEOUT);
519
520         if (EFX_WORKAROUND_7803(efx))
521                 return 0;
522
523         /* Look for a flush completed event */
524         read_ptr = channel->eventq_read_ptr;
525         for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
526                 efx_qword_t *event = falcon_event(channel, read_ptr);
527                 int ev_code, ev_sub_code, ev_queue;
528                 if (!falcon_event_present(event))
529                         break;
530
531                 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
532                 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
533                 ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_TX_DESCQ_ID);
534                 if ((ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) &&
535                     (ev_queue == tx_queue->queue)) {
536                         EFX_LOG(efx, "tx queue %d flush command succesful\n",
537                                 tx_queue->queue);
538                         return 0;
539                 }
540
541                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
542         }
543
544         if (EFX_WORKAROUND_11557(efx)) {
545                 efx_oword_t reg;
546                 int enabled;
547
548                 falcon_read_table(efx, &reg, efx->type->txd_ptr_tbl_base,
549                                   tx_queue->queue);
550                 enabled = EFX_OWORD_FIELD(reg, TX_DESCQ_EN);
551                 if (!enabled) {
552                         EFX_LOG(efx, "tx queue %d disabled without a "
553                                 "flush event seen\n", tx_queue->queue);
554                         return 0;
555                 }
556         }
557
558         EFX_ERR(efx, "tx queue %d flush command timed out\n", tx_queue->queue);
559         return -ETIMEDOUT;
560 }
561
562 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
563 {
564         struct efx_nic *efx = tx_queue->efx;
565         efx_oword_t tx_desc_ptr;
566
567         /* Stop the hardware using the queue */
568         if (falcon_flush_tx_queue(tx_queue))
569                 EFX_ERR(efx, "failed to flush tx queue %d\n", tx_queue->queue);
570
571         /* Remove TX descriptor ring from card */
572         EFX_ZERO_OWORD(tx_desc_ptr);
573         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
574                            tx_queue->queue);
575
576         /* Unpin TX descriptor ring */
577         falcon_fini_special_buffer(efx, &tx_queue->txd);
578 }
579
580 /* Free buffers backing TX queue */
581 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
582 {
583         falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
584 }
585
586 /**************************************************************************
587  *
588  * Falcon RX path
589  *
590  **************************************************************************/
591
592 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
593 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
594                                                unsigned int index)
595 {
596         return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
597 }
598
599 /* This creates an entry in the RX descriptor queue */
600 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
601                                         unsigned index)
602 {
603         struct efx_rx_buffer *rx_buf;
604         efx_qword_t *rxd;
605
606         rxd = falcon_rx_desc(rx_queue, index);
607         rx_buf = efx_rx_buffer(rx_queue, index);
608         EFX_POPULATE_QWORD_3(*rxd,
609                              RX_KER_BUF_SIZE,
610                              rx_buf->len -
611                              rx_queue->efx->type->rx_buffer_padding,
612                              RX_KER_BUF_REGION, 0,
613                              RX_KER_BUF_ADR, rx_buf->dma_addr);
614 }
615
616 /* This writes to the RX_DESC_WPTR register for the specified receive
617  * descriptor ring.
618  */
619 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
620 {
621         efx_dword_t reg;
622         unsigned write_ptr;
623
624         while (rx_queue->notified_count != rx_queue->added_count) {
625                 falcon_build_rx_desc(rx_queue,
626                                      rx_queue->notified_count &
627                                      FALCON_RXD_RING_MASK);
628                 ++rx_queue->notified_count;
629         }
630
631         wmb();
632         write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
633         EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
634         falcon_writel_page(rx_queue->efx, &reg,
635                            RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
636 }
637
638 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
639 {
640         struct efx_nic *efx = rx_queue->efx;
641         return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
642                                            FALCON_RXD_RING_SIZE *
643                                            sizeof(efx_qword_t));
644 }
645
646 int falcon_init_rx(struct efx_rx_queue *rx_queue)
647 {
648         efx_oword_t rx_desc_ptr;
649         struct efx_nic *efx = rx_queue->efx;
650         int rc;
651         int is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
652         int iscsi_digest_en = is_b0;
653
654         EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
655                 rx_queue->queue, rx_queue->rxd.index,
656                 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
657
658         /* Pin RX descriptor ring */
659         rc = falcon_init_special_buffer(efx, &rx_queue->rxd);
660         if (rc)
661                 return rc;
662
663         /* Push RX descriptor ring to card */
664         EFX_POPULATE_OWORD_10(rx_desc_ptr,
665                               RX_ISCSI_DDIG_EN, iscsi_digest_en,
666                               RX_ISCSI_HDIG_EN, iscsi_digest_en,
667                               RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
668                               RX_DESCQ_EVQ_ID, rx_queue->channel->evqnum,
669                               RX_DESCQ_OWNER_ID, 0,
670                               RX_DESCQ_LABEL, rx_queue->queue,
671                               RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
672                               RX_DESCQ_TYPE, 0 /* kernel queue */ ,
673                               /* For >=B0 this is scatter so disable */
674                               RX_DESCQ_JUMBO, !is_b0,
675                               RX_DESCQ_EN, 1);
676         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
677                            rx_queue->queue);
678         return 0;
679 }
680
681 static int falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
682 {
683         struct efx_nic *efx = rx_queue->efx;
684         struct efx_channel *channel = &efx->channel[0];
685         unsigned int read_ptr, i;
686         efx_oword_t rx_flush_descq;
687
688         /* Post a flush command */
689         EFX_POPULATE_OWORD_2(rx_flush_descq,
690                              RX_FLUSH_DESCQ_CMD, 1,
691                              RX_FLUSH_DESCQ, rx_queue->queue);
692         falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
693         msleep(FALCON_FLUSH_TIMEOUT);
694
695         if (EFX_WORKAROUND_7803(efx))
696                 return 0;
697
698         /* Look for a flush completed event */
699         read_ptr = channel->eventq_read_ptr;
700         for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
701                 efx_qword_t *event = falcon_event(channel, read_ptr);
702                 int ev_code, ev_sub_code, ev_queue, ev_failed;
703                 if (!falcon_event_present(event))
704                         break;
705
706                 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
707                 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
708                 ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_DESCQ_ID);
709                 ev_failed = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_FLUSH_FAIL);
710
711                 if ((ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) &&
712                     (ev_queue == rx_queue->queue)) {
713                         if (ev_failed) {
714                                 EFX_INFO(efx, "rx queue %d flush command "
715                                          "failed\n", rx_queue->queue);
716                                 return -EAGAIN;
717                         } else {
718                                 EFX_LOG(efx, "rx queue %d flush command "
719                                         "succesful\n", rx_queue->queue);
720                                 return 0;
721                         }
722                 }
723
724                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
725         }
726
727         if (EFX_WORKAROUND_11557(efx)) {
728                 efx_oword_t reg;
729                 int enabled;
730
731                 falcon_read_table(efx, &reg, efx->type->rxd_ptr_tbl_base,
732                                   rx_queue->queue);
733                 enabled = EFX_OWORD_FIELD(reg, RX_DESCQ_EN);
734                 if (!enabled) {
735                         EFX_LOG(efx, "rx queue %d disabled without a "
736                                 "flush event seen\n", rx_queue->queue);
737                         return 0;
738                 }
739         }
740
741         EFX_ERR(efx, "rx queue %d flush command timed out\n", rx_queue->queue);
742         return -ETIMEDOUT;
743 }
744
745 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
746 {
747         efx_oword_t rx_desc_ptr;
748         struct efx_nic *efx = rx_queue->efx;
749         int i, rc;
750
751         /* Try and flush the rx queue. This may need to be repeated */
752         for (i = 0; i < 5; i++) {
753                 rc = falcon_flush_rx_queue(rx_queue);
754                 if (rc == -EAGAIN)
755                         continue;
756                 break;
757         }
758         if (rc)
759                 EFX_ERR(efx, "failed to flush rx queue %d\n", rx_queue->queue);
760
761         /* Remove RX descriptor ring from card */
762         EFX_ZERO_OWORD(rx_desc_ptr);
763         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
764                            rx_queue->queue);
765
766         /* Unpin RX descriptor ring */
767         falcon_fini_special_buffer(efx, &rx_queue->rxd);
768 }
769
770 /* Free buffers backing RX queue */
771 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
772 {
773         falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
774 }
775
776 /**************************************************************************
777  *
778  * Falcon event queue processing
779  * Event queues are processed by per-channel tasklets.
780  *
781  **************************************************************************/
782
783 /* Update a channel's event queue's read pointer (RPTR) register
784  *
785  * This writes the EVQ_RPTR_REG register for the specified channel's
786  * event queue.
787  *
788  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
789  * whereas channel->eventq_read_ptr contains the index of the "next to
790  * read" event.
791  */
792 void falcon_eventq_read_ack(struct efx_channel *channel)
793 {
794         efx_dword_t reg;
795         struct efx_nic *efx = channel->efx;
796
797         EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
798         falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
799                             channel->evqnum);
800 }
801
802 /* Use HW to insert a SW defined event */
803 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
804 {
805         efx_oword_t drv_ev_reg;
806
807         EFX_POPULATE_OWORD_2(drv_ev_reg,
808                              DRV_EV_QID, channel->evqnum,
809                              DRV_EV_DATA,
810                              EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
811         falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
812 }
813
814 /* Handle a transmit completion event
815  *
816  * Falcon batches TX completion events; the message we receive is of
817  * the form "complete all TX events up to this index".
818  */
819 static inline void falcon_handle_tx_event(struct efx_channel *channel,
820                                           efx_qword_t *event)
821 {
822         unsigned int tx_ev_desc_ptr;
823         unsigned int tx_ev_q_label;
824         struct efx_tx_queue *tx_queue;
825         struct efx_nic *efx = channel->efx;
826
827         if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
828                 /* Transmit completion */
829                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
830                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
831                 tx_queue = &efx->tx_queue[tx_ev_q_label];
832                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
833         } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
834                 /* Rewrite the FIFO write pointer */
835                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
836                 tx_queue = &efx->tx_queue[tx_ev_q_label];
837
838                 if (efx_dev_registered(efx))
839                         netif_tx_lock(efx->net_dev);
840                 falcon_notify_tx_desc(tx_queue);
841                 if (efx_dev_registered(efx))
842                         netif_tx_unlock(efx->net_dev);
843         } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
844                    EFX_WORKAROUND_10727(efx)) {
845                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
846         } else {
847                 EFX_ERR(efx, "channel %d unexpected TX event "
848                         EFX_QWORD_FMT"\n", channel->channel,
849                         EFX_QWORD_VAL(*event));
850         }
851 }
852
853 /* Check received packet's destination MAC address. */
854 static int check_dest_mac(struct efx_rx_queue *rx_queue,
855                           const efx_qword_t *event)
856 {
857         struct efx_rx_buffer *rx_buf;
858         struct efx_nic *efx = rx_queue->efx;
859         int rx_ev_desc_ptr;
860         struct ethhdr *eh;
861
862         if (efx->promiscuous)
863                 return 1;
864
865         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
866         rx_buf = efx_rx_buffer(rx_queue, rx_ev_desc_ptr);
867         eh = (struct ethhdr *)rx_buf->data;
868         if (memcmp(eh->h_dest, efx->net_dev->dev_addr, ETH_ALEN))
869                 return 0;
870         return 1;
871 }
872
873 /* Detect errors included in the rx_evt_pkt_ok bit. */
874 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
875                                     const efx_qword_t *event,
876                                     unsigned *rx_ev_pkt_ok,
877                                     int *discard, int byte_count)
878 {
879         struct efx_nic *efx = rx_queue->efx;
880         unsigned rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
881         unsigned rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
882         unsigned rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
883         unsigned rx_ev_pkt_type, rx_ev_other_err, rx_ev_pause_frm;
884         unsigned rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
885         int snap, non_ip;
886
887         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
888         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
889         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
890         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
891         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
892                                                  RX_EV_BUF_OWNER_ID_ERR);
893         rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
894         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
895                                                   RX_EV_IP_HDR_CHKSUM_ERR);
896         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
897                                                    RX_EV_TCP_UDP_CHKSUM_ERR);
898         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
899         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
900         rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
901                           0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
902         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
903
904         /* Every error apart from tobe_disc and pause_frm */
905         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
906                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
907                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
908
909         snap = (rx_ev_pkt_type == RX_EV_PKT_TYPE_LLC_DECODE) ||
910                 (rx_ev_pkt_type == RX_EV_PKT_TYPE_VLAN_LLC_DECODE);
911         non_ip = (rx_ev_hdr_type == RX_EV_HDR_TYPE_NON_IP_DECODE);
912
913         /* SFC bug 5475/8970: The Falcon XMAC incorrectly calculates the
914          * length field of an LLC frame, which sets TOBE_DISC. We could set
915          * PASS_LEN_ERR, but we want the MAC to filter out short frames (to
916          * protect the RX block).
917          *
918          * bug5475 - LLC/SNAP: Falcon identifies SNAP packets.
919          * bug8970 - LLC/noSNAP: Falcon does not provide an LLC flag.
920          *                       LLC can't encapsulate IP, so by definition
921          *                       these packets are NON_IP.
922          *
923          * Unicast mismatch will also cause TOBE_DISC, so the driver needs
924          * to check this.
925          */
926         if (EFX_WORKAROUND_5475(efx) && rx_ev_tobe_disc && (snap || non_ip)) {
927                 /* If all the other flags are zero then we can state the
928                  * entire packet is ok, which will flag to the kernel not
929                  * to recalculate checksums.
930                  */
931                 if (!(non_ip | rx_ev_other_err | rx_ev_pause_frm))
932                         *rx_ev_pkt_ok = 1;
933
934                 rx_ev_tobe_disc = 0;
935
936                 /* TOBE_DISC is set for unicast mismatch.  But given that
937                  * we can't trust TOBE_DISC here, we must validate the dest
938                  * MAC address ourselves.
939                  */
940                 if (!rx_ev_mcast_pkt && !check_dest_mac(rx_queue, event))
941                         rx_ev_tobe_disc = 1;
942         }
943
944         /* Count errors that are not in MAC stats. */
945         if (rx_ev_frm_trunc)
946                 ++rx_queue->channel->n_rx_frm_trunc;
947         else if (rx_ev_tobe_disc)
948                 ++rx_queue->channel->n_rx_tobe_disc;
949         else if (rx_ev_ip_hdr_chksum_err)
950                 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
951         else if (rx_ev_tcp_udp_chksum_err)
952                 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
953         if (rx_ev_ip_frag_err)
954                 ++rx_queue->channel->n_rx_ip_frag_err;
955
956         /* The frame must be discarded if any of these are true. */
957         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
958                     rx_ev_tobe_disc | rx_ev_pause_frm);
959
960         /* TOBE_DISC is expected on unicast mismatches; don't print out an
961          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
962          * to a FIFO overflow.
963          */
964 #ifdef EFX_ENABLE_DEBUG
965         if (rx_ev_other_err) {
966                 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
967                             EFX_QWORD_FMT "%s%s%s%s%s%s%s%s%s\n",
968                             rx_queue->queue, EFX_QWORD_VAL(*event),
969                             rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
970                             rx_ev_ip_hdr_chksum_err ?
971                             " [IP_HDR_CHKSUM_ERR]" : "",
972                             rx_ev_tcp_udp_chksum_err ?
973                             " [TCP_UDP_CHKSUM_ERR]" : "",
974                             rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
975                             rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
976                             rx_ev_drib_nib ? " [DRIB_NIB]" : "",
977                             rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
978                             rx_ev_pause_frm ? " [PAUSE]" : "",
979                             snap ? " [SNAP/LLC]" : "");
980         }
981 #endif
982
983         if (unlikely(rx_ev_eth_crc_err && EFX_WORKAROUND_10750(efx) &&
984                      efx->phy_type == PHY_TYPE_10XPRESS))
985                 tenxpress_crc_err(efx);
986 }
987
988 /* Handle receive events that are not in-order. */
989 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
990                                        unsigned index)
991 {
992         struct efx_nic *efx = rx_queue->efx;
993         unsigned expected, dropped;
994
995         expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
996         dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
997                    FALCON_RXD_RING_MASK);
998         EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
999                 dropped, index, expected);
1000
1001         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
1002                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1003 }
1004
1005 /* Handle a packet received event
1006  *
1007  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
1008  * wrong destination address
1009  * Also "is multicast" and "matches multicast filter" flags can be used to
1010  * discard non-matching multicast packets.
1011  */
1012 static inline int falcon_handle_rx_event(struct efx_channel *channel,
1013                                          const efx_qword_t *event)
1014 {
1015         unsigned int rx_ev_q_label, rx_ev_desc_ptr, rx_ev_byte_cnt;
1016         unsigned int rx_ev_pkt_ok, rx_ev_hdr_type, rx_ev_mcast_pkt;
1017         unsigned expected_ptr;
1018         int discard = 0, checksummed;
1019         struct efx_rx_queue *rx_queue;
1020         struct efx_nic *efx = channel->efx;
1021
1022         /* Basic packet information */
1023         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
1024         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
1025         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
1026         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
1027         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
1028
1029         rx_ev_q_label = EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL);
1030         rx_queue = &efx->rx_queue[rx_ev_q_label];
1031
1032         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
1033         expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
1034         if (unlikely(rx_ev_desc_ptr != expected_ptr)) {
1035                 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
1036                 return rx_ev_q_label;
1037         }
1038
1039         if (likely(rx_ev_pkt_ok)) {
1040                 /* If packet is marked as OK and packet type is TCP/IPv4 or
1041                  * UDP/IPv4, then we can rely on the hardware checksum.
1042                  */
1043                 checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
1044         } else {
1045                 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
1046                                         &discard, rx_ev_byte_cnt);
1047                 checksummed = 0;
1048         }
1049
1050         /* Detect multicast packets that didn't match the filter */
1051         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
1052         if (rx_ev_mcast_pkt) {
1053                 unsigned int rx_ev_mcast_hash_match =
1054                         EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
1055
1056                 if (unlikely(!rx_ev_mcast_hash_match))
1057                         discard = 1;
1058         }
1059
1060         /* Handle received packet */
1061         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
1062                       checksummed, discard);
1063
1064         return rx_ev_q_label;
1065 }
1066
1067 /* Global events are basically PHY events */
1068 static void falcon_handle_global_event(struct efx_channel *channel,
1069                                        efx_qword_t *event)
1070 {
1071         struct efx_nic *efx = channel->efx;
1072         int is_phy_event = 0, handled = 0;
1073
1074         /* Check for interrupt on either port.  Some boards have a
1075          * single PHY wired to the interrupt line for port 1. */
1076         if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
1077             EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
1078             EFX_QWORD_FIELD(*event, XG_PHY_INTR))
1079                 is_phy_event = 1;
1080
1081         if ((falcon_rev(efx) >= FALCON_REV_B0) &&
1082             EFX_OWORD_FIELD(*event, XG_MNT_INTR_B0))
1083                 is_phy_event = 1;
1084
1085         if (is_phy_event) {
1086                 efx->phy_op->clear_interrupt(efx);
1087                 queue_work(efx->workqueue, &efx->reconfigure_work);
1088                 handled = 1;
1089         }
1090
1091         if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
1092                 EFX_ERR(efx, "channel %d seen global RX_RESET "
1093                         "event. Resetting.\n", channel->channel);
1094
1095                 atomic_inc(&efx->rx_reset);
1096                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1097                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1098                 handled = 1;
1099         }
1100
1101         if (!handled)
1102                 EFX_ERR(efx, "channel %d unknown global event "
1103                         EFX_QWORD_FMT "\n", channel->channel,
1104                         EFX_QWORD_VAL(*event));
1105 }
1106
1107 static void falcon_handle_driver_event(struct efx_channel *channel,
1108                                        efx_qword_t *event)
1109 {
1110         struct efx_nic *efx = channel->efx;
1111         unsigned int ev_sub_code;
1112         unsigned int ev_sub_data;
1113
1114         ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
1115         ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
1116
1117         switch (ev_sub_code) {
1118         case TX_DESCQ_FLS_DONE_EV_DECODE:
1119                 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
1120                           channel->channel, ev_sub_data);
1121                 break;
1122         case RX_DESCQ_FLS_DONE_EV_DECODE:
1123                 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
1124                           channel->channel, ev_sub_data);
1125                 break;
1126         case EVQ_INIT_DONE_EV_DECODE:
1127                 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
1128                         channel->channel, ev_sub_data);
1129                 break;
1130         case SRM_UPD_DONE_EV_DECODE:
1131                 EFX_TRACE(efx, "channel %d SRAM update done\n",
1132                           channel->channel);
1133                 break;
1134         case WAKE_UP_EV_DECODE:
1135                 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
1136                           channel->channel, ev_sub_data);
1137                 break;
1138         case TIMER_EV_DECODE:
1139                 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
1140                           channel->channel, ev_sub_data);
1141                 break;
1142         case RX_RECOVERY_EV_DECODE:
1143                 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
1144                         "Resetting.\n", channel->channel);
1145                 atomic_inc(&efx->rx_reset);
1146                 efx_schedule_reset(efx,
1147                                    EFX_WORKAROUND_6555(efx) ?
1148                                    RESET_TYPE_RX_RECOVERY :
1149                                    RESET_TYPE_DISABLE);
1150                 break;
1151         case RX_DSC_ERROR_EV_DECODE:
1152                 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
1153                         " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1154                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1155                 break;
1156         case TX_DSC_ERROR_EV_DECODE:
1157                 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
1158                         " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1159                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1160                 break;
1161         default:
1162                 EFX_TRACE(efx, "channel %d unknown driver event code %d "
1163                           "data %04x\n", channel->channel, ev_sub_code,
1164                           ev_sub_data);
1165                 break;
1166         }
1167 }
1168
1169 int falcon_process_eventq(struct efx_channel *channel, int *rx_quota)
1170 {
1171         unsigned int read_ptr;
1172         efx_qword_t event, *p_event;
1173         int ev_code;
1174         int rxq;
1175         int rxdmaqs = 0;
1176
1177         read_ptr = channel->eventq_read_ptr;
1178
1179         do {
1180                 p_event = falcon_event(channel, read_ptr);
1181                 event = *p_event;
1182
1183                 if (!falcon_event_present(&event))
1184                         /* End of events */
1185                         break;
1186
1187                 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1188                           channel->channel, EFX_QWORD_VAL(event));
1189
1190                 /* Clear this event by marking it all ones */
1191                 EFX_SET_QWORD(*p_event);
1192
1193                 ev_code = EFX_QWORD_FIELD(event, EV_CODE);
1194
1195                 switch (ev_code) {
1196                 case RX_IP_EV_DECODE:
1197                         rxq = falcon_handle_rx_event(channel, &event);
1198                         rxdmaqs |= (1 << rxq);
1199                         (*rx_quota)--;
1200                         break;
1201                 case TX_IP_EV_DECODE:
1202                         falcon_handle_tx_event(channel, &event);
1203                         break;
1204                 case DRV_GEN_EV_DECODE:
1205                         channel->eventq_magic
1206                                 = EFX_QWORD_FIELD(event, EVQ_MAGIC);
1207                         EFX_LOG(channel->efx, "channel %d received generated "
1208                                 "event "EFX_QWORD_FMT"\n", channel->channel,
1209                                 EFX_QWORD_VAL(event));
1210                         break;
1211                 case GLOBAL_EV_DECODE:
1212                         falcon_handle_global_event(channel, &event);
1213                         break;
1214                 case DRIVER_EV_DECODE:
1215                         falcon_handle_driver_event(channel, &event);
1216                         break;
1217                 default:
1218                         EFX_ERR(channel->efx, "channel %d unknown event type %d"
1219                                 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1220                                 ev_code, EFX_QWORD_VAL(event));
1221                 }
1222
1223                 /* Increment read pointer */
1224                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1225
1226         } while (*rx_quota);
1227
1228         channel->eventq_read_ptr = read_ptr;
1229         return rxdmaqs;
1230 }
1231
1232 void falcon_set_int_moderation(struct efx_channel *channel)
1233 {
1234         efx_dword_t timer_cmd;
1235         struct efx_nic *efx = channel->efx;
1236
1237         /* Set timer register */
1238         if (channel->irq_moderation) {
1239                 /* Round to resolution supported by hardware.  The value we
1240                  * program is based at 0.  So actual interrupt moderation
1241                  * achieved is ((x + 1) * res).
1242                  */
1243                 unsigned int res = 5;
1244                 channel->irq_moderation -= (channel->irq_moderation % res);
1245                 if (channel->irq_moderation < res)
1246                         channel->irq_moderation = res;
1247                 EFX_POPULATE_DWORD_2(timer_cmd,
1248                                      TIMER_MODE, TIMER_MODE_INT_HLDOFF,
1249                                      TIMER_VAL,
1250                                      (channel->irq_moderation / res) - 1);
1251         } else {
1252                 EFX_POPULATE_DWORD_2(timer_cmd,
1253                                      TIMER_MODE, TIMER_MODE_DIS,
1254                                      TIMER_VAL, 0);
1255         }
1256         falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
1257                                   channel->evqnum);
1258
1259 }
1260
1261 /* Allocate buffer table entries for event queue */
1262 int falcon_probe_eventq(struct efx_channel *channel)
1263 {
1264         struct efx_nic *efx = channel->efx;
1265         unsigned int evq_size;
1266
1267         evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
1268         return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
1269 }
1270
1271 int falcon_init_eventq(struct efx_channel *channel)
1272 {
1273         efx_oword_t evq_ptr;
1274         struct efx_nic *efx = channel->efx;
1275         int rc;
1276
1277         EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1278                 channel->channel, channel->eventq.index,
1279                 channel->eventq.index + channel->eventq.entries - 1);
1280
1281         /* Pin event queue buffer */
1282         rc = falcon_init_special_buffer(efx, &channel->eventq);
1283         if (rc)
1284                 return rc;
1285
1286         /* Fill event queue with all ones (i.e. empty events) */
1287         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1288
1289         /* Push event queue to card */
1290         EFX_POPULATE_OWORD_3(evq_ptr,
1291                              EVQ_EN, 1,
1292                              EVQ_SIZE, FALCON_EVQ_ORDER,
1293                              EVQ_BUF_BASE_ID, channel->eventq.index);
1294         falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1295                            channel->evqnum);
1296
1297         falcon_set_int_moderation(channel);
1298
1299         return 0;
1300 }
1301
1302 void falcon_fini_eventq(struct efx_channel *channel)
1303 {
1304         efx_oword_t eventq_ptr;
1305         struct efx_nic *efx = channel->efx;
1306
1307         /* Remove event queue from card */
1308         EFX_ZERO_OWORD(eventq_ptr);
1309         falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1310                            channel->evqnum);
1311
1312         /* Unpin event queue */
1313         falcon_fini_special_buffer(efx, &channel->eventq);
1314 }
1315
1316 /* Free buffers backing event queue */
1317 void falcon_remove_eventq(struct efx_channel *channel)
1318 {
1319         falcon_free_special_buffer(channel->efx, &channel->eventq);
1320 }
1321
1322
1323 /* Generates a test event on the event queue.  A subsequent call to
1324  * process_eventq() should pick up the event and place the value of
1325  * "magic" into channel->eventq_magic;
1326  */
1327 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1328 {
1329         efx_qword_t test_event;
1330
1331         EFX_POPULATE_QWORD_2(test_event,
1332                              EV_CODE, DRV_GEN_EV_DECODE,
1333                              EVQ_MAGIC, magic);
1334         falcon_generate_event(channel, &test_event);
1335 }
1336
1337
1338 /**************************************************************************
1339  *
1340  * Falcon hardware interrupts
1341  * The hardware interrupt handler does very little work; all the event
1342  * queue processing is carried out by per-channel tasklets.
1343  *
1344  **************************************************************************/
1345
1346 /* Enable/disable/generate Falcon interrupts */
1347 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1348                                      int force)
1349 {
1350         efx_oword_t int_en_reg_ker;
1351
1352         EFX_POPULATE_OWORD_2(int_en_reg_ker,
1353                              KER_INT_KER, force,
1354                              DRV_INT_EN_KER, enabled);
1355         falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
1356 }
1357
1358 void falcon_enable_interrupts(struct efx_nic *efx)
1359 {
1360         efx_oword_t int_adr_reg_ker;
1361         struct efx_channel *channel;
1362
1363         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1364         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1365
1366         /* Program address */
1367         EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1368                              NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
1369                              INT_ADR_KER, efx->irq_status.dma_addr);
1370         falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
1371
1372         /* Enable interrupts */
1373         falcon_interrupts(efx, 1, 0);
1374
1375         /* Force processing of all the channels to get the EVQ RPTRs up to
1376            date */
1377         efx_for_each_channel_with_interrupt(channel, efx)
1378                 efx_schedule_channel(channel);
1379 }
1380
1381 void falcon_disable_interrupts(struct efx_nic *efx)
1382 {
1383         /* Disable interrupts */
1384         falcon_interrupts(efx, 0, 0);
1385 }
1386
1387 /* Generate a Falcon test interrupt
1388  * Interrupt must already have been enabled, otherwise nasty things
1389  * may happen.
1390  */
1391 void falcon_generate_interrupt(struct efx_nic *efx)
1392 {
1393         falcon_interrupts(efx, 1, 1);
1394 }
1395
1396 /* Acknowledge a legacy interrupt from Falcon
1397  *
1398  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1399  *
1400  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1401  * BIU. Interrupt acknowledge is read sensitive so must write instead
1402  * (then read to ensure the BIU collector is flushed)
1403  *
1404  * NB most hardware supports MSI interrupts
1405  */
1406 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1407 {
1408         efx_dword_t reg;
1409
1410         EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
1411         falcon_writel(efx, &reg, INT_ACK_REG_KER_A1);
1412         falcon_readl(efx, &reg, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
1413 }
1414
1415 /* Process a fatal interrupt
1416  * Disable bus mastering ASAP and schedule a reset
1417  */
1418 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1419 {
1420         struct falcon_nic_data *nic_data = efx->nic_data;
1421         efx_oword_t *int_ker = efx->irq_status.addr;
1422         efx_oword_t fatal_intr;
1423         int error, mem_perr;
1424         static int n_int_errors;
1425
1426         falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
1427         error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
1428
1429         EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1430                 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1431                 EFX_OWORD_VAL(fatal_intr),
1432                 error ? "disabling bus mastering" : "no recognised error");
1433         if (error == 0)
1434                 goto out;
1435
1436         /* If this is a memory parity error dump which blocks are offending */
1437         mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
1438         if (mem_perr) {
1439                 efx_oword_t reg;
1440                 falcon_read(efx, &reg, MEM_STAT_REG_KER);
1441                 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1442                         EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1443         }
1444
1445         /* Disable DMA bus mastering on both devices */
1446         pci_disable_device(efx->pci_dev);
1447         if (FALCON_IS_DUAL_FUNC(efx))
1448                 pci_disable_device(nic_data->pci_dev2);
1449
1450         if (++n_int_errors < FALCON_MAX_INT_ERRORS) {
1451                 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1452                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1453         } else {
1454                 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1455                         "NIC will be disabled\n");
1456                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1457         }
1458 out:
1459         return IRQ_HANDLED;
1460 }
1461
1462 /* Handle a legacy interrupt from Falcon
1463  * Acknowledges the interrupt and schedule event queue processing.
1464  */
1465 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1466 {
1467         struct efx_nic *efx = dev_id;
1468         efx_oword_t *int_ker = efx->irq_status.addr;
1469         struct efx_channel *channel;
1470         efx_dword_t reg;
1471         u32 queues;
1472         int syserr;
1473
1474         /* Read the ISR which also ACKs the interrupts */
1475         falcon_readl(efx, &reg, INT_ISR0_B0);
1476         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1477
1478         /* Check to see if we have a serious error condition */
1479         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1480         if (unlikely(syserr))
1481                 return falcon_fatal_interrupt(efx);
1482
1483         if (queues == 0)
1484                 return IRQ_NONE;
1485
1486         efx->last_irq_cpu = raw_smp_processor_id();
1487         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1488                   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1489
1490         /* Schedule processing of any interrupting queues */
1491         channel = &efx->channel[0];
1492         while (queues) {
1493                 if (queues & 0x01)
1494                         efx_schedule_channel(channel);
1495                 channel++;
1496                 queues >>= 1;
1497         }
1498
1499         return IRQ_HANDLED;
1500 }
1501
1502
1503 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1504 {
1505         struct efx_nic *efx = dev_id;
1506         efx_oword_t *int_ker = efx->irq_status.addr;
1507         struct efx_channel *channel;
1508         int syserr;
1509         int queues;
1510
1511         /* Check to see if this is our interrupt.  If it isn't, we
1512          * exit without having touched the hardware.
1513          */
1514         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1515                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1516                           raw_smp_processor_id());
1517                 return IRQ_NONE;
1518         }
1519         efx->last_irq_cpu = raw_smp_processor_id();
1520         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1521                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1522
1523         /* Check to see if we have a serious error condition */
1524         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1525         if (unlikely(syserr))
1526                 return falcon_fatal_interrupt(efx);
1527
1528         /* Determine interrupting queues, clear interrupt status
1529          * register and acknowledge the device interrupt.
1530          */
1531         BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1532         queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1533         EFX_ZERO_OWORD(*int_ker);
1534         wmb(); /* Ensure the vector is cleared before interrupt ack */
1535         falcon_irq_ack_a1(efx);
1536
1537         /* Schedule processing of any interrupting queues */
1538         channel = &efx->channel[0];
1539         while (queues) {
1540                 if (queues & 0x01)
1541                         efx_schedule_channel(channel);
1542                 channel++;
1543                 queues >>= 1;
1544         }
1545
1546         return IRQ_HANDLED;
1547 }
1548
1549 /* Handle an MSI interrupt from Falcon
1550  *
1551  * Handle an MSI hardware interrupt.  This routine schedules event
1552  * queue processing.  No interrupt acknowledgement cycle is necessary.
1553  * Also, we never need to check that the interrupt is for us, since
1554  * MSI interrupts cannot be shared.
1555  */
1556 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1557 {
1558         struct efx_channel *channel = dev_id;
1559         struct efx_nic *efx = channel->efx;
1560         efx_oword_t *int_ker = efx->irq_status.addr;
1561         int syserr;
1562
1563         efx->last_irq_cpu = raw_smp_processor_id();
1564         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1565                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1566
1567         /* Check to see if we have a serious error condition */
1568         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1569         if (unlikely(syserr))
1570                 return falcon_fatal_interrupt(efx);
1571
1572         /* Schedule processing of the channel */
1573         efx_schedule_channel(channel);
1574
1575         return IRQ_HANDLED;
1576 }
1577
1578
1579 /* Setup RSS indirection table.
1580  * This maps from the hash value of the packet to RXQ
1581  */
1582 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1583 {
1584         int i = 0;
1585         unsigned long offset;
1586         efx_dword_t dword;
1587
1588         if (falcon_rev(efx) < FALCON_REV_B0)
1589                 return;
1590
1591         for (offset = RX_RSS_INDIR_TBL_B0;
1592              offset < RX_RSS_INDIR_TBL_B0 + 0x800;
1593              offset += 0x10) {
1594                 EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
1595                                      i % efx->rss_queues);
1596                 falcon_writel(efx, &dword, offset);
1597                 i++;
1598         }
1599 }
1600
1601 /* Hook interrupt handler(s)
1602  * Try MSI and then legacy interrupts.
1603  */
1604 int falcon_init_interrupt(struct efx_nic *efx)
1605 {
1606         struct efx_channel *channel;
1607         int rc;
1608
1609         if (!EFX_INT_MODE_USE_MSI(efx)) {
1610                 irq_handler_t handler;
1611                 if (falcon_rev(efx) >= FALCON_REV_B0)
1612                         handler = falcon_legacy_interrupt_b0;
1613                 else
1614                         handler = falcon_legacy_interrupt_a1;
1615
1616                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1617                                  efx->name, efx);
1618                 if (rc) {
1619                         EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1620                                 efx->pci_dev->irq);
1621                         goto fail1;
1622                 }
1623                 return 0;
1624         }
1625
1626         /* Hook MSI or MSI-X interrupt */
1627         efx_for_each_channel_with_interrupt(channel, efx) {
1628                 rc = request_irq(channel->irq, falcon_msi_interrupt,
1629                                  IRQF_PROBE_SHARED, /* Not shared */
1630                                  efx->name, channel);
1631                 if (rc) {
1632                         EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1633                         goto fail2;
1634                 }
1635         }
1636
1637         return 0;
1638
1639  fail2:
1640         efx_for_each_channel_with_interrupt(channel, efx)
1641                 free_irq(channel->irq, channel);
1642  fail1:
1643         return rc;
1644 }
1645
1646 void falcon_fini_interrupt(struct efx_nic *efx)
1647 {
1648         struct efx_channel *channel;
1649         efx_oword_t reg;
1650
1651         /* Disable MSI/MSI-X interrupts */
1652         efx_for_each_channel_with_interrupt(channel, efx) {
1653                 if (channel->irq)
1654                         free_irq(channel->irq, channel);
1655         }
1656
1657         /* ACK legacy interrupt */
1658         if (falcon_rev(efx) >= FALCON_REV_B0)
1659                 falcon_read(efx, &reg, INT_ISR0_B0);
1660         else
1661                 falcon_irq_ack_a1(efx);
1662
1663         /* Disable legacy interrupt */
1664         if (efx->legacy_irq)
1665                 free_irq(efx->legacy_irq, efx);
1666 }
1667
1668 /**************************************************************************
1669  *
1670  * EEPROM/flash
1671  *
1672  **************************************************************************
1673  */
1674
1675 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1676
1677 /* Wait for SPI command completion */
1678 static int falcon_spi_wait(struct efx_nic *efx)
1679 {
1680         efx_oword_t reg;
1681         int cmd_en, timer_active;
1682         int count;
1683
1684         count = 0;
1685         do {
1686                 falcon_read(efx, &reg, EE_SPI_HCMD_REG_KER);
1687                 cmd_en = EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN);
1688                 timer_active = EFX_OWORD_FIELD(reg, EE_WR_TIMER_ACTIVE);
1689                 if (!cmd_en && !timer_active)
1690                         return 0;
1691                 udelay(10);
1692         } while (++count < 10000); /* wait upto 100msec */
1693         EFX_ERR(efx, "timed out waiting for SPI\n");
1694         return -ETIMEDOUT;
1695 }
1696
1697 static int
1698 falcon_spi_read(struct efx_nic *efx, int device_id, unsigned int command,
1699                 unsigned int address, unsigned int addr_len,
1700                 void *data, unsigned int len)
1701 {
1702         efx_oword_t reg;
1703         int rc;
1704
1705         BUG_ON(len > FALCON_SPI_MAX_LEN);
1706
1707         /* Check SPI not currently being accessed */
1708         rc = falcon_spi_wait(efx);
1709         if (rc)
1710                 return rc;
1711
1712         /* Program address register */
1713         EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
1714         falcon_write(efx, &reg, EE_SPI_HADR_REG_KER);
1715
1716         /* Issue read command */
1717         EFX_POPULATE_OWORD_7(reg,
1718                              EE_SPI_HCMD_CMD_EN, 1,
1719                              EE_SPI_HCMD_SF_SEL, device_id,
1720                              EE_SPI_HCMD_DABCNT, len,
1721                              EE_SPI_HCMD_READ, EE_SPI_READ,
1722                              EE_SPI_HCMD_DUBCNT, 0,
1723                              EE_SPI_HCMD_ADBCNT, addr_len,
1724                              EE_SPI_HCMD_ENC, command);
1725         falcon_write(efx, &reg, EE_SPI_HCMD_REG_KER);
1726
1727         /* Wait for read to complete */
1728         rc = falcon_spi_wait(efx);
1729         if (rc)
1730                 return rc;
1731
1732         /* Read data */
1733         falcon_read(efx, &reg, EE_SPI_HDATA_REG_KER);
1734         memcpy(data, &reg, len);
1735         return 0;
1736 }
1737
1738 /**************************************************************************
1739  *
1740  * MAC wrapper
1741  *
1742  **************************************************************************
1743  */
1744 void falcon_drain_tx_fifo(struct efx_nic *efx)
1745 {
1746         efx_oword_t temp;
1747         int count;
1748
1749         if ((falcon_rev(efx) < FALCON_REV_B0) ||
1750             (efx->loopback_mode != LOOPBACK_NONE))
1751                 return;
1752
1753         falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
1754         /* There is no point in draining more than once */
1755         if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
1756                 return;
1757
1758         /* MAC stats will fail whilst the TX fifo is draining. Serialise
1759          * the drain sequence with the statistics fetch */
1760         spin_lock(&efx->stats_lock);
1761
1762         EFX_SET_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0, 1);
1763         falcon_write(efx, &temp, MAC0_CTRL_REG_KER);
1764
1765         /* Reset the MAC and EM block. */
1766         falcon_read(efx, &temp, GLB_CTL_REG_KER);
1767         EFX_SET_OWORD_FIELD(temp, RST_XGTX, 1);
1768         EFX_SET_OWORD_FIELD(temp, RST_XGRX, 1);
1769         EFX_SET_OWORD_FIELD(temp, RST_EM, 1);
1770         falcon_write(efx, &temp, GLB_CTL_REG_KER);
1771
1772         count = 0;
1773         while (1) {
1774                 falcon_read(efx, &temp, GLB_CTL_REG_KER);
1775                 if (!EFX_OWORD_FIELD(temp, RST_XGTX) &&
1776                     !EFX_OWORD_FIELD(temp, RST_XGRX) &&
1777                     !EFX_OWORD_FIELD(temp, RST_EM)) {
1778                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1779                                 count);
1780                         break;
1781                 }
1782                 if (count > 20) {
1783                         EFX_ERR(efx, "MAC reset failed\n");
1784                         break;
1785                 }
1786                 count++;
1787                 udelay(10);
1788         }
1789
1790         spin_unlock(&efx->stats_lock);
1791
1792         /* If we've reset the EM block and the link is up, then
1793          * we'll have to kick the XAUI link so the PHY can recover */
1794         if (efx->link_up && EFX_WORKAROUND_5147(efx))
1795                 falcon_reset_xaui(efx);
1796 }
1797
1798 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1799 {
1800         efx_oword_t temp;
1801
1802         if (falcon_rev(efx) < FALCON_REV_B0)
1803                 return;
1804
1805         /* Isolate the MAC -> RX */
1806         falcon_read(efx, &temp, RX_CFG_REG_KER);
1807         EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 0);
1808         falcon_write(efx, &temp, RX_CFG_REG_KER);
1809
1810         if (!efx->link_up)
1811                 falcon_drain_tx_fifo(efx);
1812 }
1813
1814 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1815 {
1816         efx_oword_t reg;
1817         int link_speed;
1818         unsigned int tx_fc;
1819
1820         if (efx->link_options & GM_LPA_10000)
1821                 link_speed = 0x3;
1822         else if (efx->link_options & GM_LPA_1000)
1823                 link_speed = 0x2;
1824         else if (efx->link_options & GM_LPA_100)
1825                 link_speed = 0x1;
1826         else
1827                 link_speed = 0x0;
1828         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1829          * as advertised.  Disable to ensure packets are not
1830          * indefinitely held and TX queue can be flushed at any point
1831          * while the link is down. */
1832         EFX_POPULATE_OWORD_5(reg,
1833                              MAC_XOFF_VAL, 0xffff /* max pause time */,
1834                              MAC_BCAD_ACPT, 1,
1835                              MAC_UC_PROM, efx->promiscuous,
1836                              MAC_LINK_STATUS, 1, /* always set */
1837                              MAC_SPEED, link_speed);
1838         /* On B0, MAC backpressure can be disabled and packets get
1839          * discarded. */
1840         if (falcon_rev(efx) >= FALCON_REV_B0) {
1841                 EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
1842                                     !efx->link_up);
1843         }
1844
1845         falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
1846
1847         /* Restore the multicast hash registers. */
1848         falcon_set_multicast_hash(efx);
1849
1850         /* Transmission of pause frames when RX crosses the threshold is
1851          * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1852          * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1853         tx_fc = (efx->flow_control & EFX_FC_TX) ? 1 : 0;
1854         falcon_read(efx, &reg, RX_CFG_REG_KER);
1855         EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
1856
1857         /* Unisolate the MAC -> RX */
1858         if (falcon_rev(efx) >= FALCON_REV_B0)
1859                 EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
1860         falcon_write(efx, &reg, RX_CFG_REG_KER);
1861 }
1862
1863 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
1864 {
1865         efx_oword_t reg;
1866         u32 *dma_done;
1867         int i;
1868
1869         if (disable_dma_stats)
1870                 return 0;
1871
1872         /* Statistics fetch will fail if the MAC is in TX drain */
1873         if (falcon_rev(efx) >= FALCON_REV_B0) {
1874                 efx_oword_t temp;
1875                 falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
1876                 if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
1877                         return 0;
1878         }
1879
1880         dma_done = (efx->stats_buffer.addr + done_offset);
1881         *dma_done = FALCON_STATS_NOT_DONE;
1882         wmb(); /* ensure done flag is clear */
1883
1884         /* Initiate DMA transfer of stats */
1885         EFX_POPULATE_OWORD_2(reg,
1886                              MAC_STAT_DMA_CMD, 1,
1887                              MAC_STAT_DMA_ADR,
1888                              efx->stats_buffer.dma_addr);
1889         falcon_write(efx, &reg, MAC0_STAT_DMA_REG_KER);
1890
1891         /* Wait for transfer to complete */
1892         for (i = 0; i < 400; i++) {
1893                 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE)
1894                         return 0;
1895                 udelay(10);
1896         }
1897
1898         EFX_ERR(efx, "timed out waiting for statistics\n");
1899         return -ETIMEDOUT;
1900 }
1901
1902 /**************************************************************************
1903  *
1904  * PHY access via GMII
1905  *
1906  **************************************************************************
1907  */
1908
1909 /* Use the top bit of the MII PHY id to indicate the PHY type
1910  * (1G/10G), with the remaining bits as the actual PHY id.
1911  *
1912  * This allows us to avoid leaking information from the mii_if_info
1913  * structure into other data structures.
1914  */
1915 #define FALCON_PHY_ID_ID_WIDTH  EFX_WIDTH(MD_PRT_DEV_ADR)
1916 #define FALCON_PHY_ID_ID_MASK   ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
1917 #define FALCON_PHY_ID_WIDTH     (FALCON_PHY_ID_ID_WIDTH + 1)
1918 #define FALCON_PHY_ID_MASK      ((1 << FALCON_PHY_ID_WIDTH) - 1)
1919 #define FALCON_PHY_ID_10G       (1 << (FALCON_PHY_ID_WIDTH - 1))
1920
1921
1922 /* Packing the clause 45 port and device fields into a single value */
1923 #define MD_PRT_ADR_COMP_LBN   (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
1924 #define MD_PRT_ADR_COMP_WIDTH  MD_PRT_ADR_WIDTH
1925 #define MD_DEV_ADR_COMP_LBN    0
1926 #define MD_DEV_ADR_COMP_WIDTH  MD_DEV_ADR_WIDTH
1927
1928
1929 /* Wait for GMII access to complete */
1930 static int falcon_gmii_wait(struct efx_nic *efx)
1931 {
1932         efx_dword_t md_stat;
1933         int count;
1934
1935         for (count = 0; count < 1000; count++) {        /* wait upto 10ms */
1936                 falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
1937                 if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
1938                         if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
1939                             EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
1940                                 EFX_ERR(efx, "error from GMII access "
1941                                         EFX_DWORD_FMT"\n",
1942                                         EFX_DWORD_VAL(md_stat));
1943                                 return -EIO;
1944                         }
1945                         return 0;
1946                 }
1947                 udelay(10);
1948         }
1949         EFX_ERR(efx, "timed out waiting for GMII\n");
1950         return -ETIMEDOUT;
1951 }
1952
1953 /* Writes a GMII register of a PHY connected to Falcon using MDIO. */
1954 static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
1955                               int addr, int value)
1956 {
1957         struct efx_nic *efx = net_dev->priv;
1958         unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
1959         efx_oword_t reg;
1960
1961         /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
1962          * chosen so that the only current user, Falcon, can take the
1963          * packed value and use them directly.
1964          * Fail to build if this assumption is broken.
1965          */
1966         BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
1967         BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
1968         BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
1969         BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
1970
1971         if (phy_id2 == PHY_ADDR_INVALID)
1972                 return;
1973
1974         /* See falcon_mdio_read for an explanation. */
1975         if (!(phy_id & FALCON_PHY_ID_10G)) {
1976                 int mmd = ffs(efx->phy_op->mmds) - 1;
1977                 EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
1978                 phy_id2 = mdio_clause45_pack(phy_id2, mmd)
1979                         & FALCON_PHY_ID_ID_MASK;
1980         }
1981
1982         EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
1983                     addr, value);
1984
1985         spin_lock_bh(&efx->phy_lock);
1986
1987         /* Check MII not currently being accessed */
1988         if (falcon_gmii_wait(efx) != 0)
1989                 goto out;
1990
1991         /* Write the address/ID register */
1992         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
1993         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
1994
1995         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
1996         falcon_write(efx, &reg, MD_ID_REG_KER);
1997
1998         /* Write data */
1999         EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
2000         falcon_write(efx, &reg, MD_TXD_REG_KER);
2001
2002         EFX_POPULATE_OWORD_2(reg,
2003                              MD_WRC, 1,
2004                              MD_GC, 0);
2005         falcon_write(efx, &reg, MD_CS_REG_KER);
2006
2007         /* Wait for data to be written */
2008         if (falcon_gmii_wait(efx) != 0) {
2009                 /* Abort the write operation */
2010                 EFX_POPULATE_OWORD_2(reg,
2011                                      MD_WRC, 0,
2012                                      MD_GC, 1);
2013                 falcon_write(efx, &reg, MD_CS_REG_KER);
2014                 udelay(10);
2015         }
2016
2017  out:
2018         spin_unlock_bh(&efx->phy_lock);
2019 }
2020
2021 /* Reads a GMII register from a PHY connected to Falcon.  If no value
2022  * could be read, -1 will be returned. */
2023 static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
2024 {
2025         struct efx_nic *efx = net_dev->priv;
2026         unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
2027         efx_oword_t reg;
2028         int value = -1;
2029
2030         if (phy_addr == PHY_ADDR_INVALID)
2031                 return -1;
2032
2033         /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
2034          * but the generic Linux code does not make any distinction or have
2035          * any state for this.
2036          * We spot the case where someone tried to talk 22 to a 45 PHY and
2037          * redirect the request to the lowest numbered MMD as a clause45
2038          * request. This is enough to allow simple queries like id and link
2039          * state to succeed. TODO: We may need to do more in future.
2040          */
2041         if (!(phy_id & FALCON_PHY_ID_10G)) {
2042                 int mmd = ffs(efx->phy_op->mmds) - 1;
2043                 EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
2044                 phy_addr = mdio_clause45_pack(phy_addr, mmd)
2045                         & FALCON_PHY_ID_ID_MASK;
2046         }
2047
2048         spin_lock_bh(&efx->phy_lock);
2049
2050         /* Check MII not currently being accessed */
2051         if (falcon_gmii_wait(efx) != 0)
2052                 goto out;
2053
2054         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2055         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2056
2057         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
2058         falcon_write(efx, &reg, MD_ID_REG_KER);
2059
2060         /* Request data to be read */
2061         EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
2062         falcon_write(efx, &reg, MD_CS_REG_KER);
2063
2064         /* Wait for data to become available */
2065         value = falcon_gmii_wait(efx);
2066         if (value == 0) {
2067                 falcon_read(efx, &reg, MD_RXD_REG_KER);
2068                 value = EFX_OWORD_FIELD(reg, MD_RXD);
2069                 EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
2070                             phy_id, addr, value);
2071         } else {
2072                 /* Abort the read operation */
2073                 EFX_POPULATE_OWORD_2(reg,
2074                                      MD_RIC, 0,
2075                                      MD_GC, 1);
2076                 falcon_write(efx, &reg, MD_CS_REG_KER);
2077
2078                 EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
2079                         "error %d\n", phy_id, addr, value);
2080         }
2081
2082  out:
2083         spin_unlock_bh(&efx->phy_lock);
2084
2085         return value;
2086 }
2087
2088 static void falcon_init_mdio(struct mii_if_info *gmii)
2089 {
2090         gmii->mdio_read = falcon_mdio_read;
2091         gmii->mdio_write = falcon_mdio_write;
2092         gmii->phy_id_mask = FALCON_PHY_ID_MASK;
2093         gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
2094 }
2095
2096 static int falcon_probe_phy(struct efx_nic *efx)
2097 {
2098         switch (efx->phy_type) {
2099         case PHY_TYPE_10XPRESS:
2100                 efx->phy_op = &falcon_tenxpress_phy_ops;
2101                 break;
2102         case PHY_TYPE_XFP:
2103                 efx->phy_op = &falcon_xfp_phy_ops;
2104                 break;
2105         default:
2106                 EFX_ERR(efx, "Unknown PHY type %d\n",
2107                         efx->phy_type);
2108                 return -1;
2109         }
2110
2111         efx->loopback_modes = LOOPBACKS_10G_INTERNAL | efx->phy_op->loopbacks;
2112         return 0;
2113 }
2114
2115 /* This call is responsible for hooking in the MAC and PHY operations */
2116 int falcon_probe_port(struct efx_nic *efx)
2117 {
2118         int rc;
2119
2120         /* Hook in PHY operations table */
2121         rc = falcon_probe_phy(efx);
2122         if (rc)
2123                 return rc;
2124
2125         /* Set up GMII structure for PHY */
2126         efx->mii.supports_gmii = 1;
2127         falcon_init_mdio(&efx->mii);
2128
2129         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2130         if (falcon_rev(efx) >= FALCON_REV_B0)
2131                 efx->flow_control = EFX_FC_RX | EFX_FC_TX;
2132         else
2133                 efx->flow_control = EFX_FC_RX;
2134
2135         /* Allocate buffer for stats */
2136         rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2137                                  FALCON_MAC_STATS_SIZE);
2138         if (rc)
2139                 return rc;
2140         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
2141                 (unsigned long long)efx->stats_buffer.dma_addr,
2142                 efx->stats_buffer.addr,
2143                 virt_to_phys(efx->stats_buffer.addr));
2144
2145         return 0;
2146 }
2147
2148 void falcon_remove_port(struct efx_nic *efx)
2149 {
2150         falcon_free_buffer(efx, &efx->stats_buffer);
2151 }
2152
2153 /**************************************************************************
2154  *
2155  * Multicast filtering
2156  *
2157  **************************************************************************
2158  */
2159
2160 void falcon_set_multicast_hash(struct efx_nic *efx)
2161 {
2162         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2163
2164         /* Broadcast packets go through the multicast hash filter.
2165          * ether_crc_le() of the broadcast address is 0xbe2612ff
2166          * so we always add bit 0xff to the mask.
2167          */
2168         set_bit_le(0xff, mc_hash->byte);
2169
2170         falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
2171         falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
2172 }
2173
2174 /**************************************************************************
2175  *
2176  * Device reset
2177  *
2178  **************************************************************************
2179  */
2180
2181 /* Resets NIC to known state.  This routine must be called in process
2182  * context and is allowed to sleep. */
2183 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2184 {
2185         struct falcon_nic_data *nic_data = efx->nic_data;
2186         efx_oword_t glb_ctl_reg_ker;
2187         int rc;
2188
2189         EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2190
2191         /* Initiate device reset */
2192         if (method == RESET_TYPE_WORLD) {
2193                 rc = pci_save_state(efx->pci_dev);
2194                 if (rc) {
2195                         EFX_ERR(efx, "failed to backup PCI state of primary "
2196                                 "function prior to hardware reset\n");
2197                         goto fail1;
2198                 }
2199                 if (FALCON_IS_DUAL_FUNC(efx)) {
2200                         rc = pci_save_state(nic_data->pci_dev2);
2201                         if (rc) {
2202                                 EFX_ERR(efx, "failed to backup PCI state of "
2203                                         "secondary function prior to "
2204                                         "hardware reset\n");
2205                                 goto fail2;
2206                         }
2207                 }
2208
2209                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2210                                      EXT_PHY_RST_DUR, 0x7,
2211                                      SWRST, 1);
2212         } else {
2213                 int reset_phy = (method == RESET_TYPE_INVISIBLE ?
2214                                  EXCLUDE_FROM_RESET : 0);
2215
2216                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2217                                      EXT_PHY_RST_CTL, reset_phy,
2218                                      PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
2219                                      PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
2220                                      PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
2221                                      EE_RST_CTL, EXCLUDE_FROM_RESET,
2222                                      EXT_PHY_RST_DUR, 0x7 /* 10ms */,
2223                                      SWRST, 1);
2224         }
2225         falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2226
2227         EFX_LOG(efx, "waiting for hardware reset\n");
2228         schedule_timeout_uninterruptible(HZ / 20);
2229
2230         /* Restore PCI configuration if needed */
2231         if (method == RESET_TYPE_WORLD) {
2232                 if (FALCON_IS_DUAL_FUNC(efx)) {
2233                         rc = pci_restore_state(nic_data->pci_dev2);
2234                         if (rc) {
2235                                 EFX_ERR(efx, "failed to restore PCI config for "
2236                                         "the secondary function\n");
2237                                 goto fail3;
2238                         }
2239                 }
2240                 rc = pci_restore_state(efx->pci_dev);
2241                 if (rc) {
2242                         EFX_ERR(efx, "failed to restore PCI config for the "
2243                                 "primary function\n");
2244                         goto fail4;
2245                 }
2246                 EFX_LOG(efx, "successfully restored PCI config\n");
2247         }
2248
2249         /* Assert that reset complete */
2250         falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2251         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
2252                 rc = -ETIMEDOUT;
2253                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2254                 goto fail5;
2255         }
2256         EFX_LOG(efx, "hardware reset complete\n");
2257
2258         return 0;
2259
2260         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2261 fail2:
2262 fail3:
2263         pci_restore_state(efx->pci_dev);
2264 fail1:
2265 fail4:
2266 fail5:
2267         return rc;
2268 }
2269
2270 /* Zeroes out the SRAM contents.  This routine must be called in
2271  * process context and is allowed to sleep.
2272  */
2273 static int falcon_reset_sram(struct efx_nic *efx)
2274 {
2275         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2276         int count;
2277
2278         /* Set the SRAM wake/sleep GPIO appropriately. */
2279         falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2280         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
2281         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
2282         falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2283
2284         /* Initiate SRAM reset */
2285         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2286                              SRAM_OOB_BT_INIT_EN, 1,
2287                              SRM_NUM_BANKS_AND_BANK_SIZE, 0);
2288         falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2289
2290         /* Wait for SRAM reset to complete */
2291         count = 0;
2292         do {
2293                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2294
2295                 /* SRAM reset is slow; expect around 16ms */
2296                 schedule_timeout_uninterruptible(HZ / 50);
2297
2298                 /* Check for reset complete */
2299                 falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2300                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
2301                         EFX_LOG(efx, "SRAM reset complete\n");
2302
2303                         return 0;
2304                 }
2305         } while (++count < 20); /* wait upto 0.4 sec */
2306
2307         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2308         return -ETIMEDOUT;
2309 }
2310
2311 /* Extract non-volatile configuration */
2312 static int falcon_probe_nvconfig(struct efx_nic *efx)
2313 {
2314         struct falcon_nvconfig *nvconfig;
2315         efx_oword_t nic_stat;
2316         int device_id;
2317         unsigned addr_len;
2318         size_t offset, len;
2319         int magic_num, struct_ver, board_rev;
2320         int rc;
2321
2322         /* Find the boot device. */
2323         falcon_read(efx, &nic_stat, NIC_STAT_REG);
2324         if (EFX_OWORD_FIELD(nic_stat, SF_PRST)) {
2325                 device_id = EE_SPI_FLASH;
2326                 addr_len = 3;
2327         } else if (EFX_OWORD_FIELD(nic_stat, EE_PRST)) {
2328                 device_id = EE_SPI_EEPROM;
2329                 addr_len = 2;
2330         } else {
2331                 return -ENODEV;
2332         }
2333
2334         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2335
2336         /* Read the whole configuration structure into memory. */
2337         for (offset = 0; offset < sizeof(*nvconfig); offset += len) {
2338                 len = min(sizeof(*nvconfig) - offset,
2339                           (size_t) FALCON_SPI_MAX_LEN);
2340                 rc = falcon_spi_read(efx, device_id, SPI_READ,
2341                                      NVCONFIG_BASE + offset, addr_len,
2342                                      (char *)nvconfig + offset, len);
2343                 if (rc)
2344                         goto out;
2345         }
2346
2347         /* Read the MAC addresses */
2348         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2349
2350         /* Read the board configuration. */
2351         magic_num = le16_to_cpu(nvconfig->board_magic_num);
2352         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2353
2354         if (magic_num != NVCONFIG_BOARD_MAGIC_NUM || struct_ver < 2) {
2355                 EFX_ERR(efx, "Non volatile memory bad magic=%x ver=%x "
2356                         "therefore using defaults\n", magic_num, struct_ver);
2357                 efx->phy_type = PHY_TYPE_NONE;
2358                 efx->mii.phy_id = PHY_ADDR_INVALID;
2359                 board_rev = 0;
2360         } else {
2361                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2362
2363                 efx->phy_type = v2->port0_phy_type;
2364                 efx->mii.phy_id = v2->port0_phy_addr;
2365                 board_rev = le16_to_cpu(v2->board_revision);
2366         }
2367
2368         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
2369
2370         efx_set_board_info(efx, board_rev);
2371
2372  out:
2373         kfree(nvconfig);
2374         return rc;
2375 }
2376
2377 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2378  * count, port speed).  Set workaround and feature flags accordingly.
2379  */
2380 static int falcon_probe_nic_variant(struct efx_nic *efx)
2381 {
2382         efx_oword_t altera_build;
2383
2384         falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
2385         if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
2386                 EFX_ERR(efx, "Falcon FPGA not supported\n");
2387                 return -ENODEV;
2388         }
2389
2390         switch (falcon_rev(efx)) {
2391         case FALCON_REV_A0:
2392         case 0xff:
2393                 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2394                 return -ENODEV;
2395
2396         case FALCON_REV_A1:{
2397                 efx_oword_t nic_stat;
2398
2399                 falcon_read(efx, &nic_stat, NIC_STAT_REG);
2400
2401                 if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
2402                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2403                         return -ENODEV;
2404                 }
2405                 if (!EFX_OWORD_FIELD(nic_stat, STRAP_10G)) {
2406                         EFX_ERR(efx, "1G mode not supported\n");
2407                         return -ENODEV;
2408                 }
2409                 break;
2410         }
2411
2412         case FALCON_REV_B0:
2413                 break;
2414
2415         default:
2416                 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2417                 return -ENODEV;
2418         }
2419
2420         return 0;
2421 }
2422
2423 int falcon_probe_nic(struct efx_nic *efx)
2424 {
2425         struct falcon_nic_data *nic_data;
2426         int rc;
2427
2428         /* Allocate storage for hardware specific data */
2429         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2430         efx->nic_data = nic_data;
2431
2432         /* Determine number of ports etc. */
2433         rc = falcon_probe_nic_variant(efx);
2434         if (rc)
2435                 goto fail1;
2436
2437         /* Probe secondary function if expected */
2438         if (FALCON_IS_DUAL_FUNC(efx)) {
2439                 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2440
2441                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2442                                              dev))) {
2443                         if (dev->bus == efx->pci_dev->bus &&
2444                             dev->devfn == efx->pci_dev->devfn + 1) {
2445                                 nic_data->pci_dev2 = dev;
2446                                 break;
2447                         }
2448                 }
2449                 if (!nic_data->pci_dev2) {
2450                         EFX_ERR(efx, "failed to find secondary function\n");
2451                         rc = -ENODEV;
2452                         goto fail2;
2453                 }
2454         }
2455
2456         /* Now we can reset the NIC */
2457         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2458         if (rc) {
2459                 EFX_ERR(efx, "failed to reset NIC\n");
2460                 goto fail3;
2461         }
2462
2463         /* Allocate memory for INT_KER */
2464         rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2465         if (rc)
2466                 goto fail4;
2467         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2468
2469         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
2470                 (unsigned long long)efx->irq_status.dma_addr,
2471                 efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
2472
2473         /* Read in the non-volatile configuration */
2474         rc = falcon_probe_nvconfig(efx);
2475         if (rc)
2476                 goto fail5;
2477
2478         /* Initialise I2C adapter */
2479         efx->i2c_adap.owner = THIS_MODULE;
2480         efx->i2c_adap.class = I2C_CLASS_HWMON;
2481         nic_data->i2c_data = falcon_i2c_bit_operations;
2482         nic_data->i2c_data.data = efx;
2483         efx->i2c_adap.algo_data = &nic_data->i2c_data;
2484         efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2485         strcpy(efx->i2c_adap.name, "SFC4000 GPIO");
2486         rc = i2c_bit_add_bus(&efx->i2c_adap);
2487         if (rc)
2488                 goto fail5;
2489
2490         return 0;
2491
2492  fail5:
2493         falcon_free_buffer(efx, &efx->irq_status);
2494  fail4:
2495  fail3:
2496         if (nic_data->pci_dev2) {
2497                 pci_dev_put(nic_data->pci_dev2);
2498                 nic_data->pci_dev2 = NULL;
2499         }
2500  fail2:
2501  fail1:
2502         kfree(efx->nic_data);
2503         return rc;
2504 }
2505
2506 /* This call performs hardware-specific global initialisation, such as
2507  * defining the descriptor cache sizes and number of RSS channels.
2508  * It does not set up any buffers, descriptor rings or event queues.
2509  */
2510 int falcon_init_nic(struct efx_nic *efx)
2511 {
2512         efx_oword_t temp;
2513         unsigned thresh;
2514         int rc;
2515
2516         /* Set up the address region register. This is only needed
2517          * for the B0 FPGA, but since we are just pushing in the
2518          * reset defaults this may as well be unconditional. */
2519         EFX_POPULATE_OWORD_4(temp, ADR_REGION0, 0,
2520                                    ADR_REGION1, (1 << 16),
2521                                    ADR_REGION2, (2 << 16),
2522                                    ADR_REGION3, (3 << 16));
2523         falcon_write(efx, &temp, ADR_REGION_REG_KER);
2524
2525         /* Use on-chip SRAM */
2526         falcon_read(efx, &temp, NIC_STAT_REG);
2527         EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
2528         falcon_write(efx, &temp, NIC_STAT_REG);
2529
2530         /* Set buffer table mode */
2531         EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
2532         falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
2533
2534         rc = falcon_reset_sram(efx);
2535         if (rc)
2536                 return rc;
2537
2538         /* Set positions of descriptor caches in SRAM. */
2539         EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2540         falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
2541         EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2542         falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
2543
2544         /* Set TX descriptor cache size. */
2545         BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
2546         EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
2547         falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
2548
2549         /* Set RX descriptor cache size.  Set low watermark to size-8, as
2550          * this allows most efficient prefetching.
2551          */
2552         BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
2553         EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
2554         falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
2555         EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
2556         falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
2557
2558         /* Clear the parity enables on the TX data fifos as
2559          * they produce false parity errors because of timing issues
2560          */
2561         if (EFX_WORKAROUND_5129(efx)) {
2562                 falcon_read(efx, &temp, SPARE_REG_KER);
2563                 EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
2564                 falcon_write(efx, &temp, SPARE_REG_KER);
2565         }
2566
2567         /* Enable all the genuinely fatal interrupts.  (They are still
2568          * masked by the overall interrupt mask, controlled by
2569          * falcon_interrupts()).
2570          *
2571          * Note: All other fatal interrupts are enabled
2572          */
2573         EFX_POPULATE_OWORD_3(temp,
2574                              ILL_ADR_INT_KER_EN, 1,
2575                              RBUF_OWN_INT_KER_EN, 1,
2576                              TBUF_OWN_INT_KER_EN, 1);
2577         EFX_INVERT_OWORD(temp);
2578         falcon_write(efx, &temp, FATAL_INTR_REG_KER);
2579
2580         /* Set number of RSS queues for receive path. */
2581         falcon_read(efx, &temp, RX_FILTER_CTL_REG);
2582         if (falcon_rev(efx) >= FALCON_REV_B0)
2583                 EFX_SET_OWORD_FIELD(temp, NUM_KER, 0);
2584         else
2585                 EFX_SET_OWORD_FIELD(temp, NUM_KER, efx->rss_queues - 1);
2586         if (EFX_WORKAROUND_7244(efx)) {
2587                 EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
2588                 EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
2589                 EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
2590                 EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
2591         }
2592         falcon_write(efx, &temp, RX_FILTER_CTL_REG);
2593
2594         falcon_setup_rss_indir_table(efx);
2595
2596         /* Setup RX.  Wait for descriptor is broken and must
2597          * be disabled.  RXDP recovery shouldn't be needed, but is.
2598          */
2599         falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
2600         EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
2601         EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
2602         if (EFX_WORKAROUND_5583(efx))
2603                 EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
2604         falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
2605
2606         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
2607          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
2608          */
2609         falcon_read(efx, &temp, TX_CFG2_REG_KER);
2610         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
2611         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
2612         EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
2613         EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
2614         EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
2615         /* Enable SW_EV to inherit in char driver - assume harmless here */
2616         EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
2617         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
2618         EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
2619         /* Squash TX of packets of 16 bytes or less */
2620         if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
2621                 EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
2622         falcon_write(efx, &temp, TX_CFG2_REG_KER);
2623
2624         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2625          * descriptors (which is bad).
2626          */
2627         falcon_read(efx, &temp, TX_CFG_REG_KER);
2628         EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
2629         falcon_write(efx, &temp, TX_CFG_REG_KER);
2630
2631         /* RX config */
2632         falcon_read(efx, &temp, RX_CFG_REG_KER);
2633         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
2634         if (EFX_WORKAROUND_7575(efx))
2635                 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
2636                                         (3 * 4096) / 32);
2637         if (falcon_rev(efx) >= FALCON_REV_B0)
2638                 EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
2639
2640         /* RX FIFO flow control thresholds */
2641         thresh = ((rx_xon_thresh_bytes >= 0) ?
2642                   rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
2643         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
2644         thresh = ((rx_xoff_thresh_bytes >= 0) ?
2645                   rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
2646         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
2647         /* RX control FIFO thresholds [32 entries] */
2648         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 25);
2649         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 20);
2650         falcon_write(efx, &temp, RX_CFG_REG_KER);
2651
2652         /* Set destination of both TX and RX Flush events */
2653         if (falcon_rev(efx) >= FALCON_REV_B0) {
2654                 EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
2655                 falcon_write(efx, &temp, DP_CTRL_REG);
2656         }
2657
2658         return 0;
2659 }
2660
2661 void falcon_remove_nic(struct efx_nic *efx)
2662 {
2663         struct falcon_nic_data *nic_data = efx->nic_data;
2664         int rc;
2665
2666         rc = i2c_del_adapter(&efx->i2c_adap);
2667         BUG_ON(rc);
2668
2669         falcon_free_buffer(efx, &efx->irq_status);
2670
2671         falcon_reset_hw(efx, RESET_TYPE_ALL);
2672
2673         /* Release the second function after the reset */
2674         if (nic_data->pci_dev2) {
2675                 pci_dev_put(nic_data->pci_dev2);
2676                 nic_data->pci_dev2 = NULL;
2677         }
2678
2679         /* Tear down the private nic state */
2680         kfree(efx->nic_data);
2681         efx->nic_data = NULL;
2682 }
2683
2684 void falcon_update_nic_stats(struct efx_nic *efx)
2685 {
2686         efx_oword_t cnt;
2687
2688         falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
2689         efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
2690 }
2691
2692 /**************************************************************************
2693  *
2694  * Revision-dependent attributes used by efx.c
2695  *
2696  **************************************************************************
2697  */
2698
2699 struct efx_nic_type falcon_a_nic_type = {
2700         .mem_bar = 2,
2701         .mem_map_size = 0x20000,
2702         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
2703         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
2704         .buf_tbl_base = BUF_TBL_KER_A1,
2705         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
2706         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
2707         .txd_ring_mask = FALCON_TXD_RING_MASK,
2708         .rxd_ring_mask = FALCON_RXD_RING_MASK,
2709         .evq_size = FALCON_EVQ_SIZE,
2710         .max_dma_mask = FALCON_DMA_MASK,
2711         .tx_dma_mask = FALCON_TX_DMA_MASK,
2712         .bug5391_mask = 0xf,
2713         .rx_xoff_thresh = 2048,
2714         .rx_xon_thresh = 512,
2715         .rx_buffer_padding = 0x24,
2716         .max_interrupt_mode = EFX_INT_MODE_MSI,
2717         .phys_addr_channels = 4,
2718 };
2719
2720 struct efx_nic_type falcon_b_nic_type = {
2721         .mem_bar = 2,
2722         /* Map everything up to and including the RSS indirection
2723          * table.  Don't map MSI-X table, MSI-X PBA since Linux
2724          * requires that they not be mapped.  */
2725         .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
2726         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
2727         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
2728         .buf_tbl_base = BUF_TBL_KER_B0,
2729         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
2730         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
2731         .txd_ring_mask = FALCON_TXD_RING_MASK,
2732         .rxd_ring_mask = FALCON_RXD_RING_MASK,
2733         .evq_size = FALCON_EVQ_SIZE,
2734         .max_dma_mask = FALCON_DMA_MASK,
2735         .tx_dma_mask = FALCON_TX_DMA_MASK,
2736         .bug5391_mask = 0,
2737         .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
2738         .rx_xon_thresh = 27648,  /* ~3*max MTU */
2739         .rx_buffer_padding = 0,
2740         .max_interrupt_mode = EFX_INT_MODE_MSIX,
2741         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
2742                                    * interrupt handler only supports 32
2743                                    * channels */
2744 };
2745