[NET]: Introduce and use print_mac() and DECLARE_MAC_BUF()
[safe/jmp/linux-2.6] / drivers / net / sb1250-mac.c
1 /*
2  * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  *
19  * This driver is designed for the Broadcom SiByte SOC built-in
20  * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
21  */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/init.h>
34 #include <linux/bitops.h>
35 #include <asm/processor.h>              /* Processor type for cache alignment. */
36 #include <asm/io.h>
37 #include <asm/cache.h>
38
39 /* This is only here until the firmware is ready.  In that case,
40    the firmware leaves the ethernet address in the register for us. */
41 #ifdef CONFIG_SIBYTE_STANDALONE
42 #define SBMAC_ETH0_HWADDR "40:00:00:00:01:00"
43 #define SBMAC_ETH1_HWADDR "40:00:00:00:01:01"
44 #define SBMAC_ETH2_HWADDR "40:00:00:00:01:02"
45 #define SBMAC_ETH3_HWADDR "40:00:00:00:01:03"
46 #endif
47
48
49 /* These identify the driver base version and may not be removed. */
50 #if 0
51 static char version1[] __devinitdata =
52 "sb1250-mac.c:1.00 1/11/2001 Written by Mitch Lichtenberg\n";
53 #endif
54
55
56 /* Operational parameters that usually are not changed. */
57
58 #define CONFIG_SBMAC_COALESCE
59
60 #define MAX_UNITS 4             /* More are supported, limit only on options */
61
62 /* Time in jiffies before concluding the transmitter is hung. */
63 #define TX_TIMEOUT  (2*HZ)
64
65
66 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
67 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
68
69 /* A few user-configurable values which may be modified when a driver
70    module is loaded. */
71
72 /* 1 normal messages, 0 quiet .. 7 verbose. */
73 static int debug = 1;
74 module_param(debug, int, S_IRUGO);
75 MODULE_PARM_DESC(debug, "Debug messages");
76
77 /* mii status msgs */
78 static int noisy_mii = 1;
79 module_param(noisy_mii, int, S_IRUGO);
80 MODULE_PARM_DESC(noisy_mii, "MII status messages");
81
82 /* Used to pass the media type, etc.
83    Both 'options[]' and 'full_duplex[]' should exist for driver
84    interoperability.
85    The media type is usually passed in 'options[]'.
86 */
87 #ifdef MODULE
88 static int options[MAX_UNITS] = {-1, -1, -1, -1};
89 module_param_array(options, int, NULL, S_IRUGO);
90 MODULE_PARM_DESC(options, "1-" __MODULE_STRING(MAX_UNITS));
91
92 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1};
93 module_param_array(full_duplex, int, NULL, S_IRUGO);
94 MODULE_PARM_DESC(full_duplex, "1-" __MODULE_STRING(MAX_UNITS));
95 #endif
96
97 #ifdef CONFIG_SBMAC_COALESCE
98 static int int_pktcnt_tx = 255;
99 module_param(int_pktcnt_tx, int, S_IRUGO);
100 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
101
102 static int int_timeout_tx = 255;
103 module_param(int_timeout_tx, int, S_IRUGO);
104 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
105
106 static int int_pktcnt_rx = 64;
107 module_param(int_pktcnt_rx, int, S_IRUGO);
108 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
109
110 static int int_timeout_rx = 64;
111 module_param(int_timeout_rx, int, S_IRUGO);
112 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
113 #endif
114
115 #include <asm/sibyte/sb1250.h>
116 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
117 #include <asm/sibyte/bcm1480_regs.h>
118 #include <asm/sibyte/bcm1480_int.h>
119 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
120 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
121 #include <asm/sibyte/sb1250_regs.h>
122 #include <asm/sibyte/sb1250_int.h>
123 #else
124 #error invalid SiByte MAC configuation
125 #endif
126 #include <asm/sibyte/sb1250_scd.h>
127 #include <asm/sibyte/sb1250_mac.h>
128 #include <asm/sibyte/sb1250_dma.h>
129
130 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
131 #define UNIT_INT(n)             (K_BCM1480_INT_MAC_0 + ((n) * 2))
132 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
133 #define UNIT_INT(n)             (K_INT_MAC_0 + (n))
134 #else
135 #error invalid SiByte MAC configuation
136 #endif
137
138 /**********************************************************************
139  *  Simple types
140  ********************************************************************* */
141
142
143 typedef enum { sbmac_speed_auto, sbmac_speed_10,
144                sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
145
146 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
147                sbmac_duplex_full } sbmac_duplex_t;
148
149 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
150                sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
151
152 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
153                sbmac_state_broken } sbmac_state_t;
154
155
156 /**********************************************************************
157  *  Macros
158  ********************************************************************* */
159
160
161 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
162                           (d)->sbdma_dscrtable : (d)->f+1)
163
164
165 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
166
167 #define SBMAC_MAX_TXDESCR       256
168 #define SBMAC_MAX_RXDESCR       256
169
170 #define ETHER_ALIGN     2
171 #define ETHER_ADDR_LEN  6
172 #define ENET_PACKET_SIZE        1518
173 /*#define ENET_PACKET_SIZE      9216 */
174
175 /**********************************************************************
176  *  DMA Descriptor structure
177  ********************************************************************* */
178
179 typedef struct sbdmadscr_s {
180         uint64_t  dscr_a;
181         uint64_t  dscr_b;
182 } sbdmadscr_t;
183
184 typedef unsigned long paddr_t;
185
186 /**********************************************************************
187  *  DMA Controller structure
188  ********************************************************************* */
189
190 typedef struct sbmacdma_s {
191
192         /*
193          * This stuff is used to identify the channel and the registers
194          * associated with it.
195          */
196
197         struct sbmac_softc *sbdma_eth;      /* back pointer to associated MAC */
198         int              sbdma_channel;     /* channel number */
199         int              sbdma_txdir;       /* direction (1=transmit) */
200         int              sbdma_maxdescr;    /* total # of descriptors in ring */
201 #ifdef CONFIG_SBMAC_COALESCE
202         int              sbdma_int_pktcnt;  /* # descriptors rx/tx before interrupt*/
203         int              sbdma_int_timeout; /* # usec rx/tx interrupt */
204 #endif
205
206         volatile void __iomem *sbdma_config0;   /* DMA config register 0 */
207         volatile void __iomem *sbdma_config1;   /* DMA config register 1 */
208         volatile void __iomem *sbdma_dscrbase;  /* Descriptor base address */
209         volatile void __iomem *sbdma_dscrcnt;   /* Descriptor count register */
210         volatile void __iomem *sbdma_curdscr;   /* current descriptor address */
211         volatile void __iomem *sbdma_oodpktlost;/* pkt drop (rx only) */
212
213
214         /*
215          * This stuff is for maintenance of the ring
216          */
217
218         sbdmadscr_t     *sbdma_dscrtable_unaligned;
219         sbdmadscr_t     *sbdma_dscrtable;       /* base of descriptor table */
220         sbdmadscr_t     *sbdma_dscrtable_end; /* end of descriptor table */
221
222         struct sk_buff **sbdma_ctxtable;    /* context table, one per descr */
223
224         paddr_t          sbdma_dscrtable_phys; /* and also the phys addr */
225         sbdmadscr_t     *sbdma_addptr;  /* next dscr for sw to add */
226         sbdmadscr_t     *sbdma_remptr;  /* next dscr for sw to remove */
227 } sbmacdma_t;
228
229
230 /**********************************************************************
231  *  Ethernet softc structure
232  ********************************************************************* */
233
234 struct sbmac_softc {
235
236         /*
237          * Linux-specific things
238          */
239
240         struct net_device *sbm_dev;             /* pointer to linux device */
241         struct napi_struct napi;
242         spinlock_t sbm_lock;            /* spin lock */
243         struct timer_list sbm_timer;            /* for monitoring MII */
244         int sbm_devflags;                       /* current device flags */
245
246         int          sbm_phy_oldbmsr;
247         int          sbm_phy_oldanlpar;
248         int          sbm_phy_oldk1stsr;
249         int          sbm_phy_oldlinkstat;
250         int sbm_buffersize;
251
252         unsigned char sbm_phys[2];
253
254         /*
255          * Controller-specific things
256          */
257
258         void __iomem            *sbm_base;          /* MAC's base address */
259         sbmac_state_t    sbm_state;         /* current state */
260
261         volatile void __iomem   *sbm_macenable; /* MAC Enable Register */
262         volatile void __iomem   *sbm_maccfg;    /* MAC Configuration Register */
263         volatile void __iomem   *sbm_fifocfg;   /* FIFO configuration register */
264         volatile void __iomem   *sbm_framecfg;  /* Frame configuration register */
265         volatile void __iomem   *sbm_rxfilter;  /* receive filter register */
266         volatile void __iomem   *sbm_isr;       /* Interrupt status register */
267         volatile void __iomem   *sbm_imr;       /* Interrupt mask register */
268         volatile void __iomem   *sbm_mdio;      /* MDIO register */
269
270         sbmac_speed_t    sbm_speed;             /* current speed */
271         sbmac_duplex_t   sbm_duplex;    /* current duplex */
272         sbmac_fc_t       sbm_fc;                /* current flow control setting */
273
274         unsigned char    sbm_hwaddr[ETHER_ADDR_LEN];
275
276         sbmacdma_t       sbm_txdma;             /* for now, only use channel 0 */
277         sbmacdma_t       sbm_rxdma;
278         int              rx_hw_checksum;
279         int              sbe_idx;
280 };
281
282
283 /**********************************************************************
284  *  Externs
285  ********************************************************************* */
286
287 /**********************************************************************
288  *  Prototypes
289  ********************************************************************* */
290
291 static void sbdma_initctx(sbmacdma_t *d,
292                           struct sbmac_softc *s,
293                           int chan,
294                           int txrx,
295                           int maxdescr);
296 static void sbdma_channel_start(sbmacdma_t *d, int rxtx);
297 static int sbdma_add_rcvbuffer(sbmacdma_t *d,struct sk_buff *m);
298 static int sbdma_add_txbuffer(sbmacdma_t *d,struct sk_buff *m);
299 static void sbdma_emptyring(sbmacdma_t *d);
300 static void sbdma_fillring(sbmacdma_t *d);
301 static int sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d, int work_to_do, int poll);
302 static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d, int poll);
303 static int sbmac_initctx(struct sbmac_softc *s);
304 static void sbmac_channel_start(struct sbmac_softc *s);
305 static void sbmac_channel_stop(struct sbmac_softc *s);
306 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,sbmac_state_t);
307 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff);
308 static uint64_t sbmac_addr2reg(unsigned char *ptr);
309 static irqreturn_t sbmac_intr(int irq,void *dev_instance);
310 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
311 static void sbmac_setmulti(struct sbmac_softc *sc);
312 static int sbmac_init(struct net_device *dev, int idx);
313 static int sbmac_set_speed(struct sbmac_softc *s,sbmac_speed_t speed);
314 static int sbmac_set_duplex(struct sbmac_softc *s,sbmac_duplex_t duplex,sbmac_fc_t fc);
315
316 static int sbmac_open(struct net_device *dev);
317 static void sbmac_timer(unsigned long data);
318 static void sbmac_tx_timeout (struct net_device *dev);
319 static void sbmac_set_rx_mode(struct net_device *dev);
320 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
321 static int sbmac_close(struct net_device *dev);
322 static int sbmac_poll(struct napi_struct *napi, int budget);
323
324 static int sbmac_mii_poll(struct sbmac_softc *s,int noisy);
325 static int sbmac_mii_probe(struct net_device *dev);
326
327 static void sbmac_mii_sync(struct sbmac_softc *s);
328 static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitcnt);
329 static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx);
330 static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
331                             unsigned int regval);
332
333
334 /**********************************************************************
335  *  Globals
336  ********************************************************************* */
337
338 static uint64_t sbmac_orig_hwaddr[MAX_UNITS];
339
340
341 /**********************************************************************
342  *  MDIO constants
343  ********************************************************************* */
344
345 #define MII_COMMAND_START       0x01
346 #define MII_COMMAND_READ        0x02
347 #define MII_COMMAND_WRITE       0x01
348 #define MII_COMMAND_ACK         0x02
349
350 #define BMCR_RESET     0x8000
351 #define BMCR_LOOPBACK  0x4000
352 #define BMCR_SPEED0    0x2000
353 #define BMCR_ANENABLE  0x1000
354 #define BMCR_POWERDOWN 0x0800
355 #define BMCR_ISOLATE   0x0400
356 #define BMCR_RESTARTAN 0x0200
357 #define BMCR_DUPLEX    0x0100
358 #define BMCR_COLTEST   0x0080
359 #define BMCR_SPEED1    0x0040
360 #define BMCR_SPEED1000  BMCR_SPEED1
361 #define BMCR_SPEED100   BMCR_SPEED0
362 #define BMCR_SPEED10    0
363
364 #define BMSR_100BT4     0x8000
365 #define BMSR_100BT_FDX  0x4000
366 #define BMSR_100BT_HDX  0x2000
367 #define BMSR_10BT_FDX   0x1000
368 #define BMSR_10BT_HDX   0x0800
369 #define BMSR_100BT2_FDX 0x0400
370 #define BMSR_100BT2_HDX 0x0200
371 #define BMSR_1000BT_XSR 0x0100
372 #define BMSR_PRESUP     0x0040
373 #define BMSR_ANCOMPLT   0x0020
374 #define BMSR_REMFAULT   0x0010
375 #define BMSR_AUTONEG    0x0008
376 #define BMSR_LINKSTAT   0x0004
377 #define BMSR_JABDETECT  0x0002
378 #define BMSR_EXTCAPAB   0x0001
379
380 #define PHYIDR1         0x2000
381 #define PHYIDR2         0x5C60
382
383 #define ANAR_NP         0x8000
384 #define ANAR_RF         0x2000
385 #define ANAR_ASYPAUSE   0x0800
386 #define ANAR_PAUSE      0x0400
387 #define ANAR_T4         0x0200
388 #define ANAR_TXFD       0x0100
389 #define ANAR_TXHD       0x0080
390 #define ANAR_10FD       0x0040
391 #define ANAR_10HD       0x0020
392 #define ANAR_PSB        0x0001
393
394 #define ANLPAR_NP       0x8000
395 #define ANLPAR_ACK      0x4000
396 #define ANLPAR_RF       0x2000
397 #define ANLPAR_ASYPAUSE 0x0800
398 #define ANLPAR_PAUSE    0x0400
399 #define ANLPAR_T4       0x0200
400 #define ANLPAR_TXFD     0x0100
401 #define ANLPAR_TXHD     0x0080
402 #define ANLPAR_10FD     0x0040
403 #define ANLPAR_10HD     0x0020
404 #define ANLPAR_PSB      0x0001  /* 802.3 */
405
406 #define ANER_PDF        0x0010
407 #define ANER_LPNPABLE   0x0008
408 #define ANER_NPABLE     0x0004
409 #define ANER_PAGERX     0x0002
410 #define ANER_LPANABLE   0x0001
411
412 #define ANNPTR_NP       0x8000
413 #define ANNPTR_MP       0x2000
414 #define ANNPTR_ACK2     0x1000
415 #define ANNPTR_TOGTX    0x0800
416 #define ANNPTR_CODE     0x0008
417
418 #define ANNPRR_NP       0x8000
419 #define ANNPRR_MP       0x2000
420 #define ANNPRR_ACK3     0x1000
421 #define ANNPRR_TOGTX    0x0800
422 #define ANNPRR_CODE     0x0008
423
424 #define K1TCR_TESTMODE  0x0000
425 #define K1TCR_MSMCE     0x1000
426 #define K1TCR_MSCV      0x0800
427 #define K1TCR_RPTR      0x0400
428 #define K1TCR_1000BT_FDX 0x200
429 #define K1TCR_1000BT_HDX 0x100
430
431 #define K1STSR_MSMCFLT  0x8000
432 #define K1STSR_MSCFGRES 0x4000
433 #define K1STSR_LRSTAT   0x2000
434 #define K1STSR_RRSTAT   0x1000
435 #define K1STSR_LP1KFD   0x0800
436 #define K1STSR_LP1KHD   0x0400
437 #define K1STSR_LPASMDIR 0x0200
438
439 #define K1SCR_1KX_FDX   0x8000
440 #define K1SCR_1KX_HDX   0x4000
441 #define K1SCR_1KT_FDX   0x2000
442 #define K1SCR_1KT_HDX   0x1000
443
444 #define STRAP_PHY1      0x0800
445 #define STRAP_NCMODE    0x0400
446 #define STRAP_MANMSCFG  0x0200
447 #define STRAP_ANENABLE  0x0100
448 #define STRAP_MSVAL     0x0080
449 #define STRAP_1KHDXADV  0x0010
450 #define STRAP_1KFDXADV  0x0008
451 #define STRAP_100ADV    0x0004
452 #define STRAP_SPEEDSEL  0x0000
453 #define STRAP_SPEED100  0x0001
454
455 #define PHYSUP_SPEED1000 0x10
456 #define PHYSUP_SPEED100  0x08
457 #define PHYSUP_SPEED10   0x00
458 #define PHYSUP_LINKUP    0x04
459 #define PHYSUP_FDX       0x02
460
461 #define MII_BMCR        0x00    /* Basic mode control register (rw) */
462 #define MII_BMSR        0x01    /* Basic mode status register (ro) */
463 #define MII_PHYIDR1     0x02
464 #define MII_PHYIDR2     0x03
465
466 #define MII_K1STSR      0x0A    /* 1K Status Register (ro) */
467 #define MII_ANLPAR      0x05    /* Autonegotiation lnk partner abilities (rw) */
468
469
470 #define M_MAC_MDIO_DIR_OUTPUT   0               /* for clarity */
471
472 #define ENABLE          1
473 #define DISABLE         0
474
475 /**********************************************************************
476  *  SBMAC_MII_SYNC(s)
477  *
478  *  Synchronize with the MII - send a pattern of bits to the MII
479  *  that will guarantee that it is ready to accept a command.
480  *
481  *  Input parameters:
482  *         s - sbmac structure
483  *
484  *  Return value:
485  *         nothing
486  ********************************************************************* */
487
488 static void sbmac_mii_sync(struct sbmac_softc *s)
489 {
490         int cnt;
491         uint64_t bits;
492         int mac_mdio_genc;
493
494         mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
495
496         bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
497
498         __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
499
500         for (cnt = 0; cnt < 32; cnt++) {
501                 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
502                 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
503         }
504 }
505
506 /**********************************************************************
507  *  SBMAC_MII_SENDDATA(s,data,bitcnt)
508  *
509  *  Send some bits to the MII.  The bits to be sent are right-
510  *  justified in the 'data' parameter.
511  *
512  *  Input parameters:
513  *         s - sbmac structure
514  *         data - data to send
515  *         bitcnt - number of bits to send
516  ********************************************************************* */
517
518 static void sbmac_mii_senddata(struct sbmac_softc *s,unsigned int data, int bitcnt)
519 {
520         int i;
521         uint64_t bits;
522         unsigned int curmask;
523         int mac_mdio_genc;
524
525         mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
526
527         bits = M_MAC_MDIO_DIR_OUTPUT;
528         __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
529
530         curmask = 1 << (bitcnt - 1);
531
532         for (i = 0; i < bitcnt; i++) {
533                 if (data & curmask)
534                         bits |= M_MAC_MDIO_OUT;
535                 else bits &= ~M_MAC_MDIO_OUT;
536                 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
537                 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
538                 __raw_writeq(bits | mac_mdio_genc, s->sbm_mdio);
539                 curmask >>= 1;
540         }
541 }
542
543
544
545 /**********************************************************************
546  *  SBMAC_MII_READ(s,phyaddr,regidx)
547  *
548  *  Read a PHY register.
549  *
550  *  Input parameters:
551  *         s - sbmac structure
552  *         phyaddr - PHY's address
553  *         regidx = index of register to read
554  *
555  *  Return value:
556  *         value read, or 0 if an error occurred.
557  ********************************************************************* */
558
559 static unsigned int sbmac_mii_read(struct sbmac_softc *s,int phyaddr,int regidx)
560 {
561         int idx;
562         int error;
563         int regval;
564         int mac_mdio_genc;
565
566         /*
567          * Synchronize ourselves so that the PHY knows the next
568          * thing coming down is a command
569          */
570
571         sbmac_mii_sync(s);
572
573         /*
574          * Send the data to the PHY.  The sequence is
575          * a "start" command (2 bits)
576          * a "read" command (2 bits)
577          * the PHY addr (5 bits)
578          * the register index (5 bits)
579          */
580
581         sbmac_mii_senddata(s,MII_COMMAND_START, 2);
582         sbmac_mii_senddata(s,MII_COMMAND_READ, 2);
583         sbmac_mii_senddata(s,phyaddr, 5);
584         sbmac_mii_senddata(s,regidx, 5);
585
586         mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
587
588         /*
589          * Switch the port around without a clock transition.
590          */
591         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
592
593         /*
594          * Send out a clock pulse to signal we want the status
595          */
596
597         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
598         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
599
600         /*
601          * If an error occurred, the PHY will signal '1' back
602          */
603         error = __raw_readq(s->sbm_mdio) & M_MAC_MDIO_IN;
604
605         /*
606          * Issue an 'idle' clock pulse, but keep the direction
607          * the same.
608          */
609         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
610         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
611
612         regval = 0;
613
614         for (idx = 0; idx < 16; idx++) {
615                 regval <<= 1;
616
617                 if (error == 0) {
618                         if (__raw_readq(s->sbm_mdio) & M_MAC_MDIO_IN)
619                                 regval |= 1;
620                 }
621
622                 __raw_writeq(M_MAC_MDIO_DIR_INPUT|M_MAC_MDC | mac_mdio_genc, s->sbm_mdio);
623                 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, s->sbm_mdio);
624         }
625
626         /* Switch back to output */
627         __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, s->sbm_mdio);
628
629         if (error == 0)
630                 return regval;
631         return 0;
632 }
633
634
635 /**********************************************************************
636  *  SBMAC_MII_WRITE(s,phyaddr,regidx,regval)
637  *
638  *  Write a value to a PHY register.
639  *
640  *  Input parameters:
641  *         s - sbmac structure
642  *         phyaddr - PHY to use
643  *         regidx - register within the PHY
644  *         regval - data to write to register
645  *
646  *  Return value:
647  *         nothing
648  ********************************************************************* */
649
650 static void sbmac_mii_write(struct sbmac_softc *s,int phyaddr,int regidx,
651                             unsigned int regval)
652 {
653         int mac_mdio_genc;
654
655         sbmac_mii_sync(s);
656
657         sbmac_mii_senddata(s,MII_COMMAND_START,2);
658         sbmac_mii_senddata(s,MII_COMMAND_WRITE,2);
659         sbmac_mii_senddata(s,phyaddr, 5);
660         sbmac_mii_senddata(s,regidx, 5);
661         sbmac_mii_senddata(s,MII_COMMAND_ACK,2);
662         sbmac_mii_senddata(s,regval,16);
663
664         mac_mdio_genc = __raw_readq(s->sbm_mdio) & M_MAC_GENC;
665
666         __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, s->sbm_mdio);
667 }
668
669
670
671 /**********************************************************************
672  *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
673  *
674  *  Initialize a DMA channel context.  Since there are potentially
675  *  eight DMA channels per MAC, it's nice to do this in a standard
676  *  way.
677  *
678  *  Input parameters:
679  *         d - sbmacdma_t structure (DMA channel context)
680  *         s - sbmac_softc structure (pointer to a MAC)
681  *         chan - channel number (0..1 right now)
682  *         txrx - Identifies DMA_TX or DMA_RX for channel direction
683  *      maxdescr - number of descriptors
684  *
685  *  Return value:
686  *         nothing
687  ********************************************************************* */
688
689 static void sbdma_initctx(sbmacdma_t *d,
690                           struct sbmac_softc *s,
691                           int chan,
692                           int txrx,
693                           int maxdescr)
694 {
695 #ifdef CONFIG_SBMAC_COALESCE
696         int int_pktcnt, int_timeout;
697 #endif
698
699         /*
700          * Save away interesting stuff in the structure
701          */
702
703         d->sbdma_eth       = s;
704         d->sbdma_channel   = chan;
705         d->sbdma_txdir     = txrx;
706
707 #if 0
708         /* RMON clearing */
709         s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
710 #endif
711
712         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BYTES)));
713         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_COLLISIONS)));
714         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_LATE_COL)));
715         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_EX_COL)));
716         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_FCS_ERROR)));
717         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_ABORT)));
718         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_BAD)));
719         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_GOOD)));
720         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_RUNT)));
721         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_TX_OVERSIZE)));
722         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BYTES)));
723         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_MCAST)));
724         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BCAST)));
725         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_BAD)));
726         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_GOOD)));
727         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_RUNT)));
728         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_OVERSIZE)));
729         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_FCS_ERROR)));
730         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_LENGTH_ERROR)));
731         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_CODE_ERROR)));
732         __raw_writeq(0, IOADDR(A_MAC_REGISTER(s->sbe_idx, R_MAC_RMON_RX_ALIGN_ERROR)));
733
734         /*
735          * initialize register pointers
736          */
737
738         d->sbdma_config0 =
739                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
740         d->sbdma_config1 =
741                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
742         d->sbdma_dscrbase =
743                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
744         d->sbdma_dscrcnt =
745                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
746         d->sbdma_curdscr =
747                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
748         if (d->sbdma_txdir)
749                 d->sbdma_oodpktlost = NULL;
750         else
751                 d->sbdma_oodpktlost =
752                         s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
753
754         /*
755          * Allocate memory for the ring
756          */
757
758         d->sbdma_maxdescr = maxdescr;
759
760         d->sbdma_dscrtable_unaligned =
761         d->sbdma_dscrtable = (sbdmadscr_t *)
762                 kmalloc((d->sbdma_maxdescr+1)*sizeof(sbdmadscr_t), GFP_KERNEL);
763
764         /*
765          * The descriptor table must be aligned to at least 16 bytes or the
766          * MAC will corrupt it.
767          */
768         d->sbdma_dscrtable = (sbdmadscr_t *)
769                 ALIGN((unsigned long)d->sbdma_dscrtable, sizeof(sbdmadscr_t));
770
771         memset(d->sbdma_dscrtable,0,d->sbdma_maxdescr*sizeof(sbdmadscr_t));
772
773         d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
774
775         d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
776
777         /*
778          * And context table
779          */
780
781         d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
782                                     sizeof(struct sk_buff *), GFP_KERNEL);
783
784 #ifdef CONFIG_SBMAC_COALESCE
785         /*
786          * Setup Rx/Tx DMA coalescing defaults
787          */
788
789         int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
790         if ( int_pktcnt ) {
791                 d->sbdma_int_pktcnt = int_pktcnt;
792         } else {
793                 d->sbdma_int_pktcnt = 1;
794         }
795
796         int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
797         if ( int_timeout ) {
798                 d->sbdma_int_timeout = int_timeout;
799         } else {
800                 d->sbdma_int_timeout = 0;
801         }
802 #endif
803
804 }
805
806 /**********************************************************************
807  *  SBDMA_CHANNEL_START(d)
808  *
809  *  Initialize the hardware registers for a DMA channel.
810  *
811  *  Input parameters:
812  *         d - DMA channel to init (context must be previously init'd
813  *         rxtx - DMA_RX or DMA_TX depending on what type of channel
814  *
815  *  Return value:
816  *         nothing
817  ********************************************************************* */
818
819 static void sbdma_channel_start(sbmacdma_t *d, int rxtx )
820 {
821         /*
822          * Turn on the DMA channel
823          */
824
825 #ifdef CONFIG_SBMAC_COALESCE
826         __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
827                        0, d->sbdma_config1);
828         __raw_writeq(M_DMA_EOP_INT_EN |
829                        V_DMA_RINGSZ(d->sbdma_maxdescr) |
830                        V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
831                        0, d->sbdma_config0);
832 #else
833         __raw_writeq(0, d->sbdma_config1);
834         __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
835                        0, d->sbdma_config0);
836 #endif
837
838         __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
839
840         /*
841          * Initialize ring pointers
842          */
843
844         d->sbdma_addptr = d->sbdma_dscrtable;
845         d->sbdma_remptr = d->sbdma_dscrtable;
846 }
847
848 /**********************************************************************
849  *  SBDMA_CHANNEL_STOP(d)
850  *
851  *  Initialize the hardware registers for a DMA channel.
852  *
853  *  Input parameters:
854  *         d - DMA channel to init (context must be previously init'd
855  *
856  *  Return value:
857  *         nothing
858  ********************************************************************* */
859
860 static void sbdma_channel_stop(sbmacdma_t *d)
861 {
862         /*
863          * Turn off the DMA channel
864          */
865
866         __raw_writeq(0, d->sbdma_config1);
867
868         __raw_writeq(0, d->sbdma_dscrbase);
869
870         __raw_writeq(0, d->sbdma_config0);
871
872         /*
873          * Zero ring pointers
874          */
875
876         d->sbdma_addptr = NULL;
877         d->sbdma_remptr = NULL;
878 }
879
880 static void sbdma_align_skb(struct sk_buff *skb,int power2,int offset)
881 {
882         unsigned long addr;
883         unsigned long newaddr;
884
885         addr = (unsigned long) skb->data;
886
887         newaddr = (addr + power2 - 1) & ~(power2 - 1);
888
889         skb_reserve(skb,newaddr-addr+offset);
890 }
891
892
893 /**********************************************************************
894  *  SBDMA_ADD_RCVBUFFER(d,sb)
895  *
896  *  Add a buffer to the specified DMA channel.   For receive channels,
897  *  this queues a buffer for inbound packets.
898  *
899  *  Input parameters:
900  *         d - DMA channel descriptor
901  *         sb - sk_buff to add, or NULL if we should allocate one
902  *
903  *  Return value:
904  *         0 if buffer could not be added (ring is full)
905  *         1 if buffer added successfully
906  ********************************************************************* */
907
908
909 static int sbdma_add_rcvbuffer(sbmacdma_t *d,struct sk_buff *sb)
910 {
911         sbdmadscr_t *dsc;
912         sbdmadscr_t *nextdsc;
913         struct sk_buff *sb_new = NULL;
914         int pktsize = ENET_PACKET_SIZE;
915
916         /* get pointer to our current place in the ring */
917
918         dsc = d->sbdma_addptr;
919         nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
920
921         /*
922          * figure out if the ring is full - if the next descriptor
923          * is the same as the one that we're going to remove from
924          * the ring, the ring is full
925          */
926
927         if (nextdsc == d->sbdma_remptr) {
928                 return -ENOSPC;
929         }
930
931         /*
932          * Allocate a sk_buff if we don't already have one.
933          * If we do have an sk_buff, reset it so that it's empty.
934          *
935          * Note: sk_buffs don't seem to be guaranteed to have any sort
936          * of alignment when they are allocated.  Therefore, allocate enough
937          * extra space to make sure that:
938          *
939          *    1. the data does not start in the middle of a cache line.
940          *    2. The data does not end in the middle of a cache line
941          *    3. The buffer can be aligned such that the IP addresses are
942          *       naturally aligned.
943          *
944          *  Remember, the SOCs MAC writes whole cache lines at a time,
945          *  without reading the old contents first.  So, if the sk_buff's
946          *  data portion starts in the middle of a cache line, the SOC
947          *  DMA will trash the beginning (and ending) portions.
948          */
949
950         if (sb == NULL) {
951                 sb_new = dev_alloc_skb(ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + ETHER_ALIGN);
952                 if (sb_new == NULL) {
953                         printk(KERN_INFO "%s: sk_buff allocation failed\n",
954                                d->sbdma_eth->sbm_dev->name);
955                         return -ENOBUFS;
956                 }
957
958                 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, ETHER_ALIGN);
959         }
960         else {
961                 sb_new = sb;
962                 /*
963                  * nothing special to reinit buffer, it's already aligned
964                  * and sb->data already points to a good place.
965                  */
966         }
967
968         /*
969          * fill in the descriptor
970          */
971
972 #ifdef CONFIG_SBMAC_COALESCE
973         /*
974          * Do not interrupt per DMA transfer.
975          */
976         dsc->dscr_a = virt_to_phys(sb_new->data) |
977                 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize+ETHER_ALIGN)) | 0;
978 #else
979         dsc->dscr_a = virt_to_phys(sb_new->data) |
980                 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize+ETHER_ALIGN)) |
981                 M_DMA_DSCRA_INTERRUPT;
982 #endif
983
984         /* receiving: no options */
985         dsc->dscr_b = 0;
986
987         /*
988          * fill in the context
989          */
990
991         d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
992
993         /*
994          * point at next packet
995          */
996
997         d->sbdma_addptr = nextdsc;
998
999         /*
1000          * Give the buffer to the DMA engine.
1001          */
1002
1003         __raw_writeq(1, d->sbdma_dscrcnt);
1004
1005         return 0;                                       /* we did it */
1006 }
1007
1008 /**********************************************************************
1009  *  SBDMA_ADD_TXBUFFER(d,sb)
1010  *
1011  *  Add a transmit buffer to the specified DMA channel, causing a
1012  *  transmit to start.
1013  *
1014  *  Input parameters:
1015  *         d - DMA channel descriptor
1016  *         sb - sk_buff to add
1017  *
1018  *  Return value:
1019  *         0 transmit queued successfully
1020  *         otherwise error code
1021  ********************************************************************* */
1022
1023
1024 static int sbdma_add_txbuffer(sbmacdma_t *d,struct sk_buff *sb)
1025 {
1026         sbdmadscr_t *dsc;
1027         sbdmadscr_t *nextdsc;
1028         uint64_t phys;
1029         uint64_t ncb;
1030         int length;
1031
1032         /* get pointer to our current place in the ring */
1033
1034         dsc = d->sbdma_addptr;
1035         nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
1036
1037         /*
1038          * figure out if the ring is full - if the next descriptor
1039          * is the same as the one that we're going to remove from
1040          * the ring, the ring is full
1041          */
1042
1043         if (nextdsc == d->sbdma_remptr) {
1044                 return -ENOSPC;
1045         }
1046
1047         /*
1048          * Under Linux, it's not necessary to copy/coalesce buffers
1049          * like it is on NetBSD.  We think they're all contiguous,
1050          * but that may not be true for GBE.
1051          */
1052
1053         length = sb->len;
1054
1055         /*
1056          * fill in the descriptor.  Note that the number of cache
1057          * blocks in the descriptor is the number of blocks
1058          * *spanned*, so we need to add in the offset (if any)
1059          * while doing the calculation.
1060          */
1061
1062         phys = virt_to_phys(sb->data);
1063         ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
1064
1065         dsc->dscr_a = phys |
1066                 V_DMA_DSCRA_A_SIZE(ncb) |
1067 #ifndef CONFIG_SBMAC_COALESCE
1068                 M_DMA_DSCRA_INTERRUPT |
1069 #endif
1070                 M_DMA_ETHTX_SOP;
1071
1072         /* transmitting: set outbound options and length */
1073
1074         dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
1075                 V_DMA_DSCRB_PKT_SIZE(length);
1076
1077         /*
1078          * fill in the context
1079          */
1080
1081         d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
1082
1083         /*
1084          * point at next packet
1085          */
1086
1087         d->sbdma_addptr = nextdsc;
1088
1089         /*
1090          * Give the buffer to the DMA engine.
1091          */
1092
1093         __raw_writeq(1, d->sbdma_dscrcnt);
1094
1095         return 0;                                       /* we did it */
1096 }
1097
1098
1099
1100
1101 /**********************************************************************
1102  *  SBDMA_EMPTYRING(d)
1103  *
1104  *  Free all allocated sk_buffs on the specified DMA channel;
1105  *
1106  *  Input parameters:
1107  *         d  - DMA channel
1108  *
1109  *  Return value:
1110  *         nothing
1111  ********************************************************************* */
1112
1113 static void sbdma_emptyring(sbmacdma_t *d)
1114 {
1115         int idx;
1116         struct sk_buff *sb;
1117
1118         for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1119                 sb = d->sbdma_ctxtable[idx];
1120                 if (sb) {
1121                         dev_kfree_skb(sb);
1122                         d->sbdma_ctxtable[idx] = NULL;
1123                 }
1124         }
1125 }
1126
1127
1128 /**********************************************************************
1129  *  SBDMA_FILLRING(d)
1130  *
1131  *  Fill the specified DMA channel (must be receive channel)
1132  *  with sk_buffs
1133  *
1134  *  Input parameters:
1135  *         d - DMA channel
1136  *
1137  *  Return value:
1138  *         nothing
1139  ********************************************************************* */
1140
1141 static void sbdma_fillring(sbmacdma_t *d)
1142 {
1143         int idx;
1144
1145         for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++) {
1146                 if (sbdma_add_rcvbuffer(d,NULL) != 0)
1147                         break;
1148         }
1149 }
1150
1151 #ifdef CONFIG_NET_POLL_CONTROLLER
1152 static void sbmac_netpoll(struct net_device *netdev)
1153 {
1154         struct sbmac_softc *sc = netdev_priv(netdev);
1155         int irq = sc->sbm_dev->irq;
1156
1157         __raw_writeq(0, sc->sbm_imr);
1158
1159         sbmac_intr(irq, netdev);
1160
1161 #ifdef CONFIG_SBMAC_COALESCE
1162         __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1163         ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1164         sc->sbm_imr);
1165 #else
1166         __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) | 
1167         (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1168 #endif
1169 }
1170 #endif
1171
1172 /**********************************************************************
1173  *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1174  *
1175  *  Process "completed" receive buffers on the specified DMA channel.
1176  *
1177  *  Input parameters:
1178  *            sc - softc structure
1179  *             d - DMA channel context
1180  *    work_to_do - no. of packets to process before enabling interrupt
1181  *                 again (for NAPI)
1182  *          poll - 1: using polling (for NAPI)
1183  *
1184  *  Return value:
1185  *         nothing
1186  ********************************************************************* */
1187
1188 static int sbdma_rx_process(struct sbmac_softc *sc,sbmacdma_t *d,
1189                              int work_to_do, int poll)
1190 {
1191         struct net_device *dev = sc->sbm_dev;
1192         int curidx;
1193         int hwidx;
1194         sbdmadscr_t *dsc;
1195         struct sk_buff *sb;
1196         int len;
1197         int work_done = 0;
1198         int dropped = 0;
1199
1200         prefetch(d);
1201
1202 again:
1203         /* Check if the HW dropped any frames */
1204         dev->stats.rx_fifo_errors
1205             += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1206         __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1207
1208         while (work_to_do-- > 0) {
1209                 /*
1210                  * figure out where we are (as an index) and where
1211                  * the hardware is (also as an index)
1212                  *
1213                  * This could be done faster if (for example) the
1214                  * descriptor table was page-aligned and contiguous in
1215                  * both virtual and physical memory -- you could then
1216                  * just compare the low-order bits of the virtual address
1217                  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1218                  */
1219
1220                 dsc = d->sbdma_remptr;
1221                 curidx = dsc - d->sbdma_dscrtable;
1222
1223                 prefetch(dsc);
1224                 prefetch(&d->sbdma_ctxtable[curidx]);
1225
1226                 hwidx = (int) (((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1227                                 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1228
1229                 /*
1230                  * If they're the same, that means we've processed all
1231                  * of the descriptors up to (but not including) the one that
1232                  * the hardware is working on right now.
1233                  */
1234
1235                 if (curidx == hwidx)
1236                         goto done;
1237
1238                 /*
1239                  * Otherwise, get the packet's sk_buff ptr back
1240                  */
1241
1242                 sb = d->sbdma_ctxtable[curidx];
1243                 d->sbdma_ctxtable[curidx] = NULL;
1244
1245                 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1246
1247                 /*
1248                  * Check packet status.  If good, process it.
1249                  * If not, silently drop it and put it back on the
1250                  * receive ring.
1251                  */
1252
1253                 if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1254
1255                         /*
1256                          * Add a new buffer to replace the old one.  If we fail
1257                          * to allocate a buffer, we're going to drop this
1258                          * packet and put it right back on the receive ring.
1259                          */
1260
1261                         if (unlikely (sbdma_add_rcvbuffer(d,NULL) ==
1262                                       -ENOBUFS)) {
1263                                 dev->stats.rx_dropped++;
1264                                 sbdma_add_rcvbuffer(d,sb); /* re-add old buffer */
1265                                 /* No point in continuing at the moment */
1266                                 printk(KERN_ERR "dropped packet (1)\n");
1267                                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1268                                 goto done;
1269                         } else {
1270                                 /*
1271                                  * Set length into the packet
1272                                  */
1273                                 skb_put(sb,len);
1274
1275                                 /*
1276                                  * Buffer has been replaced on the
1277                                  * receive ring.  Pass the buffer to
1278                                  * the kernel
1279                                  */
1280                                 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1281                                 /* Check hw IPv4/TCP checksum if supported */
1282                                 if (sc->rx_hw_checksum == ENABLE) {
1283                                         if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1284                                             !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1285                                                 sb->ip_summed = CHECKSUM_UNNECESSARY;
1286                                                 /* don't need to set sb->csum */
1287                                         } else {
1288                                                 sb->ip_summed = CHECKSUM_NONE;
1289                                         }
1290                                 }
1291                                 prefetch(sb->data);
1292                                 prefetch((const void *)(((char *)sb->data)+32));
1293                                 if (poll)
1294                                         dropped = netif_receive_skb(sb);
1295                                 else
1296                                         dropped = netif_rx(sb);
1297
1298                                 if (dropped == NET_RX_DROP) {
1299                                         dev->stats.rx_dropped++;
1300                                         d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1301                                         goto done;
1302                                 }
1303                                 else {
1304                                         dev->stats.rx_bytes += len;
1305                                         dev->stats.rx_packets++;
1306                                 }
1307                         }
1308                 } else {
1309                         /*
1310                          * Packet was mangled somehow.  Just drop it and
1311                          * put it back on the receive ring.
1312                          */
1313                         dev->stats.rx_errors++;
1314                         sbdma_add_rcvbuffer(d,sb);
1315                 }
1316
1317
1318                 /*
1319                  * .. and advance to the next buffer.
1320                  */
1321
1322                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1323                 work_done++;
1324         }
1325         if (!poll) {
1326                 work_to_do = 32;
1327                 goto again; /* collect fifo drop statistics again */
1328         }
1329 done:
1330         return work_done;
1331 }
1332
1333 /**********************************************************************
1334  *  SBDMA_TX_PROCESS(sc,d)
1335  *
1336  *  Process "completed" transmit buffers on the specified DMA channel.
1337  *  This is normally called within the interrupt service routine.
1338  *  Note that this isn't really ideal for priority channels, since
1339  *  it processes all of the packets on a given channel before
1340  *  returning.
1341  *
1342  *  Input parameters:
1343  *      sc - softc structure
1344  *       d - DMA channel context
1345  *    poll - 1: using polling (for NAPI)
1346  *
1347  *  Return value:
1348  *         nothing
1349  ********************************************************************* */
1350
1351 static void sbdma_tx_process(struct sbmac_softc *sc,sbmacdma_t *d, int poll)
1352 {
1353         struct net_device *dev = sc->sbm_dev;
1354         int curidx;
1355         int hwidx;
1356         sbdmadscr_t *dsc;
1357         struct sk_buff *sb;
1358         unsigned long flags;
1359         int packets_handled = 0;
1360
1361         spin_lock_irqsave(&(sc->sbm_lock), flags);
1362
1363         if (d->sbdma_remptr == d->sbdma_addptr)
1364           goto end_unlock;
1365
1366         hwidx = (int) (((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1367                         d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1368
1369         for (;;) {
1370                 /*
1371                  * figure out where we are (as an index) and where
1372                  * the hardware is (also as an index)
1373                  *
1374                  * This could be done faster if (for example) the
1375                  * descriptor table was page-aligned and contiguous in
1376                  * both virtual and physical memory -- you could then
1377                  * just compare the low-order bits of the virtual address
1378                  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1379                  */
1380
1381                 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1382
1383                 /*
1384                  * If they're the same, that means we've processed all
1385                  * of the descriptors up to (but not including) the one that
1386                  * the hardware is working on right now.
1387                  */
1388
1389                 if (curidx == hwidx)
1390                         break;
1391
1392                 /*
1393                  * Otherwise, get the packet's sk_buff ptr back
1394                  */
1395
1396                 dsc = &(d->sbdma_dscrtable[curidx]);
1397                 sb = d->sbdma_ctxtable[curidx];
1398                 d->sbdma_ctxtable[curidx] = NULL;
1399
1400                 /*
1401                  * Stats
1402                  */
1403
1404                 dev->stats.tx_bytes += sb->len;
1405                 dev->stats.tx_packets++;
1406
1407                 /*
1408                  * for transmits, we just free buffers.
1409                  */
1410
1411                 dev_kfree_skb_irq(sb);
1412
1413                 /*
1414                  * .. and advance to the next buffer.
1415                  */
1416
1417                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1418
1419                 packets_handled++;
1420
1421         }
1422
1423         /*
1424          * Decide if we should wake up the protocol or not.
1425          * Other drivers seem to do this when we reach a low
1426          * watermark on the transmit queue.
1427          */
1428
1429         if (packets_handled)
1430                 netif_wake_queue(d->sbdma_eth->sbm_dev);
1431
1432 end_unlock:
1433         spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1434
1435 }
1436
1437
1438
1439 /**********************************************************************
1440  *  SBMAC_INITCTX(s)
1441  *
1442  *  Initialize an Ethernet context structure - this is called
1443  *  once per MAC on the 1250.  Memory is allocated here, so don't
1444  *  call it again from inside the ioctl routines that bring the
1445  *  interface up/down
1446  *
1447  *  Input parameters:
1448  *         s - sbmac context structure
1449  *
1450  *  Return value:
1451  *         0
1452  ********************************************************************* */
1453
1454 static int sbmac_initctx(struct sbmac_softc *s)
1455 {
1456
1457         /*
1458          * figure out the addresses of some ports
1459          */
1460
1461         s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1462         s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1463         s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1464         s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1465         s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1466         s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1467         s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1468         s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1469
1470         s->sbm_phys[0]   = 1;
1471         s->sbm_phys[1]   = 0;
1472
1473         s->sbm_phy_oldbmsr = 0;
1474         s->sbm_phy_oldanlpar = 0;
1475         s->sbm_phy_oldk1stsr = 0;
1476         s->sbm_phy_oldlinkstat = 0;
1477
1478         /*
1479          * Initialize the DMA channels.  Right now, only one per MAC is used
1480          * Note: Only do this _once_, as it allocates memory from the kernel!
1481          */
1482
1483         sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1484         sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1485
1486         /*
1487          * initial state is OFF
1488          */
1489
1490         s->sbm_state = sbmac_state_off;
1491
1492         /*
1493          * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1494          */
1495
1496         s->sbm_speed = sbmac_speed_10;
1497         s->sbm_duplex = sbmac_duplex_half;
1498         s->sbm_fc = sbmac_fc_disabled;
1499
1500         return 0;
1501 }
1502
1503
1504 static void sbdma_uninitctx(struct sbmacdma_s *d)
1505 {
1506         if (d->sbdma_dscrtable_unaligned) {
1507                 kfree(d->sbdma_dscrtable_unaligned);
1508                 d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1509         }
1510
1511         if (d->sbdma_ctxtable) {
1512                 kfree(d->sbdma_ctxtable);
1513                 d->sbdma_ctxtable = NULL;
1514         }
1515 }
1516
1517
1518 static void sbmac_uninitctx(struct sbmac_softc *sc)
1519 {
1520         sbdma_uninitctx(&(sc->sbm_txdma));
1521         sbdma_uninitctx(&(sc->sbm_rxdma));
1522 }
1523
1524
1525 /**********************************************************************
1526  *  SBMAC_CHANNEL_START(s)
1527  *
1528  *  Start packet processing on this MAC.
1529  *
1530  *  Input parameters:
1531  *         s - sbmac structure
1532  *
1533  *  Return value:
1534  *         nothing
1535  ********************************************************************* */
1536
1537 static void sbmac_channel_start(struct sbmac_softc *s)
1538 {
1539         uint64_t reg;
1540         volatile void __iomem *port;
1541         uint64_t cfg,fifo,framecfg;
1542         int idx, th_value;
1543
1544         /*
1545          * Don't do this if running
1546          */
1547
1548         if (s->sbm_state == sbmac_state_on)
1549                 return;
1550
1551         /*
1552          * Bring the controller out of reset, but leave it off.
1553          */
1554
1555         __raw_writeq(0, s->sbm_macenable);
1556
1557         /*
1558          * Ignore all received packets
1559          */
1560
1561         __raw_writeq(0, s->sbm_rxfilter);
1562
1563         /*
1564          * Calculate values for various control registers.
1565          */
1566
1567         cfg = M_MAC_RETRY_EN |
1568                 M_MAC_TX_HOLD_SOP_EN |
1569                 V_MAC_TX_PAUSE_CNT_16K |
1570                 M_MAC_AP_STAT_EN |
1571                 M_MAC_FAST_SYNC |
1572                 M_MAC_SS_EN |
1573                 0;
1574
1575         /*
1576          * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1577          * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1578          * Use a larger RD_THRSH for gigabit
1579          */
1580         if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1581                 th_value = 28;
1582         else
1583                 th_value = 64;
1584
1585         fifo = V_MAC_TX_WR_THRSH(4) |   /* Must be '4' or '8' */
1586                 ((s->sbm_speed == sbmac_speed_1000)
1587                  ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1588                 V_MAC_TX_RL_THRSH(4) |
1589                 V_MAC_RX_PL_THRSH(4) |
1590                 V_MAC_RX_RD_THRSH(4) |  /* Must be '4' */
1591                 V_MAC_RX_PL_THRSH(4) |
1592                 V_MAC_RX_RL_THRSH(8) |
1593                 0;
1594
1595         framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1596                 V_MAC_MAX_FRAMESZ_DEFAULT |
1597                 V_MAC_BACKOFF_SEL(1);
1598
1599         /*
1600          * Clear out the hash address map
1601          */
1602
1603         port = s->sbm_base + R_MAC_HASH_BASE;
1604         for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1605                 __raw_writeq(0, port);
1606                 port += sizeof(uint64_t);
1607         }
1608
1609         /*
1610          * Clear out the exact-match table
1611          */
1612
1613         port = s->sbm_base + R_MAC_ADDR_BASE;
1614         for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1615                 __raw_writeq(0, port);
1616                 port += sizeof(uint64_t);
1617         }
1618
1619         /*
1620          * Clear out the DMA Channel mapping table registers
1621          */
1622
1623         port = s->sbm_base + R_MAC_CHUP0_BASE;
1624         for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1625                 __raw_writeq(0, port);
1626                 port += sizeof(uint64_t);
1627         }
1628
1629
1630         port = s->sbm_base + R_MAC_CHLO0_BASE;
1631         for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1632                 __raw_writeq(0, port);
1633                 port += sizeof(uint64_t);
1634         }
1635
1636         /*
1637          * Program the hardware address.  It goes into the hardware-address
1638          * register as well as the first filter register.
1639          */
1640
1641         reg = sbmac_addr2reg(s->sbm_hwaddr);
1642
1643         port = s->sbm_base + R_MAC_ADDR_BASE;
1644         __raw_writeq(reg, port);
1645         port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1646
1647 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1648         /*
1649          * Pass1 SOCs do not receive packets addressed to the
1650          * destination address in the R_MAC_ETHERNET_ADDR register.
1651          * Set the value to zero.
1652          */
1653         __raw_writeq(0, port);
1654 #else
1655         __raw_writeq(reg, port);
1656 #endif
1657
1658         /*
1659          * Set the receive filter for no packets, and write values
1660          * to the various config registers
1661          */
1662
1663         __raw_writeq(0, s->sbm_rxfilter);
1664         __raw_writeq(0, s->sbm_imr);
1665         __raw_writeq(framecfg, s->sbm_framecfg);
1666         __raw_writeq(fifo, s->sbm_fifocfg);
1667         __raw_writeq(cfg, s->sbm_maccfg);
1668
1669         /*
1670          * Initialize DMA channels (rings should be ok now)
1671          */
1672
1673         sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1674         sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1675
1676         /*
1677          * Configure the speed, duplex, and flow control
1678          */
1679
1680         sbmac_set_speed(s,s->sbm_speed);
1681         sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1682
1683         /*
1684          * Fill the receive ring
1685          */
1686
1687         sbdma_fillring(&(s->sbm_rxdma));
1688
1689         /*
1690          * Turn on the rest of the bits in the enable register
1691          */
1692
1693 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1694         __raw_writeq(M_MAC_RXDMA_EN0 |
1695                        M_MAC_TXDMA_EN0, s->sbm_macenable);
1696 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1697         __raw_writeq(M_MAC_RXDMA_EN0 |
1698                        M_MAC_TXDMA_EN0 |
1699                        M_MAC_RX_ENABLE |
1700                        M_MAC_TX_ENABLE, s->sbm_macenable);
1701 #else
1702 #error invalid SiByte MAC configuation
1703 #endif
1704
1705 #ifdef CONFIG_SBMAC_COALESCE
1706         __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1707                        ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1708 #else
1709         __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1710                        (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1711 #endif
1712
1713         /*
1714          * Enable receiving unicasts and broadcasts
1715          */
1716
1717         __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1718
1719         /*
1720          * we're running now.
1721          */
1722
1723         s->sbm_state = sbmac_state_on;
1724
1725         /*
1726          * Program multicast addresses
1727          */
1728
1729         sbmac_setmulti(s);
1730
1731         /*
1732          * If channel was in promiscuous mode before, turn that on
1733          */
1734
1735         if (s->sbm_devflags & IFF_PROMISC) {
1736                 sbmac_promiscuous_mode(s,1);
1737         }
1738
1739 }
1740
1741
1742 /**********************************************************************
1743  *  SBMAC_CHANNEL_STOP(s)
1744  *
1745  *  Stop packet processing on this MAC.
1746  *
1747  *  Input parameters:
1748  *         s - sbmac structure
1749  *
1750  *  Return value:
1751  *         nothing
1752  ********************************************************************* */
1753
1754 static void sbmac_channel_stop(struct sbmac_softc *s)
1755 {
1756         /* don't do this if already stopped */
1757
1758         if (s->sbm_state == sbmac_state_off)
1759                 return;
1760
1761         /* don't accept any packets, disable all interrupts */
1762
1763         __raw_writeq(0, s->sbm_rxfilter);
1764         __raw_writeq(0, s->sbm_imr);
1765
1766         /* Turn off ticker */
1767
1768         /* XXX */
1769
1770         /* turn off receiver and transmitter */
1771
1772         __raw_writeq(0, s->sbm_macenable);
1773
1774         /* We're stopped now. */
1775
1776         s->sbm_state = sbmac_state_off;
1777
1778         /*
1779          * Stop DMA channels (rings should be ok now)
1780          */
1781
1782         sbdma_channel_stop(&(s->sbm_rxdma));
1783         sbdma_channel_stop(&(s->sbm_txdma));
1784
1785         /* Empty the receive and transmit rings */
1786
1787         sbdma_emptyring(&(s->sbm_rxdma));
1788         sbdma_emptyring(&(s->sbm_txdma));
1789
1790 }
1791
1792 /**********************************************************************
1793  *  SBMAC_SET_CHANNEL_STATE(state)
1794  *
1795  *  Set the channel's state ON or OFF
1796  *
1797  *  Input parameters:
1798  *         state - new state
1799  *
1800  *  Return value:
1801  *         old state
1802  ********************************************************************* */
1803 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *sc,
1804                                              sbmac_state_t state)
1805 {
1806         sbmac_state_t oldstate = sc->sbm_state;
1807
1808         /*
1809          * If same as previous state, return
1810          */
1811
1812         if (state == oldstate) {
1813                 return oldstate;
1814         }
1815
1816         /*
1817          * If new state is ON, turn channel on
1818          */
1819
1820         if (state == sbmac_state_on) {
1821                 sbmac_channel_start(sc);
1822         }
1823         else {
1824                 sbmac_channel_stop(sc);
1825         }
1826
1827         /*
1828          * Return previous state
1829          */
1830
1831         return oldstate;
1832 }
1833
1834
1835 /**********************************************************************
1836  *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1837  *
1838  *  Turn on or off promiscuous mode
1839  *
1840  *  Input parameters:
1841  *         sc - softc
1842  *      onoff - 1 to turn on, 0 to turn off
1843  *
1844  *  Return value:
1845  *         nothing
1846  ********************************************************************* */
1847
1848 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1849 {
1850         uint64_t reg;
1851
1852         if (sc->sbm_state != sbmac_state_on)
1853                 return;
1854
1855         if (onoff) {
1856                 reg = __raw_readq(sc->sbm_rxfilter);
1857                 reg |= M_MAC_ALLPKT_EN;
1858                 __raw_writeq(reg, sc->sbm_rxfilter);
1859         }
1860         else {
1861                 reg = __raw_readq(sc->sbm_rxfilter);
1862                 reg &= ~M_MAC_ALLPKT_EN;
1863                 __raw_writeq(reg, sc->sbm_rxfilter);
1864         }
1865 }
1866
1867 /**********************************************************************
1868  *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1869  *
1870  *  Set the iphdr offset as 15 assuming ethernet encapsulation
1871  *
1872  *  Input parameters:
1873  *         sc - softc
1874  *
1875  *  Return value:
1876  *         nothing
1877  ********************************************************************* */
1878
1879 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1880 {
1881         uint64_t reg;
1882
1883         /* Hard code the off set to 15 for now */
1884         reg = __raw_readq(sc->sbm_rxfilter);
1885         reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1886         __raw_writeq(reg, sc->sbm_rxfilter);
1887
1888         /* BCM1250 pass1 didn't have hardware checksum.  Everything
1889            later does.  */
1890         if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1891                 sc->rx_hw_checksum = DISABLE;
1892         } else {
1893                 sc->rx_hw_checksum = ENABLE;
1894         }
1895 }
1896
1897
1898 /**********************************************************************
1899  *  SBMAC_ADDR2REG(ptr)
1900  *
1901  *  Convert six bytes into the 64-bit register value that
1902  *  we typically write into the SBMAC's address/mcast registers
1903  *
1904  *  Input parameters:
1905  *         ptr - pointer to 6 bytes
1906  *
1907  *  Return value:
1908  *         register value
1909  ********************************************************************* */
1910
1911 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1912 {
1913         uint64_t reg = 0;
1914
1915         ptr += 6;
1916
1917         reg |= (uint64_t) *(--ptr);
1918         reg <<= 8;
1919         reg |= (uint64_t) *(--ptr);
1920         reg <<= 8;
1921         reg |= (uint64_t) *(--ptr);
1922         reg <<= 8;
1923         reg |= (uint64_t) *(--ptr);
1924         reg <<= 8;
1925         reg |= (uint64_t) *(--ptr);
1926         reg <<= 8;
1927         reg |= (uint64_t) *(--ptr);
1928
1929         return reg;
1930 }
1931
1932
1933 /**********************************************************************
1934  *  SBMAC_SET_SPEED(s,speed)
1935  *
1936  *  Configure LAN speed for the specified MAC.
1937  *  Warning: must be called when MAC is off!
1938  *
1939  *  Input parameters:
1940  *         s - sbmac structure
1941  *         speed - speed to set MAC to (see sbmac_speed_t enum)
1942  *
1943  *  Return value:
1944  *         1 if successful
1945  *      0 indicates invalid parameters
1946  ********************************************************************* */
1947
1948 static int sbmac_set_speed(struct sbmac_softc *s,sbmac_speed_t speed)
1949 {
1950         uint64_t cfg;
1951         uint64_t framecfg;
1952
1953         /*
1954          * Save new current values
1955          */
1956
1957         s->sbm_speed = speed;
1958
1959         if (s->sbm_state == sbmac_state_on)
1960                 return 0;       /* save for next restart */
1961
1962         /*
1963          * Read current register values
1964          */
1965
1966         cfg = __raw_readq(s->sbm_maccfg);
1967         framecfg = __raw_readq(s->sbm_framecfg);
1968
1969         /*
1970          * Mask out the stuff we want to change
1971          */
1972
1973         cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1974         framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1975                       M_MAC_SLOT_SIZE);
1976
1977         /*
1978          * Now add in the new bits
1979          */
1980
1981         switch (speed) {
1982         case sbmac_speed_10:
1983                 framecfg |= V_MAC_IFG_RX_10 |
1984                         V_MAC_IFG_TX_10 |
1985                         K_MAC_IFG_THRSH_10 |
1986                         V_MAC_SLOT_SIZE_10;
1987                 cfg |= V_MAC_SPEED_SEL_10MBPS;
1988                 break;
1989
1990         case sbmac_speed_100:
1991                 framecfg |= V_MAC_IFG_RX_100 |
1992                         V_MAC_IFG_TX_100 |
1993                         V_MAC_IFG_THRSH_100 |
1994                         V_MAC_SLOT_SIZE_100;
1995                 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1996                 break;
1997
1998         case sbmac_speed_1000:
1999                 framecfg |= V_MAC_IFG_RX_1000 |
2000                         V_MAC_IFG_TX_1000 |
2001                         V_MAC_IFG_THRSH_1000 |
2002                         V_MAC_SLOT_SIZE_1000;
2003                 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
2004                 break;
2005
2006         case sbmac_speed_auto:          /* XXX not implemented */
2007                 /* fall through */
2008         default:
2009                 return 0;
2010         }
2011
2012         /*
2013          * Send the bits back to the hardware
2014          */
2015
2016         __raw_writeq(framecfg, s->sbm_framecfg);
2017         __raw_writeq(cfg, s->sbm_maccfg);
2018
2019         return 1;
2020 }
2021
2022 /**********************************************************************
2023  *  SBMAC_SET_DUPLEX(s,duplex,fc)
2024  *
2025  *  Set Ethernet duplex and flow control options for this MAC
2026  *  Warning: must be called when MAC is off!
2027  *
2028  *  Input parameters:
2029  *         s - sbmac structure
2030  *         duplex - duplex setting (see sbmac_duplex_t)
2031  *         fc - flow control setting (see sbmac_fc_t)
2032  *
2033  *  Return value:
2034  *         1 if ok
2035  *         0 if an invalid parameter combination was specified
2036  ********************************************************************* */
2037
2038 static int sbmac_set_duplex(struct sbmac_softc *s,sbmac_duplex_t duplex,sbmac_fc_t fc)
2039 {
2040         uint64_t cfg;
2041
2042         /*
2043          * Save new current values
2044          */
2045
2046         s->sbm_duplex = duplex;
2047         s->sbm_fc = fc;
2048
2049         if (s->sbm_state == sbmac_state_on)
2050                 return 0;       /* save for next restart */
2051
2052         /*
2053          * Read current register values
2054          */
2055
2056         cfg = __raw_readq(s->sbm_maccfg);
2057
2058         /*
2059          * Mask off the stuff we're about to change
2060          */
2061
2062         cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
2063
2064
2065         switch (duplex) {
2066         case sbmac_duplex_half:
2067                 switch (fc) {
2068                 case sbmac_fc_disabled:
2069                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
2070                         break;
2071
2072                 case sbmac_fc_collision:
2073                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
2074                         break;
2075
2076                 case sbmac_fc_carrier:
2077                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
2078                         break;
2079
2080                 case sbmac_fc_auto:             /* XXX not implemented */
2081                         /* fall through */
2082                 case sbmac_fc_frame:            /* not valid in half duplex */
2083                 default:                        /* invalid selection */
2084                         return 0;
2085                 }
2086                 break;
2087
2088         case sbmac_duplex_full:
2089                 switch (fc) {
2090                 case sbmac_fc_disabled:
2091                         cfg |= V_MAC_FC_CMD_DISABLED;
2092                         break;
2093
2094                 case sbmac_fc_frame:
2095                         cfg |= V_MAC_FC_CMD_ENABLED;
2096                         break;
2097
2098                 case sbmac_fc_collision:        /* not valid in full duplex */
2099                 case sbmac_fc_carrier:          /* not valid in full duplex */
2100                 case sbmac_fc_auto:             /* XXX not implemented */
2101                         /* fall through */
2102                 default:
2103                         return 0;
2104                 }
2105                 break;
2106         case sbmac_duplex_auto:
2107                 /* XXX not implemented */
2108                 break;
2109         }
2110
2111         /*
2112          * Send the bits back to the hardware
2113          */
2114
2115         __raw_writeq(cfg, s->sbm_maccfg);
2116
2117         return 1;
2118 }
2119
2120
2121
2122
2123 /**********************************************************************
2124  *  SBMAC_INTR()
2125  *
2126  *  Interrupt handler for MAC interrupts
2127  *
2128  *  Input parameters:
2129  *         MAC structure
2130  *
2131  *  Return value:
2132  *         nothing
2133  ********************************************************************* */
2134 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
2135 {
2136         struct net_device *dev = (struct net_device *) dev_instance;
2137         struct sbmac_softc *sc = netdev_priv(dev);
2138         uint64_t isr;
2139         int handled = 0;
2140
2141         /*
2142          * Read the ISR (this clears the bits in the real
2143          * register, except for counter addr)
2144          */
2145
2146         isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2147
2148         if (isr == 0)
2149                 return IRQ_RETVAL(0);
2150         handled = 1;
2151
2152         /*
2153          * Transmits on channel 0
2154          */
2155
2156         if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2157                 sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2158
2159         if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2160                 if (netif_rx_schedule_prep(dev, &sc->napi)) {
2161                         __raw_writeq(0, sc->sbm_imr);
2162                         __netif_rx_schedule(dev, &sc->napi);
2163                         /* Depend on the exit from poll to reenable intr */
2164                 }
2165                 else {
2166                         /* may leave some packets behind */
2167                         sbdma_rx_process(sc,&(sc->sbm_rxdma),
2168                                          SBMAC_MAX_RXDESCR * 2, 0);
2169                 }
2170         }
2171         return IRQ_RETVAL(handled);
2172 }
2173
2174 /**********************************************************************
2175  *  SBMAC_START_TX(skb,dev)
2176  *
2177  *  Start output on the specified interface.  Basically, we
2178  *  queue as many buffers as we can until the ring fills up, or
2179  *  we run off the end of the queue, whichever comes first.
2180  *
2181  *  Input parameters:
2182  *
2183  *
2184  *  Return value:
2185  *         nothing
2186  ********************************************************************* */
2187 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2188 {
2189         struct sbmac_softc *sc = netdev_priv(dev);
2190
2191         /* lock eth irq */
2192         spin_lock_irq (&sc->sbm_lock);
2193
2194         /*
2195          * Put the buffer on the transmit ring.  If we
2196          * don't have room, stop the queue.
2197          */
2198
2199         if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2200                 /* XXX save skb that we could not send */
2201                 netif_stop_queue(dev);
2202                 spin_unlock_irq(&sc->sbm_lock);
2203
2204                 return 1;
2205         }
2206
2207         dev->trans_start = jiffies;
2208
2209         spin_unlock_irq (&sc->sbm_lock);
2210
2211         return 0;
2212 }
2213
2214 /**********************************************************************
2215  *  SBMAC_SETMULTI(sc)
2216  *
2217  *  Reprogram the multicast table into the hardware, given
2218  *  the list of multicasts associated with the interface
2219  *  structure.
2220  *
2221  *  Input parameters:
2222  *         sc - softc
2223  *
2224  *  Return value:
2225  *         nothing
2226  ********************************************************************* */
2227
2228 static void sbmac_setmulti(struct sbmac_softc *sc)
2229 {
2230         uint64_t reg;
2231         volatile void __iomem *port;
2232         int idx;
2233         struct dev_mc_list *mclist;
2234         struct net_device *dev = sc->sbm_dev;
2235
2236         /*
2237          * Clear out entire multicast table.  We do this by nuking
2238          * the entire hash table and all the direct matches except
2239          * the first one, which is used for our station address
2240          */
2241
2242         for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2243                 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2244                 __raw_writeq(0, port);
2245         }
2246
2247         for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2248                 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2249                 __raw_writeq(0, port);
2250         }
2251
2252         /*
2253          * Clear the filter to say we don't want any multicasts.
2254          */
2255
2256         reg = __raw_readq(sc->sbm_rxfilter);
2257         reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2258         __raw_writeq(reg, sc->sbm_rxfilter);
2259
2260         if (dev->flags & IFF_ALLMULTI) {
2261                 /*
2262                  * Enable ALL multicasts.  Do this by inverting the
2263                  * multicast enable bit.
2264                  */
2265                 reg = __raw_readq(sc->sbm_rxfilter);
2266                 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2267                 __raw_writeq(reg, sc->sbm_rxfilter);
2268                 return;
2269         }
2270
2271
2272         /*
2273          * Progam new multicast entries.  For now, only use the
2274          * perfect filter.  In the future we'll need to use the
2275          * hash filter if the perfect filter overflows
2276          */
2277
2278         /* XXX only using perfect filter for now, need to use hash
2279          * XXX if the table overflows */
2280
2281         idx = 1;                /* skip station address */
2282         mclist = dev->mc_list;
2283         while (mclist && (idx < MAC_ADDR_COUNT)) {
2284                 reg = sbmac_addr2reg(mclist->dmi_addr);
2285                 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2286                 __raw_writeq(reg, port);
2287                 idx++;
2288                 mclist = mclist->next;
2289         }
2290
2291         /*
2292          * Enable the "accept multicast bits" if we programmed at least one
2293          * multicast.
2294          */
2295
2296         if (idx > 1) {
2297                 reg = __raw_readq(sc->sbm_rxfilter);
2298                 reg |= M_MAC_MCAST_EN;
2299                 __raw_writeq(reg, sc->sbm_rxfilter);
2300         }
2301 }
2302
2303 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
2304 /**********************************************************************
2305  *  SBMAC_PARSE_XDIGIT(str)
2306  *
2307  *  Parse a hex digit, returning its value
2308  *
2309  *  Input parameters:
2310  *         str - character
2311  *
2312  *  Return value:
2313  *         hex value, or -1 if invalid
2314  ********************************************************************* */
2315
2316 static int sbmac_parse_xdigit(char str)
2317 {
2318         int digit;
2319
2320         if ((str >= '0') && (str <= '9'))
2321                 digit = str - '0';
2322         else if ((str >= 'a') && (str <= 'f'))
2323                 digit = str - 'a' + 10;
2324         else if ((str >= 'A') && (str <= 'F'))
2325                 digit = str - 'A' + 10;
2326         else
2327                 return -1;
2328
2329         return digit;
2330 }
2331
2332 /**********************************************************************
2333  *  SBMAC_PARSE_HWADDR(str,hwaddr)
2334  *
2335  *  Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2336  *  Ethernet address.
2337  *
2338  *  Input parameters:
2339  *         str - string
2340  *         hwaddr - pointer to hardware address
2341  *
2342  *  Return value:
2343  *         0 if ok, else -1
2344  ********************************************************************* */
2345
2346 static int sbmac_parse_hwaddr(char *str, unsigned char *hwaddr)
2347 {
2348         int digit1,digit2;
2349         int idx = 6;
2350
2351         while (*str && (idx > 0)) {
2352                 digit1 = sbmac_parse_xdigit(*str);
2353                 if (digit1 < 0)
2354                         return -1;
2355                 str++;
2356                 if (!*str)
2357                         return -1;
2358
2359                 if ((*str == ':') || (*str == '-')) {
2360                         digit2 = digit1;
2361                         digit1 = 0;
2362                 }
2363                 else {
2364                         digit2 = sbmac_parse_xdigit(*str);
2365                         if (digit2 < 0)
2366                                 return -1;
2367                         str++;
2368                 }
2369
2370                 *hwaddr++ = (digit1 << 4) | digit2;
2371                 idx--;
2372
2373                 if (*str == '-')
2374                         str++;
2375                 if (*str == ':')
2376                         str++;
2377         }
2378         return 0;
2379 }
2380 #endif
2381
2382 static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2383 {
2384         if (new_mtu >  ENET_PACKET_SIZE)
2385                 return -EINVAL;
2386         _dev->mtu = new_mtu;
2387         printk(KERN_INFO "changing the mtu to %d\n", new_mtu);
2388         return 0;
2389 }
2390
2391 /**********************************************************************
2392  *  SBMAC_INIT(dev)
2393  *
2394  *  Attach routine - init hardware and hook ourselves into linux
2395  *
2396  *  Input parameters:
2397  *         dev - net_device structure
2398  *
2399  *  Return value:
2400  *         status
2401  ********************************************************************* */
2402
2403 static int sbmac_init(struct net_device *dev, int idx)
2404 {
2405         struct sbmac_softc *sc;
2406         unsigned char *eaddr;
2407         uint64_t ea_reg;
2408         int i;
2409         int err;
2410         DECLARE_MAC_BUF(mac);
2411
2412         sc = netdev_priv(dev);
2413
2414         /* Determine controller base address */
2415
2416         sc->sbm_base = IOADDR(dev->base_addr);
2417         sc->sbm_dev = dev;
2418         sc->sbe_idx = idx;
2419
2420         eaddr = sc->sbm_hwaddr;
2421
2422         /*
2423          * Read the ethernet address.  The firwmare left this programmed
2424          * for us in the ethernet address register for each mac.
2425          */
2426
2427         ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2428         __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2429         for (i = 0; i < 6; i++) {
2430                 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2431                 ea_reg >>= 8;
2432         }
2433
2434         for (i = 0; i < 6; i++) {
2435                 dev->dev_addr[i] = eaddr[i];
2436         }
2437
2438
2439         /*
2440          * Init packet size
2441          */
2442
2443         sc->sbm_buffersize = ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + ETHER_ALIGN;
2444
2445         /*
2446          * Initialize context (get pointers to registers and stuff), then
2447          * allocate the memory for the descriptor tables.
2448          */
2449
2450         sbmac_initctx(sc);
2451
2452         /*
2453          * Set up Linux device callins
2454          */
2455
2456         spin_lock_init(&(sc->sbm_lock));
2457
2458         dev->open               = sbmac_open;
2459         dev->hard_start_xmit    = sbmac_start_tx;
2460         dev->stop               = sbmac_close;
2461         dev->set_multicast_list = sbmac_set_rx_mode;
2462         dev->do_ioctl           = sbmac_mii_ioctl;
2463         dev->tx_timeout         = sbmac_tx_timeout;
2464         dev->watchdog_timeo     = TX_TIMEOUT;
2465
2466         netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2467
2468         dev->change_mtu         = sb1250_change_mtu;
2469 #ifdef CONFIG_NET_POLL_CONTROLLER
2470         dev->poll_controller = sbmac_netpoll;
2471 #endif
2472
2473         /* This is needed for PASS2 for Rx H/W checksum feature */
2474         sbmac_set_iphdr_offset(sc);
2475
2476         err = register_netdev(dev);
2477         if (err)
2478                 goto out_uninit;
2479
2480         if (sc->rx_hw_checksum == ENABLE) {
2481                 printk(KERN_INFO "%s: enabling TCP rcv checksum\n",
2482                         sc->sbm_dev->name);
2483         }
2484
2485         /*
2486          * Display Ethernet address (this is called during the config
2487          * process so we need to finish off the config message that
2488          * was being displayed)
2489          */
2490         printk(KERN_INFO
2491                "%s: SiByte Ethernet at 0x%08lX, address: %s\n",
2492                dev->name, dev->base_addr, print_mac(mac, eaddr));
2493
2494         return 0;
2495
2496 out_uninit:
2497         sbmac_uninitctx(sc);
2498
2499         return err;
2500 }
2501
2502
2503 static int sbmac_open(struct net_device *dev)
2504 {
2505         struct sbmac_softc *sc = netdev_priv(dev);
2506
2507         if (debug > 1) {
2508                 printk(KERN_DEBUG "%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2509         }
2510
2511         /*
2512          * map/route interrupt (clear status first, in case something
2513          * weird is pending; we haven't initialized the mac registers
2514          * yet)
2515          */
2516
2517         __raw_readq(sc->sbm_isr);
2518         if (request_irq(dev->irq, &sbmac_intr, IRQF_SHARED, dev->name, dev))
2519                 return -EBUSY;
2520
2521         /*
2522          * Probe phy address
2523          */
2524
2525         if(sbmac_mii_probe(dev) == -1) {
2526                 printk("%s: failed to probe PHY.\n", dev->name);
2527                 return -EINVAL;
2528         }
2529
2530         napi_enable(&sc->napi);
2531
2532         /*
2533          * Configure default speed
2534          */
2535
2536         sbmac_mii_poll(sc,noisy_mii);
2537
2538         /*
2539          * Turn on the channel
2540          */
2541
2542         sbmac_set_channel_state(sc,sbmac_state_on);
2543
2544         /*
2545          * XXX Station address is in dev->dev_addr
2546          */
2547
2548         if (dev->if_port == 0)
2549                 dev->if_port = 0;
2550
2551         netif_start_queue(dev);
2552
2553         sbmac_set_rx_mode(dev);
2554
2555         /* Set the timer to check for link beat. */
2556         init_timer(&sc->sbm_timer);
2557         sc->sbm_timer.expires = jiffies + 2 * HZ/100;
2558         sc->sbm_timer.data = (unsigned long)dev;
2559         sc->sbm_timer.function = &sbmac_timer;
2560         add_timer(&sc->sbm_timer);
2561
2562         return 0;
2563 }
2564
2565 static int sbmac_mii_probe(struct net_device *dev)
2566 {
2567         int i;
2568         struct sbmac_softc *s = netdev_priv(dev);
2569         u16 bmsr, id1, id2;
2570         u32 vendor, device;
2571
2572         for (i=1; i<31; i++) {
2573         bmsr = sbmac_mii_read(s, i, MII_BMSR);
2574                 if (bmsr != 0) {
2575                         s->sbm_phys[0] = i;
2576                         id1 = sbmac_mii_read(s, i, MII_PHYIDR1);
2577                         id2 = sbmac_mii_read(s, i, MII_PHYIDR2);
2578                         vendor = ((u32)id1 << 6) | ((id2 >> 10) & 0x3f);
2579                         device = (id2 >> 4) & 0x3f;
2580
2581                         printk(KERN_INFO "%s: found phy %d, vendor %06x part %02x\n",
2582                                 dev->name, i, vendor, device);
2583                         return i;
2584                 }
2585         }
2586         return -1;
2587 }
2588
2589
2590 static int sbmac_mii_poll(struct sbmac_softc *s,int noisy)
2591 {
2592     int bmsr,bmcr,k1stsr,anlpar;
2593     int chg;
2594     char buffer[100];
2595     char *p = buffer;
2596
2597     /* Read the mode status and mode control registers. */
2598     bmsr = sbmac_mii_read(s,s->sbm_phys[0],MII_BMSR);
2599     bmcr = sbmac_mii_read(s,s->sbm_phys[0],MII_BMCR);
2600
2601     /* get the link partner status */
2602     anlpar = sbmac_mii_read(s,s->sbm_phys[0],MII_ANLPAR);
2603
2604     /* if supported, read the 1000baseT register */
2605     if (bmsr & BMSR_1000BT_XSR) {
2606         k1stsr = sbmac_mii_read(s,s->sbm_phys[0],MII_K1STSR);
2607         }
2608     else {
2609         k1stsr = 0;
2610         }
2611
2612     chg = 0;
2613
2614     if ((bmsr & BMSR_LINKSTAT) == 0) {
2615         /*
2616          * If link status is down, clear out old info so that when
2617          * it comes back up it will force us to reconfigure speed
2618          */
2619         s->sbm_phy_oldbmsr = 0;
2620         s->sbm_phy_oldanlpar = 0;
2621         s->sbm_phy_oldk1stsr = 0;
2622         return 0;
2623         }
2624
2625     if ((s->sbm_phy_oldbmsr != bmsr) ||
2626         (s->sbm_phy_oldanlpar != anlpar) ||
2627         (s->sbm_phy_oldk1stsr != k1stsr)) {
2628         if (debug > 1) {
2629             printk(KERN_DEBUG "%s: bmsr:%x/%x anlpar:%x/%x  k1stsr:%x/%x\n",
2630                s->sbm_dev->name,
2631                s->sbm_phy_oldbmsr,bmsr,
2632                s->sbm_phy_oldanlpar,anlpar,
2633                s->sbm_phy_oldk1stsr,k1stsr);
2634             }
2635         s->sbm_phy_oldbmsr = bmsr;
2636         s->sbm_phy_oldanlpar = anlpar;
2637         s->sbm_phy_oldk1stsr = k1stsr;
2638         chg = 1;
2639         }
2640
2641     if (chg == 0)
2642             return 0;
2643
2644     p += sprintf(p,"Link speed: ");
2645
2646     if (k1stsr & K1STSR_LP1KFD) {
2647         s->sbm_speed = sbmac_speed_1000;
2648         s->sbm_duplex = sbmac_duplex_full;
2649         s->sbm_fc = sbmac_fc_frame;
2650         p += sprintf(p,"1000BaseT FDX");
2651         }
2652     else if (k1stsr & K1STSR_LP1KHD) {
2653         s->sbm_speed = sbmac_speed_1000;
2654         s->sbm_duplex = sbmac_duplex_half;
2655         s->sbm_fc = sbmac_fc_disabled;
2656         p += sprintf(p,"1000BaseT HDX");
2657         }
2658     else if (anlpar & ANLPAR_TXFD) {
2659         s->sbm_speed = sbmac_speed_100;
2660         s->sbm_duplex = sbmac_duplex_full;
2661         s->sbm_fc = (anlpar & ANLPAR_PAUSE) ? sbmac_fc_frame : sbmac_fc_disabled;
2662         p += sprintf(p,"100BaseT FDX");
2663         }
2664     else if (anlpar & ANLPAR_TXHD) {
2665         s->sbm_speed = sbmac_speed_100;
2666         s->sbm_duplex = sbmac_duplex_half;
2667         s->sbm_fc = sbmac_fc_disabled;
2668         p += sprintf(p,"100BaseT HDX");
2669         }
2670     else if (anlpar & ANLPAR_10FD) {
2671         s->sbm_speed = sbmac_speed_10;
2672         s->sbm_duplex = sbmac_duplex_full;
2673         s->sbm_fc = sbmac_fc_frame;
2674         p += sprintf(p,"10BaseT FDX");
2675         }
2676     else if (anlpar & ANLPAR_10HD) {
2677         s->sbm_speed = sbmac_speed_10;
2678         s->sbm_duplex = sbmac_duplex_half;
2679         s->sbm_fc = sbmac_fc_collision;
2680         p += sprintf(p,"10BaseT HDX");
2681         }
2682     else {
2683         p += sprintf(p,"Unknown");
2684         }
2685
2686     if (noisy) {
2687             printk(KERN_INFO "%s: %s\n",s->sbm_dev->name,buffer);
2688             }
2689
2690     return 1;
2691 }
2692
2693
2694 static void sbmac_timer(unsigned long data)
2695 {
2696         struct net_device *dev = (struct net_device *)data;
2697         struct sbmac_softc *sc = netdev_priv(dev);
2698         int next_tick = HZ;
2699         int mii_status;
2700
2701         spin_lock_irq (&sc->sbm_lock);
2702
2703         /* make IFF_RUNNING follow the MII status bit "Link established" */
2704         mii_status = sbmac_mii_read(sc, sc->sbm_phys[0], MII_BMSR);
2705
2706         if ( (mii_status & BMSR_LINKSTAT) != (sc->sbm_phy_oldlinkstat) ) {
2707                 sc->sbm_phy_oldlinkstat = mii_status & BMSR_LINKSTAT;
2708                 if (mii_status & BMSR_LINKSTAT) {
2709                         netif_carrier_on(dev);
2710                 }
2711                 else {
2712                         netif_carrier_off(dev);
2713                 }
2714         }
2715
2716         /*
2717          * Poll the PHY to see what speed we should be running at
2718          */
2719
2720         if (sbmac_mii_poll(sc,noisy_mii)) {
2721                 if (sc->sbm_state != sbmac_state_off) {
2722                         /*
2723                          * something changed, restart the channel
2724                          */
2725                         if (debug > 1) {
2726                                 printk("%s: restarting channel because speed changed\n",
2727                                        sc->sbm_dev->name);
2728                         }
2729                         sbmac_channel_stop(sc);
2730                         sbmac_channel_start(sc);
2731                 }
2732         }
2733
2734         spin_unlock_irq (&sc->sbm_lock);
2735
2736         sc->sbm_timer.expires = jiffies + next_tick;
2737         add_timer(&sc->sbm_timer);
2738 }
2739
2740
2741 static void sbmac_tx_timeout (struct net_device *dev)
2742 {
2743         struct sbmac_softc *sc = netdev_priv(dev);
2744
2745         spin_lock_irq (&sc->sbm_lock);
2746
2747
2748         dev->trans_start = jiffies;
2749         dev->stats.tx_errors++;
2750
2751         spin_unlock_irq (&sc->sbm_lock);
2752
2753         printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2754 }
2755
2756
2757
2758
2759 static void sbmac_set_rx_mode(struct net_device *dev)
2760 {
2761         unsigned long flags;
2762         struct sbmac_softc *sc = netdev_priv(dev);
2763
2764         spin_lock_irqsave(&sc->sbm_lock, flags);
2765         if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2766                 /*
2767                  * Promiscuous changed.
2768                  */
2769
2770                 if (dev->flags & IFF_PROMISC) {
2771                         sbmac_promiscuous_mode(sc,1);
2772                 }
2773                 else {
2774                         sbmac_promiscuous_mode(sc,0);
2775                 }
2776         }
2777         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2778
2779         /*
2780          * Program the multicasts.  Do this every time.
2781          */
2782
2783         sbmac_setmulti(sc);
2784
2785 }
2786
2787 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2788 {
2789         struct sbmac_softc *sc = netdev_priv(dev);
2790         u16 *data = (u16 *)&rq->ifr_ifru;
2791         unsigned long flags;
2792         int retval;
2793
2794         spin_lock_irqsave(&sc->sbm_lock, flags);
2795         retval = 0;
2796
2797         switch(cmd) {
2798         case SIOCDEVPRIVATE:            /* Get the address of the PHY in use. */
2799                 data[0] = sc->sbm_phys[0] & 0x1f;
2800                 /* Fall Through */
2801         case SIOCDEVPRIVATE+1:          /* Read the specified MII register. */
2802                 data[3] = sbmac_mii_read(sc, data[0] & 0x1f, data[1] & 0x1f);
2803                 break;
2804         case SIOCDEVPRIVATE+2:          /* Write the specified MII register */
2805                 if (!capable(CAP_NET_ADMIN)) {
2806                         retval = -EPERM;
2807                         break;
2808                 }
2809                 if (debug > 1) {
2810                     printk(KERN_DEBUG "%s: sbmac_mii_ioctl: write %02X %02X %02X\n",dev->name,
2811                        data[0],data[1],data[2]);
2812                     }
2813                 sbmac_mii_write(sc, data[0] & 0x1f, data[1] & 0x1f, data[2]);
2814                 break;
2815         default:
2816                 retval = -EOPNOTSUPP;
2817         }
2818
2819         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2820         return retval;
2821 }
2822
2823 static int sbmac_close(struct net_device *dev)
2824 {
2825         struct sbmac_softc *sc = netdev_priv(dev);
2826         unsigned long flags;
2827         int irq;
2828
2829         napi_disable(&sc->napi);
2830
2831         sbmac_set_channel_state(sc,sbmac_state_off);
2832
2833         del_timer_sync(&sc->sbm_timer);
2834
2835         spin_lock_irqsave(&sc->sbm_lock, flags);
2836
2837         netif_stop_queue(dev);
2838
2839         if (debug > 1) {
2840                 printk(KERN_DEBUG "%s: Shutting down ethercard\n",dev->name);
2841         }
2842
2843         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2844
2845         irq = dev->irq;
2846         synchronize_irq(irq);
2847         free_irq(irq, dev);
2848
2849         sbdma_emptyring(&(sc->sbm_txdma));
2850         sbdma_emptyring(&(sc->sbm_rxdma));
2851
2852         return 0;
2853 }
2854
2855 static int sbmac_poll(struct napi_struct *napi, int budget)
2856 {
2857         struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2858         struct net_device *dev = sc->sbm_dev;
2859         int work_done;
2860
2861         work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2862         sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2863
2864         if (work_done < budget) {
2865                 netif_rx_complete(dev, napi);
2866
2867 #ifdef CONFIG_SBMAC_COALESCE
2868                 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2869                              ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2870                              sc->sbm_imr);
2871 #else
2872                 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2873                              (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2874 #endif
2875         }
2876
2877         return work_done;
2878 }
2879
2880 #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR)
2881 static void
2882 sbmac_setup_hwaddr(int chan,char *addr)
2883 {
2884         uint8_t eaddr[6];
2885         uint64_t val;
2886         unsigned long port;
2887
2888         port = A_MAC_CHANNEL_BASE(chan);
2889         sbmac_parse_hwaddr(addr,eaddr);
2890         val = sbmac_addr2reg(eaddr);
2891         __raw_writeq(val, IOADDR(port+R_MAC_ETHERNET_ADDR));
2892         val = __raw_readq(IOADDR(port+R_MAC_ETHERNET_ADDR));
2893 }
2894 #endif
2895
2896 static struct net_device *dev_sbmac[MAX_UNITS];
2897
2898 static int __init
2899 sbmac_init_module(void)
2900 {
2901         int idx;
2902         struct net_device *dev;
2903         unsigned long port;
2904         int chip_max_units;
2905
2906         /* Set the number of available units based on the SOC type.  */
2907         switch (soc_type) {
2908         case K_SYS_SOC_TYPE_BCM1250:
2909         case K_SYS_SOC_TYPE_BCM1250_ALT:
2910                 chip_max_units = 3;
2911                 break;
2912         case K_SYS_SOC_TYPE_BCM1120:
2913         case K_SYS_SOC_TYPE_BCM1125:
2914         case K_SYS_SOC_TYPE_BCM1125H:
2915         case K_SYS_SOC_TYPE_BCM1250_ALT2: /* Hybrid */
2916                 chip_max_units = 2;
2917                 break;
2918         case K_SYS_SOC_TYPE_BCM1x55:
2919         case K_SYS_SOC_TYPE_BCM1x80:
2920                 chip_max_units = 4;
2921                 break;
2922         default:
2923                 chip_max_units = 0;
2924                 break;
2925         }
2926         if (chip_max_units > MAX_UNITS)
2927                 chip_max_units = MAX_UNITS;
2928
2929         /*
2930          * For bringup when not using the firmware, we can pre-fill
2931          * the MAC addresses using the environment variables
2932          * specified in this file (or maybe from the config file?)
2933          */
2934 #ifdef SBMAC_ETH0_HWADDR
2935         if (chip_max_units > 0)
2936           sbmac_setup_hwaddr(0,SBMAC_ETH0_HWADDR);
2937 #endif
2938 #ifdef SBMAC_ETH1_HWADDR
2939         if (chip_max_units > 1)
2940           sbmac_setup_hwaddr(1,SBMAC_ETH1_HWADDR);
2941 #endif
2942 #ifdef SBMAC_ETH2_HWADDR
2943         if (chip_max_units > 2)
2944           sbmac_setup_hwaddr(2,SBMAC_ETH2_HWADDR);
2945 #endif
2946 #ifdef SBMAC_ETH3_HWADDR
2947         if (chip_max_units > 3)
2948           sbmac_setup_hwaddr(3,SBMAC_ETH3_HWADDR);
2949 #endif
2950
2951         /*
2952          * Walk through the Ethernet controllers and find
2953          * those who have their MAC addresses set.
2954          */
2955         for (idx = 0; idx < chip_max_units; idx++) {
2956
2957                 /*
2958                  * This is the base address of the MAC.
2959                  */
2960
2961                 port = A_MAC_CHANNEL_BASE(idx);
2962
2963                 /*
2964                  * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2965                  * value for us by the firmware if we are going to use this MAC.
2966                  * If we find a zero, skip this MAC.
2967                  */
2968
2969                 sbmac_orig_hwaddr[idx] = __raw_readq(IOADDR(port+R_MAC_ETHERNET_ADDR));
2970                 if (sbmac_orig_hwaddr[idx] == 0) {
2971                         printk(KERN_DEBUG "sbmac: not configuring MAC at "
2972                                "%lx\n", port);
2973                     continue;
2974                 }
2975
2976                 /*
2977                  * Okay, cool.  Initialize this MAC.
2978                  */
2979
2980                 dev = alloc_etherdev(sizeof(struct sbmac_softc));
2981                 if (!dev)
2982                         return -ENOMEM;
2983
2984                 printk(KERN_DEBUG "sbmac: configuring MAC at %lx\n", port);
2985
2986                 dev->irq = UNIT_INT(idx);
2987                 dev->base_addr = port;
2988                 dev->mem_end = 0;
2989                 if (sbmac_init(dev, idx)) {
2990                         port = A_MAC_CHANNEL_BASE(idx);
2991                         __raw_writeq(sbmac_orig_hwaddr[idx], IOADDR(port+R_MAC_ETHERNET_ADDR));
2992                         free_netdev(dev);
2993                         continue;
2994                 }
2995                 dev_sbmac[idx] = dev;
2996         }
2997         return 0;
2998 }
2999
3000
3001 static void __exit
3002 sbmac_cleanup_module(void)
3003 {
3004         struct net_device *dev;
3005         int idx;
3006
3007         for (idx = 0; idx < MAX_UNITS; idx++) {
3008                 struct sbmac_softc *sc;
3009                 dev = dev_sbmac[idx];
3010                 if (!dev)
3011                         continue;
3012
3013                 sc = netdev_priv(dev);
3014                 unregister_netdev(dev);
3015                 sbmac_uninitctx(sc);
3016                 free_netdev(dev);
3017         }
3018 }
3019
3020 module_init(sbmac_init_module);
3021 module_exit(sbmac_cleanup_module);