Merge branch 'linus' into cont_syslog
[safe/jmp/linux-2.6] / drivers / net / rrunner.c
1 /*
2  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3  *
4  * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5  *
6  * Thanks to Essential Communication for providing us with hardware
7  * and very comprehensive documentation without which I would not have
8  * been able to write this driver. A special thank you to John Gibbon
9  * for sorting out the legal issues, with the NDA, allowing the code to
10  * be released under the GPL.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18  * stupid bugs in my code.
19  *
20  * Softnet support and various other patches from Val Henson of
21  * ODS/Essential.
22  *
23  * PCI DMA mapping code partly based on work by Francois Romieu.
24  */
25
26
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/mm.h>
43 #include <linux/slab.h>
44 #include <net/sock.h>
45
46 #include <asm/system.h>
47 #include <asm/cache.h>
48 #include <asm/byteorder.h>
49 #include <asm/io.h>
50 #include <asm/irq.h>
51 #include <asm/uaccess.h>
52
53 #define rr_if_busy(dev)     netif_queue_stopped(dev)
54 #define rr_if_running(dev)  netif_running(dev)
55
56 #include "rrunner.h"
57
58 #define RUN_AT(x) (jiffies + (x))
59
60
61 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
62 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
63 MODULE_LICENSE("GPL");
64
65 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
66
67
68 static const struct net_device_ops rr_netdev_ops = {
69         .ndo_open               = rr_open,
70         .ndo_stop               = rr_close,
71         .ndo_do_ioctl           = rr_ioctl,
72         .ndo_start_xmit         = rr_start_xmit,
73         .ndo_change_mtu         = hippi_change_mtu,
74         .ndo_set_mac_address    = hippi_mac_addr,
75 };
76
77 /*
78  * Implementation notes:
79  *
80  * The DMA engine only allows for DMA within physical 64KB chunks of
81  * memory. The current approach of the driver (and stack) is to use
82  * linear blocks of memory for the skbuffs. However, as the data block
83  * is always the first part of the skb and skbs are 2^n aligned so we
84  * are guarantted to get the whole block within one 64KB align 64KB
85  * chunk.
86  *
87  * On the long term, relying on being able to allocate 64KB linear
88  * chunks of memory is not feasible and the skb handling code and the
89  * stack will need to know about I/O vectors or something similar.
90  */
91
92 static int __devinit rr_init_one(struct pci_dev *pdev,
93         const struct pci_device_id *ent)
94 {
95         struct net_device *dev;
96         static int version_disp;
97         u8 pci_latency;
98         struct rr_private *rrpriv;
99         void *tmpptr;
100         dma_addr_t ring_dma;
101         int ret = -ENOMEM;
102
103         dev = alloc_hippi_dev(sizeof(struct rr_private));
104         if (!dev)
105                 goto out3;
106
107         ret = pci_enable_device(pdev);
108         if (ret) {
109                 ret = -ENODEV;
110                 goto out2;
111         }
112
113         rrpriv = netdev_priv(dev);
114
115         SET_NETDEV_DEV(dev, &pdev->dev);
116
117         if (pci_request_regions(pdev, "rrunner")) {
118                 ret = -EIO;
119                 goto out;
120         }
121
122         pci_set_drvdata(pdev, dev);
123
124         rrpriv->pci_dev = pdev;
125
126         spin_lock_init(&rrpriv->lock);
127
128         dev->irq = pdev->irq;
129         dev->netdev_ops = &rr_netdev_ops;
130
131         dev->base_addr = pci_resource_start(pdev, 0);
132
133         /* display version info if adapter is found */
134         if (!version_disp) {
135                 /* set display flag to TRUE so that */
136                 /* we only display this string ONCE */
137                 version_disp = 1;
138                 printk(version);
139         }
140
141         pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
142         if (pci_latency <= 0x58){
143                 pci_latency = 0x58;
144                 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
145         }
146
147         pci_set_master(pdev);
148
149         printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
150                "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
151                dev->base_addr, dev->irq, pci_latency);
152
153         /*
154          * Remap the regs into kernel space.
155          */
156
157         rrpriv->regs = ioremap(dev->base_addr, 0x1000);
158
159         if (!rrpriv->regs){
160                 printk(KERN_ERR "%s:  Unable to map I/O register, "
161                         "RoadRunner will be disabled.\n", dev->name);
162                 ret = -EIO;
163                 goto out;
164         }
165
166         tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
167         rrpriv->tx_ring = tmpptr;
168         rrpriv->tx_ring_dma = ring_dma;
169
170         if (!tmpptr) {
171                 ret = -ENOMEM;
172                 goto out;
173         }
174
175         tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
176         rrpriv->rx_ring = tmpptr;
177         rrpriv->rx_ring_dma = ring_dma;
178
179         if (!tmpptr) {
180                 ret = -ENOMEM;
181                 goto out;
182         }
183
184         tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
185         rrpriv->evt_ring = tmpptr;
186         rrpriv->evt_ring_dma = ring_dma;
187
188         if (!tmpptr) {
189                 ret = -ENOMEM;
190                 goto out;
191         }
192
193         /*
194          * Don't access any register before this point!
195          */
196 #ifdef __BIG_ENDIAN
197         writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
198                 &rrpriv->regs->HostCtrl);
199 #endif
200         /*
201          * Need to add a case for little-endian 64-bit hosts here.
202          */
203
204         rr_init(dev);
205
206         dev->base_addr = 0;
207
208         ret = register_netdev(dev);
209         if (ret)
210                 goto out;
211         return 0;
212
213  out:
214         if (rrpriv->rx_ring)
215                 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
216                                     rrpriv->rx_ring_dma);
217         if (rrpriv->tx_ring)
218                 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
219                                     rrpriv->tx_ring_dma);
220         if (rrpriv->regs)
221                 iounmap(rrpriv->regs);
222         if (pdev) {
223                 pci_release_regions(pdev);
224                 pci_set_drvdata(pdev, NULL);
225         }
226  out2:
227         free_netdev(dev);
228  out3:
229         return ret;
230 }
231
232 static void __devexit rr_remove_one (struct pci_dev *pdev)
233 {
234         struct net_device *dev = pci_get_drvdata(pdev);
235
236         if (dev) {
237                 struct rr_private *rr = netdev_priv(dev);
238
239                 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
240                         printk(KERN_ERR "%s: trying to unload running NIC\n",
241                                dev->name);
242                         writel(HALT_NIC, &rr->regs->HostCtrl);
243                 }
244
245                 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
246                                     rr->evt_ring_dma);
247                 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
248                                     rr->rx_ring_dma);
249                 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
250                                     rr->tx_ring_dma);
251                 unregister_netdev(dev);
252                 iounmap(rr->regs);
253                 free_netdev(dev);
254                 pci_release_regions(pdev);
255                 pci_disable_device(pdev);
256                 pci_set_drvdata(pdev, NULL);
257         }
258 }
259
260
261 /*
262  * Commands are considered to be slow, thus there is no reason to
263  * inline this.
264  */
265 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
266 {
267         struct rr_regs __iomem *regs;
268         u32 idx;
269
270         regs = rrpriv->regs;
271         /*
272          * This is temporary - it will go away in the final version.
273          * We probably also want to make this function inline.
274          */
275         if (readl(&regs->HostCtrl) & NIC_HALTED){
276                 printk("issuing command for halted NIC, code 0x%x, "
277                        "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
278                 if (readl(&regs->Mode) & FATAL_ERR)
279                         printk("error codes Fail1 %02x, Fail2 %02x\n",
280                                readl(&regs->Fail1), readl(&regs->Fail2));
281         }
282
283         idx = rrpriv->info->cmd_ctrl.pi;
284
285         writel(*(u32*)(cmd), &regs->CmdRing[idx]);
286         wmb();
287
288         idx = (idx - 1) % CMD_RING_ENTRIES;
289         rrpriv->info->cmd_ctrl.pi = idx;
290         wmb();
291
292         if (readl(&regs->Mode) & FATAL_ERR)
293                 printk("error code %02x\n", readl(&regs->Fail1));
294 }
295
296
297 /*
298  * Reset the board in a sensible manner. The NIC is already halted
299  * when we get here and a spin-lock is held.
300  */
301 static int rr_reset(struct net_device *dev)
302 {
303         struct rr_private *rrpriv;
304         struct rr_regs __iomem *regs;
305         u32 start_pc;
306         int i;
307
308         rrpriv = netdev_priv(dev);
309         regs = rrpriv->regs;
310
311         rr_load_firmware(dev);
312
313         writel(0x01000000, &regs->TX_state);
314         writel(0xff800000, &regs->RX_state);
315         writel(0, &regs->AssistState);
316         writel(CLEAR_INTA, &regs->LocalCtrl);
317         writel(0x01, &regs->BrkPt);
318         writel(0, &regs->Timer);
319         writel(0, &regs->TimerRef);
320         writel(RESET_DMA, &regs->DmaReadState);
321         writel(RESET_DMA, &regs->DmaWriteState);
322         writel(0, &regs->DmaWriteHostHi);
323         writel(0, &regs->DmaWriteHostLo);
324         writel(0, &regs->DmaReadHostHi);
325         writel(0, &regs->DmaReadHostLo);
326         writel(0, &regs->DmaReadLen);
327         writel(0, &regs->DmaWriteLen);
328         writel(0, &regs->DmaWriteLcl);
329         writel(0, &regs->DmaWriteIPchecksum);
330         writel(0, &regs->DmaReadLcl);
331         writel(0, &regs->DmaReadIPchecksum);
332         writel(0, &regs->PciState);
333 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
334         writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
335 #elif (BITS_PER_LONG == 64)
336         writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
337 #else
338         writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
339 #endif
340
341 #if 0
342         /*
343          * Don't worry, this is just black magic.
344          */
345         writel(0xdf000, &regs->RxBase);
346         writel(0xdf000, &regs->RxPrd);
347         writel(0xdf000, &regs->RxCon);
348         writel(0xce000, &regs->TxBase);
349         writel(0xce000, &regs->TxPrd);
350         writel(0xce000, &regs->TxCon);
351         writel(0, &regs->RxIndPro);
352         writel(0, &regs->RxIndCon);
353         writel(0, &regs->RxIndRef);
354         writel(0, &regs->TxIndPro);
355         writel(0, &regs->TxIndCon);
356         writel(0, &regs->TxIndRef);
357         writel(0xcc000, &regs->pad10[0]);
358         writel(0, &regs->DrCmndPro);
359         writel(0, &regs->DrCmndCon);
360         writel(0, &regs->DwCmndPro);
361         writel(0, &regs->DwCmndCon);
362         writel(0, &regs->DwCmndRef);
363         writel(0, &regs->DrDataPro);
364         writel(0, &regs->DrDataCon);
365         writel(0, &regs->DrDataRef);
366         writel(0, &regs->DwDataPro);
367         writel(0, &regs->DwDataCon);
368         writel(0, &regs->DwDataRef);
369 #endif
370
371         writel(0xffffffff, &regs->MbEvent);
372         writel(0, &regs->Event);
373
374         writel(0, &regs->TxPi);
375         writel(0, &regs->IpRxPi);
376
377         writel(0, &regs->EvtCon);
378         writel(0, &regs->EvtPrd);
379
380         rrpriv->info->evt_ctrl.pi = 0;
381
382         for (i = 0; i < CMD_RING_ENTRIES; i++)
383                 writel(0, &regs->CmdRing[i]);
384
385 /*
386  * Why 32 ? is this not cache line size dependent?
387  */
388         writel(RBURST_64|WBURST_64, &regs->PciState);
389         wmb();
390
391         start_pc = rr_read_eeprom_word(rrpriv,
392                         offsetof(struct eeprom, rncd_info.FwStart));
393
394 #if (DEBUG > 1)
395         printk("%s: Executing firmware at address 0x%06x\n",
396                dev->name, start_pc);
397 #endif
398
399         writel(start_pc + 0x800, &regs->Pc);
400         wmb();
401         udelay(5);
402
403         writel(start_pc, &regs->Pc);
404         wmb();
405
406         return 0;
407 }
408
409
410 /*
411  * Read a string from the EEPROM.
412  */
413 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
414                                 unsigned long offset,
415                                 unsigned char *buf,
416                                 unsigned long length)
417 {
418         struct rr_regs __iomem *regs = rrpriv->regs;
419         u32 misc, io, host, i;
420
421         io = readl(&regs->ExtIo);
422         writel(0, &regs->ExtIo);
423         misc = readl(&regs->LocalCtrl);
424         writel(0, &regs->LocalCtrl);
425         host = readl(&regs->HostCtrl);
426         writel(host | HALT_NIC, &regs->HostCtrl);
427         mb();
428
429         for (i = 0; i < length; i++){
430                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
431                 mb();
432                 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
433                 mb();
434         }
435
436         writel(host, &regs->HostCtrl);
437         writel(misc, &regs->LocalCtrl);
438         writel(io, &regs->ExtIo);
439         mb();
440         return i;
441 }
442
443
444 /*
445  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
446  * it to our CPU byte-order.
447  */
448 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
449                             size_t offset)
450 {
451         __be32 word;
452
453         if ((rr_read_eeprom(rrpriv, offset,
454                             (unsigned char *)&word, 4) == 4))
455                 return be32_to_cpu(word);
456         return 0;
457 }
458
459
460 /*
461  * Write a string to the EEPROM.
462  *
463  * This is only called when the firmware is not running.
464  */
465 static unsigned int write_eeprom(struct rr_private *rrpriv,
466                                  unsigned long offset,
467                                  unsigned char *buf,
468                                  unsigned long length)
469 {
470         struct rr_regs __iomem *regs = rrpriv->regs;
471         u32 misc, io, data, i, j, ready, error = 0;
472
473         io = readl(&regs->ExtIo);
474         writel(0, &regs->ExtIo);
475         misc = readl(&regs->LocalCtrl);
476         writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
477         mb();
478
479         for (i = 0; i < length; i++){
480                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
481                 mb();
482                 data = buf[i] << 24;
483                 /*
484                  * Only try to write the data if it is not the same
485                  * value already.
486                  */
487                 if ((readl(&regs->WinData) & 0xff000000) != data){
488                         writel(data, &regs->WinData);
489                         ready = 0;
490                         j = 0;
491                         mb();
492                         while(!ready){
493                                 udelay(20);
494                                 if ((readl(&regs->WinData) & 0xff000000) ==
495                                     data)
496                                         ready = 1;
497                                 mb();
498                                 if (j++ > 5000){
499                                         printk("data mismatch: %08x, "
500                                                "WinData %08x\n", data,
501                                                readl(&regs->WinData));
502                                         ready = 1;
503                                         error = 1;
504                                 }
505                         }
506                 }
507         }
508
509         writel(misc, &regs->LocalCtrl);
510         writel(io, &regs->ExtIo);
511         mb();
512
513         return error;
514 }
515
516
517 static int __devinit rr_init(struct net_device *dev)
518 {
519         struct rr_private *rrpriv;
520         struct rr_regs __iomem *regs;
521         u32 sram_size, rev;
522
523         rrpriv = netdev_priv(dev);
524         regs = rrpriv->regs;
525
526         rev = readl(&regs->FwRev);
527         rrpriv->fw_rev = rev;
528         if (rev > 0x00020024)
529                 printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
530                        ((rev >> 8) & 0xff), (rev & 0xff));
531         else if (rev >= 0x00020000) {
532                 printk("  Firmware revision: %i.%i.%i (2.0.37 or "
533                        "later is recommended)\n", (rev >> 16),
534                        ((rev >> 8) & 0xff), (rev & 0xff));
535         }else{
536                 printk("  Firmware revision too old: %i.%i.%i, please "
537                        "upgrade to 2.0.37 or later.\n",
538                        (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
539         }
540
541 #if (DEBUG > 2)
542         printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
543 #endif
544
545         /*
546          * Read the hardware address from the eeprom.  The HW address
547          * is not really necessary for HIPPI but awfully convenient.
548          * The pointer arithmetic to put it in dev_addr is ugly, but
549          * Donald Becker does it this way for the GigE version of this
550          * card and it's shorter and more portable than any
551          * other method I've seen.  -VAL
552          */
553
554         *(__be16 *)(dev->dev_addr) =
555           htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
556         *(__be32 *)(dev->dev_addr+2) =
557           htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
558
559         printk("  MAC: %pM\n", dev->dev_addr);
560
561         sram_size = rr_read_eeprom_word(rrpriv, 8);
562         printk("  SRAM size 0x%06x\n", sram_size);
563
564         return 0;
565 }
566
567
568 static int rr_init1(struct net_device *dev)
569 {
570         struct rr_private *rrpriv;
571         struct rr_regs __iomem *regs;
572         unsigned long myjif, flags;
573         struct cmd cmd;
574         u32 hostctrl;
575         int ecode = 0;
576         short i;
577
578         rrpriv = netdev_priv(dev);
579         regs = rrpriv->regs;
580
581         spin_lock_irqsave(&rrpriv->lock, flags);
582
583         hostctrl = readl(&regs->HostCtrl);
584         writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
585         wmb();
586
587         if (hostctrl & PARITY_ERR){
588                 printk("%s: Parity error halting NIC - this is serious!\n",
589                        dev->name);
590                 spin_unlock_irqrestore(&rrpriv->lock, flags);
591                 ecode = -EFAULT;
592                 goto error;
593         }
594
595         set_rxaddr(regs, rrpriv->rx_ctrl_dma);
596         set_infoaddr(regs, rrpriv->info_dma);
597
598         rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
599         rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
600         rrpriv->info->evt_ctrl.mode = 0;
601         rrpriv->info->evt_ctrl.pi = 0;
602         set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
603
604         rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
605         rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
606         rrpriv->info->cmd_ctrl.mode = 0;
607         rrpriv->info->cmd_ctrl.pi = 15;
608
609         for (i = 0; i < CMD_RING_ENTRIES; i++) {
610                 writel(0, &regs->CmdRing[i]);
611         }
612
613         for (i = 0; i < TX_RING_ENTRIES; i++) {
614                 rrpriv->tx_ring[i].size = 0;
615                 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
616                 rrpriv->tx_skbuff[i] = NULL;
617         }
618         rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
619         rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
620         rrpriv->info->tx_ctrl.mode = 0;
621         rrpriv->info->tx_ctrl.pi = 0;
622         set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
623
624         /*
625          * Set dirty_tx before we start receiving interrupts, otherwise
626          * the interrupt handler might think it is supposed to process
627          * tx ints before we are up and running, which may cause a null
628          * pointer access in the int handler.
629          */
630         rrpriv->tx_full = 0;
631         rrpriv->cur_rx = 0;
632         rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
633
634         rr_reset(dev);
635
636         /* Tuning values */
637         writel(0x5000, &regs->ConRetry);
638         writel(0x100, &regs->ConRetryTmr);
639         writel(0x500000, &regs->ConTmout);
640         writel(0x60, &regs->IntrTmr);
641         writel(0x500000, &regs->TxDataMvTimeout);
642         writel(0x200000, &regs->RxDataMvTimeout);
643         writel(0x80, &regs->WriteDmaThresh);
644         writel(0x80, &regs->ReadDmaThresh);
645
646         rrpriv->fw_running = 0;
647         wmb();
648
649         hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
650         writel(hostctrl, &regs->HostCtrl);
651         wmb();
652
653         spin_unlock_irqrestore(&rrpriv->lock, flags);
654
655         for (i = 0; i < RX_RING_ENTRIES; i++) {
656                 struct sk_buff *skb;
657                 dma_addr_t addr;
658
659                 rrpriv->rx_ring[i].mode = 0;
660                 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
661                 if (!skb) {
662                         printk(KERN_WARNING "%s: Unable to allocate memory "
663                                "for receive ring - halting NIC\n", dev->name);
664                         ecode = -ENOMEM;
665                         goto error;
666                 }
667                 rrpriv->rx_skbuff[i] = skb;
668                 addr = pci_map_single(rrpriv->pci_dev, skb->data,
669                         dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
670                 /*
671                  * Sanity test to see if we conflict with the DMA
672                  * limitations of the Roadrunner.
673                  */
674                 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
675                         printk("skb alloc error\n");
676
677                 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
678                 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
679         }
680
681         rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
682         rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
683         rrpriv->rx_ctrl[4].mode = 8;
684         rrpriv->rx_ctrl[4].pi = 0;
685         wmb();
686         set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
687
688         udelay(1000);
689
690         /*
691          * Now start the FirmWare.
692          */
693         cmd.code = C_START_FW;
694         cmd.ring = 0;
695         cmd.index = 0;
696
697         rr_issue_cmd(rrpriv, &cmd);
698
699         /*
700          * Give the FirmWare time to chew on the `get running' command.
701          */
702         myjif = jiffies + 5 * HZ;
703         while (time_before(jiffies, myjif) && !rrpriv->fw_running)
704                 cpu_relax();
705
706         netif_start_queue(dev);
707
708         return ecode;
709
710  error:
711         /*
712          * We might have gotten here because we are out of memory,
713          * make sure we release everything we allocated before failing
714          */
715         for (i = 0; i < RX_RING_ENTRIES; i++) {
716                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
717
718                 if (skb) {
719                         pci_unmap_single(rrpriv->pci_dev,
720                                          rrpriv->rx_ring[i].addr.addrlo,
721                                          dev->mtu + HIPPI_HLEN,
722                                          PCI_DMA_FROMDEVICE);
723                         rrpriv->rx_ring[i].size = 0;
724                         set_rraddr(&rrpriv->rx_ring[i].addr, 0);
725                         dev_kfree_skb(skb);
726                         rrpriv->rx_skbuff[i] = NULL;
727                 }
728         }
729         return ecode;
730 }
731
732
733 /*
734  * All events are considered to be slow (RX/TX ints do not generate
735  * events) and are handled here, outside the main interrupt handler,
736  * to reduce the size of the handler.
737  */
738 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
739 {
740         struct rr_private *rrpriv;
741         struct rr_regs __iomem *regs;
742         u32 tmp;
743
744         rrpriv = netdev_priv(dev);
745         regs = rrpriv->regs;
746
747         while (prodidx != eidx){
748                 switch (rrpriv->evt_ring[eidx].code){
749                 case E_NIC_UP:
750                         tmp = readl(&regs->FwRev);
751                         printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
752                                "up and running\n", dev->name,
753                                (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
754                         rrpriv->fw_running = 1;
755                         writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
756                         wmb();
757                         break;
758                 case E_LINK_ON:
759                         printk(KERN_INFO "%s: Optical link ON\n", dev->name);
760                         break;
761                 case E_LINK_OFF:
762                         printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
763                         break;
764                 case E_RX_IDLE:
765                         printk(KERN_WARNING "%s: RX data not moving\n",
766                                dev->name);
767                         goto drop;
768                 case E_WATCHDOG:
769                         printk(KERN_INFO "%s: The watchdog is here to see "
770                                "us\n", dev->name);
771                         break;
772                 case E_INTERN_ERR:
773                         printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
774                                dev->name);
775                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
776                                &regs->HostCtrl);
777                         wmb();
778                         break;
779                 case E_HOST_ERR:
780                         printk(KERN_ERR "%s: Host software error\n",
781                                dev->name);
782                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
783                                &regs->HostCtrl);
784                         wmb();
785                         break;
786                 /*
787                  * TX events.
788                  */
789                 case E_CON_REJ:
790                         printk(KERN_WARNING "%s: Connection rejected\n",
791                                dev->name);
792                         dev->stats.tx_aborted_errors++;
793                         break;
794                 case E_CON_TMOUT:
795                         printk(KERN_WARNING "%s: Connection timeout\n",
796                                dev->name);
797                         break;
798                 case E_DISC_ERR:
799                         printk(KERN_WARNING "%s: HIPPI disconnect error\n",
800                                dev->name);
801                         dev->stats.tx_aborted_errors++;
802                         break;
803                 case E_INT_PRTY:
804                         printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
805                                dev->name);
806                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
807                                &regs->HostCtrl);
808                         wmb();
809                         break;
810                 case E_TX_IDLE:
811                         printk(KERN_WARNING "%s: Transmitter idle\n",
812                                dev->name);
813                         break;
814                 case E_TX_LINK_DROP:
815                         printk(KERN_WARNING "%s: Link lost during transmit\n",
816                                dev->name);
817                         dev->stats.tx_aborted_errors++;
818                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
819                                &regs->HostCtrl);
820                         wmb();
821                         break;
822                 case E_TX_INV_RNG:
823                         printk(KERN_ERR "%s: Invalid send ring block\n",
824                                dev->name);
825                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
826                                &regs->HostCtrl);
827                         wmb();
828                         break;
829                 case E_TX_INV_BUF:
830                         printk(KERN_ERR "%s: Invalid send buffer address\n",
831                                dev->name);
832                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
833                                &regs->HostCtrl);
834                         wmb();
835                         break;
836                 case E_TX_INV_DSC:
837                         printk(KERN_ERR "%s: Invalid descriptor address\n",
838                                dev->name);
839                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
840                                &regs->HostCtrl);
841                         wmb();
842                         break;
843                 /*
844                  * RX events.
845                  */
846                 case E_RX_RNG_OUT:
847                         printk(KERN_INFO "%s: Receive ring full\n", dev->name);
848                         break;
849
850                 case E_RX_PAR_ERR:
851                         printk(KERN_WARNING "%s: Receive parity error\n",
852                                dev->name);
853                         goto drop;
854                 case E_RX_LLRC_ERR:
855                         printk(KERN_WARNING "%s: Receive LLRC error\n",
856                                dev->name);
857                         goto drop;
858                 case E_PKT_LN_ERR:
859                         printk(KERN_WARNING "%s: Receive packet length "
860                                "error\n", dev->name);
861                         goto drop;
862                 case E_DTA_CKSM_ERR:
863                         printk(KERN_WARNING "%s: Data checksum error\n",
864                                dev->name);
865                         goto drop;
866                 case E_SHT_BST:
867                         printk(KERN_WARNING "%s: Unexpected short burst "
868                                "error\n", dev->name);
869                         goto drop;
870                 case E_STATE_ERR:
871                         printk(KERN_WARNING "%s: Recv. state transition"
872                                " error\n", dev->name);
873                         goto drop;
874                 case E_UNEXP_DATA:
875                         printk(KERN_WARNING "%s: Unexpected data error\n",
876                                dev->name);
877                         goto drop;
878                 case E_LST_LNK_ERR:
879                         printk(KERN_WARNING "%s: Link lost error\n",
880                                dev->name);
881                         goto drop;
882                 case E_FRM_ERR:
883                         printk(KERN_WARNING "%s: Framming Error\n",
884                                dev->name);
885                         goto drop;
886                 case E_FLG_SYN_ERR:
887                         printk(KERN_WARNING "%s: Flag sync. lost during "
888                                "packet\n", dev->name);
889                         goto drop;
890                 case E_RX_INV_BUF:
891                         printk(KERN_ERR "%s: Invalid receive buffer "
892                                "address\n", dev->name);
893                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
894                                &regs->HostCtrl);
895                         wmb();
896                         break;
897                 case E_RX_INV_DSC:
898                         printk(KERN_ERR "%s: Invalid receive descriptor "
899                                "address\n", dev->name);
900                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
901                                &regs->HostCtrl);
902                         wmb();
903                         break;
904                 case E_RNG_BLK:
905                         printk(KERN_ERR "%s: Invalid ring block\n",
906                                dev->name);
907                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
908                                &regs->HostCtrl);
909                         wmb();
910                         break;
911                 drop:
912                         /* Label packet to be dropped.
913                          * Actual dropping occurs in rx
914                          * handling.
915                          *
916                          * The index of packet we get to drop is
917                          * the index of the packet following
918                          * the bad packet. -kbf
919                          */
920                         {
921                                 u16 index = rrpriv->evt_ring[eidx].index;
922                                 index = (index + (RX_RING_ENTRIES - 1)) %
923                                         RX_RING_ENTRIES;
924                                 rrpriv->rx_ring[index].mode |=
925                                         (PACKET_BAD | PACKET_END);
926                         }
927                         break;
928                 default:
929                         printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
930                                dev->name, rrpriv->evt_ring[eidx].code);
931                 }
932                 eidx = (eidx + 1) % EVT_RING_ENTRIES;
933         }
934
935         rrpriv->info->evt_ctrl.pi = eidx;
936         wmb();
937         return eidx;
938 }
939
940
941 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
942 {
943         struct rr_private *rrpriv = netdev_priv(dev);
944         struct rr_regs __iomem *regs = rrpriv->regs;
945
946         do {
947                 struct rx_desc *desc;
948                 u32 pkt_len;
949
950                 desc = &(rrpriv->rx_ring[index]);
951                 pkt_len = desc->size;
952 #if (DEBUG > 2)
953                 printk("index %i, rxlimit %i\n", index, rxlimit);
954                 printk("len %x, mode %x\n", pkt_len, desc->mode);
955 #endif
956                 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
957                         dev->stats.rx_dropped++;
958                         goto defer;
959                 }
960
961                 if (pkt_len > 0){
962                         struct sk_buff *skb, *rx_skb;
963
964                         rx_skb = rrpriv->rx_skbuff[index];
965
966                         if (pkt_len < PKT_COPY_THRESHOLD) {
967                                 skb = alloc_skb(pkt_len, GFP_ATOMIC);
968                                 if (skb == NULL){
969                                         printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
970                                         dev->stats.rx_dropped++;
971                                         goto defer;
972                                 } else {
973                                         pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
974                                                                     desc->addr.addrlo,
975                                                                     pkt_len,
976                                                                     PCI_DMA_FROMDEVICE);
977
978                                         memcpy(skb_put(skb, pkt_len),
979                                                rx_skb->data, pkt_len);
980
981                                         pci_dma_sync_single_for_device(rrpriv->pci_dev,
982                                                                        desc->addr.addrlo,
983                                                                        pkt_len,
984                                                                        PCI_DMA_FROMDEVICE);
985                                 }
986                         }else{
987                                 struct sk_buff *newskb;
988
989                                 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
990                                         GFP_ATOMIC);
991                                 if (newskb){
992                                         dma_addr_t addr;
993
994                                         pci_unmap_single(rrpriv->pci_dev,
995                                                 desc->addr.addrlo, dev->mtu +
996                                                 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
997                                         skb = rx_skb;
998                                         skb_put(skb, pkt_len);
999                                         rrpriv->rx_skbuff[index] = newskb;
1000                                         addr = pci_map_single(rrpriv->pci_dev,
1001                                                 newskb->data,
1002                                                 dev->mtu + HIPPI_HLEN,
1003                                                 PCI_DMA_FROMDEVICE);
1004                                         set_rraddr(&desc->addr, addr);
1005                                 } else {
1006                                         printk("%s: Out of memory, deferring "
1007                                                "packet\n", dev->name);
1008                                         dev->stats.rx_dropped++;
1009                                         goto defer;
1010                                 }
1011                         }
1012                         skb->protocol = hippi_type_trans(skb, dev);
1013
1014                         netif_rx(skb);          /* send it up */
1015
1016                         dev->stats.rx_packets++;
1017                         dev->stats.rx_bytes += pkt_len;
1018                 }
1019         defer:
1020                 desc->mode = 0;
1021                 desc->size = dev->mtu + HIPPI_HLEN;
1022
1023                 if ((index & 7) == 7)
1024                         writel(index, &regs->IpRxPi);
1025
1026                 index = (index + 1) % RX_RING_ENTRIES;
1027         } while(index != rxlimit);
1028
1029         rrpriv->cur_rx = index;
1030         wmb();
1031 }
1032
1033
1034 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1035 {
1036         struct rr_private *rrpriv;
1037         struct rr_regs __iomem *regs;
1038         struct net_device *dev = (struct net_device *)dev_id;
1039         u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1040
1041         rrpriv = netdev_priv(dev);
1042         regs = rrpriv->regs;
1043
1044         if (!(readl(&regs->HostCtrl) & RR_INT))
1045                 return IRQ_NONE;
1046
1047         spin_lock(&rrpriv->lock);
1048
1049         prodidx = readl(&regs->EvtPrd);
1050         txcsmr = (prodidx >> 8) & 0xff;
1051         rxlimit = (prodidx >> 16) & 0xff;
1052         prodidx &= 0xff;
1053
1054 #if (DEBUG > 2)
1055         printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1056                prodidx, rrpriv->info->evt_ctrl.pi);
1057 #endif
1058         /*
1059          * Order here is important.  We must handle events
1060          * before doing anything else in order to catch
1061          * such things as LLRC errors, etc -kbf
1062          */
1063
1064         eidx = rrpriv->info->evt_ctrl.pi;
1065         if (prodidx != eidx)
1066                 eidx = rr_handle_event(dev, prodidx, eidx);
1067
1068         rxindex = rrpriv->cur_rx;
1069         if (rxindex != rxlimit)
1070                 rx_int(dev, rxlimit, rxindex);
1071
1072         txcon = rrpriv->dirty_tx;
1073         if (txcsmr != txcon) {
1074                 do {
1075                         /* Due to occational firmware TX producer/consumer out
1076                          * of sync. error need to check entry in ring -kbf
1077                          */
1078                         if(rrpriv->tx_skbuff[txcon]){
1079                                 struct tx_desc *desc;
1080                                 struct sk_buff *skb;
1081
1082                                 desc = &(rrpriv->tx_ring[txcon]);
1083                                 skb = rrpriv->tx_skbuff[txcon];
1084
1085                                 dev->stats.tx_packets++;
1086                                 dev->stats.tx_bytes += skb->len;
1087
1088                                 pci_unmap_single(rrpriv->pci_dev,
1089                                                  desc->addr.addrlo, skb->len,
1090                                                  PCI_DMA_TODEVICE);
1091                                 dev_kfree_skb_irq(skb);
1092
1093                                 rrpriv->tx_skbuff[txcon] = NULL;
1094                                 desc->size = 0;
1095                                 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1096                                 desc->mode = 0;
1097                         }
1098                         txcon = (txcon + 1) % TX_RING_ENTRIES;
1099                 } while (txcsmr != txcon);
1100                 wmb();
1101
1102                 rrpriv->dirty_tx = txcon;
1103                 if (rrpriv->tx_full && rr_if_busy(dev) &&
1104                     (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1105                      != rrpriv->dirty_tx)){
1106                         rrpriv->tx_full = 0;
1107                         netif_wake_queue(dev);
1108                 }
1109         }
1110
1111         eidx |= ((txcsmr << 8) | (rxlimit << 16));
1112         writel(eidx, &regs->EvtCon);
1113         wmb();
1114
1115         spin_unlock(&rrpriv->lock);
1116         return IRQ_HANDLED;
1117 }
1118
1119 static inline void rr_raz_tx(struct rr_private *rrpriv,
1120                              struct net_device *dev)
1121 {
1122         int i;
1123
1124         for (i = 0; i < TX_RING_ENTRIES; i++) {
1125                 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1126
1127                 if (skb) {
1128                         struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1129
1130                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1131                                 skb->len, PCI_DMA_TODEVICE);
1132                         desc->size = 0;
1133                         set_rraddr(&desc->addr, 0);
1134                         dev_kfree_skb(skb);
1135                         rrpriv->tx_skbuff[i] = NULL;
1136                 }
1137         }
1138 }
1139
1140
1141 static inline void rr_raz_rx(struct rr_private *rrpriv,
1142                              struct net_device *dev)
1143 {
1144         int i;
1145
1146         for (i = 0; i < RX_RING_ENTRIES; i++) {
1147                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1148
1149                 if (skb) {
1150                         struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1151
1152                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1153                                 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1154                         desc->size = 0;
1155                         set_rraddr(&desc->addr, 0);
1156                         dev_kfree_skb(skb);
1157                         rrpriv->rx_skbuff[i] = NULL;
1158                 }
1159         }
1160 }
1161
1162 static void rr_timer(unsigned long data)
1163 {
1164         struct net_device *dev = (struct net_device *)data;
1165         struct rr_private *rrpriv = netdev_priv(dev);
1166         struct rr_regs __iomem *regs = rrpriv->regs;
1167         unsigned long flags;
1168
1169         if (readl(&regs->HostCtrl) & NIC_HALTED){
1170                 printk("%s: Restarting nic\n", dev->name);
1171                 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1172                 memset(rrpriv->info, 0, sizeof(struct rr_info));
1173                 wmb();
1174
1175                 rr_raz_tx(rrpriv, dev);
1176                 rr_raz_rx(rrpriv, dev);
1177
1178                 if (rr_init1(dev)) {
1179                         spin_lock_irqsave(&rrpriv->lock, flags);
1180                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1181                                &regs->HostCtrl);
1182                         spin_unlock_irqrestore(&rrpriv->lock, flags);
1183                 }
1184         }
1185         rrpriv->timer.expires = RUN_AT(5*HZ);
1186         add_timer(&rrpriv->timer);
1187 }
1188
1189
1190 static int rr_open(struct net_device *dev)
1191 {
1192         struct rr_private *rrpriv = netdev_priv(dev);
1193         struct pci_dev *pdev = rrpriv->pci_dev;
1194         struct rr_regs __iomem *regs;
1195         int ecode = 0;
1196         unsigned long flags;
1197         dma_addr_t dma_addr;
1198
1199         regs = rrpriv->regs;
1200
1201         if (rrpriv->fw_rev < 0x00020000) {
1202                 printk(KERN_WARNING "%s: trying to configure device with "
1203                        "obsolete firmware\n", dev->name);
1204                 ecode = -EBUSY;
1205                 goto error;
1206         }
1207
1208         rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1209                                                256 * sizeof(struct ring_ctrl),
1210                                                &dma_addr);
1211         if (!rrpriv->rx_ctrl) {
1212                 ecode = -ENOMEM;
1213                 goto error;
1214         }
1215         rrpriv->rx_ctrl_dma = dma_addr;
1216         memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1217
1218         rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1219                                             &dma_addr);
1220         if (!rrpriv->info) {
1221                 ecode = -ENOMEM;
1222                 goto error;
1223         }
1224         rrpriv->info_dma = dma_addr;
1225         memset(rrpriv->info, 0, sizeof(struct rr_info));
1226         wmb();
1227
1228         spin_lock_irqsave(&rrpriv->lock, flags);
1229         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1230         readl(&regs->HostCtrl);
1231         spin_unlock_irqrestore(&rrpriv->lock, flags);
1232
1233         if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1234                 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1235                        dev->name, dev->irq);
1236                 ecode = -EAGAIN;
1237                 goto error;
1238         }
1239
1240         if ((ecode = rr_init1(dev)))
1241                 goto error;
1242
1243         /* Set the timer to switch to check for link beat and perhaps switch
1244            to an alternate media type. */
1245         init_timer(&rrpriv->timer);
1246         rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1247         rrpriv->timer.data = (unsigned long)dev;
1248         rrpriv->timer.function = &rr_timer;               /* timer handler */
1249         add_timer(&rrpriv->timer);
1250
1251         netif_start_queue(dev);
1252
1253         return ecode;
1254
1255  error:
1256         spin_lock_irqsave(&rrpriv->lock, flags);
1257         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1258         spin_unlock_irqrestore(&rrpriv->lock, flags);
1259
1260         if (rrpriv->info) {
1261                 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1262                                     rrpriv->info_dma);
1263                 rrpriv->info = NULL;
1264         }
1265         if (rrpriv->rx_ctrl) {
1266                 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1267                                     rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1268                 rrpriv->rx_ctrl = NULL;
1269         }
1270
1271         netif_stop_queue(dev);
1272
1273         return ecode;
1274 }
1275
1276
1277 static void rr_dump(struct net_device *dev)
1278 {
1279         struct rr_private *rrpriv;
1280         struct rr_regs __iomem *regs;
1281         u32 index, cons;
1282         short i;
1283         int len;
1284
1285         rrpriv = netdev_priv(dev);
1286         regs = rrpriv->regs;
1287
1288         printk("%s: dumping NIC TX rings\n", dev->name);
1289
1290         printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1291                readl(&regs->RxPrd), readl(&regs->TxPrd),
1292                readl(&regs->EvtPrd), readl(&regs->TxPi),
1293                rrpriv->info->tx_ctrl.pi);
1294
1295         printk("Error code 0x%x\n", readl(&regs->Fail1));
1296
1297         index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1298         cons = rrpriv->dirty_tx;
1299         printk("TX ring index %i, TX consumer %i\n",
1300                index, cons);
1301
1302         if (rrpriv->tx_skbuff[index]){
1303                 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1304                 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1305                 for (i = 0; i < len; i++){
1306                         if (!(i & 7))
1307                                 printk("\n");
1308                         printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1309                 }
1310                 printk("\n");
1311         }
1312
1313         if (rrpriv->tx_skbuff[cons]){
1314                 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1315                 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1316                 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1317                        rrpriv->tx_ring[cons].mode,
1318                        rrpriv->tx_ring[cons].size,
1319                        (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1320                        (unsigned long)rrpriv->tx_skbuff[cons]->data,
1321                        (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1322                 for (i = 0; i < len; i++){
1323                         if (!(i & 7))
1324                                 printk("\n");
1325                         printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1326                 }
1327                 printk("\n");
1328         }
1329
1330         printk("dumping TX ring info:\n");
1331         for (i = 0; i < TX_RING_ENTRIES; i++)
1332                 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1333                        rrpriv->tx_ring[i].mode,
1334                        rrpriv->tx_ring[i].size,
1335                        (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1336
1337 }
1338
1339
1340 static int rr_close(struct net_device *dev)
1341 {
1342         struct rr_private *rrpriv;
1343         struct rr_regs __iomem *regs;
1344         unsigned long flags;
1345         u32 tmp;
1346         short i;
1347
1348         netif_stop_queue(dev);
1349
1350         rrpriv = netdev_priv(dev);
1351         regs = rrpriv->regs;
1352
1353         /*
1354          * Lock to make sure we are not cleaning up while another CPU
1355          * is handling interrupts.
1356          */
1357         spin_lock_irqsave(&rrpriv->lock, flags);
1358
1359         tmp = readl(&regs->HostCtrl);
1360         if (tmp & NIC_HALTED){
1361                 printk("%s: NIC already halted\n", dev->name);
1362                 rr_dump(dev);
1363         }else{
1364                 tmp |= HALT_NIC | RR_CLEAR_INT;
1365                 writel(tmp, &regs->HostCtrl);
1366                 readl(&regs->HostCtrl);
1367         }
1368
1369         rrpriv->fw_running = 0;
1370
1371         del_timer_sync(&rrpriv->timer);
1372
1373         writel(0, &regs->TxPi);
1374         writel(0, &regs->IpRxPi);
1375
1376         writel(0, &regs->EvtCon);
1377         writel(0, &regs->EvtPrd);
1378
1379         for (i = 0; i < CMD_RING_ENTRIES; i++)
1380                 writel(0, &regs->CmdRing[i]);
1381
1382         rrpriv->info->tx_ctrl.entries = 0;
1383         rrpriv->info->cmd_ctrl.pi = 0;
1384         rrpriv->info->evt_ctrl.pi = 0;
1385         rrpriv->rx_ctrl[4].entries = 0;
1386
1387         rr_raz_tx(rrpriv, dev);
1388         rr_raz_rx(rrpriv, dev);
1389
1390         pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1391                             rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1392         rrpriv->rx_ctrl = NULL;
1393
1394         pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1395                             rrpriv->info, rrpriv->info_dma);
1396         rrpriv->info = NULL;
1397
1398         free_irq(dev->irq, dev);
1399         spin_unlock_irqrestore(&rrpriv->lock, flags);
1400
1401         return 0;
1402 }
1403
1404
1405 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1406                                  struct net_device *dev)
1407 {
1408         struct rr_private *rrpriv = netdev_priv(dev);
1409         struct rr_regs __iomem *regs = rrpriv->regs;
1410         struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1411         struct ring_ctrl *txctrl;
1412         unsigned long flags;
1413         u32 index, len = skb->len;
1414         u32 *ifield;
1415         struct sk_buff *new_skb;
1416
1417         if (readl(&regs->Mode) & FATAL_ERR)
1418                 printk("error codes Fail1 %02x, Fail2 %02x\n",
1419                        readl(&regs->Fail1), readl(&regs->Fail2));
1420
1421         /*
1422          * We probably need to deal with tbusy here to prevent overruns.
1423          */
1424
1425         if (skb_headroom(skb) < 8){
1426                 printk("incoming skb too small - reallocating\n");
1427                 if (!(new_skb = dev_alloc_skb(len + 8))) {
1428                         dev_kfree_skb(skb);
1429                         netif_wake_queue(dev);
1430                         return NETDEV_TX_OK;
1431                 }
1432                 skb_reserve(new_skb, 8);
1433                 skb_put(new_skb, len);
1434                 skb_copy_from_linear_data(skb, new_skb->data, len);
1435                 dev_kfree_skb(skb);
1436                 skb = new_skb;
1437         }
1438
1439         ifield = (u32 *)skb_push(skb, 8);
1440
1441         ifield[0] = 0;
1442         ifield[1] = hcb->ifield;
1443
1444         /*
1445          * We don't need the lock before we are actually going to start
1446          * fiddling with the control blocks.
1447          */
1448         spin_lock_irqsave(&rrpriv->lock, flags);
1449
1450         txctrl = &rrpriv->info->tx_ctrl;
1451
1452         index = txctrl->pi;
1453
1454         rrpriv->tx_skbuff[index] = skb;
1455         set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1456                 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1457         rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1458         rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1459         txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1460         wmb();
1461         writel(txctrl->pi, &regs->TxPi);
1462
1463         if (txctrl->pi == rrpriv->dirty_tx){
1464                 rrpriv->tx_full = 1;
1465                 netif_stop_queue(dev);
1466         }
1467
1468         spin_unlock_irqrestore(&rrpriv->lock, flags);
1469
1470         return NETDEV_TX_OK;
1471 }
1472
1473
1474 /*
1475  * Read the firmware out of the EEPROM and put it into the SRAM
1476  * (or from user space - later)
1477  *
1478  * This operation requires the NIC to be halted and is performed with
1479  * interrupts disabled and with the spinlock hold.
1480  */
1481 static int rr_load_firmware(struct net_device *dev)
1482 {
1483         struct rr_private *rrpriv;
1484         struct rr_regs __iomem *regs;
1485         size_t eptr, segptr;
1486         int i, j;
1487         u32 localctrl, sptr, len, tmp;
1488         u32 p2len, p2size, nr_seg, revision, io, sram_size;
1489
1490         rrpriv = netdev_priv(dev);
1491         regs = rrpriv->regs;
1492
1493         if (dev->flags & IFF_UP)
1494                 return -EBUSY;
1495
1496         if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1497                 printk("%s: Trying to load firmware to a running NIC.\n",
1498                        dev->name);
1499                 return -EBUSY;
1500         }
1501
1502         localctrl = readl(&regs->LocalCtrl);
1503         writel(0, &regs->LocalCtrl);
1504
1505         writel(0, &regs->EvtPrd);
1506         writel(0, &regs->RxPrd);
1507         writel(0, &regs->TxPrd);
1508
1509         /*
1510          * First wipe the entire SRAM, otherwise we might run into all
1511          * kinds of trouble ... sigh, this took almost all afternoon
1512          * to track down ;-(
1513          */
1514         io = readl(&regs->ExtIo);
1515         writel(0, &regs->ExtIo);
1516         sram_size = rr_read_eeprom_word(rrpriv, 8);
1517
1518         for (i = 200; i < sram_size / 4; i++){
1519                 writel(i * 4, &regs->WinBase);
1520                 mb();
1521                 writel(0, &regs->WinData);
1522                 mb();
1523         }
1524         writel(io, &regs->ExtIo);
1525         mb();
1526
1527         eptr = rr_read_eeprom_word(rrpriv,
1528                        offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1529         eptr = ((eptr & 0x1fffff) >> 3);
1530
1531         p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1532         p2len = (p2len << 2);
1533         p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1534         p2size = ((p2size & 0x1fffff) >> 3);
1535
1536         if ((eptr < p2size) || (eptr > (p2size + p2len))){
1537                 printk("%s: eptr is invalid\n", dev->name);
1538                 goto out;
1539         }
1540
1541         revision = rr_read_eeprom_word(rrpriv,
1542                         offsetof(struct eeprom, manf.HeaderFmt));
1543
1544         if (revision != 1){
1545                 printk("%s: invalid firmware format (%i)\n",
1546                        dev->name, revision);
1547                 goto out;
1548         }
1549
1550         nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1551         eptr +=4;
1552 #if (DEBUG > 1)
1553         printk("%s: nr_seg %i\n", dev->name, nr_seg);
1554 #endif
1555
1556         for (i = 0; i < nr_seg; i++){
1557                 sptr = rr_read_eeprom_word(rrpriv, eptr);
1558                 eptr += 4;
1559                 len = rr_read_eeprom_word(rrpriv, eptr);
1560                 eptr += 4;
1561                 segptr = rr_read_eeprom_word(rrpriv, eptr);
1562                 segptr = ((segptr & 0x1fffff) >> 3);
1563                 eptr += 4;
1564 #if (DEBUG > 1)
1565                 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1566                        dev->name, i, sptr, len, segptr);
1567 #endif
1568                 for (j = 0; j < len; j++){
1569                         tmp = rr_read_eeprom_word(rrpriv, segptr);
1570                         writel(sptr, &regs->WinBase);
1571                         mb();
1572                         writel(tmp, &regs->WinData);
1573                         mb();
1574                         segptr += 4;
1575                         sptr += 4;
1576                 }
1577         }
1578
1579 out:
1580         writel(localctrl, &regs->LocalCtrl);
1581         mb();
1582         return 0;
1583 }
1584
1585
1586 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1587 {
1588         struct rr_private *rrpriv;
1589         unsigned char *image, *oldimage;
1590         unsigned long flags;
1591         unsigned int i;
1592         int error = -EOPNOTSUPP;
1593
1594         rrpriv = netdev_priv(dev);
1595
1596         switch(cmd){
1597         case SIOCRRGFW:
1598                 if (!capable(CAP_SYS_RAWIO)){
1599                         return -EPERM;
1600                 }
1601
1602                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1603                 if (!image){
1604                         printk(KERN_ERR "%s: Unable to allocate memory "
1605                                "for EEPROM image\n", dev->name);
1606                         return -ENOMEM;
1607                 }
1608
1609
1610                 if (rrpriv->fw_running){
1611                         printk("%s: Firmware already running\n", dev->name);
1612                         error = -EPERM;
1613                         goto gf_out;
1614                 }
1615
1616                 spin_lock_irqsave(&rrpriv->lock, flags);
1617                 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1618                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1619                 if (i != EEPROM_BYTES){
1620                         printk(KERN_ERR "%s: Error reading EEPROM\n",
1621                                dev->name);
1622                         error = -EFAULT;
1623                         goto gf_out;
1624                 }
1625                 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1626                 if (error)
1627                         error = -EFAULT;
1628         gf_out:
1629                 kfree(image);
1630                 return error;
1631
1632         case SIOCRRPFW:
1633                 if (!capable(CAP_SYS_RAWIO)){
1634                         return -EPERM;
1635                 }
1636
1637                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1638                 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1639                 if (!image || !oldimage) {
1640                         printk(KERN_ERR "%s: Unable to allocate memory "
1641                                "for EEPROM image\n", dev->name);
1642                         error = -ENOMEM;
1643                         goto wf_out;
1644                 }
1645
1646                 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1647                 if (error) {
1648                         error = -EFAULT;
1649                         goto wf_out;
1650                 }
1651
1652                 if (rrpriv->fw_running){
1653                         printk("%s: Firmware already running\n", dev->name);
1654                         error = -EPERM;
1655                         goto wf_out;
1656                 }
1657
1658                 printk("%s: Updating EEPROM firmware\n", dev->name);
1659
1660                 spin_lock_irqsave(&rrpriv->lock, flags);
1661                 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1662                 if (error)
1663                         printk(KERN_ERR "%s: Error writing EEPROM\n",
1664                                dev->name);
1665
1666                 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1667                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1668
1669                 if (i != EEPROM_BYTES)
1670                         printk(KERN_ERR "%s: Error reading back EEPROM "
1671                                "image\n", dev->name);
1672
1673                 error = memcmp(image, oldimage, EEPROM_BYTES);
1674                 if (error){
1675                         printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1676                                dev->name);
1677                         error = -EFAULT;
1678                 }
1679         wf_out:
1680                 kfree(oldimage);
1681                 kfree(image);
1682                 return error;
1683
1684         case SIOCRRID:
1685                 return put_user(0x52523032, (int __user *)rq->ifr_data);
1686         default:
1687                 return error;
1688         }
1689 }
1690
1691 static DEFINE_PCI_DEVICE_TABLE(rr_pci_tbl) = {
1692         { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1693                 PCI_ANY_ID, PCI_ANY_ID, },
1694         { 0,}
1695 };
1696 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1697
1698 static struct pci_driver rr_driver = {
1699         .name           = "rrunner",
1700         .id_table       = rr_pci_tbl,
1701         .probe          = rr_init_one,
1702         .remove         = __devexit_p(rr_remove_one),
1703 };
1704
1705 static int __init rr_init_module(void)
1706 {
1707         return pci_register_driver(&rr_driver);
1708 }
1709
1710 static void __exit rr_cleanup_module(void)
1711 {
1712         pci_unregister_driver(&rr_driver);
1713 }
1714
1715 module_init(rr_init_module);
1716 module_exit(rr_cleanup_module);