qlge: bugfix: Move netif_napi_del() to common call point.
[safe/jmp/linux-2.6] / drivers / net / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61     NETIF_MSG_TX_QUEUED |
62     NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = 0x00007fff;  /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
79         /* required last entry */
80         {0,}
81 };
82
83 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
84
85 /* This hardware semaphore causes exclusive access to
86  * resources shared between the NIC driver, MPI firmware,
87  * FCOE firmware and the FC driver.
88  */
89 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
90 {
91         u32 sem_bits = 0;
92
93         switch (sem_mask) {
94         case SEM_XGMAC0_MASK:
95                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
96                 break;
97         case SEM_XGMAC1_MASK:
98                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
99                 break;
100         case SEM_ICB_MASK:
101                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
102                 break;
103         case SEM_MAC_ADDR_MASK:
104                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
105                 break;
106         case SEM_FLASH_MASK:
107                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
108                 break;
109         case SEM_PROBE_MASK:
110                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
111                 break;
112         case SEM_RT_IDX_MASK:
113                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
114                 break;
115         case SEM_PROC_REG_MASK:
116                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
117                 break;
118         default:
119                 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
120                 return -EINVAL;
121         }
122
123         ql_write32(qdev, SEM, sem_bits | sem_mask);
124         return !(ql_read32(qdev, SEM) & sem_bits);
125 }
126
127 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
128 {
129         unsigned int wait_count = 30;
130         do {
131                 if (!ql_sem_trylock(qdev, sem_mask))
132                         return 0;
133                 udelay(100);
134         } while (--wait_count);
135         return -ETIMEDOUT;
136 }
137
138 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
139 {
140         ql_write32(qdev, SEM, sem_mask);
141         ql_read32(qdev, SEM);   /* flush */
142 }
143
144 /* This function waits for a specific bit to come ready
145  * in a given register.  It is used mostly by the initialize
146  * process, but is also used in kernel thread API such as
147  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
148  */
149 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
150 {
151         u32 temp;
152         int count = UDELAY_COUNT;
153
154         while (count) {
155                 temp = ql_read32(qdev, reg);
156
157                 /* check for errors */
158                 if (temp & err_bit) {
159                         QPRINTK(qdev, PROBE, ALERT,
160                                 "register 0x%.08x access error, value = 0x%.08x!.\n",
161                                 reg, temp);
162                         return -EIO;
163                 } else if (temp & bit)
164                         return 0;
165                 udelay(UDELAY_DELAY);
166                 count--;
167         }
168         QPRINTK(qdev, PROBE, ALERT,
169                 "Timed out waiting for reg %x to come ready.\n", reg);
170         return -ETIMEDOUT;
171 }
172
173 /* The CFG register is used to download TX and RX control blocks
174  * to the chip. This function waits for an operation to complete.
175  */
176 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
177 {
178         int count = UDELAY_COUNT;
179         u32 temp;
180
181         while (count) {
182                 temp = ql_read32(qdev, CFG);
183                 if (temp & CFG_LE)
184                         return -EIO;
185                 if (!(temp & bit))
186                         return 0;
187                 udelay(UDELAY_DELAY);
188                 count--;
189         }
190         return -ETIMEDOUT;
191 }
192
193
194 /* Used to issue init control blocks to hw. Maps control block,
195  * sets address, triggers download, waits for completion.
196  */
197 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
198                  u16 q_id)
199 {
200         u64 map;
201         int status = 0;
202         int direction;
203         u32 mask;
204         u32 value;
205
206         direction =
207             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
208             PCI_DMA_FROMDEVICE;
209
210         map = pci_map_single(qdev->pdev, ptr, size, direction);
211         if (pci_dma_mapping_error(qdev->pdev, map)) {
212                 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
213                 return -ENOMEM;
214         }
215
216         status = ql_wait_cfg(qdev, bit);
217         if (status) {
218                 QPRINTK(qdev, IFUP, ERR,
219                         "Timed out waiting for CFG to come ready.\n");
220                 goto exit;
221         }
222
223         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
224         if (status)
225                 goto exit;
226         ql_write32(qdev, ICB_L, (u32) map);
227         ql_write32(qdev, ICB_H, (u32) (map >> 32));
228         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
229
230         mask = CFG_Q_MASK | (bit << 16);
231         value = bit | (q_id << CFG_Q_SHIFT);
232         ql_write32(qdev, CFG, (mask | value));
233
234         /*
235          * Wait for the bit to clear after signaling hw.
236          */
237         status = ql_wait_cfg(qdev, bit);
238 exit:
239         pci_unmap_single(qdev->pdev, map, size, direction);
240         return status;
241 }
242
243 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
244 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
245                         u32 *value)
246 {
247         u32 offset = 0;
248         int status;
249
250         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
251         if (status)
252                 return status;
253         switch (type) {
254         case MAC_ADDR_TYPE_MULTI_MAC:
255         case MAC_ADDR_TYPE_CAM_MAC:
256                 {
257                         status =
258                             ql_wait_reg_rdy(qdev,
259                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
260                         if (status)
261                                 goto exit;
262                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
263                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
264                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
265                         status =
266                             ql_wait_reg_rdy(qdev,
267                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
268                         if (status)
269                                 goto exit;
270                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
271                         status =
272                             ql_wait_reg_rdy(qdev,
273                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
274                         if (status)
275                                 goto exit;
276                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
277                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
278                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
279                         status =
280                             ql_wait_reg_rdy(qdev,
281                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
282                         if (status)
283                                 goto exit;
284                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
285                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
286                                 status =
287                                     ql_wait_reg_rdy(qdev,
288                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
289                                 if (status)
290                                         goto exit;
291                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
293                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
294                                 status =
295                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
296                                                     MAC_ADDR_MR, 0);
297                                 if (status)
298                                         goto exit;
299                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300                         }
301                         break;
302                 }
303         case MAC_ADDR_TYPE_VLAN:
304         case MAC_ADDR_TYPE_MULTI_FLTR:
305         default:
306                 QPRINTK(qdev, IFUP, CRIT,
307                         "Address type %d not yet supported.\n", type);
308                 status = -EPERM;
309         }
310 exit:
311         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
312         return status;
313 }
314
315 /* Set up a MAC, multicast or VLAN address for the
316  * inbound frame matching.
317  */
318 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
319                                u16 index)
320 {
321         u32 offset = 0;
322         int status = 0;
323
324         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
325         if (status)
326                 return status;
327         switch (type) {
328         case MAC_ADDR_TYPE_MULTI_MAC:
329         case MAC_ADDR_TYPE_CAM_MAC:
330                 {
331                         u32 cam_output;
332                         u32 upper = (addr[0] << 8) | addr[1];
333                         u32 lower =
334                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
335                             (addr[5]);
336
337                         QPRINTK(qdev, IFUP, INFO,
338                                 "Adding %s address %pM"
339                                 " at index %d in the CAM.\n",
340                                 ((type ==
341                                   MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
342                                  "UNICAST"), addr, index);
343
344                         status =
345                             ql_wait_reg_rdy(qdev,
346                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
347                         if (status)
348                                 goto exit;
349                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
350                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
351                                    type);       /* type */
352                         ql_write32(qdev, MAC_ADDR_DATA, lower);
353                         status =
354                             ql_wait_reg_rdy(qdev,
355                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
356                         if (status)
357                                 goto exit;
358                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
359                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
360                                    type);       /* type */
361                         ql_write32(qdev, MAC_ADDR_DATA, upper);
362                         status =
363                             ql_wait_reg_rdy(qdev,
364                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
365                         if (status)
366                                 goto exit;
367                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
368                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
369                                    type);       /* type */
370                         /* This field should also include the queue id
371                            and possibly the function id.  Right now we hardcode
372                            the route field to NIC core.
373                          */
374                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
375                                 cam_output = (CAM_OUT_ROUTE_NIC |
376                                               (qdev->
377                                                func << CAM_OUT_FUNC_SHIFT) |
378                                               (qdev->
379                                                rss_ring_first_cq_id <<
380                                                CAM_OUT_CQ_ID_SHIFT));
381                                 if (qdev->vlgrp)
382                                         cam_output |= CAM_OUT_RV;
383                                 /* route to NIC core */
384                                 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
385                         }
386                         break;
387                 }
388         case MAC_ADDR_TYPE_VLAN:
389                 {
390                         u32 enable_bit = *((u32 *) &addr[0]);
391                         /* For VLAN, the addr actually holds a bit that
392                          * either enables or disables the vlan id we are
393                          * addressing. It's either MAC_ADDR_E on or off.
394                          * That's bit-27 we're talking about.
395                          */
396                         QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
397                                 (enable_bit ? "Adding" : "Removing"),
398                                 index, (enable_bit ? "to" : "from"));
399
400                         status =
401                             ql_wait_reg_rdy(qdev,
402                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
403                         if (status)
404                                 goto exit;
405                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
406                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
407                                    type |       /* type */
408                                    enable_bit); /* enable/disable */
409                         break;
410                 }
411         case MAC_ADDR_TYPE_MULTI_FLTR:
412         default:
413                 QPRINTK(qdev, IFUP, CRIT,
414                         "Address type %d not yet supported.\n", type);
415                 status = -EPERM;
416         }
417 exit:
418         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
419         return status;
420 }
421
422 /* Get a specific frame routing value from the CAM.
423  * Used for debug and reg dump.
424  */
425 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
426 {
427         int status = 0;
428
429         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
430         if (status)
431                 goto exit;
432
433         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
434         if (status)
435                 goto exit;
436
437         ql_write32(qdev, RT_IDX,
438                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
439         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
440         if (status)
441                 goto exit;
442         *value = ql_read32(qdev, RT_DATA);
443 exit:
444         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
445         return status;
446 }
447
448 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
449  * to route different frame types to various inbound queues.  We send broadcast/
450  * multicast/error frames to the default queue for slow handling,
451  * and CAM hit/RSS frames to the fast handling queues.
452  */
453 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
454                               int enable)
455 {
456         int status;
457         u32 value = 0;
458
459         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
460         if (status)
461                 return status;
462
463         QPRINTK(qdev, IFUP, DEBUG,
464                 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
465                 (enable ? "Adding" : "Removing"),
466                 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
467                 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
468                 ((index ==
469                   RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
470                 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
471                 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
472                 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
473                 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
474                 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
475                 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
476                 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
477                 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
478                 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
479                 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
480                 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
481                 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
482                 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
483                 (enable ? "to" : "from"));
484
485         switch (mask) {
486         case RT_IDX_CAM_HIT:
487                 {
488                         value = RT_IDX_DST_CAM_Q |      /* dest */
489                             RT_IDX_TYPE_NICQ |  /* type */
490                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
491                         break;
492                 }
493         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
494                 {
495                         value = RT_IDX_DST_DFLT_Q |     /* dest */
496                             RT_IDX_TYPE_NICQ |  /* type */
497                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
498                         break;
499                 }
500         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
501                 {
502                         value = RT_IDX_DST_DFLT_Q |     /* dest */
503                             RT_IDX_TYPE_NICQ |  /* type */
504                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
505                         break;
506                 }
507         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
508                 {
509                         value = RT_IDX_DST_DFLT_Q |     /* dest */
510                             RT_IDX_TYPE_NICQ |  /* type */
511                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
512                         break;
513                 }
514         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
515                 {
516                         value = RT_IDX_DST_CAM_Q |      /* dest */
517                             RT_IDX_TYPE_NICQ |  /* type */
518                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
519                         break;
520                 }
521         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
522                 {
523                         value = RT_IDX_DST_CAM_Q |      /* dest */
524                             RT_IDX_TYPE_NICQ |  /* type */
525                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
526                         break;
527                 }
528         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
529                 {
530                         value = RT_IDX_DST_RSS |        /* dest */
531                             RT_IDX_TYPE_NICQ |  /* type */
532                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
533                         break;
534                 }
535         case 0:         /* Clear the E-bit on an entry. */
536                 {
537                         value = RT_IDX_DST_DFLT_Q |     /* dest */
538                             RT_IDX_TYPE_NICQ |  /* type */
539                             (index << RT_IDX_IDX_SHIFT);/* index */
540                         break;
541                 }
542         default:
543                 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
544                         mask);
545                 status = -EPERM;
546                 goto exit;
547         }
548
549         if (value) {
550                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
551                 if (status)
552                         goto exit;
553                 value |= (enable ? RT_IDX_E : 0);
554                 ql_write32(qdev, RT_IDX, value);
555                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
556         }
557 exit:
558         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
559         return status;
560 }
561
562 static void ql_enable_interrupts(struct ql_adapter *qdev)
563 {
564         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
565 }
566
567 static void ql_disable_interrupts(struct ql_adapter *qdev)
568 {
569         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
570 }
571
572 /* If we're running with multiple MSI-X vectors then we enable on the fly.
573  * Otherwise, we may have multiple outstanding workers and don't want to
574  * enable until the last one finishes. In this case, the irq_cnt gets
575  * incremented everytime we queue a worker and decremented everytime
576  * a worker finishes.  Once it hits zero we enable the interrupt.
577  */
578 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
579 {
580         u32 var = 0;
581         unsigned long hw_flags = 0;
582         struct intr_context *ctx = qdev->intr_context + intr;
583
584         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
585                 /* Always enable if we're MSIX multi interrupts and
586                  * it's not the default (zeroeth) interrupt.
587                  */
588                 ql_write32(qdev, INTR_EN,
589                            ctx->intr_en_mask);
590                 var = ql_read32(qdev, STS);
591                 return var;
592         }
593
594         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
595         if (atomic_dec_and_test(&ctx->irq_cnt)) {
596                 ql_write32(qdev, INTR_EN,
597                            ctx->intr_en_mask);
598                 var = ql_read32(qdev, STS);
599         }
600         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
601         return var;
602 }
603
604 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
605 {
606         u32 var = 0;
607         unsigned long hw_flags;
608         struct intr_context *ctx;
609
610         /* HW disables for us if we're MSIX multi interrupts and
611          * it's not the default (zeroeth) interrupt.
612          */
613         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
614                 return 0;
615
616         ctx = qdev->intr_context + intr;
617         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
618         if (!atomic_read(&ctx->irq_cnt)) {
619                 ql_write32(qdev, INTR_EN,
620                 ctx->intr_dis_mask);
621                 var = ql_read32(qdev, STS);
622         }
623         atomic_inc(&ctx->irq_cnt);
624         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
625         return var;
626 }
627
628 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
629 {
630         int i;
631         for (i = 0; i < qdev->intr_count; i++) {
632                 /* The enable call does a atomic_dec_and_test
633                  * and enables only if the result is zero.
634                  * So we precharge it here.
635                  */
636                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
637                         i == 0))
638                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
639                 ql_enable_completion_interrupt(qdev, i);
640         }
641
642 }
643
644 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
645 {
646         int status = 0;
647         /* wait for reg to come ready */
648         status = ql_wait_reg_rdy(qdev,
649                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
650         if (status)
651                 goto exit;
652         /* set up for reg read */
653         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
654         /* wait for reg to come ready */
655         status = ql_wait_reg_rdy(qdev,
656                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
657         if (status)
658                 goto exit;
659          /* This data is stored on flash as an array of
660          * __le32.  Since ql_read32() returns cpu endian
661          * we need to swap it back.
662          */
663         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
664 exit:
665         return status;
666 }
667
668 static int ql_get_flash_params(struct ql_adapter *qdev)
669 {
670         int i;
671         int status;
672         __le32 *p = (__le32 *)&qdev->flash;
673         u32 offset = 0;
674
675         /* Second function's parameters follow the first
676          * function's.
677          */
678         if (qdev->func)
679                 offset = sizeof(qdev->flash) / sizeof(u32);
680
681         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
682                 return -ETIMEDOUT;
683
684         for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
685                 status = ql_read_flash_word(qdev, i+offset, p);
686                 if (status) {
687                         QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
688                         goto exit;
689                 }
690
691         }
692 exit:
693         ql_sem_unlock(qdev, SEM_FLASH_MASK);
694         return status;
695 }
696
697 /* xgmac register are located behind the xgmac_addr and xgmac_data
698  * register pair.  Each read/write requires us to wait for the ready
699  * bit before reading/writing the data.
700  */
701 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
702 {
703         int status;
704         /* wait for reg to come ready */
705         status = ql_wait_reg_rdy(qdev,
706                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
707         if (status)
708                 return status;
709         /* write the data to the data reg */
710         ql_write32(qdev, XGMAC_DATA, data);
711         /* trigger the write */
712         ql_write32(qdev, XGMAC_ADDR, reg);
713         return status;
714 }
715
716 /* xgmac register are located behind the xgmac_addr and xgmac_data
717  * register pair.  Each read/write requires us to wait for the ready
718  * bit before reading/writing the data.
719  */
720 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
721 {
722         int status = 0;
723         /* wait for reg to come ready */
724         status = ql_wait_reg_rdy(qdev,
725                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
726         if (status)
727                 goto exit;
728         /* set up for reg read */
729         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
730         /* wait for reg to come ready */
731         status = ql_wait_reg_rdy(qdev,
732                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
733         if (status)
734                 goto exit;
735         /* get the data */
736         *data = ql_read32(qdev, XGMAC_DATA);
737 exit:
738         return status;
739 }
740
741 /* This is used for reading the 64-bit statistics regs. */
742 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
743 {
744         int status = 0;
745         u32 hi = 0;
746         u32 lo = 0;
747
748         status = ql_read_xgmac_reg(qdev, reg, &lo);
749         if (status)
750                 goto exit;
751
752         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
753         if (status)
754                 goto exit;
755
756         *data = (u64) lo | ((u64) hi << 32);
757
758 exit:
759         return status;
760 }
761
762 /* Take the MAC Core out of reset.
763  * Enable statistics counting.
764  * Take the transmitter/receiver out of reset.
765  * This functionality may be done in the MPI firmware at a
766  * later date.
767  */
768 static int ql_port_initialize(struct ql_adapter *qdev)
769 {
770         int status = 0;
771         u32 data;
772
773         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
774                 /* Another function has the semaphore, so
775                  * wait for the port init bit to come ready.
776                  */
777                 QPRINTK(qdev, LINK, INFO,
778                         "Another function has the semaphore, so wait for the port init bit to come ready.\n");
779                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
780                 if (status) {
781                         QPRINTK(qdev, LINK, CRIT,
782                                 "Port initialize timed out.\n");
783                 }
784                 return status;
785         }
786
787         QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
788         /* Set the core reset. */
789         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
790         if (status)
791                 goto end;
792         data |= GLOBAL_CFG_RESET;
793         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
794         if (status)
795                 goto end;
796
797         /* Clear the core reset and turn on jumbo for receiver. */
798         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
799         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
800         data |= GLOBAL_CFG_TX_STAT_EN;
801         data |= GLOBAL_CFG_RX_STAT_EN;
802         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
803         if (status)
804                 goto end;
805
806         /* Enable transmitter, and clear it's reset. */
807         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
808         if (status)
809                 goto end;
810         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
811         data |= TX_CFG_EN;      /* Enable the transmitter. */
812         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
813         if (status)
814                 goto end;
815
816         /* Enable receiver and clear it's reset. */
817         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
818         if (status)
819                 goto end;
820         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
821         data |= RX_CFG_EN;      /* Enable the receiver. */
822         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
823         if (status)
824                 goto end;
825
826         /* Turn on jumbo. */
827         status =
828             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
829         if (status)
830                 goto end;
831         status =
832             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
833         if (status)
834                 goto end;
835
836         /* Signal to the world that the port is enabled.        */
837         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
838 end:
839         ql_sem_unlock(qdev, qdev->xg_sem_mask);
840         return status;
841 }
842
843 /* Get the next large buffer. */
844 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
845 {
846         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
847         rx_ring->lbq_curr_idx++;
848         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
849                 rx_ring->lbq_curr_idx = 0;
850         rx_ring->lbq_free_cnt++;
851         return lbq_desc;
852 }
853
854 /* Get the next small buffer. */
855 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
856 {
857         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
858         rx_ring->sbq_curr_idx++;
859         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
860                 rx_ring->sbq_curr_idx = 0;
861         rx_ring->sbq_free_cnt++;
862         return sbq_desc;
863 }
864
865 /* Update an rx ring index. */
866 static void ql_update_cq(struct rx_ring *rx_ring)
867 {
868         rx_ring->cnsmr_idx++;
869         rx_ring->curr_entry++;
870         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
871                 rx_ring->cnsmr_idx = 0;
872                 rx_ring->curr_entry = rx_ring->cq_base;
873         }
874 }
875
876 static void ql_write_cq_idx(struct rx_ring *rx_ring)
877 {
878         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
879 }
880
881 /* Process (refill) a large buffer queue. */
882 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
883 {
884         int clean_idx = rx_ring->lbq_clean_idx;
885         struct bq_desc *lbq_desc;
886         u64 map;
887         int i;
888
889         while (rx_ring->lbq_free_cnt > 16) {
890                 for (i = 0; i < 16; i++) {
891                         QPRINTK(qdev, RX_STATUS, DEBUG,
892                                 "lbq: try cleaning clean_idx = %d.\n",
893                                 clean_idx);
894                         lbq_desc = &rx_ring->lbq[clean_idx];
895                         if (lbq_desc->p.lbq_page == NULL) {
896                                 QPRINTK(qdev, RX_STATUS, DEBUG,
897                                         "lbq: getting new page for index %d.\n",
898                                         lbq_desc->index);
899                                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
900                                 if (lbq_desc->p.lbq_page == NULL) {
901                                         rx_ring->lbq_clean_idx = clean_idx;
902                                         QPRINTK(qdev, RX_STATUS, ERR,
903                                                 "Couldn't get a page.\n");
904                                         return;
905                                 }
906                                 map = pci_map_page(qdev->pdev,
907                                                    lbq_desc->p.lbq_page,
908                                                    0, PAGE_SIZE,
909                                                    PCI_DMA_FROMDEVICE);
910                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
911                                         rx_ring->lbq_clean_idx = clean_idx;
912                                         put_page(lbq_desc->p.lbq_page);
913                                         lbq_desc->p.lbq_page = NULL;
914                                         QPRINTK(qdev, RX_STATUS, ERR,
915                                                 "PCI mapping failed.\n");
916                                         return;
917                                 }
918                                 pci_unmap_addr_set(lbq_desc, mapaddr, map);
919                                 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
920                                 *lbq_desc->addr = cpu_to_le64(map);
921                         }
922                         clean_idx++;
923                         if (clean_idx == rx_ring->lbq_len)
924                                 clean_idx = 0;
925                 }
926
927                 rx_ring->lbq_clean_idx = clean_idx;
928                 rx_ring->lbq_prod_idx += 16;
929                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
930                         rx_ring->lbq_prod_idx = 0;
931                 QPRINTK(qdev, RX_STATUS, DEBUG,
932                         "lbq: updating prod idx = %d.\n",
933                         rx_ring->lbq_prod_idx);
934                 ql_write_db_reg(rx_ring->lbq_prod_idx,
935                                 rx_ring->lbq_prod_idx_db_reg);
936                 rx_ring->lbq_free_cnt -= 16;
937         }
938 }
939
940 /* Process (refill) a small buffer queue. */
941 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
942 {
943         int clean_idx = rx_ring->sbq_clean_idx;
944         struct bq_desc *sbq_desc;
945         u64 map;
946         int i;
947
948         while (rx_ring->sbq_free_cnt > 16) {
949                 for (i = 0; i < 16; i++) {
950                         sbq_desc = &rx_ring->sbq[clean_idx];
951                         QPRINTK(qdev, RX_STATUS, DEBUG,
952                                 "sbq: try cleaning clean_idx = %d.\n",
953                                 clean_idx);
954                         if (sbq_desc->p.skb == NULL) {
955                                 QPRINTK(qdev, RX_STATUS, DEBUG,
956                                         "sbq: getting new skb for index %d.\n",
957                                         sbq_desc->index);
958                                 sbq_desc->p.skb =
959                                     netdev_alloc_skb(qdev->ndev,
960                                                      rx_ring->sbq_buf_size);
961                                 if (sbq_desc->p.skb == NULL) {
962                                         QPRINTK(qdev, PROBE, ERR,
963                                                 "Couldn't get an skb.\n");
964                                         rx_ring->sbq_clean_idx = clean_idx;
965                                         return;
966                                 }
967                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
968                                 map = pci_map_single(qdev->pdev,
969                                                      sbq_desc->p.skb->data,
970                                                      rx_ring->sbq_buf_size /
971                                                      2, PCI_DMA_FROMDEVICE);
972                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
973                                         QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
974                                         rx_ring->sbq_clean_idx = clean_idx;
975                                         dev_kfree_skb_any(sbq_desc->p.skb);
976                                         sbq_desc->p.skb = NULL;
977                                         return;
978                                 }
979                                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
980                                 pci_unmap_len_set(sbq_desc, maplen,
981                                                   rx_ring->sbq_buf_size / 2);
982                                 *sbq_desc->addr = cpu_to_le64(map);
983                         }
984
985                         clean_idx++;
986                         if (clean_idx == rx_ring->sbq_len)
987                                 clean_idx = 0;
988                 }
989                 rx_ring->sbq_clean_idx = clean_idx;
990                 rx_ring->sbq_prod_idx += 16;
991                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
992                         rx_ring->sbq_prod_idx = 0;
993                 QPRINTK(qdev, RX_STATUS, DEBUG,
994                         "sbq: updating prod idx = %d.\n",
995                         rx_ring->sbq_prod_idx);
996                 ql_write_db_reg(rx_ring->sbq_prod_idx,
997                                 rx_ring->sbq_prod_idx_db_reg);
998
999                 rx_ring->sbq_free_cnt -= 16;
1000         }
1001 }
1002
1003 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1004                                     struct rx_ring *rx_ring)
1005 {
1006         ql_update_sbq(qdev, rx_ring);
1007         ql_update_lbq(qdev, rx_ring);
1008 }
1009
1010 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1011  * fails at some stage, or from the interrupt when a tx completes.
1012  */
1013 static void ql_unmap_send(struct ql_adapter *qdev,
1014                           struct tx_ring_desc *tx_ring_desc, int mapped)
1015 {
1016         int i;
1017         for (i = 0; i < mapped; i++) {
1018                 if (i == 0 || (i == 7 && mapped > 7)) {
1019                         /*
1020                          * Unmap the skb->data area, or the
1021                          * external sglist (AKA the Outbound
1022                          * Address List (OAL)).
1023                          * If its the zeroeth element, then it's
1024                          * the skb->data area.  If it's the 7th
1025                          * element and there is more than 6 frags,
1026                          * then its an OAL.
1027                          */
1028                         if (i == 7) {
1029                                 QPRINTK(qdev, TX_DONE, DEBUG,
1030                                         "unmapping OAL area.\n");
1031                         }
1032                         pci_unmap_single(qdev->pdev,
1033                                          pci_unmap_addr(&tx_ring_desc->map[i],
1034                                                         mapaddr),
1035                                          pci_unmap_len(&tx_ring_desc->map[i],
1036                                                        maplen),
1037                                          PCI_DMA_TODEVICE);
1038                 } else {
1039                         QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1040                                 i);
1041                         pci_unmap_page(qdev->pdev,
1042                                        pci_unmap_addr(&tx_ring_desc->map[i],
1043                                                       mapaddr),
1044                                        pci_unmap_len(&tx_ring_desc->map[i],
1045                                                      maplen), PCI_DMA_TODEVICE);
1046                 }
1047         }
1048
1049 }
1050
1051 /* Map the buffers for this transmit.  This will return
1052  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1053  */
1054 static int ql_map_send(struct ql_adapter *qdev,
1055                        struct ob_mac_iocb_req *mac_iocb_ptr,
1056                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1057 {
1058         int len = skb_headlen(skb);
1059         dma_addr_t map;
1060         int frag_idx, err, map_idx = 0;
1061         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1062         int frag_cnt = skb_shinfo(skb)->nr_frags;
1063
1064         if (frag_cnt) {
1065                 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1066         }
1067         /*
1068          * Map the skb buffer first.
1069          */
1070         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1071
1072         err = pci_dma_mapping_error(qdev->pdev, map);
1073         if (err) {
1074                 QPRINTK(qdev, TX_QUEUED, ERR,
1075                         "PCI mapping failed with error: %d\n", err);
1076
1077                 return NETDEV_TX_BUSY;
1078         }
1079
1080         tbd->len = cpu_to_le32(len);
1081         tbd->addr = cpu_to_le64(map);
1082         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1083         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1084         map_idx++;
1085
1086         /*
1087          * This loop fills the remainder of the 8 address descriptors
1088          * in the IOCB.  If there are more than 7 fragments, then the
1089          * eighth address desc will point to an external list (OAL).
1090          * When this happens, the remainder of the frags will be stored
1091          * in this list.
1092          */
1093         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1094                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1095                 tbd++;
1096                 if (frag_idx == 6 && frag_cnt > 7) {
1097                         /* Let's tack on an sglist.
1098                          * Our control block will now
1099                          * look like this:
1100                          * iocb->seg[0] = skb->data
1101                          * iocb->seg[1] = frag[0]
1102                          * iocb->seg[2] = frag[1]
1103                          * iocb->seg[3] = frag[2]
1104                          * iocb->seg[4] = frag[3]
1105                          * iocb->seg[5] = frag[4]
1106                          * iocb->seg[6] = frag[5]
1107                          * iocb->seg[7] = ptr to OAL (external sglist)
1108                          * oal->seg[0] = frag[6]
1109                          * oal->seg[1] = frag[7]
1110                          * oal->seg[2] = frag[8]
1111                          * oal->seg[3] = frag[9]
1112                          * oal->seg[4] = frag[10]
1113                          *      etc...
1114                          */
1115                         /* Tack on the OAL in the eighth segment of IOCB. */
1116                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1117                                              sizeof(struct oal),
1118                                              PCI_DMA_TODEVICE);
1119                         err = pci_dma_mapping_error(qdev->pdev, map);
1120                         if (err) {
1121                                 QPRINTK(qdev, TX_QUEUED, ERR,
1122                                         "PCI mapping outbound address list with error: %d\n",
1123                                         err);
1124                                 goto map_error;
1125                         }
1126
1127                         tbd->addr = cpu_to_le64(map);
1128                         /*
1129                          * The length is the number of fragments
1130                          * that remain to be mapped times the length
1131                          * of our sglist (OAL).
1132                          */
1133                         tbd->len =
1134                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1135                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1136                         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1137                                            map);
1138                         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1139                                           sizeof(struct oal));
1140                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1141                         map_idx++;
1142                 }
1143
1144                 map =
1145                     pci_map_page(qdev->pdev, frag->page,
1146                                  frag->page_offset, frag->size,
1147                                  PCI_DMA_TODEVICE);
1148
1149                 err = pci_dma_mapping_error(qdev->pdev, map);
1150                 if (err) {
1151                         QPRINTK(qdev, TX_QUEUED, ERR,
1152                                 "PCI mapping frags failed with error: %d.\n",
1153                                 err);
1154                         goto map_error;
1155                 }
1156
1157                 tbd->addr = cpu_to_le64(map);
1158                 tbd->len = cpu_to_le32(frag->size);
1159                 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1160                 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1161                                   frag->size);
1162
1163         }
1164         /* Save the number of segments we've mapped. */
1165         tx_ring_desc->map_cnt = map_idx;
1166         /* Terminate the last segment. */
1167         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1168         return NETDEV_TX_OK;
1169
1170 map_error:
1171         /*
1172          * If the first frag mapping failed, then i will be zero.
1173          * This causes the unmap of the skb->data area.  Otherwise
1174          * we pass in the number of frags that mapped successfully
1175          * so they can be umapped.
1176          */
1177         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1178         return NETDEV_TX_BUSY;
1179 }
1180
1181 static void ql_realign_skb(struct sk_buff *skb, int len)
1182 {
1183         void *temp_addr = skb->data;
1184
1185         /* Undo the skb_reserve(skb,32) we did before
1186          * giving to hardware, and realign data on
1187          * a 2-byte boundary.
1188          */
1189         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1190         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1191         skb_copy_to_linear_data(skb, temp_addr,
1192                 (unsigned int)len);
1193 }
1194
1195 /*
1196  * This function builds an skb for the given inbound
1197  * completion.  It will be rewritten for readability in the near
1198  * future, but for not it works well.
1199  */
1200 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1201                                        struct rx_ring *rx_ring,
1202                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1203 {
1204         struct bq_desc *lbq_desc;
1205         struct bq_desc *sbq_desc;
1206         struct sk_buff *skb = NULL;
1207         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1208        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1209
1210         /*
1211          * Handle the header buffer if present.
1212          */
1213         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1214             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1215                 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1216                 /*
1217                  * Headers fit nicely into a small buffer.
1218                  */
1219                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1220                 pci_unmap_single(qdev->pdev,
1221                                 pci_unmap_addr(sbq_desc, mapaddr),
1222                                 pci_unmap_len(sbq_desc, maplen),
1223                                 PCI_DMA_FROMDEVICE);
1224                 skb = sbq_desc->p.skb;
1225                 ql_realign_skb(skb, hdr_len);
1226                 skb_put(skb, hdr_len);
1227                 sbq_desc->p.skb = NULL;
1228         }
1229
1230         /*
1231          * Handle the data buffer(s).
1232          */
1233         if (unlikely(!length)) {        /* Is there data too? */
1234                 QPRINTK(qdev, RX_STATUS, DEBUG,
1235                         "No Data buffer in this packet.\n");
1236                 return skb;
1237         }
1238
1239         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1240                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1241                         QPRINTK(qdev, RX_STATUS, DEBUG,
1242                                 "Headers in small, data of %d bytes in small, combine them.\n", length);
1243                         /*
1244                          * Data is less than small buffer size so it's
1245                          * stuffed in a small buffer.
1246                          * For this case we append the data
1247                          * from the "data" small buffer to the "header" small
1248                          * buffer.
1249                          */
1250                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1251                         pci_dma_sync_single_for_cpu(qdev->pdev,
1252                                                     pci_unmap_addr
1253                                                     (sbq_desc, mapaddr),
1254                                                     pci_unmap_len
1255                                                     (sbq_desc, maplen),
1256                                                     PCI_DMA_FROMDEVICE);
1257                         memcpy(skb_put(skb, length),
1258                                sbq_desc->p.skb->data, length);
1259                         pci_dma_sync_single_for_device(qdev->pdev,
1260                                                        pci_unmap_addr
1261                                                        (sbq_desc,
1262                                                         mapaddr),
1263                                                        pci_unmap_len
1264                                                        (sbq_desc,
1265                                                         maplen),
1266                                                        PCI_DMA_FROMDEVICE);
1267                 } else {
1268                         QPRINTK(qdev, RX_STATUS, DEBUG,
1269                                 "%d bytes in a single small buffer.\n", length);
1270                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1271                         skb = sbq_desc->p.skb;
1272                         ql_realign_skb(skb, length);
1273                         skb_put(skb, length);
1274                         pci_unmap_single(qdev->pdev,
1275                                          pci_unmap_addr(sbq_desc,
1276                                                         mapaddr),
1277                                          pci_unmap_len(sbq_desc,
1278                                                        maplen),
1279                                          PCI_DMA_FROMDEVICE);
1280                         sbq_desc->p.skb = NULL;
1281                 }
1282         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1283                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1284                         QPRINTK(qdev, RX_STATUS, DEBUG,
1285                                 "Header in small, %d bytes in large. Chain large to small!\n", length);
1286                         /*
1287                          * The data is in a single large buffer.  We
1288                          * chain it to the header buffer's skb and let
1289                          * it rip.
1290                          */
1291                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1292                         pci_unmap_page(qdev->pdev,
1293                                        pci_unmap_addr(lbq_desc,
1294                                                       mapaddr),
1295                                        pci_unmap_len(lbq_desc, maplen),
1296                                        PCI_DMA_FROMDEVICE);
1297                         QPRINTK(qdev, RX_STATUS, DEBUG,
1298                                 "Chaining page to skb.\n");
1299                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1300                                            0, length);
1301                         skb->len += length;
1302                         skb->data_len += length;
1303                         skb->truesize += length;
1304                         lbq_desc->p.lbq_page = NULL;
1305                 } else {
1306                         /*
1307                          * The headers and data are in a single large buffer. We
1308                          * copy it to a new skb and let it go. This can happen with
1309                          * jumbo mtu on a non-TCP/UDP frame.
1310                          */
1311                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1312                         skb = netdev_alloc_skb(qdev->ndev, length);
1313                         if (skb == NULL) {
1314                                 QPRINTK(qdev, PROBE, DEBUG,
1315                                         "No skb available, drop the packet.\n");
1316                                 return NULL;
1317                         }
1318                         pci_unmap_page(qdev->pdev,
1319                                        pci_unmap_addr(lbq_desc,
1320                                                       mapaddr),
1321                                        pci_unmap_len(lbq_desc, maplen),
1322                                        PCI_DMA_FROMDEVICE);
1323                         skb_reserve(skb, NET_IP_ALIGN);
1324                         QPRINTK(qdev, RX_STATUS, DEBUG,
1325                                 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1326                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1327                                            0, length);
1328                         skb->len += length;
1329                         skb->data_len += length;
1330                         skb->truesize += length;
1331                         length -= length;
1332                         lbq_desc->p.lbq_page = NULL;
1333                         __pskb_pull_tail(skb,
1334                                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1335                                 VLAN_ETH_HLEN : ETH_HLEN);
1336                 }
1337         } else {
1338                 /*
1339                  * The data is in a chain of large buffers
1340                  * pointed to by a small buffer.  We loop
1341                  * thru and chain them to the our small header
1342                  * buffer's skb.
1343                  * frags:  There are 18 max frags and our small
1344                  *         buffer will hold 32 of them. The thing is,
1345                  *         we'll use 3 max for our 9000 byte jumbo
1346                  *         frames.  If the MTU goes up we could
1347                  *          eventually be in trouble.
1348                  */
1349                 int size, offset, i = 0;
1350                 __le64 *bq, bq_array[8];
1351                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1352                 pci_unmap_single(qdev->pdev,
1353                                  pci_unmap_addr(sbq_desc, mapaddr),
1354                                  pci_unmap_len(sbq_desc, maplen),
1355                                  PCI_DMA_FROMDEVICE);
1356                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1357                         /*
1358                          * This is an non TCP/UDP IP frame, so
1359                          * the headers aren't split into a small
1360                          * buffer.  We have to use the small buffer
1361                          * that contains our sg list as our skb to
1362                          * send upstairs. Copy the sg list here to
1363                          * a local buffer and use it to find the
1364                          * pages to chain.
1365                          */
1366                         QPRINTK(qdev, RX_STATUS, DEBUG,
1367                                 "%d bytes of headers & data in chain of large.\n", length);
1368                         skb = sbq_desc->p.skb;
1369                         bq = &bq_array[0];
1370                         memcpy(bq, skb->data, sizeof(bq_array));
1371                         sbq_desc->p.skb = NULL;
1372                         skb_reserve(skb, NET_IP_ALIGN);
1373                 } else {
1374                         QPRINTK(qdev, RX_STATUS, DEBUG,
1375                                 "Headers in small, %d bytes of data in chain of large.\n", length);
1376                         bq = (__le64 *)sbq_desc->p.skb->data;
1377                 }
1378                 while (length > 0) {
1379                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1380                         pci_unmap_page(qdev->pdev,
1381                                        pci_unmap_addr(lbq_desc,
1382                                                       mapaddr),
1383                                        pci_unmap_len(lbq_desc,
1384                                                      maplen),
1385                                        PCI_DMA_FROMDEVICE);
1386                         size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1387                         offset = 0;
1388
1389                         QPRINTK(qdev, RX_STATUS, DEBUG,
1390                                 "Adding page %d to skb for %d bytes.\n",
1391                                 i, size);
1392                         skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1393                                            offset, size);
1394                         skb->len += size;
1395                         skb->data_len += size;
1396                         skb->truesize += size;
1397                         length -= size;
1398                         lbq_desc->p.lbq_page = NULL;
1399                         bq++;
1400                         i++;
1401                 }
1402                 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1403                                 VLAN_ETH_HLEN : ETH_HLEN);
1404         }
1405         return skb;
1406 }
1407
1408 /* Process an inbound completion from an rx ring. */
1409 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1410                                    struct rx_ring *rx_ring,
1411                                    struct ib_mac_iocb_rsp *ib_mac_rsp)
1412 {
1413         struct net_device *ndev = qdev->ndev;
1414         struct sk_buff *skb = NULL;
1415
1416         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1417
1418         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1419         if (unlikely(!skb)) {
1420                 QPRINTK(qdev, RX_STATUS, DEBUG,
1421                         "No skb available, drop packet.\n");
1422                 return;
1423         }
1424
1425         prefetch(skb->data);
1426         skb->dev = ndev;
1427         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1428                 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1429                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1430                         IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1431                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1432                         IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1433                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1434                         IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1435         }
1436         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1437                 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1438         }
1439
1440         skb->protocol = eth_type_trans(skb, ndev);
1441         skb->ip_summed = CHECKSUM_NONE;
1442
1443         /* If rx checksum is on, and there are no
1444          * csum or frame errors.
1445          */
1446         if (qdev->rx_csum &&
1447                 !(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) &&
1448                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1449                 /* TCP frame. */
1450                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1451                         QPRINTK(qdev, RX_STATUS, DEBUG,
1452                                         "TCP checksum done!\n");
1453                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1454                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1455                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1456                 /* Unfragmented ipv4 UDP frame. */
1457                         struct iphdr *iph = (struct iphdr *) skb->data;
1458                         if (!(iph->frag_off &
1459                                 cpu_to_be16(IP_MF|IP_OFFSET))) {
1460                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1461                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1462                                                 "TCP checksum done!\n");
1463                         }
1464                 }
1465         }
1466         qdev->stats.rx_packets++;
1467         qdev->stats.rx_bytes += skb->len;
1468         skb->protocol = eth_type_trans(skb, ndev);
1469         if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1470                 QPRINTK(qdev, RX_STATUS, DEBUG,
1471                         "Passing a VLAN packet upstream.\n");
1472                 vlan_hwaccel_receive_skb(skb, qdev->vlgrp,
1473                                 le16_to_cpu(ib_mac_rsp->vlan_id));
1474         } else {
1475                 QPRINTK(qdev, RX_STATUS, DEBUG,
1476                         "Passing a normal packet upstream.\n");
1477                 netif_receive_skb(skb);
1478         }
1479 }
1480
1481 /* Process an outbound completion from an rx ring. */
1482 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1483                                    struct ob_mac_iocb_rsp *mac_rsp)
1484 {
1485         struct tx_ring *tx_ring;
1486         struct tx_ring_desc *tx_ring_desc;
1487
1488         QL_DUMP_OB_MAC_RSP(mac_rsp);
1489         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1490         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1491         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1492         qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1493         qdev->stats.tx_packets++;
1494         dev_kfree_skb(tx_ring_desc->skb);
1495         tx_ring_desc->skb = NULL;
1496
1497         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1498                                         OB_MAC_IOCB_RSP_S |
1499                                         OB_MAC_IOCB_RSP_L |
1500                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1501                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1502                         QPRINTK(qdev, TX_DONE, WARNING,
1503                                 "Total descriptor length did not match transfer length.\n");
1504                 }
1505                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1506                         QPRINTK(qdev, TX_DONE, WARNING,
1507                                 "Frame too short to be legal, not sent.\n");
1508                 }
1509                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1510                         QPRINTK(qdev, TX_DONE, WARNING,
1511                                 "Frame too long, but sent anyway.\n");
1512                 }
1513                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1514                         QPRINTK(qdev, TX_DONE, WARNING,
1515                                 "PCI backplane error. Frame not sent.\n");
1516                 }
1517         }
1518         atomic_inc(&tx_ring->tx_count);
1519 }
1520
1521 /* Fire up a handler to reset the MPI processor. */
1522 void ql_queue_fw_error(struct ql_adapter *qdev)
1523 {
1524         netif_stop_queue(qdev->ndev);
1525         netif_carrier_off(qdev->ndev);
1526         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1527 }
1528
1529 void ql_queue_asic_error(struct ql_adapter *qdev)
1530 {
1531         netif_stop_queue(qdev->ndev);
1532         netif_carrier_off(qdev->ndev);
1533         ql_disable_interrupts(qdev);
1534         /* Clear adapter up bit to signal the recovery
1535          * process that it shouldn't kill the reset worker
1536          * thread
1537          */
1538         clear_bit(QL_ADAPTER_UP, &qdev->flags);
1539         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1540 }
1541
1542 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1543                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
1544 {
1545         switch (ib_ae_rsp->event) {
1546         case MGMT_ERR_EVENT:
1547                 QPRINTK(qdev, RX_ERR, ERR,
1548                         "Management Processor Fatal Error.\n");
1549                 ql_queue_fw_error(qdev);
1550                 return;
1551
1552         case CAM_LOOKUP_ERR_EVENT:
1553                 QPRINTK(qdev, LINK, ERR,
1554                         "Multiple CAM hits lookup occurred.\n");
1555                 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1556                 ql_queue_asic_error(qdev);
1557                 return;
1558
1559         case SOFT_ECC_ERROR_EVENT:
1560                 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1561                 ql_queue_asic_error(qdev);
1562                 break;
1563
1564         case PCI_ERR_ANON_BUF_RD:
1565                 QPRINTK(qdev, RX_ERR, ERR,
1566                         "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1567                         ib_ae_rsp->q_id);
1568                 ql_queue_asic_error(qdev);
1569                 break;
1570
1571         default:
1572                 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1573                         ib_ae_rsp->event);
1574                 ql_queue_asic_error(qdev);
1575                 break;
1576         }
1577 }
1578
1579 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1580 {
1581         struct ql_adapter *qdev = rx_ring->qdev;
1582         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1583         struct ob_mac_iocb_rsp *net_rsp = NULL;
1584         int count = 0;
1585
1586         /* While there are entries in the completion queue. */
1587         while (prod != rx_ring->cnsmr_idx) {
1588
1589                 QPRINTK(qdev, RX_STATUS, DEBUG,
1590                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1591                         prod, rx_ring->cnsmr_idx);
1592
1593                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1594                 rmb();
1595                 switch (net_rsp->opcode) {
1596
1597                 case OPCODE_OB_MAC_TSO_IOCB:
1598                 case OPCODE_OB_MAC_IOCB:
1599                         ql_process_mac_tx_intr(qdev, net_rsp);
1600                         break;
1601                 default:
1602                         QPRINTK(qdev, RX_STATUS, DEBUG,
1603                                 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1604                                 net_rsp->opcode);
1605                 }
1606                 count++;
1607                 ql_update_cq(rx_ring);
1608                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1609         }
1610         ql_write_cq_idx(rx_ring);
1611         if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1612                 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1613                 if (atomic_read(&tx_ring->queue_stopped) &&
1614                     (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1615                         /*
1616                          * The queue got stopped because the tx_ring was full.
1617                          * Wake it up, because it's now at least 25% empty.
1618                          */
1619                         netif_wake_queue(qdev->ndev);
1620         }
1621
1622         return count;
1623 }
1624
1625 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1626 {
1627         struct ql_adapter *qdev = rx_ring->qdev;
1628         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1629         struct ql_net_rsp_iocb *net_rsp;
1630         int count = 0;
1631
1632         /* While there are entries in the completion queue. */
1633         while (prod != rx_ring->cnsmr_idx) {
1634
1635                 QPRINTK(qdev, RX_STATUS, DEBUG,
1636                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1637                         prod, rx_ring->cnsmr_idx);
1638
1639                 net_rsp = rx_ring->curr_entry;
1640                 rmb();
1641                 switch (net_rsp->opcode) {
1642                 case OPCODE_IB_MAC_IOCB:
1643                         ql_process_mac_rx_intr(qdev, rx_ring,
1644                                                (struct ib_mac_iocb_rsp *)
1645                                                net_rsp);
1646                         break;
1647
1648                 case OPCODE_IB_AE_IOCB:
1649                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1650                                                 net_rsp);
1651                         break;
1652                 default:
1653                         {
1654                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1655                                         "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1656                                         net_rsp->opcode);
1657                         }
1658                 }
1659                 count++;
1660                 ql_update_cq(rx_ring);
1661                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1662                 if (count == budget)
1663                         break;
1664         }
1665         ql_update_buffer_queues(qdev, rx_ring);
1666         ql_write_cq_idx(rx_ring);
1667         return count;
1668 }
1669
1670 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1671 {
1672         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1673         struct ql_adapter *qdev = rx_ring->qdev;
1674         int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1675
1676         QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1677                 rx_ring->cq_id);
1678
1679         if (work_done < budget) {
1680                 __netif_rx_complete(napi);
1681                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1682         }
1683         return work_done;
1684 }
1685
1686 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1687 {
1688         struct ql_adapter *qdev = netdev_priv(ndev);
1689
1690         qdev->vlgrp = grp;
1691         if (grp) {
1692                 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1693                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1694                            NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1695         } else {
1696                 QPRINTK(qdev, IFUP, DEBUG,
1697                         "Turning off VLAN in NIC_RCV_CFG.\n");
1698                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1699         }
1700 }
1701
1702 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1703 {
1704         struct ql_adapter *qdev = netdev_priv(ndev);
1705         u32 enable_bit = MAC_ADDR_E;
1706
1707         spin_lock(&qdev->hw_lock);
1708         if (ql_set_mac_addr_reg
1709             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1710                 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1711         }
1712         spin_unlock(&qdev->hw_lock);
1713 }
1714
1715 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1716 {
1717         struct ql_adapter *qdev = netdev_priv(ndev);
1718         u32 enable_bit = 0;
1719
1720         spin_lock(&qdev->hw_lock);
1721         if (ql_set_mac_addr_reg
1722             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1723                 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1724         }
1725         spin_unlock(&qdev->hw_lock);
1726
1727 }
1728
1729 /* Worker thread to process a given rx_ring that is dedicated
1730  * to outbound completions.
1731  */
1732 static void ql_tx_clean(struct work_struct *work)
1733 {
1734         struct rx_ring *rx_ring =
1735             container_of(work, struct rx_ring, rx_work.work);
1736         ql_clean_outbound_rx_ring(rx_ring);
1737         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1738
1739 }
1740
1741 /* Worker thread to process a given rx_ring that is dedicated
1742  * to inbound completions.
1743  */
1744 static void ql_rx_clean(struct work_struct *work)
1745 {
1746         struct rx_ring *rx_ring =
1747             container_of(work, struct rx_ring, rx_work.work);
1748         ql_clean_inbound_rx_ring(rx_ring, 64);
1749         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1750 }
1751
1752 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1753 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1754 {
1755         struct rx_ring *rx_ring = dev_id;
1756         queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1757                               &rx_ring->rx_work, 0);
1758         return IRQ_HANDLED;
1759 }
1760
1761 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1762 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1763 {
1764         struct rx_ring *rx_ring = dev_id;
1765         netif_rx_schedule(&rx_ring->napi);
1766         return IRQ_HANDLED;
1767 }
1768
1769 /* This handles a fatal error, MPI activity, and the default
1770  * rx_ring in an MSI-X multiple vector environment.
1771  * In MSI/Legacy environment it also process the rest of
1772  * the rx_rings.
1773  */
1774 static irqreturn_t qlge_isr(int irq, void *dev_id)
1775 {
1776         struct rx_ring *rx_ring = dev_id;
1777         struct ql_adapter *qdev = rx_ring->qdev;
1778         struct intr_context *intr_context = &qdev->intr_context[0];
1779         u32 var;
1780         int i;
1781         int work_done = 0;
1782
1783         spin_lock(&qdev->hw_lock);
1784         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1785                 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1786                 spin_unlock(&qdev->hw_lock);
1787                 return IRQ_NONE;
1788         }
1789         spin_unlock(&qdev->hw_lock);
1790
1791         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1792
1793         /*
1794          * Check for fatal error.
1795          */
1796         if (var & STS_FE) {
1797                 ql_queue_asic_error(qdev);
1798                 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1799                 var = ql_read32(qdev, ERR_STS);
1800                 QPRINTK(qdev, INTR, ERR,
1801                         "Resetting chip. Error Status Register = 0x%x\n", var);
1802                 return IRQ_HANDLED;
1803         }
1804
1805         /*
1806          * Check MPI processor activity.
1807          */
1808         if (var & STS_PI) {
1809                 /*
1810                  * We've got an async event or mailbox completion.
1811                  * Handle it and clear the source of the interrupt.
1812                  */
1813                 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1814                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1815                 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1816                                       &qdev->mpi_work, 0);
1817                 work_done++;
1818         }
1819
1820         /*
1821          * Check the default queue and wake handler if active.
1822          */
1823         rx_ring = &qdev->rx_ring[0];
1824         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1825                 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1826                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1827                 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1828                                       &rx_ring->rx_work, 0);
1829                 work_done++;
1830         }
1831
1832         if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1833                 /*
1834                  * Start the DPC for each active queue.
1835                  */
1836                 for (i = 1; i < qdev->rx_ring_count; i++) {
1837                         rx_ring = &qdev->rx_ring[i];
1838                         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1839                             rx_ring->cnsmr_idx) {
1840                                 QPRINTK(qdev, INTR, INFO,
1841                                         "Waking handler for rx_ring[%d].\n", i);
1842                                 ql_disable_completion_interrupt(qdev,
1843                                                                 intr_context->
1844                                                                 intr);
1845                                 if (i < qdev->rss_ring_first_cq_id)
1846                                         queue_delayed_work_on(rx_ring->cpu,
1847                                                               qdev->q_workqueue,
1848                                                               &rx_ring->rx_work,
1849                                                               0);
1850                                 else
1851                                         netif_rx_schedule(&rx_ring->napi);
1852                                 work_done++;
1853                         }
1854                 }
1855         }
1856         ql_enable_completion_interrupt(qdev, intr_context->intr);
1857         return work_done ? IRQ_HANDLED : IRQ_NONE;
1858 }
1859
1860 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1861 {
1862
1863         if (skb_is_gso(skb)) {
1864                 int err;
1865                 if (skb_header_cloned(skb)) {
1866                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1867                         if (err)
1868                                 return err;
1869                 }
1870
1871                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1872                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1873                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1874                 mac_iocb_ptr->total_hdrs_len =
1875                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1876                 mac_iocb_ptr->net_trans_offset =
1877                     cpu_to_le16(skb_network_offset(skb) |
1878                                 skb_transport_offset(skb)
1879                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
1880                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1881                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1882                 if (likely(skb->protocol == htons(ETH_P_IP))) {
1883                         struct iphdr *iph = ip_hdr(skb);
1884                         iph->check = 0;
1885                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1886                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1887                                                                  iph->daddr, 0,
1888                                                                  IPPROTO_TCP,
1889                                                                  0);
1890                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1891                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1892                         tcp_hdr(skb)->check =
1893                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1894                                              &ipv6_hdr(skb)->daddr,
1895                                              0, IPPROTO_TCP, 0);
1896                 }
1897                 return 1;
1898         }
1899         return 0;
1900 }
1901
1902 static void ql_hw_csum_setup(struct sk_buff *skb,
1903                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1904 {
1905         int len;
1906         struct iphdr *iph = ip_hdr(skb);
1907         __sum16 *check;
1908         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1909         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1910         mac_iocb_ptr->net_trans_offset =
1911                 cpu_to_le16(skb_network_offset(skb) |
1912                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1913
1914         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1915         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1916         if (likely(iph->protocol == IPPROTO_TCP)) {
1917                 check = &(tcp_hdr(skb)->check);
1918                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1919                 mac_iocb_ptr->total_hdrs_len =
1920                     cpu_to_le16(skb_transport_offset(skb) +
1921                                 (tcp_hdr(skb)->doff << 2));
1922         } else {
1923                 check = &(udp_hdr(skb)->check);
1924                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1925                 mac_iocb_ptr->total_hdrs_len =
1926                     cpu_to_le16(skb_transport_offset(skb) +
1927                                 sizeof(struct udphdr));
1928         }
1929         *check = ~csum_tcpudp_magic(iph->saddr,
1930                                     iph->daddr, len, iph->protocol, 0);
1931 }
1932
1933 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1934 {
1935         struct tx_ring_desc *tx_ring_desc;
1936         struct ob_mac_iocb_req *mac_iocb_ptr;
1937         struct ql_adapter *qdev = netdev_priv(ndev);
1938         int tso;
1939         struct tx_ring *tx_ring;
1940         u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1941
1942         tx_ring = &qdev->tx_ring[tx_ring_idx];
1943
1944         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1945                 QPRINTK(qdev, TX_QUEUED, INFO,
1946                         "%s: shutting down tx queue %d du to lack of resources.\n",
1947                         __func__, tx_ring_idx);
1948                 netif_stop_queue(ndev);
1949                 atomic_inc(&tx_ring->queue_stopped);
1950                 return NETDEV_TX_BUSY;
1951         }
1952         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1953         mac_iocb_ptr = tx_ring_desc->queue_entry;
1954         memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1955
1956         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1957         mac_iocb_ptr->tid = tx_ring_desc->index;
1958         /* We use the upper 32-bits to store the tx queue for this IO.
1959          * When we get the completion we can use it to establish the context.
1960          */
1961         mac_iocb_ptr->txq_idx = tx_ring_idx;
1962         tx_ring_desc->skb = skb;
1963
1964         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1965
1966         if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1967                 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1968                         vlan_tx_tag_get(skb));
1969                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1970                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1971         }
1972         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1973         if (tso < 0) {
1974                 dev_kfree_skb_any(skb);
1975                 return NETDEV_TX_OK;
1976         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1977                 ql_hw_csum_setup(skb,
1978                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1979         }
1980         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
1981                         NETDEV_TX_OK) {
1982                 QPRINTK(qdev, TX_QUEUED, ERR,
1983                                 "Could not map the segments.\n");
1984                 return NETDEV_TX_BUSY;
1985         }
1986         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1987         tx_ring->prod_idx++;
1988         if (tx_ring->prod_idx == tx_ring->wq_len)
1989                 tx_ring->prod_idx = 0;
1990         wmb();
1991
1992         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1993         ndev->trans_start = jiffies;
1994         QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1995                 tx_ring->prod_idx, skb->len);
1996
1997         atomic_dec(&tx_ring->tx_count);
1998         return NETDEV_TX_OK;
1999 }
2000
2001 static void ql_free_shadow_space(struct ql_adapter *qdev)
2002 {
2003         if (qdev->rx_ring_shadow_reg_area) {
2004                 pci_free_consistent(qdev->pdev,
2005                                     PAGE_SIZE,
2006                                     qdev->rx_ring_shadow_reg_area,
2007                                     qdev->rx_ring_shadow_reg_dma);
2008                 qdev->rx_ring_shadow_reg_area = NULL;
2009         }
2010         if (qdev->tx_ring_shadow_reg_area) {
2011                 pci_free_consistent(qdev->pdev,
2012                                     PAGE_SIZE,
2013                                     qdev->tx_ring_shadow_reg_area,
2014                                     qdev->tx_ring_shadow_reg_dma);
2015                 qdev->tx_ring_shadow_reg_area = NULL;
2016         }
2017 }
2018
2019 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2020 {
2021         qdev->rx_ring_shadow_reg_area =
2022             pci_alloc_consistent(qdev->pdev,
2023                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2024         if (qdev->rx_ring_shadow_reg_area == NULL) {
2025                 QPRINTK(qdev, IFUP, ERR,
2026                         "Allocation of RX shadow space failed.\n");
2027                 return -ENOMEM;
2028         }
2029         qdev->tx_ring_shadow_reg_area =
2030             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2031                                  &qdev->tx_ring_shadow_reg_dma);
2032         if (qdev->tx_ring_shadow_reg_area == NULL) {
2033                 QPRINTK(qdev, IFUP, ERR,
2034                         "Allocation of TX shadow space failed.\n");
2035                 goto err_wqp_sh_area;
2036         }
2037         return 0;
2038
2039 err_wqp_sh_area:
2040         pci_free_consistent(qdev->pdev,
2041                             PAGE_SIZE,
2042                             qdev->rx_ring_shadow_reg_area,
2043                             qdev->rx_ring_shadow_reg_dma);
2044         return -ENOMEM;
2045 }
2046
2047 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2048 {
2049         struct tx_ring_desc *tx_ring_desc;
2050         int i;
2051         struct ob_mac_iocb_req *mac_iocb_ptr;
2052
2053         mac_iocb_ptr = tx_ring->wq_base;
2054         tx_ring_desc = tx_ring->q;
2055         for (i = 0; i < tx_ring->wq_len; i++) {
2056                 tx_ring_desc->index = i;
2057                 tx_ring_desc->skb = NULL;
2058                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2059                 mac_iocb_ptr++;
2060                 tx_ring_desc++;
2061         }
2062         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2063         atomic_set(&tx_ring->queue_stopped, 0);
2064 }
2065
2066 static void ql_free_tx_resources(struct ql_adapter *qdev,
2067                                  struct tx_ring *tx_ring)
2068 {
2069         if (tx_ring->wq_base) {
2070                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2071                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2072                 tx_ring->wq_base = NULL;
2073         }
2074         kfree(tx_ring->q);
2075         tx_ring->q = NULL;
2076 }
2077
2078 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2079                                  struct tx_ring *tx_ring)
2080 {
2081         tx_ring->wq_base =
2082             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2083                                  &tx_ring->wq_base_dma);
2084
2085         if ((tx_ring->wq_base == NULL)
2086             || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2087                 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2088                 return -ENOMEM;
2089         }
2090         tx_ring->q =
2091             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2092         if (tx_ring->q == NULL)
2093                 goto err;
2094
2095         return 0;
2096 err:
2097         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2098                             tx_ring->wq_base, tx_ring->wq_base_dma);
2099         return -ENOMEM;
2100 }
2101
2102 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2103 {
2104         int i;
2105         struct bq_desc *lbq_desc;
2106
2107         for (i = 0; i < rx_ring->lbq_len; i++) {
2108                 lbq_desc = &rx_ring->lbq[i];
2109                 if (lbq_desc->p.lbq_page) {
2110                         pci_unmap_page(qdev->pdev,
2111                                        pci_unmap_addr(lbq_desc, mapaddr),
2112                                        pci_unmap_len(lbq_desc, maplen),
2113                                        PCI_DMA_FROMDEVICE);
2114
2115                         put_page(lbq_desc->p.lbq_page);
2116                         lbq_desc->p.lbq_page = NULL;
2117                 }
2118         }
2119 }
2120
2121 /*
2122  * Allocate and map a page for each element of the lbq.
2123  */
2124 static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
2125                                 struct rx_ring *rx_ring)
2126 {
2127         int i;
2128         struct bq_desc *lbq_desc;
2129         u64 map;
2130         __le64 *bq = rx_ring->lbq_base;
2131
2132         for (i = 0; i < rx_ring->lbq_len; i++) {
2133                 lbq_desc = &rx_ring->lbq[i];
2134                 memset(lbq_desc, 0, sizeof(lbq_desc));
2135                 lbq_desc->addr = bq;
2136                 lbq_desc->index = i;
2137                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
2138                 if (unlikely(!lbq_desc->p.lbq_page)) {
2139                         QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
2140                         goto mem_error;
2141                 } else {
2142                         map = pci_map_page(qdev->pdev,
2143                                            lbq_desc->p.lbq_page,
2144                                            0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
2145                         if (pci_dma_mapping_error(qdev->pdev, map)) {
2146                                 QPRINTK(qdev, IFUP, ERR,
2147                                         "PCI mapping failed.\n");
2148                                 goto mem_error;
2149                         }
2150                         pci_unmap_addr_set(lbq_desc, mapaddr, map);
2151                         pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2152                         *lbq_desc->addr = cpu_to_le64(map);
2153                 }
2154                 bq++;
2155         }
2156         return 0;
2157 mem_error:
2158         ql_free_lbq_buffers(qdev, rx_ring);
2159         return -ENOMEM;
2160 }
2161
2162 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2163 {
2164         int i;
2165         struct bq_desc *sbq_desc;
2166
2167         for (i = 0; i < rx_ring->sbq_len; i++) {
2168                 sbq_desc = &rx_ring->sbq[i];
2169                 if (sbq_desc == NULL) {
2170                         QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2171                         return;
2172                 }
2173                 if (sbq_desc->p.skb) {
2174                         pci_unmap_single(qdev->pdev,
2175                                          pci_unmap_addr(sbq_desc, mapaddr),
2176                                          pci_unmap_len(sbq_desc, maplen),
2177                                          PCI_DMA_FROMDEVICE);
2178                         dev_kfree_skb(sbq_desc->p.skb);
2179                         sbq_desc->p.skb = NULL;
2180                 }
2181         }
2182 }
2183
2184 /* Allocate and map an skb for each element of the sbq. */
2185 static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
2186                                 struct rx_ring *rx_ring)
2187 {
2188         int i;
2189         struct bq_desc *sbq_desc;
2190         struct sk_buff *skb;
2191         u64 map;
2192         __le64 *bq = rx_ring->sbq_base;
2193
2194         for (i = 0; i < rx_ring->sbq_len; i++) {
2195                 sbq_desc = &rx_ring->sbq[i];
2196                 memset(sbq_desc, 0, sizeof(sbq_desc));
2197                 sbq_desc->index = i;
2198                 sbq_desc->addr = bq;
2199                 skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
2200                 if (unlikely(!skb)) {
2201                         /* Better luck next round */
2202                         QPRINTK(qdev, IFUP, ERR,
2203                                 "small buff alloc failed for %d bytes at index %d.\n",
2204                                 rx_ring->sbq_buf_size, i);
2205                         goto mem_err;
2206                 }
2207                 skb_reserve(skb, QLGE_SB_PAD);
2208                 sbq_desc->p.skb = skb;
2209                 /*
2210                  * Map only half the buffer. Because the
2211                  * other half may get some data copied to it
2212                  * when the completion arrives.
2213                  */
2214                 map = pci_map_single(qdev->pdev,
2215                                      skb->data,
2216                                      rx_ring->sbq_buf_size / 2,
2217                                      PCI_DMA_FROMDEVICE);
2218                 if (pci_dma_mapping_error(qdev->pdev, map)) {
2219                         QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
2220                         goto mem_err;
2221                 }
2222                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
2223                 pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
2224                 *sbq_desc->addr = cpu_to_le64(map);
2225                 bq++;
2226         }
2227         return 0;
2228 mem_err:
2229         ql_free_sbq_buffers(qdev, rx_ring);
2230         return -ENOMEM;
2231 }
2232
2233 static void ql_free_rx_resources(struct ql_adapter *qdev,
2234                                  struct rx_ring *rx_ring)
2235 {
2236         if (rx_ring->sbq_len)
2237                 ql_free_sbq_buffers(qdev, rx_ring);
2238         if (rx_ring->lbq_len)
2239                 ql_free_lbq_buffers(qdev, rx_ring);
2240
2241         /* Free the small buffer queue. */
2242         if (rx_ring->sbq_base) {
2243                 pci_free_consistent(qdev->pdev,
2244                                     rx_ring->sbq_size,
2245                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2246                 rx_ring->sbq_base = NULL;
2247         }
2248
2249         /* Free the small buffer queue control blocks. */
2250         kfree(rx_ring->sbq);
2251         rx_ring->sbq = NULL;
2252
2253         /* Free the large buffer queue. */
2254         if (rx_ring->lbq_base) {
2255                 pci_free_consistent(qdev->pdev,
2256                                     rx_ring->lbq_size,
2257                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2258                 rx_ring->lbq_base = NULL;
2259         }
2260
2261         /* Free the large buffer queue control blocks. */
2262         kfree(rx_ring->lbq);
2263         rx_ring->lbq = NULL;
2264
2265         /* Free the rx queue. */
2266         if (rx_ring->cq_base) {
2267                 pci_free_consistent(qdev->pdev,
2268                                     rx_ring->cq_size,
2269                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2270                 rx_ring->cq_base = NULL;
2271         }
2272 }
2273
2274 /* Allocate queues and buffers for this completions queue based
2275  * on the values in the parameter structure. */
2276 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2277                                  struct rx_ring *rx_ring)
2278 {
2279
2280         /*
2281          * Allocate the completion queue for this rx_ring.
2282          */
2283         rx_ring->cq_base =
2284             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2285                                  &rx_ring->cq_base_dma);
2286
2287         if (rx_ring->cq_base == NULL) {
2288                 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2289                 return -ENOMEM;
2290         }
2291
2292         if (rx_ring->sbq_len) {
2293                 /*
2294                  * Allocate small buffer queue.
2295                  */
2296                 rx_ring->sbq_base =
2297                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2298                                          &rx_ring->sbq_base_dma);
2299
2300                 if (rx_ring->sbq_base == NULL) {
2301                         QPRINTK(qdev, IFUP, ERR,
2302                                 "Small buffer queue allocation failed.\n");
2303                         goto err_mem;
2304                 }
2305
2306                 /*
2307                  * Allocate small buffer queue control blocks.
2308                  */
2309                 rx_ring->sbq =
2310                     kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2311                             GFP_KERNEL);
2312                 if (rx_ring->sbq == NULL) {
2313                         QPRINTK(qdev, IFUP, ERR,
2314                                 "Small buffer queue control block allocation failed.\n");
2315                         goto err_mem;
2316                 }
2317
2318                 if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
2319                         QPRINTK(qdev, IFUP, ERR,
2320                                 "Small buffer allocation failed.\n");
2321                         goto err_mem;
2322                 }
2323         }
2324
2325         if (rx_ring->lbq_len) {
2326                 /*
2327                  * Allocate large buffer queue.
2328                  */
2329                 rx_ring->lbq_base =
2330                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2331                                          &rx_ring->lbq_base_dma);
2332
2333                 if (rx_ring->lbq_base == NULL) {
2334                         QPRINTK(qdev, IFUP, ERR,
2335                                 "Large buffer queue allocation failed.\n");
2336                         goto err_mem;
2337                 }
2338                 /*
2339                  * Allocate large buffer queue control blocks.
2340                  */
2341                 rx_ring->lbq =
2342                     kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2343                             GFP_KERNEL);
2344                 if (rx_ring->lbq == NULL) {
2345                         QPRINTK(qdev, IFUP, ERR,
2346                                 "Large buffer queue control block allocation failed.\n");
2347                         goto err_mem;
2348                 }
2349
2350                 /*
2351                  * Allocate the buffers.
2352                  */
2353                 if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
2354                         QPRINTK(qdev, IFUP, ERR,
2355                                 "Large buffer allocation failed.\n");
2356                         goto err_mem;
2357                 }
2358         }
2359
2360         return 0;
2361
2362 err_mem:
2363         ql_free_rx_resources(qdev, rx_ring);
2364         return -ENOMEM;
2365 }
2366
2367 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2368 {
2369         struct tx_ring *tx_ring;
2370         struct tx_ring_desc *tx_ring_desc;
2371         int i, j;
2372
2373         /*
2374          * Loop through all queues and free
2375          * any resources.
2376          */
2377         for (j = 0; j < qdev->tx_ring_count; j++) {
2378                 tx_ring = &qdev->tx_ring[j];
2379                 for (i = 0; i < tx_ring->wq_len; i++) {
2380                         tx_ring_desc = &tx_ring->q[i];
2381                         if (tx_ring_desc && tx_ring_desc->skb) {
2382                                 QPRINTK(qdev, IFDOWN, ERR,
2383                                 "Freeing lost SKB %p, from queue %d, index %d.\n",
2384                                         tx_ring_desc->skb, j,
2385                                         tx_ring_desc->index);
2386                                 ql_unmap_send(qdev, tx_ring_desc,
2387                                               tx_ring_desc->map_cnt);
2388                                 dev_kfree_skb(tx_ring_desc->skb);
2389                                 tx_ring_desc->skb = NULL;
2390                         }
2391                 }
2392         }
2393 }
2394
2395 static void ql_free_mem_resources(struct ql_adapter *qdev)
2396 {
2397         int i;
2398
2399         for (i = 0; i < qdev->tx_ring_count; i++)
2400                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2401         for (i = 0; i < qdev->rx_ring_count; i++)
2402                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2403         ql_free_shadow_space(qdev);
2404 }
2405
2406 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2407 {
2408         int i;
2409
2410         /* Allocate space for our shadow registers and such. */
2411         if (ql_alloc_shadow_space(qdev))
2412                 return -ENOMEM;
2413
2414         for (i = 0; i < qdev->rx_ring_count; i++) {
2415                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2416                         QPRINTK(qdev, IFUP, ERR,
2417                                 "RX resource allocation failed.\n");
2418                         goto err_mem;
2419                 }
2420         }
2421         /* Allocate tx queue resources */
2422         for (i = 0; i < qdev->tx_ring_count; i++) {
2423                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2424                         QPRINTK(qdev, IFUP, ERR,
2425                                 "TX resource allocation failed.\n");
2426                         goto err_mem;
2427                 }
2428         }
2429         return 0;
2430
2431 err_mem:
2432         ql_free_mem_resources(qdev);
2433         return -ENOMEM;
2434 }
2435
2436 /* Set up the rx ring control block and pass it to the chip.
2437  * The control block is defined as
2438  * "Completion Queue Initialization Control Block", or cqicb.
2439  */
2440 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2441 {
2442         struct cqicb *cqicb = &rx_ring->cqicb;
2443         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2444             (rx_ring->cq_id * sizeof(u64) * 4);
2445         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2446             (rx_ring->cq_id * sizeof(u64) * 4);
2447         void __iomem *doorbell_area =
2448             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2449         int err = 0;
2450         u16 bq_len;
2451
2452         /* Set up the shadow registers for this ring. */
2453         rx_ring->prod_idx_sh_reg = shadow_reg;
2454         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2455         shadow_reg += sizeof(u64);
2456         shadow_reg_dma += sizeof(u64);
2457         rx_ring->lbq_base_indirect = shadow_reg;
2458         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2459         shadow_reg += sizeof(u64);
2460         shadow_reg_dma += sizeof(u64);
2461         rx_ring->sbq_base_indirect = shadow_reg;
2462         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2463
2464         /* PCI doorbell mem area + 0x00 for consumer index register */
2465         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2466         rx_ring->cnsmr_idx = 0;
2467         rx_ring->curr_entry = rx_ring->cq_base;
2468
2469         /* PCI doorbell mem area + 0x04 for valid register */
2470         rx_ring->valid_db_reg = doorbell_area + 0x04;
2471
2472         /* PCI doorbell mem area + 0x18 for large buffer consumer */
2473         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2474
2475         /* PCI doorbell mem area + 0x1c */
2476         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2477
2478         memset((void *)cqicb, 0, sizeof(struct cqicb));
2479         cqicb->msix_vect = rx_ring->irq;
2480
2481         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2482         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2483
2484         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2485
2486         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2487
2488         /*
2489          * Set up the control block load flags.
2490          */
2491         cqicb->flags = FLAGS_LC |       /* Load queue base address */
2492             FLAGS_LV |          /* Load MSI-X vector */
2493             FLAGS_LI;           /* Load irq delay values */
2494         if (rx_ring->lbq_len) {
2495                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
2496                 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
2497                 cqicb->lbq_addr =
2498                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2499                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2500                         (u16) rx_ring->lbq_buf_size;
2501                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2502                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2503                         (u16) rx_ring->lbq_len;
2504                 cqicb->lbq_len = cpu_to_le16(bq_len);
2505                 rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
2506                 rx_ring->lbq_curr_idx = 0;
2507                 rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
2508                 rx_ring->lbq_free_cnt = 16;
2509         }
2510         if (rx_ring->sbq_len) {
2511                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
2512                 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
2513                 cqicb->sbq_addr =
2514                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2515                 cqicb->sbq_buf_size =
2516                     cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
2517                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2518                         (u16) rx_ring->sbq_len;
2519                 cqicb->sbq_len = cpu_to_le16(bq_len);
2520                 rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
2521                 rx_ring->sbq_curr_idx = 0;
2522                 rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
2523                 rx_ring->sbq_free_cnt = 16;
2524         }
2525         switch (rx_ring->type) {
2526         case TX_Q:
2527                 /* If there's only one interrupt, then we use
2528                  * worker threads to process the outbound
2529                  * completion handling rx_rings. We do this so
2530                  * they can be run on multiple CPUs. There is
2531                  * room to play with this more where we would only
2532                  * run in a worker if there are more than x number
2533                  * of outbound completions on the queue and more
2534                  * than one queue active.  Some threshold that
2535                  * would indicate a benefit in spite of the cost
2536                  * of a context switch.
2537                  * If there's more than one interrupt, then the
2538                  * outbound completions are processed in the ISR.
2539                  */
2540                 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2541                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2542                 else {
2543                         /* With all debug warnings on we see a WARN_ON message
2544                          * when we free the skb in the interrupt context.
2545                          */
2546                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2547                 }
2548                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2549                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2550                 break;
2551         case DEFAULT_Q:
2552                 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2553                 cqicb->irq_delay = 0;
2554                 cqicb->pkt_delay = 0;
2555                 break;
2556         case RX_Q:
2557                 /* Inbound completion handling rx_rings run in
2558                  * separate NAPI contexts.
2559                  */
2560                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2561                                64);
2562                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2563                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2564                 break;
2565         default:
2566                 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2567                         rx_ring->type);
2568         }
2569         QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2570         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2571                            CFG_LCQ, rx_ring->cq_id);
2572         if (err) {
2573                 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2574                 return err;
2575         }
2576         QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
2577         /*
2578          * Advance the producer index for the buffer queues.
2579          */
2580         wmb();
2581         if (rx_ring->lbq_len)
2582                 ql_write_db_reg(rx_ring->lbq_prod_idx,
2583                                 rx_ring->lbq_prod_idx_db_reg);
2584         if (rx_ring->sbq_len)
2585                 ql_write_db_reg(rx_ring->sbq_prod_idx,
2586                                 rx_ring->sbq_prod_idx_db_reg);
2587         return err;
2588 }
2589
2590 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2591 {
2592         struct wqicb *wqicb = (struct wqicb *)tx_ring;
2593         void __iomem *doorbell_area =
2594             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2595         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2596             (tx_ring->wq_id * sizeof(u64));
2597         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2598             (tx_ring->wq_id * sizeof(u64));
2599         int err = 0;
2600
2601         /*
2602          * Assign doorbell registers for this tx_ring.
2603          */
2604         /* TX PCI doorbell mem area for tx producer index */
2605         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2606         tx_ring->prod_idx = 0;
2607         /* TX PCI doorbell mem area + 0x04 */
2608         tx_ring->valid_db_reg = doorbell_area + 0x04;
2609
2610         /*
2611          * Assign shadow registers for this tx_ring.
2612          */
2613         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2614         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2615
2616         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2617         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2618                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2619         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2620         wqicb->rid = 0;
2621         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2622
2623         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2624
2625         ql_init_tx_ring(qdev, tx_ring);
2626
2627         err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2628                            (u16) tx_ring->wq_id);
2629         if (err) {
2630                 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2631                 return err;
2632         }
2633         QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2634         return err;
2635 }
2636
2637 static void ql_disable_msix(struct ql_adapter *qdev)
2638 {
2639         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2640                 pci_disable_msix(qdev->pdev);
2641                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2642                 kfree(qdev->msi_x_entry);
2643                 qdev->msi_x_entry = NULL;
2644         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2645                 pci_disable_msi(qdev->pdev);
2646                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2647         }
2648 }
2649
2650 static void ql_enable_msix(struct ql_adapter *qdev)
2651 {
2652         int i;
2653
2654         qdev->intr_count = 1;
2655         /* Get the MSIX vectors. */
2656         if (irq_type == MSIX_IRQ) {
2657                 /* Try to alloc space for the msix struct,
2658                  * if it fails then go to MSI/legacy.
2659                  */
2660                 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2661                                             sizeof(struct msix_entry),
2662                                             GFP_KERNEL);
2663                 if (!qdev->msi_x_entry) {
2664                         irq_type = MSI_IRQ;
2665                         goto msi;
2666                 }
2667
2668                 for (i = 0; i < qdev->rx_ring_count; i++)
2669                         qdev->msi_x_entry[i].entry = i;
2670
2671                 if (!pci_enable_msix
2672                     (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2673                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
2674                         qdev->intr_count = qdev->rx_ring_count;
2675                         QPRINTK(qdev, IFUP, INFO,
2676                                 "MSI-X Enabled, got %d vectors.\n",
2677                                 qdev->intr_count);
2678                         return;
2679                 } else {
2680                         kfree(qdev->msi_x_entry);
2681                         qdev->msi_x_entry = NULL;
2682                         QPRINTK(qdev, IFUP, WARNING,
2683                                 "MSI-X Enable failed, trying MSI.\n");
2684                         irq_type = MSI_IRQ;
2685                 }
2686         }
2687 msi:
2688         if (irq_type == MSI_IRQ) {
2689                 if (!pci_enable_msi(qdev->pdev)) {
2690                         set_bit(QL_MSI_ENABLED, &qdev->flags);
2691                         QPRINTK(qdev, IFUP, INFO,
2692                                 "Running with MSI interrupts.\n");
2693                         return;
2694                 }
2695         }
2696         irq_type = LEG_IRQ;
2697         QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2698 }
2699
2700 /*
2701  * Here we build the intr_context structures based on
2702  * our rx_ring count and intr vector count.
2703  * The intr_context structure is used to hook each vector
2704  * to possibly different handlers.
2705  */
2706 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2707 {
2708         int i = 0;
2709         struct intr_context *intr_context = &qdev->intr_context[0];
2710
2711         ql_enable_msix(qdev);
2712
2713         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2714                 /* Each rx_ring has it's
2715                  * own intr_context since we have separate
2716                  * vectors for each queue.
2717                  * This only true when MSI-X is enabled.
2718                  */
2719                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2720                         qdev->rx_ring[i].irq = i;
2721                         intr_context->intr = i;
2722                         intr_context->qdev = qdev;
2723                         /*
2724                          * We set up each vectors enable/disable/read bits so
2725                          * there's no bit/mask calculations in the critical path.
2726                          */
2727                         intr_context->intr_en_mask =
2728                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2729                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2730                             | i;
2731                         intr_context->intr_dis_mask =
2732                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2733                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2734                             INTR_EN_IHD | i;
2735                         intr_context->intr_read_mask =
2736                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2737                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2738                             i;
2739
2740                         if (i == 0) {
2741                                 /*
2742                                  * Default queue handles bcast/mcast plus
2743                                  * async events.  Needs buffers.
2744                                  */
2745                                 intr_context->handler = qlge_isr;
2746                                 sprintf(intr_context->name, "%s-default-queue",
2747                                         qdev->ndev->name);
2748                         } else if (i < qdev->rss_ring_first_cq_id) {
2749                                 /*
2750                                  * Outbound queue is for outbound completions only.
2751                                  */
2752                                 intr_context->handler = qlge_msix_tx_isr;
2753                                 sprintf(intr_context->name, "%s-tx-%d",
2754                                         qdev->ndev->name, i);
2755                         } else {
2756                                 /*
2757                                  * Inbound queues handle unicast frames only.
2758                                  */
2759                                 intr_context->handler = qlge_msix_rx_isr;
2760                                 sprintf(intr_context->name, "%s-rx-%d",
2761                                         qdev->ndev->name, i);
2762                         }
2763                 }
2764         } else {
2765                 /*
2766                  * All rx_rings use the same intr_context since
2767                  * there is only one vector.
2768                  */
2769                 intr_context->intr = 0;
2770                 intr_context->qdev = qdev;
2771                 /*
2772                  * We set up each vectors enable/disable/read bits so
2773                  * there's no bit/mask calculations in the critical path.
2774                  */
2775                 intr_context->intr_en_mask =
2776                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2777                 intr_context->intr_dis_mask =
2778                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2779                     INTR_EN_TYPE_DISABLE;
2780                 intr_context->intr_read_mask =
2781                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2782                 /*
2783                  * Single interrupt means one handler for all rings.
2784                  */
2785                 intr_context->handler = qlge_isr;
2786                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2787                 for (i = 0; i < qdev->rx_ring_count; i++)
2788                         qdev->rx_ring[i].irq = 0;
2789         }
2790 }
2791
2792 static void ql_free_irq(struct ql_adapter *qdev)
2793 {
2794         int i;
2795         struct intr_context *intr_context = &qdev->intr_context[0];
2796
2797         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2798                 if (intr_context->hooked) {
2799                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2800                                 free_irq(qdev->msi_x_entry[i].vector,
2801                                          &qdev->rx_ring[i]);
2802                                 QPRINTK(qdev, IFDOWN, ERR,
2803                                         "freeing msix interrupt %d.\n", i);
2804                         } else {
2805                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2806                                 QPRINTK(qdev, IFDOWN, ERR,
2807                                         "freeing msi interrupt %d.\n", i);
2808                         }
2809                 }
2810         }
2811         ql_disable_msix(qdev);
2812 }
2813
2814 static int ql_request_irq(struct ql_adapter *qdev)
2815 {
2816         int i;
2817         int status = 0;
2818         struct pci_dev *pdev = qdev->pdev;
2819         struct intr_context *intr_context = &qdev->intr_context[0];
2820
2821         ql_resolve_queues_to_irqs(qdev);
2822
2823         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2824                 atomic_set(&intr_context->irq_cnt, 0);
2825                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2826                         status = request_irq(qdev->msi_x_entry[i].vector,
2827                                              intr_context->handler,
2828                                              0,
2829                                              intr_context->name,
2830                                              &qdev->rx_ring[i]);
2831                         if (status) {
2832                                 QPRINTK(qdev, IFUP, ERR,
2833                                         "Failed request for MSIX interrupt %d.\n",
2834                                         i);
2835                                 goto err_irq;
2836                         } else {
2837                                 QPRINTK(qdev, IFUP, INFO,
2838                                         "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2839                                         i,
2840                                         qdev->rx_ring[i].type ==
2841                                         DEFAULT_Q ? "DEFAULT_Q" : "",
2842                                         qdev->rx_ring[i].type ==
2843                                         TX_Q ? "TX_Q" : "",
2844                                         qdev->rx_ring[i].type ==
2845                                         RX_Q ? "RX_Q" : "", intr_context->name);
2846                         }
2847                 } else {
2848                         QPRINTK(qdev, IFUP, DEBUG,
2849                                 "trying msi or legacy interrupts.\n");
2850                         QPRINTK(qdev, IFUP, DEBUG,
2851                                 "%s: irq = %d.\n", __func__, pdev->irq);
2852                         QPRINTK(qdev, IFUP, DEBUG,
2853                                 "%s: context->name = %s.\n", __func__,
2854                                intr_context->name);
2855                         QPRINTK(qdev, IFUP, DEBUG,
2856                                 "%s: dev_id = 0x%p.\n", __func__,
2857                                &qdev->rx_ring[0]);
2858                         status =
2859                             request_irq(pdev->irq, qlge_isr,
2860                                         test_bit(QL_MSI_ENABLED,
2861                                                  &qdev->
2862                                                  flags) ? 0 : IRQF_SHARED,
2863                                         intr_context->name, &qdev->rx_ring[0]);
2864                         if (status)
2865                                 goto err_irq;
2866
2867                         QPRINTK(qdev, IFUP, ERR,
2868                                 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2869                                 i,
2870                                 qdev->rx_ring[0].type ==
2871                                 DEFAULT_Q ? "DEFAULT_Q" : "",
2872                                 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2873                                 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2874                                 intr_context->name);
2875                 }
2876                 intr_context->hooked = 1;
2877         }
2878         return status;
2879 err_irq:
2880         QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2881         ql_free_irq(qdev);
2882         return status;
2883 }
2884
2885 static int ql_start_rss(struct ql_adapter *qdev)
2886 {
2887         struct ricb *ricb = &qdev->ricb;
2888         int status = 0;
2889         int i;
2890         u8 *hash_id = (u8 *) ricb->hash_cq_id;
2891
2892         memset((void *)ricb, 0, sizeof(ricb));
2893
2894         ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2895         ricb->flags =
2896             (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2897              RSS_RT6);
2898         ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2899
2900         /*
2901          * Fill out the Indirection Table.
2902          */
2903         for (i = 0; i < 256; i++)
2904                 hash_id[i] = i & (qdev->rss_ring_count - 1);
2905
2906         /*
2907          * Random values for the IPv6 and IPv4 Hash Keys.
2908          */
2909         get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2910         get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2911
2912         QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2913
2914         status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2915         if (status) {
2916                 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2917                 return status;
2918         }
2919         QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2920         return status;
2921 }
2922
2923 /* Initialize the frame-to-queue routing. */
2924 static int ql_route_initialize(struct ql_adapter *qdev)
2925 {
2926         int status = 0;
2927         int i;
2928
2929         /* Clear all the entries in the routing table. */
2930         for (i = 0; i < 16; i++) {
2931                 status = ql_set_routing_reg(qdev, i, 0, 0);
2932                 if (status) {
2933                         QPRINTK(qdev, IFUP, ERR,
2934                                 "Failed to init routing register for CAM packets.\n");
2935                         return status;
2936                 }
2937         }
2938
2939         status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2940         if (status) {
2941                 QPRINTK(qdev, IFUP, ERR,
2942                         "Failed to init routing register for error packets.\n");
2943                 return status;
2944         }
2945         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2946         if (status) {
2947                 QPRINTK(qdev, IFUP, ERR,
2948                         "Failed to init routing register for broadcast packets.\n");
2949                 return status;
2950         }
2951         /* If we have more than one inbound queue, then turn on RSS in the
2952          * routing block.
2953          */
2954         if (qdev->rss_ring_count > 1) {
2955                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2956                                         RT_IDX_RSS_MATCH, 1);
2957                 if (status) {
2958                         QPRINTK(qdev, IFUP, ERR,
2959                                 "Failed to init routing register for MATCH RSS packets.\n");
2960                         return status;
2961                 }
2962         }
2963
2964         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2965                                     RT_IDX_CAM_HIT, 1);
2966         if (status) {
2967                 QPRINTK(qdev, IFUP, ERR,
2968                         "Failed to init routing register for CAM packets.\n");
2969                 return status;
2970         }
2971         return status;
2972 }
2973
2974 static int ql_adapter_initialize(struct ql_adapter *qdev)
2975 {
2976         u32 value, mask;
2977         int i;
2978         int status = 0;
2979
2980         /*
2981          * Set up the System register to halt on errors.
2982          */
2983         value = SYS_EFE | SYS_FAE;
2984         mask = value << 16;
2985         ql_write32(qdev, SYS, mask | value);
2986
2987         /* Set the default queue, and VLAN behavior. */
2988         value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
2989         mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
2990         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
2991
2992         /* Set the MPI interrupt to enabled. */
2993         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
2994
2995         /* Enable the function, set pagesize, enable error checking. */
2996         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
2997             FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
2998
2999         /* Set/clear header splitting. */
3000         mask = FSC_VM_PAGESIZE_MASK |
3001             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3002         ql_write32(qdev, FSC, mask | value);
3003
3004         ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3005                 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3006
3007         /* Start up the rx queues. */
3008         for (i = 0; i < qdev->rx_ring_count; i++) {
3009                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3010                 if (status) {
3011                         QPRINTK(qdev, IFUP, ERR,
3012                                 "Failed to start rx ring[%d].\n", i);
3013                         return status;
3014                 }
3015         }
3016
3017         /* If there is more than one inbound completion queue
3018          * then download a RICB to configure RSS.
3019          */
3020         if (qdev->rss_ring_count > 1) {
3021                 status = ql_start_rss(qdev);
3022                 if (status) {
3023                         QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3024                         return status;
3025                 }
3026         }
3027
3028         /* Start up the tx queues. */
3029         for (i = 0; i < qdev->tx_ring_count; i++) {
3030                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3031                 if (status) {
3032                         QPRINTK(qdev, IFUP, ERR,
3033                                 "Failed to start tx ring[%d].\n", i);
3034                         return status;
3035                 }
3036         }
3037
3038         status = ql_port_initialize(qdev);
3039         if (status) {
3040                 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3041                 return status;
3042         }
3043
3044         status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3045                                      MAC_ADDR_TYPE_CAM_MAC, qdev->func);
3046         if (status) {
3047                 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3048                 return status;
3049         }
3050
3051         status = ql_route_initialize(qdev);
3052         if (status) {
3053                 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3054                 return status;
3055         }
3056
3057         /* Start NAPI for the RSS queues. */
3058         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3059                 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3060                         i);
3061                 napi_enable(&qdev->rx_ring[i].napi);
3062         }
3063
3064         return status;
3065 }
3066
3067 /* Issue soft reset to chip. */
3068 static int ql_adapter_reset(struct ql_adapter *qdev)
3069 {
3070         u32 value;
3071         int max_wait_time;
3072         int status = 0;
3073         int resetCnt = 0;
3074
3075 #define MAX_RESET_CNT   1
3076 issueReset:
3077         resetCnt++;
3078         QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3079         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3080         /* Wait for reset to complete. */
3081         max_wait_time = 3;
3082         QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3083                 max_wait_time);
3084         do {
3085                 value = ql_read32(qdev, RST_FO);
3086                 if ((value & RST_FO_FR) == 0)
3087                         break;
3088
3089                 ssleep(1);
3090         } while ((--max_wait_time));
3091         if (value & RST_FO_FR) {
3092                 QPRINTK(qdev, IFDOWN, ERR,
3093                         "Stuck in SoftReset:  FSC_SR:0x%08x\n", value);
3094                 if (resetCnt < MAX_RESET_CNT)
3095                         goto issueReset;
3096         }
3097         if (max_wait_time == 0) {
3098                 status = -ETIMEDOUT;
3099                 QPRINTK(qdev, IFDOWN, ERR,
3100                         "ETIMEOUT!!! errored out of resetting the chip!\n");
3101         }
3102
3103         return status;
3104 }
3105
3106 static void ql_display_dev_info(struct net_device *ndev)
3107 {
3108         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3109
3110         QPRINTK(qdev, PROBE, INFO,
3111                 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3112                 "XG Roll = %d, XG Rev = %d.\n",
3113                 qdev->func,
3114                 qdev->chip_rev_id & 0x0000000f,
3115                 qdev->chip_rev_id >> 4 & 0x0000000f,
3116                 qdev->chip_rev_id >> 8 & 0x0000000f,
3117                 qdev->chip_rev_id >> 12 & 0x0000000f);
3118         QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3119 }
3120
3121 static int ql_adapter_down(struct ql_adapter *qdev)
3122 {
3123         struct net_device *ndev = qdev->ndev;
3124         int i, status = 0;
3125         struct rx_ring *rx_ring;
3126
3127         netif_stop_queue(ndev);
3128         netif_carrier_off(ndev);
3129
3130         /* Don't kill the reset worker thread if we
3131          * are in the process of recovery.
3132          */
3133         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3134                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3135         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3136         cancel_delayed_work_sync(&qdev->mpi_work);
3137
3138         /* The default queue at index 0 is always processed in
3139          * a workqueue.
3140          */
3141         cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3142
3143         /* The rest of the rx_rings are processed in
3144          * a workqueue only if it's a single interrupt
3145          * environment (MSI/Legacy).
3146          */
3147         for (i = 1; i < qdev->rx_ring_count; i++) {
3148                 rx_ring = &qdev->rx_ring[i];
3149                 /* Only the RSS rings use NAPI on multi irq
3150                  * environment.  Outbound completion processing
3151                  * is done in interrupt context.
3152                  */
3153                 if (i >= qdev->rss_ring_first_cq_id) {
3154                         napi_disable(&rx_ring->napi);
3155                 } else {
3156                         cancel_delayed_work_sync(&rx_ring->rx_work);
3157                 }
3158         }
3159
3160         clear_bit(QL_ADAPTER_UP, &qdev->flags);
3161
3162         ql_disable_interrupts(qdev);
3163
3164         ql_tx_ring_clean(qdev);
3165
3166         /* Call netif_napi_del() from common point.
3167          */
3168         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3169                 netif_napi_del(&qdev->rx_ring[i].napi);
3170
3171         spin_lock(&qdev->hw_lock);
3172         status = ql_adapter_reset(qdev);
3173         if (status)
3174                 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3175                         qdev->func);
3176         spin_unlock(&qdev->hw_lock);
3177         return status;
3178 }
3179
3180 static int ql_adapter_up(struct ql_adapter *qdev)
3181 {
3182         int err = 0;
3183
3184         spin_lock(&qdev->hw_lock);
3185         err = ql_adapter_initialize(qdev);
3186         if (err) {
3187                 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3188                 spin_unlock(&qdev->hw_lock);
3189                 goto err_init;
3190         }
3191         spin_unlock(&qdev->hw_lock);
3192         set_bit(QL_ADAPTER_UP, &qdev->flags);
3193         ql_enable_interrupts(qdev);
3194         ql_enable_all_completion_interrupts(qdev);
3195         if ((ql_read32(qdev, STS) & qdev->port_init)) {
3196                 netif_carrier_on(qdev->ndev);
3197                 netif_start_queue(qdev->ndev);
3198         }
3199
3200         return 0;
3201 err_init:
3202         ql_adapter_reset(qdev);
3203         return err;
3204 }
3205
3206 static int ql_cycle_adapter(struct ql_adapter *qdev)
3207 {
3208         int status;
3209
3210         status = ql_adapter_down(qdev);
3211         if (status)
3212                 goto error;
3213
3214         status = ql_adapter_up(qdev);
3215         if (status)
3216                 goto error;
3217
3218         return status;
3219 error:
3220         QPRINTK(qdev, IFUP, ALERT,
3221                 "Driver up/down cycle failed, closing device\n");
3222         rtnl_lock();
3223         dev_close(qdev->ndev);
3224         rtnl_unlock();
3225         return status;
3226 }
3227
3228 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3229 {
3230         ql_free_mem_resources(qdev);
3231         ql_free_irq(qdev);
3232 }
3233
3234 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3235 {
3236         int status = 0;
3237
3238         if (ql_alloc_mem_resources(qdev)) {
3239                 QPRINTK(qdev, IFUP, ERR, "Unable to  allocate memory.\n");
3240                 return -ENOMEM;
3241         }
3242         status = ql_request_irq(qdev);
3243         if (status)
3244                 goto err_irq;
3245         return status;
3246 err_irq:
3247         ql_free_mem_resources(qdev);
3248         return status;
3249 }
3250
3251 static int qlge_close(struct net_device *ndev)
3252 {
3253         struct ql_adapter *qdev = netdev_priv(ndev);
3254
3255         /*
3256          * Wait for device to recover from a reset.
3257          * (Rarely happens, but possible.)
3258          */
3259         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3260                 msleep(1);
3261         ql_adapter_down(qdev);
3262         ql_release_adapter_resources(qdev);
3263         return 0;
3264 }
3265
3266 static int ql_configure_rings(struct ql_adapter *qdev)
3267 {
3268         int i;
3269         struct rx_ring *rx_ring;
3270         struct tx_ring *tx_ring;
3271         int cpu_cnt = num_online_cpus();
3272
3273         /*
3274          * For each processor present we allocate one
3275          * rx_ring for outbound completions, and one
3276          * rx_ring for inbound completions.  Plus there is
3277          * always the one default queue.  For the CPU
3278          * counts we end up with the following rx_rings:
3279          * rx_ring count =
3280          *  one default queue +
3281          *  (CPU count * outbound completion rx_ring) +
3282          *  (CPU count * inbound (RSS) completion rx_ring)
3283          * To keep it simple we limit the total number of
3284          * queues to < 32, so we truncate CPU to 8.
3285          * This limitation can be removed when requested.
3286          */
3287
3288         if (cpu_cnt > MAX_CPUS)
3289                 cpu_cnt = MAX_CPUS;
3290
3291         /*
3292          * rx_ring[0] is always the default queue.
3293          */
3294         /* Allocate outbound completion ring for each CPU. */
3295         qdev->tx_ring_count = cpu_cnt;
3296         /* Allocate inbound completion (RSS) ring for each CPU. */
3297         qdev->rss_ring_count = cpu_cnt;
3298         /* cq_id for the first inbound ring handler. */
3299         qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3300         /*
3301          * qdev->rx_ring_count:
3302          * Total number of rx_rings.  This includes the one
3303          * default queue, a number of outbound completion
3304          * handler rx_rings, and the number of inbound
3305          * completion handler rx_rings.
3306          */
3307         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3308
3309         for (i = 0; i < qdev->tx_ring_count; i++) {
3310                 tx_ring = &qdev->tx_ring[i];
3311                 memset((void *)tx_ring, 0, sizeof(tx_ring));
3312                 tx_ring->qdev = qdev;
3313                 tx_ring->wq_id = i;
3314                 tx_ring->wq_len = qdev->tx_ring_size;
3315                 tx_ring->wq_size =
3316                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3317
3318                 /*
3319                  * The completion queue ID for the tx rings start
3320                  * immediately after the default Q ID, which is zero.
3321                  */
3322                 tx_ring->cq_id = i + 1;
3323         }
3324
3325         for (i = 0; i < qdev->rx_ring_count; i++) {
3326                 rx_ring = &qdev->rx_ring[i];
3327                 memset((void *)rx_ring, 0, sizeof(rx_ring));
3328                 rx_ring->qdev = qdev;
3329                 rx_ring->cq_id = i;
3330                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
3331                 if (i == 0) {   /* Default queue at index 0. */
3332                         /*
3333                          * Default queue handles bcast/mcast plus
3334                          * async events.  Needs buffers.
3335                          */
3336                         rx_ring->cq_len = qdev->rx_ring_size;
3337                         rx_ring->cq_size =
3338                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3339                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3340                         rx_ring->lbq_size =
3341                             rx_ring->lbq_len * sizeof(__le64);
3342                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3343                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3344                         rx_ring->sbq_size =
3345                             rx_ring->sbq_len * sizeof(__le64);
3346                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3347                         rx_ring->type = DEFAULT_Q;
3348                 } else if (i < qdev->rss_ring_first_cq_id) {
3349                         /*
3350                          * Outbound queue handles outbound completions only.
3351                          */
3352                         /* outbound cq is same size as tx_ring it services. */
3353                         rx_ring->cq_len = qdev->tx_ring_size;
3354                         rx_ring->cq_size =
3355                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3356                         rx_ring->lbq_len = 0;
3357                         rx_ring->lbq_size = 0;
3358                         rx_ring->lbq_buf_size = 0;
3359                         rx_ring->sbq_len = 0;
3360                         rx_ring->sbq_size = 0;
3361                         rx_ring->sbq_buf_size = 0;
3362                         rx_ring->type = TX_Q;
3363                 } else {        /* Inbound completions (RSS) queues */
3364                         /*
3365                          * Inbound queues handle unicast frames only.
3366                          */
3367                         rx_ring->cq_len = qdev->rx_ring_size;
3368                         rx_ring->cq_size =
3369                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3370                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3371                         rx_ring->lbq_size =
3372                             rx_ring->lbq_len * sizeof(__le64);
3373                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3374                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3375                         rx_ring->sbq_size =
3376                             rx_ring->sbq_len * sizeof(__le64);
3377                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3378                         rx_ring->type = RX_Q;
3379                 }
3380         }
3381         return 0;
3382 }
3383
3384 static int qlge_open(struct net_device *ndev)
3385 {
3386         int err = 0;
3387         struct ql_adapter *qdev = netdev_priv(ndev);
3388
3389         err = ql_configure_rings(qdev);
3390         if (err)
3391                 return err;
3392
3393         err = ql_get_adapter_resources(qdev);
3394         if (err)
3395                 goto error_up;
3396
3397         err = ql_adapter_up(qdev);
3398         if (err)
3399                 goto error_up;
3400
3401         return err;
3402
3403 error_up:
3404         ql_release_adapter_resources(qdev);
3405         return err;
3406 }
3407
3408 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3409 {
3410         struct ql_adapter *qdev = netdev_priv(ndev);
3411
3412         if (ndev->mtu == 1500 && new_mtu == 9000) {
3413                 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3414         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3415                 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3416         } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3417                    (ndev->mtu == 9000 && new_mtu == 9000)) {
3418                 return 0;
3419         } else
3420                 return -EINVAL;
3421         ndev->mtu = new_mtu;
3422         return 0;
3423 }
3424
3425 static struct net_device_stats *qlge_get_stats(struct net_device
3426                                                *ndev)
3427 {
3428         struct ql_adapter *qdev = netdev_priv(ndev);
3429         return &qdev->stats;
3430 }
3431
3432 static void qlge_set_multicast_list(struct net_device *ndev)
3433 {
3434         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3435         struct dev_mc_list *mc_ptr;
3436         int i;
3437
3438         spin_lock(&qdev->hw_lock);
3439         /*
3440          * Set or clear promiscuous mode if a
3441          * transition is taking place.
3442          */
3443         if (ndev->flags & IFF_PROMISC) {
3444                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3445                         if (ql_set_routing_reg
3446                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3447                                 QPRINTK(qdev, HW, ERR,
3448                                         "Failed to set promiscous mode.\n");
3449                         } else {
3450                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
3451                         }
3452                 }
3453         } else {
3454                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3455                         if (ql_set_routing_reg
3456                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3457                                 QPRINTK(qdev, HW, ERR,
3458                                         "Failed to clear promiscous mode.\n");
3459                         } else {
3460                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3461                         }
3462                 }
3463         }
3464
3465         /*
3466          * Set or clear all multicast mode if a
3467          * transition is taking place.
3468          */
3469         if ((ndev->flags & IFF_ALLMULTI) ||
3470             (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3471                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3472                         if (ql_set_routing_reg
3473                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3474                                 QPRINTK(qdev, HW, ERR,
3475                                         "Failed to set all-multi mode.\n");
3476                         } else {
3477                                 set_bit(QL_ALLMULTI, &qdev->flags);
3478                         }
3479                 }
3480         } else {
3481                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3482                         if (ql_set_routing_reg
3483                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3484                                 QPRINTK(qdev, HW, ERR,
3485                                         "Failed to clear all-multi mode.\n");
3486                         } else {
3487                                 clear_bit(QL_ALLMULTI, &qdev->flags);
3488                         }
3489                 }
3490         }
3491
3492         if (ndev->mc_count) {
3493                 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3494                      i++, mc_ptr = mc_ptr->next)
3495                         if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3496                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3497                                 QPRINTK(qdev, HW, ERR,
3498                                         "Failed to loadmulticast address.\n");
3499                                 goto exit;
3500                         }
3501                 if (ql_set_routing_reg
3502                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3503                         QPRINTK(qdev, HW, ERR,
3504                                 "Failed to set multicast match mode.\n");
3505                 } else {
3506                         set_bit(QL_ALLMULTI, &qdev->flags);
3507                 }
3508         }
3509 exit:
3510         spin_unlock(&qdev->hw_lock);
3511 }
3512
3513 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3514 {
3515         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3516         struct sockaddr *addr = p;
3517         int ret = 0;
3518
3519         if (netif_running(ndev))
3520                 return -EBUSY;
3521
3522         if (!is_valid_ether_addr(addr->sa_data))
3523                 return -EADDRNOTAVAIL;
3524         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3525
3526         spin_lock(&qdev->hw_lock);
3527         if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3528                         MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
3529                 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3530                 ret = -1;
3531         }
3532         spin_unlock(&qdev->hw_lock);
3533
3534         return ret;
3535 }
3536
3537 static void qlge_tx_timeout(struct net_device *ndev)
3538 {
3539         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3540         ql_queue_asic_error(qdev);
3541 }
3542
3543 static void ql_asic_reset_work(struct work_struct *work)
3544 {
3545         struct ql_adapter *qdev =
3546             container_of(work, struct ql_adapter, asic_reset_work.work);
3547         ql_cycle_adapter(qdev);
3548 }
3549
3550 static void ql_get_board_info(struct ql_adapter *qdev)
3551 {
3552         qdev->func =
3553             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3554         if (qdev->func) {
3555                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3556                 qdev->port_link_up = STS_PL1;
3557                 qdev->port_init = STS_PI1;
3558                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3559                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3560         } else {
3561                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3562                 qdev->port_link_up = STS_PL0;
3563                 qdev->port_init = STS_PI0;
3564                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3565                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3566         }
3567         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3568 }
3569
3570 static void ql_release_all(struct pci_dev *pdev)
3571 {
3572         struct net_device *ndev = pci_get_drvdata(pdev);
3573         struct ql_adapter *qdev = netdev_priv(ndev);
3574
3575         if (qdev->workqueue) {
3576                 destroy_workqueue(qdev->workqueue);
3577                 qdev->workqueue = NULL;
3578         }
3579         if (qdev->q_workqueue) {
3580                 destroy_workqueue(qdev->q_workqueue);
3581                 qdev->q_workqueue = NULL;
3582         }
3583         if (qdev->reg_base)
3584                 iounmap(qdev->reg_base);
3585         if (qdev->doorbell_area)
3586                 iounmap(qdev->doorbell_area);
3587         pci_release_regions(pdev);
3588         pci_set_drvdata(pdev, NULL);
3589 }
3590
3591 static int __devinit ql_init_device(struct pci_dev *pdev,
3592                                     struct net_device *ndev, int cards_found)
3593 {
3594         struct ql_adapter *qdev = netdev_priv(ndev);
3595         int pos, err = 0;
3596         u16 val16;
3597
3598         memset((void *)qdev, 0, sizeof(qdev));
3599         err = pci_enable_device(pdev);
3600         if (err) {
3601                 dev_err(&pdev->dev, "PCI device enable failed.\n");
3602                 return err;
3603         }
3604
3605         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3606         if (pos <= 0) {
3607                 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3608                         "aborting.\n");
3609                 goto err_out;
3610         } else {
3611                 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3612                 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3613                 val16 |= (PCI_EXP_DEVCTL_CERE |
3614                           PCI_EXP_DEVCTL_NFERE |
3615                           PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3616                 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3617         }
3618
3619         err = pci_request_regions(pdev, DRV_NAME);
3620         if (err) {
3621                 dev_err(&pdev->dev, "PCI region request failed.\n");
3622                 goto err_out;
3623         }
3624
3625         pci_set_master(pdev);
3626         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3627                 set_bit(QL_DMA64, &qdev->flags);
3628                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3629         } else {
3630                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3631                 if (!err)
3632                        err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3633         }
3634
3635         if (err) {
3636                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3637                 goto err_out;
3638         }
3639
3640         pci_set_drvdata(pdev, ndev);
3641         qdev->reg_base =
3642             ioremap_nocache(pci_resource_start(pdev, 1),
3643                             pci_resource_len(pdev, 1));
3644         if (!qdev->reg_base) {
3645                 dev_err(&pdev->dev, "Register mapping failed.\n");
3646                 err = -ENOMEM;
3647                 goto err_out;
3648         }
3649
3650         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3651         qdev->doorbell_area =
3652             ioremap_nocache(pci_resource_start(pdev, 3),
3653                             pci_resource_len(pdev, 3));
3654         if (!qdev->doorbell_area) {
3655                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3656                 err = -ENOMEM;
3657                 goto err_out;
3658         }
3659
3660         ql_get_board_info(qdev);
3661         qdev->ndev = ndev;
3662         qdev->pdev = pdev;
3663         qdev->msg_enable = netif_msg_init(debug, default_msg);
3664         spin_lock_init(&qdev->hw_lock);
3665         spin_lock_init(&qdev->stats_lock);
3666
3667         /* make sure the EEPROM is good */
3668         err = ql_get_flash_params(qdev);
3669         if (err) {
3670                 dev_err(&pdev->dev, "Invalid FLASH.\n");
3671                 goto err_out;
3672         }
3673
3674         if (!is_valid_ether_addr(qdev->flash.mac_addr))
3675                 goto err_out;
3676
3677         memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3678         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3679
3680         /* Set up the default ring sizes. */
3681         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3682         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3683
3684         /* Set up the coalescing parameters. */
3685         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3686         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3687         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3688         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3689
3690         /*
3691          * Set up the operating parameters.
3692          */
3693         qdev->rx_csum = 1;
3694
3695         qdev->q_workqueue = create_workqueue(ndev->name);
3696         qdev->workqueue = create_singlethread_workqueue(ndev->name);
3697         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3698         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3699         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3700
3701         if (!cards_found) {
3702                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3703                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3704                          DRV_NAME, DRV_VERSION);
3705         }
3706         return 0;
3707 err_out:
3708         ql_release_all(pdev);
3709         pci_disable_device(pdev);
3710         return err;
3711 }
3712
3713
3714 static const struct net_device_ops qlge_netdev_ops = {
3715         .ndo_open               = qlge_open,
3716         .ndo_stop               = qlge_close,
3717         .ndo_start_xmit         = qlge_send,
3718         .ndo_change_mtu         = qlge_change_mtu,
3719         .ndo_get_stats          = qlge_get_stats,
3720         .ndo_set_multicast_list = qlge_set_multicast_list,
3721         .ndo_set_mac_address    = qlge_set_mac_address,
3722         .ndo_validate_addr      = eth_validate_addr,
3723         .ndo_tx_timeout         = qlge_tx_timeout,
3724         .ndo_vlan_rx_register   = ql_vlan_rx_register,
3725         .ndo_vlan_rx_add_vid    = ql_vlan_rx_add_vid,
3726         .ndo_vlan_rx_kill_vid   = ql_vlan_rx_kill_vid,
3727 };
3728
3729 static int __devinit qlge_probe(struct pci_dev *pdev,
3730                                 const struct pci_device_id *pci_entry)
3731 {
3732         struct net_device *ndev = NULL;
3733         struct ql_adapter *qdev = NULL;
3734         static int cards_found = 0;
3735         int err = 0;
3736
3737         ndev = alloc_etherdev(sizeof(struct ql_adapter));
3738         if (!ndev)
3739                 return -ENOMEM;
3740
3741         err = ql_init_device(pdev, ndev, cards_found);
3742         if (err < 0) {
3743                 free_netdev(ndev);
3744                 return err;
3745         }
3746
3747         qdev = netdev_priv(ndev);
3748         SET_NETDEV_DEV(ndev, &pdev->dev);
3749         ndev->features = (0
3750                           | NETIF_F_IP_CSUM
3751                           | NETIF_F_SG
3752                           | NETIF_F_TSO
3753                           | NETIF_F_TSO6
3754                           | NETIF_F_TSO_ECN
3755                           | NETIF_F_HW_VLAN_TX
3756                           | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3757
3758         if (test_bit(QL_DMA64, &qdev->flags))
3759                 ndev->features |= NETIF_F_HIGHDMA;
3760
3761         /*
3762          * Set up net_device structure.
3763          */
3764         ndev->tx_queue_len = qdev->tx_ring_size;
3765         ndev->irq = pdev->irq;
3766
3767         ndev->netdev_ops = &qlge_netdev_ops;
3768         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3769         ndev->watchdog_timeo = 10 * HZ;
3770
3771         err = register_netdev(ndev);
3772         if (err) {
3773                 dev_err(&pdev->dev, "net device registration failed.\n");
3774                 ql_release_all(pdev);
3775                 pci_disable_device(pdev);
3776                 return err;
3777         }
3778         netif_carrier_off(ndev);
3779         netif_stop_queue(ndev);
3780         ql_display_dev_info(ndev);
3781         cards_found++;
3782         return 0;
3783 }
3784
3785 static void __devexit qlge_remove(struct pci_dev *pdev)
3786 {
3787         struct net_device *ndev = pci_get_drvdata(pdev);
3788         unregister_netdev(ndev);
3789         ql_release_all(pdev);
3790         pci_disable_device(pdev);
3791         free_netdev(ndev);
3792 }
3793
3794 /*
3795  * This callback is called by the PCI subsystem whenever
3796  * a PCI bus error is detected.
3797  */
3798 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3799                                                enum pci_channel_state state)
3800 {
3801         struct net_device *ndev = pci_get_drvdata(pdev);
3802         struct ql_adapter *qdev = netdev_priv(ndev);
3803
3804         if (netif_running(ndev))
3805                 ql_adapter_down(qdev);
3806
3807         pci_disable_device(pdev);
3808
3809         /* Request a slot reset. */
3810         return PCI_ERS_RESULT_NEED_RESET;
3811 }
3812
3813 /*
3814  * This callback is called after the PCI buss has been reset.
3815  * Basically, this tries to restart the card from scratch.
3816  * This is a shortened version of the device probe/discovery code,
3817  * it resembles the first-half of the () routine.
3818  */
3819 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3820 {
3821         struct net_device *ndev = pci_get_drvdata(pdev);
3822         struct ql_adapter *qdev = netdev_priv(ndev);
3823
3824         if (pci_enable_device(pdev)) {
3825                 QPRINTK(qdev, IFUP, ERR,
3826                         "Cannot re-enable PCI device after reset.\n");
3827                 return PCI_ERS_RESULT_DISCONNECT;
3828         }
3829
3830         pci_set_master(pdev);
3831
3832         netif_carrier_off(ndev);
3833         netif_stop_queue(ndev);
3834         ql_adapter_reset(qdev);
3835
3836         /* Make sure the EEPROM is good */
3837         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3838
3839         if (!is_valid_ether_addr(ndev->perm_addr)) {
3840                 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3841                 return PCI_ERS_RESULT_DISCONNECT;
3842         }
3843
3844         return PCI_ERS_RESULT_RECOVERED;
3845 }
3846
3847 static void qlge_io_resume(struct pci_dev *pdev)
3848 {
3849         struct net_device *ndev = pci_get_drvdata(pdev);
3850         struct ql_adapter *qdev = netdev_priv(ndev);
3851
3852         pci_set_master(pdev);
3853
3854         if (netif_running(ndev)) {
3855                 if (ql_adapter_up(qdev)) {
3856                         QPRINTK(qdev, IFUP, ERR,
3857                                 "Device initialization failed after reset.\n");
3858                         return;
3859                 }
3860         }
3861
3862         netif_device_attach(ndev);
3863 }
3864
3865 static struct pci_error_handlers qlge_err_handler = {
3866         .error_detected = qlge_io_error_detected,
3867         .slot_reset = qlge_io_slot_reset,
3868         .resume = qlge_io_resume,
3869 };
3870
3871 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3872 {
3873         struct net_device *ndev = pci_get_drvdata(pdev);
3874         struct ql_adapter *qdev = netdev_priv(ndev);
3875         int err;
3876
3877         netif_device_detach(ndev);
3878
3879         if (netif_running(ndev)) {
3880                 err = ql_adapter_down(qdev);
3881                 if (!err)
3882                         return err;
3883         }
3884
3885         err = pci_save_state(pdev);
3886         if (err)
3887                 return err;
3888
3889         pci_disable_device(pdev);
3890
3891         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3892
3893         return 0;
3894 }
3895
3896 #ifdef CONFIG_PM
3897 static int qlge_resume(struct pci_dev *pdev)
3898 {
3899         struct net_device *ndev = pci_get_drvdata(pdev);
3900         struct ql_adapter *qdev = netdev_priv(ndev);
3901         int err;
3902
3903         pci_set_power_state(pdev, PCI_D0);
3904         pci_restore_state(pdev);
3905         err = pci_enable_device(pdev);
3906         if (err) {
3907                 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3908                 return err;
3909         }
3910         pci_set_master(pdev);
3911
3912         pci_enable_wake(pdev, PCI_D3hot, 0);
3913         pci_enable_wake(pdev, PCI_D3cold, 0);
3914
3915         if (netif_running(ndev)) {
3916                 err = ql_adapter_up(qdev);
3917                 if (err)
3918                         return err;
3919         }
3920
3921         netif_device_attach(ndev);
3922
3923         return 0;
3924 }
3925 #endif /* CONFIG_PM */
3926
3927 static void qlge_shutdown(struct pci_dev *pdev)
3928 {
3929         qlge_suspend(pdev, PMSG_SUSPEND);
3930 }
3931
3932 static struct pci_driver qlge_driver = {
3933         .name = DRV_NAME,
3934         .id_table = qlge_pci_tbl,
3935         .probe = qlge_probe,
3936         .remove = __devexit_p(qlge_remove),
3937 #ifdef CONFIG_PM
3938         .suspend = qlge_suspend,
3939         .resume = qlge_resume,
3940 #endif
3941         .shutdown = qlge_shutdown,
3942         .err_handler = &qlge_err_handler
3943 };
3944
3945 static int __init qlge_init_module(void)
3946 {
3947         return pci_register_driver(&qlge_driver);
3948 }
3949
3950 static void __exit qlge_exit(void)
3951 {
3952         pci_unregister_driver(&qlge_driver);
3953 }
3954
3955 module_init(qlge_init_module);
3956 module_exit(qlge_exit);