drivers: net: last_rx elimination
[safe/jmp/linux-2.6] / drivers / net / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28
29 /******************************************************************************
30  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/netdevice.h>
36 #include <linux/vmalloc.h>
37 #include <linux/string.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47
48 #include "ixgbevf.h"
49
50 char ixgbevf_driver_name[] = "ixgbevf";
51 static const char ixgbevf_driver_string[] =
52         "Intel(R) 82599 Virtual Function";
53
54 #define DRV_VERSION "1.0.0-k0"
55 const char ixgbevf_driver_version[] = DRV_VERSION;
56 static char ixgbevf_copyright[] = "Copyright (c) 2009 Intel Corporation.";
57
58 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
59         [board_82599_vf] = &ixgbevf_vf_info,
60 };
61
62 /* ixgbevf_pci_tbl - PCI Device ID Table
63  *
64  * Wildcard entries (PCI_ANY_ID) should come last
65  * Last entry must be all 0s
66  *
67  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
68  *   Class, Class Mask, private data (not used) }
69  */
70 static struct pci_device_id ixgbevf_pci_tbl[] = {
71         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
72         board_82599_vf},
73
74         /* required last entry */
75         {0, }
76 };
77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
78
79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
80 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
81 MODULE_LICENSE("GPL");
82 MODULE_VERSION(DRV_VERSION);
83
84 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
85
86 /* forward decls */
87 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
88 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
89                                u32 itr_reg);
90
91 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
92                                            struct ixgbevf_ring *rx_ring,
93                                            u32 val)
94 {
95         /*
96          * Force memory writes to complete before letting h/w
97          * know there are new descriptors to fetch.  (Only
98          * applicable for weak-ordered memory model archs,
99          * such as IA-64).
100          */
101         wmb();
102         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
103 }
104
105 /*
106  * ixgbe_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
107  * @adapter: pointer to adapter struct
108  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
109  * @queue: queue to map the corresponding interrupt to
110  * @msix_vector: the vector to map to the corresponding queue
111  *
112  */
113 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
114                              u8 queue, u8 msix_vector)
115 {
116         u32 ivar, index;
117         struct ixgbe_hw *hw = &adapter->hw;
118         if (direction == -1) {
119                 /* other causes */
120                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
121                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
122                 ivar &= ~0xFF;
123                 ivar |= msix_vector;
124                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
125         } else {
126                 /* tx or rx causes */
127                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
128                 index = ((16 * (queue & 1)) + (8 * direction));
129                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
130                 ivar &= ~(0xFF << index);
131                 ivar |= (msix_vector << index);
132                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
133         }
134 }
135
136 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
137                                                struct ixgbevf_tx_buffer
138                                                *tx_buffer_info)
139 {
140         if (tx_buffer_info->dma) {
141                 if (tx_buffer_info->mapped_as_page)
142                         pci_unmap_page(adapter->pdev,
143                                        tx_buffer_info->dma,
144                                        tx_buffer_info->length,
145                                        PCI_DMA_TODEVICE);
146                 else
147                         pci_unmap_single(adapter->pdev,
148                                          tx_buffer_info->dma,
149                                          tx_buffer_info->length,
150                                          PCI_DMA_TODEVICE);
151                 tx_buffer_info->dma = 0;
152         }
153         if (tx_buffer_info->skb) {
154                 dev_kfree_skb_any(tx_buffer_info->skb);
155                 tx_buffer_info->skb = NULL;
156         }
157         tx_buffer_info->time_stamp = 0;
158         /* tx_buffer_info must be completely set up in the transmit path */
159 }
160
161 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_adapter *adapter,
162                                          struct ixgbevf_ring *tx_ring,
163                                          unsigned int eop)
164 {
165         struct ixgbe_hw *hw = &adapter->hw;
166         u32 head, tail;
167
168         /* Detect a transmit hang in hardware, this serializes the
169          * check with the clearing of time_stamp and movement of eop */
170         head = readl(hw->hw_addr + tx_ring->head);
171         tail = readl(hw->hw_addr + tx_ring->tail);
172         adapter->detect_tx_hung = false;
173         if ((head != tail) &&
174             tx_ring->tx_buffer_info[eop].time_stamp &&
175             time_after(jiffies, tx_ring->tx_buffer_info[eop].time_stamp + HZ)) {
176                 /* detected Tx unit hang */
177                 union ixgbe_adv_tx_desc *tx_desc;
178                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
179                 printk(KERN_ERR "Detected Tx Unit Hang\n"
180                        "  Tx Queue             <%d>\n"
181                        "  TDH, TDT             <%x>, <%x>\n"
182                        "  next_to_use          <%x>\n"
183                        "  next_to_clean        <%x>\n"
184                        "tx_buffer_info[next_to_clean]\n"
185                        "  time_stamp           <%lx>\n"
186                        "  jiffies              <%lx>\n",
187                        tx_ring->queue_index,
188                        head, tail,
189                        tx_ring->next_to_use, eop,
190                        tx_ring->tx_buffer_info[eop].time_stamp, jiffies);
191                 return true;
192         }
193
194         return false;
195 }
196
197 #define IXGBE_MAX_TXD_PWR       14
198 #define IXGBE_MAX_DATA_PER_TXD  (1 << IXGBE_MAX_TXD_PWR)
199
200 /* Tx Descriptors needed, worst case */
201 #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
202                          (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
203 #ifdef MAX_SKB_FRAGS
204 #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
205         MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1)      /* for context */
206 #else
207 #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
208 #endif
209
210 static void ixgbevf_tx_timeout(struct net_device *netdev);
211
212 /**
213  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
214  * @adapter: board private structure
215  * @tx_ring: tx ring to clean
216  **/
217 static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
218                                  struct ixgbevf_ring *tx_ring)
219 {
220         struct net_device *netdev = adapter->netdev;
221         struct ixgbe_hw *hw = &adapter->hw;
222         union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
223         struct ixgbevf_tx_buffer *tx_buffer_info;
224         unsigned int i, eop, count = 0;
225         unsigned int total_bytes = 0, total_packets = 0;
226
227         i = tx_ring->next_to_clean;
228         eop = tx_ring->tx_buffer_info[i].next_to_watch;
229         eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
230
231         while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
232                (count < tx_ring->work_limit)) {
233                 bool cleaned = false;
234                 for ( ; !cleaned; count++) {
235                         struct sk_buff *skb;
236                         tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
237                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
238                         cleaned = (i == eop);
239                         skb = tx_buffer_info->skb;
240
241                         if (cleaned && skb) {
242                                 unsigned int segs, bytecount;
243
244                                 /* gso_segs is currently only valid for tcp */
245                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
246                                 /* multiply data chunks by size of headers */
247                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
248                                             skb->len;
249                                 total_packets += segs;
250                                 total_bytes += bytecount;
251                         }
252
253                         ixgbevf_unmap_and_free_tx_resource(adapter,
254                                                            tx_buffer_info);
255
256                         tx_desc->wb.status = 0;
257
258                         i++;
259                         if (i == tx_ring->count)
260                                 i = 0;
261                 }
262
263                 eop = tx_ring->tx_buffer_info[i].next_to_watch;
264                 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
265         }
266
267         tx_ring->next_to_clean = i;
268
269 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
270         if (unlikely(count && netif_carrier_ok(netdev) &&
271                      (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
272                 /* Make sure that anybody stopping the queue after this
273                  * sees the new next_to_clean.
274                  */
275                 smp_mb();
276 #ifdef HAVE_TX_MQ
277                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
278                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
279                         netif_wake_subqueue(netdev, tx_ring->queue_index);
280                         ++adapter->restart_queue;
281                 }
282 #else
283                 if (netif_queue_stopped(netdev) &&
284                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
285                         netif_wake_queue(netdev);
286                         ++adapter->restart_queue;
287                 }
288 #endif
289         }
290
291         if (adapter->detect_tx_hung) {
292                 if (ixgbevf_check_tx_hang(adapter, tx_ring, i)) {
293                         /* schedule immediate reset if we believe we hung */
294                         printk(KERN_INFO
295                                "tx hang %d detected, resetting adapter\n",
296                                adapter->tx_timeout_count + 1);
297                         ixgbevf_tx_timeout(adapter->netdev);
298                 }
299         }
300
301         /* re-arm the interrupt */
302         if ((count >= tx_ring->work_limit) &&
303             (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
304                 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
305         }
306
307         tx_ring->total_bytes += total_bytes;
308         tx_ring->total_packets += total_packets;
309
310         adapter->net_stats.tx_bytes += total_bytes;
311         adapter->net_stats.tx_packets += total_packets;
312
313         return (count < tx_ring->work_limit);
314 }
315
316 /**
317  * ixgbevf_receive_skb - Send a completed packet up the stack
318  * @q_vector: structure containing interrupt and ring information
319  * @skb: packet to send up
320  * @status: hardware indication of status of receive
321  * @rx_ring: rx descriptor ring (for a specific queue) to setup
322  * @rx_desc: rx descriptor
323  **/
324 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
325                                 struct sk_buff *skb, u8 status,
326                                 struct ixgbevf_ring *ring,
327                                 union ixgbe_adv_rx_desc *rx_desc)
328 {
329         struct ixgbevf_adapter *adapter = q_vector->adapter;
330         bool is_vlan = (status & IXGBE_RXD_STAT_VP);
331         u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
332         int ret;
333
334         if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL)) {
335                 if (adapter->vlgrp && is_vlan)
336                         vlan_gro_receive(&q_vector->napi,
337                                          adapter->vlgrp,
338                                          tag, skb);
339                 else
340                         napi_gro_receive(&q_vector->napi, skb);
341         } else {
342                 if (adapter->vlgrp && is_vlan)
343                         ret = vlan_hwaccel_rx(skb, adapter->vlgrp, tag);
344                 else
345                         ret = netif_rx(skb);
346         }
347 }
348
349 /**
350  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
351  * @adapter: address of board private structure
352  * @status_err: hardware indication of status of receive
353  * @skb: skb currently being received and modified
354  **/
355 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
356                                        u32 status_err, struct sk_buff *skb)
357 {
358         skb->ip_summed = CHECKSUM_NONE;
359
360         /* Rx csum disabled */
361         if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
362                 return;
363
364         /* if IP and error */
365         if ((status_err & IXGBE_RXD_STAT_IPCS) &&
366             (status_err & IXGBE_RXDADV_ERR_IPE)) {
367                 adapter->hw_csum_rx_error++;
368                 return;
369         }
370
371         if (!(status_err & IXGBE_RXD_STAT_L4CS))
372                 return;
373
374         if (status_err & IXGBE_RXDADV_ERR_TCPE) {
375                 adapter->hw_csum_rx_error++;
376                 return;
377         }
378
379         /* It must be a TCP or UDP packet with a valid checksum */
380         skb->ip_summed = CHECKSUM_UNNECESSARY;
381         adapter->hw_csum_rx_good++;
382 }
383
384 /**
385  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
386  * @adapter: address of board private structure
387  **/
388 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
389                                      struct ixgbevf_ring *rx_ring,
390                                      int cleaned_count)
391 {
392         struct pci_dev *pdev = adapter->pdev;
393         union ixgbe_adv_rx_desc *rx_desc;
394         struct ixgbevf_rx_buffer *bi;
395         struct sk_buff *skb;
396         unsigned int i;
397         unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
398
399         i = rx_ring->next_to_use;
400         bi = &rx_ring->rx_buffer_info[i];
401
402         while (cleaned_count--) {
403                 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
404
405                 if (!bi->page_dma &&
406                     (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
407                         if (!bi->page) {
408                                 bi->page = netdev_alloc_page(adapter->netdev);
409                                 if (!bi->page) {
410                                         adapter->alloc_rx_page_failed++;
411                                         goto no_buffers;
412                                 }
413                                 bi->page_offset = 0;
414                         } else {
415                                 /* use a half page if we're re-using */
416                                 bi->page_offset ^= (PAGE_SIZE / 2);
417                         }
418
419                         bi->page_dma = pci_map_page(pdev, bi->page,
420                                                     bi->page_offset,
421                                                     (PAGE_SIZE / 2),
422                                                     PCI_DMA_FROMDEVICE);
423                 }
424
425                 skb = bi->skb;
426                 if (!skb) {
427                         skb = netdev_alloc_skb(adapter->netdev,
428                                                                bufsz);
429
430                         if (!skb) {
431                                 adapter->alloc_rx_buff_failed++;
432                                 goto no_buffers;
433                         }
434
435                         /*
436                          * Make buffer alignment 2 beyond a 16 byte boundary
437                          * this will result in a 16 byte aligned IP header after
438                          * the 14 byte MAC header is removed
439                          */
440                         skb_reserve(skb, NET_IP_ALIGN);
441
442                         bi->skb = skb;
443                 }
444                 if (!bi->dma) {
445                         bi->dma = pci_map_single(pdev, skb->data,
446                                                  rx_ring->rx_buf_len,
447                                                  PCI_DMA_FROMDEVICE);
448                 }
449                 /* Refresh the desc even if buffer_addrs didn't change because
450                  * each write-back erases this info. */
451                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
452                         rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
453                         rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
454                 } else {
455                         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
456                 }
457
458                 i++;
459                 if (i == rx_ring->count)
460                         i = 0;
461                 bi = &rx_ring->rx_buffer_info[i];
462         }
463
464 no_buffers:
465         if (rx_ring->next_to_use != i) {
466                 rx_ring->next_to_use = i;
467                 if (i-- == 0)
468                         i = (rx_ring->count - 1);
469
470                 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
471         }
472 }
473
474 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
475                                              u64 qmask)
476 {
477         u32 mask;
478         struct ixgbe_hw *hw = &adapter->hw;
479
480         mask = (qmask & 0xFFFFFFFF);
481         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
482 }
483
484 static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
485 {
486         return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
487 }
488
489 static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
490 {
491         return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
492 }
493
494 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
495                                  struct ixgbevf_ring *rx_ring,
496                                  int *work_done, int work_to_do)
497 {
498         struct ixgbevf_adapter *adapter = q_vector->adapter;
499         struct pci_dev *pdev = adapter->pdev;
500         union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
501         struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
502         struct sk_buff *skb;
503         unsigned int i;
504         u32 len, staterr;
505         u16 hdr_info;
506         bool cleaned = false;
507         int cleaned_count = 0;
508         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
509
510         i = rx_ring->next_to_clean;
511         rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
512         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
513         rx_buffer_info = &rx_ring->rx_buffer_info[i];
514
515         while (staterr & IXGBE_RXD_STAT_DD) {
516                 u32 upper_len = 0;
517                 if (*work_done >= work_to_do)
518                         break;
519                 (*work_done)++;
520
521                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
522                         hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
523                         len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
524                                IXGBE_RXDADV_HDRBUFLEN_SHIFT;
525                         if (hdr_info & IXGBE_RXDADV_SPH)
526                                 adapter->rx_hdr_split++;
527                         if (len > IXGBEVF_RX_HDR_SIZE)
528                                 len = IXGBEVF_RX_HDR_SIZE;
529                         upper_len = le16_to_cpu(rx_desc->wb.upper.length);
530                 } else {
531                         len = le16_to_cpu(rx_desc->wb.upper.length);
532                 }
533                 cleaned = true;
534                 skb = rx_buffer_info->skb;
535                 prefetch(skb->data - NET_IP_ALIGN);
536                 rx_buffer_info->skb = NULL;
537
538                 if (rx_buffer_info->dma) {
539                         pci_unmap_single(pdev, rx_buffer_info->dma,
540                                          rx_ring->rx_buf_len,
541                                          PCI_DMA_FROMDEVICE);
542                         rx_buffer_info->dma = 0;
543                         skb_put(skb, len);
544                 }
545
546                 if (upper_len) {
547                         pci_unmap_page(pdev, rx_buffer_info->page_dma,
548                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
549                         rx_buffer_info->page_dma = 0;
550                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
551                                            rx_buffer_info->page,
552                                            rx_buffer_info->page_offset,
553                                            upper_len);
554
555                         if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
556                             (page_count(rx_buffer_info->page) != 1))
557                                 rx_buffer_info->page = NULL;
558                         else
559                                 get_page(rx_buffer_info->page);
560
561                         skb->len += upper_len;
562                         skb->data_len += upper_len;
563                         skb->truesize += upper_len;
564                 }
565
566                 i++;
567                 if (i == rx_ring->count)
568                         i = 0;
569
570                 next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
571                 prefetch(next_rxd);
572                 cleaned_count++;
573
574                 next_buffer = &rx_ring->rx_buffer_info[i];
575
576                 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
577                         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
578                                 rx_buffer_info->skb = next_buffer->skb;
579                                 rx_buffer_info->dma = next_buffer->dma;
580                                 next_buffer->skb = skb;
581                                 next_buffer->dma = 0;
582                         } else {
583                                 skb->next = next_buffer->skb;
584                                 skb->next->prev = skb;
585                         }
586                         adapter->non_eop_descs++;
587                         goto next_desc;
588                 }
589
590                 /* ERR_MASK will only have valid bits if EOP set */
591                 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
592                         dev_kfree_skb_irq(skb);
593                         goto next_desc;
594                 }
595
596                 ixgbevf_rx_checksum(adapter, staterr, skb);
597
598                 /* probably a little skewed due to removing CRC */
599                 total_rx_bytes += skb->len;
600                 total_rx_packets++;
601
602                 /*
603                  * Work around issue of some types of VM to VM loop back
604                  * packets not getting split correctly
605                  */
606                 if (staterr & IXGBE_RXD_STAT_LB) {
607                         u32 header_fixup_len = skb->len - skb->data_len;
608                         if (header_fixup_len < 14)
609                                 skb_push(skb, header_fixup_len);
610                 }
611                 skb->protocol = eth_type_trans(skb, adapter->netdev);
612
613                 ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
614
615 next_desc:
616                 rx_desc->wb.upper.status_error = 0;
617
618                 /* return some buffers to hardware, one at a time is too slow */
619                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
620                         ixgbevf_alloc_rx_buffers(adapter, rx_ring,
621                                                  cleaned_count);
622                         cleaned_count = 0;
623                 }
624
625                 /* use prefetched values */
626                 rx_desc = next_rxd;
627                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
628
629                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
630         }
631
632         rx_ring->next_to_clean = i;
633         cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
634
635         if (cleaned_count)
636                 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
637
638         rx_ring->total_packets += total_rx_packets;
639         rx_ring->total_bytes += total_rx_bytes;
640         adapter->net_stats.rx_bytes += total_rx_bytes;
641         adapter->net_stats.rx_packets += total_rx_packets;
642
643         return cleaned;
644 }
645
646 /**
647  * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
648  * @napi: napi struct with our devices info in it
649  * @budget: amount of work driver is allowed to do this pass, in packets
650  *
651  * This function is optimized for cleaning one queue only on a single
652  * q_vector!!!
653  **/
654 static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
655 {
656         struct ixgbevf_q_vector *q_vector =
657                 container_of(napi, struct ixgbevf_q_vector, napi);
658         struct ixgbevf_adapter *adapter = q_vector->adapter;
659         struct ixgbevf_ring *rx_ring = NULL;
660         int work_done = 0;
661         long r_idx;
662
663         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
664         rx_ring = &(adapter->rx_ring[r_idx]);
665
666         ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
667
668         /* If all Rx work done, exit the polling mode */
669         if (work_done < budget) {
670                 napi_complete(napi);
671                 if (adapter->itr_setting & 1)
672                         ixgbevf_set_itr_msix(q_vector);
673                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
674                         ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
675         }
676
677         return work_done;
678 }
679
680 /**
681  * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
682  * @napi: napi struct with our devices info in it
683  * @budget: amount of work driver is allowed to do this pass, in packets
684  *
685  * This function will clean more than one rx queue associated with a
686  * q_vector.
687  **/
688 static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
689 {
690         struct ixgbevf_q_vector *q_vector =
691                 container_of(napi, struct ixgbevf_q_vector, napi);
692         struct ixgbevf_adapter *adapter = q_vector->adapter;
693         struct ixgbevf_ring *rx_ring = NULL;
694         int work_done = 0, i;
695         long r_idx;
696         u64 enable_mask = 0;
697
698         /* attempt to distribute budget to each queue fairly, but don't allow
699          * the budget to go below 1 because we'll exit polling */
700         budget /= (q_vector->rxr_count ?: 1);
701         budget = max(budget, 1);
702         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
703         for (i = 0; i < q_vector->rxr_count; i++) {
704                 rx_ring = &(adapter->rx_ring[r_idx]);
705                 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
706                 enable_mask |= rx_ring->v_idx;
707                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
708                                       r_idx + 1);
709         }
710
711 #ifndef HAVE_NETDEV_NAPI_LIST
712         if (!netif_running(adapter->netdev))
713                 work_done = 0;
714
715 #endif
716         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
717         rx_ring = &(adapter->rx_ring[r_idx]);
718
719         /* If all Rx work done, exit the polling mode */
720         if (work_done < budget) {
721                 napi_complete(napi);
722                 if (adapter->itr_setting & 1)
723                         ixgbevf_set_itr_msix(q_vector);
724                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
725                         ixgbevf_irq_enable_queues(adapter, enable_mask);
726         }
727
728         return work_done;
729 }
730
731
732 /**
733  * ixgbevf_configure_msix - Configure MSI-X hardware
734  * @adapter: board private structure
735  *
736  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
737  * interrupts.
738  **/
739 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
740 {
741         struct ixgbevf_q_vector *q_vector;
742         struct ixgbe_hw *hw = &adapter->hw;
743         int i, j, q_vectors, v_idx, r_idx;
744         u32 mask;
745
746         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
747
748         /*
749          * Populate the IVAR table and set the ITR values to the
750          * corresponding register.
751          */
752         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
753                 q_vector = adapter->q_vector[v_idx];
754                 /* XXX for_each_set_bit(...) */
755                 r_idx = find_first_bit(q_vector->rxr_idx,
756                                        adapter->num_rx_queues);
757
758                 for (i = 0; i < q_vector->rxr_count; i++) {
759                         j = adapter->rx_ring[r_idx].reg_idx;
760                         ixgbevf_set_ivar(adapter, 0, j, v_idx);
761                         r_idx = find_next_bit(q_vector->rxr_idx,
762                                               adapter->num_rx_queues,
763                                               r_idx + 1);
764                 }
765                 r_idx = find_first_bit(q_vector->txr_idx,
766                                        adapter->num_tx_queues);
767
768                 for (i = 0; i < q_vector->txr_count; i++) {
769                         j = adapter->tx_ring[r_idx].reg_idx;
770                         ixgbevf_set_ivar(adapter, 1, j, v_idx);
771                         r_idx = find_next_bit(q_vector->txr_idx,
772                                               adapter->num_tx_queues,
773                                               r_idx + 1);
774                 }
775
776                 /* if this is a tx only vector halve the interrupt rate */
777                 if (q_vector->txr_count && !q_vector->rxr_count)
778                         q_vector->eitr = (adapter->eitr_param >> 1);
779                 else if (q_vector->rxr_count)
780                         /* rx only */
781                         q_vector->eitr = adapter->eitr_param;
782
783                 ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
784         }
785
786         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
787
788         /* set up to autoclear timer, and the vectors */
789         mask = IXGBE_EIMS_ENABLE_MASK;
790         mask &= ~IXGBE_EIMS_OTHER;
791         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
792 }
793
794 enum latency_range {
795         lowest_latency = 0,
796         low_latency = 1,
797         bulk_latency = 2,
798         latency_invalid = 255
799 };
800
801 /**
802  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
803  * @adapter: pointer to adapter
804  * @eitr: eitr setting (ints per sec) to give last timeslice
805  * @itr_setting: current throttle rate in ints/second
806  * @packets: the number of packets during this measurement interval
807  * @bytes: the number of bytes during this measurement interval
808  *
809  *      Stores a new ITR value based on packets and byte
810  *      counts during the last interrupt.  The advantage of per interrupt
811  *      computation is faster updates and more accurate ITR for the current
812  *      traffic pattern.  Constants in this function were computed
813  *      based on theoretical maximum wire speed and thresholds were set based
814  *      on testing data as well as attempting to minimize response time
815  *      while increasing bulk throughput.
816  **/
817 static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
818                              u32 eitr, u8 itr_setting,
819                              int packets, int bytes)
820 {
821         unsigned int retval = itr_setting;
822         u32 timepassed_us;
823         u64 bytes_perint;
824
825         if (packets == 0)
826                 goto update_itr_done;
827
828
829         /* simple throttlerate management
830          *    0-20MB/s lowest (100000 ints/s)
831          *   20-100MB/s low   (20000 ints/s)
832          *  100-1249MB/s bulk (8000 ints/s)
833          */
834         /* what was last interrupt timeslice? */
835         timepassed_us = 1000000/eitr;
836         bytes_perint = bytes / timepassed_us; /* bytes/usec */
837
838         switch (itr_setting) {
839         case lowest_latency:
840                 if (bytes_perint > adapter->eitr_low)
841                         retval = low_latency;
842                 break;
843         case low_latency:
844                 if (bytes_perint > adapter->eitr_high)
845                         retval = bulk_latency;
846                 else if (bytes_perint <= adapter->eitr_low)
847                         retval = lowest_latency;
848                 break;
849         case bulk_latency:
850                 if (bytes_perint <= adapter->eitr_high)
851                         retval = low_latency;
852                 break;
853         }
854
855 update_itr_done:
856         return retval;
857 }
858
859 /**
860  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
861  * @adapter: pointer to adapter struct
862  * @v_idx: vector index into q_vector array
863  * @itr_reg: new value to be written in *register* format, not ints/s
864  *
865  * This function is made to be called by ethtool and by the driver
866  * when it needs to update VTEITR registers at runtime.  Hardware
867  * specific quirks/differences are taken care of here.
868  */
869 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
870                                u32 itr_reg)
871 {
872         struct ixgbe_hw *hw = &adapter->hw;
873
874         itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
875
876         /*
877          * set the WDIS bit to not clear the timer bits and cause an
878          * immediate assertion of the interrupt
879          */
880         itr_reg |= IXGBE_EITR_CNT_WDIS;
881
882         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
883 }
884
885 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
886 {
887         struct ixgbevf_adapter *adapter = q_vector->adapter;
888         u32 new_itr;
889         u8 current_itr, ret_itr;
890         int i, r_idx, v_idx = q_vector->v_idx;
891         struct ixgbevf_ring *rx_ring, *tx_ring;
892
893         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
894         for (i = 0; i < q_vector->txr_count; i++) {
895                 tx_ring = &(adapter->tx_ring[r_idx]);
896                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
897                                              q_vector->tx_itr,
898                                              tx_ring->total_packets,
899                                              tx_ring->total_bytes);
900                 /* if the result for this queue would decrease interrupt
901                  * rate for this vector then use that result */
902                 q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
903                                     q_vector->tx_itr - 1 : ret_itr);
904                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
905                                       r_idx + 1);
906         }
907
908         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
909         for (i = 0; i < q_vector->rxr_count; i++) {
910                 rx_ring = &(adapter->rx_ring[r_idx]);
911                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
912                                              q_vector->rx_itr,
913                                              rx_ring->total_packets,
914                                              rx_ring->total_bytes);
915                 /* if the result for this queue would decrease interrupt
916                  * rate for this vector then use that result */
917                 q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
918                                     q_vector->rx_itr - 1 : ret_itr);
919                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
920                                       r_idx + 1);
921         }
922
923         current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
924
925         switch (current_itr) {
926         /* counts and packets in update_itr are dependent on these numbers */
927         case lowest_latency:
928                 new_itr = 100000;
929                 break;
930         case low_latency:
931                 new_itr = 20000; /* aka hwitr = ~200 */
932                 break;
933         case bulk_latency:
934         default:
935                 new_itr = 8000;
936                 break;
937         }
938
939         if (new_itr != q_vector->eitr) {
940                 u32 itr_reg;
941
942                 /* save the algorithm value here, not the smoothed one */
943                 q_vector->eitr = new_itr;
944                 /* do an exponential smoothing */
945                 new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
946                 itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
947                 ixgbevf_write_eitr(adapter, v_idx, itr_reg);
948         }
949
950         return;
951 }
952
953 static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
954 {
955         struct net_device *netdev = data;
956         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
957         struct ixgbe_hw *hw = &adapter->hw;
958         u32 eicr;
959         u32 msg;
960
961         eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
962         IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
963
964         hw->mbx.ops.read(hw, &msg, 1);
965
966         if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
967                 mod_timer(&adapter->watchdog_timer,
968                           round_jiffies(jiffies + 1));
969
970         return IRQ_HANDLED;
971 }
972
973 static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
974 {
975         struct ixgbevf_q_vector *q_vector = data;
976         struct ixgbevf_adapter  *adapter = q_vector->adapter;
977         struct ixgbevf_ring     *tx_ring;
978         int i, r_idx;
979
980         if (!q_vector->txr_count)
981                 return IRQ_HANDLED;
982
983         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
984         for (i = 0; i < q_vector->txr_count; i++) {
985                 tx_ring = &(adapter->tx_ring[r_idx]);
986                 tx_ring->total_bytes = 0;
987                 tx_ring->total_packets = 0;
988                 ixgbevf_clean_tx_irq(adapter, tx_ring);
989                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
990                                       r_idx + 1);
991         }
992
993         if (adapter->itr_setting & 1)
994                 ixgbevf_set_itr_msix(q_vector);
995
996         return IRQ_HANDLED;
997 }
998
999 /**
1000  * ixgbe_msix_clean_rx - single unshared vector rx clean (all queues)
1001  * @irq: unused
1002  * @data: pointer to our q_vector struct for this interrupt vector
1003  **/
1004 static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
1005 {
1006         struct ixgbevf_q_vector *q_vector = data;
1007         struct ixgbevf_adapter  *adapter = q_vector->adapter;
1008         struct ixgbe_hw *hw = &adapter->hw;
1009         struct ixgbevf_ring  *rx_ring;
1010         int r_idx;
1011         int i;
1012
1013         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1014         for (i = 0; i < q_vector->rxr_count; i++) {
1015                 rx_ring = &(adapter->rx_ring[r_idx]);
1016                 rx_ring->total_bytes = 0;
1017                 rx_ring->total_packets = 0;
1018                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
1019                                       r_idx + 1);
1020         }
1021
1022         if (!q_vector->rxr_count)
1023                 return IRQ_HANDLED;
1024
1025         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1026         rx_ring = &(adapter->rx_ring[r_idx]);
1027         /* disable interrupts on this vector only */
1028         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1029         napi_schedule(&q_vector->napi);
1030
1031
1032         return IRQ_HANDLED;
1033 }
1034
1035 static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1036 {
1037         ixgbevf_msix_clean_rx(irq, data);
1038         ixgbevf_msix_clean_tx(irq, data);
1039
1040         return IRQ_HANDLED;
1041 }
1042
1043 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1044                                      int r_idx)
1045 {
1046         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1047
1048         set_bit(r_idx, q_vector->rxr_idx);
1049         q_vector->rxr_count++;
1050         a->rx_ring[r_idx].v_idx = 1 << v_idx;
1051 }
1052
1053 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1054                                      int t_idx)
1055 {
1056         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1057
1058         set_bit(t_idx, q_vector->txr_idx);
1059         q_vector->txr_count++;
1060         a->tx_ring[t_idx].v_idx = 1 << v_idx;
1061 }
1062
1063 /**
1064  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1065  * @adapter: board private structure to initialize
1066  *
1067  * This function maps descriptor rings to the queue-specific vectors
1068  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1069  * one vector per ring/queue, but on a constrained vector budget, we
1070  * group the rings as "efficiently" as possible.  You would add new
1071  * mapping configurations in here.
1072  **/
1073 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1074 {
1075         int q_vectors;
1076         int v_start = 0;
1077         int rxr_idx = 0, txr_idx = 0;
1078         int rxr_remaining = adapter->num_rx_queues;
1079         int txr_remaining = adapter->num_tx_queues;
1080         int i, j;
1081         int rqpv, tqpv;
1082         int err = 0;
1083
1084         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1085
1086         /*
1087          * The ideal configuration...
1088          * We have enough vectors to map one per queue.
1089          */
1090         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1091                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1092                         map_vector_to_rxq(adapter, v_start, rxr_idx);
1093
1094                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1095                         map_vector_to_txq(adapter, v_start, txr_idx);
1096                 goto out;
1097         }
1098
1099         /*
1100          * If we don't have enough vectors for a 1-to-1
1101          * mapping, we'll have to group them so there are
1102          * multiple queues per vector.
1103          */
1104         /* Re-adjusting *qpv takes care of the remainder. */
1105         for (i = v_start; i < q_vectors; i++) {
1106                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1107                 for (j = 0; j < rqpv; j++) {
1108                         map_vector_to_rxq(adapter, i, rxr_idx);
1109                         rxr_idx++;
1110                         rxr_remaining--;
1111                 }
1112         }
1113         for (i = v_start; i < q_vectors; i++) {
1114                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1115                 for (j = 0; j < tqpv; j++) {
1116                         map_vector_to_txq(adapter, i, txr_idx);
1117                         txr_idx++;
1118                         txr_remaining--;
1119                 }
1120         }
1121
1122 out:
1123         return err;
1124 }
1125
1126 /**
1127  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1128  * @adapter: board private structure
1129  *
1130  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1131  * interrupts from the kernel.
1132  **/
1133 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1134 {
1135         struct net_device *netdev = adapter->netdev;
1136         irqreturn_t (*handler)(int, void *);
1137         int i, vector, q_vectors, err;
1138         int ri = 0, ti = 0;
1139
1140         /* Decrement for Other and TCP Timer vectors */
1141         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1142
1143 #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count)          \
1144                                           ? &ixgbevf_msix_clean_many : \
1145                           (_v)->rxr_count ? &ixgbevf_msix_clean_rx   : \
1146                           (_v)->txr_count ? &ixgbevf_msix_clean_tx   : \
1147                           NULL)
1148         for (vector = 0; vector < q_vectors; vector++) {
1149                 handler = SET_HANDLER(adapter->q_vector[vector]);
1150
1151                 if (handler == &ixgbevf_msix_clean_rx) {
1152                         sprintf(adapter->name[vector], "%s-%s-%d",
1153                                 netdev->name, "rx", ri++);
1154                 } else if (handler == &ixgbevf_msix_clean_tx) {
1155                         sprintf(adapter->name[vector], "%s-%s-%d",
1156                                 netdev->name, "tx", ti++);
1157                 } else if (handler == &ixgbevf_msix_clean_many) {
1158                         sprintf(adapter->name[vector], "%s-%s-%d",
1159                                 netdev->name, "TxRx", vector);
1160                 } else {
1161                         /* skip this unused q_vector */
1162                         continue;
1163                 }
1164                 err = request_irq(adapter->msix_entries[vector].vector,
1165                                   handler, 0, adapter->name[vector],
1166                                   adapter->q_vector[vector]);
1167                 if (err) {
1168                         hw_dbg(&adapter->hw,
1169                                "request_irq failed for MSIX interrupt "
1170                                "Error: %d\n", err);
1171                         goto free_queue_irqs;
1172                 }
1173         }
1174
1175         sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1176         err = request_irq(adapter->msix_entries[vector].vector,
1177                           &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1178         if (err) {
1179                 hw_dbg(&adapter->hw,
1180                        "request_irq for msix_mbx failed: %d\n", err);
1181                 goto free_queue_irqs;
1182         }
1183
1184         return 0;
1185
1186 free_queue_irqs:
1187         for (i = vector - 1; i >= 0; i--)
1188                 free_irq(adapter->msix_entries[--vector].vector,
1189                          &(adapter->q_vector[i]));
1190         pci_disable_msix(adapter->pdev);
1191         kfree(adapter->msix_entries);
1192         adapter->msix_entries = NULL;
1193         return err;
1194 }
1195
1196 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1197 {
1198         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1199
1200         for (i = 0; i < q_vectors; i++) {
1201                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1202                 bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1203                 bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1204                 q_vector->rxr_count = 0;
1205                 q_vector->txr_count = 0;
1206                 q_vector->eitr = adapter->eitr_param;
1207         }
1208 }
1209
1210 /**
1211  * ixgbevf_request_irq - initialize interrupts
1212  * @adapter: board private structure
1213  *
1214  * Attempts to configure interrupts using the best available
1215  * capabilities of the hardware and kernel.
1216  **/
1217 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1218 {
1219         int err = 0;
1220
1221         err = ixgbevf_request_msix_irqs(adapter);
1222
1223         if (err)
1224                 hw_dbg(&adapter->hw,
1225                        "request_irq failed, Error %d\n", err);
1226
1227         return err;
1228 }
1229
1230 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1231 {
1232         struct net_device *netdev = adapter->netdev;
1233         int i, q_vectors;
1234
1235         q_vectors = adapter->num_msix_vectors;
1236
1237         i = q_vectors - 1;
1238
1239         free_irq(adapter->msix_entries[i].vector, netdev);
1240         i--;
1241
1242         for (; i >= 0; i--) {
1243                 free_irq(adapter->msix_entries[i].vector,
1244                          adapter->q_vector[i]);
1245         }
1246
1247         ixgbevf_reset_q_vectors(adapter);
1248 }
1249
1250 /**
1251  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1252  * @adapter: board private structure
1253  **/
1254 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1255 {
1256         int i;
1257         struct ixgbe_hw *hw = &adapter->hw;
1258
1259         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1260
1261         IXGBE_WRITE_FLUSH(hw);
1262
1263         for (i = 0; i < adapter->num_msix_vectors; i++)
1264                 synchronize_irq(adapter->msix_entries[i].vector);
1265 }
1266
1267 /**
1268  * ixgbevf_irq_enable - Enable default interrupt generation settings
1269  * @adapter: board private structure
1270  **/
1271 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1272                                       bool queues, bool flush)
1273 {
1274         struct ixgbe_hw *hw = &adapter->hw;
1275         u32 mask;
1276         u64 qmask;
1277
1278         mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1279         qmask = ~0;
1280
1281         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1282
1283         if (queues)
1284                 ixgbevf_irq_enable_queues(adapter, qmask);
1285
1286         if (flush)
1287                 IXGBE_WRITE_FLUSH(hw);
1288 }
1289
1290 /**
1291  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1292  * @adapter: board private structure
1293  *
1294  * Configure the Tx unit of the MAC after a reset.
1295  **/
1296 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1297 {
1298         u64 tdba;
1299         struct ixgbe_hw *hw = &adapter->hw;
1300         u32 i, j, tdlen, txctrl;
1301
1302         /* Setup the HW Tx Head and Tail descriptor pointers */
1303         for (i = 0; i < adapter->num_tx_queues; i++) {
1304                 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1305                 j = ring->reg_idx;
1306                 tdba = ring->dma;
1307                 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1308                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1309                                 (tdba & DMA_BIT_MASK(32)));
1310                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1311                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1312                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1313                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1314                 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1315                 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1316                 /* Disable Tx Head Writeback RO bit, since this hoses
1317                  * bookkeeping if things aren't delivered in order.
1318                  */
1319                 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1320                 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1321                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1322         }
1323 }
1324
1325 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1326
1327 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1328 {
1329         struct ixgbevf_ring *rx_ring;
1330         struct ixgbe_hw *hw = &adapter->hw;
1331         u32 srrctl;
1332
1333         rx_ring = &adapter->rx_ring[index];
1334
1335         srrctl = IXGBE_SRRCTL_DROP_EN;
1336
1337         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1338                 u16 bufsz = IXGBEVF_RXBUFFER_2048;
1339                 /* grow the amount we can receive on large page machines */
1340                 if (bufsz < (PAGE_SIZE / 2))
1341                         bufsz = (PAGE_SIZE / 2);
1342                 /* cap the bufsz at our largest descriptor size */
1343                 bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1344
1345                 srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1346                 srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1347                 srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1348                            IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1349                            IXGBE_SRRCTL_BSIZEHDR_MASK);
1350         } else {
1351                 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1352
1353                 if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1354                         srrctl |= IXGBEVF_RXBUFFER_2048 >>
1355                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1356                 else
1357                         srrctl |= rx_ring->rx_buf_len >>
1358                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1359         }
1360         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1361 }
1362
1363 /**
1364  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1365  * @adapter: board private structure
1366  *
1367  * Configure the Rx unit of the MAC after a reset.
1368  **/
1369 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1370 {
1371         u64 rdba;
1372         struct ixgbe_hw *hw = &adapter->hw;
1373         struct net_device *netdev = adapter->netdev;
1374         int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1375         int i, j;
1376         u32 rdlen;
1377         int rx_buf_len;
1378
1379         /* Decide whether to use packet split mode or not */
1380         if (netdev->mtu > ETH_DATA_LEN) {
1381                 if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1382                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1383                 else
1384                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1385         } else {
1386                 if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1387                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1388                 else
1389                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1390         }
1391
1392         /* Set the RX buffer length according to the mode */
1393         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1394                 /* PSRTYPE must be initialized in 82599 */
1395                 u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1396                         IXGBE_PSRTYPE_UDPHDR |
1397                         IXGBE_PSRTYPE_IPV4HDR |
1398                         IXGBE_PSRTYPE_IPV6HDR |
1399                         IXGBE_PSRTYPE_L2HDR;
1400                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1401                 rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1402         } else {
1403                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1404                 if (netdev->mtu <= ETH_DATA_LEN)
1405                         rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1406                 else
1407                         rx_buf_len = ALIGN(max_frame, 1024);
1408         }
1409
1410         rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1411         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1412          * the Base and Length of the Rx Descriptor Ring */
1413         for (i = 0; i < adapter->num_rx_queues; i++) {
1414                 rdba = adapter->rx_ring[i].dma;
1415                 j = adapter->rx_ring[i].reg_idx;
1416                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1417                                 (rdba & DMA_BIT_MASK(32)));
1418                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1419                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1420                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1421                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1422                 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1423                 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1424                 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1425
1426                 ixgbevf_configure_srrctl(adapter, j);
1427         }
1428 }
1429
1430 static void ixgbevf_vlan_rx_register(struct net_device *netdev,
1431                                      struct vlan_group *grp)
1432 {
1433         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1434         struct ixgbe_hw *hw = &adapter->hw;
1435         int i, j;
1436         u32 ctrl;
1437
1438         adapter->vlgrp = grp;
1439
1440         for (i = 0; i < adapter->num_rx_queues; i++) {
1441                 j = adapter->rx_ring[i].reg_idx;
1442                 ctrl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1443                 ctrl |= IXGBE_RXDCTL_VME;
1444                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), ctrl);
1445         }
1446 }
1447
1448 static void ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1449 {
1450         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1451         struct ixgbe_hw *hw = &adapter->hw;
1452         struct net_device *v_netdev;
1453
1454         /* add VID to filter table */
1455         if (hw->mac.ops.set_vfta)
1456                 hw->mac.ops.set_vfta(hw, vid, 0, true);
1457         /*
1458          * Copy feature flags from netdev to the vlan netdev for this vid.
1459          * This allows things like TSO to bubble down to our vlan device.
1460          */
1461         v_netdev = vlan_group_get_device(adapter->vlgrp, vid);
1462         v_netdev->features |= adapter->netdev->features;
1463         vlan_group_set_device(adapter->vlgrp, vid, v_netdev);
1464 }
1465
1466 static void ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1467 {
1468         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1469         struct ixgbe_hw *hw = &adapter->hw;
1470
1471         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1472                 ixgbevf_irq_disable(adapter);
1473
1474         vlan_group_set_device(adapter->vlgrp, vid, NULL);
1475
1476         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1477                 ixgbevf_irq_enable(adapter, true, true);
1478
1479         /* remove VID from filter table */
1480         if (hw->mac.ops.set_vfta)
1481                 hw->mac.ops.set_vfta(hw, vid, 0, false);
1482 }
1483
1484 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1485 {
1486         ixgbevf_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1487
1488         if (adapter->vlgrp) {
1489                 u16 vid;
1490                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1491                         if (!vlan_group_get_device(adapter->vlgrp, vid))
1492                                 continue;
1493                         ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1494                 }
1495         }
1496 }
1497
1498 /**
1499  * ixgbevf_set_rx_mode - Multicast set
1500  * @netdev: network interface device structure
1501  *
1502  * The set_rx_method entry point is called whenever the multicast address
1503  * list or the network interface flags are updated.  This routine is
1504  * responsible for configuring the hardware for proper multicast mode.
1505  **/
1506 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1507 {
1508         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1509         struct ixgbe_hw *hw = &adapter->hw;
1510
1511         /* reprogram multicast list */
1512         if (hw->mac.ops.update_mc_addr_list)
1513                 hw->mac.ops.update_mc_addr_list(hw, netdev);
1514 }
1515
1516 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1517 {
1518         int q_idx;
1519         struct ixgbevf_q_vector *q_vector;
1520         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1521
1522         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1523                 struct napi_struct *napi;
1524                 q_vector = adapter->q_vector[q_idx];
1525                 if (!q_vector->rxr_count)
1526                         continue;
1527                 napi = &q_vector->napi;
1528                 if (q_vector->rxr_count > 1)
1529                         napi->poll = &ixgbevf_clean_rxonly_many;
1530
1531                 napi_enable(napi);
1532         }
1533 }
1534
1535 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1536 {
1537         int q_idx;
1538         struct ixgbevf_q_vector *q_vector;
1539         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1540
1541         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1542                 q_vector = adapter->q_vector[q_idx];
1543                 if (!q_vector->rxr_count)
1544                         continue;
1545                 napi_disable(&q_vector->napi);
1546         }
1547 }
1548
1549 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1550 {
1551         struct net_device *netdev = adapter->netdev;
1552         int i;
1553
1554         ixgbevf_set_rx_mode(netdev);
1555
1556         ixgbevf_restore_vlan(adapter);
1557
1558         ixgbevf_configure_tx(adapter);
1559         ixgbevf_configure_rx(adapter);
1560         for (i = 0; i < adapter->num_rx_queues; i++) {
1561                 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1562                 ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1563                 ring->next_to_use = ring->count - 1;
1564                 writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1565         }
1566 }
1567
1568 #define IXGBE_MAX_RX_DESC_POLL 10
1569 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1570                                                 int rxr)
1571 {
1572         struct ixgbe_hw *hw = &adapter->hw;
1573         int j = adapter->rx_ring[rxr].reg_idx;
1574         int k;
1575
1576         for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1577                 if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1578                         break;
1579                 else
1580                         msleep(1);
1581         }
1582         if (k >= IXGBE_MAX_RX_DESC_POLL) {
1583                 hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1584                        "not set within the polling period\n", rxr);
1585         }
1586
1587         ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1588                                 (adapter->rx_ring[rxr].count - 1));
1589 }
1590
1591 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1592 {
1593         /* Only save pre-reset stats if there are some */
1594         if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1595                 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1596                         adapter->stats.base_vfgprc;
1597                 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1598                         adapter->stats.base_vfgptc;
1599                 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1600                         adapter->stats.base_vfgorc;
1601                 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1602                         adapter->stats.base_vfgotc;
1603                 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1604                         adapter->stats.base_vfmprc;
1605         }
1606 }
1607
1608 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1609 {
1610         struct ixgbe_hw *hw = &adapter->hw;
1611
1612         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1613         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1614         adapter->stats.last_vfgorc |=
1615                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1616         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1617         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1618         adapter->stats.last_vfgotc |=
1619                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1620         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1621
1622         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1623         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1624         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1625         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1626         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1627 }
1628
1629 static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1630 {
1631         struct net_device *netdev = adapter->netdev;
1632         struct ixgbe_hw *hw = &adapter->hw;
1633         int i, j = 0;
1634         int num_rx_rings = adapter->num_rx_queues;
1635         u32 txdctl, rxdctl;
1636
1637         for (i = 0; i < adapter->num_tx_queues; i++) {
1638                 j = adapter->tx_ring[i].reg_idx;
1639                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1640                 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1641                 txdctl |= (8 << 16);
1642                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1643         }
1644
1645         for (i = 0; i < adapter->num_tx_queues; i++) {
1646                 j = adapter->tx_ring[i].reg_idx;
1647                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1648                 txdctl |= IXGBE_TXDCTL_ENABLE;
1649                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1650         }
1651
1652         for (i = 0; i < num_rx_rings; i++) {
1653                 j = adapter->rx_ring[i].reg_idx;
1654                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1655                 rxdctl |= IXGBE_RXDCTL_ENABLE;
1656                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1657                 ixgbevf_rx_desc_queue_enable(adapter, i);
1658         }
1659
1660         ixgbevf_configure_msix(adapter);
1661
1662         if (hw->mac.ops.set_rar) {
1663                 if (is_valid_ether_addr(hw->mac.addr))
1664                         hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1665                 else
1666                         hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1667         }
1668
1669         clear_bit(__IXGBEVF_DOWN, &adapter->state);
1670         ixgbevf_napi_enable_all(adapter);
1671
1672         /* enable transmits */
1673         netif_tx_start_all_queues(netdev);
1674
1675         ixgbevf_save_reset_stats(adapter);
1676         ixgbevf_init_last_counter_stats(adapter);
1677
1678         /* bring the link up in the watchdog, this could race with our first
1679          * link up interrupt but shouldn't be a problem */
1680         adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1681         adapter->link_check_timeout = jiffies;
1682         mod_timer(&adapter->watchdog_timer, jiffies);
1683         return 0;
1684 }
1685
1686 int ixgbevf_up(struct ixgbevf_adapter *adapter)
1687 {
1688         int err;
1689         struct ixgbe_hw *hw = &adapter->hw;
1690
1691         ixgbevf_configure(adapter);
1692
1693         err = ixgbevf_up_complete(adapter);
1694
1695         /* clear any pending interrupts, may auto mask */
1696         IXGBE_READ_REG(hw, IXGBE_VTEICR);
1697
1698         ixgbevf_irq_enable(adapter, true, true);
1699
1700         return err;
1701 }
1702
1703 /**
1704  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1705  * @adapter: board private structure
1706  * @rx_ring: ring to free buffers from
1707  **/
1708 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1709                                   struct ixgbevf_ring *rx_ring)
1710 {
1711         struct pci_dev *pdev = adapter->pdev;
1712         unsigned long size;
1713         unsigned int i;
1714
1715         if (!rx_ring->rx_buffer_info)
1716                 return;
1717
1718         /* Free all the Rx ring sk_buffs */
1719         for (i = 0; i < rx_ring->count; i++) {
1720                 struct ixgbevf_rx_buffer *rx_buffer_info;
1721
1722                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1723                 if (rx_buffer_info->dma) {
1724                         pci_unmap_single(pdev, rx_buffer_info->dma,
1725                                          rx_ring->rx_buf_len,
1726                                          PCI_DMA_FROMDEVICE);
1727                         rx_buffer_info->dma = 0;
1728                 }
1729                 if (rx_buffer_info->skb) {
1730                         struct sk_buff *skb = rx_buffer_info->skb;
1731                         rx_buffer_info->skb = NULL;
1732                         do {
1733                                 struct sk_buff *this = skb;
1734                                 skb = skb->prev;
1735                                 dev_kfree_skb(this);
1736                         } while (skb);
1737                 }
1738                 if (!rx_buffer_info->page)
1739                         continue;
1740                 pci_unmap_page(pdev, rx_buffer_info->page_dma, PAGE_SIZE / 2,
1741                                PCI_DMA_FROMDEVICE);
1742                 rx_buffer_info->page_dma = 0;
1743                 put_page(rx_buffer_info->page);
1744                 rx_buffer_info->page = NULL;
1745                 rx_buffer_info->page_offset = 0;
1746         }
1747
1748         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1749         memset(rx_ring->rx_buffer_info, 0, size);
1750
1751         /* Zero out the descriptor ring */
1752         memset(rx_ring->desc, 0, rx_ring->size);
1753
1754         rx_ring->next_to_clean = 0;
1755         rx_ring->next_to_use = 0;
1756
1757         if (rx_ring->head)
1758                 writel(0, adapter->hw.hw_addr + rx_ring->head);
1759         if (rx_ring->tail)
1760                 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1761 }
1762
1763 /**
1764  * ixgbevf_clean_tx_ring - Free Tx Buffers
1765  * @adapter: board private structure
1766  * @tx_ring: ring to be cleaned
1767  **/
1768 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1769                                   struct ixgbevf_ring *tx_ring)
1770 {
1771         struct ixgbevf_tx_buffer *tx_buffer_info;
1772         unsigned long size;
1773         unsigned int i;
1774
1775         if (!tx_ring->tx_buffer_info)
1776                 return;
1777
1778         /* Free all the Tx ring sk_buffs */
1779
1780         for (i = 0; i < tx_ring->count; i++) {
1781                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1782                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1783         }
1784
1785         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1786         memset(tx_ring->tx_buffer_info, 0, size);
1787
1788         memset(tx_ring->desc, 0, tx_ring->size);
1789
1790         tx_ring->next_to_use = 0;
1791         tx_ring->next_to_clean = 0;
1792
1793         if (tx_ring->head)
1794                 writel(0, adapter->hw.hw_addr + tx_ring->head);
1795         if (tx_ring->tail)
1796                 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1797 }
1798
1799 /**
1800  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1801  * @adapter: board private structure
1802  **/
1803 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1804 {
1805         int i;
1806
1807         for (i = 0; i < adapter->num_rx_queues; i++)
1808                 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1809 }
1810
1811 /**
1812  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1813  * @adapter: board private structure
1814  **/
1815 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1816 {
1817         int i;
1818
1819         for (i = 0; i < adapter->num_tx_queues; i++)
1820                 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1821 }
1822
1823 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1824 {
1825         struct net_device *netdev = adapter->netdev;
1826         struct ixgbe_hw *hw = &adapter->hw;
1827         u32 txdctl;
1828         int i, j;
1829
1830         /* signal that we are down to the interrupt handler */
1831         set_bit(__IXGBEVF_DOWN, &adapter->state);
1832         /* disable receives */
1833
1834         netif_tx_disable(netdev);
1835
1836         msleep(10);
1837
1838         netif_tx_stop_all_queues(netdev);
1839
1840         ixgbevf_irq_disable(adapter);
1841
1842         ixgbevf_napi_disable_all(adapter);
1843
1844         del_timer_sync(&adapter->watchdog_timer);
1845         /* can't call flush scheduled work here because it can deadlock
1846          * if linkwatch_event tries to acquire the rtnl_lock which we are
1847          * holding */
1848         while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1849                 msleep(1);
1850
1851         /* disable transmits in the hardware now that interrupts are off */
1852         for (i = 0; i < adapter->num_tx_queues; i++) {
1853                 j = adapter->tx_ring[i].reg_idx;
1854                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1855                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1856                                 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1857         }
1858
1859         netif_carrier_off(netdev);
1860
1861         if (!pci_channel_offline(adapter->pdev))
1862                 ixgbevf_reset(adapter);
1863
1864         ixgbevf_clean_all_tx_rings(adapter);
1865         ixgbevf_clean_all_rx_rings(adapter);
1866 }
1867
1868 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1869 {
1870         struct ixgbe_hw *hw = &adapter->hw;
1871
1872         WARN_ON(in_interrupt());
1873
1874         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1875                 msleep(1);
1876
1877         /*
1878          * Check if PF is up before re-init.  If not then skip until
1879          * later when the PF is up and ready to service requests from
1880          * the VF via mailbox.  If the VF is up and running then the
1881          * watchdog task will continue to schedule reset tasks until
1882          * the PF is up and running.
1883          */
1884         if (!hw->mac.ops.reset_hw(hw)) {
1885                 ixgbevf_down(adapter);
1886                 ixgbevf_up(adapter);
1887         }
1888
1889         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1890 }
1891
1892 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1893 {
1894         struct ixgbe_hw *hw = &adapter->hw;
1895         struct net_device *netdev = adapter->netdev;
1896
1897         if (hw->mac.ops.reset_hw(hw))
1898                 hw_dbg(hw, "PF still resetting\n");
1899         else
1900                 hw->mac.ops.init_hw(hw);
1901
1902         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1903                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1904                        netdev->addr_len);
1905                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1906                        netdev->addr_len);
1907         }
1908 }
1909
1910 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1911                                          int vectors)
1912 {
1913         int err, vector_threshold;
1914
1915         /* We'll want at least 3 (vector_threshold):
1916          * 1) TxQ[0] Cleanup
1917          * 2) RxQ[0] Cleanup
1918          * 3) Other (Link Status Change, etc.)
1919          */
1920         vector_threshold = MIN_MSIX_COUNT;
1921
1922         /* The more we get, the more we will assign to Tx/Rx Cleanup
1923          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1924          * Right now, we simply care about how many we'll get; we'll
1925          * set them up later while requesting irq's.
1926          */
1927         while (vectors >= vector_threshold) {
1928                 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1929                                       vectors);
1930                 if (!err) /* Success in acquiring all requested vectors. */
1931                         break;
1932                 else if (err < 0)
1933                         vectors = 0; /* Nasty failure, quit now */
1934                 else /* err == number of vectors we should try again with */
1935                         vectors = err;
1936         }
1937
1938         if (vectors < vector_threshold) {
1939                 /* Can't allocate enough MSI-X interrupts?  Oh well.
1940                  * This just means we'll go with either a single MSI
1941                  * vector or fall back to legacy interrupts.
1942                  */
1943                 hw_dbg(&adapter->hw,
1944                        "Unable to allocate MSI-X interrupts\n");
1945                 kfree(adapter->msix_entries);
1946                 adapter->msix_entries = NULL;
1947         } else {
1948                 /*
1949                  * Adjust for only the vectors we'll use, which is minimum
1950                  * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1951                  * vectors we were allocated.
1952                  */
1953                 adapter->num_msix_vectors = vectors;
1954         }
1955 }
1956
1957 /*
1958  * ixgbe_set_num_queues: Allocate queues for device, feature dependant
1959  * @adapter: board private structure to initialize
1960  *
1961  * This is the top level queue allocation routine.  The order here is very
1962  * important, starting with the "most" number of features turned on at once,
1963  * and ending with the smallest set of features.  This way large combinations
1964  * can be allocated if they're turned on, and smaller combinations are the
1965  * fallthrough conditions.
1966  *
1967  **/
1968 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1969 {
1970         /* Start with base case */
1971         adapter->num_rx_queues = 1;
1972         adapter->num_tx_queues = 1;
1973         adapter->num_rx_pools = adapter->num_rx_queues;
1974         adapter->num_rx_queues_per_pool = 1;
1975 }
1976
1977 /**
1978  * ixgbevf_alloc_queues - Allocate memory for all rings
1979  * @adapter: board private structure to initialize
1980  *
1981  * We allocate one ring per queue at run-time since we don't know the
1982  * number of queues at compile-time.  The polling_netdev array is
1983  * intended for Multiqueue, but should work fine with a single queue.
1984  **/
1985 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1986 {
1987         int i;
1988
1989         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1990                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
1991         if (!adapter->tx_ring)
1992                 goto err_tx_ring_allocation;
1993
1994         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1995                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
1996         if (!adapter->rx_ring)
1997                 goto err_rx_ring_allocation;
1998
1999         for (i = 0; i < adapter->num_tx_queues; i++) {
2000                 adapter->tx_ring[i].count = adapter->tx_ring_count;
2001                 adapter->tx_ring[i].queue_index = i;
2002                 adapter->tx_ring[i].reg_idx = i;
2003         }
2004
2005         for (i = 0; i < adapter->num_rx_queues; i++) {
2006                 adapter->rx_ring[i].count = adapter->rx_ring_count;
2007                 adapter->rx_ring[i].queue_index = i;
2008                 adapter->rx_ring[i].reg_idx = i;
2009         }
2010
2011         return 0;
2012
2013 err_rx_ring_allocation:
2014         kfree(adapter->tx_ring);
2015 err_tx_ring_allocation:
2016         return -ENOMEM;
2017 }
2018
2019 /**
2020  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2021  * @adapter: board private structure to initialize
2022  *
2023  * Attempt to configure the interrupts using the best available
2024  * capabilities of the hardware and the kernel.
2025  **/
2026 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2027 {
2028         int err = 0;
2029         int vector, v_budget;
2030
2031         /*
2032          * It's easy to be greedy for MSI-X vectors, but it really
2033          * doesn't do us much good if we have a lot more vectors
2034          * than CPU's.  So let's be conservative and only ask for
2035          * (roughly) twice the number of vectors as there are CPU's.
2036          */
2037         v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2038                        (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2039
2040         /* A failure in MSI-X entry allocation isn't fatal, but it does
2041          * mean we disable MSI-X capabilities of the adapter. */
2042         adapter->msix_entries = kcalloc(v_budget,
2043                                         sizeof(struct msix_entry), GFP_KERNEL);
2044         if (!adapter->msix_entries) {
2045                 err = -ENOMEM;
2046                 goto out;
2047         }
2048
2049         for (vector = 0; vector < v_budget; vector++)
2050                 adapter->msix_entries[vector].entry = vector;
2051
2052         ixgbevf_acquire_msix_vectors(adapter, v_budget);
2053
2054 out:
2055         return err;
2056 }
2057
2058 /**
2059  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2060  * @adapter: board private structure to initialize
2061  *
2062  * We allocate one q_vector per queue interrupt.  If allocation fails we
2063  * return -ENOMEM.
2064  **/
2065 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2066 {
2067         int q_idx, num_q_vectors;
2068         struct ixgbevf_q_vector *q_vector;
2069         int napi_vectors;
2070         int (*poll)(struct napi_struct *, int);
2071
2072         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2073         napi_vectors = adapter->num_rx_queues;
2074         poll = &ixgbevf_clean_rxonly;
2075
2076         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2077                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2078                 if (!q_vector)
2079                         goto err_out;
2080                 q_vector->adapter = adapter;
2081                 q_vector->v_idx = q_idx;
2082                 q_vector->eitr = adapter->eitr_param;
2083                 if (q_idx < napi_vectors)
2084                         netif_napi_add(adapter->netdev, &q_vector->napi,
2085                                        (*poll), 64);
2086                 adapter->q_vector[q_idx] = q_vector;
2087         }
2088
2089         return 0;
2090
2091 err_out:
2092         while (q_idx) {
2093                 q_idx--;
2094                 q_vector = adapter->q_vector[q_idx];
2095                 netif_napi_del(&q_vector->napi);
2096                 kfree(q_vector);
2097                 adapter->q_vector[q_idx] = NULL;
2098         }
2099         return -ENOMEM;
2100 }
2101
2102 /**
2103  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2104  * @adapter: board private structure to initialize
2105  *
2106  * This function frees the memory allocated to the q_vectors.  In addition if
2107  * NAPI is enabled it will delete any references to the NAPI struct prior
2108  * to freeing the q_vector.
2109  **/
2110 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2111 {
2112         int q_idx, num_q_vectors;
2113         int napi_vectors;
2114
2115         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2116         napi_vectors = adapter->num_rx_queues;
2117
2118         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2119                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2120
2121                 adapter->q_vector[q_idx] = NULL;
2122                 if (q_idx < napi_vectors)
2123                         netif_napi_del(&q_vector->napi);
2124                 kfree(q_vector);
2125         }
2126 }
2127
2128 /**
2129  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2130  * @adapter: board private structure
2131  *
2132  **/
2133 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2134 {
2135         pci_disable_msix(adapter->pdev);
2136         kfree(adapter->msix_entries);
2137         adapter->msix_entries = NULL;
2138
2139         return;
2140 }
2141
2142 /**
2143  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2144  * @adapter: board private structure to initialize
2145  *
2146  **/
2147 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2148 {
2149         int err;
2150
2151         /* Number of supported queues */
2152         ixgbevf_set_num_queues(adapter);
2153
2154         err = ixgbevf_set_interrupt_capability(adapter);
2155         if (err) {
2156                 hw_dbg(&adapter->hw,
2157                        "Unable to setup interrupt capabilities\n");
2158                 goto err_set_interrupt;
2159         }
2160
2161         err = ixgbevf_alloc_q_vectors(adapter);
2162         if (err) {
2163                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2164                        "vectors\n");
2165                 goto err_alloc_q_vectors;
2166         }
2167
2168         err = ixgbevf_alloc_queues(adapter);
2169         if (err) {
2170                 printk(KERN_ERR "Unable to allocate memory for queues\n");
2171                 goto err_alloc_queues;
2172         }
2173
2174         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2175                "Tx Queue count = %u\n",
2176                (adapter->num_rx_queues > 1) ? "Enabled" :
2177                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2178
2179         set_bit(__IXGBEVF_DOWN, &adapter->state);
2180
2181         return 0;
2182 err_alloc_queues:
2183         ixgbevf_free_q_vectors(adapter);
2184 err_alloc_q_vectors:
2185         ixgbevf_reset_interrupt_capability(adapter);
2186 err_set_interrupt:
2187         return err;
2188 }
2189
2190 /**
2191  * ixgbevf_sw_init - Initialize general software structures
2192  * (struct ixgbevf_adapter)
2193  * @adapter: board private structure to initialize
2194  *
2195  * ixgbevf_sw_init initializes the Adapter private data structure.
2196  * Fields are initialized based on PCI device information and
2197  * OS network device settings (MTU size).
2198  **/
2199 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2200 {
2201         struct ixgbe_hw *hw = &adapter->hw;
2202         struct pci_dev *pdev = adapter->pdev;
2203         int err;
2204
2205         /* PCI config space info */
2206
2207         hw->vendor_id = pdev->vendor;
2208         hw->device_id = pdev->device;
2209         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2210         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2211         hw->subsystem_device_id = pdev->subsystem_device;
2212
2213         hw->mbx.ops.init_params(hw);
2214         hw->mac.max_tx_queues = MAX_TX_QUEUES;
2215         hw->mac.max_rx_queues = MAX_RX_QUEUES;
2216         err = hw->mac.ops.reset_hw(hw);
2217         if (err) {
2218                 dev_info(&pdev->dev,
2219                          "PF still in reset state, assigning new address\n");
2220                 random_ether_addr(hw->mac.addr);
2221         } else {
2222                 err = hw->mac.ops.init_hw(hw);
2223                 if (err) {
2224                         printk(KERN_ERR "init_shared_code failed: %d\n", err);
2225                         goto out;
2226                 }
2227         }
2228
2229         /* Enable dynamic interrupt throttling rates */
2230         adapter->eitr_param = 20000;
2231         adapter->itr_setting = 1;
2232
2233         /* set defaults for eitr in MegaBytes */
2234         adapter->eitr_low = 10;
2235         adapter->eitr_high = 20;
2236
2237         /* set default ring sizes */
2238         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2239         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2240
2241         /* enable rx csum by default */
2242         adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2243
2244         set_bit(__IXGBEVF_DOWN, &adapter->state);
2245
2246 out:
2247         return err;
2248 }
2249
2250 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
2251         {                                                       \
2252                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
2253                 if (current_counter < last_counter)             \
2254                         counter += 0x100000000LL;               \
2255                 last_counter = current_counter;                 \
2256                 counter &= 0xFFFFFFFF00000000LL;                \
2257                 counter |= current_counter;                     \
2258         }
2259
2260 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2261         {                                                                \
2262                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
2263                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
2264                 u64 current_counter = (current_counter_msb << 32) |      \
2265                         current_counter_lsb;                             \
2266                 if (current_counter < last_counter)                      \
2267                         counter += 0x1000000000LL;                       \
2268                 last_counter = current_counter;                          \
2269                 counter &= 0xFFFFFFF000000000LL;                         \
2270                 counter |= current_counter;                              \
2271         }
2272 /**
2273  * ixgbevf_update_stats - Update the board statistics counters.
2274  * @adapter: board private structure
2275  **/
2276 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2277 {
2278         struct ixgbe_hw *hw = &adapter->hw;
2279
2280         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2281                                 adapter->stats.vfgprc);
2282         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2283                                 adapter->stats.vfgptc);
2284         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2285                                 adapter->stats.last_vfgorc,
2286                                 adapter->stats.vfgorc);
2287         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2288                                 adapter->stats.last_vfgotc,
2289                                 adapter->stats.vfgotc);
2290         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2291                                 adapter->stats.vfmprc);
2292
2293         /* Fill out the OS statistics structure */
2294         adapter->net_stats.multicast = adapter->stats.vfmprc -
2295                 adapter->stats.base_vfmprc;
2296 }
2297
2298 /**
2299  * ixgbevf_watchdog - Timer Call-back
2300  * @data: pointer to adapter cast into an unsigned long
2301  **/
2302 static void ixgbevf_watchdog(unsigned long data)
2303 {
2304         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2305         struct ixgbe_hw *hw = &adapter->hw;
2306         u64 eics = 0;
2307         int i;
2308
2309         /*
2310          * Do the watchdog outside of interrupt context due to the lovely
2311          * delays that some of the newer hardware requires
2312          */
2313
2314         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2315                 goto watchdog_short_circuit;
2316
2317         /* get one bit for every active tx/rx interrupt vector */
2318         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2319                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2320                 if (qv->rxr_count || qv->txr_count)
2321                         eics |= (1 << i);
2322         }
2323
2324         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2325
2326 watchdog_short_circuit:
2327         schedule_work(&adapter->watchdog_task);
2328 }
2329
2330 /**
2331  * ixgbevf_tx_timeout - Respond to a Tx Hang
2332  * @netdev: network interface device structure
2333  **/
2334 static void ixgbevf_tx_timeout(struct net_device *netdev)
2335 {
2336         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2337
2338         /* Do the reset outside of interrupt context */
2339         schedule_work(&adapter->reset_task);
2340 }
2341
2342 static void ixgbevf_reset_task(struct work_struct *work)
2343 {
2344         struct ixgbevf_adapter *adapter;
2345         adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2346
2347         /* If we're already down or resetting, just bail */
2348         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2349             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2350                 return;
2351
2352         adapter->tx_timeout_count++;
2353
2354         ixgbevf_reinit_locked(adapter);
2355 }
2356
2357 /**
2358  * ixgbevf_watchdog_task - worker thread to bring link up
2359  * @work: pointer to work_struct containing our data
2360  **/
2361 static void ixgbevf_watchdog_task(struct work_struct *work)
2362 {
2363         struct ixgbevf_adapter *adapter = container_of(work,
2364                                                        struct ixgbevf_adapter,
2365                                                        watchdog_task);
2366         struct net_device *netdev = adapter->netdev;
2367         struct ixgbe_hw *hw = &adapter->hw;
2368         u32 link_speed = adapter->link_speed;
2369         bool link_up = adapter->link_up;
2370
2371         adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2372
2373         /*
2374          * Always check the link on the watchdog because we have
2375          * no LSC interrupt
2376          */
2377         if (hw->mac.ops.check_link) {
2378                 if ((hw->mac.ops.check_link(hw, &link_speed,
2379                                             &link_up, false)) != 0) {
2380                         adapter->link_up = link_up;
2381                         adapter->link_speed = link_speed;
2382                         netif_carrier_off(netdev);
2383                         netif_tx_stop_all_queues(netdev);
2384                         schedule_work(&adapter->reset_task);
2385                         goto pf_has_reset;
2386                 }
2387         } else {
2388                 /* always assume link is up, if no check link
2389                  * function */
2390                 link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2391                 link_up = true;
2392         }
2393         adapter->link_up = link_up;
2394         adapter->link_speed = link_speed;
2395
2396         if (link_up) {
2397                 if (!netif_carrier_ok(netdev)) {
2398                         hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2399                                (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2400                                10 : 1);
2401                         netif_carrier_on(netdev);
2402                         netif_tx_wake_all_queues(netdev);
2403                 } else {
2404                         /* Force detection of hung controller */
2405                         adapter->detect_tx_hung = true;
2406                 }
2407         } else {
2408                 adapter->link_up = false;
2409                 adapter->link_speed = 0;
2410                 if (netif_carrier_ok(netdev)) {
2411                         hw_dbg(&adapter->hw, "NIC Link is Down\n");
2412                         netif_carrier_off(netdev);
2413                         netif_tx_stop_all_queues(netdev);
2414                 }
2415         }
2416
2417         ixgbevf_update_stats(adapter);
2418
2419 pf_has_reset:
2420         /* Force detection of hung controller every watchdog period */
2421         adapter->detect_tx_hung = true;
2422
2423         /* Reset the timer */
2424         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2425                 mod_timer(&adapter->watchdog_timer,
2426                           round_jiffies(jiffies + (2 * HZ)));
2427
2428         adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2429 }
2430
2431 /**
2432  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2433  * @adapter: board private structure
2434  * @tx_ring: Tx descriptor ring for a specific queue
2435  *
2436  * Free all transmit software resources
2437  **/
2438 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2439                                struct ixgbevf_ring *tx_ring)
2440 {
2441         struct pci_dev *pdev = adapter->pdev;
2442
2443         ixgbevf_clean_tx_ring(adapter, tx_ring);
2444
2445         vfree(tx_ring->tx_buffer_info);
2446         tx_ring->tx_buffer_info = NULL;
2447
2448         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2449
2450         tx_ring->desc = NULL;
2451 }
2452
2453 /**
2454  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2455  * @adapter: board private structure
2456  *
2457  * Free all transmit software resources
2458  **/
2459 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2460 {
2461         int i;
2462
2463         for (i = 0; i < adapter->num_tx_queues; i++)
2464                 if (adapter->tx_ring[i].desc)
2465                         ixgbevf_free_tx_resources(adapter,
2466                                                   &adapter->tx_ring[i]);
2467
2468 }
2469
2470 /**
2471  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2472  * @adapter: board private structure
2473  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2474  *
2475  * Return 0 on success, negative on failure
2476  **/
2477 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2478                                struct ixgbevf_ring *tx_ring)
2479 {
2480         struct pci_dev *pdev = adapter->pdev;
2481         int size;
2482
2483         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2484         tx_ring->tx_buffer_info = vmalloc(size);
2485         if (!tx_ring->tx_buffer_info)
2486                 goto err;
2487         memset(tx_ring->tx_buffer_info, 0, size);
2488
2489         /* round up to nearest 4K */
2490         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2491         tx_ring->size = ALIGN(tx_ring->size, 4096);
2492
2493         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
2494                                              &tx_ring->dma);
2495         if (!tx_ring->desc)
2496                 goto err;
2497
2498         tx_ring->next_to_use = 0;
2499         tx_ring->next_to_clean = 0;
2500         tx_ring->work_limit = tx_ring->count;
2501         return 0;
2502
2503 err:
2504         vfree(tx_ring->tx_buffer_info);
2505         tx_ring->tx_buffer_info = NULL;
2506         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2507                "descriptor ring\n");
2508         return -ENOMEM;
2509 }
2510
2511 /**
2512  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2513  * @adapter: board private structure
2514  *
2515  * If this function returns with an error, then it's possible one or
2516  * more of the rings is populated (while the rest are not).  It is the
2517  * callers duty to clean those orphaned rings.
2518  *
2519  * Return 0 on success, negative on failure
2520  **/
2521 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2522 {
2523         int i, err = 0;
2524
2525         for (i = 0; i < adapter->num_tx_queues; i++) {
2526                 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2527                 if (!err)
2528                         continue;
2529                 hw_dbg(&adapter->hw,
2530                        "Allocation for Tx Queue %u failed\n", i);
2531                 break;
2532         }
2533
2534         return err;
2535 }
2536
2537 /**
2538  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2539  * @adapter: board private structure
2540  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2541  *
2542  * Returns 0 on success, negative on failure
2543  **/
2544 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2545                                struct ixgbevf_ring *rx_ring)
2546 {
2547         struct pci_dev *pdev = adapter->pdev;
2548         int size;
2549
2550         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2551         rx_ring->rx_buffer_info = vmalloc(size);
2552         if (!rx_ring->rx_buffer_info) {
2553                 hw_dbg(&adapter->hw,
2554                        "Unable to vmalloc buffer memory for "
2555                        "the receive descriptor ring\n");
2556                 goto alloc_failed;
2557         }
2558         memset(rx_ring->rx_buffer_info, 0, size);
2559
2560         /* Round up to nearest 4K */
2561         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2562         rx_ring->size = ALIGN(rx_ring->size, 4096);
2563
2564         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2565                                              &rx_ring->dma);
2566
2567         if (!rx_ring->desc) {
2568                 hw_dbg(&adapter->hw,
2569                        "Unable to allocate memory for "
2570                        "the receive descriptor ring\n");
2571                 vfree(rx_ring->rx_buffer_info);
2572                 rx_ring->rx_buffer_info = NULL;
2573                 goto alloc_failed;
2574         }
2575
2576         rx_ring->next_to_clean = 0;
2577         rx_ring->next_to_use = 0;
2578
2579         return 0;
2580 alloc_failed:
2581         return -ENOMEM;
2582 }
2583
2584 /**
2585  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2586  * @adapter: board private structure
2587  *
2588  * If this function returns with an error, then it's possible one or
2589  * more of the rings is populated (while the rest are not).  It is the
2590  * callers duty to clean those orphaned rings.
2591  *
2592  * Return 0 on success, negative on failure
2593  **/
2594 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2595 {
2596         int i, err = 0;
2597
2598         for (i = 0; i < adapter->num_rx_queues; i++) {
2599                 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2600                 if (!err)
2601                         continue;
2602                 hw_dbg(&adapter->hw,
2603                        "Allocation for Rx Queue %u failed\n", i);
2604                 break;
2605         }
2606         return err;
2607 }
2608
2609 /**
2610  * ixgbevf_free_rx_resources - Free Rx Resources
2611  * @adapter: board private structure
2612  * @rx_ring: ring to clean the resources from
2613  *
2614  * Free all receive software resources
2615  **/
2616 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2617                                struct ixgbevf_ring *rx_ring)
2618 {
2619         struct pci_dev *pdev = adapter->pdev;
2620
2621         ixgbevf_clean_rx_ring(adapter, rx_ring);
2622
2623         vfree(rx_ring->rx_buffer_info);
2624         rx_ring->rx_buffer_info = NULL;
2625
2626         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2627
2628         rx_ring->desc = NULL;
2629 }
2630
2631 /**
2632  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2633  * @adapter: board private structure
2634  *
2635  * Free all receive software resources
2636  **/
2637 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2638 {
2639         int i;
2640
2641         for (i = 0; i < adapter->num_rx_queues; i++)
2642                 if (adapter->rx_ring[i].desc)
2643                         ixgbevf_free_rx_resources(adapter,
2644                                                   &adapter->rx_ring[i]);
2645 }
2646
2647 /**
2648  * ixgbevf_open - Called when a network interface is made active
2649  * @netdev: network interface device structure
2650  *
2651  * Returns 0 on success, negative value on failure
2652  *
2653  * The open entry point is called when a network interface is made
2654  * active by the system (IFF_UP).  At this point all resources needed
2655  * for transmit and receive operations are allocated, the interrupt
2656  * handler is registered with the OS, the watchdog timer is started,
2657  * and the stack is notified that the interface is ready.
2658  **/
2659 static int ixgbevf_open(struct net_device *netdev)
2660 {
2661         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2662         struct ixgbe_hw *hw = &adapter->hw;
2663         int err;
2664
2665         /* disallow open during test */
2666         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2667                 return -EBUSY;
2668
2669         if (hw->adapter_stopped) {
2670                 ixgbevf_reset(adapter);
2671                 /* if adapter is still stopped then PF isn't up and
2672                  * the vf can't start. */
2673                 if (hw->adapter_stopped) {
2674                         err = IXGBE_ERR_MBX;
2675                         printk(KERN_ERR "Unable to start - perhaps the PF"
2676                                " Driver isn't up yet\n");
2677                         goto err_setup_reset;
2678                 }
2679         }
2680
2681         /* allocate transmit descriptors */
2682         err = ixgbevf_setup_all_tx_resources(adapter);
2683         if (err)
2684                 goto err_setup_tx;
2685
2686         /* allocate receive descriptors */
2687         err = ixgbevf_setup_all_rx_resources(adapter);
2688         if (err)
2689                 goto err_setup_rx;
2690
2691         ixgbevf_configure(adapter);
2692
2693         /*
2694          * Map the Tx/Rx rings to the vectors we were allotted.
2695          * if request_irq will be called in this function map_rings
2696          * must be called *before* up_complete
2697          */
2698         ixgbevf_map_rings_to_vectors(adapter);
2699
2700         err = ixgbevf_up_complete(adapter);
2701         if (err)
2702                 goto err_up;
2703
2704         /* clear any pending interrupts, may auto mask */
2705         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2706         err = ixgbevf_request_irq(adapter);
2707         if (err)
2708                 goto err_req_irq;
2709
2710         ixgbevf_irq_enable(adapter, true, true);
2711
2712         return 0;
2713
2714 err_req_irq:
2715         ixgbevf_down(adapter);
2716 err_up:
2717         ixgbevf_free_irq(adapter);
2718 err_setup_rx:
2719         ixgbevf_free_all_rx_resources(adapter);
2720 err_setup_tx:
2721         ixgbevf_free_all_tx_resources(adapter);
2722         ixgbevf_reset(adapter);
2723
2724 err_setup_reset:
2725
2726         return err;
2727 }
2728
2729 /**
2730  * ixgbevf_close - Disables a network interface
2731  * @netdev: network interface device structure
2732  *
2733  * Returns 0, this is not allowed to fail
2734  *
2735  * The close entry point is called when an interface is de-activated
2736  * by the OS.  The hardware is still under the drivers control, but
2737  * needs to be disabled.  A global MAC reset is issued to stop the
2738  * hardware, and all transmit and receive resources are freed.
2739  **/
2740 static int ixgbevf_close(struct net_device *netdev)
2741 {
2742         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2743
2744         ixgbevf_down(adapter);
2745         ixgbevf_free_irq(adapter);
2746
2747         ixgbevf_free_all_tx_resources(adapter);
2748         ixgbevf_free_all_rx_resources(adapter);
2749
2750         return 0;
2751 }
2752
2753 static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2754                        struct ixgbevf_ring *tx_ring,
2755                        struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2756 {
2757         struct ixgbe_adv_tx_context_desc *context_desc;
2758         unsigned int i;
2759         int err;
2760         struct ixgbevf_tx_buffer *tx_buffer_info;
2761         u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2762         u32 mss_l4len_idx, l4len;
2763
2764         if (skb_is_gso(skb)) {
2765                 if (skb_header_cloned(skb)) {
2766                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2767                         if (err)
2768                                 return err;
2769                 }
2770                 l4len = tcp_hdrlen(skb);
2771                 *hdr_len += l4len;
2772
2773                 if (skb->protocol == htons(ETH_P_IP)) {
2774                         struct iphdr *iph = ip_hdr(skb);
2775                         iph->tot_len = 0;
2776                         iph->check = 0;
2777                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2778                                                                  iph->daddr, 0,
2779                                                                  IPPROTO_TCP,
2780                                                                  0);
2781                         adapter->hw_tso_ctxt++;
2782                 } else if (skb_is_gso_v6(skb)) {
2783                         ipv6_hdr(skb)->payload_len = 0;
2784                         tcp_hdr(skb)->check =
2785                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2786                                              &ipv6_hdr(skb)->daddr,
2787                                              0, IPPROTO_TCP, 0);
2788                         adapter->hw_tso6_ctxt++;
2789                 }
2790
2791                 i = tx_ring->next_to_use;
2792
2793                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2794                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2795
2796                 /* VLAN MACLEN IPLEN */
2797                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2798                         vlan_macip_lens |=
2799                                 (tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2800                 vlan_macip_lens |= ((skb_network_offset(skb)) <<
2801                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2802                 *hdr_len += skb_network_offset(skb);
2803                 vlan_macip_lens |=
2804                         (skb_transport_header(skb) - skb_network_header(skb));
2805                 *hdr_len +=
2806                         (skb_transport_header(skb) - skb_network_header(skb));
2807                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2808                 context_desc->seqnum_seed = 0;
2809
2810                 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2811                 type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2812                                     IXGBE_ADVTXD_DTYP_CTXT);
2813
2814                 if (skb->protocol == htons(ETH_P_IP))
2815                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2816                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2817                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2818
2819                 /* MSS L4LEN IDX */
2820                 mss_l4len_idx =
2821                         (skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2822                 mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2823                 /* use index 1 for TSO */
2824                 mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2825                 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2826
2827                 tx_buffer_info->time_stamp = jiffies;
2828                 tx_buffer_info->next_to_watch = i;
2829
2830                 i++;
2831                 if (i == tx_ring->count)
2832                         i = 0;
2833                 tx_ring->next_to_use = i;
2834
2835                 return true;
2836         }
2837
2838         return false;
2839 }
2840
2841 static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2842                             struct ixgbevf_ring *tx_ring,
2843                             struct sk_buff *skb, u32 tx_flags)
2844 {
2845         struct ixgbe_adv_tx_context_desc *context_desc;
2846         unsigned int i;
2847         struct ixgbevf_tx_buffer *tx_buffer_info;
2848         u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2849
2850         if (skb->ip_summed == CHECKSUM_PARTIAL ||
2851             (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2852                 i = tx_ring->next_to_use;
2853                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2854                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2855
2856                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2857                         vlan_macip_lens |= (tx_flags &
2858                                             IXGBE_TX_FLAGS_VLAN_MASK);
2859                 vlan_macip_lens |= (skb_network_offset(skb) <<
2860                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2861                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2862                         vlan_macip_lens |= (skb_transport_header(skb) -
2863                                             skb_network_header(skb));
2864
2865                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2866                 context_desc->seqnum_seed = 0;
2867
2868                 type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2869                                     IXGBE_ADVTXD_DTYP_CTXT);
2870
2871                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2872                         switch (skb->protocol) {
2873                         case __constant_htons(ETH_P_IP):
2874                                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2875                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2876                                         type_tucmd_mlhl |=
2877                                             IXGBE_ADVTXD_TUCMD_L4T_TCP;
2878                                 break;
2879                         case __constant_htons(ETH_P_IPV6):
2880                                 /* XXX what about other V6 headers?? */
2881                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2882                                         type_tucmd_mlhl |=
2883                                                 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2884                                 break;
2885                         default:
2886                                 if (unlikely(net_ratelimit())) {
2887                                         printk(KERN_WARNING
2888                                                "partial checksum but "
2889                                                "proto=%x!\n",
2890                                                skb->protocol);
2891                                 }
2892                                 break;
2893                         }
2894                 }
2895
2896                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2897                 /* use index zero for tx checksum offload */
2898                 context_desc->mss_l4len_idx = 0;
2899
2900                 tx_buffer_info->time_stamp = jiffies;
2901                 tx_buffer_info->next_to_watch = i;
2902
2903                 adapter->hw_csum_tx_good++;
2904                 i++;
2905                 if (i == tx_ring->count)
2906                         i = 0;
2907                 tx_ring->next_to_use = i;
2908
2909                 return true;
2910         }
2911
2912         return false;
2913 }
2914
2915 static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2916                           struct ixgbevf_ring *tx_ring,
2917                           struct sk_buff *skb, u32 tx_flags,
2918                           unsigned int first)
2919 {
2920         struct pci_dev *pdev = adapter->pdev;
2921         struct ixgbevf_tx_buffer *tx_buffer_info;
2922         unsigned int len;
2923         unsigned int total = skb->len;
2924         unsigned int offset = 0, size, count = 0;
2925         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2926         unsigned int f;
2927         int i;
2928
2929         i = tx_ring->next_to_use;
2930
2931         len = min(skb_headlen(skb), total);
2932         while (len) {
2933                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2934                 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2935
2936                 tx_buffer_info->length = size;
2937                 tx_buffer_info->mapped_as_page = false;
2938                 tx_buffer_info->dma = pci_map_single(adapter->pdev,
2939                                                      skb->data + offset,
2940                                                      size, PCI_DMA_TODEVICE);
2941                 if (pci_dma_mapping_error(pdev, tx_buffer_info->dma))
2942                         goto dma_error;
2943                 tx_buffer_info->time_stamp = jiffies;
2944                 tx_buffer_info->next_to_watch = i;
2945
2946                 len -= size;
2947                 total -= size;
2948                 offset += size;
2949                 count++;
2950                 i++;
2951                 if (i == tx_ring->count)
2952                         i = 0;
2953         }
2954
2955         for (f = 0; f < nr_frags; f++) {
2956                 struct skb_frag_struct *frag;
2957
2958                 frag = &skb_shinfo(skb)->frags[f];
2959                 len = min((unsigned int)frag->size, total);
2960                 offset = frag->page_offset;
2961
2962                 while (len) {
2963                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
2964                         size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2965
2966                         tx_buffer_info->length = size;
2967                         tx_buffer_info->dma = pci_map_page(adapter->pdev,
2968                                                            frag->page,
2969                                                            offset,
2970                                                            size,
2971                                                            PCI_DMA_TODEVICE);
2972                         tx_buffer_info->mapped_as_page = true;
2973                         if (pci_dma_mapping_error(pdev, tx_buffer_info->dma))
2974                                 goto dma_error;
2975                         tx_buffer_info->time_stamp = jiffies;
2976                         tx_buffer_info->next_to_watch = i;
2977
2978                         len -= size;
2979                         total -= size;
2980                         offset += size;
2981                         count++;
2982                         i++;
2983                         if (i == tx_ring->count)
2984                                 i = 0;
2985                 }
2986                 if (total == 0)
2987                         break;
2988         }
2989
2990         if (i == 0)
2991                 i = tx_ring->count - 1;
2992         else
2993                 i = i - 1;
2994         tx_ring->tx_buffer_info[i].skb = skb;
2995         tx_ring->tx_buffer_info[first].next_to_watch = i;
2996
2997         return count;
2998
2999 dma_error:
3000         dev_err(&pdev->dev, "TX DMA map failed\n");
3001
3002         /* clear timestamp and dma mappings for failed tx_buffer_info map */
3003         tx_buffer_info->dma = 0;
3004         tx_buffer_info->time_stamp = 0;
3005         tx_buffer_info->next_to_watch = 0;
3006         count--;
3007
3008         /* clear timestamp and dma mappings for remaining portion of packet */
3009         while (count >= 0) {
3010                 count--;
3011                 i--;
3012                 if (i < 0)
3013                         i += tx_ring->count;
3014                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3015                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
3016         }
3017
3018         return count;
3019 }
3020
3021 static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
3022                              struct ixgbevf_ring *tx_ring, int tx_flags,
3023                              int count, u32 paylen, u8 hdr_len)
3024 {
3025         union ixgbe_adv_tx_desc *tx_desc = NULL;
3026         struct ixgbevf_tx_buffer *tx_buffer_info;
3027         u32 olinfo_status = 0, cmd_type_len = 0;
3028         unsigned int i;
3029
3030         u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
3031
3032         cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
3033
3034         cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
3035
3036         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3037                 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
3038
3039         if (tx_flags & IXGBE_TX_FLAGS_TSO) {
3040                 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3041
3042                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3043                         IXGBE_ADVTXD_POPTS_SHIFT;
3044
3045                 /* use index 1 context for tso */
3046                 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3047                 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3048                         olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3049                                 IXGBE_ADVTXD_POPTS_SHIFT;
3050
3051         } else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3052                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3053                         IXGBE_ADVTXD_POPTS_SHIFT;
3054
3055         olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3056
3057         i = tx_ring->next_to_use;
3058         while (count--) {
3059                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3060                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3061                 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3062                 tx_desc->read.cmd_type_len =
3063                         cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3064                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3065                 i++;
3066                 if (i == tx_ring->count)
3067                         i = 0;
3068         }
3069
3070         tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3071
3072         /*
3073          * Force memory writes to complete before letting h/w
3074          * know there are new descriptors to fetch.  (Only
3075          * applicable for weak-ordered memory model archs,
3076          * such as IA-64).
3077          */
3078         wmb();
3079
3080         tx_ring->next_to_use = i;
3081         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3082 }
3083
3084 static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3085                                    struct ixgbevf_ring *tx_ring, int size)
3086 {
3087         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3088
3089         netif_stop_subqueue(netdev, tx_ring->queue_index);
3090         /* Herbert's original patch had:
3091          *  smp_mb__after_netif_stop_queue();
3092          * but since that doesn't exist yet, just open code it. */
3093         smp_mb();
3094
3095         /* We need to check again in a case another CPU has just
3096          * made room available. */
3097         if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3098                 return -EBUSY;
3099
3100         /* A reprieve! - use start_queue because it doesn't call schedule */
3101         netif_start_subqueue(netdev, tx_ring->queue_index);
3102         ++adapter->restart_queue;
3103         return 0;
3104 }
3105
3106 static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3107                                  struct ixgbevf_ring *tx_ring, int size)
3108 {
3109         if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3110                 return 0;
3111         return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3112 }
3113
3114 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3115 {
3116         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3117         struct ixgbevf_ring *tx_ring;
3118         unsigned int first;
3119         unsigned int tx_flags = 0;
3120         u8 hdr_len = 0;
3121         int r_idx = 0, tso;
3122         int count = 0;
3123
3124         unsigned int f;
3125
3126         tx_ring = &adapter->tx_ring[r_idx];
3127
3128         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3129                 tx_flags |= vlan_tx_tag_get(skb);
3130                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3131                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3132         }
3133
3134         /* four things can cause us to need a context descriptor */
3135         if (skb_is_gso(skb) ||
3136             (skb->ip_summed == CHECKSUM_PARTIAL) ||
3137             (tx_flags & IXGBE_TX_FLAGS_VLAN))
3138                 count++;
3139
3140         count += TXD_USE_COUNT(skb_headlen(skb));
3141         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3142                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3143
3144         if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3145                 adapter->tx_busy++;
3146                 return NETDEV_TX_BUSY;
3147         }
3148
3149         first = tx_ring->next_to_use;
3150
3151         if (skb->protocol == htons(ETH_P_IP))
3152                 tx_flags |= IXGBE_TX_FLAGS_IPV4;
3153         tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3154         if (tso < 0) {
3155                 dev_kfree_skb_any(skb);
3156                 return NETDEV_TX_OK;
3157         }
3158
3159         if (tso)
3160                 tx_flags |= IXGBE_TX_FLAGS_TSO;
3161         else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3162                  (skb->ip_summed == CHECKSUM_PARTIAL))
3163                 tx_flags |= IXGBE_TX_FLAGS_CSUM;
3164
3165         ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3166                          ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3167                          skb->len, hdr_len);
3168
3169         netdev->trans_start = jiffies;
3170
3171         ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3172
3173         return NETDEV_TX_OK;
3174 }
3175
3176 /**
3177  * ixgbevf_get_stats - Get System Network Statistics
3178  * @netdev: network interface device structure
3179  *
3180  * Returns the address of the device statistics structure.
3181  * The statistics are actually updated from the timer callback.
3182  **/
3183 static struct net_device_stats *ixgbevf_get_stats(struct net_device *netdev)
3184 {
3185         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3186
3187         /* only return the current stats */
3188         return &adapter->net_stats;
3189 }
3190
3191 /**
3192  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3193  * @netdev: network interface device structure
3194  * @p: pointer to an address structure
3195  *
3196  * Returns 0 on success, negative on failure
3197  **/
3198 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3199 {
3200         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3201         struct ixgbe_hw *hw = &adapter->hw;
3202         struct sockaddr *addr = p;
3203
3204         if (!is_valid_ether_addr(addr->sa_data))
3205                 return -EADDRNOTAVAIL;
3206
3207         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3208         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3209
3210         if (hw->mac.ops.set_rar)
3211                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3212
3213         return 0;
3214 }
3215
3216 /**
3217  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3218  * @netdev: network interface device structure
3219  * @new_mtu: new value for maximum frame size
3220  *
3221  * Returns 0 on success, negative on failure
3222  **/
3223 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3224 {
3225         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3226         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3227
3228         /* MTU < 68 is an error and causes problems on some kernels */
3229         if ((new_mtu < 68) || (max_frame > MAXIMUM_ETHERNET_VLAN_SIZE))
3230                 return -EINVAL;
3231
3232         hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3233                netdev->mtu, new_mtu);
3234         /* must set new MTU before calling down or up */
3235         netdev->mtu = new_mtu;
3236
3237         if (netif_running(netdev))
3238                 ixgbevf_reinit_locked(adapter);
3239
3240         return 0;
3241 }
3242
3243 static void ixgbevf_shutdown(struct pci_dev *pdev)
3244 {
3245         struct net_device *netdev = pci_get_drvdata(pdev);
3246         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3247
3248         netif_device_detach(netdev);
3249
3250         if (netif_running(netdev)) {
3251                 ixgbevf_down(adapter);
3252                 ixgbevf_free_irq(adapter);
3253                 ixgbevf_free_all_tx_resources(adapter);
3254                 ixgbevf_free_all_rx_resources(adapter);
3255         }
3256
3257 #ifdef CONFIG_PM
3258         pci_save_state(pdev);
3259 #endif
3260
3261         pci_disable_device(pdev);
3262 }
3263
3264 static const struct net_device_ops ixgbe_netdev_ops = {
3265         .ndo_open               = &ixgbevf_open,
3266         .ndo_stop               = &ixgbevf_close,
3267         .ndo_start_xmit         = &ixgbevf_xmit_frame,
3268         .ndo_get_stats          = &ixgbevf_get_stats,
3269         .ndo_set_rx_mode        = &ixgbevf_set_rx_mode,
3270         .ndo_set_multicast_list = &ixgbevf_set_rx_mode,
3271         .ndo_validate_addr      = eth_validate_addr,
3272         .ndo_set_mac_address    = &ixgbevf_set_mac,
3273         .ndo_change_mtu         = &ixgbevf_change_mtu,
3274         .ndo_tx_timeout         = &ixgbevf_tx_timeout,
3275         .ndo_vlan_rx_register   = &ixgbevf_vlan_rx_register,
3276         .ndo_vlan_rx_add_vid    = &ixgbevf_vlan_rx_add_vid,
3277         .ndo_vlan_rx_kill_vid   = &ixgbevf_vlan_rx_kill_vid,
3278 };
3279
3280 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3281 {
3282         struct ixgbevf_adapter *adapter;
3283         adapter = netdev_priv(dev);
3284         dev->netdev_ops = &ixgbe_netdev_ops;
3285         ixgbevf_set_ethtool_ops(dev);
3286         dev->watchdog_timeo = 5 * HZ;
3287 }
3288
3289 /**
3290  * ixgbevf_probe - Device Initialization Routine
3291  * @pdev: PCI device information struct
3292  * @ent: entry in ixgbevf_pci_tbl
3293  *
3294  * Returns 0 on success, negative on failure
3295  *
3296  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3297  * The OS initialization, configuring of the adapter private structure,
3298  * and a hardware reset occur.
3299  **/
3300 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3301                                    const struct pci_device_id *ent)
3302 {
3303         struct net_device *netdev;
3304         struct ixgbevf_adapter *adapter = NULL;
3305         struct ixgbe_hw *hw = NULL;
3306         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3307         static int cards_found;
3308         int err, pci_using_dac;
3309
3310         err = pci_enable_device(pdev);
3311         if (err)
3312                 return err;
3313
3314         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
3315             !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3316                 pci_using_dac = 1;
3317         } else {
3318                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3319                 if (err) {
3320                         err = pci_set_consistent_dma_mask(pdev,
3321                                                           DMA_BIT_MASK(32));
3322                         if (err) {
3323                                 dev_err(&pdev->dev, "No usable DMA "
3324                                         "configuration, aborting\n");
3325                                 goto err_dma;
3326                         }
3327                 }
3328                 pci_using_dac = 0;
3329         }
3330
3331         err = pci_request_regions(pdev, ixgbevf_driver_name);
3332         if (err) {
3333                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3334                 goto err_pci_reg;
3335         }
3336
3337         pci_set_master(pdev);
3338
3339 #ifdef HAVE_TX_MQ
3340         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3341                                    MAX_TX_QUEUES);
3342 #else
3343         netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3344 #endif
3345         if (!netdev) {
3346                 err = -ENOMEM;
3347                 goto err_alloc_etherdev;
3348         }
3349
3350         SET_NETDEV_DEV(netdev, &pdev->dev);
3351
3352         pci_set_drvdata(pdev, netdev);
3353         adapter = netdev_priv(netdev);
3354
3355         adapter->netdev = netdev;
3356         adapter->pdev = pdev;
3357         hw = &adapter->hw;
3358         hw->back = adapter;
3359         adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3360
3361         /*
3362          * call save state here in standalone driver because it relies on
3363          * adapter struct to exist, and needs to call netdev_priv
3364          */
3365         pci_save_state(pdev);
3366
3367         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3368                               pci_resource_len(pdev, 0));
3369         if (!hw->hw_addr) {
3370                 err = -EIO;
3371                 goto err_ioremap;
3372         }
3373
3374         ixgbevf_assign_netdev_ops(netdev);
3375
3376         adapter->bd_number = cards_found;
3377
3378         /* Setup hw api */
3379         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3380         hw->mac.type  = ii->mac;
3381
3382         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3383                sizeof(struct ixgbe_mac_operations));
3384
3385         adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3386         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3387         adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3388
3389         /* setup the private structure */
3390         err = ixgbevf_sw_init(adapter);
3391
3392 #ifdef MAX_SKB_FRAGS
3393         netdev->features = NETIF_F_SG |
3394                            NETIF_F_IP_CSUM |
3395                            NETIF_F_HW_VLAN_TX |
3396                            NETIF_F_HW_VLAN_RX |
3397                            NETIF_F_HW_VLAN_FILTER;
3398
3399         netdev->features |= NETIF_F_IPV6_CSUM;
3400         netdev->features |= NETIF_F_TSO;
3401         netdev->features |= NETIF_F_TSO6;
3402         netdev->vlan_features |= NETIF_F_TSO;
3403         netdev->vlan_features |= NETIF_F_TSO6;
3404         netdev->vlan_features |= NETIF_F_IP_CSUM;
3405         netdev->vlan_features |= NETIF_F_SG;
3406
3407         if (pci_using_dac)
3408                 netdev->features |= NETIF_F_HIGHDMA;
3409
3410 #endif /* MAX_SKB_FRAGS */
3411
3412         /* The HW MAC address was set and/or determined in sw_init */
3413         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3414         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3415
3416         if (!is_valid_ether_addr(netdev->dev_addr)) {
3417                 printk(KERN_ERR "invalid MAC address\n");
3418                 err = -EIO;
3419                 goto err_sw_init;
3420         }
3421
3422         init_timer(&adapter->watchdog_timer);
3423         adapter->watchdog_timer.function = &ixgbevf_watchdog;
3424         adapter->watchdog_timer.data = (unsigned long)adapter;
3425
3426         INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3427         INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3428
3429         err = ixgbevf_init_interrupt_scheme(adapter);
3430         if (err)
3431                 goto err_sw_init;
3432
3433         /* pick up the PCI bus settings for reporting later */
3434         if (hw->mac.ops.get_bus_info)
3435                 hw->mac.ops.get_bus_info(hw);
3436
3437
3438         netif_carrier_off(netdev);
3439         netif_tx_stop_all_queues(netdev);
3440
3441         strcpy(netdev->name, "eth%d");
3442
3443         err = register_netdev(netdev);
3444         if (err)
3445                 goto err_register;
3446
3447         adapter->netdev_registered = true;
3448
3449         ixgbevf_init_last_counter_stats(adapter);
3450
3451         /* print the MAC address */
3452         hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
3453                netdev->dev_addr[0],
3454                netdev->dev_addr[1],
3455                netdev->dev_addr[2],
3456                netdev->dev_addr[3],
3457                netdev->dev_addr[4],
3458                netdev->dev_addr[5]);
3459
3460         hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3461
3462         hw_dbg(hw, "LRO is disabled\n");
3463
3464         hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3465         cards_found++;
3466         return 0;
3467
3468 err_register:
3469 err_sw_init:
3470         ixgbevf_reset_interrupt_capability(adapter);
3471         iounmap(hw->hw_addr);
3472 err_ioremap:
3473         free_netdev(netdev);
3474 err_alloc_etherdev:
3475         pci_release_regions(pdev);
3476 err_pci_reg:
3477 err_dma:
3478         pci_disable_device(pdev);
3479         return err;
3480 }
3481
3482 /**
3483  * ixgbevf_remove - Device Removal Routine
3484  * @pdev: PCI device information struct
3485  *
3486  * ixgbevf_remove is called by the PCI subsystem to alert the driver
3487  * that it should release a PCI device.  The could be caused by a
3488  * Hot-Plug event, or because the driver is going to be removed from
3489  * memory.
3490  **/
3491 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3492 {
3493         struct net_device *netdev = pci_get_drvdata(pdev);
3494         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3495
3496         set_bit(__IXGBEVF_DOWN, &adapter->state);
3497
3498         del_timer_sync(&adapter->watchdog_timer);
3499
3500         cancel_work_sync(&adapter->watchdog_task);
3501
3502         flush_scheduled_work();
3503
3504         if (adapter->netdev_registered) {
3505                 unregister_netdev(netdev);
3506                 adapter->netdev_registered = false;
3507         }
3508
3509         ixgbevf_reset_interrupt_capability(adapter);
3510
3511         iounmap(adapter->hw.hw_addr);
3512         pci_release_regions(pdev);
3513
3514         hw_dbg(&adapter->hw, "Remove complete\n");
3515
3516         kfree(adapter->tx_ring);
3517         kfree(adapter->rx_ring);
3518
3519         free_netdev(netdev);
3520
3521         pci_disable_device(pdev);
3522 }
3523
3524 static struct pci_driver ixgbevf_driver = {
3525         .name     = ixgbevf_driver_name,
3526         .id_table = ixgbevf_pci_tbl,
3527         .probe    = ixgbevf_probe,
3528         .remove   = __devexit_p(ixgbevf_remove),
3529         .shutdown = ixgbevf_shutdown,
3530 };
3531
3532 /**
3533  * ixgbe_init_module - Driver Registration Routine
3534  *
3535  * ixgbe_init_module is the first routine called when the driver is
3536  * loaded. All it does is register with the PCI subsystem.
3537  **/
3538 static int __init ixgbevf_init_module(void)
3539 {
3540         int ret;
3541         printk(KERN_INFO "ixgbevf: %s - version %s\n", ixgbevf_driver_string,
3542                ixgbevf_driver_version);
3543
3544         printk(KERN_INFO "%s\n", ixgbevf_copyright);
3545
3546         ret = pci_register_driver(&ixgbevf_driver);
3547         return ret;
3548 }
3549
3550 module_init(ixgbevf_init_module);
3551
3552 /**
3553  * ixgbe_exit_module - Driver Exit Cleanup Routine
3554  *
3555  * ixgbe_exit_module is called just before the driver is removed
3556  * from memory.
3557  **/
3558 static void __exit ixgbevf_exit_module(void)
3559 {
3560         pci_unregister_driver(&ixgbevf_driver);
3561 }
3562
3563 #ifdef DEBUG
3564 /**
3565  * ixgbe_get_hw_dev_name - return device name string
3566  * used by hardware layer to print debugging information
3567  **/
3568 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3569 {
3570         struct ixgbevf_adapter *adapter = hw->back;
3571         return adapter->netdev->name;
3572 }
3573
3574 #endif
3575 module_exit(ixgbevf_exit_module);
3576
3577 /* ixgbevf_main.c */