drivers/net/: use DEFINE_PCI_DEVICE_TABLE()
[safe/jmp/linux-2.6] / drivers / net / ipg.c
1 /*
2  * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
3  *
4  * Copyright (C) 2003, 2007  IC Plus Corp
5  *
6  * Original Author:
7  *
8  *   Craig Rich
9  *   Sundance Technology, Inc.
10  *   www.sundanceti.com
11  *   craig_rich@sundanceti.com
12  *
13  * Current Maintainer:
14  *
15  *   Sorbica Shieh.
16  *   http://www.icplus.com.tw
17  *   sorbica@icplus.com.tw
18  *
19  *   Jesse Huang
20  *   http://www.icplus.com.tw
21  *   jesse@icplus.com.tw
22  */
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/mii.h>
26 #include <linux/mutex.h>
27
28 #include <asm/div64.h>
29
30 #define IPG_RX_RING_BYTES       (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
31 #define IPG_TX_RING_BYTES       (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
32 #define IPG_RESET_MASK \
33         (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
34          IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
35          IPG_AC_AUTO_INIT)
36
37 #define ipg_w32(val32, reg)     iowrite32((val32), ioaddr + (reg))
38 #define ipg_w16(val16, reg)     iowrite16((val16), ioaddr + (reg))
39 #define ipg_w8(val8, reg)       iowrite8((val8), ioaddr + (reg))
40
41 #define ipg_r32(reg)            ioread32(ioaddr + (reg))
42 #define ipg_r16(reg)            ioread16(ioaddr + (reg))
43 #define ipg_r8(reg)             ioread8(ioaddr + (reg))
44
45 enum {
46         netdev_io_size = 128
47 };
48
49 #include "ipg.h"
50 #define DRV_NAME        "ipg"
51
52 MODULE_AUTHOR("IC Plus Corp. 2003");
53 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
54 MODULE_LICENSE("GPL");
55
56 /*
57  * Defaults
58  */
59 #define IPG_MAX_RXFRAME_SIZE    0x0600
60 #define IPG_RXFRAG_SIZE         0x0600
61 #define IPG_RXSUPPORT_SIZE      0x0600
62 #define IPG_IS_JUMBO            false
63
64 /*
65  * Variable record -- index by leading revision/length
66  * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
67  */
68 static unsigned short DefaultPhyParam[] = {
69         /* 11/12/03 IP1000A v1-3 rev=0x40 */
70         /*--------------------------------------------------------------------------
71         (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
72                                  27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
73                                  31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700,
74           --------------------------------------------------------------------------*/
75         /* 12/17/03 IP1000A v1-4 rev=0x40 */
76         (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
77             0x0000,
78         30, 0x005e, 9, 0x0700,
79         /* 01/09/04 IP1000A v1-5 rev=0x41 */
80         (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
81             0x0000,
82         30, 0x005e, 9, 0x0700,
83         0x0000
84 };
85
86 static const char *ipg_brand_name[] = {
87         "IC PLUS IP1000 1000/100/10 based NIC",
88         "Sundance Technology ST2021 based NIC",
89         "Tamarack Microelectronics TC9020/9021 based NIC",
90         "Tamarack Microelectronics TC9020/9021 based NIC",
91         "D-Link NIC",
92         "D-Link NIC IP1000A"
93 };
94
95 static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl) = {
96         { PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
97         { PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
98         { PCI_VDEVICE(SUNDANCE, 0x1021), 2 },
99         { PCI_VDEVICE(DLINK,    0x9021), 3 },
100         { PCI_VDEVICE(DLINK,    0x4000), 4 },
101         { PCI_VDEVICE(DLINK,    0x4020), 5 },
102         { 0, }
103 };
104
105 MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
106
107 static inline void __iomem *ipg_ioaddr(struct net_device *dev)
108 {
109         struct ipg_nic_private *sp = netdev_priv(dev);
110         return sp->ioaddr;
111 }
112
113 #ifdef IPG_DEBUG
114 static void ipg_dump_rfdlist(struct net_device *dev)
115 {
116         struct ipg_nic_private *sp = netdev_priv(dev);
117         void __iomem *ioaddr = sp->ioaddr;
118         unsigned int i;
119         u32 offset;
120
121         IPG_DEBUG_MSG("_dump_rfdlist\n");
122
123         printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
124         printk(KERN_INFO "rx_dirty   = %2.2x\n", sp->rx_dirty);
125         printk(KERN_INFO "RFDList start address = %16.16lx\n",
126                (unsigned long) sp->rxd_map);
127         printk(KERN_INFO "RFDListPtr register   = %8.8x%8.8x\n",
128                ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
129
130         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
131                 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
132                 printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
133                        offset, (unsigned long) sp->rxd[i].next_desc);
134                 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
135                 printk(KERN_INFO "%2.2x %4.4x RFS        = %16.16lx\n", i,
136                        offset, (unsigned long) sp->rxd[i].rfs);
137                 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
138                 printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
139                        offset, (unsigned long) sp->rxd[i].frag_info);
140         }
141 }
142
143 static void ipg_dump_tfdlist(struct net_device *dev)
144 {
145         struct ipg_nic_private *sp = netdev_priv(dev);
146         void __iomem *ioaddr = sp->ioaddr;
147         unsigned int i;
148         u32 offset;
149
150         IPG_DEBUG_MSG("_dump_tfdlist\n");
151
152         printk(KERN_INFO "tx_current         = %2.2x\n", sp->tx_current);
153         printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
154         printk(KERN_INFO "TFDList start address = %16.16lx\n",
155                (unsigned long) sp->txd_map);
156         printk(KERN_INFO "TFDListPtr register   = %8.8x%8.8x\n",
157                ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
158
159         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
160                 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
161                 printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
162                        offset, (unsigned long) sp->txd[i].next_desc);
163
164                 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
165                 printk(KERN_INFO "%2.2x %4.4x TFC        = %16.16lx\n", i,
166                        offset, (unsigned long) sp->txd[i].tfc);
167                 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
168                 printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
169                        offset, (unsigned long) sp->txd[i].frag_info);
170         }
171 }
172 #endif
173
174 static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
175 {
176         ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
177         ndelay(IPG_PC_PHYCTRLWAIT_NS);
178 }
179
180 static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
181 {
182         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
183         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
184 }
185
186 static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
187 {
188         phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
189
190         ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
191 }
192
193 static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
194 {
195         ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
196                 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
197 }
198
199 static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
200 {
201         u16 bit_data;
202
203         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
204
205         bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
206
207         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
208
209         return bit_data;
210 }
211
212 /*
213  * Read a register from the Physical Layer device located
214  * on the IPG NIC, using the IPG PHYCTRL register.
215  */
216 static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
217 {
218         void __iomem *ioaddr = ipg_ioaddr(dev);
219         /*
220          * The GMII mangement frame structure for a read is as follows:
221          *
222          * |Preamble|st|op|phyad|regad|ta|      data      |idle|
223          * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
224          *
225          * <32 1s> = 32 consecutive logic 1 values
226          * A = bit of Physical Layer device address (MSB first)
227          * R = bit of register address (MSB first)
228          * z = High impedance state
229          * D = bit of read data (MSB first)
230          *
231          * Transmission order is 'Preamble' field first, bits transmitted
232          * left to right (first to last).
233          */
234         struct {
235                 u32 field;
236                 unsigned int len;
237         } p[] = {
238                 { GMII_PREAMBLE,        32 },   /* Preamble */
239                 { GMII_ST,              2  },   /* ST */
240                 { GMII_READ,            2  },   /* OP */
241                 { phy_id,               5  },   /* PHYAD */
242                 { phy_reg,              5  },   /* REGAD */
243                 { 0x0000,               2  },   /* TA */
244                 { 0x0000,               16 },   /* DATA */
245                 { 0x0000,               1  }    /* IDLE */
246         };
247         unsigned int i, j;
248         u8 polarity, data;
249
250         polarity  = ipg_r8(PHY_CTRL);
251         polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
252
253         /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
254         for (j = 0; j < 5; j++) {
255                 for (i = 0; i < p[j].len; i++) {
256                         /* For each variable length field, the MSB must be
257                          * transmitted first. Rotate through the field bits,
258                          * starting with the MSB, and move each bit into the
259                          * the 1st (2^1) bit position (this is the bit position
260                          * corresponding to the MgmtData bit of the PhyCtrl
261                          * register for the IPG).
262                          *
263                          * Example: ST = 01;
264                          *
265                          *          First write a '0' to bit 1 of the PhyCtrl
266                          *          register, then write a '1' to bit 1 of the
267                          *          PhyCtrl register.
268                          *
269                          * To do this, right shift the MSB of ST by the value:
270                          * [field length - 1 - #ST bits already written]
271                          * then left shift this result by 1.
272                          */
273                         data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
274                         data &= IPG_PC_MGMTDATA;
275                         data |= polarity | IPG_PC_MGMTDIR;
276
277                         ipg_drive_phy_ctl_low_high(ioaddr, data);
278                 }
279         }
280
281         send_three_state(ioaddr, polarity);
282
283         read_phy_bit(ioaddr, polarity);
284
285         /*
286          * For a read cycle, the bits for the next two fields (TA and
287          * DATA) are driven by the PHY (the IPG reads these bits).
288          */
289         for (i = 0; i < p[6].len; i++) {
290                 p[6].field |=
291                     (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
292         }
293
294         send_three_state(ioaddr, polarity);
295         send_three_state(ioaddr, polarity);
296         send_three_state(ioaddr, polarity);
297         send_end(ioaddr, polarity);
298
299         /* Return the value of the DATA field. */
300         return p[6].field;
301 }
302
303 /*
304  * Write to a register from the Physical Layer device located
305  * on the IPG NIC, using the IPG PHYCTRL register.
306  */
307 static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
308 {
309         void __iomem *ioaddr = ipg_ioaddr(dev);
310         /*
311          * The GMII mangement frame structure for a read is as follows:
312          *
313          * |Preamble|st|op|phyad|regad|ta|      data      |idle|
314          * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
315          *
316          * <32 1s> = 32 consecutive logic 1 values
317          * A = bit of Physical Layer device address (MSB first)
318          * R = bit of register address (MSB first)
319          * z = High impedance state
320          * D = bit of write data (MSB first)
321          *
322          * Transmission order is 'Preamble' field first, bits transmitted
323          * left to right (first to last).
324          */
325         struct {
326                 u32 field;
327                 unsigned int len;
328         } p[] = {
329                 { GMII_PREAMBLE,        32 },   /* Preamble */
330                 { GMII_ST,              2  },   /* ST */
331                 { GMII_WRITE,           2  },   /* OP */
332                 { phy_id,               5  },   /* PHYAD */
333                 { phy_reg,              5  },   /* REGAD */
334                 { 0x0002,               2  },   /* TA */
335                 { val & 0xffff,         16 },   /* DATA */
336                 { 0x0000,               1  }    /* IDLE */
337         };
338         unsigned int i, j;
339         u8 polarity, data;
340
341         polarity  = ipg_r8(PHY_CTRL);
342         polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
343
344         /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
345         for (j = 0; j < 7; j++) {
346                 for (i = 0; i < p[j].len; i++) {
347                         /* For each variable length field, the MSB must be
348                          * transmitted first. Rotate through the field bits,
349                          * starting with the MSB, and move each bit into the
350                          * the 1st (2^1) bit position (this is the bit position
351                          * corresponding to the MgmtData bit of the PhyCtrl
352                          * register for the IPG).
353                          *
354                          * Example: ST = 01;
355                          *
356                          *          First write a '0' to bit 1 of the PhyCtrl
357                          *          register, then write a '1' to bit 1 of the
358                          *          PhyCtrl register.
359                          *
360                          * To do this, right shift the MSB of ST by the value:
361                          * [field length - 1 - #ST bits already written]
362                          * then left shift this result by 1.
363                          */
364                         data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
365                         data &= IPG_PC_MGMTDATA;
366                         data |= polarity | IPG_PC_MGMTDIR;
367
368                         ipg_drive_phy_ctl_low_high(ioaddr, data);
369                 }
370         }
371
372         /* The last cycle is a tri-state, so read from the PHY. */
373         for (j = 7; j < 8; j++) {
374                 for (i = 0; i < p[j].len; i++) {
375                         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
376
377                         p[j].field |= ((ipg_r8(PHY_CTRL) &
378                                 IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
379
380                         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
381                 }
382         }
383 }
384
385 static void ipg_set_led_mode(struct net_device *dev)
386 {
387         struct ipg_nic_private *sp = netdev_priv(dev);
388         void __iomem *ioaddr = sp->ioaddr;
389         u32 mode;
390
391         mode = ipg_r32(ASIC_CTRL);
392         mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
393
394         if ((sp->led_mode & 0x03) > 1)
395                 mode |= IPG_AC_LED_MODE_BIT_1;  /* Write Asic Control Bit 29 */
396
397         if ((sp->led_mode & 0x01) == 1)
398                 mode |= IPG_AC_LED_MODE;        /* Write Asic Control Bit 14 */
399
400         if ((sp->led_mode & 0x08) == 8)
401                 mode |= IPG_AC_LED_SPEED;       /* Write Asic Control Bit 27 */
402
403         ipg_w32(mode, ASIC_CTRL);
404 }
405
406 static void ipg_set_phy_set(struct net_device *dev)
407 {
408         struct ipg_nic_private *sp = netdev_priv(dev);
409         void __iomem *ioaddr = sp->ioaddr;
410         int physet;
411
412         physet = ipg_r8(PHY_SET);
413         physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
414         physet |= ((sp->led_mode & 0x70) >> 4);
415         ipg_w8(physet, PHY_SET);
416 }
417
418 static int ipg_reset(struct net_device *dev, u32 resetflags)
419 {
420         /* Assert functional resets via the IPG AsicCtrl
421          * register as specified by the 'resetflags' input
422          * parameter.
423          */
424         void __iomem *ioaddr = ipg_ioaddr(dev);
425         unsigned int timeout_count = 0;
426
427         IPG_DEBUG_MSG("_reset\n");
428
429         ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
430
431         /* Delay added to account for problem with 10Mbps reset. */
432         mdelay(IPG_AC_RESETWAIT);
433
434         while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
435                 mdelay(IPG_AC_RESETWAIT);
436                 if (++timeout_count > IPG_AC_RESET_TIMEOUT)
437                         return -ETIME;
438         }
439         /* Set LED Mode in Asic Control */
440         ipg_set_led_mode(dev);
441
442         /* Set PHYSet Register Value */
443         ipg_set_phy_set(dev);
444         return 0;
445 }
446
447 /* Find the GMII PHY address. */
448 static int ipg_find_phyaddr(struct net_device *dev)
449 {
450         unsigned int phyaddr, i;
451
452         for (i = 0; i < 32; i++) {
453                 u32 status;
454
455                 /* Search for the correct PHY address among 32 possible. */
456                 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
457
458                 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
459                    GMII_PHY_ID1
460                  */
461
462                 status = mdio_read(dev, phyaddr, MII_BMSR);
463
464                 if ((status != 0xFFFF) && (status != 0))
465                         return phyaddr;
466         }
467
468         return 0x1f;
469 }
470
471 /*
472  * Configure IPG based on result of IEEE 802.3 PHY
473  * auto-negotiation.
474  */
475 static int ipg_config_autoneg(struct net_device *dev)
476 {
477         struct ipg_nic_private *sp = netdev_priv(dev);
478         void __iomem *ioaddr = sp->ioaddr;
479         unsigned int txflowcontrol;
480         unsigned int rxflowcontrol;
481         unsigned int fullduplex;
482         u32 mac_ctrl_val;
483         u32 asicctrl;
484         u8 phyctrl;
485
486         IPG_DEBUG_MSG("_config_autoneg\n");
487
488         asicctrl = ipg_r32(ASIC_CTRL);
489         phyctrl = ipg_r8(PHY_CTRL);
490         mac_ctrl_val = ipg_r32(MAC_CTRL);
491
492         /* Set flags for use in resolving auto-negotation, assuming
493          * non-1000Mbps, half duplex, no flow control.
494          */
495         fullduplex = 0;
496         txflowcontrol = 0;
497         rxflowcontrol = 0;
498
499         /* To accomodate a problem in 10Mbps operation,
500          * set a global flag if PHY running in 10Mbps mode.
501          */
502         sp->tenmbpsmode = 0;
503
504         printk(KERN_INFO "%s: Link speed = ", dev->name);
505
506         /* Determine actual speed of operation. */
507         switch (phyctrl & IPG_PC_LINK_SPEED) {
508         case IPG_PC_LINK_SPEED_10MBPS:
509                 printk("10Mbps.\n");
510                 printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
511                        dev->name);
512                 sp->tenmbpsmode = 1;
513                 break;
514         case IPG_PC_LINK_SPEED_100MBPS:
515                 printk("100Mbps.\n");
516                 break;
517         case IPG_PC_LINK_SPEED_1000MBPS:
518                 printk("1000Mbps.\n");
519                 break;
520         default:
521                 printk("undefined!\n");
522                 return 0;
523         }
524
525         if (phyctrl & IPG_PC_DUPLEX_STATUS) {
526                 fullduplex = 1;
527                 txflowcontrol = 1;
528                 rxflowcontrol = 1;
529         }
530
531         /* Configure full duplex, and flow control. */
532         if (fullduplex == 1) {
533                 /* Configure IPG for full duplex operation. */
534                 printk(KERN_INFO "%s: setting full duplex, ", dev->name);
535
536                 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
537
538                 if (txflowcontrol == 1) {
539                         printk("TX flow control");
540                         mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
541                 } else {
542                         printk("no TX flow control");
543                         mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
544                 }
545
546                 if (rxflowcontrol == 1) {
547                         printk(", RX flow control.");
548                         mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
549                 } else {
550                         printk(", no RX flow control.");
551                         mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
552                 }
553
554                 printk("\n");
555         } else {
556                 /* Configure IPG for half duplex operation. */
557                 printk(KERN_INFO "%s: setting half duplex, "
558                        "no TX flow control, no RX flow control.\n", dev->name);
559
560                 mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
561                         ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
562                         ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
563         }
564         ipg_w32(mac_ctrl_val, MAC_CTRL);
565         return 0;
566 }
567
568 /* Determine and configure multicast operation and set
569  * receive mode for IPG.
570  */
571 static void ipg_nic_set_multicast_list(struct net_device *dev)
572 {
573         void __iomem *ioaddr = ipg_ioaddr(dev);
574         struct dev_mc_list *mc_list_ptr;
575         unsigned int hashindex;
576         u32 hashtable[2];
577         u8 receivemode;
578
579         IPG_DEBUG_MSG("_nic_set_multicast_list\n");
580
581         receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
582
583         if (dev->flags & IFF_PROMISC) {
584                 /* NIC to be configured in promiscuous mode. */
585                 receivemode = IPG_RM_RECEIVEALLFRAMES;
586         } else if ((dev->flags & IFF_ALLMULTI) ||
587                    ((dev->flags & IFF_MULTICAST) &&
588                     (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) {
589                 /* NIC to be configured to receive all multicast
590                  * frames. */
591                 receivemode |= IPG_RM_RECEIVEMULTICAST;
592         } else if ((dev->flags & IFF_MULTICAST) && (dev->mc_count > 0)) {
593                 /* NIC to be configured to receive selected
594                  * multicast addresses. */
595                 receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
596         }
597
598         /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
599          * The IPG applies a cyclic-redundancy-check (the same CRC
600          * used to calculate the frame data FCS) to the destination
601          * address all incoming multicast frames whose destination
602          * address has the multicast bit set. The least significant
603          * 6 bits of the CRC result are used as an addressing index
604          * into the hash table. If the value of the bit addressed by
605          * this index is a 1, the frame is passed to the host system.
606          */
607
608         /* Clear hashtable. */
609         hashtable[0] = 0x00000000;
610         hashtable[1] = 0x00000000;
611
612         /* Cycle through all multicast addresses to filter. */
613         for (mc_list_ptr = dev->mc_list;
614              mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) {
615                 /* Calculate CRC result for each multicast address. */
616                 hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr,
617                                      ETH_ALEN);
618
619                 /* Use only the least significant 6 bits. */
620                 hashindex = hashindex & 0x3F;
621
622                 /* Within "hashtable", set bit number "hashindex"
623                  * to a logic 1.
624                  */
625                 set_bit(hashindex, (void *)hashtable);
626         }
627
628         /* Write the value of the hashtable, to the 4, 16 bit
629          * HASHTABLE IPG registers.
630          */
631         ipg_w32(hashtable[0], HASHTABLE_0);
632         ipg_w32(hashtable[1], HASHTABLE_1);
633
634         ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
635
636         IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
637 }
638
639 static int ipg_io_config(struct net_device *dev)
640 {
641         struct ipg_nic_private *sp = netdev_priv(dev);
642         void __iomem *ioaddr = ipg_ioaddr(dev);
643         u32 origmacctrl;
644         u32 restoremacctrl;
645
646         IPG_DEBUG_MSG("_io_config\n");
647
648         origmacctrl = ipg_r32(MAC_CTRL);
649
650         restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
651
652         /* Based on compilation option, determine if FCS is to be
653          * stripped on receive frames by IPG.
654          */
655         if (!IPG_STRIP_FCS_ON_RX)
656                 restoremacctrl |= IPG_MC_RCV_FCS;
657
658         /* Determine if transmitter and/or receiver are
659          * enabled so we may restore MACCTRL correctly.
660          */
661         if (origmacctrl & IPG_MC_TX_ENABLED)
662                 restoremacctrl |= IPG_MC_TX_ENABLE;
663
664         if (origmacctrl & IPG_MC_RX_ENABLED)
665                 restoremacctrl |= IPG_MC_RX_ENABLE;
666
667         /* Transmitter and receiver must be disabled before setting
668          * IFSSelect.
669          */
670         ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
671                 IPG_MC_RSVD_MASK, MAC_CTRL);
672
673         /* Now that transmitter and receiver are disabled, write
674          * to IFSSelect.
675          */
676         ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
677
678         /* Set RECEIVEMODE register. */
679         ipg_nic_set_multicast_list(dev);
680
681         ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);
682
683         ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD);
684         ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
685         ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH);
686         ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD);
687         ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
688         ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH);
689         ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
690                  IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
691                  IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
692                  IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
693         ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH);
694         ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
695
696         /* IPG multi-frag frame bug workaround.
697          * Per silicon revision B3 eratta.
698          */
699         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
700
701         /* IPG TX poll now bug workaround.
702          * Per silicon revision B3 eratta.
703          */
704         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
705
706         /* IPG RX poll now bug workaround.
707          * Per silicon revision B3 eratta.
708          */
709         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
710
711         /* Now restore MACCTRL to original setting. */
712         ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
713
714         /* Disable unused RMON statistics. */
715         ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
716
717         /* Disable unused MIB statistics. */
718         ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
719                 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
720                 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
721                 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
722                 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
723                 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
724
725         return 0;
726 }
727
728 /*
729  * Create a receive buffer within system memory and update
730  * NIC private structure appropriately.
731  */
732 static int ipg_get_rxbuff(struct net_device *dev, int entry)
733 {
734         struct ipg_nic_private *sp = netdev_priv(dev);
735         struct ipg_rx *rxfd = sp->rxd + entry;
736         struct sk_buff *skb;
737         u64 rxfragsize;
738
739         IPG_DEBUG_MSG("_get_rxbuff\n");
740
741         skb = netdev_alloc_skb_ip_align(dev, sp->rxsupport_size);
742         if (!skb) {
743                 sp->rx_buff[entry] = NULL;
744                 return -ENOMEM;
745         }
746
747         /* Associate the receive buffer with the IPG NIC. */
748         skb->dev = dev;
749
750         /* Save the address of the sk_buff structure. */
751         sp->rx_buff[entry] = skb;
752
753         rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
754                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
755
756         /* Set the RFD fragment length. */
757         rxfragsize = sp->rxfrag_size;
758         rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
759
760         return 0;
761 }
762
763 static int init_rfdlist(struct net_device *dev)
764 {
765         struct ipg_nic_private *sp = netdev_priv(dev);
766         void __iomem *ioaddr = sp->ioaddr;
767         unsigned int i;
768
769         IPG_DEBUG_MSG("_init_rfdlist\n");
770
771         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
772                 struct ipg_rx *rxfd = sp->rxd + i;
773
774                 if (sp->rx_buff[i]) {
775                         pci_unmap_single(sp->pdev,
776                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
777                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
778                         dev_kfree_skb_irq(sp->rx_buff[i]);
779                         sp->rx_buff[i] = NULL;
780                 }
781
782                 /* Clear out the RFS field. */
783                 rxfd->rfs = 0x0000000000000000;
784
785                 if (ipg_get_rxbuff(dev, i) < 0) {
786                         /*
787                          * A receive buffer was not ready, break the
788                          * RFD list here.
789                          */
790                         IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
791
792                         /* Just in case we cannot allocate a single RFD.
793                          * Should not occur.
794                          */
795                         if (i == 0) {
796                                 printk(KERN_ERR "%s: No memory available"
797                                         " for RFD list.\n", dev->name);
798                                 return -ENOMEM;
799                         }
800                 }
801
802                 rxfd->next_desc = cpu_to_le64(sp->rxd_map +
803                         sizeof(struct ipg_rx)*(i + 1));
804         }
805         sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
806
807         sp->rx_current = 0;
808         sp->rx_dirty = 0;
809
810         /* Write the location of the RFDList to the IPG. */
811         ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
812         ipg_w32(0x00000000, RFD_LIST_PTR_1);
813
814         return 0;
815 }
816
817 static void init_tfdlist(struct net_device *dev)
818 {
819         struct ipg_nic_private *sp = netdev_priv(dev);
820         void __iomem *ioaddr = sp->ioaddr;
821         unsigned int i;
822
823         IPG_DEBUG_MSG("_init_tfdlist\n");
824
825         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
826                 struct ipg_tx *txfd = sp->txd + i;
827
828                 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
829
830                 if (sp->tx_buff[i]) {
831                         dev_kfree_skb_irq(sp->tx_buff[i]);
832                         sp->tx_buff[i] = NULL;
833                 }
834
835                 txfd->next_desc = cpu_to_le64(sp->txd_map +
836                         sizeof(struct ipg_tx)*(i + 1));
837         }
838         sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
839
840         sp->tx_current = 0;
841         sp->tx_dirty = 0;
842
843         /* Write the location of the TFDList to the IPG. */
844         IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
845                        (u32) sp->txd_map);
846         ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
847         ipg_w32(0x00000000, TFD_LIST_PTR_1);
848
849         sp->reset_current_tfd = 1;
850 }
851
852 /*
853  * Free all transmit buffers which have already been transfered
854  * via DMA to the IPG.
855  */
856 static void ipg_nic_txfree(struct net_device *dev)
857 {
858         struct ipg_nic_private *sp = netdev_priv(dev);
859         unsigned int released, pending, dirty;
860
861         IPG_DEBUG_MSG("_nic_txfree\n");
862
863         pending = sp->tx_current - sp->tx_dirty;
864         dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
865
866         for (released = 0; released < pending; released++) {
867                 struct sk_buff *skb = sp->tx_buff[dirty];
868                 struct ipg_tx *txfd = sp->txd + dirty;
869
870                 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);
871
872                 /* Look at each TFD's TFC field beginning
873                  * at the last freed TFD up to the current TFD.
874                  * If the TFDDone bit is set, free the associated
875                  * buffer.
876                  */
877                 if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
878                         break;
879
880                 /* Free the transmit buffer. */
881                 if (skb) {
882                         pci_unmap_single(sp->pdev,
883                                 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
884                                 skb->len, PCI_DMA_TODEVICE);
885
886                         dev_kfree_skb_irq(skb);
887
888                         sp->tx_buff[dirty] = NULL;
889                 }
890                 dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
891         }
892
893         sp->tx_dirty += released;
894
895         if (netif_queue_stopped(dev) &&
896             (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
897                 netif_wake_queue(dev);
898         }
899 }
900
901 static void ipg_tx_timeout(struct net_device *dev)
902 {
903         struct ipg_nic_private *sp = netdev_priv(dev);
904         void __iomem *ioaddr = sp->ioaddr;
905
906         ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
907                   IPG_AC_FIFO);
908
909         spin_lock_irq(&sp->lock);
910
911         /* Re-configure after DMA reset. */
912         if (ipg_io_config(dev) < 0) {
913                 printk(KERN_INFO "%s: Error during re-configuration.\n",
914                        dev->name);
915         }
916
917         init_tfdlist(dev);
918
919         spin_unlock_irq(&sp->lock);
920
921         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
922                 MAC_CTRL);
923 }
924
925 /*
926  * For TxComplete interrupts, free all transmit
927  * buffers which have already been transfered via DMA
928  * to the IPG.
929  */
930 static void ipg_nic_txcleanup(struct net_device *dev)
931 {
932         struct ipg_nic_private *sp = netdev_priv(dev);
933         void __iomem *ioaddr = sp->ioaddr;
934         unsigned int i;
935
936         IPG_DEBUG_MSG("_nic_txcleanup\n");
937
938         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
939                 /* Reading the TXSTATUS register clears the
940                  * TX_COMPLETE interrupt.
941                  */
942                 u32 txstatusdword = ipg_r32(TX_STATUS);
943
944                 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);
945
946                 /* Check for Transmit errors. Error bits only valid if
947                  * TX_COMPLETE bit in the TXSTATUS register is a 1.
948                  */
949                 if (!(txstatusdword & IPG_TS_TX_COMPLETE))
950                         break;
951
952                 /* If in 10Mbps mode, indicate transmit is ready. */
953                 if (sp->tenmbpsmode) {
954                         netif_wake_queue(dev);
955                 }
956
957                 /* Transmit error, increment stat counters. */
958                 if (txstatusdword & IPG_TS_TX_ERROR) {
959                         IPG_DEBUG_MSG("Transmit error.\n");
960                         sp->stats.tx_errors++;
961                 }
962
963                 /* Late collision, re-enable transmitter. */
964                 if (txstatusdword & IPG_TS_LATE_COLLISION) {
965                         IPG_DEBUG_MSG("Late collision on transmit.\n");
966                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
967                                 IPG_MC_RSVD_MASK, MAC_CTRL);
968                 }
969
970                 /* Maximum collisions, re-enable transmitter. */
971                 if (txstatusdword & IPG_TS_TX_MAX_COLL) {
972                         IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
973                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
974                                 IPG_MC_RSVD_MASK, MAC_CTRL);
975                 }
976
977                 /* Transmit underrun, reset and re-enable
978                  * transmitter.
979                  */
980                 if (txstatusdword & IPG_TS_TX_UNDERRUN) {
981                         IPG_DEBUG_MSG("Transmitter underrun.\n");
982                         sp->stats.tx_fifo_errors++;
983                         ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
984                                   IPG_AC_NETWORK | IPG_AC_FIFO);
985
986                         /* Re-configure after DMA reset. */
987                         if (ipg_io_config(dev) < 0) {
988                                 printk(KERN_INFO
989                                        "%s: Error during re-configuration.\n",
990                                        dev->name);
991                         }
992                         init_tfdlist(dev);
993
994                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
995                                 IPG_MC_RSVD_MASK, MAC_CTRL);
996                 }
997         }
998
999         ipg_nic_txfree(dev);
1000 }
1001
1002 /* Provides statistical information about the IPG NIC. */
1003 static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
1004 {
1005         struct ipg_nic_private *sp = netdev_priv(dev);
1006         void __iomem *ioaddr = sp->ioaddr;
1007         u16 temp1;
1008         u16 temp2;
1009
1010         IPG_DEBUG_MSG("_nic_get_stats\n");
1011
1012         /* Check to see if the NIC has been initialized via nic_open,
1013          * before trying to read statistic registers.
1014          */
1015         if (!test_bit(__LINK_STATE_START, &dev->state))
1016                 return &sp->stats;
1017
1018         sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1019         sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1020         sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1021         sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1022         temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1023         sp->stats.rx_errors += temp1;
1024         sp->stats.rx_missed_errors += temp1;
1025         temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1026                 ipg_r32(IPG_LATECOLLISIONS);
1027         temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1028         sp->stats.collisions += temp1;
1029         sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1030         sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1031                 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1032         sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1033
1034         /* detailed tx_errors */
1035         sp->stats.tx_carrier_errors += temp2;
1036
1037         /* detailed rx_errors */
1038         sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1039                 ipg_r16(IPG_FRAMETOOLONGERRRORS);
1040         sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1041
1042         /* Unutilized IPG statistic registers. */
1043         ipg_r32(IPG_MCSTFRAMESRCVDOK);
1044
1045         return &sp->stats;
1046 }
1047
1048 /* Restore used receive buffers. */
1049 static int ipg_nic_rxrestore(struct net_device *dev)
1050 {
1051         struct ipg_nic_private *sp = netdev_priv(dev);
1052         const unsigned int curr = sp->rx_current;
1053         unsigned int dirty = sp->rx_dirty;
1054
1055         IPG_DEBUG_MSG("_nic_rxrestore\n");
1056
1057         for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1058                 unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1059
1060                 /* rx_copybreak may poke hole here and there. */
1061                 if (sp->rx_buff[entry])
1062                         continue;
1063
1064                 /* Generate a new receive buffer to replace the
1065                  * current buffer (which will be released by the
1066                  * Linux system).
1067                  */
1068                 if (ipg_get_rxbuff(dev, entry) < 0) {
1069                         IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
1070
1071                         break;
1072                 }
1073
1074                 /* Reset the RFS field. */
1075                 sp->rxd[entry].rfs = 0x0000000000000000;
1076         }
1077         sp->rx_dirty = dirty;
1078
1079         return 0;
1080 }
1081
1082 /* use jumboindex and jumbosize to control jumbo frame status
1083  * initial status is jumboindex=-1 and jumbosize=0
1084  * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1085  * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1086  * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1087  *               previous receiving and need to continue dumping the current one
1088  */
1089 enum {
1090         NORMAL_PACKET,
1091         ERROR_PACKET
1092 };
1093
1094 enum {
1095         FRAME_NO_START_NO_END   = 0,
1096         FRAME_WITH_START                = 1,
1097         FRAME_WITH_END          = 10,
1098         FRAME_WITH_START_WITH_END = 11
1099 };
1100
1101 static void ipg_nic_rx_free_skb(struct net_device *dev)
1102 {
1103         struct ipg_nic_private *sp = netdev_priv(dev);
1104         unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1105
1106         if (sp->rx_buff[entry]) {
1107                 struct ipg_rx *rxfd = sp->rxd + entry;
1108
1109                 pci_unmap_single(sp->pdev,
1110                         le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1111                         sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1112                 dev_kfree_skb_irq(sp->rx_buff[entry]);
1113                 sp->rx_buff[entry] = NULL;
1114         }
1115 }
1116
1117 static int ipg_nic_rx_check_frame_type(struct net_device *dev)
1118 {
1119         struct ipg_nic_private *sp = netdev_priv(dev);
1120         struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1121         int type = FRAME_NO_START_NO_END;
1122
1123         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1124                 type += FRAME_WITH_START;
1125         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1126                 type += FRAME_WITH_END;
1127         return type;
1128 }
1129
1130 static int ipg_nic_rx_check_error(struct net_device *dev)
1131 {
1132         struct ipg_nic_private *sp = netdev_priv(dev);
1133         unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1134         struct ipg_rx *rxfd = sp->rxd + entry;
1135
1136         if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1137              (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1138               IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1139               IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1140                 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1141                               (unsigned long) rxfd->rfs);
1142
1143                 /* Increment general receive error statistic. */
1144                 sp->stats.rx_errors++;
1145
1146                 /* Increment detailed receive error statistics. */
1147                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1148                         IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1149
1150                         sp->stats.rx_fifo_errors++;
1151                 }
1152
1153                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1154                         IPG_DEBUG_MSG("RX runt occured.\n");
1155                         sp->stats.rx_length_errors++;
1156                 }
1157
1158                 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1159                  * error count handled by a IPG statistic register.
1160                  */
1161
1162                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1163                         IPG_DEBUG_MSG("RX alignment error occured.\n");
1164                         sp->stats.rx_frame_errors++;
1165                 }
1166
1167                 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1168                  * handled by a IPG statistic register.
1169                  */
1170
1171                 /* Free the memory associated with the RX
1172                  * buffer since it is erroneous and we will
1173                  * not pass it to higher layer processes.
1174                  */
1175                 if (sp->rx_buff[entry]) {
1176                         pci_unmap_single(sp->pdev,
1177                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1178                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1179
1180                         dev_kfree_skb_irq(sp->rx_buff[entry]);
1181                         sp->rx_buff[entry] = NULL;
1182                 }
1183                 return ERROR_PACKET;
1184         }
1185         return NORMAL_PACKET;
1186 }
1187
1188 static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1189                                           struct ipg_nic_private *sp,
1190                                           struct ipg_rx *rxfd, unsigned entry)
1191 {
1192         struct ipg_jumbo *jumbo = &sp->jumbo;
1193         struct sk_buff *skb;
1194         int framelen;
1195
1196         if (jumbo->found_start) {
1197                 dev_kfree_skb_irq(jumbo->skb);
1198                 jumbo->found_start = 0;
1199                 jumbo->current_size = 0;
1200                 jumbo->skb = NULL;
1201         }
1202
1203         /* 1: found error, 0 no error */
1204         if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1205                 return;
1206
1207         skb = sp->rx_buff[entry];
1208         if (!skb)
1209                 return;
1210
1211         /* accept this frame and send to upper layer */
1212         framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1213         if (framelen > sp->rxfrag_size)
1214                 framelen = sp->rxfrag_size;
1215
1216         skb_put(skb, framelen);
1217         skb->protocol = eth_type_trans(skb, dev);
1218         skb->ip_summed = CHECKSUM_NONE;
1219         netif_rx(skb);
1220         sp->rx_buff[entry] = NULL;
1221 }
1222
1223 static void ipg_nic_rx_with_start(struct net_device *dev,
1224                                   struct ipg_nic_private *sp,
1225                                   struct ipg_rx *rxfd, unsigned entry)
1226 {
1227         struct ipg_jumbo *jumbo = &sp->jumbo;
1228         struct pci_dev *pdev = sp->pdev;
1229         struct sk_buff *skb;
1230
1231         /* 1: found error, 0 no error */
1232         if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1233                 return;
1234
1235         /* accept this frame and send to upper layer */
1236         skb = sp->rx_buff[entry];
1237         if (!skb)
1238                 return;
1239
1240         if (jumbo->found_start)
1241                 dev_kfree_skb_irq(jumbo->skb);
1242
1243         pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1244                          sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1245
1246         skb_put(skb, sp->rxfrag_size);
1247
1248         jumbo->found_start = 1;
1249         jumbo->current_size = sp->rxfrag_size;
1250         jumbo->skb = skb;
1251
1252         sp->rx_buff[entry] = NULL;
1253 }
1254
1255 static void ipg_nic_rx_with_end(struct net_device *dev,
1256                                 struct ipg_nic_private *sp,
1257                                 struct ipg_rx *rxfd, unsigned entry)
1258 {
1259         struct ipg_jumbo *jumbo = &sp->jumbo;
1260
1261         /* 1: found error, 0 no error */
1262         if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1263                 struct sk_buff *skb = sp->rx_buff[entry];
1264
1265                 if (!skb)
1266                         return;
1267
1268                 if (jumbo->found_start) {
1269                         int framelen, endframelen;
1270
1271                         framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1272
1273                         endframelen = framelen - jumbo->current_size;
1274                         if (framelen > sp->rxsupport_size)
1275                                 dev_kfree_skb_irq(jumbo->skb);
1276                         else {
1277                                 memcpy(skb_put(jumbo->skb, endframelen),
1278                                        skb->data, endframelen);
1279
1280                                 jumbo->skb->protocol =
1281                                     eth_type_trans(jumbo->skb, dev);
1282
1283                                 jumbo->skb->ip_summed = CHECKSUM_NONE;
1284                                 netif_rx(jumbo->skb);
1285                         }
1286                 }
1287
1288                 jumbo->found_start = 0;
1289                 jumbo->current_size = 0;
1290                 jumbo->skb = NULL;
1291
1292                 ipg_nic_rx_free_skb(dev);
1293         } else {
1294                 dev_kfree_skb_irq(jumbo->skb);
1295                 jumbo->found_start = 0;
1296                 jumbo->current_size = 0;
1297                 jumbo->skb = NULL;
1298         }
1299 }
1300
1301 static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1302                                        struct ipg_nic_private *sp,
1303                                        struct ipg_rx *rxfd, unsigned entry)
1304 {
1305         struct ipg_jumbo *jumbo = &sp->jumbo;
1306
1307         /* 1: found error, 0 no error */
1308         if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1309                 struct sk_buff *skb = sp->rx_buff[entry];
1310
1311                 if (skb) {
1312                         if (jumbo->found_start) {
1313                                 jumbo->current_size += sp->rxfrag_size;
1314                                 if (jumbo->current_size <= sp->rxsupport_size) {
1315                                         memcpy(skb_put(jumbo->skb,
1316                                                        sp->rxfrag_size),
1317                                                skb->data, sp->rxfrag_size);
1318                                 }
1319                         }
1320                         ipg_nic_rx_free_skb(dev);
1321                 }
1322         } else {
1323                 dev_kfree_skb_irq(jumbo->skb);
1324                 jumbo->found_start = 0;
1325                 jumbo->current_size = 0;
1326                 jumbo->skb = NULL;
1327         }
1328 }
1329
1330 static int ipg_nic_rx_jumbo(struct net_device *dev)
1331 {
1332         struct ipg_nic_private *sp = netdev_priv(dev);
1333         unsigned int curr = sp->rx_current;
1334         void __iomem *ioaddr = sp->ioaddr;
1335         unsigned int i;
1336
1337         IPG_DEBUG_MSG("_nic_rx\n");
1338
1339         for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1340                 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1341                 struct ipg_rx *rxfd = sp->rxd + entry;
1342
1343                 if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE)))
1344                         break;
1345
1346                 switch (ipg_nic_rx_check_frame_type(dev)) {
1347                 case FRAME_WITH_START_WITH_END:
1348                         ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
1349                         break;
1350                 case FRAME_WITH_START:
1351                         ipg_nic_rx_with_start(dev, sp, rxfd, entry);
1352                         break;
1353                 case FRAME_WITH_END:
1354                         ipg_nic_rx_with_end(dev, sp, rxfd, entry);
1355                         break;
1356                 case FRAME_NO_START_NO_END:
1357                         ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
1358                         break;
1359                 }
1360         }
1361
1362         sp->rx_current = curr;
1363
1364         if (i == IPG_MAXRFDPROCESS_COUNT) {
1365                 /* There are more RFDs to process, however the
1366                  * allocated amount of RFD processing time has
1367                  * expired. Assert Interrupt Requested to make
1368                  * sure we come back to process the remaining RFDs.
1369                  */
1370                 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1371         }
1372
1373         ipg_nic_rxrestore(dev);
1374
1375         return 0;
1376 }
1377
1378 static int ipg_nic_rx(struct net_device *dev)
1379 {
1380         /* Transfer received Ethernet frames to higher network layers. */
1381         struct ipg_nic_private *sp = netdev_priv(dev);
1382         unsigned int curr = sp->rx_current;
1383         void __iomem *ioaddr = sp->ioaddr;
1384         struct ipg_rx *rxfd;
1385         unsigned int i;
1386
1387         IPG_DEBUG_MSG("_nic_rx\n");
1388
1389 #define __RFS_MASK \
1390         cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1391
1392         for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1393                 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1394                 struct sk_buff *skb = sp->rx_buff[entry];
1395                 unsigned int framelen;
1396
1397                 rxfd = sp->rxd + entry;
1398
1399                 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1400                         break;
1401
1402                 /* Get received frame length. */
1403                 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1404
1405                 /* Check for jumbo frame arrival with too small
1406                  * RXFRAG_SIZE.
1407                  */
1408                 if (framelen > sp->rxfrag_size) {
1409                         IPG_DEBUG_MSG
1410                             ("RFS FrameLen > allocated fragment size.\n");
1411
1412                         framelen = sp->rxfrag_size;
1413                 }
1414
1415                 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1416                        (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1417                         IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1418                         IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1419
1420                         IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1421                                       (unsigned long int) rxfd->rfs);
1422
1423                         /* Increment general receive error statistic. */
1424                         sp->stats.rx_errors++;
1425
1426                         /* Increment detailed receive error statistics. */
1427                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1428                                 IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1429                                 sp->stats.rx_fifo_errors++;
1430                         }
1431
1432                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1433                                 IPG_DEBUG_MSG("RX runt occured.\n");
1434                                 sp->stats.rx_length_errors++;
1435                         }
1436
1437                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1438                         /* Do nothing, error count handled by a IPG
1439                          * statistic register.
1440                          */
1441
1442                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1443                                 IPG_DEBUG_MSG("RX alignment error occured.\n");
1444                                 sp->stats.rx_frame_errors++;
1445                         }
1446
1447                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1448                         /* Do nothing, error count handled by a IPG
1449                          * statistic register.
1450                          */
1451
1452                         /* Free the memory associated with the RX
1453                          * buffer since it is erroneous and we will
1454                          * not pass it to higher layer processes.
1455                          */
1456                         if (skb) {
1457                                 __le64 info = rxfd->frag_info;
1458
1459                                 pci_unmap_single(sp->pdev,
1460                                         le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1461                                         sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1462
1463                                 dev_kfree_skb_irq(skb);
1464                         }
1465                 } else {
1466
1467                         /* Adjust the new buffer length to accomodate the size
1468                          * of the received frame.
1469                          */
1470                         skb_put(skb, framelen);
1471
1472                         /* Set the buffer's protocol field to Ethernet. */
1473                         skb->protocol = eth_type_trans(skb, dev);
1474
1475                         /* The IPG encountered an error with (or
1476                          * there were no) IP/TCP/UDP checksums.
1477                          * This may or may not indicate an invalid
1478                          * IP/TCP/UDP frame was received. Let the
1479                          * upper layer decide.
1480                          */
1481                         skb->ip_summed = CHECKSUM_NONE;
1482
1483                         /* Hand off frame for higher layer processing.
1484                          * The function netif_rx() releases the sk_buff
1485                          * when processing completes.
1486                          */
1487                         netif_rx(skb);
1488                 }
1489
1490                 /* Assure RX buffer is not reused by IPG. */
1491                 sp->rx_buff[entry] = NULL;
1492         }
1493
1494         /*
1495          * If there are more RFDs to proces and the allocated amount of RFD
1496          * processing time has expired, assert Interrupt Requested to make
1497          * sure we come back to process the remaining RFDs.
1498          */
1499         if (i == IPG_MAXRFDPROCESS_COUNT)
1500                 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1501
1502 #ifdef IPG_DEBUG
1503         /* Check if the RFD list contained no receive frame data. */
1504         if (!i)
1505                 sp->EmptyRFDListCount++;
1506 #endif
1507         while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1508                !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1509                  (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1510                 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1511
1512                 rxfd = sp->rxd + entry;
1513
1514                 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
1515
1516                 /* An unexpected event, additional code needed to handle
1517                  * properly. So for the time being, just disregard the
1518                  * frame.
1519                  */
1520
1521                 /* Free the memory associated with the RX
1522                  * buffer since it is erroneous and we will
1523                  * not pass it to higher layer processes.
1524                  */
1525                 if (sp->rx_buff[entry]) {
1526                         pci_unmap_single(sp->pdev,
1527                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1528                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1529                         dev_kfree_skb_irq(sp->rx_buff[entry]);
1530                 }
1531
1532                 /* Assure RX buffer is not reused by IPG. */
1533                 sp->rx_buff[entry] = NULL;
1534         }
1535
1536         sp->rx_current = curr;
1537
1538         /* Check to see if there are a minimum number of used
1539          * RFDs before restoring any (should improve performance.)
1540          */
1541         if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1542                 ipg_nic_rxrestore(dev);
1543
1544         return 0;
1545 }
1546
1547 static void ipg_reset_after_host_error(struct work_struct *work)
1548 {
1549         struct ipg_nic_private *sp =
1550                 container_of(work, struct ipg_nic_private, task.work);
1551         struct net_device *dev = sp->dev;
1552
1553         IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL));
1554
1555         /*
1556          * Acknowledge HostError interrupt by resetting
1557          * IPG DMA and HOST.
1558          */
1559         ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1560
1561         init_rfdlist(dev);
1562         init_tfdlist(dev);
1563
1564         if (ipg_io_config(dev) < 0) {
1565                 printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
1566                        dev->name);
1567                 schedule_delayed_work(&sp->task, HZ);
1568         }
1569 }
1570
1571 static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1572 {
1573         struct net_device *dev = dev_inst;
1574         struct ipg_nic_private *sp = netdev_priv(dev);
1575         void __iomem *ioaddr = sp->ioaddr;
1576         unsigned int handled = 0;
1577         u16 status;
1578
1579         IPG_DEBUG_MSG("_interrupt_handler\n");
1580
1581         if (sp->is_jumbo)
1582                 ipg_nic_rxrestore(dev);
1583
1584         spin_lock(&sp->lock);
1585
1586         /* Get interrupt source information, and acknowledge
1587          * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1588          * IntRequested, MacControlFrame, LinkEvent) interrupts
1589          * if issued. Also, all IPG interrupts are disabled by
1590          * reading IntStatusAck.
1591          */
1592         status = ipg_r16(INT_STATUS_ACK);
1593
1594         IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);
1595
1596         /* Shared IRQ of remove event. */
1597         if (!(status & IPG_IS_RSVD_MASK))
1598                 goto out_enable;
1599
1600         handled = 1;
1601
1602         if (unlikely(!netif_running(dev)))
1603                 goto out_unlock;
1604
1605         /* If RFDListEnd interrupt, restore all used RFDs. */
1606         if (status & IPG_IS_RFD_LIST_END) {
1607                 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
1608
1609                 /* The RFD list end indicates an RFD was encountered
1610                  * with a 0 NextPtr, or with an RFDDone bit set to 1
1611                  * (indicating the RFD is not read for use by the
1612                  * IPG.) Try to restore all RFDs.
1613                  */
1614                 ipg_nic_rxrestore(dev);
1615
1616 #ifdef IPG_DEBUG
1617                 /* Increment the RFDlistendCount counter. */
1618                 sp->RFDlistendCount++;
1619 #endif
1620         }
1621
1622         /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1623          * IntRequested interrupt, process received frames. */
1624         if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1625             (status & IPG_IS_RFD_LIST_END) ||
1626             (status & IPG_IS_RX_DMA_COMPLETE) ||
1627             (status & IPG_IS_INT_REQUESTED)) {
1628 #ifdef IPG_DEBUG
1629                 /* Increment the RFD list checked counter if interrupted
1630                  * only to check the RFD list. */
1631                 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1632                                 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1633                                (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1634                                 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1635                                 IPG_IS_UPDATE_STATS)))
1636                         sp->RFDListCheckedCount++;
1637 #endif
1638
1639                 if (sp->is_jumbo)
1640                         ipg_nic_rx_jumbo(dev);
1641                 else
1642                         ipg_nic_rx(dev);
1643         }
1644
1645         /* If TxDMAComplete interrupt, free used TFDs. */
1646         if (status & IPG_IS_TX_DMA_COMPLETE)
1647                 ipg_nic_txfree(dev);
1648
1649         /* TxComplete interrupts indicate one of numerous actions.
1650          * Determine what action to take based on TXSTATUS register.
1651          */
1652         if (status & IPG_IS_TX_COMPLETE)
1653                 ipg_nic_txcleanup(dev);
1654
1655         /* If UpdateStats interrupt, update Linux Ethernet statistics */
1656         if (status & IPG_IS_UPDATE_STATS)
1657                 ipg_nic_get_stats(dev);
1658
1659         /* If HostError interrupt, reset IPG. */
1660         if (status & IPG_IS_HOST_ERROR) {
1661                 IPG_DDEBUG_MSG("HostError Interrupt\n");
1662
1663                 schedule_delayed_work(&sp->task, 0);
1664         }
1665
1666         /* If LinkEvent interrupt, resolve autonegotiation. */
1667         if (status & IPG_IS_LINK_EVENT) {
1668                 if (ipg_config_autoneg(dev) < 0)
1669                         printk(KERN_INFO "%s: Auto-negotiation error.\n",
1670                                dev->name);
1671         }
1672
1673         /* If MACCtrlFrame interrupt, do nothing. */
1674         if (status & IPG_IS_MAC_CTRL_FRAME)
1675                 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
1676
1677         /* If RxComplete interrupt, do nothing. */
1678         if (status & IPG_IS_RX_COMPLETE)
1679                 IPG_DEBUG_MSG("RxComplete interrupt.\n");
1680
1681         /* If RxEarly interrupt, do nothing. */
1682         if (status & IPG_IS_RX_EARLY)
1683                 IPG_DEBUG_MSG("RxEarly interrupt.\n");
1684
1685 out_enable:
1686         /* Re-enable IPG interrupts. */
1687         ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1688                 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1689                 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1690 out_unlock:
1691         spin_unlock(&sp->lock);
1692
1693         return IRQ_RETVAL(handled);
1694 }
1695
1696 static void ipg_rx_clear(struct ipg_nic_private *sp)
1697 {
1698         unsigned int i;
1699
1700         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1701                 if (sp->rx_buff[i]) {
1702                         struct ipg_rx *rxfd = sp->rxd + i;
1703
1704                         dev_kfree_skb_irq(sp->rx_buff[i]);
1705                         sp->rx_buff[i] = NULL;
1706                         pci_unmap_single(sp->pdev,
1707                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1708                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1709                 }
1710         }
1711 }
1712
1713 static void ipg_tx_clear(struct ipg_nic_private *sp)
1714 {
1715         unsigned int i;
1716
1717         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1718                 if (sp->tx_buff[i]) {
1719                         struct ipg_tx *txfd = sp->txd + i;
1720
1721                         pci_unmap_single(sp->pdev,
1722                                 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1723                                 sp->tx_buff[i]->len, PCI_DMA_TODEVICE);
1724
1725                         dev_kfree_skb_irq(sp->tx_buff[i]);
1726
1727                         sp->tx_buff[i] = NULL;
1728                 }
1729         }
1730 }
1731
1732 static int ipg_nic_open(struct net_device *dev)
1733 {
1734         struct ipg_nic_private *sp = netdev_priv(dev);
1735         void __iomem *ioaddr = sp->ioaddr;
1736         struct pci_dev *pdev = sp->pdev;
1737         int rc;
1738
1739         IPG_DEBUG_MSG("_nic_open\n");
1740
1741         sp->rx_buf_sz = sp->rxsupport_size;
1742
1743         /* Check for interrupt line conflicts, and request interrupt
1744          * line for IPG.
1745          *
1746          * IMPORTANT: Disable IPG interrupts prior to registering
1747          *            IRQ.
1748          */
1749         ipg_w16(0x0000, INT_ENABLE);
1750
1751         /* Register the interrupt line to be used by the IPG within
1752          * the Linux system.
1753          */
1754         rc = request_irq(pdev->irq, ipg_interrupt_handler, IRQF_SHARED,
1755                          dev->name, dev);
1756         if (rc < 0) {
1757                 printk(KERN_INFO "%s: Error when requesting interrupt.\n",
1758                        dev->name);
1759                 goto out;
1760         }
1761
1762         dev->irq = pdev->irq;
1763
1764         rc = -ENOMEM;
1765
1766         sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1767                                      &sp->rxd_map, GFP_KERNEL);
1768         if (!sp->rxd)
1769                 goto err_free_irq_0;
1770
1771         sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1772                                      &sp->txd_map, GFP_KERNEL);
1773         if (!sp->txd)
1774                 goto err_free_rx_1;
1775
1776         rc = init_rfdlist(dev);
1777         if (rc < 0) {
1778                 printk(KERN_INFO "%s: Error during configuration.\n",
1779                        dev->name);
1780                 goto err_free_tx_2;
1781         }
1782
1783         init_tfdlist(dev);
1784
1785         rc = ipg_io_config(dev);
1786         if (rc < 0) {
1787                 printk(KERN_INFO "%s: Error during configuration.\n",
1788                        dev->name);
1789                 goto err_release_tfdlist_3;
1790         }
1791
1792         /* Resolve autonegotiation. */
1793         if (ipg_config_autoneg(dev) < 0)
1794                 printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);
1795
1796         /* initialize JUMBO Frame control variable */
1797         sp->jumbo.found_start = 0;
1798         sp->jumbo.current_size = 0;
1799         sp->jumbo.skb = NULL;
1800
1801         /* Enable transmit and receive operation of the IPG. */
1802         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1803                  IPG_MC_RSVD_MASK, MAC_CTRL);
1804
1805         netif_start_queue(dev);
1806 out:
1807         return rc;
1808
1809 err_release_tfdlist_3:
1810         ipg_tx_clear(sp);
1811         ipg_rx_clear(sp);
1812 err_free_tx_2:
1813         dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1814 err_free_rx_1:
1815         dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1816 err_free_irq_0:
1817         free_irq(pdev->irq, dev);
1818         goto out;
1819 }
1820
1821 static int ipg_nic_stop(struct net_device *dev)
1822 {
1823         struct ipg_nic_private *sp = netdev_priv(dev);
1824         void __iomem *ioaddr = sp->ioaddr;
1825         struct pci_dev *pdev = sp->pdev;
1826
1827         IPG_DEBUG_MSG("_nic_stop\n");
1828
1829         netif_stop_queue(dev);
1830
1831         IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount);
1832         IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount);
1833         IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount);
1834         IPG_DUMPTFDLIST(dev);
1835
1836         do {
1837                 (void) ipg_r16(INT_STATUS_ACK);
1838
1839                 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1840
1841                 synchronize_irq(pdev->irq);
1842         } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1843
1844         ipg_rx_clear(sp);
1845
1846         ipg_tx_clear(sp);
1847
1848         pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1849         pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1850
1851         free_irq(pdev->irq, dev);
1852
1853         return 0;
1854 }
1855
1856 static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb,
1857                                            struct net_device *dev)
1858 {
1859         struct ipg_nic_private *sp = netdev_priv(dev);
1860         void __iomem *ioaddr = sp->ioaddr;
1861         unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1862         unsigned long flags;
1863         struct ipg_tx *txfd;
1864
1865         IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1866
1867         /* If in 10Mbps mode, stop the transmit queue so
1868          * no more transmit frames are accepted.
1869          */
1870         if (sp->tenmbpsmode)
1871                 netif_stop_queue(dev);
1872
1873         if (sp->reset_current_tfd) {
1874                 sp->reset_current_tfd = 0;
1875                 entry = 0;
1876         }
1877
1878         txfd = sp->txd + entry;
1879
1880         sp->tx_buff[entry] = skb;
1881
1882         /* Clear all TFC fields, except TFDDONE. */
1883         txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1884
1885         /* Specify the TFC field within the TFD. */
1886         txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1887                 (IPG_TFC_FRAMEID & sp->tx_current) |
1888                 (IPG_TFC_FRAGCOUNT & (1 << 24)));
1889         /*
1890          * 16--17 (WordAlign) <- 3 (disable),
1891          * 0--15 (FrameId) <- sp->tx_current,
1892          * 24--27 (FragCount) <- 1
1893          */
1894
1895         /* Request TxComplete interrupts at an interval defined
1896          * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1897          * Request TxComplete interrupt for every frame
1898          * if in 10Mbps mode to accomodate problem with 10Mbps
1899          * processing.
1900          */
1901         if (sp->tenmbpsmode)
1902                 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1903         txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1904         /* Based on compilation option, determine if FCS is to be
1905          * appended to transmit frame by IPG.
1906          */
1907         if (!(IPG_APPEND_FCS_ON_TX))
1908                 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1909
1910         /* Based on compilation option, determine if IP, TCP and/or
1911          * UDP checksums are to be added to transmit frame by IPG.
1912          */
1913         if (IPG_ADD_IPCHECKSUM_ON_TX)
1914                 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1915
1916         if (IPG_ADD_TCPCHECKSUM_ON_TX)
1917                 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1918
1919         if (IPG_ADD_UDPCHECKSUM_ON_TX)
1920                 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1921
1922         /* Based on compilation option, determine if VLAN tag info is to be
1923          * inserted into transmit frame by IPG.
1924          */
1925         if (IPG_INSERT_MANUAL_VLAN_TAG) {
1926                 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1927                         ((u64) IPG_MANUAL_VLAN_VID << 32) |
1928                         ((u64) IPG_MANUAL_VLAN_CFI << 44) |
1929                         ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1930         }
1931
1932         /* The fragment start location within system memory is defined
1933          * by the sk_buff structure's data field. The physical address
1934          * of this location within the system's virtual memory space
1935          * is determined using the IPG_HOST2BUS_MAP function.
1936          */
1937         txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1938                 skb->len, PCI_DMA_TODEVICE));
1939
1940         /* The length of the fragment within system memory is defined by
1941          * the sk_buff structure's len field.
1942          */
1943         txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1944                 ((u64) (skb->len & 0xffff) << 48));
1945
1946         /* Clear the TFDDone bit last to indicate the TFD is ready
1947          * for transfer to the IPG.
1948          */
1949         txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1950
1951         spin_lock_irqsave(&sp->lock, flags);
1952
1953         sp->tx_current++;
1954
1955         mmiowb();
1956
1957         ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1958
1959         if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1960                 netif_stop_queue(dev);
1961
1962         spin_unlock_irqrestore(&sp->lock, flags);
1963
1964         return NETDEV_TX_OK;
1965 }
1966
1967 static void ipg_set_phy_default_param(unsigned char rev,
1968                                       struct net_device *dev, int phy_address)
1969 {
1970         unsigned short length;
1971         unsigned char revision;
1972         unsigned short *phy_param;
1973         unsigned short address, value;
1974
1975         phy_param = &DefaultPhyParam[0];
1976         length = *phy_param & 0x00FF;
1977         revision = (unsigned char)((*phy_param) >> 8);
1978         phy_param++;
1979         while (length != 0) {
1980                 if (rev == revision) {
1981                         while (length > 1) {
1982                                 address = *phy_param;
1983                                 value = *(phy_param + 1);
1984                                 phy_param += 2;
1985                                 mdio_write(dev, phy_address, address, value);
1986                                 length -= 4;
1987                         }
1988                         break;
1989                 } else {
1990                         phy_param += length / 2;
1991                         length = *phy_param & 0x00FF;
1992                         revision = (unsigned char)((*phy_param) >> 8);
1993                         phy_param++;
1994                 }
1995         }
1996 }
1997
1998 static int read_eeprom(struct net_device *dev, int eep_addr)
1999 {
2000         void __iomem *ioaddr = ipg_ioaddr(dev);
2001         unsigned int i;
2002         int ret = 0;
2003         u16 value;
2004
2005         value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
2006         ipg_w16(value, EEPROM_CTRL);
2007
2008         for (i = 0; i < 1000; i++) {
2009                 u16 data;
2010
2011                 mdelay(10);
2012                 data = ipg_r16(EEPROM_CTRL);
2013                 if (!(data & IPG_EC_EEPROM_BUSY)) {
2014                         ret = ipg_r16(EEPROM_DATA);
2015                         break;
2016                 }
2017         }
2018         return ret;
2019 }
2020
2021 static void ipg_init_mii(struct net_device *dev)
2022 {
2023         struct ipg_nic_private *sp = netdev_priv(dev);
2024         struct mii_if_info *mii_if = &sp->mii_if;
2025         int phyaddr;
2026
2027         mii_if->dev          = dev;
2028         mii_if->mdio_read    = mdio_read;
2029         mii_if->mdio_write   = mdio_write;
2030         mii_if->phy_id_mask  = 0x1f;
2031         mii_if->reg_num_mask = 0x1f;
2032
2033         mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2034
2035         if (phyaddr != 0x1f) {
2036                 u16 mii_phyctrl, mii_1000cr;
2037                 u8 revisionid = 0;
2038
2039                 mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000);
2040                 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2041                         GMII_PHY_1000BASETCONTROL_PreferMaster;
2042                 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2043
2044                 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2045
2046                 /* Set default phyparam */
2047                 pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid);
2048                 ipg_set_phy_default_param(revisionid, dev, phyaddr);
2049
2050                 /* Reset PHY */
2051                 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2052                 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2053
2054         }
2055 }
2056
2057 static int ipg_hw_init(struct net_device *dev)
2058 {
2059         struct ipg_nic_private *sp = netdev_priv(dev);
2060         void __iomem *ioaddr = sp->ioaddr;
2061         unsigned int i;
2062         int rc;
2063
2064         /* Read/Write and Reset EEPROM Value */
2065         /* Read LED Mode Configuration from EEPROM */
2066         sp->led_mode = read_eeprom(dev, 6);
2067
2068         /* Reset all functions within the IPG. Do not assert
2069          * RST_OUT as not compatible with some PHYs.
2070          */
2071         rc = ipg_reset(dev, IPG_RESET_MASK);
2072         if (rc < 0)
2073                 goto out;
2074
2075         ipg_init_mii(dev);
2076
2077         /* Read MAC Address from EEPROM */
2078         for (i = 0; i < 3; i++)
2079                 sp->station_addr[i] = read_eeprom(dev, 16 + i);
2080
2081         for (i = 0; i < 3; i++)
2082                 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2083
2084         /* Set station address in ethernet_device structure. */
2085         dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2086         dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2087         dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2088         dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2089         dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2090         dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2091 out:
2092         return rc;
2093 }
2094
2095 static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2096 {
2097         struct ipg_nic_private *sp = netdev_priv(dev);
2098         int rc;
2099
2100         mutex_lock(&sp->mii_mutex);
2101         rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2102         mutex_unlock(&sp->mii_mutex);
2103
2104         return rc;
2105 }
2106
2107 static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2108 {
2109         struct ipg_nic_private *sp = netdev_priv(dev);
2110         int err;
2111
2112         /* Function to accomodate changes to Maximum Transfer Unit
2113          * (or MTU) of IPG NIC. Cannot use default function since
2114          * the default will not allow for MTU > 1500 bytes.
2115          */
2116
2117         IPG_DEBUG_MSG("_nic_change_mtu\n");
2118
2119         /*
2120          * Check that the new MTU value is between 68 (14 byte header, 46 byte
2121          * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2122          */
2123         if (new_mtu < 68 || new_mtu > 10240)
2124                 return -EINVAL;
2125
2126         err = ipg_nic_stop(dev);
2127         if (err)
2128                 return err;
2129
2130         dev->mtu = new_mtu;
2131
2132         sp->max_rxframe_size = new_mtu;
2133
2134         sp->rxfrag_size = new_mtu;
2135         if (sp->rxfrag_size > 4088)
2136                 sp->rxfrag_size = 4088;
2137
2138         sp->rxsupport_size = sp->max_rxframe_size;
2139
2140         if (new_mtu > 0x0600)
2141                 sp->is_jumbo = true;
2142         else
2143                 sp->is_jumbo = false;
2144
2145         return ipg_nic_open(dev);
2146 }
2147
2148 static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2149 {
2150         struct ipg_nic_private *sp = netdev_priv(dev);
2151         int rc;
2152
2153         mutex_lock(&sp->mii_mutex);
2154         rc = mii_ethtool_gset(&sp->mii_if, cmd);
2155         mutex_unlock(&sp->mii_mutex);
2156
2157         return rc;
2158 }
2159
2160 static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2161 {
2162         struct ipg_nic_private *sp = netdev_priv(dev);
2163         int rc;
2164
2165         mutex_lock(&sp->mii_mutex);
2166         rc = mii_ethtool_sset(&sp->mii_if, cmd);
2167         mutex_unlock(&sp->mii_mutex);
2168
2169         return rc;
2170 }
2171
2172 static int ipg_nway_reset(struct net_device *dev)
2173 {
2174         struct ipg_nic_private *sp = netdev_priv(dev);
2175         int rc;
2176
2177         mutex_lock(&sp->mii_mutex);
2178         rc = mii_nway_restart(&sp->mii_if);
2179         mutex_unlock(&sp->mii_mutex);
2180
2181         return rc;
2182 }
2183
2184 static const struct ethtool_ops ipg_ethtool_ops = {
2185         .get_settings = ipg_get_settings,
2186         .set_settings = ipg_set_settings,
2187         .nway_reset   = ipg_nway_reset,
2188 };
2189
2190 static void __devexit ipg_remove(struct pci_dev *pdev)
2191 {
2192         struct net_device *dev = pci_get_drvdata(pdev);
2193         struct ipg_nic_private *sp = netdev_priv(dev);
2194
2195         IPG_DEBUG_MSG("_remove\n");
2196
2197         /* Un-register Ethernet device. */
2198         unregister_netdev(dev);
2199
2200         pci_iounmap(pdev, sp->ioaddr);
2201
2202         pci_release_regions(pdev);
2203
2204         free_netdev(dev);
2205         pci_disable_device(pdev);
2206         pci_set_drvdata(pdev, NULL);
2207 }
2208
2209 static const struct net_device_ops ipg_netdev_ops = {
2210         .ndo_open               = ipg_nic_open,
2211         .ndo_stop               = ipg_nic_stop,
2212         .ndo_start_xmit         = ipg_nic_hard_start_xmit,
2213         .ndo_get_stats          = ipg_nic_get_stats,
2214         .ndo_set_multicast_list = ipg_nic_set_multicast_list,
2215         .ndo_do_ioctl           = ipg_ioctl,
2216         .ndo_tx_timeout         = ipg_tx_timeout,
2217         .ndo_change_mtu         = ipg_nic_change_mtu,
2218         .ndo_set_mac_address    = eth_mac_addr,
2219         .ndo_validate_addr      = eth_validate_addr,
2220 };
2221
2222 static int __devinit ipg_probe(struct pci_dev *pdev,
2223                                const struct pci_device_id *id)
2224 {
2225         unsigned int i = id->driver_data;
2226         struct ipg_nic_private *sp;
2227         struct net_device *dev;
2228         void __iomem *ioaddr;
2229         int rc;
2230
2231         rc = pci_enable_device(pdev);
2232         if (rc < 0)
2233                 goto out;
2234
2235         printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2236
2237         pci_set_master(pdev);
2238
2239         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2240         if (rc < 0) {
2241                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2242                 if (rc < 0) {
2243                         printk(KERN_ERR "%s: DMA config failed.\n",
2244                                pci_name(pdev));
2245                         goto err_disable_0;
2246                 }
2247         }
2248
2249         /*
2250          * Initialize net device.
2251          */
2252         dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2253         if (!dev) {
2254                 printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
2255                 rc = -ENOMEM;
2256                 goto err_disable_0;
2257         }
2258
2259         sp = netdev_priv(dev);
2260         spin_lock_init(&sp->lock);
2261         mutex_init(&sp->mii_mutex);
2262
2263         sp->is_jumbo = IPG_IS_JUMBO;
2264         sp->rxfrag_size = IPG_RXFRAG_SIZE;
2265         sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
2266         sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;
2267
2268         /* Declare IPG NIC functions for Ethernet device methods.
2269          */
2270         dev->netdev_ops = &ipg_netdev_ops;
2271         SET_NETDEV_DEV(dev, &pdev->dev);
2272         SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
2273
2274         rc = pci_request_regions(pdev, DRV_NAME);
2275         if (rc)
2276                 goto err_free_dev_1;
2277
2278         ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2279         if (!ioaddr) {
2280                 printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
2281                 rc = -EIO;
2282                 goto err_release_regions_2;
2283         }
2284
2285         /* Save the pointer to the PCI device information. */
2286         sp->ioaddr = ioaddr;
2287         sp->pdev = pdev;
2288         sp->dev = dev;
2289
2290         INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2291
2292         pci_set_drvdata(pdev, dev);
2293
2294         rc = ipg_hw_init(dev);
2295         if (rc < 0)
2296                 goto err_unmap_3;
2297
2298         rc = register_netdev(dev);
2299         if (rc < 0)
2300                 goto err_unmap_3;
2301
2302         printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
2303 out:
2304         return rc;
2305
2306 err_unmap_3:
2307         pci_iounmap(pdev, ioaddr);
2308 err_release_regions_2:
2309         pci_release_regions(pdev);
2310 err_free_dev_1:
2311         free_netdev(dev);
2312 err_disable_0:
2313         pci_disable_device(pdev);
2314         goto out;
2315 }
2316
2317 static struct pci_driver ipg_pci_driver = {
2318         .name           = IPG_DRIVER_NAME,
2319         .id_table       = ipg_pci_tbl,
2320         .probe          = ipg_probe,
2321         .remove         = __devexit_p(ipg_remove),
2322 };
2323
2324 static int __init ipg_init_module(void)
2325 {
2326         return pci_register_driver(&ipg_pci_driver);
2327 }
2328
2329 static void __exit ipg_exit_module(void)
2330 {
2331         pci_unregister_driver(&ipg_pci_driver);
2332 }
2333
2334 module_init(ipg_init_module);
2335 module_exit(ipg_exit_module);