a50db5398fa52a297c07b78dddc5c6502c406f39
[safe/jmp/linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #include <linux/aer.h>
46 #ifdef CONFIG_IGB_DCA
47 #include <linux/dca.h>
48 #endif
49 #include "igb.h"
50
51 #define DRV_VERSION "1.2.45-k2"
52 char igb_driver_name[] = "igb";
53 char igb_driver_version[] = DRV_VERSION;
54 static const char igb_driver_string[] =
55                                 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
57
58 static const struct e1000_info *igb_info_tbl[] = {
59         [board_82575] = &e1000_82575_info,
60 };
61
62 static struct pci_device_id igb_pci_tbl[] = {
63         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
69         /* required last entry */
70         {0, }
71 };
72
73 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
74
75 void igb_reset(struct igb_adapter *);
76 static int igb_setup_all_tx_resources(struct igb_adapter *);
77 static int igb_setup_all_rx_resources(struct igb_adapter *);
78 static void igb_free_all_tx_resources(struct igb_adapter *);
79 static void igb_free_all_rx_resources(struct igb_adapter *);
80 void igb_update_stats(struct igb_adapter *);
81 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
82 static void __devexit igb_remove(struct pci_dev *pdev);
83 static int igb_sw_init(struct igb_adapter *);
84 static int igb_open(struct net_device *);
85 static int igb_close(struct net_device *);
86 static void igb_configure_tx(struct igb_adapter *);
87 static void igb_configure_rx(struct igb_adapter *);
88 static void igb_setup_rctl(struct igb_adapter *);
89 static void igb_clean_all_tx_rings(struct igb_adapter *);
90 static void igb_clean_all_rx_rings(struct igb_adapter *);
91 static void igb_clean_tx_ring(struct igb_ring *);
92 static void igb_clean_rx_ring(struct igb_ring *);
93 static void igb_set_multi(struct net_device *);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct *);
97 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
98                                   struct igb_ring *);
99 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
100 static struct net_device_stats *igb_get_stats(struct net_device *);
101 static int igb_change_mtu(struct net_device *, int);
102 static int igb_set_mac(struct net_device *, void *);
103 static irqreturn_t igb_intr(int irq, void *);
104 static irqreturn_t igb_intr_msi(int irq, void *);
105 static irqreturn_t igb_msix_other(int irq, void *);
106 static irqreturn_t igb_msix_rx(int irq, void *);
107 static irqreturn_t igb_msix_tx(int irq, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 #ifdef CONFIG_IGB_LRO
119 static int igb_get_skb_hdr(struct sk_buff *skb, void **, void **, u64 *, void *);
120 #endif
121 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
122 static void igb_tx_timeout(struct net_device *);
123 static void igb_reset_task(struct work_struct *);
124 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
125 static void igb_vlan_rx_add_vid(struct net_device *, u16);
126 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
127 static void igb_restore_vlan(struct igb_adapter *);
128
129 static int igb_suspend(struct pci_dev *, pm_message_t);
130 #ifdef CONFIG_PM
131 static int igb_resume(struct pci_dev *);
132 #endif
133 static void igb_shutdown(struct pci_dev *);
134 #ifdef CONFIG_IGB_DCA
135 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
136 static struct notifier_block dca_notifier = {
137         .notifier_call  = igb_notify_dca,
138         .next           = NULL,
139         .priority       = 0
140 };
141 #endif
142
143 #ifdef CONFIG_NET_POLL_CONTROLLER
144 /* for netdump / net console */
145 static void igb_netpoll(struct net_device *);
146 #endif
147
148 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
149                      pci_channel_state_t);
150 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
151 static void igb_io_resume(struct pci_dev *);
152
153 static struct pci_error_handlers igb_err_handler = {
154         .error_detected = igb_io_error_detected,
155         .slot_reset = igb_io_slot_reset,
156         .resume = igb_io_resume,
157 };
158
159
160 static struct pci_driver igb_driver = {
161         .name     = igb_driver_name,
162         .id_table = igb_pci_tbl,
163         .probe    = igb_probe,
164         .remove   = __devexit_p(igb_remove),
165 #ifdef CONFIG_PM
166         /* Power Managment Hooks */
167         .suspend  = igb_suspend,
168         .resume   = igb_resume,
169 #endif
170         .shutdown = igb_shutdown,
171         .err_handler = &igb_err_handler
172 };
173
174 static int global_quad_port_a; /* global quad port a indication */
175
176 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
177 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
178 MODULE_LICENSE("GPL");
179 MODULE_VERSION(DRV_VERSION);
180
181 #ifdef DEBUG
182 /**
183  * igb_get_hw_dev_name - return device name string
184  * used by hardware layer to print debugging information
185  **/
186 char *igb_get_hw_dev_name(struct e1000_hw *hw)
187 {
188         struct igb_adapter *adapter = hw->back;
189         return adapter->netdev->name;
190 }
191 #endif
192
193 /**
194  * igb_init_module - Driver Registration Routine
195  *
196  * igb_init_module is the first routine called when the driver is
197  * loaded. All it does is register with the PCI subsystem.
198  **/
199 static int __init igb_init_module(void)
200 {
201         int ret;
202         printk(KERN_INFO "%s - version %s\n",
203                igb_driver_string, igb_driver_version);
204
205         printk(KERN_INFO "%s\n", igb_copyright);
206
207         global_quad_port_a = 0;
208
209 #ifdef CONFIG_IGB_DCA
210         dca_register_notify(&dca_notifier);
211 #endif
212
213         ret = pci_register_driver(&igb_driver);
214         return ret;
215 }
216
217 module_init(igb_init_module);
218
219 /**
220  * igb_exit_module - Driver Exit Cleanup Routine
221  *
222  * igb_exit_module is called just before the driver is removed
223  * from memory.
224  **/
225 static void __exit igb_exit_module(void)
226 {
227 #ifdef CONFIG_IGB_DCA
228         dca_unregister_notify(&dca_notifier);
229 #endif
230         pci_unregister_driver(&igb_driver);
231 }
232
233 module_exit(igb_exit_module);
234
235 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
236 /**
237  * igb_cache_ring_register - Descriptor ring to register mapping
238  * @adapter: board private structure to initialize
239  *
240  * Once we know the feature-set enabled for the device, we'll cache
241  * the register offset the descriptor ring is assigned to.
242  **/
243 static void igb_cache_ring_register(struct igb_adapter *adapter)
244 {
245         int i;
246
247         switch (adapter->hw.mac.type) {
248         case e1000_82576:
249                 /* The queues are allocated for virtualization such that VF 0
250                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
251                  * In order to avoid collision we start at the first free queue
252                  * and continue consuming queues in the same sequence
253                  */
254                 for (i = 0; i < adapter->num_rx_queues; i++)
255                         adapter->rx_ring[i].reg_idx = Q_IDX_82576(i);
256                 for (i = 0; i < adapter->num_tx_queues; i++)
257                         adapter->tx_ring[i].reg_idx = Q_IDX_82576(i);
258                 break;
259         case e1000_82575:
260         default:
261                 for (i = 0; i < adapter->num_rx_queues; i++)
262                         adapter->rx_ring[i].reg_idx = i;
263                 for (i = 0; i < adapter->num_tx_queues; i++)
264                         adapter->tx_ring[i].reg_idx = i;
265                 break;
266         }
267 }
268
269 /**
270  * igb_alloc_queues - Allocate memory for all rings
271  * @adapter: board private structure to initialize
272  *
273  * We allocate one ring per queue at run-time since we don't know the
274  * number of queues at compile-time.
275  **/
276 static int igb_alloc_queues(struct igb_adapter *adapter)
277 {
278         int i;
279
280         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
281                                    sizeof(struct igb_ring), GFP_KERNEL);
282         if (!adapter->tx_ring)
283                 return -ENOMEM;
284
285         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
286                                    sizeof(struct igb_ring), GFP_KERNEL);
287         if (!adapter->rx_ring) {
288                 kfree(adapter->tx_ring);
289                 return -ENOMEM;
290         }
291
292         adapter->rx_ring->buddy = adapter->tx_ring;
293
294         for (i = 0; i < adapter->num_tx_queues; i++) {
295                 struct igb_ring *ring = &(adapter->tx_ring[i]);
296                 ring->count = adapter->tx_ring_count;
297                 ring->adapter = adapter;
298                 ring->queue_index = i;
299         }
300         for (i = 0; i < adapter->num_rx_queues; i++) {
301                 struct igb_ring *ring = &(adapter->rx_ring[i]);
302                 ring->count = adapter->rx_ring_count;
303                 ring->adapter = adapter;
304                 ring->queue_index = i;
305                 ring->itr_register = E1000_ITR;
306
307                 /* set a default napi handler for each rx_ring */
308                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
309         }
310
311         igb_cache_ring_register(adapter);
312         return 0;
313 }
314
315 static void igb_free_queues(struct igb_adapter *adapter)
316 {
317         int i;
318
319         for (i = 0; i < adapter->num_rx_queues; i++)
320                 netif_napi_del(&adapter->rx_ring[i].napi);
321
322         kfree(adapter->tx_ring);
323         kfree(adapter->rx_ring);
324 }
325
326 #define IGB_N0_QUEUE -1
327 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
328                               int tx_queue, int msix_vector)
329 {
330         u32 msixbm = 0;
331         struct e1000_hw *hw = &adapter->hw;
332         u32 ivar, index;
333
334         switch (hw->mac.type) {
335         case e1000_82575:
336                 /* The 82575 assigns vectors using a bitmask, which matches the
337                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
338                    or more queues to a vector, we write the appropriate bits
339                    into the MSIXBM register for that vector. */
340                 if (rx_queue > IGB_N0_QUEUE) {
341                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
342                         adapter->rx_ring[rx_queue].eims_value = msixbm;
343                 }
344                 if (tx_queue > IGB_N0_QUEUE) {
345                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
346                         adapter->tx_ring[tx_queue].eims_value =
347                                   E1000_EICR_TX_QUEUE0 << tx_queue;
348                 }
349                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
350                 break;
351         case e1000_82576:
352                 /* 82576 uses a table-based method for assigning vectors.
353                    Each queue has a single entry in the table to which we write
354                    a vector number along with a "valid" bit.  Sadly, the layout
355                    of the table is somewhat counterintuitive. */
356                 if (rx_queue > IGB_N0_QUEUE) {
357                         index = (rx_queue >> 1);
358                         ivar = array_rd32(E1000_IVAR0, index);
359                         if (rx_queue & 0x1) {
360                                 /* vector goes into third byte of register */
361                                 ivar = ivar & 0xFF00FFFF;
362                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
363                         } else {
364                                 /* vector goes into low byte of register */
365                                 ivar = ivar & 0xFFFFFF00;
366                                 ivar |= msix_vector | E1000_IVAR_VALID;
367                         }
368                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
369                         array_wr32(E1000_IVAR0, index, ivar);
370                 }
371                 if (tx_queue > IGB_N0_QUEUE) {
372                         index = (tx_queue >> 1);
373                         ivar = array_rd32(E1000_IVAR0, index);
374                         if (tx_queue & 0x1) {
375                                 /* vector goes into high byte of register */
376                                 ivar = ivar & 0x00FFFFFF;
377                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
378                         } else {
379                                 /* vector goes into second byte of register */
380                                 ivar = ivar & 0xFFFF00FF;
381                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
382                         }
383                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
384                         array_wr32(E1000_IVAR0, index, ivar);
385                 }
386                 break;
387         default:
388                 BUG();
389                 break;
390         }
391 }
392
393 /**
394  * igb_configure_msix - Configure MSI-X hardware
395  *
396  * igb_configure_msix sets up the hardware to properly
397  * generate MSI-X interrupts.
398  **/
399 static void igb_configure_msix(struct igb_adapter *adapter)
400 {
401         u32 tmp;
402         int i, vector = 0;
403         struct e1000_hw *hw = &adapter->hw;
404
405         adapter->eims_enable_mask = 0;
406         if (hw->mac.type == e1000_82576)
407                 /* Turn on MSI-X capability first, or our settings
408                  * won't stick.  And it will take days to debug. */
409                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
410                                    E1000_GPIE_PBA | E1000_GPIE_EIAME | 
411                                    E1000_GPIE_NSICR);
412
413         for (i = 0; i < adapter->num_tx_queues; i++) {
414                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
415                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
416                 adapter->eims_enable_mask |= tx_ring->eims_value;
417                 if (tx_ring->itr_val)
418                         writel(tx_ring->itr_val,
419                                hw->hw_addr + tx_ring->itr_register);
420                 else
421                         writel(1, hw->hw_addr + tx_ring->itr_register);
422         }
423
424         for (i = 0; i < adapter->num_rx_queues; i++) {
425                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
426                 rx_ring->buddy = NULL;
427                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
428                 adapter->eims_enable_mask |= rx_ring->eims_value;
429                 if (rx_ring->itr_val)
430                         writel(rx_ring->itr_val,
431                                hw->hw_addr + rx_ring->itr_register);
432                 else
433                         writel(1, hw->hw_addr + rx_ring->itr_register);
434         }
435
436
437         /* set vector for other causes, i.e. link changes */
438         switch (hw->mac.type) {
439         case e1000_82575:
440                 array_wr32(E1000_MSIXBM(0), vector++,
441                                       E1000_EIMS_OTHER);
442
443                 tmp = rd32(E1000_CTRL_EXT);
444                 /* enable MSI-X PBA support*/
445                 tmp |= E1000_CTRL_EXT_PBA_CLR;
446
447                 /* Auto-Mask interrupts upon ICR read. */
448                 tmp |= E1000_CTRL_EXT_EIAME;
449                 tmp |= E1000_CTRL_EXT_IRCA;
450
451                 wr32(E1000_CTRL_EXT, tmp);
452                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
453                 adapter->eims_other = E1000_EIMS_OTHER;
454
455                 break;
456
457         case e1000_82576:
458                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
459                 wr32(E1000_IVAR_MISC, tmp);
460
461                 adapter->eims_enable_mask = (1 << (vector)) - 1;
462                 adapter->eims_other = 1 << (vector - 1);
463                 break;
464         default:
465                 /* do nothing, since nothing else supports MSI-X */
466                 break;
467         } /* switch (hw->mac.type) */
468         wrfl();
469 }
470
471 /**
472  * igb_request_msix - Initialize MSI-X interrupts
473  *
474  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
475  * kernel.
476  **/
477 static int igb_request_msix(struct igb_adapter *adapter)
478 {
479         struct net_device *netdev = adapter->netdev;
480         int i, err = 0, vector = 0;
481
482         vector = 0;
483
484         for (i = 0; i < adapter->num_tx_queues; i++) {
485                 struct igb_ring *ring = &(adapter->tx_ring[i]);
486                 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
487                 err = request_irq(adapter->msix_entries[vector].vector,
488                                   &igb_msix_tx, 0, ring->name,
489                                   &(adapter->tx_ring[i]));
490                 if (err)
491                         goto out;
492                 ring->itr_register = E1000_EITR(0) + (vector << 2);
493                 ring->itr_val = 976; /* ~4000 ints/sec */
494                 vector++;
495         }
496         for (i = 0; i < adapter->num_rx_queues; i++) {
497                 struct igb_ring *ring = &(adapter->rx_ring[i]);
498                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
499                         sprintf(ring->name, "%s-rx-%d", netdev->name, i);
500                 else
501                         memcpy(ring->name, netdev->name, IFNAMSIZ);
502                 err = request_irq(adapter->msix_entries[vector].vector,
503                                   &igb_msix_rx, 0, ring->name,
504                                   &(adapter->rx_ring[i]));
505                 if (err)
506                         goto out;
507                 ring->itr_register = E1000_EITR(0) + (vector << 2);
508                 ring->itr_val = adapter->itr;
509                 /* overwrite the poll routine for MSIX, we've already done
510                  * netif_napi_add */
511                 ring->napi.poll = &igb_clean_rx_ring_msix;
512                 vector++;
513         }
514
515         err = request_irq(adapter->msix_entries[vector].vector,
516                           &igb_msix_other, 0, netdev->name, netdev);
517         if (err)
518                 goto out;
519
520         igb_configure_msix(adapter);
521         return 0;
522 out:
523         return err;
524 }
525
526 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
527 {
528         if (adapter->msix_entries) {
529                 pci_disable_msix(adapter->pdev);
530                 kfree(adapter->msix_entries);
531                 adapter->msix_entries = NULL;
532         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
533                 pci_disable_msi(adapter->pdev);
534         return;
535 }
536
537
538 /**
539  * igb_set_interrupt_capability - set MSI or MSI-X if supported
540  *
541  * Attempt to configure interrupts using the best available
542  * capabilities of the hardware and kernel.
543  **/
544 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
545 {
546         int err;
547         int numvecs, i;
548
549         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
550         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
551                                         GFP_KERNEL);
552         if (!adapter->msix_entries)
553                 goto msi_only;
554
555         for (i = 0; i < numvecs; i++)
556                 adapter->msix_entries[i].entry = i;
557
558         err = pci_enable_msix(adapter->pdev,
559                               adapter->msix_entries,
560                               numvecs);
561         if (err == 0)
562                 goto out;
563
564         igb_reset_interrupt_capability(adapter);
565
566         /* If we can't do MSI-X, try MSI */
567 msi_only:
568         adapter->num_rx_queues = 1;
569         adapter->num_tx_queues = 1;
570         if (!pci_enable_msi(adapter->pdev))
571                 adapter->flags |= IGB_FLAG_HAS_MSI;
572 out:
573         /* Notify the stack of the (possibly) reduced Tx Queue count. */
574         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
575         return;
576 }
577
578 /**
579  * igb_request_irq - initialize interrupts
580  *
581  * Attempts to configure interrupts using the best available
582  * capabilities of the hardware and kernel.
583  **/
584 static int igb_request_irq(struct igb_adapter *adapter)
585 {
586         struct net_device *netdev = adapter->netdev;
587         struct e1000_hw *hw = &adapter->hw;
588         int err = 0;
589
590         if (adapter->msix_entries) {
591                 err = igb_request_msix(adapter);
592                 if (!err)
593                         goto request_done;
594                 /* fall back to MSI */
595                 igb_reset_interrupt_capability(adapter);
596                 if (!pci_enable_msi(adapter->pdev))
597                         adapter->flags |= IGB_FLAG_HAS_MSI;
598                 igb_free_all_tx_resources(adapter);
599                 igb_free_all_rx_resources(adapter);
600                 adapter->num_rx_queues = 1;
601                 igb_alloc_queues(adapter);
602         } else {
603                 switch (hw->mac.type) {
604                 case e1000_82575:
605                         wr32(E1000_MSIXBM(0),
606                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
607                         break;
608                 case e1000_82576:
609                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
610                         break;
611                 default:
612                         break;
613                 }
614         }
615
616         if (adapter->flags & IGB_FLAG_HAS_MSI) {
617                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
618                                   netdev->name, netdev);
619                 if (!err)
620                         goto request_done;
621                 /* fall back to legacy interrupts */
622                 igb_reset_interrupt_capability(adapter);
623                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
624         }
625
626         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
627                           netdev->name, netdev);
628
629         if (err)
630                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
631                         err);
632
633 request_done:
634         return err;
635 }
636
637 static void igb_free_irq(struct igb_adapter *adapter)
638 {
639         struct net_device *netdev = adapter->netdev;
640
641         if (adapter->msix_entries) {
642                 int vector = 0, i;
643
644                 for (i = 0; i < adapter->num_tx_queues; i++)
645                         free_irq(adapter->msix_entries[vector++].vector,
646                                 &(adapter->tx_ring[i]));
647                 for (i = 0; i < adapter->num_rx_queues; i++)
648                         free_irq(adapter->msix_entries[vector++].vector,
649                                 &(adapter->rx_ring[i]));
650
651                 free_irq(adapter->msix_entries[vector++].vector, netdev);
652                 return;
653         }
654
655         free_irq(adapter->pdev->irq, netdev);
656 }
657
658 /**
659  * igb_irq_disable - Mask off interrupt generation on the NIC
660  * @adapter: board private structure
661  **/
662 static void igb_irq_disable(struct igb_adapter *adapter)
663 {
664         struct e1000_hw *hw = &adapter->hw;
665
666         if (adapter->msix_entries) {
667                 wr32(E1000_EIAM, 0);
668                 wr32(E1000_EIMC, ~0);
669                 wr32(E1000_EIAC, 0);
670         }
671
672         wr32(E1000_IAM, 0);
673         wr32(E1000_IMC, ~0);
674         wrfl();
675         synchronize_irq(adapter->pdev->irq);
676 }
677
678 /**
679  * igb_irq_enable - Enable default interrupt generation settings
680  * @adapter: board private structure
681  **/
682 static void igb_irq_enable(struct igb_adapter *adapter)
683 {
684         struct e1000_hw *hw = &adapter->hw;
685
686         if (adapter->msix_entries) {
687                 wr32(E1000_EIAC, adapter->eims_enable_mask);
688                 wr32(E1000_EIAM, adapter->eims_enable_mask);
689                 wr32(E1000_EIMS, adapter->eims_enable_mask);
690                 wr32(E1000_IMS, E1000_IMS_LSC);
691         } else {
692                 wr32(E1000_IMS, IMS_ENABLE_MASK);
693                 wr32(E1000_IAM, IMS_ENABLE_MASK);
694         }
695 }
696
697 static void igb_update_mng_vlan(struct igb_adapter *adapter)
698 {
699         struct net_device *netdev = adapter->netdev;
700         u16 vid = adapter->hw.mng_cookie.vlan_id;
701         u16 old_vid = adapter->mng_vlan_id;
702         if (adapter->vlgrp) {
703                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
704                         if (adapter->hw.mng_cookie.status &
705                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
706                                 igb_vlan_rx_add_vid(netdev, vid);
707                                 adapter->mng_vlan_id = vid;
708                         } else
709                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
710
711                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
712                                         (vid != old_vid) &&
713                             !vlan_group_get_device(adapter->vlgrp, old_vid))
714                                 igb_vlan_rx_kill_vid(netdev, old_vid);
715                 } else
716                         adapter->mng_vlan_id = vid;
717         }
718 }
719
720 /**
721  * igb_release_hw_control - release control of the h/w to f/w
722  * @adapter: address of board private structure
723  *
724  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
725  * For ASF and Pass Through versions of f/w this means that the
726  * driver is no longer loaded.
727  *
728  **/
729 static void igb_release_hw_control(struct igb_adapter *adapter)
730 {
731         struct e1000_hw *hw = &adapter->hw;
732         u32 ctrl_ext;
733
734         /* Let firmware take over control of h/w */
735         ctrl_ext = rd32(E1000_CTRL_EXT);
736         wr32(E1000_CTRL_EXT,
737                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
738 }
739
740
741 /**
742  * igb_get_hw_control - get control of the h/w from f/w
743  * @adapter: address of board private structure
744  *
745  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
746  * For ASF and Pass Through versions of f/w this means that
747  * the driver is loaded.
748  *
749  **/
750 static void igb_get_hw_control(struct igb_adapter *adapter)
751 {
752         struct e1000_hw *hw = &adapter->hw;
753         u32 ctrl_ext;
754
755         /* Let firmware know the driver has taken over */
756         ctrl_ext = rd32(E1000_CTRL_EXT);
757         wr32(E1000_CTRL_EXT,
758                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
759 }
760
761 /**
762  * igb_configure - configure the hardware for RX and TX
763  * @adapter: private board structure
764  **/
765 static void igb_configure(struct igb_adapter *adapter)
766 {
767         struct net_device *netdev = adapter->netdev;
768         int i;
769
770         igb_get_hw_control(adapter);
771         igb_set_multi(netdev);
772
773         igb_restore_vlan(adapter);
774
775         igb_configure_tx(adapter);
776         igb_setup_rctl(adapter);
777         igb_configure_rx(adapter);
778
779         igb_rx_fifo_flush_82575(&adapter->hw);
780
781         /* call IGB_DESC_UNUSED which always leaves
782          * at least 1 descriptor unused to make sure
783          * next_to_use != next_to_clean */
784         for (i = 0; i < adapter->num_rx_queues; i++) {
785                 struct igb_ring *ring = &adapter->rx_ring[i];
786                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
787         }
788
789
790         adapter->tx_queue_len = netdev->tx_queue_len;
791 }
792
793
794 /**
795  * igb_up - Open the interface and prepare it to handle traffic
796  * @adapter: board private structure
797  **/
798
799 int igb_up(struct igb_adapter *adapter)
800 {
801         struct e1000_hw *hw = &adapter->hw;
802         int i;
803
804         /* hardware has been reset, we need to reload some things */
805         igb_configure(adapter);
806
807         clear_bit(__IGB_DOWN, &adapter->state);
808
809         for (i = 0; i < adapter->num_rx_queues; i++)
810                 napi_enable(&adapter->rx_ring[i].napi);
811         if (adapter->msix_entries)
812                 igb_configure_msix(adapter);
813
814         /* Clear any pending interrupts. */
815         rd32(E1000_ICR);
816         igb_irq_enable(adapter);
817
818         /* Fire a link change interrupt to start the watchdog. */
819         wr32(E1000_ICS, E1000_ICS_LSC);
820         return 0;
821 }
822
823 void igb_down(struct igb_adapter *adapter)
824 {
825         struct e1000_hw *hw = &adapter->hw;
826         struct net_device *netdev = adapter->netdev;
827         u32 tctl, rctl;
828         int i;
829
830         /* signal that we're down so the interrupt handler does not
831          * reschedule our watchdog timer */
832         set_bit(__IGB_DOWN, &adapter->state);
833
834         /* disable receives in the hardware */
835         rctl = rd32(E1000_RCTL);
836         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
837         /* flush and sleep below */
838
839         netif_tx_stop_all_queues(netdev);
840
841         /* disable transmits in the hardware */
842         tctl = rd32(E1000_TCTL);
843         tctl &= ~E1000_TCTL_EN;
844         wr32(E1000_TCTL, tctl);
845         /* flush both disables and wait for them to finish */
846         wrfl();
847         msleep(10);
848
849         for (i = 0; i < adapter->num_rx_queues; i++)
850                 napi_disable(&adapter->rx_ring[i].napi);
851
852         igb_irq_disable(adapter);
853
854         del_timer_sync(&adapter->watchdog_timer);
855         del_timer_sync(&adapter->phy_info_timer);
856
857         netdev->tx_queue_len = adapter->tx_queue_len;
858         netif_carrier_off(netdev);
859         adapter->link_speed = 0;
860         adapter->link_duplex = 0;
861
862         if (!pci_channel_offline(adapter->pdev))
863                 igb_reset(adapter);
864         igb_clean_all_tx_rings(adapter);
865         igb_clean_all_rx_rings(adapter);
866 }
867
868 void igb_reinit_locked(struct igb_adapter *adapter)
869 {
870         WARN_ON(in_interrupt());
871         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
872                 msleep(1);
873         igb_down(adapter);
874         igb_up(adapter);
875         clear_bit(__IGB_RESETTING, &adapter->state);
876 }
877
878 void igb_reset(struct igb_adapter *adapter)
879 {
880         struct e1000_hw *hw = &adapter->hw;
881         struct e1000_mac_info *mac = &hw->mac;
882         struct e1000_fc_info *fc = &hw->fc;
883         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
884         u16 hwm;
885
886         /* Repartition Pba for greater than 9k mtu
887          * To take effect CTRL.RST is required.
888          */
889         if (mac->type != e1000_82576) {
890         pba = E1000_PBA_34K;
891         }
892         else {
893                 pba = E1000_PBA_64K;
894         }
895
896         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
897             (mac->type < e1000_82576)) {
898                 /* adjust PBA for jumbo frames */
899                 wr32(E1000_PBA, pba);
900
901                 /* To maintain wire speed transmits, the Tx FIFO should be
902                  * large enough to accommodate two full transmit packets,
903                  * rounded up to the next 1KB and expressed in KB.  Likewise,
904                  * the Rx FIFO should be large enough to accommodate at least
905                  * one full receive packet and is similarly rounded up and
906                  * expressed in KB. */
907                 pba = rd32(E1000_PBA);
908                 /* upper 16 bits has Tx packet buffer allocation size in KB */
909                 tx_space = pba >> 16;
910                 /* lower 16 bits has Rx packet buffer allocation size in KB */
911                 pba &= 0xffff;
912                 /* the tx fifo also stores 16 bytes of information about the tx
913                  * but don't include ethernet FCS because hardware appends it */
914                 min_tx_space = (adapter->max_frame_size +
915                                 sizeof(struct e1000_tx_desc) -
916                                 ETH_FCS_LEN) * 2;
917                 min_tx_space = ALIGN(min_tx_space, 1024);
918                 min_tx_space >>= 10;
919                 /* software strips receive CRC, so leave room for it */
920                 min_rx_space = adapter->max_frame_size;
921                 min_rx_space = ALIGN(min_rx_space, 1024);
922                 min_rx_space >>= 10;
923
924                 /* If current Tx allocation is less than the min Tx FIFO size,
925                  * and the min Tx FIFO size is less than the current Rx FIFO
926                  * allocation, take space away from current Rx allocation */
927                 if (tx_space < min_tx_space &&
928                     ((min_tx_space - tx_space) < pba)) {
929                         pba = pba - (min_tx_space - tx_space);
930
931                         /* if short on rx space, rx wins and must trump tx
932                          * adjustment */
933                         if (pba < min_rx_space)
934                                 pba = min_rx_space;
935                 }
936                 wr32(E1000_PBA, pba);
937         }
938
939         /* flow control settings */
940         /* The high water mark must be low enough to fit one full frame
941          * (or the size used for early receive) above it in the Rx FIFO.
942          * Set it to the lower of:
943          * - 90% of the Rx FIFO size, or
944          * - the full Rx FIFO size minus one full frame */
945         hwm = min(((pba << 10) * 9 / 10),
946                         ((pba << 10) - 2 * adapter->max_frame_size));
947
948         if (mac->type < e1000_82576) {
949                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
950                 fc->low_water = fc->high_water - 8;
951         } else {
952                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
953                 fc->low_water = fc->high_water - 16;
954         }
955         fc->pause_time = 0xFFFF;
956         fc->send_xon = 1;
957         fc->type = fc->original_type;
958
959         /* Allow time for pending master requests to run */
960         adapter->hw.mac.ops.reset_hw(&adapter->hw);
961         wr32(E1000_WUC, 0);
962
963         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
964                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
965
966         igb_update_mng_vlan(adapter);
967
968         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
969         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
970
971         igb_reset_adaptive(&adapter->hw);
972         igb_get_phy_info(&adapter->hw);
973 }
974
975 /**
976  * igb_is_need_ioport - determine if an adapter needs ioport resources or not
977  * @pdev: PCI device information struct
978  *
979  * Returns true if an adapter needs ioport resources
980  **/
981 static int igb_is_need_ioport(struct pci_dev *pdev)
982 {
983         switch (pdev->device) {
984         /* Currently there are no adapters that need ioport resources */
985         default:
986                 return false;
987         }
988 }
989
990 static const struct net_device_ops igb_netdev_ops = {
991         .ndo_open               = igb_open,
992         .ndo_stop               = igb_close,
993         .ndo_start_xmit         = igb_xmit_frame_adv,
994         .ndo_get_stats          = igb_get_stats,
995         .ndo_set_multicast_list = igb_set_multi,
996         .ndo_set_mac_address    = igb_set_mac,
997         .ndo_change_mtu         = igb_change_mtu,
998         .ndo_do_ioctl           = igb_ioctl,
999         .ndo_tx_timeout         = igb_tx_timeout,
1000         .ndo_validate_addr      = eth_validate_addr,
1001         .ndo_vlan_rx_register   = igb_vlan_rx_register,
1002         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1003         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1004 #ifdef CONFIG_NET_POLL_CONTROLLER
1005         .ndo_poll_controller    = igb_netpoll,
1006 #endif
1007 };
1008
1009 /**
1010  * igb_probe - Device Initialization Routine
1011  * @pdev: PCI device information struct
1012  * @ent: entry in igb_pci_tbl
1013  *
1014  * Returns 0 on success, negative on failure
1015  *
1016  * igb_probe initializes an adapter identified by a pci_dev structure.
1017  * The OS initialization, configuring of the adapter private structure,
1018  * and a hardware reset occur.
1019  **/
1020 static int __devinit igb_probe(struct pci_dev *pdev,
1021                                const struct pci_device_id *ent)
1022 {
1023         struct net_device *netdev;
1024         struct igb_adapter *adapter;
1025         struct e1000_hw *hw;
1026         struct pci_dev *us_dev;
1027         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1028         unsigned long mmio_start, mmio_len;
1029         int i, err, pci_using_dac, pos;
1030         u16 eeprom_data = 0, state = 0;
1031         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1032         u32 part_num;
1033         int bars, need_ioport;
1034
1035         /* do not allocate ioport bars when not needed */
1036         need_ioport = igb_is_need_ioport(pdev);
1037         if (need_ioport) {
1038                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
1039                 err = pci_enable_device(pdev);
1040         } else {
1041                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1042                 err = pci_enable_device_mem(pdev);
1043         }
1044         if (err)
1045                 return err;
1046
1047         pci_using_dac = 0;
1048         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1049         if (!err) {
1050                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1051                 if (!err)
1052                         pci_using_dac = 1;
1053         } else {
1054                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1055                 if (err) {
1056                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1057                         if (err) {
1058                                 dev_err(&pdev->dev, "No usable DMA "
1059                                         "configuration, aborting\n");
1060                                 goto err_dma;
1061                         }
1062                 }
1063         }
1064
1065         /* 82575 requires that the pci-e link partner disable the L0s state */
1066         switch (pdev->device) {
1067         case E1000_DEV_ID_82575EB_COPPER:
1068         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1069         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1070                 us_dev = pdev->bus->self;
1071                 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1072                 if (pos) {
1073                         pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1074                                              &state);
1075                         state &= ~PCIE_LINK_STATE_L0S;
1076                         pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1077                                               state);
1078                         dev_info(&pdev->dev,
1079                                  "Disabling ASPM L0s upstream switch port %s\n",
1080                                  pci_name(us_dev));
1081                 }
1082         default:
1083                 break;
1084         }
1085
1086         err = pci_request_selected_regions(pdev, bars, igb_driver_name);
1087         if (err)
1088                 goto err_pci_reg;
1089
1090         err = pci_enable_pcie_error_reporting(pdev);
1091         if (err) {
1092                 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1093                         "0x%x\n", err);
1094                 /* non-fatal, continue */
1095         }
1096
1097         pci_set_master(pdev);
1098         pci_save_state(pdev);
1099
1100         err = -ENOMEM;
1101         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1102         if (!netdev)
1103                 goto err_alloc_etherdev;
1104
1105         SET_NETDEV_DEV(netdev, &pdev->dev);
1106
1107         pci_set_drvdata(pdev, netdev);
1108         adapter = netdev_priv(netdev);
1109         adapter->netdev = netdev;
1110         adapter->pdev = pdev;
1111         hw = &adapter->hw;
1112         hw->back = adapter;
1113         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1114         adapter->bars = bars;
1115         adapter->need_ioport = need_ioport;
1116
1117         mmio_start = pci_resource_start(pdev, 0);
1118         mmio_len = pci_resource_len(pdev, 0);
1119
1120         err = -EIO;
1121         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1122         if (!adapter->hw.hw_addr)
1123                 goto err_ioremap;
1124
1125         netdev->netdev_ops = &igb_netdev_ops;
1126         igb_set_ethtool_ops(netdev);
1127         netdev->watchdog_timeo = 5 * HZ;
1128
1129         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1130
1131         netdev->mem_start = mmio_start;
1132         netdev->mem_end = mmio_start + mmio_len;
1133
1134         /* PCI config space info */
1135         hw->vendor_id = pdev->vendor;
1136         hw->device_id = pdev->device;
1137         hw->revision_id = pdev->revision;
1138         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1139         hw->subsystem_device_id = pdev->subsystem_device;
1140
1141         /* setup the private structure */
1142         hw->back = adapter;
1143         /* Copy the default MAC, PHY and NVM function pointers */
1144         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1145         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1146         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1147         /* Initialize skew-specific constants */
1148         err = ei->get_invariants(hw);
1149         if (err)
1150                 goto err_hw_init;
1151
1152         err = igb_sw_init(adapter);
1153         if (err)
1154                 goto err_sw_init;
1155
1156         igb_get_bus_info_pcie(hw);
1157
1158         /* set flags */
1159         switch (hw->mac.type) {
1160         case e1000_82575:
1161                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1162                 break;
1163         case e1000_82576:
1164         default:
1165                 break;
1166         }
1167
1168         hw->phy.autoneg_wait_to_complete = false;
1169         hw->mac.adaptive_ifs = true;
1170
1171         /* Copper options */
1172         if (hw->phy.media_type == e1000_media_type_copper) {
1173                 hw->phy.mdix = AUTO_ALL_MODES;
1174                 hw->phy.disable_polarity_correction = false;
1175                 hw->phy.ms_type = e1000_ms_hw_default;
1176         }
1177
1178         if (igb_check_reset_block(hw))
1179                 dev_info(&pdev->dev,
1180                         "PHY reset is blocked due to SOL/IDER session.\n");
1181
1182         netdev->features = NETIF_F_SG |
1183                            NETIF_F_HW_CSUM |
1184                            NETIF_F_HW_VLAN_TX |
1185                            NETIF_F_HW_VLAN_RX |
1186                            NETIF_F_HW_VLAN_FILTER;
1187
1188         netdev->features |= NETIF_F_TSO;
1189         netdev->features |= NETIF_F_TSO6;
1190
1191 #ifdef CONFIG_IGB_LRO
1192         netdev->features |= NETIF_F_LRO;
1193 #endif
1194
1195         netdev->vlan_features |= NETIF_F_TSO;
1196         netdev->vlan_features |= NETIF_F_TSO6;
1197         netdev->vlan_features |= NETIF_F_HW_CSUM;
1198         netdev->vlan_features |= NETIF_F_SG;
1199
1200         if (pci_using_dac)
1201                 netdev->features |= NETIF_F_HIGHDMA;
1202
1203         netdev->features |= NETIF_F_LLTX;
1204         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1205
1206         /* before reading the NVM, reset the controller to put the device in a
1207          * known good starting state */
1208         hw->mac.ops.reset_hw(hw);
1209
1210         /* make sure the NVM is good */
1211         if (igb_validate_nvm_checksum(hw) < 0) {
1212                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1213                 err = -EIO;
1214                 goto err_eeprom;
1215         }
1216
1217         /* copy the MAC address out of the NVM */
1218         if (hw->mac.ops.read_mac_addr(hw))
1219                 dev_err(&pdev->dev, "NVM Read Error\n");
1220
1221         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1222         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1223
1224         if (!is_valid_ether_addr(netdev->perm_addr)) {
1225                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1226                 err = -EIO;
1227                 goto err_eeprom;
1228         }
1229
1230         init_timer(&adapter->watchdog_timer);
1231         adapter->watchdog_timer.function = &igb_watchdog;
1232         adapter->watchdog_timer.data = (unsigned long) adapter;
1233
1234         init_timer(&adapter->phy_info_timer);
1235         adapter->phy_info_timer.function = &igb_update_phy_info;
1236         adapter->phy_info_timer.data = (unsigned long) adapter;
1237
1238         INIT_WORK(&adapter->reset_task, igb_reset_task);
1239         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1240
1241         /* Initialize link & ring properties that are user-changeable */
1242         adapter->tx_ring->count = 256;
1243         for (i = 0; i < adapter->num_tx_queues; i++)
1244                 adapter->tx_ring[i].count = adapter->tx_ring->count;
1245         adapter->rx_ring->count = 256;
1246         for (i = 0; i < adapter->num_rx_queues; i++)
1247                 adapter->rx_ring[i].count = adapter->rx_ring->count;
1248
1249         adapter->fc_autoneg = true;
1250         hw->mac.autoneg = true;
1251         hw->phy.autoneg_advertised = 0x2f;
1252
1253         hw->fc.original_type = e1000_fc_default;
1254         hw->fc.type = e1000_fc_default;
1255
1256         adapter->itr_setting = 3;
1257         adapter->itr = IGB_START_ITR;
1258
1259         igb_validate_mdi_setting(hw);
1260
1261         adapter->rx_csum = 1;
1262
1263         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1264          * enable the ACPI Magic Packet filter
1265          */
1266
1267         if (hw->bus.func == 0 ||
1268             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1269                 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1270                                      &eeprom_data);
1271
1272         if (eeprom_data & eeprom_apme_mask)
1273                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1274
1275         /* now that we have the eeprom settings, apply the special cases where
1276          * the eeprom may be wrong or the board simply won't support wake on
1277          * lan on a particular port */
1278         switch (pdev->device) {
1279         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1280                 adapter->eeprom_wol = 0;
1281                 break;
1282         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1283         case E1000_DEV_ID_82576_FIBER:
1284         case E1000_DEV_ID_82576_SERDES:
1285                 /* Wake events only supported on port A for dual fiber
1286                  * regardless of eeprom setting */
1287                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1288                         adapter->eeprom_wol = 0;
1289                 break;
1290         }
1291
1292         /* initialize the wol settings based on the eeprom settings */
1293         adapter->wol = adapter->eeprom_wol;
1294         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1295
1296         /* reset the hardware with the new settings */
1297         igb_reset(adapter);
1298
1299         /* let the f/w know that the h/w is now under the control of the
1300          * driver. */
1301         igb_get_hw_control(adapter);
1302
1303         /* tell the stack to leave us alone until igb_open() is called */
1304         netif_carrier_off(netdev);
1305         netif_tx_stop_all_queues(netdev);
1306
1307         strcpy(netdev->name, "eth%d");
1308         err = register_netdev(netdev);
1309         if (err)
1310                 goto err_register;
1311
1312 #ifdef CONFIG_IGB_DCA
1313         if (dca_add_requester(&pdev->dev) == 0) {
1314                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1315                 dev_info(&pdev->dev, "DCA enabled\n");
1316                 /* Always use CB2 mode, difference is masked
1317                  * in the CB driver. */
1318                 wr32(E1000_DCA_CTRL, 2);
1319                 igb_setup_dca(adapter);
1320         }
1321 #endif
1322
1323         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1324         /* print bus type/speed/width info */
1325         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1326                  netdev->name,
1327                  ((hw->bus.speed == e1000_bus_speed_2500)
1328                   ? "2.5Gb/s" : "unknown"),
1329                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1330                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1331                   ? "Width x1" : "unknown"),
1332                  netdev->dev_addr);
1333
1334         igb_read_part_num(hw, &part_num);
1335         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1336                 (part_num >> 8), (part_num & 0xff));
1337
1338         dev_info(&pdev->dev,
1339                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1340                 adapter->msix_entries ? "MSI-X" :
1341                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1342                 adapter->num_rx_queues, adapter->num_tx_queues);
1343
1344         return 0;
1345
1346 err_register:
1347         igb_release_hw_control(adapter);
1348 err_eeprom:
1349         if (!igb_check_reset_block(hw))
1350                 igb_reset_phy(hw);
1351
1352         if (hw->flash_address)
1353                 iounmap(hw->flash_address);
1354
1355         igb_remove_device(hw);
1356         igb_free_queues(adapter);
1357 err_sw_init:
1358 err_hw_init:
1359         iounmap(hw->hw_addr);
1360 err_ioremap:
1361         free_netdev(netdev);
1362 err_alloc_etherdev:
1363         pci_release_selected_regions(pdev, bars);
1364 err_pci_reg:
1365 err_dma:
1366         pci_disable_device(pdev);
1367         return err;
1368 }
1369
1370 /**
1371  * igb_remove - Device Removal Routine
1372  * @pdev: PCI device information struct
1373  *
1374  * igb_remove is called by the PCI subsystem to alert the driver
1375  * that it should release a PCI device.  The could be caused by a
1376  * Hot-Plug event, or because the driver is going to be removed from
1377  * memory.
1378  **/
1379 static void __devexit igb_remove(struct pci_dev *pdev)
1380 {
1381         struct net_device *netdev = pci_get_drvdata(pdev);
1382         struct igb_adapter *adapter = netdev_priv(netdev);
1383 #ifdef CONFIG_IGB_DCA
1384         struct e1000_hw *hw = &adapter->hw;
1385 #endif
1386         int err;
1387
1388         /* flush_scheduled work may reschedule our watchdog task, so
1389          * explicitly disable watchdog tasks from being rescheduled  */
1390         set_bit(__IGB_DOWN, &adapter->state);
1391         del_timer_sync(&adapter->watchdog_timer);
1392         del_timer_sync(&adapter->phy_info_timer);
1393
1394         flush_scheduled_work();
1395
1396 #ifdef CONFIG_IGB_DCA
1397         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1398                 dev_info(&pdev->dev, "DCA disabled\n");
1399                 dca_remove_requester(&pdev->dev);
1400                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1401                 wr32(E1000_DCA_CTRL, 1);
1402         }
1403 #endif
1404
1405         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1406          * would have already happened in close and is redundant. */
1407         igb_release_hw_control(adapter);
1408
1409         unregister_netdev(netdev);
1410
1411         if (!igb_check_reset_block(&adapter->hw))
1412                 igb_reset_phy(&adapter->hw);
1413
1414         igb_remove_device(&adapter->hw);
1415         igb_reset_interrupt_capability(adapter);
1416
1417         igb_free_queues(adapter);
1418
1419         iounmap(adapter->hw.hw_addr);
1420         if (adapter->hw.flash_address)
1421                 iounmap(adapter->hw.flash_address);
1422         pci_release_selected_regions(pdev, adapter->bars);
1423
1424         free_netdev(netdev);
1425
1426         err = pci_disable_pcie_error_reporting(pdev);
1427         if (err)
1428                 dev_err(&pdev->dev,
1429                         "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1430
1431         pci_disable_device(pdev);
1432 }
1433
1434 /**
1435  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1436  * @adapter: board private structure to initialize
1437  *
1438  * igb_sw_init initializes the Adapter private data structure.
1439  * Fields are initialized based on PCI device information and
1440  * OS network device settings (MTU size).
1441  **/
1442 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1443 {
1444         struct e1000_hw *hw = &adapter->hw;
1445         struct net_device *netdev = adapter->netdev;
1446         struct pci_dev *pdev = adapter->pdev;
1447
1448         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1449
1450         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1451         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1452         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1453         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1454         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1455         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1456
1457         /* Number of supported queues. */
1458         /* Having more queues than CPUs doesn't make sense. */
1459         adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
1460         adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
1461
1462         /* This call may decrease the number of queues depending on
1463          * interrupt mode. */
1464         igb_set_interrupt_capability(adapter);
1465
1466         if (igb_alloc_queues(adapter)) {
1467                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1468                 return -ENOMEM;
1469         }
1470
1471         /* Explicitly disable IRQ since the NIC can be in any state. */
1472         igb_irq_disable(adapter);
1473
1474         set_bit(__IGB_DOWN, &adapter->state);
1475         return 0;
1476 }
1477
1478 /**
1479  * igb_open - Called when a network interface is made active
1480  * @netdev: network interface device structure
1481  *
1482  * Returns 0 on success, negative value on failure
1483  *
1484  * The open entry point is called when a network interface is made
1485  * active by the system (IFF_UP).  At this point all resources needed
1486  * for transmit and receive operations are allocated, the interrupt
1487  * handler is registered with the OS, the watchdog timer is started,
1488  * and the stack is notified that the interface is ready.
1489  **/
1490 static int igb_open(struct net_device *netdev)
1491 {
1492         struct igb_adapter *adapter = netdev_priv(netdev);
1493         struct e1000_hw *hw = &adapter->hw;
1494         int err;
1495         int i;
1496
1497         /* disallow open during test */
1498         if (test_bit(__IGB_TESTING, &adapter->state))
1499                 return -EBUSY;
1500
1501         /* allocate transmit descriptors */
1502         err = igb_setup_all_tx_resources(adapter);
1503         if (err)
1504                 goto err_setup_tx;
1505
1506         /* allocate receive descriptors */
1507         err = igb_setup_all_rx_resources(adapter);
1508         if (err)
1509                 goto err_setup_rx;
1510
1511         /* e1000_power_up_phy(adapter); */
1512
1513         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1514         if ((adapter->hw.mng_cookie.status &
1515              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1516                 igb_update_mng_vlan(adapter);
1517
1518         /* before we allocate an interrupt, we must be ready to handle it.
1519          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1520          * as soon as we call pci_request_irq, so we have to setup our
1521          * clean_rx handler before we do so.  */
1522         igb_configure(adapter);
1523
1524         err = igb_request_irq(adapter);
1525         if (err)
1526                 goto err_req_irq;
1527
1528         /* From here on the code is the same as igb_up() */
1529         clear_bit(__IGB_DOWN, &adapter->state);
1530
1531         for (i = 0; i < adapter->num_rx_queues; i++)
1532                 napi_enable(&adapter->rx_ring[i].napi);
1533
1534         /* Clear any pending interrupts. */
1535         rd32(E1000_ICR);
1536
1537         igb_irq_enable(adapter);
1538
1539         netif_tx_start_all_queues(netdev);
1540
1541         /* Fire a link status change interrupt to start the watchdog. */
1542         wr32(E1000_ICS, E1000_ICS_LSC);
1543
1544         return 0;
1545
1546 err_req_irq:
1547         igb_release_hw_control(adapter);
1548         /* e1000_power_down_phy(adapter); */
1549         igb_free_all_rx_resources(adapter);
1550 err_setup_rx:
1551         igb_free_all_tx_resources(adapter);
1552 err_setup_tx:
1553         igb_reset(adapter);
1554
1555         return err;
1556 }
1557
1558 /**
1559  * igb_close - Disables a network interface
1560  * @netdev: network interface device structure
1561  *
1562  * Returns 0, this is not allowed to fail
1563  *
1564  * The close entry point is called when an interface is de-activated
1565  * by the OS.  The hardware is still under the driver's control, but
1566  * needs to be disabled.  A global MAC reset is issued to stop the
1567  * hardware, and all transmit and receive resources are freed.
1568  **/
1569 static int igb_close(struct net_device *netdev)
1570 {
1571         struct igb_adapter *adapter = netdev_priv(netdev);
1572
1573         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1574         igb_down(adapter);
1575
1576         igb_free_irq(adapter);
1577
1578         igb_free_all_tx_resources(adapter);
1579         igb_free_all_rx_resources(adapter);
1580
1581         /* kill manageability vlan ID if supported, but not if a vlan with
1582          * the same ID is registered on the host OS (let 8021q kill it) */
1583         if ((adapter->hw.mng_cookie.status &
1584                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1585              !(adapter->vlgrp &&
1586                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1587                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1588
1589         return 0;
1590 }
1591
1592 /**
1593  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1594  * @adapter: board private structure
1595  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1596  *
1597  * Return 0 on success, negative on failure
1598  **/
1599
1600 int igb_setup_tx_resources(struct igb_adapter *adapter,
1601                            struct igb_ring *tx_ring)
1602 {
1603         struct pci_dev *pdev = adapter->pdev;
1604         int size;
1605
1606         size = sizeof(struct igb_buffer) * tx_ring->count;
1607         tx_ring->buffer_info = vmalloc(size);
1608         if (!tx_ring->buffer_info)
1609                 goto err;
1610         memset(tx_ring->buffer_info, 0, size);
1611
1612         /* round up to nearest 4K */
1613         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1614         tx_ring->size = ALIGN(tx_ring->size, 4096);
1615
1616         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1617                                              &tx_ring->dma);
1618
1619         if (!tx_ring->desc)
1620                 goto err;
1621
1622         tx_ring->adapter = adapter;
1623         tx_ring->next_to_use = 0;
1624         tx_ring->next_to_clean = 0;
1625         return 0;
1626
1627 err:
1628         vfree(tx_ring->buffer_info);
1629         dev_err(&adapter->pdev->dev,
1630                 "Unable to allocate memory for the transmit descriptor ring\n");
1631         return -ENOMEM;
1632 }
1633
1634 /**
1635  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1636  *                                (Descriptors) for all queues
1637  * @adapter: board private structure
1638  *
1639  * Return 0 on success, negative on failure
1640  **/
1641 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1642 {
1643         int i, err = 0;
1644         int r_idx;
1645
1646         for (i = 0; i < adapter->num_tx_queues; i++) {
1647                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1648                 if (err) {
1649                         dev_err(&adapter->pdev->dev,
1650                                 "Allocation for Tx Queue %u failed\n", i);
1651                         for (i--; i >= 0; i--)
1652                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1653                         break;
1654                 }
1655         }
1656
1657         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1658                 r_idx = i % adapter->num_tx_queues;
1659                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1660         }       
1661         return err;
1662 }
1663
1664 /**
1665  * igb_configure_tx - Configure transmit Unit after Reset
1666  * @adapter: board private structure
1667  *
1668  * Configure the Tx unit of the MAC after a reset.
1669  **/
1670 static void igb_configure_tx(struct igb_adapter *adapter)
1671 {
1672         u64 tdba;
1673         struct e1000_hw *hw = &adapter->hw;
1674         u32 tctl;
1675         u32 txdctl, txctrl;
1676         int i, j;
1677
1678         for (i = 0; i < adapter->num_tx_queues; i++) {
1679                 struct igb_ring *ring = &(adapter->tx_ring[i]);
1680                 j = ring->reg_idx;
1681                 wr32(E1000_TDLEN(j),
1682                                 ring->count * sizeof(struct e1000_tx_desc));
1683                 tdba = ring->dma;
1684                 wr32(E1000_TDBAL(j),
1685                                 tdba & 0x00000000ffffffffULL);
1686                 wr32(E1000_TDBAH(j), tdba >> 32);
1687
1688                 ring->head = E1000_TDH(j);
1689                 ring->tail = E1000_TDT(j);
1690                 writel(0, hw->hw_addr + ring->tail);
1691                 writel(0, hw->hw_addr + ring->head);
1692                 txdctl = rd32(E1000_TXDCTL(j));
1693                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1694                 wr32(E1000_TXDCTL(j), txdctl);
1695
1696                 /* Turn off Relaxed Ordering on head write-backs.  The
1697                  * writebacks MUST be delivered in order or it will
1698                  * completely screw up our bookeeping.
1699                  */
1700                 txctrl = rd32(E1000_DCA_TXCTRL(j));
1701                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1702                 wr32(E1000_DCA_TXCTRL(j), txctrl);
1703         }
1704
1705
1706
1707         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1708
1709         /* Program the Transmit Control Register */
1710
1711         tctl = rd32(E1000_TCTL);
1712         tctl &= ~E1000_TCTL_CT;
1713         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1714                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1715
1716         igb_config_collision_dist(hw);
1717
1718         /* Setup Transmit Descriptor Settings for eop descriptor */
1719         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1720
1721         /* Enable transmits */
1722         tctl |= E1000_TCTL_EN;
1723
1724         wr32(E1000_TCTL, tctl);
1725 }
1726
1727 /**
1728  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1729  * @adapter: board private structure
1730  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1731  *
1732  * Returns 0 on success, negative on failure
1733  **/
1734
1735 int igb_setup_rx_resources(struct igb_adapter *adapter,
1736                            struct igb_ring *rx_ring)
1737 {
1738         struct pci_dev *pdev = adapter->pdev;
1739         int size, desc_len;
1740
1741 #ifdef CONFIG_IGB_LRO
1742         size = sizeof(struct net_lro_desc) * MAX_LRO_DESCRIPTORS;
1743         rx_ring->lro_mgr.lro_arr = vmalloc(size);
1744         if (!rx_ring->lro_mgr.lro_arr)
1745                 goto err;
1746         memset(rx_ring->lro_mgr.lro_arr, 0, size);
1747 #endif
1748
1749         size = sizeof(struct igb_buffer) * rx_ring->count;
1750         rx_ring->buffer_info = vmalloc(size);
1751         if (!rx_ring->buffer_info)
1752                 goto err;
1753         memset(rx_ring->buffer_info, 0, size);
1754
1755         desc_len = sizeof(union e1000_adv_rx_desc);
1756
1757         /* Round up to nearest 4K */
1758         rx_ring->size = rx_ring->count * desc_len;
1759         rx_ring->size = ALIGN(rx_ring->size, 4096);
1760
1761         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1762                                              &rx_ring->dma);
1763
1764         if (!rx_ring->desc)
1765                 goto err;
1766
1767         rx_ring->next_to_clean = 0;
1768         rx_ring->next_to_use = 0;
1769
1770         rx_ring->adapter = adapter;
1771
1772         return 0;
1773
1774 err:
1775 #ifdef CONFIG_IGB_LRO
1776         vfree(rx_ring->lro_mgr.lro_arr);
1777         rx_ring->lro_mgr.lro_arr = NULL;
1778 #endif
1779         vfree(rx_ring->buffer_info);
1780         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1781                 "the receive descriptor ring\n");
1782         return -ENOMEM;
1783 }
1784
1785 /**
1786  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1787  *                                (Descriptors) for all queues
1788  * @adapter: board private structure
1789  *
1790  * Return 0 on success, negative on failure
1791  **/
1792 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1793 {
1794         int i, err = 0;
1795
1796         for (i = 0; i < adapter->num_rx_queues; i++) {
1797                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1798                 if (err) {
1799                         dev_err(&adapter->pdev->dev,
1800                                 "Allocation for Rx Queue %u failed\n", i);
1801                         for (i--; i >= 0; i--)
1802                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1803                         break;
1804                 }
1805         }
1806
1807         return err;
1808 }
1809
1810 /**
1811  * igb_setup_rctl - configure the receive control registers
1812  * @adapter: Board private structure
1813  **/
1814 static void igb_setup_rctl(struct igb_adapter *adapter)
1815 {
1816         struct e1000_hw *hw = &adapter->hw;
1817         u32 rctl;
1818         u32 srrctl = 0;
1819         int i, j;
1820
1821         rctl = rd32(E1000_RCTL);
1822
1823         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1824         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1825
1826         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1827                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1828
1829         /*
1830          * enable stripping of CRC. It's unlikely this will break BMC
1831          * redirection as it did with e1000. Newer features require
1832          * that the HW strips the CRC.
1833         */
1834         rctl |= E1000_RCTL_SECRC;
1835
1836         /*
1837          * disable store bad packets and clear size bits.
1838          */
1839         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1840
1841         /* enable LPE when to prevent packets larger than max_frame_size */
1842                 rctl |= E1000_RCTL_LPE;
1843
1844         /* Setup buffer sizes */
1845         switch (adapter->rx_buffer_len) {
1846         case IGB_RXBUFFER_256:
1847                 rctl |= E1000_RCTL_SZ_256;
1848                 break;
1849         case IGB_RXBUFFER_512:
1850                 rctl |= E1000_RCTL_SZ_512;
1851                 break;
1852         default:
1853                 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1854                          >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1855                 break;
1856         }
1857
1858         /* 82575 and greater support packet-split where the protocol
1859          * header is placed in skb->data and the packet data is
1860          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1861          * In the case of a non-split, skb->data is linearly filled,
1862          * followed by the page buffers.  Therefore, skb->data is
1863          * sized to hold the largest protocol header.
1864          */
1865         /* allocations using alloc_page take too long for regular MTU
1866          * so only enable packet split for jumbo frames */
1867         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1868                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1869                 srrctl |= adapter->rx_ps_hdr_size <<
1870                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1871                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1872         } else {
1873                 adapter->rx_ps_hdr_size = 0;
1874                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1875         }
1876
1877         for (i = 0; i < adapter->num_rx_queues; i++) {
1878                 j = adapter->rx_ring[i].reg_idx;
1879                 wr32(E1000_SRRCTL(j), srrctl);
1880         }
1881
1882         wr32(E1000_RCTL, rctl);
1883 }
1884
1885 /**
1886  * igb_configure_rx - Configure receive Unit after Reset
1887  * @adapter: board private structure
1888  *
1889  * Configure the Rx unit of the MAC after a reset.
1890  **/
1891 static void igb_configure_rx(struct igb_adapter *adapter)
1892 {
1893         u64 rdba;
1894         struct e1000_hw *hw = &adapter->hw;
1895         u32 rctl, rxcsum;
1896         u32 rxdctl;
1897         int i, j;
1898
1899         /* disable receives while setting up the descriptors */
1900         rctl = rd32(E1000_RCTL);
1901         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1902         wrfl();
1903         mdelay(10);
1904
1905         if (adapter->itr_setting > 3)
1906                 wr32(E1000_ITR, adapter->itr);
1907
1908         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1909          * the Base and Length of the Rx Descriptor Ring */
1910         for (i = 0; i < adapter->num_rx_queues; i++) {
1911                 struct igb_ring *ring = &(adapter->rx_ring[i]);
1912                 j = ring->reg_idx;
1913                 rdba = ring->dma;
1914                 wr32(E1000_RDBAL(j),
1915                                 rdba & 0x00000000ffffffffULL);
1916                 wr32(E1000_RDBAH(j), rdba >> 32);
1917                 wr32(E1000_RDLEN(j),
1918                                ring->count * sizeof(union e1000_adv_rx_desc));
1919
1920                 ring->head = E1000_RDH(j);
1921                 ring->tail = E1000_RDT(j);
1922                 writel(0, hw->hw_addr + ring->tail);
1923                 writel(0, hw->hw_addr + ring->head);
1924
1925                 rxdctl = rd32(E1000_RXDCTL(j));
1926                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1927                 rxdctl &= 0xFFF00000;
1928                 rxdctl |= IGB_RX_PTHRESH;
1929                 rxdctl |= IGB_RX_HTHRESH << 8;
1930                 rxdctl |= IGB_RX_WTHRESH << 16;
1931                 wr32(E1000_RXDCTL(j), rxdctl);
1932 #ifdef CONFIG_IGB_LRO
1933                 /* Intitial LRO Settings */
1934                 ring->lro_mgr.max_aggr = MAX_LRO_AGGR;
1935                 ring->lro_mgr.max_desc = MAX_LRO_DESCRIPTORS;
1936                 ring->lro_mgr.get_skb_header = igb_get_skb_hdr;
1937                 ring->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
1938                 ring->lro_mgr.dev = adapter->netdev;
1939                 ring->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY;
1940                 ring->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
1941 #endif
1942         }
1943
1944         if (adapter->num_rx_queues > 1) {
1945                 u32 random[10];
1946                 u32 mrqc;
1947                 u32 j, shift;
1948                 union e1000_reta {
1949                         u32 dword;
1950                         u8  bytes[4];
1951                 } reta;
1952
1953                 get_random_bytes(&random[0], 40);
1954
1955                 if (hw->mac.type >= e1000_82576)
1956                         shift = 0;
1957                 else
1958                         shift = 6;
1959                 for (j = 0; j < (32 * 4); j++) {
1960                         reta.bytes[j & 3] =
1961                                 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
1962                         if ((j & 3) == 3)
1963                                 writel(reta.dword,
1964                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
1965                 }
1966                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1967
1968                 /* Fill out hash function seeds */
1969                 for (j = 0; j < 10; j++)
1970                         array_wr32(E1000_RSSRK(0), j, random[j]);
1971
1972                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1973                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1974                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1975                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
1976                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1977                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
1978                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1979                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1980
1981
1982                 wr32(E1000_MRQC, mrqc);
1983
1984                 /* Multiqueue and raw packet checksumming are mutually
1985                  * exclusive.  Note that this not the same as TCP/IP
1986                  * checksumming, which works fine. */
1987                 rxcsum = rd32(E1000_RXCSUM);
1988                 rxcsum |= E1000_RXCSUM_PCSD;
1989                 wr32(E1000_RXCSUM, rxcsum);
1990         } else {
1991                 /* Enable Receive Checksum Offload for TCP and UDP */
1992                 rxcsum = rd32(E1000_RXCSUM);
1993                 if (adapter->rx_csum) {
1994                         rxcsum |= E1000_RXCSUM_TUOFL;
1995
1996                         /* Enable IPv4 payload checksum for UDP fragments
1997                          * Must be used in conjunction with packet-split. */
1998                         if (adapter->rx_ps_hdr_size)
1999                                 rxcsum |= E1000_RXCSUM_IPPCSE;
2000                 } else {
2001                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2002                         /* don't need to clear IPPCSE as it defaults to 0 */
2003                 }
2004                 wr32(E1000_RXCSUM, rxcsum);
2005         }
2006
2007         if (adapter->vlgrp)
2008                 wr32(E1000_RLPML,
2009                                 adapter->max_frame_size + VLAN_TAG_SIZE);
2010         else
2011                 wr32(E1000_RLPML, adapter->max_frame_size);
2012
2013         /* Enable Receives */
2014         wr32(E1000_RCTL, rctl);
2015 }
2016
2017 /**
2018  * igb_free_tx_resources - Free Tx Resources per Queue
2019  * @tx_ring: Tx descriptor ring for a specific queue
2020  *
2021  * Free all transmit software resources
2022  **/
2023 void igb_free_tx_resources(struct igb_ring *tx_ring)
2024 {
2025         struct pci_dev *pdev = tx_ring->adapter->pdev;
2026
2027         igb_clean_tx_ring(tx_ring);
2028
2029         vfree(tx_ring->buffer_info);
2030         tx_ring->buffer_info = NULL;
2031
2032         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2033
2034         tx_ring->desc = NULL;
2035 }
2036
2037 /**
2038  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2039  * @adapter: board private structure
2040  *
2041  * Free all transmit software resources
2042  **/
2043 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2044 {
2045         int i;
2046
2047         for (i = 0; i < adapter->num_tx_queues; i++)
2048                 igb_free_tx_resources(&adapter->tx_ring[i]);
2049 }
2050
2051 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2052                                            struct igb_buffer *buffer_info)
2053 {
2054         if (buffer_info->dma) {
2055                 pci_unmap_page(adapter->pdev,
2056                                 buffer_info->dma,
2057                                 buffer_info->length,
2058                                 PCI_DMA_TODEVICE);
2059                 buffer_info->dma = 0;
2060         }
2061         if (buffer_info->skb) {
2062                 dev_kfree_skb_any(buffer_info->skb);
2063                 buffer_info->skb = NULL;
2064         }
2065         buffer_info->time_stamp = 0;
2066         /* buffer_info must be completely set up in the transmit path */
2067 }
2068
2069 /**
2070  * igb_clean_tx_ring - Free Tx Buffers
2071  * @tx_ring: ring to be cleaned
2072  **/
2073 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2074 {
2075         struct igb_adapter *adapter = tx_ring->adapter;
2076         struct igb_buffer *buffer_info;
2077         unsigned long size;
2078         unsigned int i;
2079
2080         if (!tx_ring->buffer_info)
2081                 return;
2082         /* Free all the Tx ring sk_buffs */
2083
2084         for (i = 0; i < tx_ring->count; i++) {
2085                 buffer_info = &tx_ring->buffer_info[i];
2086                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2087         }
2088
2089         size = sizeof(struct igb_buffer) * tx_ring->count;
2090         memset(tx_ring->buffer_info, 0, size);
2091
2092         /* Zero out the descriptor ring */
2093
2094         memset(tx_ring->desc, 0, tx_ring->size);
2095
2096         tx_ring->next_to_use = 0;
2097         tx_ring->next_to_clean = 0;
2098
2099         writel(0, adapter->hw.hw_addr + tx_ring->head);
2100         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2101 }
2102
2103 /**
2104  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2105  * @adapter: board private structure
2106  **/
2107 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2108 {
2109         int i;
2110
2111         for (i = 0; i < adapter->num_tx_queues; i++)
2112                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2113 }
2114
2115 /**
2116  * igb_free_rx_resources - Free Rx Resources
2117  * @rx_ring: ring to clean the resources from
2118  *
2119  * Free all receive software resources
2120  **/
2121 void igb_free_rx_resources(struct igb_ring *rx_ring)
2122 {
2123         struct pci_dev *pdev = rx_ring->adapter->pdev;
2124
2125         igb_clean_rx_ring(rx_ring);
2126
2127         vfree(rx_ring->buffer_info);
2128         rx_ring->buffer_info = NULL;
2129
2130 #ifdef CONFIG_IGB_LRO
2131         vfree(rx_ring->lro_mgr.lro_arr);
2132         rx_ring->lro_mgr.lro_arr = NULL;
2133 #endif 
2134
2135         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2136
2137         rx_ring->desc = NULL;
2138 }
2139
2140 /**
2141  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2142  * @adapter: board private structure
2143  *
2144  * Free all receive software resources
2145  **/
2146 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2147 {
2148         int i;
2149
2150         for (i = 0; i < adapter->num_rx_queues; i++)
2151                 igb_free_rx_resources(&adapter->rx_ring[i]);
2152 }
2153
2154 /**
2155  * igb_clean_rx_ring - Free Rx Buffers per Queue
2156  * @rx_ring: ring to free buffers from
2157  **/
2158 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2159 {
2160         struct igb_adapter *adapter = rx_ring->adapter;
2161         struct igb_buffer *buffer_info;
2162         struct pci_dev *pdev = adapter->pdev;
2163         unsigned long size;
2164         unsigned int i;
2165
2166         if (!rx_ring->buffer_info)
2167                 return;
2168         /* Free all the Rx ring sk_buffs */
2169         for (i = 0; i < rx_ring->count; i++) {
2170                 buffer_info = &rx_ring->buffer_info[i];
2171                 if (buffer_info->dma) {
2172                         if (adapter->rx_ps_hdr_size)
2173                                 pci_unmap_single(pdev, buffer_info->dma,
2174                                                  adapter->rx_ps_hdr_size,
2175                                                  PCI_DMA_FROMDEVICE);
2176                         else
2177                                 pci_unmap_single(pdev, buffer_info->dma,
2178                                                  adapter->rx_buffer_len,
2179                                                  PCI_DMA_FROMDEVICE);
2180                         buffer_info->dma = 0;
2181                 }
2182
2183                 if (buffer_info->skb) {
2184                         dev_kfree_skb(buffer_info->skb);
2185                         buffer_info->skb = NULL;
2186                 }
2187                 if (buffer_info->page) {
2188                         if (buffer_info->page_dma)
2189                                 pci_unmap_page(pdev, buffer_info->page_dma,
2190                                                PAGE_SIZE / 2,
2191                                                PCI_DMA_FROMDEVICE);
2192                         put_page(buffer_info->page);
2193                         buffer_info->page = NULL;
2194                         buffer_info->page_dma = 0;
2195                         buffer_info->page_offset = 0;
2196                 }
2197         }
2198
2199         size = sizeof(struct igb_buffer) * rx_ring->count;
2200         memset(rx_ring->buffer_info, 0, size);
2201
2202         /* Zero out the descriptor ring */
2203         memset(rx_ring->desc, 0, rx_ring->size);
2204
2205         rx_ring->next_to_clean = 0;
2206         rx_ring->next_to_use = 0;
2207
2208         writel(0, adapter->hw.hw_addr + rx_ring->head);
2209         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2210 }
2211
2212 /**
2213  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2214  * @adapter: board private structure
2215  **/
2216 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2217 {
2218         int i;
2219
2220         for (i = 0; i < adapter->num_rx_queues; i++)
2221                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2222 }
2223
2224 /**
2225  * igb_set_mac - Change the Ethernet Address of the NIC
2226  * @netdev: network interface device structure
2227  * @p: pointer to an address structure
2228  *
2229  * Returns 0 on success, negative on failure
2230  **/
2231 static int igb_set_mac(struct net_device *netdev, void *p)
2232 {
2233         struct igb_adapter *adapter = netdev_priv(netdev);
2234         struct sockaddr *addr = p;
2235
2236         if (!is_valid_ether_addr(addr->sa_data))
2237                 return -EADDRNOTAVAIL;
2238
2239         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2240         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2241
2242         adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2243
2244         return 0;
2245 }
2246
2247 /**
2248  * igb_set_multi - Multicast and Promiscuous mode set
2249  * @netdev: network interface device structure
2250  *
2251  * The set_multi entry point is called whenever the multicast address
2252  * list or the network interface flags are updated.  This routine is
2253  * responsible for configuring the hardware for proper multicast,
2254  * promiscuous mode, and all-multi behavior.
2255  **/
2256 static void igb_set_multi(struct net_device *netdev)
2257 {
2258         struct igb_adapter *adapter = netdev_priv(netdev);
2259         struct e1000_hw *hw = &adapter->hw;
2260         struct e1000_mac_info *mac = &hw->mac;
2261         struct dev_mc_list *mc_ptr;
2262         u8  *mta_list;
2263         u32 rctl;
2264         int i;
2265
2266         /* Check for Promiscuous and All Multicast modes */
2267
2268         rctl = rd32(E1000_RCTL);
2269
2270         if (netdev->flags & IFF_PROMISC) {
2271                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2272                 rctl &= ~E1000_RCTL_VFE;
2273         } else {
2274                 if (netdev->flags & IFF_ALLMULTI) {
2275                         rctl |= E1000_RCTL_MPE;
2276                         rctl &= ~E1000_RCTL_UPE;
2277                 } else
2278                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2279                 rctl |= E1000_RCTL_VFE;
2280         }
2281         wr32(E1000_RCTL, rctl);
2282
2283         if (!netdev->mc_count) {
2284                 /* nothing to program, so clear mc list */
2285                 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2286                                           mac->rar_entry_count);
2287                 return;
2288         }
2289
2290         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2291         if (!mta_list)
2292                 return;
2293
2294         /* The shared function expects a packed array of only addresses. */
2295         mc_ptr = netdev->mc_list;
2296
2297         for (i = 0; i < netdev->mc_count; i++) {
2298                 if (!mc_ptr)
2299                         break;
2300                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2301                 mc_ptr = mc_ptr->next;
2302         }
2303         igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2304                                       mac->rar_entry_count);
2305         kfree(mta_list);
2306 }
2307
2308 /* Need to wait a few seconds after link up to get diagnostic information from
2309  * the phy */
2310 static void igb_update_phy_info(unsigned long data)
2311 {
2312         struct igb_adapter *adapter = (struct igb_adapter *) data;
2313         igb_get_phy_info(&adapter->hw);
2314 }
2315
2316 /**
2317  * igb_watchdog - Timer Call-back
2318  * @data: pointer to adapter cast into an unsigned long
2319  **/
2320 static void igb_watchdog(unsigned long data)
2321 {
2322         struct igb_adapter *adapter = (struct igb_adapter *)data;
2323         /* Do the rest outside of interrupt context */
2324         schedule_work(&adapter->watchdog_task);
2325 }
2326
2327 static void igb_watchdog_task(struct work_struct *work)
2328 {
2329         struct igb_adapter *adapter = container_of(work,
2330                                         struct igb_adapter, watchdog_task);
2331         struct e1000_hw *hw = &adapter->hw;
2332
2333         struct net_device *netdev = adapter->netdev;
2334         struct igb_ring *tx_ring = adapter->tx_ring;
2335         struct e1000_mac_info *mac = &adapter->hw.mac;
2336         u32 link;
2337         u32 eics = 0;
2338         s32 ret_val;
2339         int i;
2340
2341         if ((netif_carrier_ok(netdev)) &&
2342             (rd32(E1000_STATUS) & E1000_STATUS_LU))
2343                 goto link_up;
2344
2345         ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2346         if ((ret_val == E1000_ERR_PHY) &&
2347             (hw->phy.type == e1000_phy_igp_3) &&
2348             (rd32(E1000_CTRL) &
2349              E1000_PHY_CTRL_GBE_DISABLE))
2350                 dev_info(&adapter->pdev->dev,
2351                          "Gigabit has been disabled, downgrading speed\n");
2352
2353         if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2354             !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2355                 link = mac->serdes_has_link;
2356         else
2357                 link = rd32(E1000_STATUS) &
2358                                       E1000_STATUS_LU;
2359
2360         if (link) {
2361                 if (!netif_carrier_ok(netdev)) {
2362                         u32 ctrl;
2363                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2364                                                    &adapter->link_speed,
2365                                                    &adapter->link_duplex);
2366
2367                         ctrl = rd32(E1000_CTRL);
2368                         /* Links status message must follow this format */
2369                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2370                                  "Flow Control: %s\n",
2371                                  netdev->name,
2372                                  adapter->link_speed,
2373                                  adapter->link_duplex == FULL_DUPLEX ?
2374                                  "Full Duplex" : "Half Duplex",
2375                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2376                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2377                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2378                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2379
2380                         /* tweak tx_queue_len according to speed/duplex and
2381                          * adjust the timeout factor */
2382                         netdev->tx_queue_len = adapter->tx_queue_len;
2383                         adapter->tx_timeout_factor = 1;
2384                         switch (adapter->link_speed) {
2385                         case SPEED_10:
2386                                 netdev->tx_queue_len = 10;
2387                                 adapter->tx_timeout_factor = 14;
2388                                 break;
2389                         case SPEED_100:
2390                                 netdev->tx_queue_len = 100;
2391                                 /* maybe add some timeout factor ? */
2392                                 break;
2393                         }
2394
2395                         netif_carrier_on(netdev);
2396                         netif_tx_wake_all_queues(netdev);
2397
2398                         if (!test_bit(__IGB_DOWN, &adapter->state))
2399                                 mod_timer(&adapter->phy_info_timer,
2400                                           round_jiffies(jiffies + 2 * HZ));
2401                 }
2402         } else {
2403                 if (netif_carrier_ok(netdev)) {
2404                         adapter->link_speed = 0;
2405                         adapter->link_duplex = 0;
2406                         /* Links status message must follow this format */
2407                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
2408                                netdev->name);
2409                         netif_carrier_off(netdev);
2410                         netif_tx_stop_all_queues(netdev);
2411                         if (!test_bit(__IGB_DOWN, &adapter->state))
2412                                 mod_timer(&adapter->phy_info_timer,
2413                                           round_jiffies(jiffies + 2 * HZ));
2414                 }
2415         }
2416
2417 link_up:
2418         igb_update_stats(adapter);
2419
2420         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2421         adapter->tpt_old = adapter->stats.tpt;
2422         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2423         adapter->colc_old = adapter->stats.colc;
2424
2425         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2426         adapter->gorc_old = adapter->stats.gorc;
2427         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2428         adapter->gotc_old = adapter->stats.gotc;
2429
2430         igb_update_adaptive(&adapter->hw);
2431
2432         if (!netif_carrier_ok(netdev)) {
2433                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2434                         /* We've lost link, so the controller stops DMA,
2435                          * but we've got queued Tx work that's never going
2436                          * to get done, so reset controller to flush Tx.
2437                          * (Do the reset outside of interrupt context). */
2438                         adapter->tx_timeout_count++;
2439                         schedule_work(&adapter->reset_task);
2440                 }
2441         }
2442
2443         /* Cause software interrupt to ensure rx ring is cleaned */
2444         if (adapter->msix_entries) {
2445                 for (i = 0; i < adapter->num_rx_queues; i++)
2446                         eics |= adapter->rx_ring[i].eims_value;
2447                 wr32(E1000_EICS, eics);
2448         } else {
2449                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2450         }
2451
2452         /* Force detection of hung controller every watchdog period */
2453         tx_ring->detect_tx_hung = true;
2454
2455         /* Reset the timer */
2456         if (!test_bit(__IGB_DOWN, &adapter->state))
2457                 mod_timer(&adapter->watchdog_timer,
2458                           round_jiffies(jiffies + 2 * HZ));
2459 }
2460
2461 enum latency_range {
2462         lowest_latency = 0,
2463         low_latency = 1,
2464         bulk_latency = 2,
2465         latency_invalid = 255
2466 };
2467
2468
2469 /**
2470  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2471  *
2472  *      Stores a new ITR value based on strictly on packet size.  This
2473  *      algorithm is less sophisticated than that used in igb_update_itr,
2474  *      due to the difficulty of synchronizing statistics across multiple
2475  *      receive rings.  The divisors and thresholds used by this fuction
2476  *      were determined based on theoretical maximum wire speed and testing
2477  *      data, in order to minimize response time while increasing bulk
2478  *      throughput.
2479  *      This functionality is controlled by the InterruptThrottleRate module
2480  *      parameter (see igb_param.c)
2481  *      NOTE:  This function is called only when operating in a multiqueue
2482  *             receive environment.
2483  * @rx_ring: pointer to ring
2484  **/
2485 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2486 {
2487         int new_val = rx_ring->itr_val;
2488         int avg_wire_size = 0;
2489         struct igb_adapter *adapter = rx_ring->adapter;
2490
2491         if (!rx_ring->total_packets)
2492                 goto clear_counts; /* no packets, so don't do anything */
2493
2494         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2495          * ints/sec - ITR timer value of 120 ticks.
2496          */
2497         if (adapter->link_speed != SPEED_1000) {
2498                 new_val = 120;
2499                 goto set_itr_val;
2500         }
2501         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2502
2503         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2504         avg_wire_size += 24;
2505
2506         /* Don't starve jumbo frames */
2507         avg_wire_size = min(avg_wire_size, 3000);
2508
2509         /* Give a little boost to mid-size frames */
2510         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2511                 new_val = avg_wire_size / 3;
2512         else
2513                 new_val = avg_wire_size / 2;
2514
2515 set_itr_val:
2516         if (new_val != rx_ring->itr_val) {
2517                 rx_ring->itr_val = new_val;
2518                 rx_ring->set_itr = 1;
2519         }
2520 clear_counts:
2521         rx_ring->total_bytes = 0;
2522         rx_ring->total_packets = 0;
2523 }
2524
2525 /**
2526  * igb_update_itr - update the dynamic ITR value based on statistics
2527  *      Stores a new ITR value based on packets and byte
2528  *      counts during the last interrupt.  The advantage of per interrupt
2529  *      computation is faster updates and more accurate ITR for the current
2530  *      traffic pattern.  Constants in this function were computed
2531  *      based on theoretical maximum wire speed and thresholds were set based
2532  *      on testing data as well as attempting to minimize response time
2533  *      while increasing bulk throughput.
2534  *      this functionality is controlled by the InterruptThrottleRate module
2535  *      parameter (see igb_param.c)
2536  *      NOTE:  These calculations are only valid when operating in a single-
2537  *             queue environment.
2538  * @adapter: pointer to adapter
2539  * @itr_setting: current adapter->itr
2540  * @packets: the number of packets during this measurement interval
2541  * @bytes: the number of bytes during this measurement interval
2542  **/
2543 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2544                                    int packets, int bytes)
2545 {
2546         unsigned int retval = itr_setting;
2547
2548         if (packets == 0)
2549                 goto update_itr_done;
2550
2551         switch (itr_setting) {
2552         case lowest_latency:
2553                 /* handle TSO and jumbo frames */
2554                 if (bytes/packets > 8000)
2555                         retval = bulk_latency;
2556                 else if ((packets < 5) && (bytes > 512))
2557                         retval = low_latency;
2558                 break;
2559         case low_latency:  /* 50 usec aka 20000 ints/s */
2560                 if (bytes > 10000) {
2561                         /* this if handles the TSO accounting */
2562                         if (bytes/packets > 8000) {
2563                                 retval = bulk_latency;
2564                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2565                                 retval = bulk_latency;
2566                         } else if ((packets > 35)) {
2567                                 retval = lowest_latency;
2568                         }
2569                 } else if (bytes/packets > 2000) {
2570                         retval = bulk_latency;
2571                 } else if (packets <= 2 && bytes < 512) {
2572                         retval = lowest_latency;
2573                 }
2574                 break;
2575         case bulk_latency: /* 250 usec aka 4000 ints/s */
2576                 if (bytes > 25000) {
2577                         if (packets > 35)
2578                                 retval = low_latency;
2579                 } else if (bytes < 6000) {
2580                         retval = low_latency;
2581                 }
2582                 break;
2583         }
2584
2585 update_itr_done:
2586         return retval;
2587 }
2588
2589 static void igb_set_itr(struct igb_adapter *adapter)
2590 {
2591         u16 current_itr;
2592         u32 new_itr = adapter->itr;
2593
2594         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2595         if (adapter->link_speed != SPEED_1000) {
2596                 current_itr = 0;
2597                 new_itr = 4000;
2598                 goto set_itr_now;
2599         }
2600
2601         adapter->rx_itr = igb_update_itr(adapter,
2602                                     adapter->rx_itr,
2603                                     adapter->rx_ring->total_packets,
2604                                     adapter->rx_ring->total_bytes);
2605
2606         if (adapter->rx_ring->buddy) {
2607                 adapter->tx_itr = igb_update_itr(adapter,
2608                                             adapter->tx_itr,
2609                                             adapter->tx_ring->total_packets,
2610                                             adapter->tx_ring->total_bytes);
2611
2612                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2613         } else {
2614                 current_itr = adapter->rx_itr;
2615         }
2616
2617         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2618         if (adapter->itr_setting == 3 &&
2619             current_itr == lowest_latency)
2620                 current_itr = low_latency;
2621
2622         switch (current_itr) {
2623         /* counts and packets in update_itr are dependent on these numbers */
2624         case lowest_latency:
2625                 new_itr = 70000;
2626                 break;
2627         case low_latency:
2628                 new_itr = 20000; /* aka hwitr = ~200 */
2629                 break;
2630         case bulk_latency:
2631                 new_itr = 4000;
2632                 break;
2633         default:
2634                 break;
2635         }
2636
2637 set_itr_now:
2638         adapter->rx_ring->total_bytes = 0;
2639         adapter->rx_ring->total_packets = 0;
2640         if (adapter->rx_ring->buddy) {
2641                 adapter->rx_ring->buddy->total_bytes = 0;
2642                 adapter->rx_ring->buddy->total_packets = 0;
2643         }
2644
2645         if (new_itr != adapter->itr) {
2646                 /* this attempts to bias the interrupt rate towards Bulk
2647                  * by adding intermediate steps when interrupt rate is
2648                  * increasing */
2649                 new_itr = new_itr > adapter->itr ?
2650                              min(adapter->itr + (new_itr >> 2), new_itr) :
2651                              new_itr;
2652                 /* Don't write the value here; it resets the adapter's
2653                  * internal timer, and causes us to delay far longer than
2654                  * we should between interrupts.  Instead, we write the ITR
2655                  * value at the beginning of the next interrupt so the timing
2656                  * ends up being correct.
2657                  */
2658                 adapter->itr = new_itr;
2659                 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2660                 adapter->rx_ring->set_itr = 1;
2661         }
2662
2663         return;
2664 }
2665
2666
2667 #define IGB_TX_FLAGS_CSUM               0x00000001
2668 #define IGB_TX_FLAGS_VLAN               0x00000002
2669 #define IGB_TX_FLAGS_TSO                0x00000004
2670 #define IGB_TX_FLAGS_IPV4               0x00000008
2671 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2672 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2673
2674 static inline int igb_tso_adv(struct igb_adapter *adapter,
2675                               struct igb_ring *tx_ring,
2676                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2677 {
2678         struct e1000_adv_tx_context_desc *context_desc;
2679         unsigned int i;
2680         int err;
2681         struct igb_buffer *buffer_info;
2682         u32 info = 0, tu_cmd = 0;
2683         u32 mss_l4len_idx, l4len;
2684         *hdr_len = 0;
2685
2686         if (skb_header_cloned(skb)) {
2687                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2688                 if (err)
2689                         return err;
2690         }
2691
2692         l4len = tcp_hdrlen(skb);
2693         *hdr_len += l4len;
2694
2695         if (skb->protocol == htons(ETH_P_IP)) {
2696                 struct iphdr *iph = ip_hdr(skb);
2697                 iph->tot_len = 0;
2698                 iph->check = 0;
2699                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2700                                                          iph->daddr, 0,
2701                                                          IPPROTO_TCP,
2702                                                          0);
2703         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2704                 ipv6_hdr(skb)->payload_len = 0;
2705                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2706                                                        &ipv6_hdr(skb)->daddr,
2707                                                        0, IPPROTO_TCP, 0);
2708         }
2709
2710         i = tx_ring->next_to_use;
2711
2712         buffer_info = &tx_ring->buffer_info[i];
2713         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2714         /* VLAN MACLEN IPLEN */
2715         if (tx_flags & IGB_TX_FLAGS_VLAN)
2716                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2717         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2718         *hdr_len += skb_network_offset(skb);
2719         info |= skb_network_header_len(skb);
2720         *hdr_len += skb_network_header_len(skb);
2721         context_desc->vlan_macip_lens = cpu_to_le32(info);
2722
2723         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2724         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2725
2726         if (skb->protocol == htons(ETH_P_IP))
2727                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2728         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2729
2730         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2731
2732         /* MSS L4LEN IDX */
2733         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2734         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2735
2736         /* Context index must be unique per ring. */
2737         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2738                 mss_l4len_idx |= tx_ring->queue_index << 4;
2739
2740         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2741         context_desc->seqnum_seed = 0;
2742
2743         buffer_info->time_stamp = jiffies;
2744         buffer_info->next_to_watch = i;
2745         buffer_info->dma = 0;
2746         i++;
2747         if (i == tx_ring->count)
2748                 i = 0;
2749
2750         tx_ring->next_to_use = i;
2751
2752         return true;
2753 }
2754
2755 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2756                                         struct igb_ring *tx_ring,
2757                                         struct sk_buff *skb, u32 tx_flags)
2758 {
2759         struct e1000_adv_tx_context_desc *context_desc;
2760         unsigned int i;
2761         struct igb_buffer *buffer_info;
2762         u32 info = 0, tu_cmd = 0;
2763
2764         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2765             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2766                 i = tx_ring->next_to_use;
2767                 buffer_info = &tx_ring->buffer_info[i];
2768                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2769
2770                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2771                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2772                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2773                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2774                         info |= skb_network_header_len(skb);
2775
2776                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2777
2778                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2779
2780                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2781                         switch (skb->protocol) {
2782                         case __constant_htons(ETH_P_IP):
2783                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2784                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2785                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2786                                 break;
2787                         case __constant_htons(ETH_P_IPV6):
2788                                 /* XXX what about other V6 headers?? */
2789                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2790                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2791                                 break;
2792                         default:
2793                                 if (unlikely(net_ratelimit()))
2794                                         dev_warn(&adapter->pdev->dev,
2795                                             "partial checksum but proto=%x!\n",
2796                                             skb->protocol);
2797                                 break;
2798                         }
2799                 }
2800
2801                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2802                 context_desc->seqnum_seed = 0;
2803                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2804                         context_desc->mss_l4len_idx =
2805                                 cpu_to_le32(tx_ring->queue_index << 4);
2806
2807                 buffer_info->time_stamp = jiffies;
2808                 buffer_info->next_to_watch = i;
2809                 buffer_info->dma = 0;
2810
2811                 i++;
2812                 if (i == tx_ring->count)
2813                         i = 0;
2814                 tx_ring->next_to_use = i;
2815
2816                 return true;
2817         }
2818
2819
2820         return false;
2821 }
2822
2823 #define IGB_MAX_TXD_PWR 16
2824 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2825
2826 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2827                                  struct igb_ring *tx_ring, struct sk_buff *skb,
2828                                  unsigned int first)
2829 {
2830         struct igb_buffer *buffer_info;
2831         unsigned int len = skb_headlen(skb);
2832         unsigned int count = 0, i;
2833         unsigned int f;
2834
2835         i = tx_ring->next_to_use;
2836
2837         buffer_info = &tx_ring->buffer_info[i];
2838         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2839         buffer_info->length = len;
2840         /* set time_stamp *before* dma to help avoid a possible race */
2841         buffer_info->time_stamp = jiffies;
2842         buffer_info->next_to_watch = i;
2843         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2844                                           PCI_DMA_TODEVICE);
2845         count++;
2846         i++;
2847         if (i == tx_ring->count)
2848                 i = 0;
2849
2850         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2851                 struct skb_frag_struct *frag;
2852
2853                 frag = &skb_shinfo(skb)->frags[f];
2854                 len = frag->size;
2855
2856                 buffer_info = &tx_ring->buffer_info[i];
2857                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2858                 buffer_info->length = len;
2859                 buffer_info->time_stamp = jiffies;
2860                 buffer_info->next_to_watch = i;
2861                 buffer_info->dma = pci_map_page(adapter->pdev,
2862                                                 frag->page,
2863                                                 frag->page_offset,
2864                                                 len,
2865                                                 PCI_DMA_TODEVICE);
2866
2867                 count++;
2868                 i++;
2869                 if (i == tx_ring->count)
2870                         i = 0;
2871         }
2872
2873         i = ((i == 0) ? tx_ring->count - 1 : i - 1);
2874         tx_ring->buffer_info[i].skb = skb;
2875         tx_ring->buffer_info[first].next_to_watch = i;
2876
2877         return count;
2878 }
2879
2880 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2881                                     struct igb_ring *tx_ring,
2882                                     int tx_flags, int count, u32 paylen,
2883                                     u8 hdr_len)
2884 {
2885         union e1000_adv_tx_desc *tx_desc = NULL;
2886         struct igb_buffer *buffer_info;
2887         u32 olinfo_status = 0, cmd_type_len;
2888         unsigned int i;
2889
2890         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2891                         E1000_ADVTXD_DCMD_DEXT);
2892
2893         if (tx_flags & IGB_TX_FLAGS_VLAN)
2894                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2895
2896         if (tx_flags & IGB_TX_FLAGS_TSO) {
2897                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2898
2899                 /* insert tcp checksum */
2900                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2901
2902                 /* insert ip checksum */
2903                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2904                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2905
2906         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2907                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2908         }
2909
2910         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2911             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2912                          IGB_TX_FLAGS_VLAN)))
2913                 olinfo_status |= tx_ring->queue_index << 4;
2914
2915         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2916
2917         i = tx_ring->next_to_use;
2918         while (count--) {
2919                 buffer_info = &tx_ring->buffer_info[i];
2920                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2921                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2922                 tx_desc->read.cmd_type_len =
2923                         cpu_to_le32(cmd_type_len | buffer_info->length);
2924                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2925                 i++;
2926                 if (i == tx_ring->count)
2927                         i = 0;
2928         }
2929
2930         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2931         /* Force memory writes to complete before letting h/w
2932          * know there are new descriptors to fetch.  (Only
2933          * applicable for weak-ordered memory model archs,
2934          * such as IA-64). */
2935         wmb();
2936
2937         tx_ring->next_to_use = i;
2938         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2939         /* we need this if more than one processor can write to our tail
2940          * at a time, it syncronizes IO on IA64/Altix systems */
2941         mmiowb();
2942 }
2943
2944 static int __igb_maybe_stop_tx(struct net_device *netdev,
2945                                struct igb_ring *tx_ring, int size)
2946 {
2947         struct igb_adapter *adapter = netdev_priv(netdev);
2948
2949         netif_stop_subqueue(netdev, tx_ring->queue_index);
2950
2951         /* Herbert's original patch had:
2952          *  smp_mb__after_netif_stop_queue();
2953          * but since that doesn't exist yet, just open code it. */
2954         smp_mb();
2955
2956         /* We need to check again in a case another CPU has just
2957          * made room available. */
2958         if (IGB_DESC_UNUSED(tx_ring) < size)
2959                 return -EBUSY;
2960
2961         /* A reprieve! */
2962         netif_wake_subqueue(netdev, tx_ring->queue_index);
2963         ++adapter->restart_queue;
2964         return 0;
2965 }
2966
2967 static int igb_maybe_stop_tx(struct net_device *netdev,
2968                              struct igb_ring *tx_ring, int size)
2969 {
2970         if (IGB_DESC_UNUSED(tx_ring) >= size)
2971                 return 0;
2972         return __igb_maybe_stop_tx(netdev, tx_ring, size);
2973 }
2974
2975 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2976
2977 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2978                                    struct net_device *netdev,
2979                                    struct igb_ring *tx_ring)
2980 {
2981         struct igb_adapter *adapter = netdev_priv(netdev);
2982         unsigned int first;
2983         unsigned int tx_flags = 0;
2984         unsigned int len;
2985         u8 hdr_len = 0;
2986         int tso = 0;
2987
2988         len = skb_headlen(skb);
2989
2990         if (test_bit(__IGB_DOWN, &adapter->state)) {
2991                 dev_kfree_skb_any(skb);
2992                 return NETDEV_TX_OK;
2993         }
2994
2995         if (skb->len <= 0) {
2996                 dev_kfree_skb_any(skb);
2997                 return NETDEV_TX_OK;
2998         }
2999
3000         /* need: 1 descriptor per page,
3001          *       + 2 desc gap to keep tail from touching head,
3002          *       + 1 desc for skb->data,
3003          *       + 1 desc for context descriptor,
3004          * otherwise try next time */
3005         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3006                 /* this is a hard error */
3007                 return NETDEV_TX_BUSY;
3008         }
3009         skb_orphan(skb);
3010
3011         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3012                 tx_flags |= IGB_TX_FLAGS_VLAN;
3013                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3014         }
3015
3016         if (skb->protocol == htons(ETH_P_IP))
3017                 tx_flags |= IGB_TX_FLAGS_IPV4;
3018
3019         first = tx_ring->next_to_use;
3020
3021         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3022                                               &hdr_len) : 0;
3023
3024         if (tso < 0) {
3025                 dev_kfree_skb_any(skb);
3026                 return NETDEV_TX_OK;
3027         }
3028
3029         if (tso)
3030                 tx_flags |= IGB_TX_FLAGS_TSO;
3031         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
3032                         if (skb->ip_summed == CHECKSUM_PARTIAL)
3033                                 tx_flags |= IGB_TX_FLAGS_CSUM;
3034
3035         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3036                          igb_tx_map_adv(adapter, tx_ring, skb, first),
3037                          skb->len, hdr_len);
3038
3039         netdev->trans_start = jiffies;
3040
3041         /* Make sure there is space in the ring for the next send. */
3042         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3043
3044         return NETDEV_TX_OK;
3045 }
3046
3047 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3048 {
3049         struct igb_adapter *adapter = netdev_priv(netdev);
3050         struct igb_ring *tx_ring;
3051
3052         int r_idx = 0;
3053         r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3054         tx_ring = adapter->multi_tx_table[r_idx];
3055
3056         /* This goes back to the question of how to logically map a tx queue
3057          * to a flow.  Right now, performance is impacted slightly negatively
3058          * if using multiple tx queues.  If the stack breaks away from a
3059          * single qdisc implementation, we can look at this again. */
3060         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3061 }
3062
3063 /**
3064  * igb_tx_timeout - Respond to a Tx Hang
3065  * @netdev: network interface device structure
3066  **/
3067 static void igb_tx_timeout(struct net_device *netdev)
3068 {
3069         struct igb_adapter *adapter = netdev_priv(netdev);
3070         struct e1000_hw *hw = &adapter->hw;
3071
3072         /* Do the reset outside of interrupt context */
3073         adapter->tx_timeout_count++;
3074         schedule_work(&adapter->reset_task);
3075         wr32(E1000_EICS, adapter->eims_enable_mask &
3076                 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3077 }
3078
3079 static void igb_reset_task(struct work_struct *work)
3080 {
3081         struct igb_adapter *adapter;
3082         adapter = container_of(work, struct igb_adapter, reset_task);
3083
3084         igb_reinit_locked(adapter);
3085 }
3086
3087 /**
3088  * igb_get_stats - Get System Network Statistics
3089  * @netdev: network interface device structure
3090  *
3091  * Returns the address of the device statistics structure.
3092  * The statistics are actually updated from the timer callback.
3093  **/
3094 static struct net_device_stats *
3095 igb_get_stats(struct net_device *netdev)
3096 {
3097         struct igb_adapter *adapter = netdev_priv(netdev);
3098
3099         /* only return the current stats */
3100         return &adapter->net_stats;
3101 }
3102
3103 /**
3104  * igb_change_mtu - Change the Maximum Transfer Unit
3105  * @netdev: network interface device structure
3106  * @new_mtu: new value for maximum frame size
3107  *
3108  * Returns 0 on success, negative on failure
3109  **/
3110 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3111 {
3112         struct igb_adapter *adapter = netdev_priv(netdev);
3113         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3114
3115         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3116             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3117                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3118                 return -EINVAL;
3119         }
3120
3121 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3122         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3123                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3124                 return -EINVAL;
3125         }
3126
3127         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3128                 msleep(1);
3129         /* igb_down has a dependency on max_frame_size */
3130         adapter->max_frame_size = max_frame;
3131         if (netif_running(netdev))
3132                 igb_down(adapter);
3133
3134         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3135          * means we reserve 2 more, this pushes us to allocate from the next
3136          * larger slab size.
3137          * i.e. RXBUFFER_2048 --> size-4096 slab
3138          */
3139
3140         if (max_frame <= IGB_RXBUFFER_256)
3141                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3142         else if (max_frame <= IGB_RXBUFFER_512)
3143                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3144         else if (max_frame <= IGB_RXBUFFER_1024)
3145                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3146         else if (max_frame <= IGB_RXBUFFER_2048)
3147                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3148         else
3149 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3150                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3151 #else
3152                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3153 #endif
3154         /* adjust allocation if LPE protects us, and we aren't using SBP */
3155         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3156              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3157                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3158
3159         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3160                  netdev->mtu, new_mtu);
3161         netdev->mtu = new_mtu;
3162
3163         if (netif_running(netdev))
3164                 igb_up(adapter);
3165         else
3166                 igb_reset(adapter);
3167
3168         clear_bit(__IGB_RESETTING, &adapter->state);
3169
3170         return 0;
3171 }
3172
3173 /**
3174  * igb_update_stats - Update the board statistics counters
3175  * @adapter: board private structure
3176  **/
3177
3178 void igb_update_stats(struct igb_adapter *adapter)
3179 {
3180         struct e1000_hw *hw = &adapter->hw;
3181         struct pci_dev *pdev = adapter->pdev;
3182         u16 phy_tmp;
3183
3184 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3185
3186         /*
3187          * Prevent stats update while adapter is being reset, or if the pci
3188          * connection is down.
3189          */
3190         if (adapter->link_speed == 0)
3191                 return;
3192         if (pci_channel_offline(pdev))
3193                 return;
3194
3195         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3196         adapter->stats.gprc += rd32(E1000_GPRC);
3197         adapter->stats.gorc += rd32(E1000_GORCL);
3198         rd32(E1000_GORCH); /* clear GORCL */
3199         adapter->stats.bprc += rd32(E1000_BPRC);
3200         adapter->stats.mprc += rd32(E1000_MPRC);
3201         adapter->stats.roc += rd32(E1000_ROC);
3202
3203         adapter->stats.prc64 += rd32(E1000_PRC64);
3204         adapter->stats.prc127 += rd32(E1000_PRC127);
3205         adapter->stats.prc255 += rd32(E1000_PRC255);
3206         adapter->stats.prc511 += rd32(E1000_PRC511);
3207         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3208         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3209         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3210         adapter->stats.sec += rd32(E1000_SEC);
3211
3212         adapter->stats.mpc += rd32(E1000_MPC);
3213         adapter->stats.scc += rd32(E1000_SCC);
3214         adapter->stats.ecol += rd32(E1000_ECOL);
3215         adapter->stats.mcc += rd32(E1000_MCC);
3216         adapter->stats.latecol += rd32(E1000_LATECOL);
3217         adapter->stats.dc += rd32(E1000_DC);
3218         adapter->stats.rlec += rd32(E1000_RLEC);
3219         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3220         adapter->stats.xontxc += rd32(E1000_XONTXC);
3221         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3222         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3223         adapter->stats.fcruc += rd32(E1000_FCRUC);
3224         adapter->stats.gptc += rd32(E1000_GPTC);
3225         adapter->stats.gotc += rd32(E1000_GOTCL);
3226         rd32(E1000_GOTCH); /* clear GOTCL */
3227         adapter->stats.rnbc += rd32(E1000_RNBC);
3228         adapter->stats.ruc += rd32(E1000_RUC);
3229         adapter->stats.rfc += rd32(E1000_RFC);
3230         adapter->stats.rjc += rd32(E1000_RJC);
3231         adapter->stats.tor += rd32(E1000_TORH);
3232         adapter->stats.tot += rd32(E1000_TOTH);
3233         adapter->stats.tpr += rd32(E1000_TPR);
3234
3235         adapter->stats.ptc64 += rd32(E1000_PTC64);
3236         adapter->stats.ptc127 += rd32(E1000_PTC127);
3237         adapter->stats.ptc255 += rd32(E1000_PTC255);
3238         adapter->stats.ptc511 += rd32(E1000_PTC511);
3239         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3240         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3241
3242         adapter->stats.mptc += rd32(E1000_MPTC);
3243         adapter->stats.bptc += rd32(E1000_BPTC);
3244
3245         /* used for adaptive IFS */
3246
3247         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3248         adapter->stats.tpt += hw->mac.tx_packet_delta;
3249         hw->mac.collision_delta = rd32(E1000_COLC);
3250         adapter->stats.colc += hw->mac.collision_delta;
3251
3252         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3253         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3254         adapter->stats.tncrs += rd32(E1000_TNCRS);
3255         adapter->stats.tsctc += rd32(E1000_TSCTC);
3256         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3257
3258         adapter->stats.iac += rd32(E1000_IAC);
3259         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3260         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3261         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3262         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3263         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3264         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3265         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3266         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3267
3268         /* Fill out the OS statistics structure */
3269         adapter->net_stats.multicast = adapter->stats.mprc;
3270         adapter->net_stats.collisions = adapter->stats.colc;
3271
3272         /* Rx Errors */
3273
3274         /* RLEC on some newer hardware can be incorrect so build
3275         * our own version based on RUC and ROC */
3276         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3277                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3278                 adapter->stats.ruc + adapter->stats.roc +
3279                 adapter->stats.cexterr;
3280         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3281                                               adapter->stats.roc;
3282         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3283         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3284         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3285
3286         /* Tx Errors */
3287         adapter->net_stats.tx_errors = adapter->stats.ecol +
3288                                        adapter->stats.latecol;
3289         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3290         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3291         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3292
3293         /* Tx Dropped needs to be maintained elsewhere */
3294
3295         /* Phy Stats */
3296         if (hw->phy.media_type == e1000_media_type_copper) {
3297                 if ((adapter->link_speed == SPEED_1000) &&
3298                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3299                                               &phy_tmp))) {
3300                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3301                         adapter->phy_stats.idle_errors += phy_tmp;
3302                 }
3303         }
3304
3305         /* Management Stats */
3306         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3307         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3308         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3309 }
3310
3311
3312 static irqreturn_t igb_msix_other(int irq, void *data)
3313 {
3314         struct net_device *netdev = data;
3315         struct igb_adapter *adapter = netdev_priv(netdev);
3316         struct e1000_hw *hw = &adapter->hw;
3317         u32 icr = rd32(E1000_ICR);
3318
3319         /* reading ICR causes bit 31 of EICR to be cleared */
3320         if (!(icr & E1000_ICR_LSC))
3321                 goto no_link_interrupt;
3322         hw->mac.get_link_status = 1;
3323         /* guard against interrupt when we're going down */
3324         if (!test_bit(__IGB_DOWN, &adapter->state))
3325                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3326         
3327 no_link_interrupt:
3328         wr32(E1000_IMS, E1000_IMS_LSC);
3329         wr32(E1000_EIMS, adapter->eims_other);
3330
3331         return IRQ_HANDLED;
3332 }
3333
3334 static irqreturn_t igb_msix_tx(int irq, void *data)
3335 {
3336         struct igb_ring *tx_ring = data;
3337         struct igb_adapter *adapter = tx_ring->adapter;
3338         struct e1000_hw *hw = &adapter->hw;
3339
3340 #ifdef CONFIG_IGB_DCA
3341         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3342                 igb_update_tx_dca(tx_ring);
3343 #endif
3344         tx_ring->total_bytes = 0;
3345         tx_ring->total_packets = 0;
3346
3347         /* auto mask will automatically reenable the interrupt when we write
3348          * EICS */
3349         if (!igb_clean_tx_irq(tx_ring))
3350                 /* Ring was not completely cleaned, so fire another interrupt */
3351                 wr32(E1000_EICS, tx_ring->eims_value);
3352         else
3353                 wr32(E1000_EIMS, tx_ring->eims_value);
3354
3355         return IRQ_HANDLED;
3356 }
3357
3358 static void igb_write_itr(struct igb_ring *ring)
3359 {
3360         struct e1000_hw *hw = &ring->adapter->hw;
3361         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3362                 switch (hw->mac.type) {
3363                 case e1000_82576:
3364                         wr32(ring->itr_register,
3365                              ring->itr_val |
3366                              0x80000000);
3367                         break;
3368                 default:
3369                         wr32(ring->itr_register,
3370                              ring->itr_val |
3371                              (ring->itr_val << 16));
3372                         break;
3373                 }
3374                 ring->set_itr = 0;
3375         }
3376 }
3377
3378 static irqreturn_t igb_msix_rx(int irq, void *data)
3379 {
3380         struct igb_ring *rx_ring = data;
3381
3382         /* Write the ITR value calculated at the end of the
3383          * previous interrupt.
3384          */
3385
3386         igb_write_itr(rx_ring);
3387
3388         if (netif_rx_schedule_prep(&rx_ring->napi))
3389                 __netif_rx_schedule(&rx_ring->napi);
3390
3391 #ifdef CONFIG_IGB_DCA
3392         if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3393                 igb_update_rx_dca(rx_ring);
3394 #endif
3395                 return IRQ_HANDLED;
3396 }
3397
3398 #ifdef CONFIG_IGB_DCA
3399 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3400 {
3401         u32 dca_rxctrl;
3402         struct igb_adapter *adapter = rx_ring->adapter;
3403         struct e1000_hw *hw = &adapter->hw;
3404         int cpu = get_cpu();
3405         int q = rx_ring->reg_idx;
3406
3407         if (rx_ring->cpu != cpu) {
3408                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3409                 if (hw->mac.type == e1000_82576) {
3410                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3411                         dca_rxctrl |= dca_get_tag(cpu) <<
3412                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3413                 } else {
3414                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3415                         dca_rxctrl |= dca_get_tag(cpu);
3416                 }
3417                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3418                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3419                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3420                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3421                 rx_ring->cpu = cpu;
3422         }
3423         put_cpu();
3424 }
3425
3426 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3427 {
3428         u32 dca_txctrl;
3429         struct igb_adapter *adapter = tx_ring->adapter;
3430         struct e1000_hw *hw = &adapter->hw;
3431         int cpu = get_cpu();
3432         int q = tx_ring->reg_idx;
3433
3434         if (tx_ring->cpu != cpu) {
3435                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3436                 if (hw->mac.type == e1000_82576) {
3437                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3438                         dca_txctrl |= dca_get_tag(cpu) <<
3439                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3440                 } else {
3441                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3442                         dca_txctrl |= dca_get_tag(cpu);
3443                 }
3444                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3445                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3446                 tx_ring->cpu = cpu;
3447         }
3448         put_cpu();
3449 }
3450
3451 static void igb_setup_dca(struct igb_adapter *adapter)
3452 {
3453         int i;
3454
3455         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3456                 return;
3457
3458         for (i = 0; i < adapter->num_tx_queues; i++) {
3459                 adapter->tx_ring[i].cpu = -1;
3460                 igb_update_tx_dca(&adapter->tx_ring[i]);
3461         }
3462         for (i = 0; i < adapter->num_rx_queues; i++) {
3463                 adapter->rx_ring[i].cpu = -1;
3464                 igb_update_rx_dca(&adapter->rx_ring[i]);
3465         }
3466 }
3467
3468 static int __igb_notify_dca(struct device *dev, void *data)
3469 {
3470         struct net_device *netdev = dev_get_drvdata(dev);
3471         struct igb_adapter *adapter = netdev_priv(netdev);
3472         struct e1000_hw *hw = &adapter->hw;
3473         unsigned long event = *(unsigned long *)data;
3474
3475         switch (event) {
3476         case DCA_PROVIDER_ADD:
3477                 /* if already enabled, don't do it again */
3478                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3479                         break;
3480                 /* Always use CB2 mode, difference is masked
3481                  * in the CB driver. */
3482                 wr32(E1000_DCA_CTRL, 2);
3483                 if (dca_add_requester(dev) == 0) {
3484                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
3485                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3486                         igb_setup_dca(adapter);
3487                         break;
3488                 }
3489                 /* Fall Through since DCA is disabled. */
3490         case DCA_PROVIDER_REMOVE:
3491                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3492                         /* without this a class_device is left
3493                          * hanging around in the sysfs model */
3494                         dca_remove_requester(dev);
3495                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3496                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3497                         wr32(E1000_DCA_CTRL, 1);
3498                 }
3499                 break;
3500         }
3501
3502         return 0;
3503 }
3504
3505 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3506                           void *p)
3507 {
3508         int ret_val;
3509
3510         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3511                                          __igb_notify_dca);
3512
3513         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3514 }
3515 #endif /* CONFIG_IGB_DCA */
3516
3517 /**
3518  * igb_intr_msi - Interrupt Handler
3519  * @irq: interrupt number
3520  * @data: pointer to a network interface device structure
3521  **/
3522 static irqreturn_t igb_intr_msi(int irq, void *data)
3523 {
3524         struct net_device *netdev = data;
3525         struct igb_adapter *adapter = netdev_priv(netdev);
3526         struct e1000_hw *hw = &adapter->hw;
3527         /* read ICR disables interrupts using IAM */
3528         u32 icr = rd32(E1000_ICR);
3529
3530         igb_write_itr(adapter->rx_ring);
3531
3532         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3533                 hw->mac.get_link_status = 1;
3534                 if (!test_bit(__IGB_DOWN, &adapter->state))
3535                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3536         }
3537
3538         netif_rx_schedule(&adapter->rx_ring[0].napi);
3539
3540         return IRQ_HANDLED;
3541 }
3542
3543 /**
3544  * igb_intr - Interrupt Handler
3545  * @irq: interrupt number
3546  * @data: pointer to a network interface device structure
3547  **/
3548 static irqreturn_t igb_intr(int irq, void *data)
3549 {
3550         struct net_device *netdev = data;
3551         struct igb_adapter *adapter = netdev_priv(netdev);
3552         struct e1000_hw *hw = &adapter->hw;
3553         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3554          * need for the IMC write */
3555         u32 icr = rd32(E1000_ICR);
3556         u32 eicr = 0;
3557         if (!icr)
3558                 return IRQ_NONE;  /* Not our interrupt */
3559
3560         igb_write_itr(adapter->rx_ring);
3561
3562         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3563          * not set, then the adapter didn't send an interrupt */
3564         if (!(icr & E1000_ICR_INT_ASSERTED))
3565                 return IRQ_NONE;
3566
3567         eicr = rd32(E1000_EICR);
3568
3569         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3570                 hw->mac.get_link_status = 1;
3571                 /* guard against interrupt when we're going down */
3572                 if (!test_bit(__IGB_DOWN, &adapter->state))
3573                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3574         }
3575
3576         netif_rx_schedule(&adapter->rx_ring[0].napi);
3577
3578         return IRQ_HANDLED;
3579 }
3580
3581 /**
3582  * igb_poll - NAPI Rx polling callback
3583  * @napi: napi polling structure
3584  * @budget: count of how many packets we should handle
3585  **/
3586 static int igb_poll(struct napi_struct *napi, int budget)
3587 {
3588         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3589         struct igb_adapter *adapter = rx_ring->adapter;
3590         struct net_device *netdev = adapter->netdev;
3591         int tx_clean_complete, work_done = 0;
3592
3593         /* this poll routine only supports one tx and one rx queue */
3594 #ifdef CONFIG_IGB_DCA
3595         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3596                 igb_update_tx_dca(&adapter->tx_ring[0]);
3597 #endif
3598         tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3599
3600 #ifdef CONFIG_IGB_DCA
3601         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3602                 igb_update_rx_dca(&adapter->rx_ring[0]);
3603 #endif
3604         igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3605
3606         /* If no Tx and not enough Rx work done, exit the polling mode */
3607         if ((tx_clean_complete && (work_done < budget)) ||
3608             !netif_running(netdev)) {
3609                 if (adapter->itr_setting & 3)
3610                         igb_set_itr(adapter);
3611                 netif_rx_complete(napi);
3612                 if (!test_bit(__IGB_DOWN, &adapter->state))
3613                         igb_irq_enable(adapter);
3614                 return 0;
3615         }
3616
3617         return 1;
3618 }
3619
3620 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3621 {
3622         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3623         struct igb_adapter *adapter = rx_ring->adapter;
3624         struct e1000_hw *hw = &adapter->hw;
3625         struct net_device *netdev = adapter->netdev;
3626         int work_done = 0;
3627
3628 #ifdef CONFIG_IGB_DCA
3629         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3630                 igb_update_rx_dca(rx_ring);
3631 #endif
3632         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3633
3634
3635         /* If not enough Rx work done, exit the polling mode */
3636         if ((work_done == 0) || !netif_running(netdev)) {
3637                 netif_rx_complete(napi);
3638
3639                 if (adapter->itr_setting & 3) {
3640                         if (adapter->num_rx_queues == 1)
3641                                 igb_set_itr(adapter);
3642                         else
3643                                 igb_update_ring_itr(rx_ring);
3644                 }
3645
3646                 if (!test_bit(__IGB_DOWN, &adapter->state))
3647                         wr32(E1000_EIMS, rx_ring->eims_value);
3648
3649                 return 0;
3650         }
3651
3652         return 1;
3653 }
3654
3655 /**
3656  * igb_clean_tx_irq - Reclaim resources after transmit completes
3657  * @adapter: board private structure
3658  * returns true if ring is completely cleaned
3659  **/
3660 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3661 {
3662         struct igb_adapter *adapter = tx_ring->adapter;
3663         struct net_device *netdev = adapter->netdev;
3664         struct e1000_hw *hw = &adapter->hw;
3665         struct igb_buffer *buffer_info;
3666         struct sk_buff *skb;
3667         union e1000_adv_tx_desc *tx_desc, *eop_desc;
3668         unsigned int total_bytes = 0, total_packets = 0;
3669         unsigned int i, eop, count = 0;
3670         bool cleaned = false;
3671
3672         i = tx_ring->next_to_clean;
3673         eop = tx_ring->buffer_info[i].next_to_watch;
3674         eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3675
3676         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3677                (count < tx_ring->count)) {
3678                 for (cleaned = false; !cleaned; count++) {
3679                         tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3680                         buffer_info = &tx_ring->buffer_info[i];
3681                         cleaned = (i == eop);
3682                         skb = buffer_info->skb;
3683
3684                         if (skb) {
3685                                 unsigned int segs, bytecount;
3686                                 /* gso_segs is currently only valid for tcp */
3687                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3688                                 /* multiply data chunks by size of headers */
3689                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3690                                             skb->len;
3691                                 total_packets += segs;
3692                                 total_bytes += bytecount;
3693                         }
3694
3695                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3696                         tx_desc->wb.status = 0;
3697
3698                         i++;
3699                         if (i == tx_ring->count)
3700                                 i = 0;
3701                 }
3702
3703                 eop = tx_ring->buffer_info[i].next_to_watch;
3704                 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3705         }
3706
3707         tx_ring->next_to_clean = i;
3708
3709         if (unlikely(count &&
3710                      netif_carrier_ok(netdev) &&
3711                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3712                 /* Make sure that anybody stopping the queue after this
3713                  * sees the new next_to_clean.
3714                  */
3715                 smp_mb();
3716                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3717                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3718                         netif_wake_subqueue(netdev, tx_ring->queue_index);
3719                         ++adapter->restart_queue;
3720                 }
3721         }
3722
3723         if (tx_ring->detect_tx_hung) {
3724                 /* Detect a transmit hang in hardware, this serializes the
3725                  * check with the clearing of time_stamp and movement of i */
3726                 tx_ring->detect_tx_hung = false;
3727                 if (tx_ring->buffer_info[i].time_stamp &&
3728                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3729                                (adapter->tx_timeout_factor * HZ))
3730                     && !(rd32(E1000_STATUS) &
3731                          E1000_STATUS_TXOFF)) {
3732
3733                         /* detected Tx unit hang */
3734                         dev_err(&adapter->pdev->dev,
3735                                 "Detected Tx Unit Hang\n"
3736                                 "  Tx Queue             <%d>\n"
3737                                 "  TDH                  <%x>\n"
3738                                 "  TDT                  <%x>\n"
3739                                 "  next_to_use          <%x>\n"
3740                                 "  next_to_clean        <%x>\n"
3741                                 "buffer_info[next_to_clean]\n"
3742                                 "  time_stamp           <%lx>\n"
3743                                 "  next_to_watch        <%x>\n"
3744                                 "  jiffies              <%lx>\n"
3745                                 "  desc.status          <%x>\n",
3746                                 tx_ring->queue_index,
3747                                 readl(adapter->hw.hw_addr + tx_ring->head),
3748                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3749                                 tx_ring->next_to_use,
3750                                 tx_ring->next_to_clean,
3751                                 tx_ring->buffer_info[i].time_stamp,
3752                                 eop,
3753                                 jiffies,
3754                                 eop_desc->wb.status);
3755                         netif_stop_subqueue(netdev, tx_ring->queue_index);
3756                 }
3757         }
3758         tx_ring->total_bytes += total_bytes;
3759         tx_ring->total_packets += total_packets;
3760         tx_ring->tx_stats.bytes += total_bytes;
3761         tx_ring->tx_stats.packets += total_packets;
3762         adapter->net_stats.tx_bytes += total_bytes;
3763         adapter->net_stats.tx_packets += total_packets;
3764         return (count < tx_ring->count);
3765 }
3766
3767 #ifdef CONFIG_IGB_LRO
3768  /**
3769  * igb_get_skb_hdr - helper function for LRO header processing
3770  * @skb: pointer to sk_buff to be added to LRO packet
3771  * @iphdr: pointer to ip header structure
3772  * @tcph: pointer to tcp header structure
3773  * @hdr_flags: pointer to header flags
3774  * @priv: pointer to the receive descriptor for the current sk_buff
3775  **/
3776 static int igb_get_skb_hdr(struct sk_buff *skb, void **iphdr, void **tcph,
3777                            u64 *hdr_flags, void *priv)
3778 {
3779         union e1000_adv_rx_desc *rx_desc = priv;
3780         u16 pkt_type = rx_desc->wb.lower.lo_dword.pkt_info &
3781                        (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP);
3782
3783         /* Verify that this is a valid IPv4 TCP packet */
3784         if (pkt_type != (E1000_RXDADV_PKTTYPE_IPV4 |
3785                           E1000_RXDADV_PKTTYPE_TCP))
3786                 return -1;
3787
3788         /* Set network headers */
3789         skb_reset_network_header(skb);
3790         skb_set_transport_header(skb, ip_hdrlen(skb));
3791         *iphdr = ip_hdr(skb);
3792         *tcph = tcp_hdr(skb);
3793         *hdr_flags = LRO_IPV4 | LRO_TCP;
3794
3795         return 0;
3796
3797 }
3798 #endif /* CONFIG_IGB_LRO */
3799
3800 /**
3801  * igb_receive_skb - helper function to handle rx indications
3802  * @ring: pointer to receive ring receving this packet 
3803  * @status: descriptor status field as written by hardware
3804  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3805  * @skb: pointer to sk_buff to be indicated to stack
3806  **/
3807 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3808                             union e1000_adv_rx_desc * rx_desc,
3809                             struct sk_buff *skb)
3810 {
3811         struct igb_adapter * adapter = ring->adapter;
3812         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3813
3814 #ifdef CONFIG_IGB_LRO
3815         if (adapter->netdev->features & NETIF_F_LRO &&
3816             skb->ip_summed == CHECKSUM_UNNECESSARY) {
3817                 if (vlan_extracted)
3818                         lro_vlan_hwaccel_receive_skb(&ring->lro_mgr, skb,
3819                                            adapter->vlgrp,
3820                                            le16_to_cpu(rx_desc->wb.upper.vlan),
3821                                            rx_desc);
3822                 else
3823                         lro_receive_skb(&ring->lro_mgr,skb, rx_desc);
3824                 ring->lro_used = 1;
3825         } else {
3826 #endif
3827                 if (vlan_extracted)
3828                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3829                                           le16_to_cpu(rx_desc->wb.upper.vlan));
3830                 else
3831
3832                         netif_receive_skb(skb);
3833 #ifdef CONFIG_IGB_LRO
3834         }
3835 #endif
3836 }
3837
3838
3839 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3840                                        u32 status_err, struct sk_buff *skb)
3841 {
3842         skb->ip_summed = CHECKSUM_NONE;
3843
3844         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3845         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3846                 return;
3847         /* TCP/UDP checksum error bit is set */
3848         if (status_err &
3849             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3850                 /* let the stack verify checksum errors */
3851                 adapter->hw_csum_err++;
3852                 return;
3853         }
3854         /* It must be a TCP or UDP packet with a valid checksum */
3855         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3856                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3857
3858         adapter->hw_csum_good++;
3859 }
3860
3861 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3862                                  int *work_done, int budget)
3863 {
3864         struct igb_adapter *adapter = rx_ring->adapter;
3865         struct net_device *netdev = adapter->netdev;
3866         struct pci_dev *pdev = adapter->pdev;
3867         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3868         struct igb_buffer *buffer_info , *next_buffer;
3869         struct sk_buff *skb;
3870         unsigned int i;
3871         u32 length, hlen, staterr;
3872         bool cleaned = false;
3873         int cleaned_count = 0;
3874         unsigned int total_bytes = 0, total_packets = 0;
3875
3876         i = rx_ring->next_to_clean;
3877         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3878         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3879
3880         while (staterr & E1000_RXD_STAT_DD) {
3881                 if (*work_done >= budget)
3882                         break;
3883                 (*work_done)++;
3884                 buffer_info = &rx_ring->buffer_info[i];
3885
3886                 /* HW will not DMA in data larger than the given buffer, even
3887                  * if it parses the (NFS, of course) header to be larger.  In
3888                  * that case, it fills the header buffer and spills the rest
3889                  * into the page.
3890                  */
3891                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3892                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3893                 if (hlen > adapter->rx_ps_hdr_size)
3894                         hlen = adapter->rx_ps_hdr_size;
3895
3896                 length = le16_to_cpu(rx_desc->wb.upper.length);
3897                 cleaned = true;
3898                 cleaned_count++;
3899
3900                 skb = buffer_info->skb;
3901                 prefetch(skb->data - NET_IP_ALIGN);
3902                 buffer_info->skb = NULL;
3903                 if (!adapter->rx_ps_hdr_size) {
3904                         pci_unmap_single(pdev, buffer_info->dma,
3905                                          adapter->rx_buffer_len +
3906                                            NET_IP_ALIGN,
3907                                          PCI_DMA_FROMDEVICE);
3908                         skb_put(skb, length);
3909                         goto send_up;
3910                 }
3911
3912                 if (!skb_shinfo(skb)->nr_frags) {
3913                         pci_unmap_single(pdev, buffer_info->dma,
3914                                          adapter->rx_ps_hdr_size +
3915                                            NET_IP_ALIGN,
3916                                          PCI_DMA_FROMDEVICE);
3917                         skb_put(skb, hlen);
3918                 }
3919
3920                 if (length) {
3921                         pci_unmap_page(pdev, buffer_info->page_dma,
3922                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3923                         buffer_info->page_dma = 0;
3924
3925                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3926                                                 buffer_info->page,
3927                                                 buffer_info->page_offset,
3928                                                 length);
3929
3930                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3931                             (page_count(buffer_info->page) != 1))
3932                                 buffer_info->page = NULL;
3933                         else
3934                                 get_page(buffer_info->page);
3935
3936                         skb->len += length;
3937                         skb->data_len += length;
3938
3939                         skb->truesize += length;
3940                 }
3941 send_up:
3942                 i++;
3943                 if (i == rx_ring->count)
3944                         i = 0;
3945                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3946                 prefetch(next_rxd);
3947                 next_buffer = &rx_ring->buffer_info[i];
3948
3949                 if (!(staterr & E1000_RXD_STAT_EOP)) {
3950                         buffer_info->skb = next_buffer->skb;
3951                         buffer_info->dma = next_buffer->dma;
3952                         next_buffer->skb = skb;
3953                         next_buffer->dma = 0;
3954                         goto next_desc;
3955                 }
3956
3957                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3958                         dev_kfree_skb_irq(skb);
3959                         goto next_desc;
3960                 }
3961
3962                 total_bytes += skb->len;
3963                 total_packets++;
3964
3965                 igb_rx_checksum_adv(adapter, staterr, skb);
3966
3967                 skb->protocol = eth_type_trans(skb, netdev);
3968
3969                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3970
3971 next_desc:
3972                 rx_desc->wb.upper.status_error = 0;
3973
3974                 /* return some buffers to hardware, one at a time is too slow */
3975                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3976                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3977                         cleaned_count = 0;
3978                 }
3979
3980                 /* use prefetched values */
3981                 rx_desc = next_rxd;
3982                 buffer_info = next_buffer;
3983
3984                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3985         }
3986
3987         rx_ring->next_to_clean = i;
3988         cleaned_count = IGB_DESC_UNUSED(rx_ring);
3989
3990 #ifdef CONFIG_IGB_LRO
3991         if (rx_ring->lro_used) {
3992                 lro_flush_all(&rx_ring->lro_mgr);
3993                 rx_ring->lro_used = 0;
3994         }
3995 #endif
3996
3997         if (cleaned_count)
3998                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3999
4000         rx_ring->total_packets += total_packets;
4001         rx_ring->total_bytes += total_bytes;
4002         rx_ring->rx_stats.packets += total_packets;
4003         rx_ring->rx_stats.bytes += total_bytes;
4004         adapter->net_stats.rx_bytes += total_bytes;
4005         adapter->net_stats.rx_packets += total_packets;
4006         return cleaned;
4007 }
4008
4009
4010 /**
4011  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4012  * @adapter: address of board private structure
4013  **/
4014 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4015                                      int cleaned_count)
4016 {
4017         struct igb_adapter *adapter = rx_ring->adapter;
4018         struct net_device *netdev = adapter->netdev;
4019         struct pci_dev *pdev = adapter->pdev;
4020         union e1000_adv_rx_desc *rx_desc;
4021         struct igb_buffer *buffer_info;
4022         struct sk_buff *skb;
4023         unsigned int i;
4024
4025         i = rx_ring->next_to_use;
4026         buffer_info = &rx_ring->buffer_info[i];
4027
4028         while (cleaned_count--) {
4029                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4030
4031                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4032                         if (!buffer_info->page) {
4033                                 buffer_info->page = alloc_page(GFP_ATOMIC);
4034                                 if (!buffer_info->page) {
4035                                         adapter->alloc_rx_buff_failed++;
4036                                         goto no_buffers;
4037                                 }
4038                                 buffer_info->page_offset = 0;
4039                         } else {
4040                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
4041                         }
4042                         buffer_info->page_dma =
4043                                 pci_map_page(pdev,
4044                                              buffer_info->page,
4045                                              buffer_info->page_offset,
4046                                              PAGE_SIZE / 2,
4047                                              PCI_DMA_FROMDEVICE);
4048                 }
4049
4050                 if (!buffer_info->skb) {
4051                         int bufsz;
4052
4053                         if (adapter->rx_ps_hdr_size)
4054                                 bufsz = adapter->rx_ps_hdr_size;
4055                         else
4056                                 bufsz = adapter->rx_buffer_len;
4057                         bufsz += NET_IP_ALIGN;
4058                         skb = netdev_alloc_skb(netdev, bufsz);
4059
4060                         if (!skb) {
4061                                 adapter->alloc_rx_buff_failed++;
4062                                 goto no_buffers;
4063                         }
4064
4065                         /* Make buffer alignment 2 beyond a 16 byte boundary
4066                          * this will result in a 16 byte aligned IP header after
4067                          * the 14 byte MAC header is removed
4068                          */
4069                         skb_reserve(skb, NET_IP_ALIGN);
4070
4071                         buffer_info->skb = skb;
4072                         buffer_info->dma = pci_map_single(pdev, skb->data,
4073                                                           bufsz,
4074                                                           PCI_DMA_FROMDEVICE);
4075
4076                 }
4077                 /* Refresh the desc even if buffer_addrs didn't change because
4078                  * each write-back erases this info. */
4079                 if (adapter->rx_ps_hdr_size) {
4080                         rx_desc->read.pkt_addr =
4081                              cpu_to_le64(buffer_info->page_dma);
4082                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4083                 } else {
4084                         rx_desc->read.pkt_addr =
4085                              cpu_to_le64(buffer_info->dma);
4086                         rx_desc->read.hdr_addr = 0;
4087                 }
4088
4089                 i++;
4090                 if (i == rx_ring->count)
4091                         i = 0;
4092                 buffer_info = &rx_ring->buffer_info[i];
4093         }
4094
4095 no_buffers:
4096         if (rx_ring->next_to_use != i) {
4097                 rx_ring->next_to_use = i;
4098                 if (i == 0)
4099                         i = (rx_ring->count - 1);
4100                 else
4101                         i--;
4102
4103                 /* Force memory writes to complete before letting h/w
4104                  * know there are new descriptors to fetch.  (Only
4105                  * applicable for weak-ordered memory model archs,
4106                  * such as IA-64). */
4107                 wmb();
4108                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4109         }
4110 }
4111
4112 /**
4113  * igb_mii_ioctl -
4114  * @netdev:
4115  * @ifreq:
4116  * @cmd:
4117  **/
4118 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4119 {
4120         struct igb_adapter *adapter = netdev_priv(netdev);
4121         struct mii_ioctl_data *data = if_mii(ifr);
4122
4123         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4124                 return -EOPNOTSUPP;
4125
4126         switch (cmd) {
4127         case SIOCGMIIPHY:
4128                 data->phy_id = adapter->hw.phy.addr;
4129                 break;
4130         case SIOCGMIIREG:
4131                 if (!capable(CAP_NET_ADMIN))
4132                         return -EPERM;
4133                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4134                                      &data->val_out))
4135                         return -EIO;
4136                 break;
4137         case SIOCSMIIREG:
4138         default:
4139                 return -EOPNOTSUPP;
4140         }
4141         return 0;
4142 }
4143
4144 /**
4145  * igb_ioctl -
4146  * @netdev:
4147  * @ifreq:
4148  * @cmd:
4149  **/
4150 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4151 {
4152         switch (cmd) {
4153         case SIOCGMIIPHY:
4154         case SIOCGMIIREG:
4155         case SIOCSMIIREG:
4156                 return igb_mii_ioctl(netdev, ifr, cmd);
4157         default:
4158                 return -EOPNOTSUPP;
4159         }
4160 }
4161
4162 static void igb_vlan_rx_register(struct net_device *netdev,
4163                                  struct vlan_group *grp)
4164 {
4165         struct igb_adapter *adapter = netdev_priv(netdev);
4166         struct e1000_hw *hw = &adapter->hw;
4167         u32 ctrl, rctl;
4168
4169         igb_irq_disable(adapter);
4170         adapter->vlgrp = grp;
4171
4172         if (grp) {
4173                 /* enable VLAN tag insert/strip */
4174                 ctrl = rd32(E1000_CTRL);
4175                 ctrl |= E1000_CTRL_VME;
4176                 wr32(E1000_CTRL, ctrl);
4177
4178                 /* enable VLAN receive filtering */
4179                 rctl = rd32(E1000_RCTL);
4180                 rctl &= ~E1000_RCTL_CFIEN;
4181                 wr32(E1000_RCTL, rctl);
4182                 igb_update_mng_vlan(adapter);
4183                 wr32(E1000_RLPML,
4184                                 adapter->max_frame_size + VLAN_TAG_SIZE);
4185         } else {
4186                 /* disable VLAN tag insert/strip */
4187                 ctrl = rd32(E1000_CTRL);
4188                 ctrl &= ~E1000_CTRL_VME;
4189                 wr32(E1000_CTRL, ctrl);
4190
4191                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4192                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4193                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4194                 }
4195                 wr32(E1000_RLPML,
4196                                 adapter->max_frame_size);
4197         }
4198
4199         if (!test_bit(__IGB_DOWN, &adapter->state))
4200                 igb_irq_enable(adapter);
4201 }
4202
4203 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4204 {
4205         struct igb_adapter *adapter = netdev_priv(netdev);
4206         struct e1000_hw *hw = &adapter->hw;
4207         u32 vfta, index;
4208
4209         if ((adapter->hw.mng_cookie.status &
4210              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4211             (vid == adapter->mng_vlan_id))
4212                 return;
4213         /* add VID to filter table */
4214         index = (vid >> 5) & 0x7F;
4215         vfta = array_rd32(E1000_VFTA, index);
4216         vfta |= (1 << (vid & 0x1F));
4217         igb_write_vfta(&adapter->hw, index, vfta);
4218 }
4219
4220 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4221 {
4222         struct igb_adapter *adapter = netdev_priv(netdev);
4223         struct e1000_hw *hw = &adapter->hw;
4224         u32 vfta, index;
4225
4226         igb_irq_disable(adapter);
4227         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4228
4229         if (!test_bit(__IGB_DOWN, &adapter->state))
4230                 igb_irq_enable(adapter);
4231
4232         if ((adapter->hw.mng_cookie.status &
4233              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4234             (vid == adapter->mng_vlan_id)) {
4235                 /* release control to f/w */
4236                 igb_release_hw_control(adapter);
4237                 return;
4238         }
4239
4240         /* remove VID from filter table */
4241         index = (vid >> 5) & 0x7F;
4242         vfta = array_rd32(E1000_VFTA, index);
4243         vfta &= ~(1 << (vid & 0x1F));
4244         igb_write_vfta(&adapter->hw, index, vfta);
4245 }
4246
4247 static void igb_restore_vlan(struct igb_adapter *adapter)
4248 {
4249         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4250
4251         if (adapter->vlgrp) {
4252                 u16 vid;
4253                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4254                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4255                                 continue;
4256                         igb_vlan_rx_add_vid(adapter->netdev, vid);
4257                 }
4258         }
4259 }
4260
4261 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4262 {
4263         struct e1000_mac_info *mac = &adapter->hw.mac;
4264
4265         mac->autoneg = 0;
4266
4267         /* Fiber NICs only allow 1000 gbps Full duplex */
4268         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4269                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4270                 dev_err(&adapter->pdev->dev,
4271                         "Unsupported Speed/Duplex configuration\n");
4272                 return -EINVAL;
4273         }
4274
4275         switch (spddplx) {
4276         case SPEED_10 + DUPLEX_HALF:
4277                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4278                 break;
4279         case SPEED_10 + DUPLEX_FULL:
4280                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4281                 break;
4282         case SPEED_100 + DUPLEX_HALF:
4283                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4284                 break;
4285         case SPEED_100 + DUPLEX_FULL:
4286                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4287                 break;
4288         case SPEED_1000 + DUPLEX_FULL:
4289                 mac->autoneg = 1;
4290                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4291                 break;
4292         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4293         default:
4294                 dev_err(&adapter->pdev->dev,
4295                         "Unsupported Speed/Duplex configuration\n");
4296                 return -EINVAL;
4297         }
4298         return 0;
4299 }
4300
4301
4302 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4303 {
4304         struct net_device *netdev = pci_get_drvdata(pdev);
4305         struct igb_adapter *adapter = netdev_priv(netdev);
4306         struct e1000_hw *hw = &adapter->hw;
4307         u32 ctrl, rctl, status;
4308         u32 wufc = adapter->wol;
4309 #ifdef CONFIG_PM
4310         int retval = 0;
4311 #endif
4312
4313         netif_device_detach(netdev);
4314
4315         if (netif_running(netdev))
4316                 igb_close(netdev);
4317
4318         igb_reset_interrupt_capability(adapter);
4319
4320         igb_free_queues(adapter);
4321
4322 #ifdef CONFIG_PM
4323         retval = pci_save_state(pdev);
4324         if (retval)
4325                 return retval;
4326 #endif
4327
4328         status = rd32(E1000_STATUS);
4329         if (status & E1000_STATUS_LU)
4330                 wufc &= ~E1000_WUFC_LNKC;
4331
4332         if (wufc) {
4333                 igb_setup_rctl(adapter);
4334                 igb_set_multi(netdev);
4335
4336                 /* turn on all-multi mode if wake on multicast is enabled */
4337                 if (wufc & E1000_WUFC_MC) {
4338                         rctl = rd32(E1000_RCTL);
4339                         rctl |= E1000_RCTL_MPE;
4340                         wr32(E1000_RCTL, rctl);
4341                 }
4342
4343                 ctrl = rd32(E1000_CTRL);
4344                 /* advertise wake from D3Cold */
4345                 #define E1000_CTRL_ADVD3WUC 0x00100000
4346                 /* phy power management enable */
4347                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4348                 ctrl |= E1000_CTRL_ADVD3WUC;
4349                 wr32(E1000_CTRL, ctrl);
4350
4351                 /* Allow time for pending master requests to run */
4352                 igb_disable_pcie_master(&adapter->hw);
4353
4354                 wr32(E1000_WUC, E1000_WUC_PME_EN);
4355                 wr32(E1000_WUFC, wufc);
4356         } else {
4357                 wr32(E1000_WUC, 0);
4358                 wr32(E1000_WUFC, 0);
4359         }
4360
4361         /* make sure adapter isn't asleep if manageability/wol is enabled */
4362         if (wufc || adapter->en_mng_pt) {
4363                 pci_enable_wake(pdev, PCI_D3hot, 1);
4364                 pci_enable_wake(pdev, PCI_D3cold, 1);
4365         } else {
4366                 igb_shutdown_fiber_serdes_link_82575(hw);
4367                 pci_enable_wake(pdev, PCI_D3hot, 0);
4368                 pci_enable_wake(pdev, PCI_D3cold, 0);
4369         }
4370
4371         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4372          * would have already happened in close and is redundant. */
4373         igb_release_hw_control(adapter);
4374
4375         pci_disable_device(pdev);
4376
4377         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4378
4379         return 0;
4380 }
4381
4382 #ifdef CONFIG_PM
4383 static int igb_resume(struct pci_dev *pdev)
4384 {
4385         struct net_device *netdev = pci_get_drvdata(pdev);
4386         struct igb_adapter *adapter = netdev_priv(netdev);
4387         struct e1000_hw *hw = &adapter->hw;
4388         u32 err;
4389
4390         pci_set_power_state(pdev, PCI_D0);
4391         pci_restore_state(pdev);
4392
4393         if (adapter->need_ioport)
4394                 err = pci_enable_device(pdev);
4395         else
4396                 err = pci_enable_device_mem(pdev);
4397         if (err) {
4398                 dev_err(&pdev->dev,
4399                         "igb: Cannot enable PCI device from suspend\n");
4400                 return err;
4401         }
4402         pci_set_master(pdev);
4403
4404         pci_enable_wake(pdev, PCI_D3hot, 0);
4405         pci_enable_wake(pdev, PCI_D3cold, 0);
4406
4407         igb_set_interrupt_capability(adapter);
4408
4409         if (igb_alloc_queues(adapter)) {
4410                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4411                 return -ENOMEM;
4412         }
4413
4414         /* e1000_power_up_phy(adapter); */
4415
4416         igb_reset(adapter);
4417         wr32(E1000_WUS, ~0);
4418
4419         if (netif_running(netdev)) {
4420                 err = igb_open(netdev);
4421                 if (err)
4422                         return err;
4423         }
4424
4425         netif_device_attach(netdev);
4426
4427         /* let the f/w know that the h/w is now under the control of the
4428          * driver. */
4429         igb_get_hw_control(adapter);
4430
4431         return 0;
4432 }
4433 #endif
4434
4435 static void igb_shutdown(struct pci_dev *pdev)
4436 {
4437         igb_suspend(pdev, PMSG_SUSPEND);
4438 }
4439
4440 #ifdef CONFIG_NET_POLL_CONTROLLER
4441 /*
4442  * Polling 'interrupt' - used by things like netconsole to send skbs
4443  * without having to re-enable interrupts. It's not called while
4444  * the interrupt routine is executing.
4445  */
4446 static void igb_netpoll(struct net_device *netdev)
4447 {
4448         struct igb_adapter *adapter = netdev_priv(netdev);
4449         int i;
4450         int work_done = 0;
4451
4452         igb_irq_disable(adapter);
4453         adapter->flags |= IGB_FLAG_IN_NETPOLL;
4454
4455         for (i = 0; i < adapter->num_tx_queues; i++)
4456                 igb_clean_tx_irq(&adapter->tx_ring[i]);
4457
4458         for (i = 0; i < adapter->num_rx_queues; i++)
4459                 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4460                                      &work_done,
4461                                      adapter->rx_ring[i].napi.weight);
4462
4463         adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4464         igb_irq_enable(adapter);
4465 }
4466 #endif /* CONFIG_NET_POLL_CONTROLLER */
4467
4468 /**
4469  * igb_io_error_detected - called when PCI error is detected
4470  * @pdev: Pointer to PCI device
4471  * @state: The current pci connection state
4472  *
4473  * This function is called after a PCI bus error affecting
4474  * this device has been detected.
4475  */
4476 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4477                                               pci_channel_state_t state)
4478 {
4479         struct net_device *netdev = pci_get_drvdata(pdev);
4480         struct igb_adapter *adapter = netdev_priv(netdev);
4481
4482         netif_device_detach(netdev);
4483
4484         if (netif_running(netdev))
4485                 igb_down(adapter);
4486         pci_disable_device(pdev);
4487
4488         /* Request a slot slot reset. */
4489         return PCI_ERS_RESULT_NEED_RESET;
4490 }
4491
4492 /**
4493  * igb_io_slot_reset - called after the pci bus has been reset.
4494  * @pdev: Pointer to PCI device
4495  *
4496  * Restart the card from scratch, as if from a cold-boot. Implementation
4497  * resembles the first-half of the igb_resume routine.
4498  */
4499 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4500 {
4501         struct net_device *netdev = pci_get_drvdata(pdev);
4502         struct igb_adapter *adapter = netdev_priv(netdev);
4503         struct e1000_hw *hw = &adapter->hw;
4504         pci_ers_result_t result;
4505         int err;
4506
4507         if (adapter->need_ioport)
4508                 err = pci_enable_device(pdev);
4509         else
4510                 err = pci_enable_device_mem(pdev);
4511
4512         if (err) {
4513                 dev_err(&pdev->dev,
4514                         "Cannot re-enable PCI device after reset.\n");
4515                 result = PCI_ERS_RESULT_DISCONNECT;
4516         } else {
4517                 pci_set_master(pdev);
4518                 pci_restore_state(pdev);
4519
4520                 pci_enable_wake(pdev, PCI_D3hot, 0);
4521                 pci_enable_wake(pdev, PCI_D3cold, 0);
4522
4523                 igb_reset(adapter);
4524                 wr32(E1000_WUS, ~0);
4525                 result = PCI_ERS_RESULT_RECOVERED;
4526         }
4527
4528         err = pci_cleanup_aer_uncorrect_error_status(pdev);
4529         if (err) {
4530                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
4531                         "failed 0x%0x\n", err);
4532                 /* non-fatal, continue */
4533         }
4534
4535         return result;
4536 }
4537
4538 /**
4539  * igb_io_resume - called when traffic can start flowing again.
4540  * @pdev: Pointer to PCI device
4541  *
4542  * This callback is called when the error recovery driver tells us that
4543  * its OK to resume normal operation. Implementation resembles the
4544  * second-half of the igb_resume routine.
4545  */
4546 static void igb_io_resume(struct pci_dev *pdev)
4547 {
4548         struct net_device *netdev = pci_get_drvdata(pdev);
4549         struct igb_adapter *adapter = netdev_priv(netdev);
4550
4551         if (netif_running(netdev)) {
4552                 if (igb_up(adapter)) {
4553                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4554                         return;
4555                 }
4556         }
4557
4558         netif_device_attach(netdev);
4559
4560         /* let the f/w know that the h/w is now under the control of the
4561          * driver. */
4562         igb_get_hw_control(adapter);
4563 }
4564
4565 /* igb_main.c */