14363260612cd26ecfea75e7518a46f00bfd1e19
[safe/jmp/linux-2.6] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/interrupt.h>
43 #include <linux/if_ether.h>
44 #ifdef CONFIG_DCA
45 #include <linux/dca.h>
46 #endif
47 #include "igb.h"
48
49 #define DRV_VERSION "1.2.45-k2"
50 char igb_driver_name[] = "igb";
51 char igb_driver_version[] = DRV_VERSION;
52 static const char igb_driver_string[] =
53                                 "Intel(R) Gigabit Ethernet Network Driver";
54 static const char igb_copyright[] = "Copyright (c) 2007 Intel Corporation.";
55
56
57 static const struct e1000_info *igb_info_tbl[] = {
58         [board_82575] = &e1000_82575_info,
59 };
60
61 static struct pci_device_id igb_pci_tbl[] = {
62         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
63         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
65         /* required last entry */
66         {0, }
67 };
68
69 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
70
71 void igb_reset(struct igb_adapter *);
72 static int igb_setup_all_tx_resources(struct igb_adapter *);
73 static int igb_setup_all_rx_resources(struct igb_adapter *);
74 static void igb_free_all_tx_resources(struct igb_adapter *);
75 static void igb_free_all_rx_resources(struct igb_adapter *);
76 static void igb_free_tx_resources(struct igb_ring *);
77 static void igb_free_rx_resources(struct igb_ring *);
78 void igb_update_stats(struct igb_adapter *);
79 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
80 static void __devexit igb_remove(struct pci_dev *pdev);
81 static int igb_sw_init(struct igb_adapter *);
82 static int igb_open(struct net_device *);
83 static int igb_close(struct net_device *);
84 static void igb_configure_tx(struct igb_adapter *);
85 static void igb_configure_rx(struct igb_adapter *);
86 static void igb_setup_rctl(struct igb_adapter *);
87 static void igb_clean_all_tx_rings(struct igb_adapter *);
88 static void igb_clean_all_rx_rings(struct igb_adapter *);
89 static void igb_clean_tx_ring(struct igb_ring *);
90 static void igb_clean_rx_ring(struct igb_ring *);
91 static void igb_set_multi(struct net_device *);
92 static void igb_update_phy_info(unsigned long);
93 static void igb_watchdog(unsigned long);
94 static void igb_watchdog_task(struct work_struct *);
95 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
96                                   struct igb_ring *);
97 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
98 static struct net_device_stats *igb_get_stats(struct net_device *);
99 static int igb_change_mtu(struct net_device *, int);
100 static int igb_set_mac(struct net_device *, void *);
101 static irqreturn_t igb_intr(int irq, void *);
102 static irqreturn_t igb_intr_msi(int irq, void *);
103 static irqreturn_t igb_msix_other(int irq, void *);
104 static irqreturn_t igb_msix_rx(int irq, void *);
105 static irqreturn_t igb_msix_tx(int irq, void *);
106 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
107 #ifdef CONFIG_DCA
108 static void igb_update_rx_dca(struct igb_ring *);
109 static void igb_update_tx_dca(struct igb_ring *);
110 static void igb_setup_dca(struct igb_adapter *);
111 #endif /* CONFIG_DCA */
112 static bool igb_clean_tx_irq(struct igb_ring *);
113 static int igb_poll(struct napi_struct *, int);
114 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
115 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
116 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
117 static void igb_tx_timeout(struct net_device *);
118 static void igb_reset_task(struct work_struct *);
119 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
120 static void igb_vlan_rx_add_vid(struct net_device *, u16);
121 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
122 static void igb_restore_vlan(struct igb_adapter *);
123
124 static int igb_suspend(struct pci_dev *, pm_message_t);
125 #ifdef CONFIG_PM
126 static int igb_resume(struct pci_dev *);
127 #endif
128 static void igb_shutdown(struct pci_dev *);
129 #ifdef CONFIG_DCA
130 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
131 static struct notifier_block dca_notifier = {
132         .notifier_call  = igb_notify_dca,
133         .next           = NULL,
134         .priority       = 0
135 };
136 #endif
137
138 #ifdef CONFIG_NET_POLL_CONTROLLER
139 /* for netdump / net console */
140 static void igb_netpoll(struct net_device *);
141 #endif
142
143 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
144                      pci_channel_state_t);
145 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
146 static void igb_io_resume(struct pci_dev *);
147
148 static struct pci_error_handlers igb_err_handler = {
149         .error_detected = igb_io_error_detected,
150         .slot_reset = igb_io_slot_reset,
151         .resume = igb_io_resume,
152 };
153
154
155 static struct pci_driver igb_driver = {
156         .name     = igb_driver_name,
157         .id_table = igb_pci_tbl,
158         .probe    = igb_probe,
159         .remove   = __devexit_p(igb_remove),
160 #ifdef CONFIG_PM
161         /* Power Managment Hooks */
162         .suspend  = igb_suspend,
163         .resume   = igb_resume,
164 #endif
165         .shutdown = igb_shutdown,
166         .err_handler = &igb_err_handler
167 };
168
169 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
170 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
171 MODULE_LICENSE("GPL");
172 MODULE_VERSION(DRV_VERSION);
173
174 #ifdef DEBUG
175 /**
176  * igb_get_hw_dev_name - return device name string
177  * used by hardware layer to print debugging information
178  **/
179 char *igb_get_hw_dev_name(struct e1000_hw *hw)
180 {
181         struct igb_adapter *adapter = hw->back;
182         return adapter->netdev->name;
183 }
184 #endif
185
186 /**
187  * igb_init_module - Driver Registration Routine
188  *
189  * igb_init_module is the first routine called when the driver is
190  * loaded. All it does is register with the PCI subsystem.
191  **/
192 static int __init igb_init_module(void)
193 {
194         int ret;
195         printk(KERN_INFO "%s - version %s\n",
196                igb_driver_string, igb_driver_version);
197
198         printk(KERN_INFO "%s\n", igb_copyright);
199
200         ret = pci_register_driver(&igb_driver);
201 #ifdef CONFIG_DCA
202         dca_register_notify(&dca_notifier);
203 #endif
204         return ret;
205 }
206
207 module_init(igb_init_module);
208
209 /**
210  * igb_exit_module - Driver Exit Cleanup Routine
211  *
212  * igb_exit_module is called just before the driver is removed
213  * from memory.
214  **/
215 static void __exit igb_exit_module(void)
216 {
217 #ifdef CONFIG_DCA
218         dca_unregister_notify(&dca_notifier);
219 #endif
220         pci_unregister_driver(&igb_driver);
221 }
222
223 module_exit(igb_exit_module);
224
225 /**
226  * igb_alloc_queues - Allocate memory for all rings
227  * @adapter: board private structure to initialize
228  *
229  * We allocate one ring per queue at run-time since we don't know the
230  * number of queues at compile-time.
231  **/
232 static int igb_alloc_queues(struct igb_adapter *adapter)
233 {
234         int i;
235
236         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
237                                    sizeof(struct igb_ring), GFP_KERNEL);
238         if (!adapter->tx_ring)
239                 return -ENOMEM;
240
241         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
242                                    sizeof(struct igb_ring), GFP_KERNEL);
243         if (!adapter->rx_ring) {
244                 kfree(adapter->tx_ring);
245                 return -ENOMEM;
246         }
247
248         for (i = 0; i < adapter->num_tx_queues; i++) {
249                 struct igb_ring *ring = &(adapter->tx_ring[i]);
250                 ring->adapter = adapter;
251                 ring->queue_index = i;
252         }
253         for (i = 0; i < adapter->num_rx_queues; i++) {
254                 struct igb_ring *ring = &(adapter->rx_ring[i]);
255                 ring->adapter = adapter;
256                 ring->queue_index = i;
257                 ring->itr_register = E1000_ITR;
258
259                 /* set a default napi handler for each rx_ring */
260                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
261         }
262         return 0;
263 }
264
265 #define IGB_N0_QUEUE -1
266 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
267                               int tx_queue, int msix_vector)
268 {
269         u32 msixbm = 0;
270         struct e1000_hw *hw = &adapter->hw;
271                 /* The 82575 assigns vectors using a bitmask, which matches the
272                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
273                    or more queues to a vector, we write the appropriate bits
274                    into the MSIXBM register for that vector. */
275                 if (rx_queue > IGB_N0_QUEUE) {
276                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
277                         adapter->rx_ring[rx_queue].eims_value = msixbm;
278                 }
279                 if (tx_queue > IGB_N0_QUEUE) {
280                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
281                         adapter->tx_ring[tx_queue].eims_value =
282                                   E1000_EICR_TX_QUEUE0 << tx_queue;
283                 }
284                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
285 }
286
287 /**
288  * igb_configure_msix - Configure MSI-X hardware
289  *
290  * igb_configure_msix sets up the hardware to properly
291  * generate MSI-X interrupts.
292  **/
293 static void igb_configure_msix(struct igb_adapter *adapter)
294 {
295         u32 tmp;
296         int i, vector = 0;
297         struct e1000_hw *hw = &adapter->hw;
298
299         adapter->eims_enable_mask = 0;
300
301         for (i = 0; i < adapter->num_tx_queues; i++) {
302                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
303                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
304                 adapter->eims_enable_mask |= tx_ring->eims_value;
305                 if (tx_ring->itr_val)
306                         writel(1000000000 / (tx_ring->itr_val * 256),
307                                hw->hw_addr + tx_ring->itr_register);
308                 else
309                         writel(1, hw->hw_addr + tx_ring->itr_register);
310         }
311
312         for (i = 0; i < adapter->num_rx_queues; i++) {
313                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
314                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
315                 adapter->eims_enable_mask |= rx_ring->eims_value;
316                 if (rx_ring->itr_val)
317                         writel(1000000000 / (rx_ring->itr_val * 256),
318                                hw->hw_addr + rx_ring->itr_register);
319                 else
320                         writel(1, hw->hw_addr + rx_ring->itr_register);
321         }
322
323
324         /* set vector for other causes, i.e. link changes */
325                 array_wr32(E1000_MSIXBM(0), vector++,
326                                       E1000_EIMS_OTHER);
327
328                 tmp = rd32(E1000_CTRL_EXT);
329                 /* enable MSI-X PBA support*/
330                 tmp |= E1000_CTRL_EXT_PBA_CLR;
331
332                 /* Auto-Mask interrupts upon ICR read. */
333                 tmp |= E1000_CTRL_EXT_EIAME;
334                 tmp |= E1000_CTRL_EXT_IRCA;
335
336                 wr32(E1000_CTRL_EXT, tmp);
337                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
338                 adapter->eims_other = E1000_EIMS_OTHER;
339
340         wrfl();
341 }
342
343 /**
344  * igb_request_msix - Initialize MSI-X interrupts
345  *
346  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
347  * kernel.
348  **/
349 static int igb_request_msix(struct igb_adapter *adapter)
350 {
351         struct net_device *netdev = adapter->netdev;
352         int i, err = 0, vector = 0;
353
354         vector = 0;
355
356         for (i = 0; i < adapter->num_tx_queues; i++) {
357                 struct igb_ring *ring = &(adapter->tx_ring[i]);
358                 sprintf(ring->name, "%s-tx%d", netdev->name, i);
359                 err = request_irq(adapter->msix_entries[vector].vector,
360                                   &igb_msix_tx, 0, ring->name,
361                                   &(adapter->tx_ring[i]));
362                 if (err)
363                         goto out;
364                 ring->itr_register = E1000_EITR(0) + (vector << 2);
365                 ring->itr_val = adapter->itr;
366                 vector++;
367         }
368         for (i = 0; i < adapter->num_rx_queues; i++) {
369                 struct igb_ring *ring = &(adapter->rx_ring[i]);
370                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
371                         sprintf(ring->name, "%s-rx%d", netdev->name, i);
372                 else
373                         memcpy(ring->name, netdev->name, IFNAMSIZ);
374                 err = request_irq(adapter->msix_entries[vector].vector,
375                                   &igb_msix_rx, 0, ring->name,
376                                   &(adapter->rx_ring[i]));
377                 if (err)
378                         goto out;
379                 ring->itr_register = E1000_EITR(0) + (vector << 2);
380                 ring->itr_val = adapter->itr;
381                 /* overwrite the poll routine for MSIX, we've already done
382                  * netif_napi_add */
383                 ring->napi.poll = &igb_clean_rx_ring_msix;
384                 vector++;
385         }
386
387         err = request_irq(adapter->msix_entries[vector].vector,
388                           &igb_msix_other, 0, netdev->name, netdev);
389         if (err)
390                 goto out;
391
392         igb_configure_msix(adapter);
393         return 0;
394 out:
395         return err;
396 }
397
398 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
399 {
400         if (adapter->msix_entries) {
401                 pci_disable_msix(adapter->pdev);
402                 kfree(adapter->msix_entries);
403                 adapter->msix_entries = NULL;
404         } else if (adapter->msi_enabled)
405                 pci_disable_msi(adapter->pdev);
406         return;
407 }
408
409
410 /**
411  * igb_set_interrupt_capability - set MSI or MSI-X if supported
412  *
413  * Attempt to configure interrupts using the best available
414  * capabilities of the hardware and kernel.
415  **/
416 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
417 {
418         int err;
419         int numvecs, i;
420
421         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
422         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
423                                         GFP_KERNEL);
424         if (!adapter->msix_entries)
425                 goto msi_only;
426
427         for (i = 0; i < numvecs; i++)
428                 adapter->msix_entries[i].entry = i;
429
430         err = pci_enable_msix(adapter->pdev,
431                               adapter->msix_entries,
432                               numvecs);
433         if (err == 0)
434                 return;
435
436         igb_reset_interrupt_capability(adapter);
437
438         /* If we can't do MSI-X, try MSI */
439 msi_only:
440         adapter->num_rx_queues = 1;
441         adapter->num_tx_queues = 1;
442         if (!pci_enable_msi(adapter->pdev))
443                 adapter->msi_enabled = 1;
444
445 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
446         /* Notify the stack of the (possibly) reduced Tx Queue count. */
447         adapter->netdev->egress_subqueue_count = adapter->num_tx_queues;
448 #endif
449         return;
450 }
451
452 /**
453  * igb_request_irq - initialize interrupts
454  *
455  * Attempts to configure interrupts using the best available
456  * capabilities of the hardware and kernel.
457  **/
458 static int igb_request_irq(struct igb_adapter *adapter)
459 {
460         struct net_device *netdev = adapter->netdev;
461         struct e1000_hw *hw = &adapter->hw;
462         int err = 0;
463
464         if (adapter->msix_entries) {
465                 err = igb_request_msix(adapter);
466                 if (!err)
467                         goto request_done;
468                 /* fall back to MSI */
469                 igb_reset_interrupt_capability(adapter);
470                 if (!pci_enable_msi(adapter->pdev))
471                         adapter->msi_enabled = 1;
472                 igb_free_all_tx_resources(adapter);
473                 igb_free_all_rx_resources(adapter);
474                 adapter->num_rx_queues = 1;
475                 igb_alloc_queues(adapter);
476         } else {
477                 wr32(E1000_MSIXBM(0), (E1000_EICR_RX_QUEUE0 |
478                                        E1000_EIMS_OTHER));
479         }
480
481         if (adapter->msi_enabled) {
482                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
483                                   netdev->name, netdev);
484                 if (!err)
485                         goto request_done;
486                 /* fall back to legacy interrupts */
487                 igb_reset_interrupt_capability(adapter);
488                 adapter->msi_enabled = 0;
489         }
490
491         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
492                           netdev->name, netdev);
493
494         if (err)
495                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
496                         err);
497
498 request_done:
499         return err;
500 }
501
502 static void igb_free_irq(struct igb_adapter *adapter)
503 {
504         struct net_device *netdev = adapter->netdev;
505
506         if (adapter->msix_entries) {
507                 int vector = 0, i;
508
509                 for (i = 0; i < adapter->num_tx_queues; i++)
510                         free_irq(adapter->msix_entries[vector++].vector,
511                                 &(adapter->tx_ring[i]));
512                 for (i = 0; i < adapter->num_rx_queues; i++)
513                         free_irq(adapter->msix_entries[vector++].vector,
514                                 &(adapter->rx_ring[i]));
515
516                 free_irq(adapter->msix_entries[vector++].vector, netdev);
517                 return;
518         }
519
520         free_irq(adapter->pdev->irq, netdev);
521 }
522
523 /**
524  * igb_irq_disable - Mask off interrupt generation on the NIC
525  * @adapter: board private structure
526  **/
527 static void igb_irq_disable(struct igb_adapter *adapter)
528 {
529         struct e1000_hw *hw = &adapter->hw;
530
531         if (adapter->msix_entries) {
532                 wr32(E1000_EIAM, 0);
533                 wr32(E1000_EIMC, ~0);
534                 wr32(E1000_EIAC, 0);
535         }
536
537         wr32(E1000_IAM, 0);
538         wr32(E1000_IMC, ~0);
539         wrfl();
540         synchronize_irq(adapter->pdev->irq);
541 }
542
543 /**
544  * igb_irq_enable - Enable default interrupt generation settings
545  * @adapter: board private structure
546  **/
547 static void igb_irq_enable(struct igb_adapter *adapter)
548 {
549         struct e1000_hw *hw = &adapter->hw;
550
551         if (adapter->msix_entries) {
552                 wr32(E1000_EIAC, adapter->eims_enable_mask);
553                 wr32(E1000_EIAM, adapter->eims_enable_mask);
554                 wr32(E1000_EIMS, adapter->eims_enable_mask);
555                 wr32(E1000_IMS, E1000_IMS_LSC);
556         } else {
557                 wr32(E1000_IMS, IMS_ENABLE_MASK);
558                 wr32(E1000_IAM, IMS_ENABLE_MASK);
559         }
560 }
561
562 static void igb_update_mng_vlan(struct igb_adapter *adapter)
563 {
564         struct net_device *netdev = adapter->netdev;
565         u16 vid = adapter->hw.mng_cookie.vlan_id;
566         u16 old_vid = adapter->mng_vlan_id;
567         if (adapter->vlgrp) {
568                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
569                         if (adapter->hw.mng_cookie.status &
570                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
571                                 igb_vlan_rx_add_vid(netdev, vid);
572                                 adapter->mng_vlan_id = vid;
573                         } else
574                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
575
576                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
577                                         (vid != old_vid) &&
578                             !vlan_group_get_device(adapter->vlgrp, old_vid))
579                                 igb_vlan_rx_kill_vid(netdev, old_vid);
580                 } else
581                         adapter->mng_vlan_id = vid;
582         }
583 }
584
585 /**
586  * igb_release_hw_control - release control of the h/w to f/w
587  * @adapter: address of board private structure
588  *
589  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
590  * For ASF and Pass Through versions of f/w this means that the
591  * driver is no longer loaded.
592  *
593  **/
594 static void igb_release_hw_control(struct igb_adapter *adapter)
595 {
596         struct e1000_hw *hw = &adapter->hw;
597         u32 ctrl_ext;
598
599         /* Let firmware take over control of h/w */
600         ctrl_ext = rd32(E1000_CTRL_EXT);
601         wr32(E1000_CTRL_EXT,
602                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
603 }
604
605
606 /**
607  * igb_get_hw_control - get control of the h/w from f/w
608  * @adapter: address of board private structure
609  *
610  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
611  * For ASF and Pass Through versions of f/w this means that
612  * the driver is loaded.
613  *
614  **/
615 static void igb_get_hw_control(struct igb_adapter *adapter)
616 {
617         struct e1000_hw *hw = &adapter->hw;
618         u32 ctrl_ext;
619
620         /* Let firmware know the driver has taken over */
621         ctrl_ext = rd32(E1000_CTRL_EXT);
622         wr32(E1000_CTRL_EXT,
623                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
624 }
625
626 static void igb_init_manageability(struct igb_adapter *adapter)
627 {
628         struct e1000_hw *hw = &adapter->hw;
629
630         if (adapter->en_mng_pt) {
631                 u32 manc2h = rd32(E1000_MANC2H);
632                 u32 manc = rd32(E1000_MANC);
633
634                 /* enable receiving management packets to the host */
635                 /* this will probably generate destination unreachable messages
636                  * from the host OS, but the packets will be handled on SMBUS */
637                 manc |= E1000_MANC_EN_MNG2HOST;
638 #define E1000_MNG2HOST_PORT_623 (1 << 5)
639 #define E1000_MNG2HOST_PORT_664 (1 << 6)
640                 manc2h |= E1000_MNG2HOST_PORT_623;
641                 manc2h |= E1000_MNG2HOST_PORT_664;
642                 wr32(E1000_MANC2H, manc2h);
643
644                 wr32(E1000_MANC, manc);
645         }
646 }
647
648 /**
649  * igb_configure - configure the hardware for RX and TX
650  * @adapter: private board structure
651  **/
652 static void igb_configure(struct igb_adapter *adapter)
653 {
654         struct net_device *netdev = adapter->netdev;
655         int i;
656
657         igb_get_hw_control(adapter);
658         igb_set_multi(netdev);
659
660         igb_restore_vlan(adapter);
661         igb_init_manageability(adapter);
662
663         igb_configure_tx(adapter);
664         igb_setup_rctl(adapter);
665         igb_configure_rx(adapter);
666
667         igb_rx_fifo_flush_82575(&adapter->hw);
668
669         /* call IGB_DESC_UNUSED which always leaves
670          * at least 1 descriptor unused to make sure
671          * next_to_use != next_to_clean */
672         for (i = 0; i < adapter->num_rx_queues; i++) {
673                 struct igb_ring *ring = &adapter->rx_ring[i];
674                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
675         }
676
677
678         adapter->tx_queue_len = netdev->tx_queue_len;
679 }
680
681
682 /**
683  * igb_up - Open the interface and prepare it to handle traffic
684  * @adapter: board private structure
685  **/
686
687 int igb_up(struct igb_adapter *adapter)
688 {
689         struct e1000_hw *hw = &adapter->hw;
690         int i;
691
692         /* hardware has been reset, we need to reload some things */
693         igb_configure(adapter);
694
695         clear_bit(__IGB_DOWN, &adapter->state);
696
697         for (i = 0; i < adapter->num_rx_queues; i++)
698                 napi_enable(&adapter->rx_ring[i].napi);
699         if (adapter->msix_entries)
700                 igb_configure_msix(adapter);
701
702         /* Clear any pending interrupts. */
703         rd32(E1000_ICR);
704         igb_irq_enable(adapter);
705
706         /* Fire a link change interrupt to start the watchdog. */
707         wr32(E1000_ICS, E1000_ICS_LSC);
708         return 0;
709 }
710
711 void igb_down(struct igb_adapter *adapter)
712 {
713         struct e1000_hw *hw = &adapter->hw;
714         struct net_device *netdev = adapter->netdev;
715         u32 tctl, rctl;
716         int i;
717
718         /* signal that we're down so the interrupt handler does not
719          * reschedule our watchdog timer */
720         set_bit(__IGB_DOWN, &adapter->state);
721
722         /* disable receives in the hardware */
723         rctl = rd32(E1000_RCTL);
724         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
725         /* flush and sleep below */
726
727         netif_stop_queue(netdev);
728 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
729         for (i = 0; i < adapter->num_tx_queues; i++)
730                 netif_stop_subqueue(netdev, i);
731 #endif
732
733         /* disable transmits in the hardware */
734         tctl = rd32(E1000_TCTL);
735         tctl &= ~E1000_TCTL_EN;
736         wr32(E1000_TCTL, tctl);
737         /* flush both disables and wait for them to finish */
738         wrfl();
739         msleep(10);
740
741         for (i = 0; i < adapter->num_rx_queues; i++)
742                 napi_disable(&adapter->rx_ring[i].napi);
743
744         igb_irq_disable(adapter);
745
746         del_timer_sync(&adapter->watchdog_timer);
747         del_timer_sync(&adapter->phy_info_timer);
748
749         netdev->tx_queue_len = adapter->tx_queue_len;
750         netif_carrier_off(netdev);
751         adapter->link_speed = 0;
752         adapter->link_duplex = 0;
753
754         if (!pci_channel_offline(adapter->pdev))
755                 igb_reset(adapter);
756         igb_clean_all_tx_rings(adapter);
757         igb_clean_all_rx_rings(adapter);
758 }
759
760 void igb_reinit_locked(struct igb_adapter *adapter)
761 {
762         WARN_ON(in_interrupt());
763         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
764                 msleep(1);
765         igb_down(adapter);
766         igb_up(adapter);
767         clear_bit(__IGB_RESETTING, &adapter->state);
768 }
769
770 void igb_reset(struct igb_adapter *adapter)
771 {
772         struct e1000_hw *hw = &adapter->hw;
773         struct e1000_fc_info *fc = &adapter->hw.fc;
774         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
775         u16 hwm;
776
777         /* Repartition Pba for greater than 9k mtu
778          * To take effect CTRL.RST is required.
779          */
780         pba = E1000_PBA_34K;
781
782         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
783                 /* adjust PBA for jumbo frames */
784                 wr32(E1000_PBA, pba);
785
786                 /* To maintain wire speed transmits, the Tx FIFO should be
787                  * large enough to accommodate two full transmit packets,
788                  * rounded up to the next 1KB and expressed in KB.  Likewise,
789                  * the Rx FIFO should be large enough to accommodate at least
790                  * one full receive packet and is similarly rounded up and
791                  * expressed in KB. */
792                 pba = rd32(E1000_PBA);
793                 /* upper 16 bits has Tx packet buffer allocation size in KB */
794                 tx_space = pba >> 16;
795                 /* lower 16 bits has Rx packet buffer allocation size in KB */
796                 pba &= 0xffff;
797                 /* the tx fifo also stores 16 bytes of information about the tx
798                  * but don't include ethernet FCS because hardware appends it */
799                 min_tx_space = (adapter->max_frame_size +
800                                 sizeof(struct e1000_tx_desc) -
801                                 ETH_FCS_LEN) * 2;
802                 min_tx_space = ALIGN(min_tx_space, 1024);
803                 min_tx_space >>= 10;
804                 /* software strips receive CRC, so leave room for it */
805                 min_rx_space = adapter->max_frame_size;
806                 min_rx_space = ALIGN(min_rx_space, 1024);
807                 min_rx_space >>= 10;
808
809                 /* If current Tx allocation is less than the min Tx FIFO size,
810                  * and the min Tx FIFO size is less than the current Rx FIFO
811                  * allocation, take space away from current Rx allocation */
812                 if (tx_space < min_tx_space &&
813                     ((min_tx_space - tx_space) < pba)) {
814                         pba = pba - (min_tx_space - tx_space);
815
816                         /* if short on rx space, rx wins and must trump tx
817                          * adjustment */
818                         if (pba < min_rx_space)
819                                 pba = min_rx_space;
820                 }
821         }
822         wr32(E1000_PBA, pba);
823
824         /* flow control settings */
825         /* The high water mark must be low enough to fit one full frame
826          * (or the size used for early receive) above it in the Rx FIFO.
827          * Set it to the lower of:
828          * - 90% of the Rx FIFO size, or
829          * - the full Rx FIFO size minus one full frame */
830         hwm = min(((pba << 10) * 9 / 10),
831                   ((pba << 10) - adapter->max_frame_size));
832
833         fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
834         fc->low_water = fc->high_water - 8;
835         fc->pause_time = 0xFFFF;
836         fc->send_xon = 1;
837         fc->type = fc->original_type;
838
839         /* Allow time for pending master requests to run */
840         adapter->hw.mac.ops.reset_hw(&adapter->hw);
841         wr32(E1000_WUC, 0);
842
843         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
844                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
845
846         igb_update_mng_vlan(adapter);
847
848         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
849         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
850
851         igb_reset_adaptive(&adapter->hw);
852         if (adapter->hw.phy.ops.get_phy_info)
853                 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
854 }
855
856 /**
857  * igb_is_need_ioport - determine if an adapter needs ioport resources or not
858  * @pdev: PCI device information struct
859  *
860  * Returns true if an adapter needs ioport resources
861  **/
862 static int igb_is_need_ioport(struct pci_dev *pdev)
863 {
864         switch (pdev->device) {
865         /* Currently there are no adapters that need ioport resources */
866         default:
867                 return false;
868         }
869 }
870
871 /**
872  * igb_probe - Device Initialization Routine
873  * @pdev: PCI device information struct
874  * @ent: entry in igb_pci_tbl
875  *
876  * Returns 0 on success, negative on failure
877  *
878  * igb_probe initializes an adapter identified by a pci_dev structure.
879  * The OS initialization, configuring of the adapter private structure,
880  * and a hardware reset occur.
881  **/
882 static int __devinit igb_probe(struct pci_dev *pdev,
883                                const struct pci_device_id *ent)
884 {
885         struct net_device *netdev;
886         struct igb_adapter *adapter;
887         struct e1000_hw *hw;
888         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
889         unsigned long mmio_start, mmio_len;
890         int i, err, pci_using_dac;
891         u16 eeprom_data = 0;
892         u16 eeprom_apme_mask = IGB_EEPROM_APME;
893         u32 part_num;
894         int bars, need_ioport;
895
896         /* do not allocate ioport bars when not needed */
897         need_ioport = igb_is_need_ioport(pdev);
898         if (need_ioport) {
899                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
900                 err = pci_enable_device(pdev);
901         } else {
902                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
903                 err = pci_enable_device_mem(pdev);
904         }
905         if (err)
906                 return err;
907
908         pci_using_dac = 0;
909         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
910         if (!err) {
911                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
912                 if (!err)
913                         pci_using_dac = 1;
914         } else {
915                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
916                 if (err) {
917                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
918                         if (err) {
919                                 dev_err(&pdev->dev, "No usable DMA "
920                                         "configuration, aborting\n");
921                                 goto err_dma;
922                         }
923                 }
924         }
925
926         err = pci_request_selected_regions(pdev, bars, igb_driver_name);
927         if (err)
928                 goto err_pci_reg;
929
930         pci_set_master(pdev);
931         pci_save_state(pdev);
932
933         err = -ENOMEM;
934 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
935         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
936 #else
937         netdev = alloc_etherdev(sizeof(struct igb_adapter));
938 #endif /* CONFIG_NETDEVICES_MULTIQUEUE */
939         if (!netdev)
940                 goto err_alloc_etherdev;
941
942         SET_NETDEV_DEV(netdev, &pdev->dev);
943
944         pci_set_drvdata(pdev, netdev);
945         adapter = netdev_priv(netdev);
946         adapter->netdev = netdev;
947         adapter->pdev = pdev;
948         hw = &adapter->hw;
949         hw->back = adapter;
950         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
951         adapter->bars = bars;
952         adapter->need_ioport = need_ioport;
953
954         mmio_start = pci_resource_start(pdev, 0);
955         mmio_len = pci_resource_len(pdev, 0);
956
957         err = -EIO;
958         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
959         if (!adapter->hw.hw_addr)
960                 goto err_ioremap;
961
962         netdev->open = &igb_open;
963         netdev->stop = &igb_close;
964         netdev->get_stats = &igb_get_stats;
965         netdev->set_multicast_list = &igb_set_multi;
966         netdev->set_mac_address = &igb_set_mac;
967         netdev->change_mtu = &igb_change_mtu;
968         netdev->do_ioctl = &igb_ioctl;
969         igb_set_ethtool_ops(netdev);
970         netdev->tx_timeout = &igb_tx_timeout;
971         netdev->watchdog_timeo = 5 * HZ;
972         netdev->vlan_rx_register = igb_vlan_rx_register;
973         netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
974         netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
975 #ifdef CONFIG_NET_POLL_CONTROLLER
976         netdev->poll_controller = igb_netpoll;
977 #endif
978         netdev->hard_start_xmit = &igb_xmit_frame_adv;
979
980         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
981
982         netdev->mem_start = mmio_start;
983         netdev->mem_end = mmio_start + mmio_len;
984
985         /* PCI config space info */
986         hw->vendor_id = pdev->vendor;
987         hw->device_id = pdev->device;
988         hw->revision_id = pdev->revision;
989         hw->subsystem_vendor_id = pdev->subsystem_vendor;
990         hw->subsystem_device_id = pdev->subsystem_device;
991
992         /* setup the private structure */
993         hw->back = adapter;
994         /* Copy the default MAC, PHY and NVM function pointers */
995         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
996         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
997         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
998         /* Initialize skew-specific constants */
999         err = ei->get_invariants(hw);
1000         if (err)
1001                 goto err_hw_init;
1002
1003         err = igb_sw_init(adapter);
1004         if (err)
1005                 goto err_sw_init;
1006
1007         igb_get_bus_info_pcie(hw);
1008
1009         hw->phy.autoneg_wait_to_complete = false;
1010         hw->mac.adaptive_ifs = true;
1011
1012         /* Copper options */
1013         if (hw->phy.media_type == e1000_media_type_copper) {
1014                 hw->phy.mdix = AUTO_ALL_MODES;
1015                 hw->phy.disable_polarity_correction = false;
1016                 hw->phy.ms_type = e1000_ms_hw_default;
1017         }
1018
1019         if (igb_check_reset_block(hw))
1020                 dev_info(&pdev->dev,
1021                         "PHY reset is blocked due to SOL/IDER session.\n");
1022
1023         netdev->features = NETIF_F_SG |
1024                            NETIF_F_HW_CSUM |
1025                            NETIF_F_HW_VLAN_TX |
1026                            NETIF_F_HW_VLAN_RX |
1027                            NETIF_F_HW_VLAN_FILTER;
1028
1029         netdev->features |= NETIF_F_TSO;
1030         netdev->features |= NETIF_F_TSO6;
1031
1032         netdev->vlan_features |= NETIF_F_TSO;
1033         netdev->vlan_features |= NETIF_F_TSO6;
1034         netdev->vlan_features |= NETIF_F_HW_CSUM;
1035         netdev->vlan_features |= NETIF_F_SG;
1036
1037         if (pci_using_dac)
1038                 netdev->features |= NETIF_F_HIGHDMA;
1039
1040 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1041         netdev->features |= NETIF_F_MULTI_QUEUE;
1042 #endif
1043
1044         netdev->features |= NETIF_F_LLTX;
1045         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1046
1047         /* before reading the NVM, reset the controller to put the device in a
1048          * known good starting state */
1049         hw->mac.ops.reset_hw(hw);
1050
1051         /* make sure the NVM is good */
1052         if (igb_validate_nvm_checksum(hw) < 0) {
1053                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1054                 err = -EIO;
1055                 goto err_eeprom;
1056         }
1057
1058         /* copy the MAC address out of the NVM */
1059         if (hw->mac.ops.read_mac_addr(hw))
1060                 dev_err(&pdev->dev, "NVM Read Error\n");
1061
1062         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1063         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1064
1065         if (!is_valid_ether_addr(netdev->perm_addr)) {
1066                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1067                 err = -EIO;
1068                 goto err_eeprom;
1069         }
1070
1071         init_timer(&adapter->watchdog_timer);
1072         adapter->watchdog_timer.function = &igb_watchdog;
1073         adapter->watchdog_timer.data = (unsigned long) adapter;
1074
1075         init_timer(&adapter->phy_info_timer);
1076         adapter->phy_info_timer.function = &igb_update_phy_info;
1077         adapter->phy_info_timer.data = (unsigned long) adapter;
1078
1079         INIT_WORK(&adapter->reset_task, igb_reset_task);
1080         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1081
1082         /* Initialize link & ring properties that are user-changeable */
1083         adapter->tx_ring->count = 256;
1084         for (i = 0; i < adapter->num_tx_queues; i++)
1085                 adapter->tx_ring[i].count = adapter->tx_ring->count;
1086         adapter->rx_ring->count = 256;
1087         for (i = 0; i < adapter->num_rx_queues; i++)
1088                 adapter->rx_ring[i].count = adapter->rx_ring->count;
1089
1090         adapter->fc_autoneg = true;
1091         hw->mac.autoneg = true;
1092         hw->phy.autoneg_advertised = 0x2f;
1093
1094         hw->fc.original_type = e1000_fc_default;
1095         hw->fc.type = e1000_fc_default;
1096
1097         adapter->itr_setting = 3;
1098         adapter->itr = IGB_START_ITR;
1099
1100         igb_validate_mdi_setting(hw);
1101
1102         adapter->rx_csum = 1;
1103
1104         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1105          * enable the ACPI Magic Packet filter
1106          */
1107
1108         if (hw->bus.func == 0 ||
1109             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1110                 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1111                                      &eeprom_data);
1112
1113         if (eeprom_data & eeprom_apme_mask)
1114                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1115
1116         /* now that we have the eeprom settings, apply the special cases where
1117          * the eeprom may be wrong or the board simply won't support wake on
1118          * lan on a particular port */
1119         switch (pdev->device) {
1120         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1121                 adapter->eeprom_wol = 0;
1122                 break;
1123         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1124                 /* Wake events only supported on port A for dual fiber
1125                  * regardless of eeprom setting */
1126                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1127                         adapter->eeprom_wol = 0;
1128                 break;
1129         }
1130
1131         /* initialize the wol settings based on the eeprom settings */
1132         adapter->wol = adapter->eeprom_wol;
1133
1134         /* reset the hardware with the new settings */
1135         igb_reset(adapter);
1136
1137         /* let the f/w know that the h/w is now under the control of the
1138          * driver. */
1139         igb_get_hw_control(adapter);
1140
1141         /* tell the stack to leave us alone until igb_open() is called */
1142         netif_carrier_off(netdev);
1143         netif_stop_queue(netdev);
1144 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1145         for (i = 0; i < adapter->num_tx_queues; i++)
1146                 netif_stop_subqueue(netdev, i);
1147 #endif
1148
1149         strcpy(netdev->name, "eth%d");
1150         err = register_netdev(netdev);
1151         if (err)
1152                 goto err_register;
1153
1154 #ifdef CONFIG_DCA
1155         if (dca_add_requester(&pdev->dev) == 0) {
1156                 adapter->dca_enabled = true;
1157                 dev_info(&pdev->dev, "DCA enabled\n");
1158                 /* Always use CB2 mode, difference is masked
1159                  * in the CB driver. */
1160                 wr32(E1000_DCA_CTRL, 2);
1161                 igb_setup_dca(adapter);
1162         }
1163 #endif
1164
1165         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1166         /* print bus type/speed/width info */
1167         dev_info(&pdev->dev,
1168                  "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1169                  netdev->name,
1170                  ((hw->bus.speed == e1000_bus_speed_2500)
1171                   ? "2.5Gb/s" : "unknown"),
1172                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1173                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1174                   ? "Width x1" : "unknown"),
1175                  netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1176                  netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1177
1178         igb_read_part_num(hw, &part_num);
1179         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1180                 (part_num >> 8), (part_num & 0xff));
1181
1182         dev_info(&pdev->dev,
1183                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1184                 adapter->msix_entries ? "MSI-X" :
1185                 adapter->msi_enabled ? "MSI" : "legacy",
1186                 adapter->num_rx_queues, adapter->num_tx_queues);
1187
1188         return 0;
1189
1190 err_register:
1191         igb_release_hw_control(adapter);
1192 err_eeprom:
1193         if (!igb_check_reset_block(hw))
1194                 hw->phy.ops.reset_phy(hw);
1195
1196         if (hw->flash_address)
1197                 iounmap(hw->flash_address);
1198
1199         igb_remove_device(hw);
1200         kfree(adapter->tx_ring);
1201         kfree(adapter->rx_ring);
1202 err_sw_init:
1203 err_hw_init:
1204         iounmap(hw->hw_addr);
1205 err_ioremap:
1206         free_netdev(netdev);
1207 err_alloc_etherdev:
1208         pci_release_selected_regions(pdev, bars);
1209 err_pci_reg:
1210 err_dma:
1211         pci_disable_device(pdev);
1212         return err;
1213 }
1214
1215 /**
1216  * igb_remove - Device Removal Routine
1217  * @pdev: PCI device information struct
1218  *
1219  * igb_remove is called by the PCI subsystem to alert the driver
1220  * that it should release a PCI device.  The could be caused by a
1221  * Hot-Plug event, or because the driver is going to be removed from
1222  * memory.
1223  **/
1224 static void __devexit igb_remove(struct pci_dev *pdev)
1225 {
1226         struct net_device *netdev = pci_get_drvdata(pdev);
1227         struct igb_adapter *adapter = netdev_priv(netdev);
1228         struct e1000_hw *hw = &adapter->hw;
1229
1230         /* flush_scheduled work may reschedule our watchdog task, so
1231          * explicitly disable watchdog tasks from being rescheduled  */
1232         set_bit(__IGB_DOWN, &adapter->state);
1233         del_timer_sync(&adapter->watchdog_timer);
1234         del_timer_sync(&adapter->phy_info_timer);
1235
1236         flush_scheduled_work();
1237
1238 #ifdef CONFIG_DCA
1239         if (adapter->dca_enabled) {
1240                 dev_info(&pdev->dev, "DCA disabled\n");
1241                 dca_remove_requester(&pdev->dev);
1242                 adapter->dca_enabled = false;
1243                 wr32(E1000_DCA_CTRL, 1);
1244         }
1245 #endif
1246
1247         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1248          * would have already happened in close and is redundant. */
1249         igb_release_hw_control(adapter);
1250
1251         unregister_netdev(netdev);
1252
1253         if (!igb_check_reset_block(&adapter->hw))
1254                 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1255
1256         igb_remove_device(&adapter->hw);
1257         igb_reset_interrupt_capability(adapter);
1258
1259         kfree(adapter->tx_ring);
1260         kfree(adapter->rx_ring);
1261
1262         iounmap(adapter->hw.hw_addr);
1263         if (adapter->hw.flash_address)
1264                 iounmap(adapter->hw.flash_address);
1265         pci_release_selected_regions(pdev, adapter->bars);
1266
1267         free_netdev(netdev);
1268
1269         pci_disable_device(pdev);
1270 }
1271
1272 /**
1273  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1274  * @adapter: board private structure to initialize
1275  *
1276  * igb_sw_init initializes the Adapter private data structure.
1277  * Fields are initialized based on PCI device information and
1278  * OS network device settings (MTU size).
1279  **/
1280 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1281 {
1282         struct e1000_hw *hw = &adapter->hw;
1283         struct net_device *netdev = adapter->netdev;
1284         struct pci_dev *pdev = adapter->pdev;
1285
1286         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1287
1288         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1289         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1290         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1291         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1292
1293         /* Number of supported queues. */
1294         /* Having more queues than CPUs doesn't make sense. */
1295         adapter->num_rx_queues = min((u32)IGB_MAX_RX_QUEUES, (u32)num_online_cpus());
1296 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1297         adapter->num_tx_queues = min(IGB_MAX_TX_QUEUES, num_online_cpus());
1298 #else
1299         adapter->num_tx_queues = 1;
1300 #endif /* CONFIG_NET_MULTI_QUEUE_DEVICE */
1301
1302         /* This call may decrease the number of queues depending on
1303          * interrupt mode. */
1304         igb_set_interrupt_capability(adapter);
1305
1306         if (igb_alloc_queues(adapter)) {
1307                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1308                 return -ENOMEM;
1309         }
1310
1311         /* Explicitly disable IRQ since the NIC can be in any state. */
1312         igb_irq_disable(adapter);
1313
1314         set_bit(__IGB_DOWN, &adapter->state);
1315         return 0;
1316 }
1317
1318 /**
1319  * igb_open - Called when a network interface is made active
1320  * @netdev: network interface device structure
1321  *
1322  * Returns 0 on success, negative value on failure
1323  *
1324  * The open entry point is called when a network interface is made
1325  * active by the system (IFF_UP).  At this point all resources needed
1326  * for transmit and receive operations are allocated, the interrupt
1327  * handler is registered with the OS, the watchdog timer is started,
1328  * and the stack is notified that the interface is ready.
1329  **/
1330 static int igb_open(struct net_device *netdev)
1331 {
1332         struct igb_adapter *adapter = netdev_priv(netdev);
1333         struct e1000_hw *hw = &adapter->hw;
1334         int err;
1335         int i;
1336
1337         /* disallow open during test */
1338         if (test_bit(__IGB_TESTING, &adapter->state))
1339                 return -EBUSY;
1340
1341         /* allocate transmit descriptors */
1342         err = igb_setup_all_tx_resources(adapter);
1343         if (err)
1344                 goto err_setup_tx;
1345
1346         /* allocate receive descriptors */
1347         err = igb_setup_all_rx_resources(adapter);
1348         if (err)
1349                 goto err_setup_rx;
1350
1351         /* e1000_power_up_phy(adapter); */
1352
1353         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1354         if ((adapter->hw.mng_cookie.status &
1355              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1356                 igb_update_mng_vlan(adapter);
1357
1358         /* before we allocate an interrupt, we must be ready to handle it.
1359          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1360          * as soon as we call pci_request_irq, so we have to setup our
1361          * clean_rx handler before we do so.  */
1362         igb_configure(adapter);
1363
1364         err = igb_request_irq(adapter);
1365         if (err)
1366                 goto err_req_irq;
1367
1368         /* From here on the code is the same as igb_up() */
1369         clear_bit(__IGB_DOWN, &adapter->state);
1370
1371         for (i = 0; i < adapter->num_rx_queues; i++)
1372                 napi_enable(&adapter->rx_ring[i].napi);
1373
1374         /* Clear any pending interrupts. */
1375         rd32(E1000_ICR);
1376
1377         igb_irq_enable(adapter);
1378
1379         /* Fire a link status change interrupt to start the watchdog. */
1380         wr32(E1000_ICS, E1000_ICS_LSC);
1381
1382         return 0;
1383
1384 err_req_irq:
1385         igb_release_hw_control(adapter);
1386         /* e1000_power_down_phy(adapter); */
1387         igb_free_all_rx_resources(adapter);
1388 err_setup_rx:
1389         igb_free_all_tx_resources(adapter);
1390 err_setup_tx:
1391         igb_reset(adapter);
1392
1393         return err;
1394 }
1395
1396 /**
1397  * igb_close - Disables a network interface
1398  * @netdev: network interface device structure
1399  *
1400  * Returns 0, this is not allowed to fail
1401  *
1402  * The close entry point is called when an interface is de-activated
1403  * by the OS.  The hardware is still under the driver's control, but
1404  * needs to be disabled.  A global MAC reset is issued to stop the
1405  * hardware, and all transmit and receive resources are freed.
1406  **/
1407 static int igb_close(struct net_device *netdev)
1408 {
1409         struct igb_adapter *adapter = netdev_priv(netdev);
1410
1411         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1412         igb_down(adapter);
1413
1414         igb_free_irq(adapter);
1415
1416         igb_free_all_tx_resources(adapter);
1417         igb_free_all_rx_resources(adapter);
1418
1419         /* kill manageability vlan ID if supported, but not if a vlan with
1420          * the same ID is registered on the host OS (let 8021q kill it) */
1421         if ((adapter->hw.mng_cookie.status &
1422                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1423              !(adapter->vlgrp &&
1424                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1425                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1426
1427         return 0;
1428 }
1429
1430 /**
1431  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1432  * @adapter: board private structure
1433  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1434  *
1435  * Return 0 on success, negative on failure
1436  **/
1437
1438 int igb_setup_tx_resources(struct igb_adapter *adapter,
1439                            struct igb_ring *tx_ring)
1440 {
1441         struct pci_dev *pdev = adapter->pdev;
1442         int size;
1443
1444         size = sizeof(struct igb_buffer) * tx_ring->count;
1445         tx_ring->buffer_info = vmalloc(size);
1446         if (!tx_ring->buffer_info)
1447                 goto err;
1448         memset(tx_ring->buffer_info, 0, size);
1449
1450         /* round up to nearest 4K */
1451         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1452                         + sizeof(u32);
1453         tx_ring->size = ALIGN(tx_ring->size, 4096);
1454
1455         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1456                                              &tx_ring->dma);
1457
1458         if (!tx_ring->desc)
1459                 goto err;
1460
1461         tx_ring->adapter = adapter;
1462         tx_ring->next_to_use = 0;
1463         tx_ring->next_to_clean = 0;
1464         return 0;
1465
1466 err:
1467         vfree(tx_ring->buffer_info);
1468         dev_err(&adapter->pdev->dev,
1469                 "Unable to allocate memory for the transmit descriptor ring\n");
1470         return -ENOMEM;
1471 }
1472
1473 /**
1474  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1475  *                                (Descriptors) for all queues
1476  * @adapter: board private structure
1477  *
1478  * Return 0 on success, negative on failure
1479  **/
1480 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1481 {
1482         int i, err = 0;
1483 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1484         int r_idx;
1485 #endif  
1486
1487         for (i = 0; i < adapter->num_tx_queues; i++) {
1488                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1489                 if (err) {
1490                         dev_err(&adapter->pdev->dev,
1491                                 "Allocation for Tx Queue %u failed\n", i);
1492                         for (i--; i >= 0; i--)
1493                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1494                         break;
1495                 }
1496         }
1497
1498 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
1499         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1500                 r_idx = i % adapter->num_tx_queues;
1501                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1502         }       
1503 #endif          
1504         return err;
1505 }
1506
1507 /**
1508  * igb_configure_tx - Configure transmit Unit after Reset
1509  * @adapter: board private structure
1510  *
1511  * Configure the Tx unit of the MAC after a reset.
1512  **/
1513 static void igb_configure_tx(struct igb_adapter *adapter)
1514 {
1515         u64 tdba, tdwba;
1516         struct e1000_hw *hw = &adapter->hw;
1517         u32 tctl;
1518         u32 txdctl, txctrl;
1519         int i;
1520
1521         for (i = 0; i < adapter->num_tx_queues; i++) {
1522                 struct igb_ring *ring = &(adapter->tx_ring[i]);
1523
1524                 wr32(E1000_TDLEN(i),
1525                                 ring->count * sizeof(struct e1000_tx_desc));
1526                 tdba = ring->dma;
1527                 wr32(E1000_TDBAL(i),
1528                                 tdba & 0x00000000ffffffffULL);
1529                 wr32(E1000_TDBAH(i), tdba >> 32);
1530
1531                 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1532                 tdwba |= 1; /* enable head wb */
1533                 wr32(E1000_TDWBAL(i),
1534                                 tdwba & 0x00000000ffffffffULL);
1535                 wr32(E1000_TDWBAH(i), tdwba >> 32);
1536
1537                 ring->head = E1000_TDH(i);
1538                 ring->tail = E1000_TDT(i);
1539                 writel(0, hw->hw_addr + ring->tail);
1540                 writel(0, hw->hw_addr + ring->head);
1541                 txdctl = rd32(E1000_TXDCTL(i));
1542                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1543                 wr32(E1000_TXDCTL(i), txdctl);
1544
1545                 /* Turn off Relaxed Ordering on head write-backs.  The
1546                  * writebacks MUST be delivered in order or it will
1547                  * completely screw up our bookeeping.
1548                  */
1549                 txctrl = rd32(E1000_DCA_TXCTRL(i));
1550                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1551                 wr32(E1000_DCA_TXCTRL(i), txctrl);
1552         }
1553
1554
1555
1556         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1557
1558         /* Program the Transmit Control Register */
1559
1560         tctl = rd32(E1000_TCTL);
1561         tctl &= ~E1000_TCTL_CT;
1562         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1563                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1564
1565         igb_config_collision_dist(hw);
1566
1567         /* Setup Transmit Descriptor Settings for eop descriptor */
1568         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1569
1570         /* Enable transmits */
1571         tctl |= E1000_TCTL_EN;
1572
1573         wr32(E1000_TCTL, tctl);
1574 }
1575
1576 /**
1577  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1578  * @adapter: board private structure
1579  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1580  *
1581  * Returns 0 on success, negative on failure
1582  **/
1583
1584 int igb_setup_rx_resources(struct igb_adapter *adapter,
1585                            struct igb_ring *rx_ring)
1586 {
1587         struct pci_dev *pdev = adapter->pdev;
1588         int size, desc_len;
1589
1590         size = sizeof(struct igb_buffer) * rx_ring->count;
1591         rx_ring->buffer_info = vmalloc(size);
1592         if (!rx_ring->buffer_info)
1593                 goto err;
1594         memset(rx_ring->buffer_info, 0, size);
1595
1596         desc_len = sizeof(union e1000_adv_rx_desc);
1597
1598         /* Round up to nearest 4K */
1599         rx_ring->size = rx_ring->count * desc_len;
1600         rx_ring->size = ALIGN(rx_ring->size, 4096);
1601
1602         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1603                                              &rx_ring->dma);
1604
1605         if (!rx_ring->desc)
1606                 goto err;
1607
1608         rx_ring->next_to_clean = 0;
1609         rx_ring->next_to_use = 0;
1610         rx_ring->pending_skb = NULL;
1611
1612         rx_ring->adapter = adapter;
1613
1614         return 0;
1615
1616 err:
1617         vfree(rx_ring->buffer_info);
1618         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1619                 "the receive descriptor ring\n");
1620         return -ENOMEM;
1621 }
1622
1623 /**
1624  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1625  *                                (Descriptors) for all queues
1626  * @adapter: board private structure
1627  *
1628  * Return 0 on success, negative on failure
1629  **/
1630 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1631 {
1632         int i, err = 0;
1633
1634         for (i = 0; i < adapter->num_rx_queues; i++) {
1635                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1636                 if (err) {
1637                         dev_err(&adapter->pdev->dev,
1638                                 "Allocation for Rx Queue %u failed\n", i);
1639                         for (i--; i >= 0; i--)
1640                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1641                         break;
1642                 }
1643         }
1644
1645         return err;
1646 }
1647
1648 /**
1649  * igb_setup_rctl - configure the receive control registers
1650  * @adapter: Board private structure
1651  **/
1652 static void igb_setup_rctl(struct igb_adapter *adapter)
1653 {
1654         struct e1000_hw *hw = &adapter->hw;
1655         u32 rctl;
1656         u32 srrctl = 0;
1657         int i;
1658
1659         rctl = rd32(E1000_RCTL);
1660
1661         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1662
1663         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1664                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1665                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1666
1667         /*
1668          * enable stripping of CRC. It's unlikely this will break BMC
1669          * redirection as it did with e1000. Newer features require
1670          * that the HW strips the CRC.
1671         */
1672         rctl |= E1000_RCTL_SECRC;
1673
1674         rctl &= ~E1000_RCTL_SBP;
1675
1676         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1677                 rctl &= ~E1000_RCTL_LPE;
1678         else
1679                 rctl |= E1000_RCTL_LPE;
1680         if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1681                 /* Setup buffer sizes */
1682                 rctl &= ~E1000_RCTL_SZ_4096;
1683                 rctl |= E1000_RCTL_BSEX;
1684                 switch (adapter->rx_buffer_len) {
1685                 case IGB_RXBUFFER_256:
1686                         rctl |= E1000_RCTL_SZ_256;
1687                         rctl &= ~E1000_RCTL_BSEX;
1688                         break;
1689                 case IGB_RXBUFFER_512:
1690                         rctl |= E1000_RCTL_SZ_512;
1691                         rctl &= ~E1000_RCTL_BSEX;
1692                         break;
1693                 case IGB_RXBUFFER_1024:
1694                         rctl |= E1000_RCTL_SZ_1024;
1695                         rctl &= ~E1000_RCTL_BSEX;
1696                         break;
1697                 case IGB_RXBUFFER_2048:
1698                 default:
1699                         rctl |= E1000_RCTL_SZ_2048;
1700                         rctl &= ~E1000_RCTL_BSEX;
1701                         break;
1702                 case IGB_RXBUFFER_4096:
1703                         rctl |= E1000_RCTL_SZ_4096;
1704                         break;
1705                 case IGB_RXBUFFER_8192:
1706                         rctl |= E1000_RCTL_SZ_8192;
1707                         break;
1708                 case IGB_RXBUFFER_16384:
1709                         rctl |= E1000_RCTL_SZ_16384;
1710                         break;
1711                 }
1712         } else {
1713                 rctl &= ~E1000_RCTL_BSEX;
1714                 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1715         }
1716
1717         /* 82575 and greater support packet-split where the protocol
1718          * header is placed in skb->data and the packet data is
1719          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1720          * In the case of a non-split, skb->data is linearly filled,
1721          * followed by the page buffers.  Therefore, skb->data is
1722          * sized to hold the largest protocol header.
1723          */
1724         /* allocations using alloc_page take too long for regular MTU
1725          * so only enable packet split for jumbo frames */
1726         if (rctl & E1000_RCTL_LPE) {
1727                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1728                 srrctl = adapter->rx_ps_hdr_size <<
1729                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1730                 /* buffer size is ALWAYS one page */
1731                 srrctl |= PAGE_SIZE >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1732                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1733         } else {
1734                 adapter->rx_ps_hdr_size = 0;
1735                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1736         }
1737
1738         for (i = 0; i < adapter->num_rx_queues; i++)
1739                 wr32(E1000_SRRCTL(i), srrctl);
1740
1741         wr32(E1000_RCTL, rctl);
1742 }
1743
1744 /**
1745  * igb_configure_rx - Configure receive Unit after Reset
1746  * @adapter: board private structure
1747  *
1748  * Configure the Rx unit of the MAC after a reset.
1749  **/
1750 static void igb_configure_rx(struct igb_adapter *adapter)
1751 {
1752         u64 rdba;
1753         struct e1000_hw *hw = &adapter->hw;
1754         u32 rctl, rxcsum;
1755         u32 rxdctl;
1756         int i;
1757
1758         /* disable receives while setting up the descriptors */
1759         rctl = rd32(E1000_RCTL);
1760         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1761         wrfl();
1762         mdelay(10);
1763
1764         if (adapter->itr_setting > 3)
1765                 wr32(E1000_ITR,
1766                                 1000000000 / (adapter->itr * 256));
1767
1768         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1769          * the Base and Length of the Rx Descriptor Ring */
1770         for (i = 0; i < adapter->num_rx_queues; i++) {
1771                 struct igb_ring *ring = &(adapter->rx_ring[i]);
1772                 rdba = ring->dma;
1773                 wr32(E1000_RDBAL(i),
1774                                 rdba & 0x00000000ffffffffULL);
1775                 wr32(E1000_RDBAH(i), rdba >> 32);
1776                 wr32(E1000_RDLEN(i),
1777                                ring->count * sizeof(union e1000_adv_rx_desc));
1778
1779                 ring->head = E1000_RDH(i);
1780                 ring->tail = E1000_RDT(i);
1781                 writel(0, hw->hw_addr + ring->tail);
1782                 writel(0, hw->hw_addr + ring->head);
1783
1784                 rxdctl = rd32(E1000_RXDCTL(i));
1785                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1786                 rxdctl &= 0xFFF00000;
1787                 rxdctl |= IGB_RX_PTHRESH;
1788                 rxdctl |= IGB_RX_HTHRESH << 8;
1789                 rxdctl |= IGB_RX_WTHRESH << 16;
1790                 wr32(E1000_RXDCTL(i), rxdctl);
1791         }
1792
1793         if (adapter->num_rx_queues > 1) {
1794                 u32 random[10];
1795                 u32 mrqc;
1796                 u32 j, shift;
1797                 union e1000_reta {
1798                         u32 dword;
1799                         u8  bytes[4];
1800                 } reta;
1801
1802                 get_random_bytes(&random[0], 40);
1803
1804                 shift = 6;
1805                 for (j = 0; j < (32 * 4); j++) {
1806                         reta.bytes[j & 3] =
1807                                 (j % adapter->num_rx_queues) << shift;
1808                         if ((j & 3) == 3)
1809                                 writel(reta.dword,
1810                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
1811                 }
1812                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1813
1814                 /* Fill out hash function seeds */
1815                 for (j = 0; j < 10; j++)
1816                         array_wr32(E1000_RSSRK(0), j, random[j]);
1817
1818                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1819                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1820                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1821                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
1822                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1823                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
1824                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1825                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1826
1827
1828                 wr32(E1000_MRQC, mrqc);
1829
1830                 /* Multiqueue and raw packet checksumming are mutually
1831                  * exclusive.  Note that this not the same as TCP/IP
1832                  * checksumming, which works fine. */
1833                 rxcsum = rd32(E1000_RXCSUM);
1834                 rxcsum |= E1000_RXCSUM_PCSD;
1835                 wr32(E1000_RXCSUM, rxcsum);
1836         } else {
1837                 /* Enable Receive Checksum Offload for TCP and UDP */
1838                 rxcsum = rd32(E1000_RXCSUM);
1839                 if (adapter->rx_csum) {
1840                         rxcsum |= E1000_RXCSUM_TUOFL;
1841
1842                         /* Enable IPv4 payload checksum for UDP fragments
1843                          * Must be used in conjunction with packet-split. */
1844                         if (adapter->rx_ps_hdr_size)
1845                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1846                 } else {
1847                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1848                         /* don't need to clear IPPCSE as it defaults to 0 */
1849                 }
1850                 wr32(E1000_RXCSUM, rxcsum);
1851         }
1852
1853         if (adapter->vlgrp)
1854                 wr32(E1000_RLPML,
1855                                 adapter->max_frame_size + VLAN_TAG_SIZE);
1856         else
1857                 wr32(E1000_RLPML, adapter->max_frame_size);
1858
1859         /* Enable Receives */
1860         wr32(E1000_RCTL, rctl);
1861 }
1862
1863 /**
1864  * igb_free_tx_resources - Free Tx Resources per Queue
1865  * @adapter: board private structure
1866  * @tx_ring: Tx descriptor ring for a specific queue
1867  *
1868  * Free all transmit software resources
1869  **/
1870 static void igb_free_tx_resources(struct igb_ring *tx_ring)
1871 {
1872         struct pci_dev *pdev = tx_ring->adapter->pdev;
1873
1874         igb_clean_tx_ring(tx_ring);
1875
1876         vfree(tx_ring->buffer_info);
1877         tx_ring->buffer_info = NULL;
1878
1879         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1880
1881         tx_ring->desc = NULL;
1882 }
1883
1884 /**
1885  * igb_free_all_tx_resources - Free Tx Resources for All Queues
1886  * @adapter: board private structure
1887  *
1888  * Free all transmit software resources
1889  **/
1890 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1891 {
1892         int i;
1893
1894         for (i = 0; i < adapter->num_tx_queues; i++)
1895                 igb_free_tx_resources(&adapter->tx_ring[i]);
1896 }
1897
1898 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
1899                                            struct igb_buffer *buffer_info)
1900 {
1901         if (buffer_info->dma) {
1902                 pci_unmap_page(adapter->pdev,
1903                                 buffer_info->dma,
1904                                 buffer_info->length,
1905                                 PCI_DMA_TODEVICE);
1906                 buffer_info->dma = 0;
1907         }
1908         if (buffer_info->skb) {
1909                 dev_kfree_skb_any(buffer_info->skb);
1910                 buffer_info->skb = NULL;
1911         }
1912         buffer_info->time_stamp = 0;
1913         /* buffer_info must be completely set up in the transmit path */
1914 }
1915
1916 /**
1917  * igb_clean_tx_ring - Free Tx Buffers
1918  * @adapter: board private structure
1919  * @tx_ring: ring to be cleaned
1920  **/
1921 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
1922 {
1923         struct igb_adapter *adapter = tx_ring->adapter;
1924         struct igb_buffer *buffer_info;
1925         unsigned long size;
1926         unsigned int i;
1927
1928         if (!tx_ring->buffer_info)
1929                 return;
1930         /* Free all the Tx ring sk_buffs */
1931
1932         for (i = 0; i < tx_ring->count; i++) {
1933                 buffer_info = &tx_ring->buffer_info[i];
1934                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
1935         }
1936
1937         size = sizeof(struct igb_buffer) * tx_ring->count;
1938         memset(tx_ring->buffer_info, 0, size);
1939
1940         /* Zero out the descriptor ring */
1941
1942         memset(tx_ring->desc, 0, tx_ring->size);
1943
1944         tx_ring->next_to_use = 0;
1945         tx_ring->next_to_clean = 0;
1946
1947         writel(0, adapter->hw.hw_addr + tx_ring->head);
1948         writel(0, adapter->hw.hw_addr + tx_ring->tail);
1949 }
1950
1951 /**
1952  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1953  * @adapter: board private structure
1954  **/
1955 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
1956 {
1957         int i;
1958
1959         for (i = 0; i < adapter->num_tx_queues; i++)
1960                 igb_clean_tx_ring(&adapter->tx_ring[i]);
1961 }
1962
1963 /**
1964  * igb_free_rx_resources - Free Rx Resources
1965  * @adapter: board private structure
1966  * @rx_ring: ring to clean the resources from
1967  *
1968  * Free all receive software resources
1969  **/
1970 static void igb_free_rx_resources(struct igb_ring *rx_ring)
1971 {
1972         struct pci_dev *pdev = rx_ring->adapter->pdev;
1973
1974         igb_clean_rx_ring(rx_ring);
1975
1976         vfree(rx_ring->buffer_info);
1977         rx_ring->buffer_info = NULL;
1978
1979         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1980
1981         rx_ring->desc = NULL;
1982 }
1983
1984 /**
1985  * igb_free_all_rx_resources - Free Rx Resources for All Queues
1986  * @adapter: board private structure
1987  *
1988  * Free all receive software resources
1989  **/
1990 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
1991 {
1992         int i;
1993
1994         for (i = 0; i < adapter->num_rx_queues; i++)
1995                 igb_free_rx_resources(&adapter->rx_ring[i]);
1996 }
1997
1998 /**
1999  * igb_clean_rx_ring - Free Rx Buffers per Queue
2000  * @adapter: board private structure
2001  * @rx_ring: ring to free buffers from
2002  **/
2003 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2004 {
2005         struct igb_adapter *adapter = rx_ring->adapter;
2006         struct igb_buffer *buffer_info;
2007         struct pci_dev *pdev = adapter->pdev;
2008         unsigned long size;
2009         unsigned int i;
2010
2011         if (!rx_ring->buffer_info)
2012                 return;
2013         /* Free all the Rx ring sk_buffs */
2014         for (i = 0; i < rx_ring->count; i++) {
2015                 buffer_info = &rx_ring->buffer_info[i];
2016                 if (buffer_info->dma) {
2017                         if (adapter->rx_ps_hdr_size)
2018                                 pci_unmap_single(pdev, buffer_info->dma,
2019                                                  adapter->rx_ps_hdr_size,
2020                                                  PCI_DMA_FROMDEVICE);
2021                         else
2022                                 pci_unmap_single(pdev, buffer_info->dma,
2023                                                  adapter->rx_buffer_len,
2024                                                  PCI_DMA_FROMDEVICE);
2025                         buffer_info->dma = 0;
2026                 }
2027
2028                 if (buffer_info->skb) {
2029                         dev_kfree_skb(buffer_info->skb);
2030                         buffer_info->skb = NULL;
2031                 }
2032                 if (buffer_info->page) {
2033                         pci_unmap_page(pdev, buffer_info->page_dma,
2034                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2035                         put_page(buffer_info->page);
2036                         buffer_info->page = NULL;
2037                         buffer_info->page_dma = 0;
2038                 }
2039         }
2040
2041         /* there also may be some cached data from a chained receive */
2042         if (rx_ring->pending_skb) {
2043                 dev_kfree_skb(rx_ring->pending_skb);
2044                 rx_ring->pending_skb = NULL;
2045         }
2046
2047         size = sizeof(struct igb_buffer) * rx_ring->count;
2048         memset(rx_ring->buffer_info, 0, size);
2049
2050         /* Zero out the descriptor ring */
2051         memset(rx_ring->desc, 0, rx_ring->size);
2052
2053         rx_ring->next_to_clean = 0;
2054         rx_ring->next_to_use = 0;
2055
2056         writel(0, adapter->hw.hw_addr + rx_ring->head);
2057         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2058 }
2059
2060 /**
2061  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2062  * @adapter: board private structure
2063  **/
2064 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2065 {
2066         int i;
2067
2068         for (i = 0; i < adapter->num_rx_queues; i++)
2069                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2070 }
2071
2072 /**
2073  * igb_set_mac - Change the Ethernet Address of the NIC
2074  * @netdev: network interface device structure
2075  * @p: pointer to an address structure
2076  *
2077  * Returns 0 on success, negative on failure
2078  **/
2079 static int igb_set_mac(struct net_device *netdev, void *p)
2080 {
2081         struct igb_adapter *adapter = netdev_priv(netdev);
2082         struct sockaddr *addr = p;
2083
2084         if (!is_valid_ether_addr(addr->sa_data))
2085                 return -EADDRNOTAVAIL;
2086
2087         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2088         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2089
2090         adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2091
2092         return 0;
2093 }
2094
2095 /**
2096  * igb_set_multi - Multicast and Promiscuous mode set
2097  * @netdev: network interface device structure
2098  *
2099  * The set_multi entry point is called whenever the multicast address
2100  * list or the network interface flags are updated.  This routine is
2101  * responsible for configuring the hardware for proper multicast,
2102  * promiscuous mode, and all-multi behavior.
2103  **/
2104 static void igb_set_multi(struct net_device *netdev)
2105 {
2106         struct igb_adapter *adapter = netdev_priv(netdev);
2107         struct e1000_hw *hw = &adapter->hw;
2108         struct e1000_mac_info *mac = &hw->mac;
2109         struct dev_mc_list *mc_ptr;
2110         u8  *mta_list;
2111         u32 rctl;
2112         int i;
2113
2114         /* Check for Promiscuous and All Multicast modes */
2115
2116         rctl = rd32(E1000_RCTL);
2117
2118         if (netdev->flags & IFF_PROMISC)
2119                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2120         else if (netdev->flags & IFF_ALLMULTI) {
2121                 rctl |= E1000_RCTL_MPE;
2122                 rctl &= ~E1000_RCTL_UPE;
2123         } else
2124                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2125
2126         wr32(E1000_RCTL, rctl);
2127
2128         if (!netdev->mc_count) {
2129                 /* nothing to program, so clear mc list */
2130                 igb_update_mc_addr_list(hw, NULL, 0, 1,
2131                                           mac->rar_entry_count);
2132                 return;
2133         }
2134
2135         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2136         if (!mta_list)
2137                 return;
2138
2139         /* The shared function expects a packed array of only addresses. */
2140         mc_ptr = netdev->mc_list;
2141
2142         for (i = 0; i < netdev->mc_count; i++) {
2143                 if (!mc_ptr)
2144                         break;
2145                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2146                 mc_ptr = mc_ptr->next;
2147         }
2148         igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2149         kfree(mta_list);
2150 }
2151
2152 /* Need to wait a few seconds after link up to get diagnostic information from
2153  * the phy */
2154 static void igb_update_phy_info(unsigned long data)
2155 {
2156         struct igb_adapter *adapter = (struct igb_adapter *) data;
2157         if (adapter->hw.phy.ops.get_phy_info)
2158                 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2159 }
2160
2161 /**
2162  * igb_watchdog - Timer Call-back
2163  * @data: pointer to adapter cast into an unsigned long
2164  **/
2165 static void igb_watchdog(unsigned long data)
2166 {
2167         struct igb_adapter *adapter = (struct igb_adapter *)data;
2168         /* Do the rest outside of interrupt context */
2169         schedule_work(&adapter->watchdog_task);
2170 }
2171
2172 static void igb_watchdog_task(struct work_struct *work)
2173 {
2174         struct igb_adapter *adapter = container_of(work,
2175                                         struct igb_adapter, watchdog_task);
2176         struct e1000_hw *hw = &adapter->hw;
2177
2178         struct net_device *netdev = adapter->netdev;
2179         struct igb_ring *tx_ring = adapter->tx_ring;
2180         struct e1000_mac_info *mac = &adapter->hw.mac;
2181         u32 link;
2182         s32 ret_val;
2183 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2184         int i;
2185 #endif
2186
2187         if ((netif_carrier_ok(netdev)) &&
2188             (rd32(E1000_STATUS) & E1000_STATUS_LU))
2189                 goto link_up;
2190
2191         ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2192         if ((ret_val == E1000_ERR_PHY) &&
2193             (hw->phy.type == e1000_phy_igp_3) &&
2194             (rd32(E1000_CTRL) &
2195              E1000_PHY_CTRL_GBE_DISABLE))
2196                 dev_info(&adapter->pdev->dev,
2197                          "Gigabit has been disabled, downgrading speed\n");
2198
2199         if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2200             !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2201                 link = mac->serdes_has_link;
2202         else
2203                 link = rd32(E1000_STATUS) &
2204                                       E1000_STATUS_LU;
2205
2206         if (link) {
2207                 if (!netif_carrier_ok(netdev)) {
2208                         u32 ctrl;
2209                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2210                                                    &adapter->link_speed,
2211                                                    &adapter->link_duplex);
2212
2213                         ctrl = rd32(E1000_CTRL);
2214                         dev_info(&adapter->pdev->dev,
2215                                  "NIC Link is Up %d Mbps %s, "
2216                                  "Flow Control: %s\n",
2217                                  adapter->link_speed,
2218                                  adapter->link_duplex == FULL_DUPLEX ?
2219                                  "Full Duplex" : "Half Duplex",
2220                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2221                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2222                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2223                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2224
2225                         /* tweak tx_queue_len according to speed/duplex and
2226                          * adjust the timeout factor */
2227                         netdev->tx_queue_len = adapter->tx_queue_len;
2228                         adapter->tx_timeout_factor = 1;
2229                         switch (adapter->link_speed) {
2230                         case SPEED_10:
2231                                 netdev->tx_queue_len = 10;
2232                                 adapter->tx_timeout_factor = 14;
2233                                 break;
2234                         case SPEED_100:
2235                                 netdev->tx_queue_len = 100;
2236                                 /* maybe add some timeout factor ? */
2237                                 break;
2238                         }
2239
2240                         netif_carrier_on(netdev);
2241                         netif_wake_queue(netdev);
2242 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2243                         for (i = 0; i < adapter->num_tx_queues; i++)
2244                                 netif_wake_subqueue(netdev, i);
2245 #endif
2246
2247                         if (!test_bit(__IGB_DOWN, &adapter->state))
2248                                 mod_timer(&adapter->phy_info_timer,
2249                                           round_jiffies(jiffies + 2 * HZ));
2250                 }
2251         } else {
2252                 if (netif_carrier_ok(netdev)) {
2253                         adapter->link_speed = 0;
2254                         adapter->link_duplex = 0;
2255                         dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2256                         netif_carrier_off(netdev);
2257                         netif_stop_queue(netdev);
2258 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2259                         for (i = 0; i < adapter->num_tx_queues; i++)
2260                                 netif_stop_subqueue(netdev, i);
2261 #endif
2262                         if (!test_bit(__IGB_DOWN, &adapter->state))
2263                                 mod_timer(&adapter->phy_info_timer,
2264                                           round_jiffies(jiffies + 2 * HZ));
2265                 }
2266         }
2267
2268 link_up:
2269         igb_update_stats(adapter);
2270
2271         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2272         adapter->tpt_old = adapter->stats.tpt;
2273         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2274         adapter->colc_old = adapter->stats.colc;
2275
2276         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2277         adapter->gorc_old = adapter->stats.gorc;
2278         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2279         adapter->gotc_old = adapter->stats.gotc;
2280
2281         igb_update_adaptive(&adapter->hw);
2282
2283         if (!netif_carrier_ok(netdev)) {
2284                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2285                         /* We've lost link, so the controller stops DMA,
2286                          * but we've got queued Tx work that's never going
2287                          * to get done, so reset controller to flush Tx.
2288                          * (Do the reset outside of interrupt context). */
2289                         adapter->tx_timeout_count++;
2290                         schedule_work(&adapter->reset_task);
2291                 }
2292         }
2293
2294         /* Cause software interrupt to ensure rx ring is cleaned */
2295         wr32(E1000_ICS, E1000_ICS_RXDMT0);
2296
2297         /* Force detection of hung controller every watchdog period */
2298         tx_ring->detect_tx_hung = true;
2299
2300         /* Reset the timer */
2301         if (!test_bit(__IGB_DOWN, &adapter->state))
2302                 mod_timer(&adapter->watchdog_timer,
2303                           round_jiffies(jiffies + 2 * HZ));
2304 }
2305
2306 enum latency_range {
2307         lowest_latency = 0,
2308         low_latency = 1,
2309         bulk_latency = 2,
2310         latency_invalid = 255
2311 };
2312
2313
2314 static void igb_lower_rx_eitr(struct igb_adapter *adapter,
2315                               struct igb_ring *rx_ring)
2316 {
2317         struct e1000_hw *hw = &adapter->hw;
2318         int new_val;
2319
2320         new_val = rx_ring->itr_val / 2;
2321         if (new_val < IGB_MIN_DYN_ITR)
2322                 new_val = IGB_MIN_DYN_ITR;
2323
2324         if (new_val != rx_ring->itr_val) {
2325                 rx_ring->itr_val = new_val;
2326                 wr32(rx_ring->itr_register,
2327                                 1000000000 / (new_val * 256));
2328         }
2329 }
2330
2331 static void igb_raise_rx_eitr(struct igb_adapter *adapter,
2332                               struct igb_ring *rx_ring)
2333 {
2334         struct e1000_hw *hw = &adapter->hw;
2335         int new_val;
2336
2337         new_val = rx_ring->itr_val * 2;
2338         if (new_val > IGB_MAX_DYN_ITR)
2339                 new_val = IGB_MAX_DYN_ITR;
2340
2341         if (new_val != rx_ring->itr_val) {
2342                 rx_ring->itr_val = new_val;
2343                 wr32(rx_ring->itr_register,
2344                                 1000000000 / (new_val * 256));
2345         }
2346 }
2347
2348 /**
2349  * igb_update_itr - update the dynamic ITR value based on statistics
2350  *      Stores a new ITR value based on packets and byte
2351  *      counts during the last interrupt.  The advantage of per interrupt
2352  *      computation is faster updates and more accurate ITR for the current
2353  *      traffic pattern.  Constants in this function were computed
2354  *      based on theoretical maximum wire speed and thresholds were set based
2355  *      on testing data as well as attempting to minimize response time
2356  *      while increasing bulk throughput.
2357  *      this functionality is controlled by the InterruptThrottleRate module
2358  *      parameter (see igb_param.c)
2359  *      NOTE:  These calculations are only valid when operating in a single-
2360  *             queue environment.
2361  * @adapter: pointer to adapter
2362  * @itr_setting: current adapter->itr
2363  * @packets: the number of packets during this measurement interval
2364  * @bytes: the number of bytes during this measurement interval
2365  **/
2366 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2367                                    int packets, int bytes)
2368 {
2369         unsigned int retval = itr_setting;
2370
2371         if (packets == 0)
2372                 goto update_itr_done;
2373
2374         switch (itr_setting) {
2375         case lowest_latency:
2376                 /* handle TSO and jumbo frames */
2377                 if (bytes/packets > 8000)
2378                         retval = bulk_latency;
2379                 else if ((packets < 5) && (bytes > 512))
2380                         retval = low_latency;
2381                 break;
2382         case low_latency:  /* 50 usec aka 20000 ints/s */
2383                 if (bytes > 10000) {
2384                         /* this if handles the TSO accounting */
2385                         if (bytes/packets > 8000) {
2386                                 retval = bulk_latency;
2387                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2388                                 retval = bulk_latency;
2389                         } else if ((packets > 35)) {
2390                                 retval = lowest_latency;
2391                         }
2392                 } else if (bytes/packets > 2000) {
2393                         retval = bulk_latency;
2394                 } else if (packets <= 2 && bytes < 512) {
2395                         retval = lowest_latency;
2396                 }
2397                 break;
2398         case bulk_latency: /* 250 usec aka 4000 ints/s */
2399                 if (bytes > 25000) {
2400                         if (packets > 35)
2401                                 retval = low_latency;
2402                 } else if (bytes < 6000) {
2403                         retval = low_latency;
2404                 }
2405                 break;
2406         }
2407
2408 update_itr_done:
2409         return retval;
2410 }
2411
2412 static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register,
2413                         int rx_only)
2414 {
2415         u16 current_itr;
2416         u32 new_itr = adapter->itr;
2417
2418         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2419         if (adapter->link_speed != SPEED_1000) {
2420                 current_itr = 0;
2421                 new_itr = 4000;
2422                 goto set_itr_now;
2423         }
2424
2425         adapter->rx_itr = igb_update_itr(adapter,
2426                                     adapter->rx_itr,
2427                                     adapter->rx_ring->total_packets,
2428                                     adapter->rx_ring->total_bytes);
2429         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2430         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2431                 adapter->rx_itr = low_latency;
2432
2433         if (!rx_only) {
2434                 adapter->tx_itr = igb_update_itr(adapter,
2435                                             adapter->tx_itr,
2436                                             adapter->tx_ring->total_packets,
2437                                             adapter->tx_ring->total_bytes);
2438                 /* conservative mode (itr 3) eliminates the
2439                  * lowest_latency setting */
2440                 if (adapter->itr_setting == 3 &&
2441                     adapter->tx_itr == lowest_latency)
2442                         adapter->tx_itr = low_latency;
2443
2444                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2445         } else {
2446                 current_itr = adapter->rx_itr;
2447         }
2448
2449         switch (current_itr) {
2450         /* counts and packets in update_itr are dependent on these numbers */
2451         case lowest_latency:
2452                 new_itr = 70000;
2453                 break;
2454         case low_latency:
2455                 new_itr = 20000; /* aka hwitr = ~200 */
2456                 break;
2457         case bulk_latency:
2458                 new_itr = 4000;
2459                 break;
2460         default:
2461                 break;
2462         }
2463
2464 set_itr_now:
2465         if (new_itr != adapter->itr) {
2466                 /* this attempts to bias the interrupt rate towards Bulk
2467                  * by adding intermediate steps when interrupt rate is
2468                  * increasing */
2469                 new_itr = new_itr > adapter->itr ?
2470                              min(adapter->itr + (new_itr >> 2), new_itr) :
2471                              new_itr;
2472                 /* Don't write the value here; it resets the adapter's
2473                  * internal timer, and causes us to delay far longer than
2474                  * we should between interrupts.  Instead, we write the ITR
2475                  * value at the beginning of the next interrupt so the timing
2476                  * ends up being correct.
2477                  */
2478                 adapter->itr = new_itr;
2479                 adapter->set_itr = 1;
2480         }
2481
2482         return;
2483 }
2484
2485
2486 #define IGB_TX_FLAGS_CSUM               0x00000001
2487 #define IGB_TX_FLAGS_VLAN               0x00000002
2488 #define IGB_TX_FLAGS_TSO                0x00000004
2489 #define IGB_TX_FLAGS_IPV4               0x00000008
2490 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2491 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2492
2493 static inline int igb_tso_adv(struct igb_adapter *adapter,
2494                               struct igb_ring *tx_ring,
2495                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2496 {
2497         struct e1000_adv_tx_context_desc *context_desc;
2498         unsigned int i;
2499         int err;
2500         struct igb_buffer *buffer_info;
2501         u32 info = 0, tu_cmd = 0;
2502         u32 mss_l4len_idx, l4len;
2503         *hdr_len = 0;
2504
2505         if (skb_header_cloned(skb)) {
2506                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2507                 if (err)
2508                         return err;
2509         }
2510
2511         l4len = tcp_hdrlen(skb);
2512         *hdr_len += l4len;
2513
2514         if (skb->protocol == htons(ETH_P_IP)) {
2515                 struct iphdr *iph = ip_hdr(skb);
2516                 iph->tot_len = 0;
2517                 iph->check = 0;
2518                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2519                                                          iph->daddr, 0,
2520                                                          IPPROTO_TCP,
2521                                                          0);
2522         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2523                 ipv6_hdr(skb)->payload_len = 0;
2524                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2525                                                        &ipv6_hdr(skb)->daddr,
2526                                                        0, IPPROTO_TCP, 0);
2527         }
2528
2529         i = tx_ring->next_to_use;
2530
2531         buffer_info = &tx_ring->buffer_info[i];
2532         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2533         /* VLAN MACLEN IPLEN */
2534         if (tx_flags & IGB_TX_FLAGS_VLAN)
2535                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2536         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2537         *hdr_len += skb_network_offset(skb);
2538         info |= skb_network_header_len(skb);
2539         *hdr_len += skb_network_header_len(skb);
2540         context_desc->vlan_macip_lens = cpu_to_le32(info);
2541
2542         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2543         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2544
2545         if (skb->protocol == htons(ETH_P_IP))
2546                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2547         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2548
2549         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2550
2551         /* MSS L4LEN IDX */
2552         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2553         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2554
2555         /* Context index must be unique per ring.  Luckily, so is the interrupt
2556          * mask value. */
2557         mss_l4len_idx |= tx_ring->eims_value >> 4;
2558
2559         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2560         context_desc->seqnum_seed = 0;
2561
2562         buffer_info->time_stamp = jiffies;
2563         buffer_info->dma = 0;
2564         i++;
2565         if (i == tx_ring->count)
2566                 i = 0;
2567
2568         tx_ring->next_to_use = i;
2569
2570         return true;
2571 }
2572
2573 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2574                                         struct igb_ring *tx_ring,
2575                                         struct sk_buff *skb, u32 tx_flags)
2576 {
2577         struct e1000_adv_tx_context_desc *context_desc;
2578         unsigned int i;
2579         struct igb_buffer *buffer_info;
2580         u32 info = 0, tu_cmd = 0;
2581
2582         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2583             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2584                 i = tx_ring->next_to_use;
2585                 buffer_info = &tx_ring->buffer_info[i];
2586                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2587
2588                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2589                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2590                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2591                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2592                         info |= skb_network_header_len(skb);
2593
2594                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2595
2596                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2597
2598                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2599                         switch (skb->protocol) {
2600                         case __constant_htons(ETH_P_IP):
2601                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2602                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2603                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2604                                 break;
2605                         case __constant_htons(ETH_P_IPV6):
2606                                 /* XXX what about other V6 headers?? */
2607                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2608                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2609                                 break;
2610                         default:
2611                                 if (unlikely(net_ratelimit()))
2612                                         dev_warn(&adapter->pdev->dev,
2613                                             "partial checksum but proto=%x!\n",
2614                                             skb->protocol);
2615                                 break;
2616                         }
2617                 }
2618
2619                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2620                 context_desc->seqnum_seed = 0;
2621                 context_desc->mss_l4len_idx =
2622                                           cpu_to_le32(tx_ring->queue_index << 4);
2623
2624                 buffer_info->time_stamp = jiffies;
2625                 buffer_info->dma = 0;
2626
2627                 i++;
2628                 if (i == tx_ring->count)
2629                         i = 0;
2630                 tx_ring->next_to_use = i;
2631
2632                 return true;
2633         }
2634
2635
2636         return false;
2637 }
2638
2639 #define IGB_MAX_TXD_PWR 16
2640 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2641
2642 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2643                                  struct igb_ring *tx_ring,
2644                                  struct sk_buff *skb)
2645 {
2646         struct igb_buffer *buffer_info;
2647         unsigned int len = skb_headlen(skb);
2648         unsigned int count = 0, i;
2649         unsigned int f;
2650
2651         i = tx_ring->next_to_use;
2652
2653         buffer_info = &tx_ring->buffer_info[i];
2654         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2655         buffer_info->length = len;
2656         /* set time_stamp *before* dma to help avoid a possible race */
2657         buffer_info->time_stamp = jiffies;
2658         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2659                                           PCI_DMA_TODEVICE);
2660         count++;
2661         i++;
2662         if (i == tx_ring->count)
2663                 i = 0;
2664
2665         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2666                 struct skb_frag_struct *frag;
2667
2668                 frag = &skb_shinfo(skb)->frags[f];
2669                 len = frag->size;
2670
2671                 buffer_info = &tx_ring->buffer_info[i];
2672                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2673                 buffer_info->length = len;
2674                 buffer_info->time_stamp = jiffies;
2675                 buffer_info->dma = pci_map_page(adapter->pdev,
2676                                                 frag->page,
2677                                                 frag->page_offset,
2678                                                 len,
2679                                                 PCI_DMA_TODEVICE);
2680
2681                 count++;
2682                 i++;
2683                 if (i == tx_ring->count)
2684                         i = 0;
2685         }
2686
2687         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2688         tx_ring->buffer_info[i].skb = skb;
2689
2690         return count;
2691 }
2692
2693 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2694                                     struct igb_ring *tx_ring,
2695                                     int tx_flags, int count, u32 paylen,
2696                                     u8 hdr_len)
2697 {
2698         union e1000_adv_tx_desc *tx_desc = NULL;
2699         struct igb_buffer *buffer_info;
2700         u32 olinfo_status = 0, cmd_type_len;
2701         unsigned int i;
2702
2703         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2704                         E1000_ADVTXD_DCMD_DEXT);
2705
2706         if (tx_flags & IGB_TX_FLAGS_VLAN)
2707                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2708
2709         if (tx_flags & IGB_TX_FLAGS_TSO) {
2710                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2711
2712                 /* insert tcp checksum */
2713                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2714
2715                 /* insert ip checksum */
2716                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2717                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2718
2719         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2720                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2721         }
2722
2723         if (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2724                         IGB_TX_FLAGS_VLAN))
2725                 olinfo_status |= tx_ring->queue_index << 4;
2726
2727         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2728
2729         i = tx_ring->next_to_use;
2730         while (count--) {
2731                 buffer_info = &tx_ring->buffer_info[i];
2732                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2733                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2734                 tx_desc->read.cmd_type_len =
2735                         cpu_to_le32(cmd_type_len | buffer_info->length);
2736                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2737                 i++;
2738                 if (i == tx_ring->count)
2739                         i = 0;
2740         }
2741
2742         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2743         /* Force memory writes to complete before letting h/w
2744          * know there are new descriptors to fetch.  (Only
2745          * applicable for weak-ordered memory model archs,
2746          * such as IA-64). */
2747         wmb();
2748
2749         tx_ring->next_to_use = i;
2750         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2751         /* we need this if more than one processor can write to our tail
2752          * at a time, it syncronizes IO on IA64/Altix systems */
2753         mmiowb();
2754 }
2755
2756 static int __igb_maybe_stop_tx(struct net_device *netdev,
2757                                struct igb_ring *tx_ring, int size)
2758 {
2759         struct igb_adapter *adapter = netdev_priv(netdev);
2760
2761 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2762         netif_stop_subqueue(netdev, tx_ring->queue_index);
2763 #else
2764         netif_stop_queue(netdev);
2765 #endif
2766
2767         /* Herbert's original patch had:
2768          *  smp_mb__after_netif_stop_queue();
2769          * but since that doesn't exist yet, just open code it. */
2770         smp_mb();
2771
2772         /* We need to check again in a case another CPU has just
2773          * made room available. */
2774         if (IGB_DESC_UNUSED(tx_ring) < size)
2775                 return -EBUSY;
2776
2777         /* A reprieve! */
2778 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2779         netif_wake_subqueue(netdev, tx_ring->queue_index);
2780 #else
2781         netif_wake_queue(netdev);
2782 #endif  
2783         ++adapter->restart_queue;
2784         return 0;
2785 }
2786
2787 static int igb_maybe_stop_tx(struct net_device *netdev,
2788                              struct igb_ring *tx_ring, int size)
2789 {
2790         if (IGB_DESC_UNUSED(tx_ring) >= size)
2791                 return 0;
2792         return __igb_maybe_stop_tx(netdev, tx_ring, size);
2793 }
2794
2795 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2796
2797 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2798                                    struct net_device *netdev,
2799                                    struct igb_ring *tx_ring)
2800 {
2801         struct igb_adapter *adapter = netdev_priv(netdev);
2802         unsigned int tx_flags = 0;
2803         unsigned int len;
2804         u8 hdr_len = 0;
2805         int tso = 0;
2806
2807         len = skb_headlen(skb);
2808
2809         if (test_bit(__IGB_DOWN, &adapter->state)) {
2810                 dev_kfree_skb_any(skb);
2811                 return NETDEV_TX_OK;
2812         }
2813
2814         if (skb->len <= 0) {
2815                 dev_kfree_skb_any(skb);
2816                 return NETDEV_TX_OK;
2817         }
2818
2819         /* need: 1 descriptor per page,
2820          *       + 2 desc gap to keep tail from touching head,
2821          *       + 1 desc for skb->data,
2822          *       + 1 desc for context descriptor,
2823          * otherwise try next time */
2824         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2825                 /* this is a hard error */
2826                 return NETDEV_TX_BUSY;
2827         }
2828
2829         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2830                 tx_flags |= IGB_TX_FLAGS_VLAN;
2831                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2832         }
2833
2834         if (skb->protocol == htons(ETH_P_IP))
2835                 tx_flags |= IGB_TX_FLAGS_IPV4;
2836
2837         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2838                                               &hdr_len) : 0;
2839
2840         if (tso < 0) {
2841                 dev_kfree_skb_any(skb);
2842                 return NETDEV_TX_OK;
2843         }
2844
2845         if (tso)
2846                 tx_flags |= IGB_TX_FLAGS_TSO;
2847         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2848                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2849                                 tx_flags |= IGB_TX_FLAGS_CSUM;
2850
2851         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2852                          igb_tx_map_adv(adapter, tx_ring, skb),
2853                          skb->len, hdr_len);
2854
2855         netdev->trans_start = jiffies;
2856
2857         /* Make sure there is space in the ring for the next send. */
2858         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2859
2860         return NETDEV_TX_OK;
2861 }
2862
2863 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
2864 {
2865         struct igb_adapter *adapter = netdev_priv(netdev);
2866         struct igb_ring *tx_ring;
2867
2868 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
2869         int r_idx = 0;
2870         r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
2871         tx_ring = adapter->multi_tx_table[r_idx];
2872 #else
2873         tx_ring = &adapter->tx_ring[0];
2874 #endif
2875
2876
2877         /* This goes back to the question of how to logically map a tx queue
2878          * to a flow.  Right now, performance is impacted slightly negatively
2879          * if using multiple tx queues.  If the stack breaks away from a
2880          * single qdisc implementation, we can look at this again. */
2881         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
2882 }
2883
2884 /**
2885  * igb_tx_timeout - Respond to a Tx Hang
2886  * @netdev: network interface device structure
2887  **/
2888 static void igb_tx_timeout(struct net_device *netdev)
2889 {
2890         struct igb_adapter *adapter = netdev_priv(netdev);
2891         struct e1000_hw *hw = &adapter->hw;
2892
2893         /* Do the reset outside of interrupt context */
2894         adapter->tx_timeout_count++;
2895         schedule_work(&adapter->reset_task);
2896         wr32(E1000_EICS, adapter->eims_enable_mask &
2897                 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
2898 }
2899
2900 static void igb_reset_task(struct work_struct *work)
2901 {
2902         struct igb_adapter *adapter;
2903         adapter = container_of(work, struct igb_adapter, reset_task);
2904
2905         igb_reinit_locked(adapter);
2906 }
2907
2908 /**
2909  * igb_get_stats - Get System Network Statistics
2910  * @netdev: network interface device structure
2911  *
2912  * Returns the address of the device statistics structure.
2913  * The statistics are actually updated from the timer callback.
2914  **/
2915 static struct net_device_stats *
2916 igb_get_stats(struct net_device *netdev)
2917 {
2918         struct igb_adapter *adapter = netdev_priv(netdev);
2919
2920         /* only return the current stats */
2921         return &adapter->net_stats;
2922 }
2923
2924 /**
2925  * igb_change_mtu - Change the Maximum Transfer Unit
2926  * @netdev: network interface device structure
2927  * @new_mtu: new value for maximum frame size
2928  *
2929  * Returns 0 on success, negative on failure
2930  **/
2931 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
2932 {
2933         struct igb_adapter *adapter = netdev_priv(netdev);
2934         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2935
2936         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2937             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2938                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2939                 return -EINVAL;
2940         }
2941
2942 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2943         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2944                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2945                 return -EINVAL;
2946         }
2947
2948         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2949                 msleep(1);
2950         /* igb_down has a dependency on max_frame_size */
2951         adapter->max_frame_size = max_frame;
2952         if (netif_running(netdev))
2953                 igb_down(adapter);
2954
2955         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2956          * means we reserve 2 more, this pushes us to allocate from the next
2957          * larger slab size.
2958          * i.e. RXBUFFER_2048 --> size-4096 slab
2959          */
2960
2961         if (max_frame <= IGB_RXBUFFER_256)
2962                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
2963         else if (max_frame <= IGB_RXBUFFER_512)
2964                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
2965         else if (max_frame <= IGB_RXBUFFER_1024)
2966                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
2967         else if (max_frame <= IGB_RXBUFFER_2048)
2968                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
2969         else
2970                 adapter->rx_buffer_len = IGB_RXBUFFER_4096;
2971         /* adjust allocation if LPE protects us, and we aren't using SBP */
2972         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2973              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
2974                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
2975
2976         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2977                  netdev->mtu, new_mtu);
2978         netdev->mtu = new_mtu;
2979
2980         if (netif_running(netdev))
2981                 igb_up(adapter);
2982         else
2983                 igb_reset(adapter);
2984
2985         clear_bit(__IGB_RESETTING, &adapter->state);
2986
2987         return 0;
2988 }
2989
2990 /**
2991  * igb_update_stats - Update the board statistics counters
2992  * @adapter: board private structure
2993  **/
2994
2995 void igb_update_stats(struct igb_adapter *adapter)
2996 {
2997         struct e1000_hw *hw = &adapter->hw;
2998         struct pci_dev *pdev = adapter->pdev;
2999         u16 phy_tmp;
3000
3001 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3002
3003         /*
3004          * Prevent stats update while adapter is being reset, or if the pci
3005          * connection is down.
3006          */
3007         if (adapter->link_speed == 0)
3008                 return;
3009         if (pci_channel_offline(pdev))
3010                 return;
3011
3012         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3013         adapter->stats.gprc += rd32(E1000_GPRC);
3014         adapter->stats.gorc += rd32(E1000_GORCL);
3015         rd32(E1000_GORCH); /* clear GORCL */
3016         adapter->stats.bprc += rd32(E1000_BPRC);
3017         adapter->stats.mprc += rd32(E1000_MPRC);
3018         adapter->stats.roc += rd32(E1000_ROC);
3019
3020         adapter->stats.prc64 += rd32(E1000_PRC64);
3021         adapter->stats.prc127 += rd32(E1000_PRC127);
3022         adapter->stats.prc255 += rd32(E1000_PRC255);
3023         adapter->stats.prc511 += rd32(E1000_PRC511);
3024         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3025         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3026         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3027         adapter->stats.sec += rd32(E1000_SEC);
3028
3029         adapter->stats.mpc += rd32(E1000_MPC);
3030         adapter->stats.scc += rd32(E1000_SCC);
3031         adapter->stats.ecol += rd32(E1000_ECOL);
3032         adapter->stats.mcc += rd32(E1000_MCC);
3033         adapter->stats.latecol += rd32(E1000_LATECOL);
3034         adapter->stats.dc += rd32(E1000_DC);
3035         adapter->stats.rlec += rd32(E1000_RLEC);
3036         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3037         adapter->stats.xontxc += rd32(E1000_XONTXC);
3038         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3039         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3040         adapter->stats.fcruc += rd32(E1000_FCRUC);
3041         adapter->stats.gptc += rd32(E1000_GPTC);
3042         adapter->stats.gotc += rd32(E1000_GOTCL);
3043         rd32(E1000_GOTCH); /* clear GOTCL */
3044         adapter->stats.rnbc += rd32(E1000_RNBC);
3045         adapter->stats.ruc += rd32(E1000_RUC);
3046         adapter->stats.rfc += rd32(E1000_RFC);
3047         adapter->stats.rjc += rd32(E1000_RJC);
3048         adapter->stats.tor += rd32(E1000_TORH);
3049         adapter->stats.tot += rd32(E1000_TOTH);
3050         adapter->stats.tpr += rd32(E1000_TPR);
3051
3052         adapter->stats.ptc64 += rd32(E1000_PTC64);
3053         adapter->stats.ptc127 += rd32(E1000_PTC127);
3054         adapter->stats.ptc255 += rd32(E1000_PTC255);
3055         adapter->stats.ptc511 += rd32(E1000_PTC511);
3056         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3057         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3058
3059         adapter->stats.mptc += rd32(E1000_MPTC);
3060         adapter->stats.bptc += rd32(E1000_BPTC);
3061
3062         /* used for adaptive IFS */
3063
3064         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3065         adapter->stats.tpt += hw->mac.tx_packet_delta;
3066         hw->mac.collision_delta = rd32(E1000_COLC);
3067         adapter->stats.colc += hw->mac.collision_delta;
3068
3069         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3070         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3071         adapter->stats.tncrs += rd32(E1000_TNCRS);
3072         adapter->stats.tsctc += rd32(E1000_TSCTC);
3073         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3074
3075         adapter->stats.iac += rd32(E1000_IAC);
3076         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3077         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3078         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3079         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3080         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3081         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3082         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3083         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3084
3085         /* Fill out the OS statistics structure */
3086         adapter->net_stats.multicast = adapter->stats.mprc;
3087         adapter->net_stats.collisions = adapter->stats.colc;
3088
3089         /* Rx Errors */
3090
3091         /* RLEC on some newer hardware can be incorrect so build
3092         * our own version based on RUC and ROC */
3093         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3094                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3095                 adapter->stats.ruc + adapter->stats.roc +
3096                 adapter->stats.cexterr;
3097         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3098                                               adapter->stats.roc;
3099         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3100         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3101         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3102
3103         /* Tx Errors */
3104         adapter->net_stats.tx_errors = adapter->stats.ecol +
3105                                        adapter->stats.latecol;
3106         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3107         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3108         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3109
3110         /* Tx Dropped needs to be maintained elsewhere */
3111
3112         /* Phy Stats */
3113         if (hw->phy.media_type == e1000_media_type_copper) {
3114                 if ((adapter->link_speed == SPEED_1000) &&
3115                    (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
3116                                               &phy_tmp))) {
3117                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3118                         adapter->phy_stats.idle_errors += phy_tmp;
3119                 }
3120         }
3121
3122         /* Management Stats */
3123         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3124         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3125         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3126 }
3127
3128
3129 static irqreturn_t igb_msix_other(int irq, void *data)
3130 {
3131         struct net_device *netdev = data;
3132         struct igb_adapter *adapter = netdev_priv(netdev);
3133         struct e1000_hw *hw = &adapter->hw;
3134         u32 icr = rd32(E1000_ICR);
3135
3136         /* reading ICR causes bit 31 of EICR to be cleared */
3137         if (!(icr & E1000_ICR_LSC))
3138                 goto no_link_interrupt;
3139         hw->mac.get_link_status = 1;
3140         /* guard against interrupt when we're going down */
3141         if (!test_bit(__IGB_DOWN, &adapter->state))
3142                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3143         
3144 no_link_interrupt:
3145         wr32(E1000_IMS, E1000_IMS_LSC);
3146         wr32(E1000_EIMS, adapter->eims_other);
3147
3148         return IRQ_HANDLED;
3149 }
3150
3151 static irqreturn_t igb_msix_tx(int irq, void *data)
3152 {
3153         struct igb_ring *tx_ring = data;
3154         struct igb_adapter *adapter = tx_ring->adapter;
3155         struct e1000_hw *hw = &adapter->hw;
3156
3157         if (!tx_ring->itr_val)
3158                 wr32(E1000_EIMC, tx_ring->eims_value);
3159 #ifdef CONFIG_DCA
3160         if (adapter->dca_enabled)
3161                 igb_update_tx_dca(tx_ring);
3162 #endif
3163         tx_ring->total_bytes = 0;
3164         tx_ring->total_packets = 0;
3165
3166         /* auto mask will automatically reenable the interrupt when we write
3167          * EICS */
3168         if (!igb_clean_tx_irq(tx_ring))
3169                 /* Ring was not completely cleaned, so fire another interrupt */
3170                 wr32(E1000_EICS, tx_ring->eims_value);
3171         else
3172                 wr32(E1000_EIMS, tx_ring->eims_value);
3173
3174         return IRQ_HANDLED;
3175 }
3176
3177 static irqreturn_t igb_msix_rx(int irq, void *data)
3178 {
3179         struct igb_ring *rx_ring = data;
3180         struct igb_adapter *adapter = rx_ring->adapter;
3181         struct e1000_hw *hw = &adapter->hw;
3182
3183         /* Write the ITR value calculated at the end of the
3184          * previous interrupt.
3185          */
3186
3187         if (adapter->set_itr) {
3188                 wr32(rx_ring->itr_register,
3189                      1000000000 / (rx_ring->itr_val * 256));
3190                 adapter->set_itr = 0;
3191         }
3192
3193         if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
3194                 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3195
3196 #ifdef CONFIG_DCA
3197         if (adapter->dca_enabled)
3198                 igb_update_rx_dca(rx_ring);
3199 #endif
3200                 return IRQ_HANDLED;
3201 }
3202
3203 #ifdef CONFIG_DCA
3204 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3205 {
3206         u32 dca_rxctrl;
3207         struct igb_adapter *adapter = rx_ring->adapter;
3208         struct e1000_hw *hw = &adapter->hw;
3209         int cpu = get_cpu();
3210         int q = rx_ring - adapter->rx_ring;
3211
3212         if (rx_ring->cpu != cpu) {
3213                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3214                 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3215                 dca_rxctrl |= dca_get_tag(cpu);
3216                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3217                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3218                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3219                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3220                 rx_ring->cpu = cpu;
3221         }
3222         put_cpu();
3223 }
3224
3225 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3226 {
3227         u32 dca_txctrl;
3228         struct igb_adapter *adapter = tx_ring->adapter;
3229         struct e1000_hw *hw = &adapter->hw;
3230         int cpu = get_cpu();
3231         int q = tx_ring - adapter->tx_ring;
3232
3233         if (tx_ring->cpu != cpu) {
3234                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3235                 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3236                 dca_txctrl |= dca_get_tag(cpu);
3237                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3238                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3239                 tx_ring->cpu = cpu;
3240         }
3241         put_cpu();
3242 }
3243
3244 static void igb_setup_dca(struct igb_adapter *adapter)
3245 {
3246         int i;
3247
3248         if (!(adapter->dca_enabled))
3249                 return;
3250
3251         for (i = 0; i < adapter->num_tx_queues; i++) {
3252                 adapter->tx_ring[i].cpu = -1;
3253                 igb_update_tx_dca(&adapter->tx_ring[i]);
3254         }
3255         for (i = 0; i < adapter->num_rx_queues; i++) {
3256                 adapter->rx_ring[i].cpu = -1;
3257                 igb_update_rx_dca(&adapter->rx_ring[i]);
3258         }
3259 }
3260
3261 static int __igb_notify_dca(struct device *dev, void *data)
3262 {
3263         struct net_device *netdev = dev_get_drvdata(dev);
3264         struct igb_adapter *adapter = netdev_priv(netdev);
3265         struct e1000_hw *hw = &adapter->hw;
3266         unsigned long event = *(unsigned long *)data;
3267
3268         switch (event) {
3269         case DCA_PROVIDER_ADD:
3270                 /* if already enabled, don't do it again */
3271                 if (adapter->dca_enabled)
3272                         break;
3273                 adapter->dca_enabled = true;
3274                 /* Always use CB2 mode, difference is masked
3275                  * in the CB driver. */
3276                 wr32(E1000_DCA_CTRL, 2);
3277                 if (dca_add_requester(dev) == 0) {
3278                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3279                         igb_setup_dca(adapter);
3280                         break;
3281                 }
3282                 /* Fall Through since DCA is disabled. */
3283         case DCA_PROVIDER_REMOVE:
3284                 if (adapter->dca_enabled) {
3285                         /* without this a class_device is left
3286                          * hanging around in the sysfs model */
3287                         dca_remove_requester(dev);
3288                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3289                         adapter->dca_enabled = false;
3290                         wr32(E1000_DCA_CTRL, 1);
3291                 }
3292                 break;
3293         }
3294
3295         return 0;
3296 }
3297
3298 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3299                           void *p)
3300 {
3301         int ret_val;
3302
3303         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3304                                          __igb_notify_dca);
3305
3306         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3307 }
3308 #endif /* CONFIG_DCA */
3309
3310 /**
3311  * igb_intr_msi - Interrupt Handler
3312  * @irq: interrupt number
3313  * @data: pointer to a network interface device structure
3314  **/
3315 static irqreturn_t igb_intr_msi(int irq, void *data)
3316 {
3317         struct net_device *netdev = data;
3318         struct igb_adapter *adapter = netdev_priv(netdev);
3319         struct e1000_hw *hw = &adapter->hw;
3320         /* read ICR disables interrupts using IAM */
3321         u32 icr = rd32(E1000_ICR);
3322
3323         /* Write the ITR value calculated at the end of the
3324          * previous interrupt.
3325          */
3326         if (adapter->set_itr) {
3327                 wr32(E1000_ITR, 1000000000 / (adapter->itr * 256));
3328                 adapter->set_itr = 0;
3329         }
3330
3331         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3332                 hw->mac.get_link_status = 1;
3333                 if (!test_bit(__IGB_DOWN, &adapter->state))
3334                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3335         }
3336
3337         netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3338
3339         return IRQ_HANDLED;
3340 }
3341
3342 /**
3343  * igb_intr - Interrupt Handler
3344  * @irq: interrupt number
3345  * @data: pointer to a network interface device structure
3346  **/
3347 static irqreturn_t igb_intr(int irq, void *data)
3348 {
3349         struct net_device *netdev = data;
3350         struct igb_adapter *adapter = netdev_priv(netdev);
3351         struct e1000_hw *hw = &adapter->hw;
3352         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3353          * need for the IMC write */
3354         u32 icr = rd32(E1000_ICR);
3355         u32 eicr = 0;
3356         if (!icr)
3357                 return IRQ_NONE;  /* Not our interrupt */
3358
3359         /* Write the ITR value calculated at the end of the
3360          * previous interrupt.
3361          */
3362         if (adapter->set_itr) {
3363                 wr32(E1000_ITR, 1000000000 / (adapter->itr * 256));
3364                 adapter->set_itr = 0;
3365         }
3366
3367         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3368          * not set, then the adapter didn't send an interrupt */
3369         if (!(icr & E1000_ICR_INT_ASSERTED))
3370                 return IRQ_NONE;
3371
3372         eicr = rd32(E1000_EICR);
3373
3374         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3375                 hw->mac.get_link_status = 1;
3376                 /* guard against interrupt when we're going down */
3377                 if (!test_bit(__IGB_DOWN, &adapter->state))
3378                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3379         }
3380
3381         netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3382
3383         return IRQ_HANDLED;
3384 }
3385
3386 /**
3387  * igb_poll - NAPI Rx polling callback
3388  * @napi: napi polling structure
3389  * @budget: count of how many packets we should handle
3390  **/
3391 static int igb_poll(struct napi_struct *napi, int budget)
3392 {
3393         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3394         struct igb_adapter *adapter = rx_ring->adapter;
3395         struct net_device *netdev = adapter->netdev;
3396         int tx_clean_complete, work_done = 0;
3397
3398         /* this poll routine only supports one tx and one rx queue */
3399 #ifdef CONFIG_DCA
3400         if (adapter->dca_enabled)
3401                 igb_update_tx_dca(&adapter->tx_ring[0]);
3402 #endif
3403         tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3404
3405 #ifdef CONFIG_DCA
3406         if (adapter->dca_enabled)
3407                 igb_update_rx_dca(&adapter->rx_ring[0]);
3408 #endif
3409         igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3410
3411         /* If no Tx and not enough Rx work done, exit the polling mode */
3412         if ((tx_clean_complete && (work_done < budget)) ||
3413             !netif_running(netdev)) {
3414                 if (adapter->itr_setting & 3)
3415                         igb_set_itr(adapter, E1000_ITR, false);
3416                 netif_rx_complete(netdev, napi);
3417                 if (!test_bit(__IGB_DOWN, &adapter->state))
3418                         igb_irq_enable(adapter);
3419                 return 0;
3420         }
3421
3422         return 1;
3423 }
3424
3425 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3426 {
3427         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3428         struct igb_adapter *adapter = rx_ring->adapter;
3429         struct e1000_hw *hw = &adapter->hw;
3430         struct net_device *netdev = adapter->netdev;
3431         int work_done = 0;
3432
3433         /* Keep link state information with original netdev */
3434         if (!netif_carrier_ok(netdev))
3435                 goto quit_polling;
3436
3437 #ifdef CONFIG_DCA
3438         if (adapter->dca_enabled)
3439                 igb_update_rx_dca(rx_ring);
3440 #endif
3441         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3442
3443
3444         /* If not enough Rx work done, exit the polling mode */
3445         if ((work_done == 0) || !netif_running(netdev)) {
3446 quit_polling:
3447                 netif_rx_complete(netdev, napi);
3448
3449                 wr32(E1000_EIMS, rx_ring->eims_value);
3450                 if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust &&
3451                     (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) {
3452                         int mean_size = rx_ring->total_bytes /
3453                                         rx_ring->total_packets;
3454                         if (mean_size < IGB_DYN_ITR_LENGTH_LOW)
3455                                 igb_raise_rx_eitr(adapter, rx_ring);
3456                         else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH)
3457                                 igb_lower_rx_eitr(adapter, rx_ring);
3458                 }
3459
3460                 if (!test_bit(__IGB_DOWN, &adapter->state))
3461                         wr32(E1000_EIMS, rx_ring->eims_value);
3462
3463                 return 0;
3464         }
3465
3466         return 1;
3467 }
3468
3469 static inline u32 get_head(struct igb_ring *tx_ring)
3470 {
3471         void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3472         return le32_to_cpu(*(volatile __le32 *)end);
3473 }
3474
3475 /**
3476  * igb_clean_tx_irq - Reclaim resources after transmit completes
3477  * @adapter: board private structure
3478  * returns true if ring is completely cleaned
3479  **/
3480 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3481 {
3482         struct igb_adapter *adapter = tx_ring->adapter;
3483         struct e1000_hw *hw = &adapter->hw;
3484         struct net_device *netdev = adapter->netdev;
3485         struct e1000_tx_desc *tx_desc;
3486         struct igb_buffer *buffer_info;
3487         struct sk_buff *skb;
3488         unsigned int i;
3489         u32 head, oldhead;
3490         unsigned int count = 0;
3491         bool cleaned = false;
3492         bool retval = true;
3493         unsigned int total_bytes = 0, total_packets = 0;
3494
3495         rmb();
3496         head = get_head(tx_ring);
3497         i = tx_ring->next_to_clean;
3498         while (1) {
3499                 while (i != head) {
3500                         cleaned = true;
3501                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3502                         buffer_info = &tx_ring->buffer_info[i];
3503                         skb = buffer_info->skb;
3504
3505                         if (skb) {
3506                                 unsigned int segs, bytecount;
3507                                 /* gso_segs is currently only valid for tcp */
3508                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3509                                 /* multiply data chunks by size of headers */
3510                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3511                                             skb->len;
3512                                 total_packets += segs;
3513                                 total_bytes += bytecount;
3514                         }
3515
3516                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3517                         tx_desc->upper.data = 0;
3518
3519                         i++;
3520                         if (i == tx_ring->count)
3521                                 i = 0;
3522
3523                         count++;
3524                         if (count == IGB_MAX_TX_CLEAN) {
3525                                 retval = false;
3526                                 goto done_cleaning;
3527                         }
3528                 }
3529                 oldhead = head;
3530                 rmb();
3531                 head = get_head(tx_ring);
3532                 if (head == oldhead)
3533                         goto done_cleaning;
3534         }  /* while (1) */
3535
3536 done_cleaning:
3537         tx_ring->next_to_clean = i;
3538
3539         if (unlikely(cleaned &&
3540                      netif_carrier_ok(netdev) &&
3541                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3542                 /* Make sure that anybody stopping the queue after this
3543                  * sees the new next_to_clean.
3544                  */
3545                 smp_mb();
3546 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
3547                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3548                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3549                         netif_wake_subqueue(netdev, tx_ring->queue_index);
3550                         ++adapter->restart_queue;
3551                 }
3552 #else
3553                 if (netif_queue_stopped(netdev) &&
3554                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3555                         netif_wake_queue(netdev);
3556                         ++adapter->restart_queue;
3557                 }
3558 #endif          
3559         }
3560
3561         if (tx_ring->detect_tx_hung) {
3562                 /* Detect a transmit hang in hardware, this serializes the
3563                  * check with the clearing of time_stamp and movement of i */
3564                 tx_ring->detect_tx_hung = false;
3565                 if (tx_ring->buffer_info[i].time_stamp &&
3566                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3567                                (adapter->tx_timeout_factor * HZ))
3568                     && !(rd32(E1000_STATUS) &
3569                          E1000_STATUS_TXOFF)) {
3570
3571                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3572                         /* detected Tx unit hang */
3573                         dev_err(&adapter->pdev->dev,
3574                                 "Detected Tx Unit Hang\n"
3575                                 "  Tx Queue             <%lu>\n"
3576                                 "  TDH                  <%x>\n"
3577                                 "  TDT                  <%x>\n"
3578                                 "  next_to_use          <%x>\n"
3579                                 "  next_to_clean        <%x>\n"
3580                                 "  head (WB)            <%x>\n"
3581                                 "buffer_info[next_to_clean]\n"
3582                                 "  time_stamp           <%lx>\n"
3583                                 "  jiffies              <%lx>\n"
3584                                 "  desc.status          <%x>\n",
3585                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3586                                         sizeof(struct igb_ring)),
3587                                 readl(adapter->hw.hw_addr + tx_ring->head),
3588                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3589                                 tx_ring->next_to_use,
3590                                 tx_ring->next_to_clean,
3591                                 head,
3592                                 tx_ring->buffer_info[i].time_stamp,
3593                                 jiffies,
3594                                 tx_desc->upper.fields.status);
3595 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
3596                         netif_stop_subqueue(netdev, tx_ring->queue_index);
3597 #else
3598                         netif_stop_queue(netdev);
3599 #endif
3600                 }
3601         }
3602         tx_ring->total_bytes += total_bytes;
3603         tx_ring->total_packets += total_packets;
3604         tx_ring->tx_stats.bytes += total_bytes;
3605         tx_ring->tx_stats.packets += total_packets;
3606         adapter->net_stats.tx_bytes += total_bytes;
3607         adapter->net_stats.tx_packets += total_packets;
3608         return retval;
3609 }
3610
3611
3612 /**
3613  * igb_receive_skb - helper function to handle rx indications
3614  * @adapter: board private structure
3615  * @status: descriptor status field as written by hardware
3616  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3617  * @skb: pointer to sk_buff to be indicated to stack
3618  **/
3619 static void igb_receive_skb(struct igb_adapter *adapter, u8 status, __le16 vlan,
3620                             struct sk_buff *skb)
3621 {
3622         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
3623                 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3624                                          le16_to_cpu(vlan));
3625         else
3626                 netif_receive_skb(skb);
3627 }
3628
3629
3630 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3631                                        u32 status_err, struct sk_buff *skb)
3632 {
3633         skb->ip_summed = CHECKSUM_NONE;
3634
3635         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3636         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3637                 return;
3638         /* TCP/UDP checksum error bit is set */
3639         if (status_err &
3640             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3641                 /* let the stack verify checksum errors */
3642                 adapter->hw_csum_err++;
3643                 return;
3644         }
3645         /* It must be a TCP or UDP packet with a valid checksum */
3646         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3647                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3648
3649         adapter->hw_csum_good++;
3650 }
3651
3652 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3653                                  int *work_done, int budget)
3654 {
3655         struct igb_adapter *adapter = rx_ring->adapter;
3656         struct net_device *netdev = adapter->netdev;
3657         struct pci_dev *pdev = adapter->pdev;
3658         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3659         struct igb_buffer *buffer_info , *next_buffer;
3660         struct sk_buff *skb;
3661         unsigned int i, j;
3662         u32 length, hlen, staterr;
3663         bool cleaned = false;
3664         int cleaned_count = 0;
3665         unsigned int total_bytes = 0, total_packets = 0;
3666
3667         i = rx_ring->next_to_clean;
3668         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3669         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3670
3671         while (staterr & E1000_RXD_STAT_DD) {
3672                 if (*work_done >= budget)
3673                         break;
3674                 (*work_done)++;
3675                 buffer_info = &rx_ring->buffer_info[i];
3676
3677                 /* HW will not DMA in data larger than the given buffer, even
3678                  * if it parses the (NFS, of course) header to be larger.  In
3679                  * that case, it fills the header buffer and spills the rest
3680                  * into the page.
3681                  */
3682                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3683                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3684                 if (hlen > adapter->rx_ps_hdr_size)
3685                         hlen = adapter->rx_ps_hdr_size;
3686
3687                 length = le16_to_cpu(rx_desc->wb.upper.length);
3688                 cleaned = true;
3689                 cleaned_count++;
3690
3691                 if (rx_ring->pending_skb != NULL) {
3692                         skb = rx_ring->pending_skb;
3693                         rx_ring->pending_skb = NULL;
3694                         j = rx_ring->pending_skb_page;
3695                 } else {
3696                         skb = buffer_info->skb;
3697                         prefetch(skb->data - NET_IP_ALIGN);
3698                         buffer_info->skb = NULL;
3699                         if (hlen) {
3700                                 pci_unmap_single(pdev, buffer_info->dma,
3701                                                  adapter->rx_ps_hdr_size +
3702                                                    NET_IP_ALIGN,
3703                                                  PCI_DMA_FROMDEVICE);
3704                                 skb_put(skb, hlen);
3705                         } else {
3706                                 pci_unmap_single(pdev, buffer_info->dma,
3707                                                  adapter->rx_buffer_len +
3708                                                    NET_IP_ALIGN,
3709                                                  PCI_DMA_FROMDEVICE);
3710                                 skb_put(skb, length);
3711                                 goto send_up;
3712                         }
3713                         j = 0;
3714                 }
3715
3716                 while (length) {
3717                         pci_unmap_page(pdev, buffer_info->page_dma,
3718                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3719                         buffer_info->page_dma = 0;
3720                         skb_fill_page_desc(skb, j, buffer_info->page,
3721                                                 0, length);
3722                         buffer_info->page = NULL;
3723
3724                         skb->len += length;
3725                         skb->data_len += length;
3726                         skb->truesize += length;
3727                         rx_desc->wb.upper.status_error = 0;
3728                         if (staterr & E1000_RXD_STAT_EOP)
3729                                 break;
3730
3731                         j++;
3732                         cleaned_count++;
3733                         i++;
3734                         if (i == rx_ring->count)
3735                                 i = 0;
3736
3737                         buffer_info = &rx_ring->buffer_info[i];
3738                         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3739                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3740                         length = le16_to_cpu(rx_desc->wb.upper.length);
3741                         if (!(staterr & E1000_RXD_STAT_DD)) {
3742                                 rx_ring->pending_skb = skb;
3743                                 rx_ring->pending_skb_page = j;
3744                                 goto out;
3745                         }
3746                 }
3747 send_up:
3748                 i++;
3749                 if (i == rx_ring->count)
3750                         i = 0;
3751                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3752                 prefetch(next_rxd);
3753                 next_buffer = &rx_ring->buffer_info[i];
3754
3755                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3756                         dev_kfree_skb_irq(skb);
3757                         goto next_desc;
3758                 }
3759                 rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT);
3760
3761                 total_bytes += skb->len;
3762                 total_packets++;
3763
3764                 igb_rx_checksum_adv(adapter, staterr, skb);
3765
3766                 skb->protocol = eth_type_trans(skb, netdev);
3767
3768                 igb_receive_skb(adapter, staterr, rx_desc->wb.upper.vlan, skb);
3769
3770                 netdev->last_rx = jiffies;
3771
3772 next_desc:
3773                 rx_desc->wb.upper.status_error = 0;
3774
3775                 /* return some buffers to hardware, one at a time is too slow */
3776                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3777                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3778                         cleaned_count = 0;
3779                 }
3780
3781                 /* use prefetched values */
3782                 rx_desc = next_rxd;
3783                 buffer_info = next_buffer;
3784
3785                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3786         }
3787 out:
3788         rx_ring->next_to_clean = i;
3789         cleaned_count = IGB_DESC_UNUSED(rx_ring);
3790
3791         if (cleaned_count)
3792                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3793
3794         rx_ring->total_packets += total_packets;
3795         rx_ring->total_bytes += total_bytes;
3796         rx_ring->rx_stats.packets += total_packets;
3797         rx_ring->rx_stats.bytes += total_bytes;
3798         adapter->net_stats.rx_bytes += total_bytes;
3799         adapter->net_stats.rx_packets += total_packets;
3800         return cleaned;
3801 }
3802
3803
3804 /**
3805  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3806  * @adapter: address of board private structure
3807  **/
3808 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3809                                      int cleaned_count)
3810 {
3811         struct igb_adapter *adapter = rx_ring->adapter;
3812         struct net_device *netdev = adapter->netdev;
3813         struct pci_dev *pdev = adapter->pdev;
3814         union e1000_adv_rx_desc *rx_desc;
3815         struct igb_buffer *buffer_info;
3816         struct sk_buff *skb;
3817         unsigned int i;
3818
3819         i = rx_ring->next_to_use;
3820         buffer_info = &rx_ring->buffer_info[i];
3821
3822         while (cleaned_count--) {
3823                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3824
3825                 if (adapter->rx_ps_hdr_size && !buffer_info->page) {
3826                         buffer_info->page = alloc_page(GFP_ATOMIC);
3827                         if (!buffer_info->page) {
3828                                 adapter->alloc_rx_buff_failed++;
3829                                 goto no_buffers;
3830                         }
3831                         buffer_info->page_dma =
3832                                 pci_map_page(pdev,
3833                                              buffer_info->page,
3834                                              0, PAGE_SIZE,
3835                                              PCI_DMA_FROMDEVICE);
3836                 }
3837
3838                 if (!buffer_info->skb) {
3839                         int bufsz;
3840
3841                         if (adapter->rx_ps_hdr_size)
3842                                 bufsz = adapter->rx_ps_hdr_size;
3843                         else
3844                                 bufsz = adapter->rx_buffer_len;
3845                         bufsz += NET_IP_ALIGN;
3846                         skb = netdev_alloc_skb(netdev, bufsz);
3847
3848                         if (!skb) {
3849                                 adapter->alloc_rx_buff_failed++;
3850                                 goto no_buffers;
3851                         }
3852
3853                         /* Make buffer alignment 2 beyond a 16 byte boundary
3854                          * this will result in a 16 byte aligned IP header after
3855                          * the 14 byte MAC header is removed
3856                          */
3857                         skb_reserve(skb, NET_IP_ALIGN);
3858
3859                         buffer_info->skb = skb;
3860                         buffer_info->dma = pci_map_single(pdev, skb->data,
3861                                                           bufsz,
3862                                                           PCI_DMA_FROMDEVICE);
3863
3864                 }
3865                 /* Refresh the desc even if buffer_addrs didn't change because
3866                  * each write-back erases this info. */
3867                 if (adapter->rx_ps_hdr_size) {
3868                         rx_desc->read.pkt_addr =
3869                              cpu_to_le64(buffer_info->page_dma);
3870                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
3871                 } else {
3872                         rx_desc->read.pkt_addr =
3873                              cpu_to_le64(buffer_info->dma);
3874                         rx_desc->read.hdr_addr = 0;
3875                 }
3876
3877                 i++;
3878                 if (i == rx_ring->count)
3879                         i = 0;
3880                 buffer_info = &rx_ring->buffer_info[i];
3881         }
3882
3883 no_buffers:
3884         if (rx_ring->next_to_use != i) {
3885                 rx_ring->next_to_use = i;
3886                 if (i == 0)
3887                         i = (rx_ring->count - 1);
3888                 else
3889                         i--;
3890
3891                 /* Force memory writes to complete before letting h/w
3892                  * know there are new descriptors to fetch.  (Only
3893                  * applicable for weak-ordered memory model archs,
3894                  * such as IA-64). */
3895                 wmb();
3896                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
3897         }
3898 }
3899
3900 /**
3901  * igb_mii_ioctl -
3902  * @netdev:
3903  * @ifreq:
3904  * @cmd:
3905  **/
3906 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3907 {
3908         struct igb_adapter *adapter = netdev_priv(netdev);
3909         struct mii_ioctl_data *data = if_mii(ifr);
3910
3911         if (adapter->hw.phy.media_type != e1000_media_type_copper)
3912                 return -EOPNOTSUPP;
3913
3914         switch (cmd) {
3915         case SIOCGMIIPHY:
3916                 data->phy_id = adapter->hw.phy.addr;
3917                 break;
3918         case SIOCGMIIREG:
3919                 if (!capable(CAP_NET_ADMIN))
3920                         return -EPERM;
3921                 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
3922                                                      data->reg_num
3923                                                      & 0x1F, &data->val_out))
3924                         return -EIO;
3925                 break;
3926         case SIOCSMIIREG:
3927         default:
3928                 return -EOPNOTSUPP;
3929         }
3930         return 0;
3931 }
3932
3933 /**
3934  * igb_ioctl -
3935  * @netdev:
3936  * @ifreq:
3937  * @cmd:
3938  **/
3939 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3940 {
3941         switch (cmd) {
3942         case SIOCGMIIPHY:
3943         case SIOCGMIIREG:
3944         case SIOCSMIIREG:
3945                 return igb_mii_ioctl(netdev, ifr, cmd);
3946         default:
3947                 return -EOPNOTSUPP;
3948         }
3949 }
3950
3951 static void igb_vlan_rx_register(struct net_device *netdev,
3952                                  struct vlan_group *grp)
3953 {
3954         struct igb_adapter *adapter = netdev_priv(netdev);
3955         struct e1000_hw *hw = &adapter->hw;
3956         u32 ctrl, rctl;
3957
3958         igb_irq_disable(adapter);
3959         adapter->vlgrp = grp;
3960
3961         if (grp) {
3962                 /* enable VLAN tag insert/strip */
3963                 ctrl = rd32(E1000_CTRL);
3964                 ctrl |= E1000_CTRL_VME;
3965                 wr32(E1000_CTRL, ctrl);
3966
3967                 /* enable VLAN receive filtering */
3968                 rctl = rd32(E1000_RCTL);
3969                 rctl |= E1000_RCTL_VFE;
3970                 rctl &= ~E1000_RCTL_CFIEN;
3971                 wr32(E1000_RCTL, rctl);
3972                 igb_update_mng_vlan(adapter);
3973                 wr32(E1000_RLPML,
3974                                 adapter->max_frame_size + VLAN_TAG_SIZE);
3975         } else {
3976                 /* disable VLAN tag insert/strip */
3977                 ctrl = rd32(E1000_CTRL);
3978                 ctrl &= ~E1000_CTRL_VME;
3979                 wr32(E1000_CTRL, ctrl);
3980
3981                 /* disable VLAN filtering */
3982                 rctl = rd32(E1000_RCTL);
3983                 rctl &= ~E1000_RCTL_VFE;
3984                 wr32(E1000_RCTL, rctl);
3985                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
3986                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3987                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
3988                 }
3989                 wr32(E1000_RLPML,
3990                                 adapter->max_frame_size);
3991         }
3992
3993         if (!test_bit(__IGB_DOWN, &adapter->state))
3994                 igb_irq_enable(adapter);
3995 }
3996
3997 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
3998 {
3999         struct igb_adapter *adapter = netdev_priv(netdev);
4000         struct e1000_hw *hw = &adapter->hw;
4001         u32 vfta, index;
4002
4003         if ((adapter->hw.mng_cookie.status &
4004              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4005             (vid == adapter->mng_vlan_id))
4006                 return;
4007         /* add VID to filter table */
4008         index = (vid >> 5) & 0x7F;
4009         vfta = array_rd32(E1000_VFTA, index);
4010         vfta |= (1 << (vid & 0x1F));
4011         igb_write_vfta(&adapter->hw, index, vfta);
4012 }
4013
4014 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4015 {
4016         struct igb_adapter *adapter = netdev_priv(netdev);
4017         struct e1000_hw *hw = &adapter->hw;
4018         u32 vfta, index;
4019
4020         igb_irq_disable(adapter);
4021         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4022
4023         if (!test_bit(__IGB_DOWN, &adapter->state))
4024                 igb_irq_enable(adapter);
4025
4026         if ((adapter->hw.mng_cookie.status &
4027              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4028             (vid == adapter->mng_vlan_id)) {
4029                 /* release control to f/w */
4030                 igb_release_hw_control(adapter);
4031                 return;
4032         }
4033
4034         /* remove VID from filter table */
4035         index = (vid >> 5) & 0x7F;
4036         vfta = array_rd32(E1000_VFTA, index);
4037         vfta &= ~(1 << (vid & 0x1F));
4038         igb_write_vfta(&adapter->hw, index, vfta);
4039 }
4040
4041 static void igb_restore_vlan(struct igb_adapter *adapter)
4042 {
4043         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4044
4045         if (adapter->vlgrp) {
4046                 u16 vid;
4047                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4048                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4049                                 continue;
4050                         igb_vlan_rx_add_vid(adapter->netdev, vid);
4051                 }
4052         }
4053 }
4054
4055 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4056 {
4057         struct e1000_mac_info *mac = &adapter->hw.mac;
4058
4059         mac->autoneg = 0;
4060
4061         /* Fiber NICs only allow 1000 gbps Full duplex */
4062         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4063                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4064                 dev_err(&adapter->pdev->dev,
4065                         "Unsupported Speed/Duplex configuration\n");
4066                 return -EINVAL;
4067         }
4068
4069         switch (spddplx) {
4070         case SPEED_10 + DUPLEX_HALF:
4071                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4072                 break;
4073         case SPEED_10 + DUPLEX_FULL:
4074                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4075                 break;
4076         case SPEED_100 + DUPLEX_HALF:
4077                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4078                 break;
4079         case SPEED_100 + DUPLEX_FULL:
4080                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4081                 break;
4082         case SPEED_1000 + DUPLEX_FULL:
4083                 mac->autoneg = 1;
4084                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4085                 break;
4086         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4087         default:
4088                 dev_err(&adapter->pdev->dev,
4089                         "Unsupported Speed/Duplex configuration\n");
4090                 return -EINVAL;
4091         }
4092         return 0;
4093 }
4094
4095
4096 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4097 {
4098         struct net_device *netdev = pci_get_drvdata(pdev);
4099         struct igb_adapter *adapter = netdev_priv(netdev);
4100         struct e1000_hw *hw = &adapter->hw;
4101         u32 ctrl, ctrl_ext, rctl, status;
4102         u32 wufc = adapter->wol;
4103 #ifdef CONFIG_PM
4104         int retval = 0;
4105 #endif
4106
4107         netif_device_detach(netdev);
4108
4109         if (netif_running(netdev)) {
4110                 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4111                 igb_down(adapter);
4112                 igb_free_irq(adapter);
4113         }
4114
4115 #ifdef CONFIG_PM
4116         retval = pci_save_state(pdev);
4117         if (retval)
4118                 return retval;
4119 #endif
4120
4121         status = rd32(E1000_STATUS);
4122         if (status & E1000_STATUS_LU)
4123                 wufc &= ~E1000_WUFC_LNKC;
4124
4125         if (wufc) {
4126                 igb_setup_rctl(adapter);
4127                 igb_set_multi(netdev);
4128
4129                 /* turn on all-multi mode if wake on multicast is enabled */
4130                 if (wufc & E1000_WUFC_MC) {
4131                         rctl = rd32(E1000_RCTL);
4132                         rctl |= E1000_RCTL_MPE;
4133                         wr32(E1000_RCTL, rctl);
4134                 }
4135
4136                 ctrl = rd32(E1000_CTRL);
4137                 /* advertise wake from D3Cold */
4138                 #define E1000_CTRL_ADVD3WUC 0x00100000
4139                 /* phy power management enable */
4140                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4141                 ctrl |= E1000_CTRL_ADVD3WUC;
4142                 wr32(E1000_CTRL, ctrl);
4143
4144                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4145                    adapter->hw.phy.media_type ==
4146                                         e1000_media_type_internal_serdes) {
4147                         /* keep the laser running in D3 */
4148                         ctrl_ext = rd32(E1000_CTRL_EXT);
4149                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4150                         wr32(E1000_CTRL_EXT, ctrl_ext);
4151                 }
4152
4153                 /* Allow time for pending master requests to run */
4154                 igb_disable_pcie_master(&adapter->hw);
4155
4156                 wr32(E1000_WUC, E1000_WUC_PME_EN);
4157                 wr32(E1000_WUFC, wufc);
4158                 pci_enable_wake(pdev, PCI_D3hot, 1);
4159                 pci_enable_wake(pdev, PCI_D3cold, 1);
4160         } else {
4161                 wr32(E1000_WUC, 0);
4162                 wr32(E1000_WUFC, 0);
4163                 pci_enable_wake(pdev, PCI_D3hot, 0);
4164                 pci_enable_wake(pdev, PCI_D3cold, 0);
4165         }
4166
4167         /* make sure adapter isn't asleep if manageability is enabled */
4168         if (adapter->en_mng_pt) {
4169                 pci_enable_wake(pdev, PCI_D3hot, 1);
4170                 pci_enable_wake(pdev, PCI_D3cold, 1);
4171         }
4172
4173         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4174          * would have already happened in close and is redundant. */
4175         igb_release_hw_control(adapter);
4176
4177         pci_disable_device(pdev);
4178
4179         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4180
4181         return 0;
4182 }
4183
4184 #ifdef CONFIG_PM
4185 static int igb_resume(struct pci_dev *pdev)
4186 {
4187         struct net_device *netdev = pci_get_drvdata(pdev);
4188         struct igb_adapter *adapter = netdev_priv(netdev);
4189         struct e1000_hw *hw = &adapter->hw;
4190         u32 err;
4191
4192         pci_set_power_state(pdev, PCI_D0);
4193         pci_restore_state(pdev);
4194
4195         if (adapter->need_ioport)
4196                 err = pci_enable_device(pdev);
4197         else
4198                 err = pci_enable_device_mem(pdev);
4199         if (err) {
4200                 dev_err(&pdev->dev,
4201                         "igb: Cannot enable PCI device from suspend\n");
4202                 return err;
4203         }
4204         pci_set_master(pdev);
4205
4206         pci_enable_wake(pdev, PCI_D3hot, 0);
4207         pci_enable_wake(pdev, PCI_D3cold, 0);
4208
4209         if (netif_running(netdev)) {
4210                 err = igb_request_irq(adapter);
4211                 if (err)
4212                         return err;
4213         }
4214
4215         /* e1000_power_up_phy(adapter); */
4216
4217         igb_reset(adapter);
4218         wr32(E1000_WUS, ~0);
4219
4220         igb_init_manageability(adapter);
4221
4222         if (netif_running(netdev))
4223                 igb_up(adapter);
4224
4225         netif_device_attach(netdev);
4226
4227         /* let the f/w know that the h/w is now under the control of the
4228          * driver. */
4229         igb_get_hw_control(adapter);
4230
4231         return 0;
4232 }
4233 #endif
4234
4235 static void igb_shutdown(struct pci_dev *pdev)
4236 {
4237         igb_suspend(pdev, PMSG_SUSPEND);
4238 }
4239
4240 #ifdef CONFIG_NET_POLL_CONTROLLER
4241 /*
4242  * Polling 'interrupt' - used by things like netconsole to send skbs
4243  * without having to re-enable interrupts. It's not called while
4244  * the interrupt routine is executing.
4245  */
4246 static void igb_netpoll(struct net_device *netdev)
4247 {
4248         struct igb_adapter *adapter = netdev_priv(netdev);
4249         int i;
4250         int work_done = 0;
4251
4252         igb_irq_disable(adapter);
4253         for (i = 0; i < adapter->num_tx_queues; i++)
4254                 igb_clean_tx_irq(&adapter->tx_ring[i]);
4255
4256         for (i = 0; i < adapter->num_rx_queues; i++)
4257                 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4258                                      &work_done,
4259                                      adapter->rx_ring[i].napi.weight);
4260
4261         igb_irq_enable(adapter);
4262 }
4263 #endif /* CONFIG_NET_POLL_CONTROLLER */
4264
4265 /**
4266  * igb_io_error_detected - called when PCI error is detected
4267  * @pdev: Pointer to PCI device
4268  * @state: The current pci connection state
4269  *
4270  * This function is called after a PCI bus error affecting
4271  * this device has been detected.
4272  */
4273 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4274                                               pci_channel_state_t state)
4275 {
4276         struct net_device *netdev = pci_get_drvdata(pdev);
4277         struct igb_adapter *adapter = netdev_priv(netdev);
4278
4279         netif_device_detach(netdev);
4280
4281         if (netif_running(netdev))
4282                 igb_down(adapter);
4283         pci_disable_device(pdev);
4284
4285         /* Request a slot slot reset. */
4286         return PCI_ERS_RESULT_NEED_RESET;
4287 }
4288
4289 /**
4290  * igb_io_slot_reset - called after the pci bus has been reset.
4291  * @pdev: Pointer to PCI device
4292  *
4293  * Restart the card from scratch, as if from a cold-boot. Implementation
4294  * resembles the first-half of the igb_resume routine.
4295  */
4296 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4297 {
4298         struct net_device *netdev = pci_get_drvdata(pdev);
4299         struct igb_adapter *adapter = netdev_priv(netdev);
4300         struct e1000_hw *hw = &adapter->hw;
4301         int err;
4302
4303         if (adapter->need_ioport)
4304                 err = pci_enable_device(pdev);
4305         else
4306                 err = pci_enable_device_mem(pdev);
4307         if (err) {
4308                 dev_err(&pdev->dev,
4309                         "Cannot re-enable PCI device after reset.\n");
4310                 return PCI_ERS_RESULT_DISCONNECT;
4311         }
4312         pci_set_master(pdev);
4313         pci_restore_state(pdev);
4314
4315         pci_enable_wake(pdev, PCI_D3hot, 0);
4316         pci_enable_wake(pdev, PCI_D3cold, 0);
4317
4318         igb_reset(adapter);
4319         wr32(E1000_WUS, ~0);
4320
4321         return PCI_ERS_RESULT_RECOVERED;
4322 }
4323
4324 /**
4325  * igb_io_resume - called when traffic can start flowing again.
4326  * @pdev: Pointer to PCI device
4327  *
4328  * This callback is called when the error recovery driver tells us that
4329  * its OK to resume normal operation. Implementation resembles the
4330  * second-half of the igb_resume routine.
4331  */
4332 static void igb_io_resume(struct pci_dev *pdev)
4333 {
4334         struct net_device *netdev = pci_get_drvdata(pdev);
4335         struct igb_adapter *adapter = netdev_priv(netdev);
4336
4337         igb_init_manageability(adapter);
4338
4339         if (netif_running(netdev)) {
4340                 if (igb_up(adapter)) {
4341                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4342                         return;
4343                 }
4344         }
4345
4346         netif_device_attach(netdev);
4347
4348         /* let the f/w know that the h/w is now under the control of the
4349          * driver. */
4350         igb_get_hw_control(adapter);
4351
4352 }
4353
4354 /* igb_main.c */