ed756c12aba6bcbfea802f0367c3779419dc0e91
[safe/jmp/linux-2.6] / drivers / net / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37
38 #include "igb.h"
39
40 struct igb_stats {
41         char stat_string[ETH_GSTRING_LEN];
42         int sizeof_stat;
43         int stat_offset;
44 };
45
46 #define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \
47                       offsetof(struct igb_adapter, m)
48 static const struct igb_stats igb_gstrings_stats[] = {
49         { "rx_packets", IGB_STAT(stats.gprc) },
50         { "tx_packets", IGB_STAT(stats.gptc) },
51         { "rx_bytes", IGB_STAT(stats.gorc) },
52         { "tx_bytes", IGB_STAT(stats.gotc) },
53         { "rx_broadcast", IGB_STAT(stats.bprc) },
54         { "tx_broadcast", IGB_STAT(stats.bptc) },
55         { "rx_multicast", IGB_STAT(stats.mprc) },
56         { "tx_multicast", IGB_STAT(stats.mptc) },
57         { "rx_errors", IGB_STAT(net_stats.rx_errors) },
58         { "tx_errors", IGB_STAT(net_stats.tx_errors) },
59         { "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
60         { "multicast", IGB_STAT(stats.mprc) },
61         { "collisions", IGB_STAT(stats.colc) },
62         { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
63         { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
64         { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
65         { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
66         { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
67         { "rx_missed_errors", IGB_STAT(stats.mpc) },
68         { "tx_aborted_errors", IGB_STAT(stats.ecol) },
69         { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
70         { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
71         { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
72         { "tx_window_errors", IGB_STAT(stats.latecol) },
73         { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
74         { "tx_deferred_ok", IGB_STAT(stats.dc) },
75         { "tx_single_coll_ok", IGB_STAT(stats.scc) },
76         { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
77         { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
78         { "tx_restart_queue", IGB_STAT(restart_queue) },
79         { "rx_long_length_errors", IGB_STAT(stats.roc) },
80         { "rx_short_length_errors", IGB_STAT(stats.ruc) },
81         { "rx_align_errors", IGB_STAT(stats.algnerrc) },
82         { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
83         { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
84         { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
85         { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
86         { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
87         { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
88         { "rx_long_byte_count", IGB_STAT(stats.gorc) },
89         { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
90         { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
91         { "rx_header_split", IGB_STAT(rx_hdr_split) },
92         { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
93         { "tx_smbus", IGB_STAT(stats.mgptc) },
94         { "rx_smbus", IGB_STAT(stats.mgprc) },
95         { "dropped_smbus", IGB_STAT(stats.mgpdc) },
96 };
97
98 #define IGB_QUEUE_STATS_LEN \
99         ((((struct igb_adapter *)netdev->priv)->num_rx_queues + \
100          ((struct igb_adapter *)netdev->priv)->num_tx_queues) * \
101         (sizeof(struct igb_queue_stats) / sizeof(u64)))
102 #define IGB_GLOBAL_STATS_LEN    \
103         sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
104 #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
105 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
106         "Register test  (offline)", "Eeprom test    (offline)",
107         "Interrupt test (offline)", "Loopback test  (offline)",
108         "Link test   (on/offline)"
109 };
110 #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
111
112 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
113 {
114         struct igb_adapter *adapter = netdev_priv(netdev);
115         struct e1000_hw *hw = &adapter->hw;
116
117         if (hw->phy.media_type == e1000_media_type_copper) {
118
119                 ecmd->supported = (SUPPORTED_10baseT_Half |
120                                    SUPPORTED_10baseT_Full |
121                                    SUPPORTED_100baseT_Half |
122                                    SUPPORTED_100baseT_Full |
123                                    SUPPORTED_1000baseT_Full|
124                                    SUPPORTED_Autoneg |
125                                    SUPPORTED_TP);
126                 ecmd->advertising = ADVERTISED_TP;
127
128                 if (hw->mac.autoneg == 1) {
129                         ecmd->advertising |= ADVERTISED_Autoneg;
130                         /* the e1000 autoneg seems to match ethtool nicely */
131                         ecmd->advertising |= hw->phy.autoneg_advertised;
132                 }
133
134                 ecmd->port = PORT_TP;
135                 ecmd->phy_address = hw->phy.addr;
136         } else {
137                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
138                                      SUPPORTED_FIBRE |
139                                      SUPPORTED_Autoneg);
140
141                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
142                                      ADVERTISED_FIBRE |
143                                      ADVERTISED_Autoneg);
144
145                 ecmd->port = PORT_FIBRE;
146         }
147
148         ecmd->transceiver = XCVR_INTERNAL;
149
150         if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
151
152                 adapter->hw.mac.ops.get_speed_and_duplex(hw,
153                                         &adapter->link_speed,
154                                         &adapter->link_duplex);
155                 ecmd->speed = adapter->link_speed;
156
157                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
158                  *          and HALF_DUPLEX != DUPLEX_HALF */
159
160                 if (adapter->link_duplex == FULL_DUPLEX)
161                         ecmd->duplex = DUPLEX_FULL;
162                 else
163                         ecmd->duplex = DUPLEX_HALF;
164         } else {
165                 ecmd->speed = -1;
166                 ecmd->duplex = -1;
167         }
168
169         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
170                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
171         return 0;
172 }
173
174 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
175 {
176         struct igb_adapter *adapter = netdev_priv(netdev);
177         struct e1000_hw *hw = &adapter->hw;
178
179         /* When SoL/IDER sessions are active, autoneg/speed/duplex
180          * cannot be changed */
181         if (igb_check_reset_block(hw)) {
182                 dev_err(&adapter->pdev->dev, "Cannot change link "
183                         "characteristics when SoL/IDER is active.\n");
184                 return -EINVAL;
185         }
186
187         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
188                 msleep(1);
189
190         if (ecmd->autoneg == AUTONEG_ENABLE) {
191                 hw->mac.autoneg = 1;
192                 if (hw->phy.media_type == e1000_media_type_fiber)
193                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
194                                                      ADVERTISED_FIBRE |
195                                                      ADVERTISED_Autoneg;
196                 else
197                         hw->phy.autoneg_advertised = ecmd->advertising |
198                                                      ADVERTISED_TP |
199                                                      ADVERTISED_Autoneg;
200                 ecmd->advertising = hw->phy.autoneg_advertised;
201         } else
202                 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
203                         clear_bit(__IGB_RESETTING, &adapter->state);
204                         return -EINVAL;
205                 }
206
207         /* reset the link */
208
209         if (netif_running(adapter->netdev)) {
210                 igb_down(adapter);
211                 igb_up(adapter);
212         } else
213                 igb_reset(adapter);
214
215         clear_bit(__IGB_RESETTING, &adapter->state);
216         return 0;
217 }
218
219 static void igb_get_pauseparam(struct net_device *netdev,
220                                struct ethtool_pauseparam *pause)
221 {
222         struct igb_adapter *adapter = netdev_priv(netdev);
223         struct e1000_hw *hw = &adapter->hw;
224
225         pause->autoneg =
226                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
227
228         if (hw->fc.type == e1000_fc_rx_pause)
229                 pause->rx_pause = 1;
230         else if (hw->fc.type == e1000_fc_tx_pause)
231                 pause->tx_pause = 1;
232         else if (hw->fc.type == e1000_fc_full) {
233                 pause->rx_pause = 1;
234                 pause->tx_pause = 1;
235         }
236 }
237
238 static int igb_set_pauseparam(struct net_device *netdev,
239                               struct ethtool_pauseparam *pause)
240 {
241         struct igb_adapter *adapter = netdev_priv(netdev);
242         struct e1000_hw *hw = &adapter->hw;
243         int retval = 0;
244
245         adapter->fc_autoneg = pause->autoneg;
246
247         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
248                 msleep(1);
249
250         if (pause->rx_pause && pause->tx_pause)
251                 hw->fc.type = e1000_fc_full;
252         else if (pause->rx_pause && !pause->tx_pause)
253                 hw->fc.type = e1000_fc_rx_pause;
254         else if (!pause->rx_pause && pause->tx_pause)
255                 hw->fc.type = e1000_fc_tx_pause;
256         else if (!pause->rx_pause && !pause->tx_pause)
257                 hw->fc.type = e1000_fc_none;
258
259         hw->fc.original_type = hw->fc.type;
260
261         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
262                 if (netif_running(adapter->netdev)) {
263                         igb_down(adapter);
264                         igb_up(adapter);
265                 } else
266                         igb_reset(adapter);
267         } else
268                 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
269                           igb_setup_link(hw) : igb_force_mac_fc(hw));
270
271         clear_bit(__IGB_RESETTING, &adapter->state);
272         return retval;
273 }
274
275 static u32 igb_get_rx_csum(struct net_device *netdev)
276 {
277         struct igb_adapter *adapter = netdev_priv(netdev);
278         return adapter->rx_csum;
279 }
280
281 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
282 {
283         struct igb_adapter *adapter = netdev_priv(netdev);
284         adapter->rx_csum = data;
285
286         return 0;
287 }
288
289 static u32 igb_get_tx_csum(struct net_device *netdev)
290 {
291         return (netdev->features & NETIF_F_HW_CSUM) != 0;
292 }
293
294 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
295 {
296         if (data)
297                 netdev->features |= NETIF_F_HW_CSUM;
298         else
299                 netdev->features &= ~NETIF_F_HW_CSUM;
300
301         return 0;
302 }
303
304 static int igb_set_tso(struct net_device *netdev, u32 data)
305 {
306         struct igb_adapter *adapter = netdev_priv(netdev);
307
308         if (data)
309                 netdev->features |= NETIF_F_TSO;
310         else
311                 netdev->features &= ~NETIF_F_TSO;
312
313         if (data)
314                 netdev->features |= NETIF_F_TSO6;
315         else
316                 netdev->features &= ~NETIF_F_TSO6;
317
318         dev_info(&adapter->pdev->dev, "TSO is %s\n",
319                  data ? "Enabled" : "Disabled");
320         return 0;
321 }
322
323 static u32 igb_get_msglevel(struct net_device *netdev)
324 {
325         struct igb_adapter *adapter = netdev_priv(netdev);
326         return adapter->msg_enable;
327 }
328
329 static void igb_set_msglevel(struct net_device *netdev, u32 data)
330 {
331         struct igb_adapter *adapter = netdev_priv(netdev);
332         adapter->msg_enable = data;
333 }
334
335 static int igb_get_regs_len(struct net_device *netdev)
336 {
337 #define IGB_REGS_LEN 551
338         return IGB_REGS_LEN * sizeof(u32);
339 }
340
341 static void igb_get_regs(struct net_device *netdev,
342                          struct ethtool_regs *regs, void *p)
343 {
344         struct igb_adapter *adapter = netdev_priv(netdev);
345         struct e1000_hw *hw = &adapter->hw;
346         u32 *regs_buff = p;
347         u8 i;
348
349         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
350
351         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
352
353         /* General Registers */
354         regs_buff[0] = rd32(E1000_CTRL);
355         regs_buff[1] = rd32(E1000_STATUS);
356         regs_buff[2] = rd32(E1000_CTRL_EXT);
357         regs_buff[3] = rd32(E1000_MDIC);
358         regs_buff[4] = rd32(E1000_SCTL);
359         regs_buff[5] = rd32(E1000_CONNSW);
360         regs_buff[6] = rd32(E1000_VET);
361         regs_buff[7] = rd32(E1000_LEDCTL);
362         regs_buff[8] = rd32(E1000_PBA);
363         regs_buff[9] = rd32(E1000_PBS);
364         regs_buff[10] = rd32(E1000_FRTIMER);
365         regs_buff[11] = rd32(E1000_TCPTIMER);
366
367         /* NVM Register */
368         regs_buff[12] = rd32(E1000_EECD);
369
370         /* Interrupt */
371         regs_buff[13] = rd32(E1000_EICR);
372         regs_buff[14] = rd32(E1000_EICS);
373         regs_buff[15] = rd32(E1000_EIMS);
374         regs_buff[16] = rd32(E1000_EIMC);
375         regs_buff[17] = rd32(E1000_EIAC);
376         regs_buff[18] = rd32(E1000_EIAM);
377         regs_buff[19] = rd32(E1000_ICR);
378         regs_buff[20] = rd32(E1000_ICS);
379         regs_buff[21] = rd32(E1000_IMS);
380         regs_buff[22] = rd32(E1000_IMC);
381         regs_buff[23] = rd32(E1000_IAC);
382         regs_buff[24] = rd32(E1000_IAM);
383         regs_buff[25] = rd32(E1000_IMIRVP);
384
385         /* Flow Control */
386         regs_buff[26] = rd32(E1000_FCAL);
387         regs_buff[27] = rd32(E1000_FCAH);
388         regs_buff[28] = rd32(E1000_FCTTV);
389         regs_buff[29] = rd32(E1000_FCRTL);
390         regs_buff[30] = rd32(E1000_FCRTH);
391         regs_buff[31] = rd32(E1000_FCRTV);
392
393         /* Receive */
394         regs_buff[32] = rd32(E1000_RCTL);
395         regs_buff[33] = rd32(E1000_RXCSUM);
396         regs_buff[34] = rd32(E1000_RLPML);
397         regs_buff[35] = rd32(E1000_RFCTL);
398         regs_buff[36] = rd32(E1000_MRQC);
399         regs_buff[37] = rd32(E1000_VMD_CTL);
400
401         /* Transmit */
402         regs_buff[38] = rd32(E1000_TCTL);
403         regs_buff[39] = rd32(E1000_TCTL_EXT);
404         regs_buff[40] = rd32(E1000_TIPG);
405         regs_buff[41] = rd32(E1000_DTXCTL);
406
407         /* Wake Up */
408         regs_buff[42] = rd32(E1000_WUC);
409         regs_buff[43] = rd32(E1000_WUFC);
410         regs_buff[44] = rd32(E1000_WUS);
411         regs_buff[45] = rd32(E1000_IPAV);
412         regs_buff[46] = rd32(E1000_WUPL);
413
414         /* MAC */
415         regs_buff[47] = rd32(E1000_PCS_CFG0);
416         regs_buff[48] = rd32(E1000_PCS_LCTL);
417         regs_buff[49] = rd32(E1000_PCS_LSTAT);
418         regs_buff[50] = rd32(E1000_PCS_ANADV);
419         regs_buff[51] = rd32(E1000_PCS_LPAB);
420         regs_buff[52] = rd32(E1000_PCS_NPTX);
421         regs_buff[53] = rd32(E1000_PCS_LPABNP);
422
423         /* Statistics */
424         regs_buff[54] = adapter->stats.crcerrs;
425         regs_buff[55] = adapter->stats.algnerrc;
426         regs_buff[56] = adapter->stats.symerrs;
427         regs_buff[57] = adapter->stats.rxerrc;
428         regs_buff[58] = adapter->stats.mpc;
429         regs_buff[59] = adapter->stats.scc;
430         regs_buff[60] = adapter->stats.ecol;
431         regs_buff[61] = adapter->stats.mcc;
432         regs_buff[62] = adapter->stats.latecol;
433         regs_buff[63] = adapter->stats.colc;
434         regs_buff[64] = adapter->stats.dc;
435         regs_buff[65] = adapter->stats.tncrs;
436         regs_buff[66] = adapter->stats.sec;
437         regs_buff[67] = adapter->stats.htdpmc;
438         regs_buff[68] = adapter->stats.rlec;
439         regs_buff[69] = adapter->stats.xonrxc;
440         regs_buff[70] = adapter->stats.xontxc;
441         regs_buff[71] = adapter->stats.xoffrxc;
442         regs_buff[72] = adapter->stats.xofftxc;
443         regs_buff[73] = adapter->stats.fcruc;
444         regs_buff[74] = adapter->stats.prc64;
445         regs_buff[75] = adapter->stats.prc127;
446         regs_buff[76] = adapter->stats.prc255;
447         regs_buff[77] = adapter->stats.prc511;
448         regs_buff[78] = adapter->stats.prc1023;
449         regs_buff[79] = adapter->stats.prc1522;
450         regs_buff[80] = adapter->stats.gprc;
451         regs_buff[81] = adapter->stats.bprc;
452         regs_buff[82] = adapter->stats.mprc;
453         regs_buff[83] = adapter->stats.gptc;
454         regs_buff[84] = adapter->stats.gorc;
455         regs_buff[86] = adapter->stats.gotc;
456         regs_buff[88] = adapter->stats.rnbc;
457         regs_buff[89] = adapter->stats.ruc;
458         regs_buff[90] = adapter->stats.rfc;
459         regs_buff[91] = adapter->stats.roc;
460         regs_buff[92] = adapter->stats.rjc;
461         regs_buff[93] = adapter->stats.mgprc;
462         regs_buff[94] = adapter->stats.mgpdc;
463         regs_buff[95] = adapter->stats.mgptc;
464         regs_buff[96] = adapter->stats.tor;
465         regs_buff[98] = adapter->stats.tot;
466         regs_buff[100] = adapter->stats.tpr;
467         regs_buff[101] = adapter->stats.tpt;
468         regs_buff[102] = adapter->stats.ptc64;
469         regs_buff[103] = adapter->stats.ptc127;
470         regs_buff[104] = adapter->stats.ptc255;
471         regs_buff[105] = adapter->stats.ptc511;
472         regs_buff[106] = adapter->stats.ptc1023;
473         regs_buff[107] = adapter->stats.ptc1522;
474         regs_buff[108] = adapter->stats.mptc;
475         regs_buff[109] = adapter->stats.bptc;
476         regs_buff[110] = adapter->stats.tsctc;
477         regs_buff[111] = adapter->stats.iac;
478         regs_buff[112] = adapter->stats.rpthc;
479         regs_buff[113] = adapter->stats.hgptc;
480         regs_buff[114] = adapter->stats.hgorc;
481         regs_buff[116] = adapter->stats.hgotc;
482         regs_buff[118] = adapter->stats.lenerrs;
483         regs_buff[119] = adapter->stats.scvpc;
484         regs_buff[120] = adapter->stats.hrmpc;
485
486         /* These should probably be added to e1000_regs.h instead */
487         #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
488         #define E1000_RAL(_i)         (0x05400 + ((_i) * 8))
489         #define E1000_RAH(_i)         (0x05404 + ((_i) * 8))
490         #define E1000_IP4AT_REG(_i)   (0x05840 + ((_i) * 8))
491         #define E1000_IP6AT_REG(_i)   (0x05880 + ((_i) * 4))
492         #define E1000_WUPM_REG(_i)    (0x05A00 + ((_i) * 4))
493         #define E1000_FFMT_REG(_i)    (0x09000 + ((_i) * 8))
494         #define E1000_FFVT_REG(_i)    (0x09800 + ((_i) * 8))
495         #define E1000_FFLT_REG(_i)    (0x05F00 + ((_i) * 8))
496
497         for (i = 0; i < 4; i++)
498                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
499         for (i = 0; i < 4; i++)
500                 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
501         for (i = 0; i < 4; i++)
502                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
503         for (i = 0; i < 4; i++)
504                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
505         for (i = 0; i < 4; i++)
506                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
507         for (i = 0; i < 4; i++)
508                 regs_buff[141 + i] = rd32(E1000_RDH(i));
509         for (i = 0; i < 4; i++)
510                 regs_buff[145 + i] = rd32(E1000_RDT(i));
511         for (i = 0; i < 4; i++)
512                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
513
514         for (i = 0; i < 10; i++)
515                 regs_buff[153 + i] = rd32(E1000_EITR(i));
516         for (i = 0; i < 8; i++)
517                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
518         for (i = 0; i < 8; i++)
519                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
520         for (i = 0; i < 16; i++)
521                 regs_buff[179 + i] = rd32(E1000_RAL(i));
522         for (i = 0; i < 16; i++)
523                 regs_buff[195 + i] = rd32(E1000_RAH(i));
524
525         for (i = 0; i < 4; i++)
526                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
527         for (i = 0; i < 4; i++)
528                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
529         for (i = 0; i < 4; i++)
530                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
531         for (i = 0; i < 4; i++)
532                 regs_buff[223 + i] = rd32(E1000_TDH(i));
533         for (i = 0; i < 4; i++)
534                 regs_buff[227 + i] = rd32(E1000_TDT(i));
535         for (i = 0; i < 4; i++)
536                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
537         for (i = 0; i < 4; i++)
538                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
539         for (i = 0; i < 4; i++)
540                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
541         for (i = 0; i < 4; i++)
542                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
543
544         for (i = 0; i < 4; i++)
545                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
546         for (i = 0; i < 4; i++)
547                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
548         for (i = 0; i < 32; i++)
549                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
550         for (i = 0; i < 128; i++)
551                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
552         for (i = 0; i < 128; i++)
553                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
554         for (i = 0; i < 4; i++)
555                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
556
557         regs_buff[547] = rd32(E1000_TDFH);
558         regs_buff[548] = rd32(E1000_TDFT);
559         regs_buff[549] = rd32(E1000_TDFHS);
560         regs_buff[550] = rd32(E1000_TDFPC);
561
562 }
563
564 static int igb_get_eeprom_len(struct net_device *netdev)
565 {
566         struct igb_adapter *adapter = netdev_priv(netdev);
567         return adapter->hw.nvm.word_size * 2;
568 }
569
570 static int igb_get_eeprom(struct net_device *netdev,
571                           struct ethtool_eeprom *eeprom, u8 *bytes)
572 {
573         struct igb_adapter *adapter = netdev_priv(netdev);
574         struct e1000_hw *hw = &adapter->hw;
575         u16 *eeprom_buff;
576         int first_word, last_word;
577         int ret_val = 0;
578         u16 i;
579
580         if (eeprom->len == 0)
581                 return -EINVAL;
582
583         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
584
585         first_word = eeprom->offset >> 1;
586         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
587
588         eeprom_buff = kmalloc(sizeof(u16) *
589                         (last_word - first_word + 1), GFP_KERNEL);
590         if (!eeprom_buff)
591                 return -ENOMEM;
592
593         if (hw->nvm.type == e1000_nvm_eeprom_spi)
594                 ret_val = hw->nvm.ops.read_nvm(hw, first_word,
595                                             last_word - first_word + 1,
596                                             eeprom_buff);
597         else {
598                 for (i = 0; i < last_word - first_word + 1; i++) {
599                         ret_val = hw->nvm.ops.read_nvm(hw, first_word + i, 1,
600                                                     &eeprom_buff[i]);
601                         if (ret_val)
602                                 break;
603                 }
604         }
605
606         /* Device's eeprom is always little-endian, word addressable */
607         for (i = 0; i < last_word - first_word + 1; i++)
608                 le16_to_cpus(&eeprom_buff[i]);
609
610         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
611                         eeprom->len);
612         kfree(eeprom_buff);
613
614         return ret_val;
615 }
616
617 static int igb_set_eeprom(struct net_device *netdev,
618                           struct ethtool_eeprom *eeprom, u8 *bytes)
619 {
620         struct igb_adapter *adapter = netdev_priv(netdev);
621         struct e1000_hw *hw = &adapter->hw;
622         u16 *eeprom_buff;
623         void *ptr;
624         int max_len, first_word, last_word, ret_val = 0;
625         u16 i;
626
627         if (eeprom->len == 0)
628                 return -EOPNOTSUPP;
629
630         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
631                 return -EFAULT;
632
633         max_len = hw->nvm.word_size * 2;
634
635         first_word = eeprom->offset >> 1;
636         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
637         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
638         if (!eeprom_buff)
639                 return -ENOMEM;
640
641         ptr = (void *)eeprom_buff;
642
643         if (eeprom->offset & 1) {
644                 /* need read/modify/write of first changed EEPROM word */
645                 /* only the second byte of the word is being modified */
646                 ret_val = hw->nvm.ops.read_nvm(hw, first_word, 1,
647                                             &eeprom_buff[0]);
648                 ptr++;
649         }
650         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
651                 /* need read/modify/write of last changed EEPROM word */
652                 /* only the first byte of the word is being modified */
653                 ret_val = hw->nvm.ops.read_nvm(hw, last_word, 1,
654                                    &eeprom_buff[last_word - first_word]);
655         }
656
657         /* Device's eeprom is always little-endian, word addressable */
658         for (i = 0; i < last_word - first_word + 1; i++)
659                 le16_to_cpus(&eeprom_buff[i]);
660
661         memcpy(ptr, bytes, eeprom->len);
662
663         for (i = 0; i < last_word - first_word + 1; i++)
664                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
665
666         ret_val = hw->nvm.ops.write_nvm(hw, first_word,
667                                      last_word - first_word + 1, eeprom_buff);
668
669         /* Update the checksum over the first part of the EEPROM if needed
670          * and flush shadow RAM for 82573 controllers */
671         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
672                 igb_update_nvm_checksum(hw);
673
674         kfree(eeprom_buff);
675         return ret_val;
676 }
677
678 static void igb_get_drvinfo(struct net_device *netdev,
679                             struct ethtool_drvinfo *drvinfo)
680 {
681         struct igb_adapter *adapter = netdev_priv(netdev);
682         char firmware_version[32];
683         u16 eeprom_data;
684
685         strncpy(drvinfo->driver,  igb_driver_name, 32);
686         strncpy(drvinfo->version, igb_driver_version, 32);
687
688         /* EEPROM image version # is reported as firmware version # for
689          * 82575 controllers */
690         adapter->hw.nvm.ops.read_nvm(&adapter->hw, 5, 1, &eeprom_data);
691         sprintf(firmware_version, "%d.%d-%d",
692                 (eeprom_data & 0xF000) >> 12,
693                 (eeprom_data & 0x0FF0) >> 4,
694                 eeprom_data & 0x000F);
695
696         strncpy(drvinfo->fw_version, firmware_version, 32);
697         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
698         drvinfo->n_stats = IGB_STATS_LEN;
699         drvinfo->testinfo_len = IGB_TEST_LEN;
700         drvinfo->regdump_len = igb_get_regs_len(netdev);
701         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
702 }
703
704 static void igb_get_ringparam(struct net_device *netdev,
705                               struct ethtool_ringparam *ring)
706 {
707         struct igb_adapter *adapter = netdev_priv(netdev);
708         struct igb_ring *tx_ring = adapter->tx_ring;
709         struct igb_ring *rx_ring = adapter->rx_ring;
710
711         ring->rx_max_pending = IGB_MAX_RXD;
712         ring->tx_max_pending = IGB_MAX_TXD;
713         ring->rx_mini_max_pending = 0;
714         ring->rx_jumbo_max_pending = 0;
715         ring->rx_pending = rx_ring->count;
716         ring->tx_pending = tx_ring->count;
717         ring->rx_mini_pending = 0;
718         ring->rx_jumbo_pending = 0;
719 }
720
721 static int igb_set_ringparam(struct net_device *netdev,
722                              struct ethtool_ringparam *ring)
723 {
724         struct igb_adapter *adapter = netdev_priv(netdev);
725         struct igb_buffer *old_buf;
726         struct igb_buffer *old_rx_buf;
727         void *old_desc;
728         int i, err;
729         u32 new_rx_count, new_tx_count, old_size;
730         dma_addr_t old_dma;
731
732         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
733                 return -EINVAL;
734
735         new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
736         new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
737         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
738
739         new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
740         new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
741         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
742
743         if ((new_tx_count == adapter->tx_ring->count) &&
744             (new_rx_count == adapter->rx_ring->count)) {
745                 /* nothing to do */
746                 return 0;
747         }
748
749         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
750                 msleep(1);
751
752         if (netif_running(adapter->netdev))
753                 igb_down(adapter);
754
755         /*
756          * We can't just free everything and then setup again,
757          * because the ISRs in MSI-X mode get passed pointers
758          * to the tx and rx ring structs.
759          */
760         if (new_tx_count != adapter->tx_ring->count) {
761                 for (i = 0; i < adapter->num_tx_queues; i++) {
762                         /* Save existing descriptor ring */
763                         old_buf = adapter->tx_ring[i].buffer_info;
764                         old_desc = adapter->tx_ring[i].desc;
765                         old_size = adapter->tx_ring[i].size;
766                         old_dma = adapter->tx_ring[i].dma;
767                         /* Try to allocate a new one */
768                         adapter->tx_ring[i].buffer_info = NULL;
769                         adapter->tx_ring[i].desc = NULL;
770                         adapter->tx_ring[i].count = new_tx_count;
771                         err = igb_setup_tx_resources(adapter,
772                                                 &adapter->tx_ring[i]);
773                         if (err) {
774                                 /* Restore the old one so at least
775                                    the adapter still works, even if
776                                    we failed the request */
777                                 adapter->tx_ring[i].buffer_info = old_buf;
778                                 adapter->tx_ring[i].desc = old_desc;
779                                 adapter->tx_ring[i].size = old_size;
780                                 adapter->tx_ring[i].dma = old_dma;
781                                 goto err_setup;
782                         }
783                         /* Free the old buffer manually */
784                         vfree(old_buf);
785                         pci_free_consistent(adapter->pdev, old_size,
786                                             old_desc, old_dma);
787                 }
788         }
789
790         if (new_rx_count != adapter->rx_ring->count) {
791                 for (i = 0; i < adapter->num_rx_queues; i++) {
792
793                         old_rx_buf = adapter->rx_ring[i].buffer_info;
794                         old_desc = adapter->rx_ring[i].desc;
795                         old_size = adapter->rx_ring[i].size;
796                         old_dma = adapter->rx_ring[i].dma;
797
798                         adapter->rx_ring[i].buffer_info = NULL;
799                         adapter->rx_ring[i].desc = NULL;
800                         adapter->rx_ring[i].dma = 0;
801                         adapter->rx_ring[i].count = new_rx_count;
802                         err = igb_setup_rx_resources(adapter,
803                                                      &adapter->rx_ring[i]);
804                         if (err) {
805                                 adapter->rx_ring[i].buffer_info = old_rx_buf;
806                                 adapter->rx_ring[i].desc = old_desc;
807                                 adapter->rx_ring[i].size = old_size;
808                                 adapter->rx_ring[i].dma = old_dma;
809                                 goto err_setup;
810                         }
811
812                         vfree(old_rx_buf);
813                         pci_free_consistent(adapter->pdev, old_size, old_desc,
814                                             old_dma);
815                 }
816         }
817
818         err = 0;
819 err_setup:
820         if (netif_running(adapter->netdev))
821                 igb_up(adapter);
822
823         clear_bit(__IGB_RESETTING, &adapter->state);
824         return err;
825 }
826
827 /* ethtool register test data */
828 struct igb_reg_test {
829         u16 reg;
830         u8  array_len;
831         u8  test_type;
832         u32 mask;
833         u32 write;
834 };
835
836 /* In the hardware, registers are laid out either singly, in arrays
837  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
838  * most tests take place on arrays or single registers (handled
839  * as a single-element array) and special-case the tables.
840  * Table tests are always pattern tests.
841  *
842  * We also make provision for some required setup steps by specifying
843  * registers to be written without any read-back testing.
844  */
845
846 #define PATTERN_TEST    1
847 #define SET_READ_TEST   2
848 #define WRITE_NO_TEST   3
849 #define TABLE32_TEST    4
850 #define TABLE64_TEST_LO 5
851 #define TABLE64_TEST_HI 6
852
853 /* default register test */
854 static struct igb_reg_test reg_test_82575[] = {
855         { E1000_FCAL, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
856         { E1000_FCAH, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
857         { E1000_FCT, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
858         { E1000_VET, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
859         { E1000_RDBAL(0), 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
860         { E1000_RDBAH(0), 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
861         { E1000_RDLEN(0), 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
862         /* Enable all four RX queues before testing. */
863         { E1000_RXDCTL(0), 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
864         /* RDH is read-only for 82575, only test RDT. */
865         { E1000_RDT(0), 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
866         { E1000_RXDCTL(0), 4, WRITE_NO_TEST, 0, 0 },
867         { E1000_FCRTH, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
868         { E1000_FCTTV, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
869         { E1000_TIPG, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
870         { E1000_TDBAL(0), 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
871         { E1000_TDBAH(0), 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
872         { E1000_TDLEN(0), 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
873         { E1000_RCTL, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
874         { E1000_RCTL, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
875         { E1000_RCTL, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
876         { E1000_TCTL, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
877         { E1000_TXCW, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
878         { E1000_RA, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
879         { E1000_RA, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
880         { E1000_MTA, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
881         { 0, 0, 0, 0 }
882 };
883
884 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
885                              int reg, u32 mask, u32 write)
886 {
887         u32 pat, val;
888         u32 _test[] =
889                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
890         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
891                 writel((_test[pat] & write), (adapter->hw.hw_addr + reg));
892                 val = readl(adapter->hw.hw_addr + reg);
893                 if (val != (_test[pat] & write & mask)) {
894                         dev_err(&adapter->pdev->dev, "pattern test reg %04X "
895                                 "failed: got 0x%08X expected 0x%08X\n",
896                                 reg, val, (_test[pat] & write & mask));
897                         *data = reg;
898                         return 1;
899                 }
900         }
901         return 0;
902 }
903
904 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
905                               int reg, u32 mask, u32 write)
906 {
907         u32 val;
908         writel((write & mask), (adapter->hw.hw_addr + reg));
909         val = readl(adapter->hw.hw_addr + reg);
910         if ((write & mask) != (val & mask)) {
911                 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
912                         " got 0x%08X expected 0x%08X\n", reg,
913                         (val & mask), (write & mask));
914                 *data = reg;
915                 return 1;
916         }
917         return 0;
918 }
919
920 #define REG_PATTERN_TEST(reg, mask, write) \
921         do { \
922                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
923                         return 1; \
924         } while (0)
925
926 #define REG_SET_AND_CHECK(reg, mask, write) \
927         do { \
928                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
929                         return 1; \
930         } while (0)
931
932 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
933 {
934         struct e1000_hw *hw = &adapter->hw;
935         struct igb_reg_test *test;
936         u32 value, before, after;
937         u32 i, toggle;
938
939         toggle = 0x7FFFF3FF;
940         test = reg_test_82575;
941
942         /* Because the status register is such a special case,
943          * we handle it separately from the rest of the register
944          * tests.  Some bits are read-only, some toggle, and some
945          * are writable on newer MACs.
946          */
947         before = rd32(E1000_STATUS);
948         value = (rd32(E1000_STATUS) & toggle);
949         wr32(E1000_STATUS, toggle);
950         after = rd32(E1000_STATUS) & toggle;
951         if (value != after) {
952                 dev_err(&adapter->pdev->dev, "failed STATUS register test "
953                         "got: 0x%08X expected: 0x%08X\n", after, value);
954                 *data = 1;
955                 return 1;
956         }
957         /* restore previous status */
958         wr32(E1000_STATUS, before);
959
960         /* Perform the remainder of the register test, looping through
961          * the test table until we either fail or reach the null entry.
962          */
963         while (test->reg) {
964                 for (i = 0; i < test->array_len; i++) {
965                         switch (test->test_type) {
966                         case PATTERN_TEST:
967                                 REG_PATTERN_TEST(test->reg + (i * 0x100),
968                                                 test->mask,
969                                                 test->write);
970                                 break;
971                         case SET_READ_TEST:
972                                 REG_SET_AND_CHECK(test->reg + (i * 0x100),
973                                                 test->mask,
974                                                 test->write);
975                                 break;
976                         case WRITE_NO_TEST:
977                                 writel(test->write,
978                                     (adapter->hw.hw_addr + test->reg)
979                                         + (i * 0x100));
980                                 break;
981                         case TABLE32_TEST:
982                                 REG_PATTERN_TEST(test->reg + (i * 4),
983                                                 test->mask,
984                                                 test->write);
985                                 break;
986                         case TABLE64_TEST_LO:
987                                 REG_PATTERN_TEST(test->reg + (i * 8),
988                                                 test->mask,
989                                                 test->write);
990                                 break;
991                         case TABLE64_TEST_HI:
992                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
993                                                 test->mask,
994                                                 test->write);
995                                 break;
996                         }
997                 }
998                 test++;
999         }
1000
1001         *data = 0;
1002         return 0;
1003 }
1004
1005 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1006 {
1007         u16 temp;
1008         u16 checksum = 0;
1009         u16 i;
1010
1011         *data = 0;
1012         /* Read and add up the contents of the EEPROM */
1013         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1014                 if ((adapter->hw.nvm.ops.read_nvm(&adapter->hw, i, 1, &temp))
1015                     < 0) {
1016                         *data = 1;
1017                         break;
1018                 }
1019                 checksum += temp;
1020         }
1021
1022         /* If Checksum is not Correct return error else test passed */
1023         if ((checksum != (u16) NVM_SUM) && !(*data))
1024                 *data = 2;
1025
1026         return *data;
1027 }
1028
1029 static irqreturn_t igb_test_intr(int irq, void *data)
1030 {
1031         struct net_device *netdev = (struct net_device *) data;
1032         struct igb_adapter *adapter = netdev_priv(netdev);
1033         struct e1000_hw *hw = &adapter->hw;
1034
1035         adapter->test_icr |= rd32(E1000_ICR);
1036
1037         return IRQ_HANDLED;
1038 }
1039
1040 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1041 {
1042         struct e1000_hw *hw = &adapter->hw;
1043         struct net_device *netdev = adapter->netdev;
1044         u32 mask, i = 0, shared_int = true;
1045         u32 irq = adapter->pdev->irq;
1046
1047         *data = 0;
1048
1049         /* Hook up test interrupt handler just for this test */
1050         if (adapter->msix_entries) {
1051                 /* NOTE: we don't test MSI-X interrupts here, yet */
1052                 return 0;
1053         } else if (adapter->msi_enabled) {
1054                 shared_int = false;
1055                 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1056                         *data = 1;
1057                         return -1;
1058                 }
1059         } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1060                                 netdev->name, netdev)) {
1061                 shared_int = false;
1062         } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1063                  netdev->name, netdev)) {
1064                 *data = 1;
1065                 return -1;
1066         }
1067         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1068                 (shared_int ? "shared" : "unshared"));
1069
1070         /* Disable all the interrupts */
1071         wr32(E1000_IMC, 0xFFFFFFFF);
1072         msleep(10);
1073
1074         /* Test each interrupt */
1075         for (; i < 10; i++) {
1076                 /* Interrupt to test */
1077                 mask = 1 << i;
1078
1079                 if (!shared_int) {
1080                         /* Disable the interrupt to be reported in
1081                          * the cause register and then force the same
1082                          * interrupt and see if one gets posted.  If
1083                          * an interrupt was posted to the bus, the
1084                          * test failed.
1085                          */
1086                         adapter->test_icr = 0;
1087                         wr32(E1000_IMC, ~mask & 0x00007FFF);
1088                         wr32(E1000_ICS, ~mask & 0x00007FFF);
1089                         msleep(10);
1090
1091                         if (adapter->test_icr & mask) {
1092                                 *data = 3;
1093                                 break;
1094                         }
1095                 }
1096
1097                 /* Enable the interrupt to be reported in
1098                  * the cause register and then force the same
1099                  * interrupt and see if one gets posted.  If
1100                  * an interrupt was not posted to the bus, the
1101                  * test failed.
1102                  */
1103                 adapter->test_icr = 0;
1104                 wr32(E1000_IMS, mask);
1105                 wr32(E1000_ICS, mask);
1106                 msleep(10);
1107
1108                 if (!(adapter->test_icr & mask)) {
1109                         *data = 4;
1110                         break;
1111                 }
1112
1113                 if (!shared_int) {
1114                         /* Disable the other interrupts to be reported in
1115                          * the cause register and then force the other
1116                          * interrupts and see if any get posted.  If
1117                          * an interrupt was posted to the bus, the
1118                          * test failed.
1119                          */
1120                         adapter->test_icr = 0;
1121                         wr32(E1000_IMC, ~mask & 0x00007FFF);
1122                         wr32(E1000_ICS, ~mask & 0x00007FFF);
1123                         msleep(10);
1124
1125                         if (adapter->test_icr) {
1126                                 *data = 5;
1127                                 break;
1128                         }
1129                 }
1130         }
1131
1132         /* Disable all the interrupts */
1133         wr32(E1000_IMC, 0xFFFFFFFF);
1134         msleep(10);
1135
1136         /* Unhook test interrupt handler */
1137         free_irq(irq, netdev);
1138
1139         return *data;
1140 }
1141
1142 static void igb_free_desc_rings(struct igb_adapter *adapter)
1143 {
1144         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1145         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1146         struct pci_dev *pdev = adapter->pdev;
1147         int i;
1148
1149         if (tx_ring->desc && tx_ring->buffer_info) {
1150                 for (i = 0; i < tx_ring->count; i++) {
1151                         struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1152                         if (buf->dma)
1153                                 pci_unmap_single(pdev, buf->dma, buf->length,
1154                                                  PCI_DMA_TODEVICE);
1155                         if (buf->skb)
1156                                 dev_kfree_skb(buf->skb);
1157                 }
1158         }
1159
1160         if (rx_ring->desc && rx_ring->buffer_info) {
1161                 for (i = 0; i < rx_ring->count; i++) {
1162                         struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1163                         if (buf->dma)
1164                                 pci_unmap_single(pdev, buf->dma,
1165                                                  IGB_RXBUFFER_2048,
1166                                                  PCI_DMA_FROMDEVICE);
1167                         if (buf->skb)
1168                                 dev_kfree_skb(buf->skb);
1169                 }
1170         }
1171
1172         if (tx_ring->desc) {
1173                 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1174                                     tx_ring->dma);
1175                 tx_ring->desc = NULL;
1176         }
1177         if (rx_ring->desc) {
1178                 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1179                                     rx_ring->dma);
1180                 rx_ring->desc = NULL;
1181         }
1182
1183         kfree(tx_ring->buffer_info);
1184         tx_ring->buffer_info = NULL;
1185         kfree(rx_ring->buffer_info);
1186         rx_ring->buffer_info = NULL;
1187
1188         return;
1189 }
1190
1191 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1192 {
1193         struct e1000_hw *hw = &adapter->hw;
1194         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1195         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1196         struct pci_dev *pdev = adapter->pdev;
1197         u32 rctl;
1198         int i, ret_val;
1199
1200         /* Setup Tx descriptor ring and Tx buffers */
1201
1202         if (!tx_ring->count)
1203                 tx_ring->count = IGB_DEFAULT_TXD;
1204
1205         tx_ring->buffer_info = kcalloc(tx_ring->count,
1206                                        sizeof(struct igb_buffer),
1207                                        GFP_KERNEL);
1208         if (!tx_ring->buffer_info) {
1209                 ret_val = 1;
1210                 goto err_nomem;
1211         }
1212
1213         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1214         tx_ring->size = ALIGN(tx_ring->size, 4096);
1215         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1216                                              &tx_ring->dma);
1217         if (!tx_ring->desc) {
1218                 ret_val = 2;
1219                 goto err_nomem;
1220         }
1221         tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1222
1223         wr32(E1000_TDBAL(0),
1224                         ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1225         wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1226         wr32(E1000_TDLEN(0),
1227                         tx_ring->count * sizeof(struct e1000_tx_desc));
1228         wr32(E1000_TDH(0), 0);
1229         wr32(E1000_TDT(0), 0);
1230         wr32(E1000_TCTL,
1231                         E1000_TCTL_PSP | E1000_TCTL_EN |
1232                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1233                         E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1234
1235         for (i = 0; i < tx_ring->count; i++) {
1236                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1237                 struct sk_buff *skb;
1238                 unsigned int size = 1024;
1239
1240                 skb = alloc_skb(size, GFP_KERNEL);
1241                 if (!skb) {
1242                         ret_val = 3;
1243                         goto err_nomem;
1244                 }
1245                 skb_put(skb, size);
1246                 tx_ring->buffer_info[i].skb = skb;
1247                 tx_ring->buffer_info[i].length = skb->len;
1248                 tx_ring->buffer_info[i].dma =
1249                         pci_map_single(pdev, skb->data, skb->len,
1250                                        PCI_DMA_TODEVICE);
1251                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1252                 tx_desc->lower.data = cpu_to_le32(skb->len);
1253                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1254                                                    E1000_TXD_CMD_IFCS |
1255                                                    E1000_TXD_CMD_RS);
1256                 tx_desc->upper.data = 0;
1257         }
1258
1259         /* Setup Rx descriptor ring and Rx buffers */
1260
1261         if (!rx_ring->count)
1262                 rx_ring->count = IGB_DEFAULT_RXD;
1263
1264         rx_ring->buffer_info = kcalloc(rx_ring->count,
1265                                        sizeof(struct igb_buffer),
1266                                        GFP_KERNEL);
1267         if (!rx_ring->buffer_info) {
1268                 ret_val = 4;
1269                 goto err_nomem;
1270         }
1271
1272         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1273         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1274                                              &rx_ring->dma);
1275         if (!rx_ring->desc) {
1276                 ret_val = 5;
1277                 goto err_nomem;
1278         }
1279         rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1280
1281         rctl = rd32(E1000_RCTL);
1282         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1283         wr32(E1000_RDBAL(0),
1284                         ((u64) rx_ring->dma & 0xFFFFFFFF));
1285         wr32(E1000_RDBAH(0),
1286                         ((u64) rx_ring->dma >> 32));
1287         wr32(E1000_RDLEN(0), rx_ring->size);
1288         wr32(E1000_RDH(0), 0);
1289         wr32(E1000_RDT(0), 0);
1290         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1291                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1292                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1293         wr32(E1000_RCTL, rctl);
1294         wr32(E1000_SRRCTL(0), 0);
1295
1296         for (i = 0; i < rx_ring->count; i++) {
1297                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1298                 struct sk_buff *skb;
1299
1300                 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1301                                 GFP_KERNEL);
1302                 if (!skb) {
1303                         ret_val = 6;
1304                         goto err_nomem;
1305                 }
1306                 skb_reserve(skb, NET_IP_ALIGN);
1307                 rx_ring->buffer_info[i].skb = skb;
1308                 rx_ring->buffer_info[i].dma =
1309                         pci_map_single(pdev, skb->data, IGB_RXBUFFER_2048,
1310                                        PCI_DMA_FROMDEVICE);
1311                 rx_desc->buffer_addr = cpu_to_le64(rx_ring->buffer_info[i].dma);
1312                 memset(skb->data, 0x00, skb->len);
1313         }
1314
1315         return 0;
1316
1317 err_nomem:
1318         igb_free_desc_rings(adapter);
1319         return ret_val;
1320 }
1321
1322 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1323 {
1324         struct e1000_hw *hw = &adapter->hw;
1325
1326         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1327         hw->phy.ops.write_phy_reg(hw, 29, 0x001F);
1328         hw->phy.ops.write_phy_reg(hw, 30, 0x8FFC);
1329         hw->phy.ops.write_phy_reg(hw, 29, 0x001A);
1330         hw->phy.ops.write_phy_reg(hw, 30, 0x8FF0);
1331 }
1332
1333 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1334 {
1335         struct e1000_hw *hw = &adapter->hw;
1336         u32 ctrl_reg = 0;
1337         u32 stat_reg = 0;
1338
1339         hw->mac.autoneg = false;
1340
1341         if (hw->phy.type == e1000_phy_m88) {
1342                 /* Auto-MDI/MDIX Off */
1343                 hw->phy.ops.write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1344                 /* reset to update Auto-MDI/MDIX */
1345                 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x9140);
1346                 /* autoneg off */
1347                 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x8140);
1348         }
1349
1350         ctrl_reg = rd32(E1000_CTRL);
1351
1352         /* force 1000, set loopback */
1353         hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, 0x4140);
1354
1355         /* Now set up the MAC to the same speed/duplex as the PHY. */
1356         ctrl_reg = rd32(E1000_CTRL);
1357         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1358         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1359                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1360                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1361                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1362
1363         if (hw->phy.media_type == e1000_media_type_copper &&
1364             hw->phy.type == e1000_phy_m88)
1365                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1366         else {
1367                 /* Set the ILOS bit on the fiber Nic if half duplex link is
1368                  * detected. */
1369                 stat_reg = rd32(E1000_STATUS);
1370                 if ((stat_reg & E1000_STATUS_FD) == 0)
1371                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1372         }
1373
1374         wr32(E1000_CTRL, ctrl_reg);
1375
1376         /* Disable the receiver on the PHY so when a cable is plugged in, the
1377          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1378          */
1379         if (hw->phy.type == e1000_phy_m88)
1380                 igb_phy_disable_receiver(adapter);
1381
1382         udelay(500);
1383
1384         return 0;
1385 }
1386
1387 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1388 {
1389         return igb_integrated_phy_loopback(adapter);
1390 }
1391
1392 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1393 {
1394         struct e1000_hw *hw = &adapter->hw;
1395         u32 rctl;
1396
1397         if (hw->phy.media_type == e1000_media_type_fiber ||
1398             hw->phy.media_type == e1000_media_type_internal_serdes) {
1399                 rctl = rd32(E1000_RCTL);
1400                 rctl |= E1000_RCTL_LBM_TCVR;
1401                 wr32(E1000_RCTL, rctl);
1402                 return 0;
1403         } else if (hw->phy.media_type == e1000_media_type_copper) {
1404                 return igb_set_phy_loopback(adapter);
1405         }
1406
1407         return 7;
1408 }
1409
1410 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1411 {
1412         struct e1000_hw *hw = &adapter->hw;
1413         u32 rctl;
1414         u16 phy_reg;
1415
1416         rctl = rd32(E1000_RCTL);
1417         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1418         wr32(E1000_RCTL, rctl);
1419
1420         hw->mac.autoneg = true;
1421         hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1422         if (phy_reg & MII_CR_LOOPBACK) {
1423                 phy_reg &= ~MII_CR_LOOPBACK;
1424                 hw->phy.ops.write_phy_reg(hw, PHY_CONTROL, phy_reg);
1425                 igb_phy_sw_reset(hw);
1426         }
1427 }
1428
1429 static void igb_create_lbtest_frame(struct sk_buff *skb,
1430                                     unsigned int frame_size)
1431 {
1432         memset(skb->data, 0xFF, frame_size);
1433         frame_size &= ~1;
1434         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1435         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1436         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1437 }
1438
1439 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1440 {
1441         frame_size &= ~1;
1442         if (*(skb->data + 3) == 0xFF)
1443                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1444                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1445                         return 0;
1446         return 13;
1447 }
1448
1449 static int igb_run_loopback_test(struct igb_adapter *adapter)
1450 {
1451         struct e1000_hw *hw = &adapter->hw;
1452         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1453         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1454         struct pci_dev *pdev = adapter->pdev;
1455         int i, j, k, l, lc, good_cnt;
1456         int ret_val = 0;
1457         unsigned long time;
1458
1459         wr32(E1000_RDT(0), rx_ring->count - 1);
1460
1461         /* Calculate the loop count based on the largest descriptor ring
1462          * The idea is to wrap the largest ring a number of times using 64
1463          * send/receive pairs during each loop
1464          */
1465
1466         if (rx_ring->count <= tx_ring->count)
1467                 lc = ((tx_ring->count / 64) * 2) + 1;
1468         else
1469                 lc = ((rx_ring->count / 64) * 2) + 1;
1470
1471         k = l = 0;
1472         for (j = 0; j <= lc; j++) { /* loop count loop */
1473                 for (i = 0; i < 64; i++) { /* send the packets */
1474                         igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1475                                                 1024);
1476                         pci_dma_sync_single_for_device(pdev,
1477                                 tx_ring->buffer_info[k].dma,
1478                                 tx_ring->buffer_info[k].length,
1479                                 PCI_DMA_TODEVICE);
1480                         k++;
1481                         if (k == tx_ring->count)
1482                                 k = 0;
1483                 }
1484                 wr32(E1000_TDT(0), k);
1485                 msleep(200);
1486                 time = jiffies; /* set the start time for the receive */
1487                 good_cnt = 0;
1488                 do { /* receive the sent packets */
1489                         pci_dma_sync_single_for_cpu(pdev,
1490                                         rx_ring->buffer_info[l].dma,
1491                                         IGB_RXBUFFER_2048,
1492                                         PCI_DMA_FROMDEVICE);
1493
1494                         ret_val = igb_check_lbtest_frame(
1495                                              rx_ring->buffer_info[l].skb, 1024);
1496                         if (!ret_val)
1497                                 good_cnt++;
1498                         l++;
1499                         if (l == rx_ring->count)
1500                                 l = 0;
1501                         /* time + 20 msecs (200 msecs on 2.4) is more than
1502                          * enough time to complete the receives, if it's
1503                          * exceeded, break and error off
1504                          */
1505                 } while (good_cnt < 64 && jiffies < (time + 20));
1506                 if (good_cnt != 64) {
1507                         ret_val = 13; /* ret_val is the same as mis-compare */
1508                         break;
1509                 }
1510                 if (jiffies >= (time + 20)) {
1511                         ret_val = 14; /* error code for time out error */
1512                         break;
1513                 }
1514         } /* end loop count loop */
1515         return ret_val;
1516 }
1517
1518 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1519 {
1520         /* PHY loopback cannot be performed if SoL/IDER
1521          * sessions are active */
1522         if (igb_check_reset_block(&adapter->hw)) {
1523                 dev_err(&adapter->pdev->dev,
1524                         "Cannot do PHY loopback test "
1525                         "when SoL/IDER is active.\n");
1526                 *data = 0;
1527                 goto out;
1528         }
1529         *data = igb_setup_desc_rings(adapter);
1530         if (*data)
1531                 goto out;
1532         *data = igb_setup_loopback_test(adapter);
1533         if (*data)
1534                 goto err_loopback;
1535         *data = igb_run_loopback_test(adapter);
1536         igb_loopback_cleanup(adapter);
1537
1538 err_loopback:
1539         igb_free_desc_rings(adapter);
1540 out:
1541         return *data;
1542 }
1543
1544 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1545 {
1546         struct e1000_hw *hw = &adapter->hw;
1547         *data = 0;
1548         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1549                 int i = 0;
1550                 hw->mac.serdes_has_link = false;
1551
1552                 /* On some blade server designs, link establishment
1553                  * could take as long as 2-3 minutes */
1554                 do {
1555                         hw->mac.ops.check_for_link(&adapter->hw);
1556                         if (hw->mac.serdes_has_link)
1557                                 return *data;
1558                         msleep(20);
1559                 } while (i++ < 3750);
1560
1561                 *data = 1;
1562         } else {
1563                 hw->mac.ops.check_for_link(&adapter->hw);
1564                 if (hw->mac.autoneg)
1565                         msleep(4000);
1566
1567                 if (!(rd32(E1000_STATUS) &
1568                       E1000_STATUS_LU))
1569                         *data = 1;
1570         }
1571         return *data;
1572 }
1573
1574 static void igb_diag_test(struct net_device *netdev,
1575                           struct ethtool_test *eth_test, u64 *data)
1576 {
1577         struct igb_adapter *adapter = netdev_priv(netdev);
1578         u16 autoneg_advertised;
1579         u8 forced_speed_duplex, autoneg;
1580         bool if_running = netif_running(netdev);
1581
1582         set_bit(__IGB_TESTING, &adapter->state);
1583         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1584                 /* Offline tests */
1585
1586                 /* save speed, duplex, autoneg settings */
1587                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1588                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1589                 autoneg = adapter->hw.mac.autoneg;
1590
1591                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1592
1593                 /* Link test performed before hardware reset so autoneg doesn't
1594                  * interfere with test result */
1595                 if (igb_link_test(adapter, &data[4]))
1596                         eth_test->flags |= ETH_TEST_FL_FAILED;
1597
1598                 if (if_running)
1599                         /* indicate we're in test mode */
1600                         dev_close(netdev);
1601                 else
1602                         igb_reset(adapter);
1603
1604                 if (igb_reg_test(adapter, &data[0]))
1605                         eth_test->flags |= ETH_TEST_FL_FAILED;
1606
1607                 igb_reset(adapter);
1608                 if (igb_eeprom_test(adapter, &data[1]))
1609                         eth_test->flags |= ETH_TEST_FL_FAILED;
1610
1611                 igb_reset(adapter);
1612                 if (igb_intr_test(adapter, &data[2]))
1613                         eth_test->flags |= ETH_TEST_FL_FAILED;
1614
1615                 igb_reset(adapter);
1616                 if (igb_loopback_test(adapter, &data[3]))
1617                         eth_test->flags |= ETH_TEST_FL_FAILED;
1618
1619                 /* restore speed, duplex, autoneg settings */
1620                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1621                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1622                 adapter->hw.mac.autoneg = autoneg;
1623
1624                 /* force this routine to wait until autoneg complete/timeout */
1625                 adapter->hw.phy.autoneg_wait_to_complete = true;
1626                 igb_reset(adapter);
1627                 adapter->hw.phy.autoneg_wait_to_complete = false;
1628
1629                 clear_bit(__IGB_TESTING, &adapter->state);
1630                 if (if_running)
1631                         dev_open(netdev);
1632         } else {
1633                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1634                 /* Online tests */
1635                 if (igb_link_test(adapter, &data[4]))
1636                         eth_test->flags |= ETH_TEST_FL_FAILED;
1637
1638                 /* Online tests aren't run; pass by default */
1639                 data[0] = 0;
1640                 data[1] = 0;
1641                 data[2] = 0;
1642                 data[3] = 0;
1643
1644                 clear_bit(__IGB_TESTING, &adapter->state);
1645         }
1646         msleep_interruptible(4 * 1000);
1647 }
1648
1649 static int igb_wol_exclusion(struct igb_adapter *adapter,
1650                              struct ethtool_wolinfo *wol)
1651 {
1652         struct e1000_hw *hw = &adapter->hw;
1653         int retval = 1; /* fail by default */
1654
1655         switch (hw->device_id) {
1656         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1657                 /* WoL not supported */
1658                 wol->supported = 0;
1659                 break;
1660         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1661                 /* Wake events not supported on port B */
1662                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1663                         wol->supported = 0;
1664                         break;
1665                 }
1666                 /* return success for non excluded adapter ports */
1667                 retval = 0;
1668                 break;
1669         default:
1670                 /* dual port cards only support WoL on port A from now on
1671                  * unless it was enabled in the eeprom for port B
1672                  * so exclude FUNC_1 ports from having WoL enabled */
1673                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1674                     !adapter->eeprom_wol) {
1675                         wol->supported = 0;
1676                         break;
1677                 }
1678
1679                 retval = 0;
1680         }
1681
1682         return retval;
1683 }
1684
1685 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1686 {
1687         struct igb_adapter *adapter = netdev_priv(netdev);
1688
1689         wol->supported = WAKE_UCAST | WAKE_MCAST |
1690                          WAKE_BCAST | WAKE_MAGIC;
1691         wol->wolopts = 0;
1692
1693         /* this function will set ->supported = 0 and return 1 if wol is not
1694          * supported by this hardware */
1695         if (igb_wol_exclusion(adapter, wol))
1696                 return;
1697
1698         /* apply any specific unsupported masks here */
1699         switch (adapter->hw.device_id) {
1700         default:
1701                 break;
1702         }
1703
1704         if (adapter->wol & E1000_WUFC_EX)
1705                 wol->wolopts |= WAKE_UCAST;
1706         if (adapter->wol & E1000_WUFC_MC)
1707                 wol->wolopts |= WAKE_MCAST;
1708         if (adapter->wol & E1000_WUFC_BC)
1709                 wol->wolopts |= WAKE_BCAST;
1710         if (adapter->wol & E1000_WUFC_MAG)
1711                 wol->wolopts |= WAKE_MAGIC;
1712
1713         return;
1714 }
1715
1716 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1717 {
1718         struct igb_adapter *adapter = netdev_priv(netdev);
1719         struct e1000_hw *hw = &adapter->hw;
1720
1721         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1722                 return -EOPNOTSUPP;
1723
1724         if (igb_wol_exclusion(adapter, wol))
1725                 return wol->wolopts ? -EOPNOTSUPP : 0;
1726
1727         switch (hw->device_id) {
1728         default:
1729                 break;
1730         }
1731
1732         /* these settings will always override what we currently have */
1733         adapter->wol = 0;
1734
1735         if (wol->wolopts & WAKE_UCAST)
1736                 adapter->wol |= E1000_WUFC_EX;
1737         if (wol->wolopts & WAKE_MCAST)
1738                 adapter->wol |= E1000_WUFC_MC;
1739         if (wol->wolopts & WAKE_BCAST)
1740                 adapter->wol |= E1000_WUFC_BC;
1741         if (wol->wolopts & WAKE_MAGIC)
1742                 adapter->wol |= E1000_WUFC_MAG;
1743
1744         return 0;
1745 }
1746
1747 /* toggle LED 4 times per second = 2 "blinks" per second */
1748 #define IGB_ID_INTERVAL         (HZ/4)
1749
1750 /* bit defines for adapter->led_status */
1751 #define IGB_LED_ON              0
1752
1753 static int igb_phys_id(struct net_device *netdev, u32 data)
1754 {
1755         struct igb_adapter *adapter = netdev_priv(netdev);
1756         struct e1000_hw *hw = &adapter->hw;
1757
1758         if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1759                 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1760
1761         igb_blink_led(hw);
1762         msleep_interruptible(data * 1000);
1763
1764         igb_led_off(hw);
1765         clear_bit(IGB_LED_ON, &adapter->led_status);
1766         igb_cleanup_led(hw);
1767
1768         return 0;
1769 }
1770
1771 static int igb_set_coalesce(struct net_device *netdev,
1772                             struct ethtool_coalesce *ec)
1773 {
1774         struct igb_adapter *adapter = netdev_priv(netdev);
1775
1776         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1777             ((ec->rx_coalesce_usecs > 3) &&
1778              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1779             (ec->rx_coalesce_usecs == 2))
1780                 return -EINVAL;
1781
1782         /* convert to rate of irq's per second */
1783         if (ec->rx_coalesce_usecs <= 3)
1784                 adapter->itr_setting = ec->rx_coalesce_usecs;
1785         else
1786                 adapter->itr_setting = (1000000 / ec->rx_coalesce_usecs);
1787
1788         if (netif_running(netdev))
1789                 igb_reinit_locked(adapter);
1790
1791         return 0;
1792 }
1793
1794 static int igb_get_coalesce(struct net_device *netdev,
1795                             struct ethtool_coalesce *ec)
1796 {
1797         struct igb_adapter *adapter = netdev_priv(netdev);
1798
1799         if (adapter->itr_setting <= 3)
1800                 ec->rx_coalesce_usecs = adapter->itr_setting;
1801         else
1802                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1803
1804         return 0;
1805 }
1806
1807
1808 static int igb_nway_reset(struct net_device *netdev)
1809 {
1810         struct igb_adapter *adapter = netdev_priv(netdev);
1811         if (netif_running(netdev))
1812                 igb_reinit_locked(adapter);
1813         return 0;
1814 }
1815
1816 static int igb_get_sset_count(struct net_device *netdev, int sset)
1817 {
1818         switch (sset) {
1819         case ETH_SS_STATS:
1820                 return IGB_STATS_LEN;
1821         case ETH_SS_TEST:
1822                 return IGB_TEST_LEN;
1823         default:
1824                 return -ENOTSUPP;
1825         }
1826 }
1827
1828 static void igb_get_ethtool_stats(struct net_device *netdev,
1829                                   struct ethtool_stats *stats, u64 *data)
1830 {
1831         struct igb_adapter *adapter = netdev_priv(netdev);
1832         u64 *queue_stat;
1833         int stat_count = sizeof(struct igb_queue_stats) / sizeof(u64);
1834         int j;
1835         int i;
1836
1837         igb_update_stats(adapter);
1838         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1839                 char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
1840                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1841                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1842         }
1843         for (j = 0; j < adapter->num_tx_queues; j++) {
1844                 int k;
1845                 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1846                 for (k = 0; k < stat_count; k++)
1847                         data[i + k] = queue_stat[k];
1848                 i += k;
1849         }
1850         for (j = 0; j < adapter->num_rx_queues; j++) {
1851                 int k;
1852                 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1853                 for (k = 0; k < stat_count; k++)
1854                         data[i + k] = queue_stat[k];
1855                 i += k;
1856         }
1857 }
1858
1859 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1860 {
1861         struct igb_adapter *adapter = netdev_priv(netdev);
1862         u8 *p = data;
1863         int i;
1864
1865         switch (stringset) {
1866         case ETH_SS_TEST:
1867                 memcpy(data, *igb_gstrings_test,
1868                         IGB_TEST_LEN*ETH_GSTRING_LEN);
1869                 break;
1870         case ETH_SS_STATS:
1871                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1872                         memcpy(p, igb_gstrings_stats[i].stat_string,
1873                                ETH_GSTRING_LEN);
1874                         p += ETH_GSTRING_LEN;
1875                 }
1876                 for (i = 0; i < adapter->num_tx_queues; i++) {
1877                         sprintf(p, "tx_queue_%u_packets", i);
1878                         p += ETH_GSTRING_LEN;
1879                         sprintf(p, "tx_queue_%u_bytes", i);
1880                         p += ETH_GSTRING_LEN;
1881                 }
1882                 for (i = 0; i < adapter->num_rx_queues; i++) {
1883                         sprintf(p, "rx_queue_%u_packets", i);
1884                         p += ETH_GSTRING_LEN;
1885                         sprintf(p, "rx_queue_%u_bytes", i);
1886                         p += ETH_GSTRING_LEN;
1887                 }
1888 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
1889                 break;
1890         }
1891 }
1892
1893 static struct ethtool_ops igb_ethtool_ops = {
1894         .get_settings           = igb_get_settings,
1895         .set_settings           = igb_set_settings,
1896         .get_drvinfo            = igb_get_drvinfo,
1897         .get_regs_len           = igb_get_regs_len,
1898         .get_regs               = igb_get_regs,
1899         .get_wol                = igb_get_wol,
1900         .set_wol                = igb_set_wol,
1901         .get_msglevel           = igb_get_msglevel,
1902         .set_msglevel           = igb_set_msglevel,
1903         .nway_reset             = igb_nway_reset,
1904         .get_link               = ethtool_op_get_link,
1905         .get_eeprom_len         = igb_get_eeprom_len,
1906         .get_eeprom             = igb_get_eeprom,
1907         .set_eeprom             = igb_set_eeprom,
1908         .get_ringparam          = igb_get_ringparam,
1909         .set_ringparam          = igb_set_ringparam,
1910         .get_pauseparam         = igb_get_pauseparam,
1911         .set_pauseparam         = igb_set_pauseparam,
1912         .get_rx_csum            = igb_get_rx_csum,
1913         .set_rx_csum            = igb_set_rx_csum,
1914         .get_tx_csum            = igb_get_tx_csum,
1915         .set_tx_csum            = igb_set_tx_csum,
1916         .get_sg                 = ethtool_op_get_sg,
1917         .set_sg                 = ethtool_op_set_sg,
1918         .get_tso                = ethtool_op_get_tso,
1919         .set_tso                = igb_set_tso,
1920         .self_test              = igb_diag_test,
1921         .get_strings            = igb_get_strings,
1922         .phys_id                = igb_phys_id,
1923         .get_sset_count         = igb_get_sset_count,
1924         .get_ethtool_stats      = igb_get_ethtool_stats,
1925         .get_coalesce           = igb_get_coalesce,
1926         .set_coalesce           = igb_set_coalesce,
1927 };
1928
1929 void igb_set_ethtool_ops(struct net_device *netdev)
1930 {
1931         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
1932 }