deaea8fa1032896ef8b0911523b5d1bfd167f307
[safe/jmp/linux-2.6] / drivers / net / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38
39 #include "igb.h"
40
41 struct igb_stats {
42         char stat_string[ETH_GSTRING_LEN];
43         int sizeof_stat;
44         int stat_offset;
45 };
46
47 #define IGB_STAT(m) FIELD_SIZEOF(struct igb_adapter, m), \
48                       offsetof(struct igb_adapter, m)
49 static const struct igb_stats igb_gstrings_stats[] = {
50         { "rx_packets", IGB_STAT(stats.gprc) },
51         { "tx_packets", IGB_STAT(stats.gptc) },
52         { "rx_bytes", IGB_STAT(stats.gorc) },
53         { "tx_bytes", IGB_STAT(stats.gotc) },
54         { "rx_broadcast", IGB_STAT(stats.bprc) },
55         { "tx_broadcast", IGB_STAT(stats.bptc) },
56         { "rx_multicast", IGB_STAT(stats.mprc) },
57         { "tx_multicast", IGB_STAT(stats.mptc) },
58         { "rx_errors", IGB_STAT(net_stats.rx_errors) },
59         { "tx_errors", IGB_STAT(net_stats.tx_errors) },
60         { "tx_dropped", IGB_STAT(net_stats.tx_dropped) },
61         { "multicast", IGB_STAT(stats.mprc) },
62         { "collisions", IGB_STAT(stats.colc) },
63         { "rx_length_errors", IGB_STAT(net_stats.rx_length_errors) },
64         { "rx_over_errors", IGB_STAT(net_stats.rx_over_errors) },
65         { "rx_crc_errors", IGB_STAT(stats.crcerrs) },
66         { "rx_frame_errors", IGB_STAT(net_stats.rx_frame_errors) },
67         { "rx_no_buffer_count", IGB_STAT(stats.rnbc) },
68         { "rx_queue_drop_packet_count", IGB_STAT(net_stats.rx_fifo_errors) },
69         { "rx_missed_errors", IGB_STAT(stats.mpc) },
70         { "tx_aborted_errors", IGB_STAT(stats.ecol) },
71         { "tx_carrier_errors", IGB_STAT(stats.tncrs) },
72         { "tx_fifo_errors", IGB_STAT(net_stats.tx_fifo_errors) },
73         { "tx_heartbeat_errors", IGB_STAT(net_stats.tx_heartbeat_errors) },
74         { "tx_window_errors", IGB_STAT(stats.latecol) },
75         { "tx_abort_late_coll", IGB_STAT(stats.latecol) },
76         { "tx_deferred_ok", IGB_STAT(stats.dc) },
77         { "tx_single_coll_ok", IGB_STAT(stats.scc) },
78         { "tx_multi_coll_ok", IGB_STAT(stats.mcc) },
79         { "tx_timeout_count", IGB_STAT(tx_timeout_count) },
80         { "tx_restart_queue", IGB_STAT(restart_queue) },
81         { "rx_long_length_errors", IGB_STAT(stats.roc) },
82         { "rx_short_length_errors", IGB_STAT(stats.ruc) },
83         { "rx_align_errors", IGB_STAT(stats.algnerrc) },
84         { "tx_tcp_seg_good", IGB_STAT(stats.tsctc) },
85         { "tx_tcp_seg_failed", IGB_STAT(stats.tsctfc) },
86         { "rx_flow_control_xon", IGB_STAT(stats.xonrxc) },
87         { "rx_flow_control_xoff", IGB_STAT(stats.xoffrxc) },
88         { "tx_flow_control_xon", IGB_STAT(stats.xontxc) },
89         { "tx_flow_control_xoff", IGB_STAT(stats.xofftxc) },
90         { "rx_long_byte_count", IGB_STAT(stats.gorc) },
91         { "rx_csum_offload_good", IGB_STAT(hw_csum_good) },
92         { "rx_csum_offload_errors", IGB_STAT(hw_csum_err) },
93         { "tx_dma_out_of_sync", IGB_STAT(stats.doosync) },
94         { "alloc_rx_buff_failed", IGB_STAT(alloc_rx_buff_failed) },
95         { "tx_smbus", IGB_STAT(stats.mgptc) },
96         { "rx_smbus", IGB_STAT(stats.mgprc) },
97         { "dropped_smbus", IGB_STAT(stats.mgpdc) },
98 };
99
100 #define IGB_QUEUE_STATS_LEN \
101         (((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues)* \
102           (sizeof(struct igb_rx_queue_stats) / sizeof(u64))) + \
103          ((((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues) * \
104           (sizeof(struct igb_tx_queue_stats) / sizeof(u64))))
105 #define IGB_GLOBAL_STATS_LEN    \
106         sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)
107 #define IGB_STATS_LEN (IGB_GLOBAL_STATS_LEN + IGB_QUEUE_STATS_LEN)
108 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
109         "Register test  (offline)", "Eeprom test    (offline)",
110         "Interrupt test (offline)", "Loopback test  (offline)",
111         "Link test   (on/offline)"
112 };
113 #define IGB_TEST_LEN sizeof(igb_gstrings_test) / ETH_GSTRING_LEN
114
115 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
116 {
117         struct igb_adapter *adapter = netdev_priv(netdev);
118         struct e1000_hw *hw = &adapter->hw;
119
120         if (hw->phy.media_type == e1000_media_type_copper) {
121
122                 ecmd->supported = (SUPPORTED_10baseT_Half |
123                                    SUPPORTED_10baseT_Full |
124                                    SUPPORTED_100baseT_Half |
125                                    SUPPORTED_100baseT_Full |
126                                    SUPPORTED_1000baseT_Full|
127                                    SUPPORTED_Autoneg |
128                                    SUPPORTED_TP);
129                 ecmd->advertising = ADVERTISED_TP;
130
131                 if (hw->mac.autoneg == 1) {
132                         ecmd->advertising |= ADVERTISED_Autoneg;
133                         /* the e1000 autoneg seems to match ethtool nicely */
134                         ecmd->advertising |= hw->phy.autoneg_advertised;
135                 }
136
137                 ecmd->port = PORT_TP;
138                 ecmd->phy_address = hw->phy.addr;
139         } else {
140                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
141                                      SUPPORTED_FIBRE |
142                                      SUPPORTED_Autoneg);
143
144                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
145                                      ADVERTISED_FIBRE |
146                                      ADVERTISED_Autoneg);
147
148                 ecmd->port = PORT_FIBRE;
149         }
150
151         ecmd->transceiver = XCVR_INTERNAL;
152
153         if (rd32(E1000_STATUS) & E1000_STATUS_LU) {
154
155                 adapter->hw.mac.ops.get_speed_and_duplex(hw,
156                                         &adapter->link_speed,
157                                         &adapter->link_duplex);
158                 ecmd->speed = adapter->link_speed;
159
160                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
161                  *          and HALF_DUPLEX != DUPLEX_HALF */
162
163                 if (adapter->link_duplex == FULL_DUPLEX)
164                         ecmd->duplex = DUPLEX_FULL;
165                 else
166                         ecmd->duplex = DUPLEX_HALF;
167         } else {
168                 ecmd->speed = -1;
169                 ecmd->duplex = -1;
170         }
171
172         ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
173         return 0;
174 }
175
176 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
177 {
178         struct igb_adapter *adapter = netdev_priv(netdev);
179         struct e1000_hw *hw = &adapter->hw;
180
181         /* When SoL/IDER sessions are active, autoneg/speed/duplex
182          * cannot be changed */
183         if (igb_check_reset_block(hw)) {
184                 dev_err(&adapter->pdev->dev, "Cannot change link "
185                         "characteristics when SoL/IDER is active.\n");
186                 return -EINVAL;
187         }
188
189         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
190                 msleep(1);
191
192         if (ecmd->autoneg == AUTONEG_ENABLE) {
193                 hw->mac.autoneg = 1;
194                 hw->phy.autoneg_advertised = ecmd->advertising |
195                                              ADVERTISED_TP |
196                                              ADVERTISED_Autoneg;
197                 ecmd->advertising = hw->phy.autoneg_advertised;
198                 if (adapter->fc_autoneg)
199                         hw->fc.requested_mode = e1000_fc_default;
200         } else {
201                 if (igb_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
202                         clear_bit(__IGB_RESETTING, &adapter->state);
203                         return -EINVAL;
204                 }
205         }
206
207         /* reset the link */
208         if (netif_running(adapter->netdev)) {
209                 igb_down(adapter);
210                 igb_up(adapter);
211         } else
212                 igb_reset(adapter);
213
214         clear_bit(__IGB_RESETTING, &adapter->state);
215         return 0;
216 }
217
218 static void igb_get_pauseparam(struct net_device *netdev,
219                                struct ethtool_pauseparam *pause)
220 {
221         struct igb_adapter *adapter = netdev_priv(netdev);
222         struct e1000_hw *hw = &adapter->hw;
223
224         pause->autoneg =
225                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
226
227         if (hw->fc.current_mode == e1000_fc_rx_pause)
228                 pause->rx_pause = 1;
229         else if (hw->fc.current_mode == e1000_fc_tx_pause)
230                 pause->tx_pause = 1;
231         else if (hw->fc.current_mode == e1000_fc_full) {
232                 pause->rx_pause = 1;
233                 pause->tx_pause = 1;
234         }
235 }
236
237 static int igb_set_pauseparam(struct net_device *netdev,
238                               struct ethtool_pauseparam *pause)
239 {
240         struct igb_adapter *adapter = netdev_priv(netdev);
241         struct e1000_hw *hw = &adapter->hw;
242         int retval = 0;
243
244         adapter->fc_autoneg = pause->autoneg;
245
246         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
247                 msleep(1);
248
249         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
250                 hw->fc.requested_mode = e1000_fc_default;
251                 if (netif_running(adapter->netdev)) {
252                         igb_down(adapter);
253                         igb_up(adapter);
254                 } else
255                         igb_reset(adapter);
256         } else {
257                 if (pause->rx_pause && pause->tx_pause)
258                         hw->fc.requested_mode = e1000_fc_full;
259                 else if (pause->rx_pause && !pause->tx_pause)
260                         hw->fc.requested_mode = e1000_fc_rx_pause;
261                 else if (!pause->rx_pause && pause->tx_pause)
262                         hw->fc.requested_mode = e1000_fc_tx_pause;
263                 else if (!pause->rx_pause && !pause->tx_pause)
264                         hw->fc.requested_mode = e1000_fc_none;
265
266                 hw->fc.current_mode = hw->fc.requested_mode;
267
268                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
269                           igb_force_mac_fc(hw) : igb_setup_link(hw));
270         }
271
272         clear_bit(__IGB_RESETTING, &adapter->state);
273         return retval;
274 }
275
276 static u32 igb_get_rx_csum(struct net_device *netdev)
277 {
278         struct igb_adapter *adapter = netdev_priv(netdev);
279         return !(adapter->flags & IGB_FLAG_RX_CSUM_DISABLED);
280 }
281
282 static int igb_set_rx_csum(struct net_device *netdev, u32 data)
283 {
284         struct igb_adapter *adapter = netdev_priv(netdev);
285
286         if (data)
287                 adapter->flags &= ~IGB_FLAG_RX_CSUM_DISABLED;
288         else
289                 adapter->flags |= IGB_FLAG_RX_CSUM_DISABLED;
290
291         return 0;
292 }
293
294 static u32 igb_get_tx_csum(struct net_device *netdev)
295 {
296         return (netdev->features & NETIF_F_IP_CSUM) != 0;
297 }
298
299 static int igb_set_tx_csum(struct net_device *netdev, u32 data)
300 {
301         struct igb_adapter *adapter = netdev_priv(netdev);
302
303         if (data) {
304                 netdev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
305                 if (adapter->hw.mac.type == e1000_82576)
306                         netdev->features |= NETIF_F_SCTP_CSUM;
307         } else {
308                 netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
309                                       NETIF_F_SCTP_CSUM);
310         }
311
312         return 0;
313 }
314
315 static int igb_set_tso(struct net_device *netdev, u32 data)
316 {
317         struct igb_adapter *adapter = netdev_priv(netdev);
318
319         if (data) {
320                 netdev->features |= NETIF_F_TSO;
321                 netdev->features |= NETIF_F_TSO6;
322         } else {
323                 netdev->features &= ~NETIF_F_TSO;
324                 netdev->features &= ~NETIF_F_TSO6;
325         }
326
327         dev_info(&adapter->pdev->dev, "TSO is %s\n",
328                  data ? "Enabled" : "Disabled");
329         return 0;
330 }
331
332 static u32 igb_get_msglevel(struct net_device *netdev)
333 {
334         struct igb_adapter *adapter = netdev_priv(netdev);
335         return adapter->msg_enable;
336 }
337
338 static void igb_set_msglevel(struct net_device *netdev, u32 data)
339 {
340         struct igb_adapter *adapter = netdev_priv(netdev);
341         adapter->msg_enable = data;
342 }
343
344 static int igb_get_regs_len(struct net_device *netdev)
345 {
346 #define IGB_REGS_LEN 551
347         return IGB_REGS_LEN * sizeof(u32);
348 }
349
350 static void igb_get_regs(struct net_device *netdev,
351                          struct ethtool_regs *regs, void *p)
352 {
353         struct igb_adapter *adapter = netdev_priv(netdev);
354         struct e1000_hw *hw = &adapter->hw;
355         u32 *regs_buff = p;
356         u8 i;
357
358         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
359
360         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
361
362         /* General Registers */
363         regs_buff[0] = rd32(E1000_CTRL);
364         regs_buff[1] = rd32(E1000_STATUS);
365         regs_buff[2] = rd32(E1000_CTRL_EXT);
366         regs_buff[3] = rd32(E1000_MDIC);
367         regs_buff[4] = rd32(E1000_SCTL);
368         regs_buff[5] = rd32(E1000_CONNSW);
369         regs_buff[6] = rd32(E1000_VET);
370         regs_buff[7] = rd32(E1000_LEDCTL);
371         regs_buff[8] = rd32(E1000_PBA);
372         regs_buff[9] = rd32(E1000_PBS);
373         regs_buff[10] = rd32(E1000_FRTIMER);
374         regs_buff[11] = rd32(E1000_TCPTIMER);
375
376         /* NVM Register */
377         regs_buff[12] = rd32(E1000_EECD);
378
379         /* Interrupt */
380         /* Reading EICS for EICR because they read the
381          * same but EICS does not clear on read */
382         regs_buff[13] = rd32(E1000_EICS);
383         regs_buff[14] = rd32(E1000_EICS);
384         regs_buff[15] = rd32(E1000_EIMS);
385         regs_buff[16] = rd32(E1000_EIMC);
386         regs_buff[17] = rd32(E1000_EIAC);
387         regs_buff[18] = rd32(E1000_EIAM);
388         /* Reading ICS for ICR because they read the
389          * same but ICS does not clear on read */
390         regs_buff[19] = rd32(E1000_ICS);
391         regs_buff[20] = rd32(E1000_ICS);
392         regs_buff[21] = rd32(E1000_IMS);
393         regs_buff[22] = rd32(E1000_IMC);
394         regs_buff[23] = rd32(E1000_IAC);
395         regs_buff[24] = rd32(E1000_IAM);
396         regs_buff[25] = rd32(E1000_IMIRVP);
397
398         /* Flow Control */
399         regs_buff[26] = rd32(E1000_FCAL);
400         regs_buff[27] = rd32(E1000_FCAH);
401         regs_buff[28] = rd32(E1000_FCTTV);
402         regs_buff[29] = rd32(E1000_FCRTL);
403         regs_buff[30] = rd32(E1000_FCRTH);
404         regs_buff[31] = rd32(E1000_FCRTV);
405
406         /* Receive */
407         regs_buff[32] = rd32(E1000_RCTL);
408         regs_buff[33] = rd32(E1000_RXCSUM);
409         regs_buff[34] = rd32(E1000_RLPML);
410         regs_buff[35] = rd32(E1000_RFCTL);
411         regs_buff[36] = rd32(E1000_MRQC);
412         regs_buff[37] = rd32(E1000_VT_CTL);
413
414         /* Transmit */
415         regs_buff[38] = rd32(E1000_TCTL);
416         regs_buff[39] = rd32(E1000_TCTL_EXT);
417         regs_buff[40] = rd32(E1000_TIPG);
418         regs_buff[41] = rd32(E1000_DTXCTL);
419
420         /* Wake Up */
421         regs_buff[42] = rd32(E1000_WUC);
422         regs_buff[43] = rd32(E1000_WUFC);
423         regs_buff[44] = rd32(E1000_WUS);
424         regs_buff[45] = rd32(E1000_IPAV);
425         regs_buff[46] = rd32(E1000_WUPL);
426
427         /* MAC */
428         regs_buff[47] = rd32(E1000_PCS_CFG0);
429         regs_buff[48] = rd32(E1000_PCS_LCTL);
430         regs_buff[49] = rd32(E1000_PCS_LSTAT);
431         regs_buff[50] = rd32(E1000_PCS_ANADV);
432         regs_buff[51] = rd32(E1000_PCS_LPAB);
433         regs_buff[52] = rd32(E1000_PCS_NPTX);
434         regs_buff[53] = rd32(E1000_PCS_LPABNP);
435
436         /* Statistics */
437         regs_buff[54] = adapter->stats.crcerrs;
438         regs_buff[55] = adapter->stats.algnerrc;
439         regs_buff[56] = adapter->stats.symerrs;
440         regs_buff[57] = adapter->stats.rxerrc;
441         regs_buff[58] = adapter->stats.mpc;
442         regs_buff[59] = adapter->stats.scc;
443         regs_buff[60] = adapter->stats.ecol;
444         regs_buff[61] = adapter->stats.mcc;
445         regs_buff[62] = adapter->stats.latecol;
446         regs_buff[63] = adapter->stats.colc;
447         regs_buff[64] = adapter->stats.dc;
448         regs_buff[65] = adapter->stats.tncrs;
449         regs_buff[66] = adapter->stats.sec;
450         regs_buff[67] = adapter->stats.htdpmc;
451         regs_buff[68] = adapter->stats.rlec;
452         regs_buff[69] = adapter->stats.xonrxc;
453         regs_buff[70] = adapter->stats.xontxc;
454         regs_buff[71] = adapter->stats.xoffrxc;
455         regs_buff[72] = adapter->stats.xofftxc;
456         regs_buff[73] = adapter->stats.fcruc;
457         regs_buff[74] = adapter->stats.prc64;
458         regs_buff[75] = adapter->stats.prc127;
459         regs_buff[76] = adapter->stats.prc255;
460         regs_buff[77] = adapter->stats.prc511;
461         regs_buff[78] = adapter->stats.prc1023;
462         regs_buff[79] = adapter->stats.prc1522;
463         regs_buff[80] = adapter->stats.gprc;
464         regs_buff[81] = adapter->stats.bprc;
465         regs_buff[82] = adapter->stats.mprc;
466         regs_buff[83] = adapter->stats.gptc;
467         regs_buff[84] = adapter->stats.gorc;
468         regs_buff[86] = adapter->stats.gotc;
469         regs_buff[88] = adapter->stats.rnbc;
470         regs_buff[89] = adapter->stats.ruc;
471         regs_buff[90] = adapter->stats.rfc;
472         regs_buff[91] = adapter->stats.roc;
473         regs_buff[92] = adapter->stats.rjc;
474         regs_buff[93] = adapter->stats.mgprc;
475         regs_buff[94] = adapter->stats.mgpdc;
476         regs_buff[95] = adapter->stats.mgptc;
477         regs_buff[96] = adapter->stats.tor;
478         regs_buff[98] = adapter->stats.tot;
479         regs_buff[100] = adapter->stats.tpr;
480         regs_buff[101] = adapter->stats.tpt;
481         regs_buff[102] = adapter->stats.ptc64;
482         regs_buff[103] = adapter->stats.ptc127;
483         regs_buff[104] = adapter->stats.ptc255;
484         regs_buff[105] = adapter->stats.ptc511;
485         regs_buff[106] = adapter->stats.ptc1023;
486         regs_buff[107] = adapter->stats.ptc1522;
487         regs_buff[108] = adapter->stats.mptc;
488         regs_buff[109] = adapter->stats.bptc;
489         regs_buff[110] = adapter->stats.tsctc;
490         regs_buff[111] = adapter->stats.iac;
491         regs_buff[112] = adapter->stats.rpthc;
492         regs_buff[113] = adapter->stats.hgptc;
493         regs_buff[114] = adapter->stats.hgorc;
494         regs_buff[116] = adapter->stats.hgotc;
495         regs_buff[118] = adapter->stats.lenerrs;
496         regs_buff[119] = adapter->stats.scvpc;
497         regs_buff[120] = adapter->stats.hrmpc;
498
499         /* These should probably be added to e1000_regs.h instead */
500         #define E1000_PSRTYPE_REG(_i) (0x05480 + ((_i) * 4))
501         #define E1000_IP4AT_REG(_i)   (0x05840 + ((_i) * 8))
502         #define E1000_IP6AT_REG(_i)   (0x05880 + ((_i) * 4))
503         #define E1000_WUPM_REG(_i)    (0x05A00 + ((_i) * 4))
504         #define E1000_FFMT_REG(_i)    (0x09000 + ((_i) * 8))
505         #define E1000_FFVT_REG(_i)    (0x09800 + ((_i) * 8))
506         #define E1000_FFLT_REG(_i)    (0x05F00 + ((_i) * 8))
507
508         for (i = 0; i < 4; i++)
509                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
510         for (i = 0; i < 4; i++)
511                 regs_buff[125 + i] = rd32(E1000_PSRTYPE_REG(i));
512         for (i = 0; i < 4; i++)
513                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
514         for (i = 0; i < 4; i++)
515                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
516         for (i = 0; i < 4; i++)
517                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
518         for (i = 0; i < 4; i++)
519                 regs_buff[141 + i] = rd32(E1000_RDH(i));
520         for (i = 0; i < 4; i++)
521                 regs_buff[145 + i] = rd32(E1000_RDT(i));
522         for (i = 0; i < 4; i++)
523                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
524
525         for (i = 0; i < 10; i++)
526                 regs_buff[153 + i] = rd32(E1000_EITR(i));
527         for (i = 0; i < 8; i++)
528                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
529         for (i = 0; i < 8; i++)
530                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
531         for (i = 0; i < 16; i++)
532                 regs_buff[179 + i] = rd32(E1000_RAL(i));
533         for (i = 0; i < 16; i++)
534                 regs_buff[195 + i] = rd32(E1000_RAH(i));
535
536         for (i = 0; i < 4; i++)
537                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
538         for (i = 0; i < 4; i++)
539                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
540         for (i = 0; i < 4; i++)
541                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
542         for (i = 0; i < 4; i++)
543                 regs_buff[223 + i] = rd32(E1000_TDH(i));
544         for (i = 0; i < 4; i++)
545                 regs_buff[227 + i] = rd32(E1000_TDT(i));
546         for (i = 0; i < 4; i++)
547                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
548         for (i = 0; i < 4; i++)
549                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
550         for (i = 0; i < 4; i++)
551                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
552         for (i = 0; i < 4; i++)
553                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
554
555         for (i = 0; i < 4; i++)
556                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
557         for (i = 0; i < 4; i++)
558                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
559         for (i = 0; i < 32; i++)
560                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
561         for (i = 0; i < 128; i++)
562                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
563         for (i = 0; i < 128; i++)
564                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
565         for (i = 0; i < 4; i++)
566                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
567
568         regs_buff[547] = rd32(E1000_TDFH);
569         regs_buff[548] = rd32(E1000_TDFT);
570         regs_buff[549] = rd32(E1000_TDFHS);
571         regs_buff[550] = rd32(E1000_TDFPC);
572
573 }
574
575 static int igb_get_eeprom_len(struct net_device *netdev)
576 {
577         struct igb_adapter *adapter = netdev_priv(netdev);
578         return adapter->hw.nvm.word_size * 2;
579 }
580
581 static int igb_get_eeprom(struct net_device *netdev,
582                           struct ethtool_eeprom *eeprom, u8 *bytes)
583 {
584         struct igb_adapter *adapter = netdev_priv(netdev);
585         struct e1000_hw *hw = &adapter->hw;
586         u16 *eeprom_buff;
587         int first_word, last_word;
588         int ret_val = 0;
589         u16 i;
590
591         if (eeprom->len == 0)
592                 return -EINVAL;
593
594         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
595
596         first_word = eeprom->offset >> 1;
597         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
598
599         eeprom_buff = kmalloc(sizeof(u16) *
600                         (last_word - first_word + 1), GFP_KERNEL);
601         if (!eeprom_buff)
602                 return -ENOMEM;
603
604         if (hw->nvm.type == e1000_nvm_eeprom_spi)
605                 ret_val = hw->nvm.ops.read(hw, first_word,
606                                             last_word - first_word + 1,
607                                             eeprom_buff);
608         else {
609                 for (i = 0; i < last_word - first_word + 1; i++) {
610                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
611                                                     &eeprom_buff[i]);
612                         if (ret_val)
613                                 break;
614                 }
615         }
616
617         /* Device's eeprom is always little-endian, word addressable */
618         for (i = 0; i < last_word - first_word + 1; i++)
619                 le16_to_cpus(&eeprom_buff[i]);
620
621         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
622                         eeprom->len);
623         kfree(eeprom_buff);
624
625         return ret_val;
626 }
627
628 static int igb_set_eeprom(struct net_device *netdev,
629                           struct ethtool_eeprom *eeprom, u8 *bytes)
630 {
631         struct igb_adapter *adapter = netdev_priv(netdev);
632         struct e1000_hw *hw = &adapter->hw;
633         u16 *eeprom_buff;
634         void *ptr;
635         int max_len, first_word, last_word, ret_val = 0;
636         u16 i;
637
638         if (eeprom->len == 0)
639                 return -EOPNOTSUPP;
640
641         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
642                 return -EFAULT;
643
644         max_len = hw->nvm.word_size * 2;
645
646         first_word = eeprom->offset >> 1;
647         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
648         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
649         if (!eeprom_buff)
650                 return -ENOMEM;
651
652         ptr = (void *)eeprom_buff;
653
654         if (eeprom->offset & 1) {
655                 /* need read/modify/write of first changed EEPROM word */
656                 /* only the second byte of the word is being modified */
657                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
658                                             &eeprom_buff[0]);
659                 ptr++;
660         }
661         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
662                 /* need read/modify/write of last changed EEPROM word */
663                 /* only the first byte of the word is being modified */
664                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
665                                    &eeprom_buff[last_word - first_word]);
666         }
667
668         /* Device's eeprom is always little-endian, word addressable */
669         for (i = 0; i < last_word - first_word + 1; i++)
670                 le16_to_cpus(&eeprom_buff[i]);
671
672         memcpy(ptr, bytes, eeprom->len);
673
674         for (i = 0; i < last_word - first_word + 1; i++)
675                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
676
677         ret_val = hw->nvm.ops.write(hw, first_word,
678                                      last_word - first_word + 1, eeprom_buff);
679
680         /* Update the checksum over the first part of the EEPROM if needed
681          * and flush shadow RAM for 82573 controllers */
682         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
683                 igb_update_nvm_checksum(hw);
684
685         kfree(eeprom_buff);
686         return ret_val;
687 }
688
689 static void igb_get_drvinfo(struct net_device *netdev,
690                             struct ethtool_drvinfo *drvinfo)
691 {
692         struct igb_adapter *adapter = netdev_priv(netdev);
693         char firmware_version[32];
694         u16 eeprom_data;
695
696         strncpy(drvinfo->driver,  igb_driver_name, 32);
697         strncpy(drvinfo->version, igb_driver_version, 32);
698
699         /* EEPROM image version # is reported as firmware version # for
700          * 82575 controllers */
701         adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
702         sprintf(firmware_version, "%d.%d-%d",
703                 (eeprom_data & 0xF000) >> 12,
704                 (eeprom_data & 0x0FF0) >> 4,
705                 eeprom_data & 0x000F);
706
707         strncpy(drvinfo->fw_version, firmware_version, 32);
708         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
709         drvinfo->n_stats = IGB_STATS_LEN;
710         drvinfo->testinfo_len = IGB_TEST_LEN;
711         drvinfo->regdump_len = igb_get_regs_len(netdev);
712         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
713 }
714
715 static void igb_get_ringparam(struct net_device *netdev,
716                               struct ethtool_ringparam *ring)
717 {
718         struct igb_adapter *adapter = netdev_priv(netdev);
719
720         ring->rx_max_pending = IGB_MAX_RXD;
721         ring->tx_max_pending = IGB_MAX_TXD;
722         ring->rx_mini_max_pending = 0;
723         ring->rx_jumbo_max_pending = 0;
724         ring->rx_pending = adapter->rx_ring_count;
725         ring->tx_pending = adapter->tx_ring_count;
726         ring->rx_mini_pending = 0;
727         ring->rx_jumbo_pending = 0;
728 }
729
730 static int igb_set_ringparam(struct net_device *netdev,
731                              struct ethtool_ringparam *ring)
732 {
733         struct igb_adapter *adapter = netdev_priv(netdev);
734         struct igb_ring *temp_ring;
735         int i, err;
736         u32 new_rx_count, new_tx_count;
737
738         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
739                 return -EINVAL;
740
741         new_rx_count = max(ring->rx_pending, (u32)IGB_MIN_RXD);
742         new_rx_count = min(new_rx_count, (u32)IGB_MAX_RXD);
743         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
744
745         new_tx_count = max(ring->tx_pending, (u32)IGB_MIN_TXD);
746         new_tx_count = min(new_tx_count, (u32)IGB_MAX_TXD);
747         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
748
749         if ((new_tx_count == adapter->tx_ring_count) &&
750             (new_rx_count == adapter->rx_ring_count)) {
751                 /* nothing to do */
752                 return 0;
753         }
754
755         if (adapter->num_tx_queues > adapter->num_rx_queues)
756                 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
757         else
758                 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
759         if (!temp_ring)
760                 return -ENOMEM;
761
762         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
763                 msleep(1);
764
765         if (netif_running(adapter->netdev))
766                 igb_down(adapter);
767
768         /*
769          * We can't just free everything and then setup again,
770          * because the ISRs in MSI-X mode get passed pointers
771          * to the tx and rx ring structs.
772          */
773         if (new_tx_count != adapter->tx_ring_count) {
774                 memcpy(temp_ring, adapter->tx_ring,
775                        adapter->num_tx_queues * sizeof(struct igb_ring));
776
777                 for (i = 0; i < adapter->num_tx_queues; i++) {
778                         temp_ring[i].count = new_tx_count;
779                         err = igb_setup_tx_resources(adapter, &temp_ring[i]);
780                         if (err) {
781                                 while (i) {
782                                         i--;
783                                         igb_free_tx_resources(&temp_ring[i]);
784                                 }
785                                 goto err_setup;
786                         }
787                 }
788
789                 for (i = 0; i < adapter->num_tx_queues; i++)
790                         igb_free_tx_resources(&adapter->tx_ring[i]);
791
792                 memcpy(adapter->tx_ring, temp_ring,
793                        adapter->num_tx_queues * sizeof(struct igb_ring));
794
795                 adapter->tx_ring_count = new_tx_count;
796         }
797
798         if (new_rx_count != adapter->rx_ring->count) {
799                 memcpy(temp_ring, adapter->rx_ring,
800                        adapter->num_rx_queues * sizeof(struct igb_ring));
801
802                 for (i = 0; i < adapter->num_rx_queues; i++) {
803                         temp_ring[i].count = new_rx_count;
804                         err = igb_setup_rx_resources(adapter, &temp_ring[i]);
805                         if (err) {
806                                 while (i) {
807                                         i--;
808                                         igb_free_rx_resources(&temp_ring[i]);
809                                 }
810                                 goto err_setup;
811                         }
812
813                 }
814
815                 for (i = 0; i < adapter->num_rx_queues; i++)
816                         igb_free_rx_resources(&adapter->rx_ring[i]);
817
818                 memcpy(adapter->rx_ring, temp_ring,
819                        adapter->num_rx_queues * sizeof(struct igb_ring));
820
821                 adapter->rx_ring_count = new_rx_count;
822         }
823
824         err = 0;
825 err_setup:
826         if (netif_running(adapter->netdev))
827                 igb_up(adapter);
828
829         clear_bit(__IGB_RESETTING, &adapter->state);
830         vfree(temp_ring);
831         return err;
832 }
833
834 /* ethtool register test data */
835 struct igb_reg_test {
836         u16 reg;
837         u16 reg_offset;
838         u16 array_len;
839         u16 test_type;
840         u32 mask;
841         u32 write;
842 };
843
844 /* In the hardware, registers are laid out either singly, in arrays
845  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
846  * most tests take place on arrays or single registers (handled
847  * as a single-element array) and special-case the tables.
848  * Table tests are always pattern tests.
849  *
850  * We also make provision for some required setup steps by specifying
851  * registers to be written without any read-back testing.
852  */
853
854 #define PATTERN_TEST    1
855 #define SET_READ_TEST   2
856 #define WRITE_NO_TEST   3
857 #define TABLE32_TEST    4
858 #define TABLE64_TEST_LO 5
859 #define TABLE64_TEST_HI 6
860
861 /* 82576 reg test */
862 static struct igb_reg_test reg_test_82576[] = {
863         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
864         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
865         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
866         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
867         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
868         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
869         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
870         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
871         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
872         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
873         /* Enable all RX queues before testing. */
874         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
875         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
876         /* RDH is read-only for 82576, only test RDT. */
877         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
878         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
879         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
880         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
881         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
882         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
883         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
884         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
885         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
886         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
887         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
888         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
889         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
890         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
891         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
892         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
893         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
894         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
895         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
896         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
897         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
898         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
899         { 0, 0, 0, 0 }
900 };
901
902 /* 82575 register test */
903 static struct igb_reg_test reg_test_82575[] = {
904         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
905         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
906         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
907         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
908         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
909         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
910         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
911         /* Enable all four RX queues before testing. */
912         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
913         /* RDH is read-only for 82575, only test RDT. */
914         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
915         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
916         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
917         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
918         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
919         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
920         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
921         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
922         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
923         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
924         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
925         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
926         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
927         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
928         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
929         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
930         { 0, 0, 0, 0 }
931 };
932
933 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
934                              int reg, u32 mask, u32 write)
935 {
936         struct e1000_hw *hw = &adapter->hw;
937         u32 pat, val;
938         u32 _test[] =
939                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
940         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
941                 wr32(reg, (_test[pat] & write));
942                 val = rd32(reg);
943                 if (val != (_test[pat] & write & mask)) {
944                         dev_err(&adapter->pdev->dev, "pattern test reg %04X "
945                                 "failed: got 0x%08X expected 0x%08X\n",
946                                 reg, val, (_test[pat] & write & mask));
947                         *data = reg;
948                         return 1;
949                 }
950         }
951         return 0;
952 }
953
954 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
955                               int reg, u32 mask, u32 write)
956 {
957         struct e1000_hw *hw = &adapter->hw;
958         u32 val;
959         wr32(reg, write & mask);
960         val = rd32(reg);
961         if ((write & mask) != (val & mask)) {
962                 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
963                         " got 0x%08X expected 0x%08X\n", reg,
964                         (val & mask), (write & mask));
965                 *data = reg;
966                 return 1;
967         }
968         return 0;
969 }
970
971 #define REG_PATTERN_TEST(reg, mask, write) \
972         do { \
973                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
974                         return 1; \
975         } while (0)
976
977 #define REG_SET_AND_CHECK(reg, mask, write) \
978         do { \
979                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
980                         return 1; \
981         } while (0)
982
983 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
984 {
985         struct e1000_hw *hw = &adapter->hw;
986         struct igb_reg_test *test;
987         u32 value, before, after;
988         u32 i, toggle;
989
990         toggle = 0x7FFFF3FF;
991
992         switch (adapter->hw.mac.type) {
993         case e1000_82576:
994                 test = reg_test_82576;
995                 break;
996         default:
997                 test = reg_test_82575;
998                 break;
999         }
1000
1001         /* Because the status register is such a special case,
1002          * we handle it separately from the rest of the register
1003          * tests.  Some bits are read-only, some toggle, and some
1004          * are writable on newer MACs.
1005          */
1006         before = rd32(E1000_STATUS);
1007         value = (rd32(E1000_STATUS) & toggle);
1008         wr32(E1000_STATUS, toggle);
1009         after = rd32(E1000_STATUS) & toggle;
1010         if (value != after) {
1011                 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1012                         "got: 0x%08X expected: 0x%08X\n", after, value);
1013                 *data = 1;
1014                 return 1;
1015         }
1016         /* restore previous status */
1017         wr32(E1000_STATUS, before);
1018
1019         /* Perform the remainder of the register test, looping through
1020          * the test table until we either fail or reach the null entry.
1021          */
1022         while (test->reg) {
1023                 for (i = 0; i < test->array_len; i++) {
1024                         switch (test->test_type) {
1025                         case PATTERN_TEST:
1026                                 REG_PATTERN_TEST(test->reg +
1027                                                 (i * test->reg_offset),
1028                                                 test->mask,
1029                                                 test->write);
1030                                 break;
1031                         case SET_READ_TEST:
1032                                 REG_SET_AND_CHECK(test->reg +
1033                                                 (i * test->reg_offset),
1034                                                 test->mask,
1035                                                 test->write);
1036                                 break;
1037                         case WRITE_NO_TEST:
1038                                 writel(test->write,
1039                                     (adapter->hw.hw_addr + test->reg)
1040                                         + (i * test->reg_offset));
1041                                 break;
1042                         case TABLE32_TEST:
1043                                 REG_PATTERN_TEST(test->reg + (i * 4),
1044                                                 test->mask,
1045                                                 test->write);
1046                                 break;
1047                         case TABLE64_TEST_LO:
1048                                 REG_PATTERN_TEST(test->reg + (i * 8),
1049                                                 test->mask,
1050                                                 test->write);
1051                                 break;
1052                         case TABLE64_TEST_HI:
1053                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1054                                                 test->mask,
1055                                                 test->write);
1056                                 break;
1057                         }
1058                 }
1059                 test++;
1060         }
1061
1062         *data = 0;
1063         return 0;
1064 }
1065
1066 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1067 {
1068         u16 temp;
1069         u16 checksum = 0;
1070         u16 i;
1071
1072         *data = 0;
1073         /* Read and add up the contents of the EEPROM */
1074         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1075                 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp))
1076                     < 0) {
1077                         *data = 1;
1078                         break;
1079                 }
1080                 checksum += temp;
1081         }
1082
1083         /* If Checksum is not Correct return error else test passed */
1084         if ((checksum != (u16) NVM_SUM) && !(*data))
1085                 *data = 2;
1086
1087         return *data;
1088 }
1089
1090 static irqreturn_t igb_test_intr(int irq, void *data)
1091 {
1092         struct net_device *netdev = (struct net_device *) data;
1093         struct igb_adapter *adapter = netdev_priv(netdev);
1094         struct e1000_hw *hw = &adapter->hw;
1095
1096         adapter->test_icr |= rd32(E1000_ICR);
1097
1098         return IRQ_HANDLED;
1099 }
1100
1101 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1102 {
1103         struct e1000_hw *hw = &adapter->hw;
1104         struct net_device *netdev = adapter->netdev;
1105         u32 mask, ics_mask, i = 0, shared_int = true;
1106         u32 irq = adapter->pdev->irq;
1107
1108         *data = 0;
1109
1110         /* Hook up test interrupt handler just for this test */
1111         if (adapter->msix_entries)
1112                 /* NOTE: we don't test MSI-X interrupts here, yet */
1113                 return 0;
1114
1115         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1116                 shared_int = false;
1117                 if (request_irq(irq, &igb_test_intr, 0, netdev->name, netdev)) {
1118                         *data = 1;
1119                         return -1;
1120                 }
1121         } else if (!request_irq(irq, &igb_test_intr, IRQF_PROBE_SHARED,
1122                                 netdev->name, netdev)) {
1123                 shared_int = false;
1124         } else if (request_irq(irq, &igb_test_intr, IRQF_SHARED,
1125                  netdev->name, netdev)) {
1126                 *data = 1;
1127                 return -1;
1128         }
1129         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1130                 (shared_int ? "shared" : "unshared"));
1131         /* Disable all the interrupts */
1132         wr32(E1000_IMC, 0xFFFFFFFF);
1133         msleep(10);
1134
1135         /* Define all writable bits for ICS */
1136         switch(hw->mac.type) {
1137         case e1000_82575:
1138                 ics_mask = 0x37F47EDD;
1139                 break;
1140         case e1000_82576:
1141                 ics_mask = 0x77D4FBFD;
1142                 break;
1143         default:
1144                 ics_mask = 0x7FFFFFFF;
1145                 break;
1146         }
1147
1148         /* Test each interrupt */
1149         for (; i < 31; i++) {
1150                 /* Interrupt to test */
1151                 mask = 1 << i;
1152
1153                 if (!(mask & ics_mask))
1154                         continue;
1155
1156                 if (!shared_int) {
1157                         /* Disable the interrupt to be reported in
1158                          * the cause register and then force the same
1159                          * interrupt and see if one gets posted.  If
1160                          * an interrupt was posted to the bus, the
1161                          * test failed.
1162                          */
1163                         adapter->test_icr = 0;
1164
1165                         /* Flush any pending interrupts */
1166                         wr32(E1000_ICR, ~0);
1167
1168                         wr32(E1000_IMC, mask);
1169                         wr32(E1000_ICS, mask);
1170                         msleep(10);
1171
1172                         if (adapter->test_icr & mask) {
1173                                 *data = 3;
1174                                 break;
1175                         }
1176                 }
1177
1178                 /* Enable the interrupt to be reported in
1179                  * the cause register and then force the same
1180                  * interrupt and see if one gets posted.  If
1181                  * an interrupt was not posted to the bus, the
1182                  * test failed.
1183                  */
1184                 adapter->test_icr = 0;
1185
1186                 /* Flush any pending interrupts */
1187                 wr32(E1000_ICR, ~0);
1188
1189                 wr32(E1000_IMS, mask);
1190                 wr32(E1000_ICS, mask);
1191                 msleep(10);
1192
1193                 if (!(adapter->test_icr & mask)) {
1194                         *data = 4;
1195                         break;
1196                 }
1197
1198                 if (!shared_int) {
1199                         /* Disable the other interrupts to be reported in
1200                          * the cause register and then force the other
1201                          * interrupts and see if any get posted.  If
1202                          * an interrupt was posted to the bus, the
1203                          * test failed.
1204                          */
1205                         adapter->test_icr = 0;
1206
1207                         /* Flush any pending interrupts */
1208                         wr32(E1000_ICR, ~0);
1209
1210                         wr32(E1000_IMC, ~mask);
1211                         wr32(E1000_ICS, ~mask);
1212                         msleep(10);
1213
1214                         if (adapter->test_icr & mask) {
1215                                 *data = 5;
1216                                 break;
1217                         }
1218                 }
1219         }
1220
1221         /* Disable all the interrupts */
1222         wr32(E1000_IMC, ~0);
1223         msleep(10);
1224
1225         /* Unhook test interrupt handler */
1226         free_irq(irq, netdev);
1227
1228         return *data;
1229 }
1230
1231 static void igb_free_desc_rings(struct igb_adapter *adapter)
1232 {
1233         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1234         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1235         struct pci_dev *pdev = adapter->pdev;
1236         int i;
1237
1238         if (tx_ring->desc && tx_ring->buffer_info) {
1239                 for (i = 0; i < tx_ring->count; i++) {
1240                         struct igb_buffer *buf = &(tx_ring->buffer_info[i]);
1241                         if (buf->dma)
1242                                 pci_unmap_single(pdev, buf->dma, buf->length,
1243                                                  PCI_DMA_TODEVICE);
1244                         if (buf->skb)
1245                                 dev_kfree_skb(buf->skb);
1246                 }
1247         }
1248
1249         if (rx_ring->desc && rx_ring->buffer_info) {
1250                 for (i = 0; i < rx_ring->count; i++) {
1251                         struct igb_buffer *buf = &(rx_ring->buffer_info[i]);
1252                         if (buf->dma)
1253                                 pci_unmap_single(pdev, buf->dma,
1254                                                  IGB_RXBUFFER_2048,
1255                                                  PCI_DMA_FROMDEVICE);
1256                         if (buf->skb)
1257                                 dev_kfree_skb(buf->skb);
1258                 }
1259         }
1260
1261         if (tx_ring->desc) {
1262                 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc,
1263                                     tx_ring->dma);
1264                 tx_ring->desc = NULL;
1265         }
1266         if (rx_ring->desc) {
1267                 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc,
1268                                     rx_ring->dma);
1269                 rx_ring->desc = NULL;
1270         }
1271
1272         kfree(tx_ring->buffer_info);
1273         tx_ring->buffer_info = NULL;
1274         kfree(rx_ring->buffer_info);
1275         rx_ring->buffer_info = NULL;
1276
1277         return;
1278 }
1279
1280 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1281 {
1282         struct e1000_hw *hw = &adapter->hw;
1283         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1284         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1285         struct pci_dev *pdev = adapter->pdev;
1286         struct igb_buffer *buffer_info;
1287         u32 rctl;
1288         int i, ret_val;
1289
1290         /* Setup Tx descriptor ring and Tx buffers */
1291
1292         if (!tx_ring->count)
1293                 tx_ring->count = IGB_DEFAULT_TXD;
1294
1295         tx_ring->buffer_info = kcalloc(tx_ring->count,
1296                                        sizeof(struct igb_buffer),
1297                                        GFP_KERNEL);
1298         if (!tx_ring->buffer_info) {
1299                 ret_val = 1;
1300                 goto err_nomem;
1301         }
1302
1303         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1304         tx_ring->size = ALIGN(tx_ring->size, 4096);
1305         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1306                                              &tx_ring->dma);
1307         if (!tx_ring->desc) {
1308                 ret_val = 2;
1309                 goto err_nomem;
1310         }
1311         tx_ring->next_to_use = tx_ring->next_to_clean = 0;
1312
1313         wr32(E1000_TDBAL(0),
1314                         ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1315         wr32(E1000_TDBAH(0), ((u64) tx_ring->dma >> 32));
1316         wr32(E1000_TDLEN(0),
1317                         tx_ring->count * sizeof(union e1000_adv_tx_desc));
1318         wr32(E1000_TDH(0), 0);
1319         wr32(E1000_TDT(0), 0);
1320         wr32(E1000_TCTL,
1321                         E1000_TCTL_PSP | E1000_TCTL_EN |
1322                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1323                         E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1324
1325         for (i = 0; i < tx_ring->count; i++) {
1326                 union e1000_adv_tx_desc *tx_desc;
1327                 struct sk_buff *skb;
1328                 unsigned int size = 1024;
1329
1330                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
1331                 skb = alloc_skb(size, GFP_KERNEL);
1332                 if (!skb) {
1333                         ret_val = 3;
1334                         goto err_nomem;
1335                 }
1336                 skb_put(skb, size);
1337                 buffer_info = &tx_ring->buffer_info[i];
1338                 buffer_info->skb = skb;
1339                 buffer_info->length = skb->len;
1340                 buffer_info->dma = pci_map_single(pdev, skb->data, skb->len,
1341                                                   PCI_DMA_TODEVICE);
1342                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
1343                 tx_desc->read.olinfo_status = cpu_to_le32(skb->len) <<
1344                                               E1000_ADVTXD_PAYLEN_SHIFT;
1345                 tx_desc->read.cmd_type_len = cpu_to_le32(skb->len);
1346                 tx_desc->read.cmd_type_len |= cpu_to_le32(E1000_TXD_CMD_EOP |
1347                                                           E1000_TXD_CMD_IFCS |
1348                                                           E1000_TXD_CMD_RS |
1349                                                           E1000_ADVTXD_DTYP_DATA |
1350                                                           E1000_ADVTXD_DCMD_DEXT);
1351         }
1352
1353         /* Setup Rx descriptor ring and Rx buffers */
1354
1355         if (!rx_ring->count)
1356                 rx_ring->count = IGB_DEFAULT_RXD;
1357
1358         rx_ring->buffer_info = kcalloc(rx_ring->count,
1359                                        sizeof(struct igb_buffer),
1360                                        GFP_KERNEL);
1361         if (!rx_ring->buffer_info) {
1362                 ret_val = 4;
1363                 goto err_nomem;
1364         }
1365
1366         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1367         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1368                                              &rx_ring->dma);
1369         if (!rx_ring->desc) {
1370                 ret_val = 5;
1371                 goto err_nomem;
1372         }
1373         rx_ring->next_to_use = rx_ring->next_to_clean = 0;
1374
1375         rctl = rd32(E1000_RCTL);
1376         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1377         wr32(E1000_RDBAL(0),
1378                         ((u64) rx_ring->dma & 0xFFFFFFFF));
1379         wr32(E1000_RDBAH(0),
1380                         ((u64) rx_ring->dma >> 32));
1381         wr32(E1000_RDLEN(0), rx_ring->size);
1382         wr32(E1000_RDH(0), 0);
1383         wr32(E1000_RDT(0), 0);
1384         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1385         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1386                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1387         wr32(E1000_RCTL, rctl);
1388         wr32(E1000_SRRCTL(0), E1000_SRRCTL_DESCTYPE_ADV_ONEBUF);
1389
1390         for (i = 0; i < rx_ring->count; i++) {
1391                 union e1000_adv_rx_desc *rx_desc;
1392                 struct sk_buff *skb;
1393
1394                 buffer_info = &rx_ring->buffer_info[i];
1395                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
1396                 skb = alloc_skb(IGB_RXBUFFER_2048 + NET_IP_ALIGN,
1397                                 GFP_KERNEL);
1398                 if (!skb) {
1399                         ret_val = 6;
1400                         goto err_nomem;
1401                 }
1402                 skb_reserve(skb, NET_IP_ALIGN);
1403                 buffer_info->skb = skb;
1404                 buffer_info->dma = pci_map_single(pdev, skb->data,
1405                                                   IGB_RXBUFFER_2048,
1406                                                   PCI_DMA_FROMDEVICE);
1407                 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
1408                 memset(skb->data, 0x00, skb->len);
1409         }
1410
1411         return 0;
1412
1413 err_nomem:
1414         igb_free_desc_rings(adapter);
1415         return ret_val;
1416 }
1417
1418 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1419 {
1420         struct e1000_hw *hw = &adapter->hw;
1421
1422         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1423         igb_write_phy_reg(hw, 29, 0x001F);
1424         igb_write_phy_reg(hw, 30, 0x8FFC);
1425         igb_write_phy_reg(hw, 29, 0x001A);
1426         igb_write_phy_reg(hw, 30, 0x8FF0);
1427 }
1428
1429 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1430 {
1431         struct e1000_hw *hw = &adapter->hw;
1432         u32 ctrl_reg = 0;
1433
1434         hw->mac.autoneg = false;
1435
1436         if (hw->phy.type == e1000_phy_m88) {
1437                 /* Auto-MDI/MDIX Off */
1438                 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1439                 /* reset to update Auto-MDI/MDIX */
1440                 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1441                 /* autoneg off */
1442                 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1443         }
1444
1445         ctrl_reg = rd32(E1000_CTRL);
1446
1447         /* force 1000, set loopback */
1448         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1449
1450         /* Now set up the MAC to the same speed/duplex as the PHY. */
1451         ctrl_reg = rd32(E1000_CTRL);
1452         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1453         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1454                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1455                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1456                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1457                      E1000_CTRL_SLU);    /* Set link up enable bit */
1458
1459         if (hw->phy.type == e1000_phy_m88)
1460                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1461
1462         wr32(E1000_CTRL, ctrl_reg);
1463
1464         /* Disable the receiver on the PHY so when a cable is plugged in, the
1465          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1466          */
1467         if (hw->phy.type == e1000_phy_m88)
1468                 igb_phy_disable_receiver(adapter);
1469
1470         udelay(500);
1471
1472         return 0;
1473 }
1474
1475 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1476 {
1477         return igb_integrated_phy_loopback(adapter);
1478 }
1479
1480 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1481 {
1482         struct e1000_hw *hw = &adapter->hw;
1483         u32 reg;
1484
1485         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1486                 reg = rd32(E1000_RCTL);
1487                 reg |= E1000_RCTL_LBM_TCVR;
1488                 wr32(E1000_RCTL, reg);
1489
1490                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1491
1492                 reg = rd32(E1000_CTRL);
1493                 reg &= ~(E1000_CTRL_RFCE |
1494                          E1000_CTRL_TFCE |
1495                          E1000_CTRL_LRST);
1496                 reg |= E1000_CTRL_SLU |
1497                        E1000_CTRL_FD;
1498                 wr32(E1000_CTRL, reg);
1499
1500                 /* Unset switch control to serdes energy detect */
1501                 reg = rd32(E1000_CONNSW);
1502                 reg &= ~E1000_CONNSW_ENRGSRC;
1503                 wr32(E1000_CONNSW, reg);
1504
1505                 /* Set PCS register for forced speed */
1506                 reg = rd32(E1000_PCS_LCTL);
1507                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1508                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1509                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1510                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1511                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1512                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1513                 wr32(E1000_PCS_LCTL, reg);
1514
1515                 return 0;
1516         } else if (hw->phy.media_type == e1000_media_type_copper) {
1517                 return igb_set_phy_loopback(adapter);
1518         }
1519
1520         return 7;
1521 }
1522
1523 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1524 {
1525         struct e1000_hw *hw = &adapter->hw;
1526         u32 rctl;
1527         u16 phy_reg;
1528
1529         rctl = rd32(E1000_RCTL);
1530         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1531         wr32(E1000_RCTL, rctl);
1532
1533         hw->mac.autoneg = true;
1534         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1535         if (phy_reg & MII_CR_LOOPBACK) {
1536                 phy_reg &= ~MII_CR_LOOPBACK;
1537                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1538                 igb_phy_sw_reset(hw);
1539         }
1540 }
1541
1542 static void igb_create_lbtest_frame(struct sk_buff *skb,
1543                                     unsigned int frame_size)
1544 {
1545         memset(skb->data, 0xFF, frame_size);
1546         frame_size &= ~1;
1547         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1548         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1549         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1550 }
1551
1552 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1553 {
1554         frame_size &= ~1;
1555         if (*(skb->data + 3) == 0xFF)
1556                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1557                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1558                         return 0;
1559         return 13;
1560 }
1561
1562 static int igb_run_loopback_test(struct igb_adapter *adapter)
1563 {
1564         struct e1000_hw *hw = &adapter->hw;
1565         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1566         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1567         struct pci_dev *pdev = adapter->pdev;
1568         int i, j, k, l, lc, good_cnt;
1569         int ret_val = 0;
1570         unsigned long time;
1571
1572         wr32(E1000_RDT(0), rx_ring->count - 1);
1573
1574         /* Calculate the loop count based on the largest descriptor ring
1575          * The idea is to wrap the largest ring a number of times using 64
1576          * send/receive pairs during each loop
1577          */
1578
1579         if (rx_ring->count <= tx_ring->count)
1580                 lc = ((tx_ring->count / 64) * 2) + 1;
1581         else
1582                 lc = ((rx_ring->count / 64) * 2) + 1;
1583
1584         k = l = 0;
1585         for (j = 0; j <= lc; j++) { /* loop count loop */
1586                 for (i = 0; i < 64; i++) { /* send the packets */
1587                         igb_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1588                                                 1024);
1589                         pci_dma_sync_single_for_device(pdev,
1590                                 tx_ring->buffer_info[k].dma,
1591                                 tx_ring->buffer_info[k].length,
1592                                 PCI_DMA_TODEVICE);
1593                         k++;
1594                         if (k == tx_ring->count)
1595                                 k = 0;
1596                 }
1597                 wr32(E1000_TDT(0), k);
1598                 msleep(200);
1599                 time = jiffies; /* set the start time for the receive */
1600                 good_cnt = 0;
1601                 do { /* receive the sent packets */
1602                         pci_dma_sync_single_for_cpu(pdev,
1603                                         rx_ring->buffer_info[l].dma,
1604                                         IGB_RXBUFFER_2048,
1605                                         PCI_DMA_FROMDEVICE);
1606
1607                         ret_val = igb_check_lbtest_frame(
1608                                              rx_ring->buffer_info[l].skb, 1024);
1609                         if (!ret_val)
1610                                 good_cnt++;
1611                         l++;
1612                         if (l == rx_ring->count)
1613                                 l = 0;
1614                         /* time + 20 msecs (200 msecs on 2.4) is more than
1615                          * enough time to complete the receives, if it's
1616                          * exceeded, break and error off
1617                          */
1618                 } while (good_cnt < 64 && jiffies < (time + 20));
1619                 if (good_cnt != 64) {
1620                         ret_val = 13; /* ret_val is the same as mis-compare */
1621                         break;
1622                 }
1623                 if (jiffies >= (time + 20)) {
1624                         ret_val = 14; /* error code for time out error */
1625                         break;
1626                 }
1627         } /* end loop count loop */
1628         return ret_val;
1629 }
1630
1631 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1632 {
1633         /* PHY loopback cannot be performed if SoL/IDER
1634          * sessions are active */
1635         if (igb_check_reset_block(&adapter->hw)) {
1636                 dev_err(&adapter->pdev->dev,
1637                         "Cannot do PHY loopback test "
1638                         "when SoL/IDER is active.\n");
1639                 *data = 0;
1640                 goto out;
1641         }
1642         *data = igb_setup_desc_rings(adapter);
1643         if (*data)
1644                 goto out;
1645         *data = igb_setup_loopback_test(adapter);
1646         if (*data)
1647                 goto err_loopback;
1648         *data = igb_run_loopback_test(adapter);
1649         igb_loopback_cleanup(adapter);
1650
1651 err_loopback:
1652         igb_free_desc_rings(adapter);
1653 out:
1654         return *data;
1655 }
1656
1657 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1658 {
1659         struct e1000_hw *hw = &adapter->hw;
1660         *data = 0;
1661         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1662                 int i = 0;
1663                 hw->mac.serdes_has_link = false;
1664
1665                 /* On some blade server designs, link establishment
1666                  * could take as long as 2-3 minutes */
1667                 do {
1668                         hw->mac.ops.check_for_link(&adapter->hw);
1669                         if (hw->mac.serdes_has_link)
1670                                 return *data;
1671                         msleep(20);
1672                 } while (i++ < 3750);
1673
1674                 *data = 1;
1675         } else {
1676                 hw->mac.ops.check_for_link(&adapter->hw);
1677                 if (hw->mac.autoneg)
1678                         msleep(4000);
1679
1680                 if (!(rd32(E1000_STATUS) &
1681                       E1000_STATUS_LU))
1682                         *data = 1;
1683         }
1684         return *data;
1685 }
1686
1687 static void igb_diag_test(struct net_device *netdev,
1688                           struct ethtool_test *eth_test, u64 *data)
1689 {
1690         struct igb_adapter *adapter = netdev_priv(netdev);
1691         u16 autoneg_advertised;
1692         u8 forced_speed_duplex, autoneg;
1693         bool if_running = netif_running(netdev);
1694
1695         set_bit(__IGB_TESTING, &adapter->state);
1696         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1697                 /* Offline tests */
1698
1699                 /* save speed, duplex, autoneg settings */
1700                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1701                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1702                 autoneg = adapter->hw.mac.autoneg;
1703
1704                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1705
1706                 /* Link test performed before hardware reset so autoneg doesn't
1707                  * interfere with test result */
1708                 if (igb_link_test(adapter, &data[4]))
1709                         eth_test->flags |= ETH_TEST_FL_FAILED;
1710
1711                 if (if_running)
1712                         /* indicate we're in test mode */
1713                         dev_close(netdev);
1714                 else
1715                         igb_reset(adapter);
1716
1717                 if (igb_reg_test(adapter, &data[0]))
1718                         eth_test->flags |= ETH_TEST_FL_FAILED;
1719
1720                 igb_reset(adapter);
1721                 if (igb_eeprom_test(adapter, &data[1]))
1722                         eth_test->flags |= ETH_TEST_FL_FAILED;
1723
1724                 igb_reset(adapter);
1725                 if (igb_intr_test(adapter, &data[2]))
1726                         eth_test->flags |= ETH_TEST_FL_FAILED;
1727
1728                 igb_reset(adapter);
1729                 if (igb_loopback_test(adapter, &data[3]))
1730                         eth_test->flags |= ETH_TEST_FL_FAILED;
1731
1732                 /* restore speed, duplex, autoneg settings */
1733                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1734                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1735                 adapter->hw.mac.autoneg = autoneg;
1736
1737                 /* force this routine to wait until autoneg complete/timeout */
1738                 adapter->hw.phy.autoneg_wait_to_complete = true;
1739                 igb_reset(adapter);
1740                 adapter->hw.phy.autoneg_wait_to_complete = false;
1741
1742                 clear_bit(__IGB_TESTING, &adapter->state);
1743                 if (if_running)
1744                         dev_open(netdev);
1745         } else {
1746                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1747                 /* Online tests */
1748                 if (igb_link_test(adapter, &data[4]))
1749                         eth_test->flags |= ETH_TEST_FL_FAILED;
1750
1751                 /* Online tests aren't run; pass by default */
1752                 data[0] = 0;
1753                 data[1] = 0;
1754                 data[2] = 0;
1755                 data[3] = 0;
1756
1757                 clear_bit(__IGB_TESTING, &adapter->state);
1758         }
1759         msleep_interruptible(4 * 1000);
1760 }
1761
1762 static int igb_wol_exclusion(struct igb_adapter *adapter,
1763                              struct ethtool_wolinfo *wol)
1764 {
1765         struct e1000_hw *hw = &adapter->hw;
1766         int retval = 1; /* fail by default */
1767
1768         switch (hw->device_id) {
1769         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1770                 /* WoL not supported */
1771                 wol->supported = 0;
1772                 break;
1773         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1774         case E1000_DEV_ID_82576_FIBER:
1775         case E1000_DEV_ID_82576_SERDES:
1776                 /* Wake events not supported on port B */
1777                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1778                         wol->supported = 0;
1779                         break;
1780                 }
1781                 /* return success for non excluded adapter ports */
1782                 retval = 0;
1783                 break;
1784         case E1000_DEV_ID_82576_QUAD_COPPER:
1785                 /* quad port adapters only support WoL on port A */
1786                 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1787                         wol->supported = 0;
1788                         break;
1789                 }
1790                 /* return success for non excluded adapter ports */
1791                 retval = 0;
1792                 break;
1793         default:
1794                 /* dual port cards only support WoL on port A from now on
1795                  * unless it was enabled in the eeprom for port B
1796                  * so exclude FUNC_1 ports from having WoL enabled */
1797                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1 &&
1798                     !adapter->eeprom_wol) {
1799                         wol->supported = 0;
1800                         break;
1801                 }
1802
1803                 retval = 0;
1804         }
1805
1806         return retval;
1807 }
1808
1809 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1810 {
1811         struct igb_adapter *adapter = netdev_priv(netdev);
1812
1813         wol->supported = WAKE_UCAST | WAKE_MCAST |
1814                          WAKE_BCAST | WAKE_MAGIC;
1815         wol->wolopts = 0;
1816
1817         /* this function will set ->supported = 0 and return 1 if wol is not
1818          * supported by this hardware */
1819         if (igb_wol_exclusion(adapter, wol) ||
1820             !device_can_wakeup(&adapter->pdev->dev))
1821                 return;
1822
1823         /* apply any specific unsupported masks here */
1824         switch (adapter->hw.device_id) {
1825         default:
1826                 break;
1827         }
1828
1829         if (adapter->wol & E1000_WUFC_EX)
1830                 wol->wolopts |= WAKE_UCAST;
1831         if (adapter->wol & E1000_WUFC_MC)
1832                 wol->wolopts |= WAKE_MCAST;
1833         if (adapter->wol & E1000_WUFC_BC)
1834                 wol->wolopts |= WAKE_BCAST;
1835         if (adapter->wol & E1000_WUFC_MAG)
1836                 wol->wolopts |= WAKE_MAGIC;
1837
1838         return;
1839 }
1840
1841 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1842 {
1843         struct igb_adapter *adapter = netdev_priv(netdev);
1844
1845         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1846                 return -EOPNOTSUPP;
1847
1848         if (igb_wol_exclusion(adapter, wol) ||
1849             !device_can_wakeup(&adapter->pdev->dev))
1850                 return wol->wolopts ? -EOPNOTSUPP : 0;
1851
1852         /* these settings will always override what we currently have */
1853         adapter->wol = 0;
1854
1855         if (wol->wolopts & WAKE_UCAST)
1856                 adapter->wol |= E1000_WUFC_EX;
1857         if (wol->wolopts & WAKE_MCAST)
1858                 adapter->wol |= E1000_WUFC_MC;
1859         if (wol->wolopts & WAKE_BCAST)
1860                 adapter->wol |= E1000_WUFC_BC;
1861         if (wol->wolopts & WAKE_MAGIC)
1862                 adapter->wol |= E1000_WUFC_MAG;
1863
1864         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1865
1866         return 0;
1867 }
1868
1869 /* bit defines for adapter->led_status */
1870 #define IGB_LED_ON              0
1871
1872 static int igb_phys_id(struct net_device *netdev, u32 data)
1873 {
1874         struct igb_adapter *adapter = netdev_priv(netdev);
1875         struct e1000_hw *hw = &adapter->hw;
1876
1877         if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
1878                 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
1879
1880         igb_blink_led(hw);
1881         msleep_interruptible(data * 1000);
1882
1883         igb_led_off(hw);
1884         clear_bit(IGB_LED_ON, &adapter->led_status);
1885         igb_cleanup_led(hw);
1886
1887         return 0;
1888 }
1889
1890 static int igb_set_coalesce(struct net_device *netdev,
1891                             struct ethtool_coalesce *ec)
1892 {
1893         struct igb_adapter *adapter = netdev_priv(netdev);
1894         struct e1000_hw *hw = &adapter->hw;
1895         int i;
1896
1897         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1898             ((ec->rx_coalesce_usecs > 3) &&
1899              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1900             (ec->rx_coalesce_usecs == 2))
1901                 return -EINVAL;
1902
1903         /* convert to rate of irq's per second */
1904         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) {
1905                 adapter->itr_setting = ec->rx_coalesce_usecs;
1906                 adapter->itr = IGB_START_ITR;
1907         } else {
1908                 adapter->itr_setting = ec->rx_coalesce_usecs << 2;
1909                 adapter->itr = adapter->itr_setting;
1910         }
1911
1912         for (i = 0; i < adapter->num_rx_queues; i++)
1913                 wr32(adapter->rx_ring[i].itr_register, adapter->itr);
1914
1915         return 0;
1916 }
1917
1918 static int igb_get_coalesce(struct net_device *netdev,
1919                             struct ethtool_coalesce *ec)
1920 {
1921         struct igb_adapter *adapter = netdev_priv(netdev);
1922
1923         if (adapter->itr_setting <= 3)
1924                 ec->rx_coalesce_usecs = adapter->itr_setting;
1925         else
1926                 ec->rx_coalesce_usecs = adapter->itr_setting >> 2;
1927
1928         return 0;
1929 }
1930
1931
1932 static int igb_nway_reset(struct net_device *netdev)
1933 {
1934         struct igb_adapter *adapter = netdev_priv(netdev);
1935         if (netif_running(netdev))
1936                 igb_reinit_locked(adapter);
1937         return 0;
1938 }
1939
1940 static int igb_get_sset_count(struct net_device *netdev, int sset)
1941 {
1942         switch (sset) {
1943         case ETH_SS_STATS:
1944                 return IGB_STATS_LEN;
1945         case ETH_SS_TEST:
1946                 return IGB_TEST_LEN;
1947         default:
1948                 return -ENOTSUPP;
1949         }
1950 }
1951
1952 static void igb_get_ethtool_stats(struct net_device *netdev,
1953                                   struct ethtool_stats *stats, u64 *data)
1954 {
1955         struct igb_adapter *adapter = netdev_priv(netdev);
1956         u64 *queue_stat;
1957         int stat_count_tx = sizeof(struct igb_tx_queue_stats) / sizeof(u64);
1958         int stat_count_rx = sizeof(struct igb_rx_queue_stats) / sizeof(u64);
1959         int j;
1960         int i;
1961
1962         igb_update_stats(adapter);
1963         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1964                 char *p = (char *)adapter+igb_gstrings_stats[i].stat_offset;
1965                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
1966                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1967         }
1968         for (j = 0; j < adapter->num_tx_queues; j++) {
1969                 int k;
1970                 queue_stat = (u64 *)&adapter->tx_ring[j].tx_stats;
1971                 for (k = 0; k < stat_count_tx; k++)
1972                         data[i + k] = queue_stat[k];
1973                 i += k;
1974         }
1975         for (j = 0; j < adapter->num_rx_queues; j++) {
1976                 int k;
1977                 queue_stat = (u64 *)&adapter->rx_ring[j].rx_stats;
1978                 for (k = 0; k < stat_count_rx; k++)
1979                         data[i + k] = queue_stat[k];
1980                 i += k;
1981         }
1982 }
1983
1984 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
1985 {
1986         struct igb_adapter *adapter = netdev_priv(netdev);
1987         u8 *p = data;
1988         int i;
1989
1990         switch (stringset) {
1991         case ETH_SS_TEST:
1992                 memcpy(data, *igb_gstrings_test,
1993                         IGB_TEST_LEN*ETH_GSTRING_LEN);
1994                 break;
1995         case ETH_SS_STATS:
1996                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
1997                         memcpy(p, igb_gstrings_stats[i].stat_string,
1998                                ETH_GSTRING_LEN);
1999                         p += ETH_GSTRING_LEN;
2000                 }
2001                 for (i = 0; i < adapter->num_tx_queues; i++) {
2002                         sprintf(p, "tx_queue_%u_packets", i);
2003                         p += ETH_GSTRING_LEN;
2004                         sprintf(p, "tx_queue_%u_bytes", i);
2005                         p += ETH_GSTRING_LEN;
2006                 }
2007                 for (i = 0; i < adapter->num_rx_queues; i++) {
2008                         sprintf(p, "rx_queue_%u_packets", i);
2009                         p += ETH_GSTRING_LEN;
2010                         sprintf(p, "rx_queue_%u_bytes", i);
2011                         p += ETH_GSTRING_LEN;
2012                         sprintf(p, "rx_queue_%u_drops", i);
2013                         p += ETH_GSTRING_LEN;
2014                 }
2015 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2016                 break;
2017         }
2018 }
2019
2020 static const struct ethtool_ops igb_ethtool_ops = {
2021         .get_settings           = igb_get_settings,
2022         .set_settings           = igb_set_settings,
2023         .get_drvinfo            = igb_get_drvinfo,
2024         .get_regs_len           = igb_get_regs_len,
2025         .get_regs               = igb_get_regs,
2026         .get_wol                = igb_get_wol,
2027         .set_wol                = igb_set_wol,
2028         .get_msglevel           = igb_get_msglevel,
2029         .set_msglevel           = igb_set_msglevel,
2030         .nway_reset             = igb_nway_reset,
2031         .get_link               = ethtool_op_get_link,
2032         .get_eeprom_len         = igb_get_eeprom_len,
2033         .get_eeprom             = igb_get_eeprom,
2034         .set_eeprom             = igb_set_eeprom,
2035         .get_ringparam          = igb_get_ringparam,
2036         .set_ringparam          = igb_set_ringparam,
2037         .get_pauseparam         = igb_get_pauseparam,
2038         .set_pauseparam         = igb_set_pauseparam,
2039         .get_rx_csum            = igb_get_rx_csum,
2040         .set_rx_csum            = igb_set_rx_csum,
2041         .get_tx_csum            = igb_get_tx_csum,
2042         .set_tx_csum            = igb_set_tx_csum,
2043         .get_sg                 = ethtool_op_get_sg,
2044         .set_sg                 = ethtool_op_set_sg,
2045         .get_tso                = ethtool_op_get_tso,
2046         .set_tso                = igb_set_tso,
2047         .self_test              = igb_diag_test,
2048         .get_strings            = igb_get_strings,
2049         .phys_id                = igb_phys_id,
2050         .get_sset_count         = igb_get_sset_count,
2051         .get_ethtool_stats      = igb_get_ethtool_stats,
2052         .get_coalesce           = igb_get_coalesce,
2053         .set_coalesce           = igb_set_coalesce,
2054 };
2055
2056 void igb_set_ethtool_ops(struct net_device *netdev)
2057 {
2058         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2059 }