ALSA: opl4 - Fix a wrong argument in proc write callback
[safe/jmp/linux-2.6] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  * This program is free software; you can redistribute  it and/or modify it
17  * under  the terms of  the GNU General  Public License as published by the
18  * Free Software Foundation;  either version 2 of the  License, or (at your
19  * option) any later version.
20  *
21  *  Gianfar:  AKA Lambda Draconis, "Dragon"
22  *  RA 11 31 24.2
23  *  Dec +69 19 52
24  *  V 3.84
25  *  B-V +1.62
26  *
27  *  Theory of operation
28  *
29  *  The driver is initialized through of_device. Configuration information
30  *  is therefore conveyed through an OF-style device tree.
31  *
32  *  The Gianfar Ethernet Controller uses a ring of buffer
33  *  descriptors.  The beginning is indicated by a register
34  *  pointing to the physical address of the start of the ring.
35  *  The end is determined by a "wrap" bit being set in the
36  *  last descriptor of the ring.
37  *
38  *  When a packet is received, the RXF bit in the
39  *  IEVENT register is set, triggering an interrupt when the
40  *  corresponding bit in the IMASK register is also set (if
41  *  interrupt coalescing is active, then the interrupt may not
42  *  happen immediately, but will wait until either a set number
43  *  of frames or amount of time have passed).  In NAPI, the
44  *  interrupt handler will signal there is work to be done, and
45  *  exit. This method will start at the last known empty
46  *  descriptor, and process every subsequent descriptor until there
47  *  are none left with data (NAPI will stop after a set number of
48  *  packets to give time to other tasks, but will eventually
49  *  process all the packets).  The data arrives inside a
50  *  pre-allocated skb, and so after the skb is passed up to the
51  *  stack, a new skb must be allocated, and the address field in
52  *  the buffer descriptor must be updated to indicate this new
53  *  skb.
54  *
55  *  When the kernel requests that a packet be transmitted, the
56  *  driver starts where it left off last time, and points the
57  *  descriptor at the buffer which was passed in.  The driver
58  *  then informs the DMA engine that there are packets ready to
59  *  be transmitted.  Once the controller is finished transmitting
60  *  the packet, an interrupt may be triggered (under the same
61  *  conditions as for reception, but depending on the TXF bit).
62  *  The driver then cleans up the buffer.
63  */
64
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
78 #include <linux/mm.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
81 #include <linux/ip.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
84 #include <linux/in.h>
85
86 #include <asm/io.h>
87 #include <asm/irq.h>
88 #include <asm/uaccess.h>
89 #include <linux/module.h>
90 #include <linux/dma-mapping.h>
91 #include <linux/crc32.h>
92 #include <linux/mii.h>
93 #include <linux/phy.h>
94 #include <linux/phy_fixed.h>
95 #include <linux/of.h>
96
97 #include "gianfar.h"
98 #include "fsl_pq_mdio.h"
99
100 #define TX_TIMEOUT      (1*HZ)
101 #undef BRIEF_GFAR_ERRORS
102 #undef VERBOSE_GFAR_ERRORS
103
104 const char gfar_driver_name[] = "Gianfar Ethernet";
105 const char gfar_driver_version[] = "1.3";
106
107 static int gfar_enet_open(struct net_device *dev);
108 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
109 static void gfar_reset_task(struct work_struct *work);
110 static void gfar_timeout(struct net_device *dev);
111 static int gfar_close(struct net_device *dev);
112 struct sk_buff *gfar_new_skb(struct net_device *dev);
113 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
114                 struct sk_buff *skb);
115 static int gfar_set_mac_address(struct net_device *dev);
116 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
117 static irqreturn_t gfar_error(int irq, void *dev_id);
118 static irqreturn_t gfar_transmit(int irq, void *dev_id);
119 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
120 static void adjust_link(struct net_device *dev);
121 static void init_registers(struct net_device *dev);
122 static int init_phy(struct net_device *dev);
123 static int gfar_probe(struct of_device *ofdev,
124                 const struct of_device_id *match);
125 static int gfar_remove(struct of_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device *dev);
133 #endif
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
135 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
136 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137                               int amount_pull);
138 static void gfar_vlan_rx_register(struct net_device *netdev,
139                                 struct vlan_group *grp);
140 void gfar_halt(struct net_device *dev);
141 static void gfar_halt_nodisable(struct net_device *dev);
142 void gfar_start(struct net_device *dev);
143 static void gfar_clear_exact_match(struct net_device *dev);
144 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
145 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
146
147 MODULE_AUTHOR("Freescale Semiconductor, Inc");
148 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
149 MODULE_LICENSE("GPL");
150
151 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
152                             dma_addr_t buf)
153 {
154         u32 lstatus;
155
156         bdp->bufPtr = buf;
157
158         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
159         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
160                 lstatus |= BD_LFLAG(RXBD_WRAP);
161
162         eieio();
163
164         bdp->lstatus = lstatus;
165 }
166
167 static int gfar_init_bds(struct net_device *ndev)
168 {
169         struct gfar_private *priv = netdev_priv(ndev);
170         struct gfar_priv_tx_q *tx_queue = NULL;
171         struct gfar_priv_rx_q *rx_queue = NULL;
172         struct txbd8 *txbdp;
173         struct rxbd8 *rxbdp;
174         int i, j;
175
176         for (i = 0; i < priv->num_tx_queues; i++) {
177                 tx_queue = priv->tx_queue[i];
178                 /* Initialize some variables in our dev structure */
179                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
180                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
181                 tx_queue->cur_tx = tx_queue->tx_bd_base;
182                 tx_queue->skb_curtx = 0;
183                 tx_queue->skb_dirtytx = 0;
184
185                 /* Initialize Transmit Descriptor Ring */
186                 txbdp = tx_queue->tx_bd_base;
187                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
188                         txbdp->lstatus = 0;
189                         txbdp->bufPtr = 0;
190                         txbdp++;
191                 }
192
193                 /* Set the last descriptor in the ring to indicate wrap */
194                 txbdp--;
195                 txbdp->status |= TXBD_WRAP;
196         }
197
198         for (i = 0; i < priv->num_rx_queues; i++) {
199                 rx_queue = priv->rx_queue[i];
200                 rx_queue->cur_rx = rx_queue->rx_bd_base;
201                 rx_queue->skb_currx = 0;
202                 rxbdp = rx_queue->rx_bd_base;
203
204                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
205                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
206
207                         if (skb) {
208                                 gfar_init_rxbdp(rx_queue, rxbdp,
209                                                 rxbdp->bufPtr);
210                         } else {
211                                 skb = gfar_new_skb(ndev);
212                                 if (!skb) {
213                                         pr_err("%s: Can't allocate RX buffers\n",
214                                                         ndev->name);
215                                         goto err_rxalloc_fail;
216                                 }
217                                 rx_queue->rx_skbuff[j] = skb;
218
219                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
220                         }
221
222                         rxbdp++;
223                 }
224
225         }
226
227         return 0;
228
229 err_rxalloc_fail:
230         free_skb_resources(priv);
231         return -ENOMEM;
232 }
233
234 static int gfar_alloc_skb_resources(struct net_device *ndev)
235 {
236         void *vaddr;
237         dma_addr_t addr;
238         int i, j, k;
239         struct gfar_private *priv = netdev_priv(ndev);
240         struct device *dev = &priv->ofdev->dev;
241         struct gfar_priv_tx_q *tx_queue = NULL;
242         struct gfar_priv_rx_q *rx_queue = NULL;
243
244         priv->total_tx_ring_size = 0;
245         for (i = 0; i < priv->num_tx_queues; i++)
246                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
247
248         priv->total_rx_ring_size = 0;
249         for (i = 0; i < priv->num_rx_queues; i++)
250                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
251
252         /* Allocate memory for the buffer descriptors */
253         vaddr = dma_alloc_coherent(dev,
254                         sizeof(struct txbd8) * priv->total_tx_ring_size +
255                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
256                         &addr, GFP_KERNEL);
257         if (!vaddr) {
258                 if (netif_msg_ifup(priv))
259                         pr_err("%s: Could not allocate buffer descriptors!\n",
260                                ndev->name);
261                 return -ENOMEM;
262         }
263
264         for (i = 0; i < priv->num_tx_queues; i++) {
265                 tx_queue = priv->tx_queue[i];
266                 tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
267                 tx_queue->tx_bd_dma_base = addr;
268                 tx_queue->dev = ndev;
269                 /* enet DMA only understands physical addresses */
270                 addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
271                 vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
272         }
273
274         /* Start the rx descriptor ring where the tx ring leaves off */
275         for (i = 0; i < priv->num_rx_queues; i++) {
276                 rx_queue = priv->rx_queue[i];
277                 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
278                 rx_queue->rx_bd_dma_base = addr;
279                 rx_queue->dev = ndev;
280                 addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
281                 vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
282         }
283
284         /* Setup the skbuff rings */
285         for (i = 0; i < priv->num_tx_queues; i++) {
286                 tx_queue = priv->tx_queue[i];
287                 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
288                                   tx_queue->tx_ring_size, GFP_KERNEL);
289                 if (!tx_queue->tx_skbuff) {
290                         if (netif_msg_ifup(priv))
291                                 pr_err("%s: Could not allocate tx_skbuff\n",
292                                                 ndev->name);
293                         goto cleanup;
294                 }
295
296                 for (k = 0; k < tx_queue->tx_ring_size; k++)
297                         tx_queue->tx_skbuff[k] = NULL;
298         }
299
300         for (i = 0; i < priv->num_rx_queues; i++) {
301                 rx_queue = priv->rx_queue[i];
302                 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
303                                   rx_queue->rx_ring_size, GFP_KERNEL);
304
305                 if (!rx_queue->rx_skbuff) {
306                         if (netif_msg_ifup(priv))
307                                 pr_err("%s: Could not allocate rx_skbuff\n",
308                                        ndev->name);
309                         goto cleanup;
310                 }
311
312                 for (j = 0; j < rx_queue->rx_ring_size; j++)
313                         rx_queue->rx_skbuff[j] = NULL;
314         }
315
316         if (gfar_init_bds(ndev))
317                 goto cleanup;
318
319         return 0;
320
321 cleanup:
322         free_skb_resources(priv);
323         return -ENOMEM;
324 }
325
326 static void gfar_init_tx_rx_base(struct gfar_private *priv)
327 {
328         struct gfar __iomem *regs = priv->gfargrp[0].regs;
329         u32 __iomem *baddr;
330         int i;
331
332         baddr = &regs->tbase0;
333         for(i = 0; i < priv->num_tx_queues; i++) {
334                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
335                 baddr   += 2;
336         }
337
338         baddr = &regs->rbase0;
339         for(i = 0; i < priv->num_rx_queues; i++) {
340                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
341                 baddr   += 2;
342         }
343 }
344
345 static void gfar_init_mac(struct net_device *ndev)
346 {
347         struct gfar_private *priv = netdev_priv(ndev);
348         struct gfar __iomem *regs = priv->gfargrp[0].regs;
349         u32 rctrl = 0;
350         u32 tctrl = 0;
351         u32 attrs = 0;
352
353         /* write the tx/rx base registers */
354         gfar_init_tx_rx_base(priv);
355
356         /* Configure the coalescing support */
357         gfar_configure_coalescing(priv, 0xFF, 0xFF);
358
359         if (priv->rx_filer_enable) {
360                 rctrl |= RCTRL_FILREN;
361                 /* Program the RIR0 reg with the required distribution */
362                 gfar_write(&regs->rir0, DEFAULT_RIR0);
363         }
364
365         if (priv->rx_csum_enable)
366                 rctrl |= RCTRL_CHECKSUMMING;
367
368         if (priv->extended_hash) {
369                 rctrl |= RCTRL_EXTHASH;
370
371                 gfar_clear_exact_match(ndev);
372                 rctrl |= RCTRL_EMEN;
373         }
374
375         if (priv->padding) {
376                 rctrl &= ~RCTRL_PAL_MASK;
377                 rctrl |= RCTRL_PADDING(priv->padding);
378         }
379
380         /* keep vlan related bits if it's enabled */
381         if (priv->vlgrp) {
382                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383                 tctrl |= TCTRL_VLINS;
384         }
385
386         /* Init rctrl based on our settings */
387         gfar_write(&regs->rctrl, rctrl);
388
389         if (ndev->features & NETIF_F_IP_CSUM)
390                 tctrl |= TCTRL_INIT_CSUM;
391
392         tctrl |= TCTRL_TXSCHED_PRIO;
393
394         gfar_write(&regs->tctrl, tctrl);
395
396         /* Set the extraction length and index */
397         attrs = ATTRELI_EL(priv->rx_stash_size) |
398                 ATTRELI_EI(priv->rx_stash_index);
399
400         gfar_write(&regs->attreli, attrs);
401
402         /* Start with defaults, and add stashing or locking
403          * depending on the approprate variables */
404         attrs = ATTR_INIT_SETTINGS;
405
406         if (priv->bd_stash_en)
407                 attrs |= ATTR_BDSTASH;
408
409         if (priv->rx_stash_size != 0)
410                 attrs |= ATTR_BUFSTASH;
411
412         gfar_write(&regs->attr, attrs);
413
414         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
415         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
416         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
417 }
418
419 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
420 {
421         struct gfar_private *priv = netdev_priv(dev);
422         struct netdev_queue *txq;
423         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
424         unsigned long tx_packets = 0, tx_bytes = 0;
425         int i = 0;
426
427         for (i = 0; i < priv->num_rx_queues; i++) {
428                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
429                 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
430                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
431         }
432
433         dev->stats.rx_packets = rx_packets;
434         dev->stats.rx_bytes = rx_bytes;
435         dev->stats.rx_dropped = rx_dropped;
436
437         for (i = 0; i < priv->num_tx_queues; i++) {
438                 txq = netdev_get_tx_queue(dev, i);
439                 tx_bytes += txq->tx_bytes;
440                 tx_packets += txq->tx_packets;
441         }
442
443         dev->stats.tx_bytes = tx_bytes;
444         dev->stats.tx_packets = tx_packets;
445
446         return &dev->stats;
447 }
448
449 static const struct net_device_ops gfar_netdev_ops = {
450         .ndo_open = gfar_enet_open,
451         .ndo_start_xmit = gfar_start_xmit,
452         .ndo_stop = gfar_close,
453         .ndo_change_mtu = gfar_change_mtu,
454         .ndo_set_multicast_list = gfar_set_multi,
455         .ndo_tx_timeout = gfar_timeout,
456         .ndo_do_ioctl = gfar_ioctl,
457         .ndo_get_stats = gfar_get_stats,
458         .ndo_vlan_rx_register = gfar_vlan_rx_register,
459         .ndo_set_mac_address = eth_mac_addr,
460         .ndo_validate_addr = eth_validate_addr,
461 #ifdef CONFIG_NET_POLL_CONTROLLER
462         .ndo_poll_controller = gfar_netpoll,
463 #endif
464 };
465
466 unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
467 unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
468
469 void lock_rx_qs(struct gfar_private *priv)
470 {
471         int i = 0x0;
472
473         for (i = 0; i < priv->num_rx_queues; i++)
474                 spin_lock(&priv->rx_queue[i]->rxlock);
475 }
476
477 void lock_tx_qs(struct gfar_private *priv)
478 {
479         int i = 0x0;
480
481         for (i = 0; i < priv->num_tx_queues; i++)
482                 spin_lock(&priv->tx_queue[i]->txlock);
483 }
484
485 void unlock_rx_qs(struct gfar_private *priv)
486 {
487         int i = 0x0;
488
489         for (i = 0; i < priv->num_rx_queues; i++)
490                 spin_unlock(&priv->rx_queue[i]->rxlock);
491 }
492
493 void unlock_tx_qs(struct gfar_private *priv)
494 {
495         int i = 0x0;
496
497         for (i = 0; i < priv->num_tx_queues; i++)
498                 spin_unlock(&priv->tx_queue[i]->txlock);
499 }
500
501 /* Returns 1 if incoming frames use an FCB */
502 static inline int gfar_uses_fcb(struct gfar_private *priv)
503 {
504         return priv->vlgrp || priv->rx_csum_enable;
505 }
506
507 static void free_tx_pointers(struct gfar_private *priv)
508 {
509         int i = 0;
510
511         for (i = 0; i < priv->num_tx_queues; i++)
512                 kfree(priv->tx_queue[i]);
513 }
514
515 static void free_rx_pointers(struct gfar_private *priv)
516 {
517         int i = 0;
518
519         for (i = 0; i < priv->num_rx_queues; i++)
520                 kfree(priv->rx_queue[i]);
521 }
522
523 static void unmap_group_regs(struct gfar_private *priv)
524 {
525         int i = 0;
526
527         for (i = 0; i < MAXGROUPS; i++)
528                 if (priv->gfargrp[i].regs)
529                         iounmap(priv->gfargrp[i].regs);
530 }
531
532 static void disable_napi(struct gfar_private *priv)
533 {
534         int i = 0;
535
536         for (i = 0; i < priv->num_grps; i++)
537                 napi_disable(&priv->gfargrp[i].napi);
538 }
539
540 static void enable_napi(struct gfar_private *priv)
541 {
542         int i = 0;
543
544         for (i = 0; i < priv->num_grps; i++)
545                 napi_enable(&priv->gfargrp[i].napi);
546 }
547
548 static int gfar_parse_group(struct device_node *np,
549                 struct gfar_private *priv, const char *model)
550 {
551         u32 *queue_mask;
552         u64 addr, size;
553
554         addr = of_translate_address(np,
555                         of_get_address(np, 0, &size, NULL));
556         priv->gfargrp[priv->num_grps].regs = ioremap(addr, size);
557
558         if (!priv->gfargrp[priv->num_grps].regs)
559                 return -ENOMEM;
560
561         priv->gfargrp[priv->num_grps].interruptTransmit =
562                         irq_of_parse_and_map(np, 0);
563
564         /* If we aren't the FEC we have multiple interrupts */
565         if (model && strcasecmp(model, "FEC")) {
566                 priv->gfargrp[priv->num_grps].interruptReceive =
567                         irq_of_parse_and_map(np, 1);
568                 priv->gfargrp[priv->num_grps].interruptError =
569                         irq_of_parse_and_map(np,2);
570                 if (priv->gfargrp[priv->num_grps].interruptTransmit < 0 ||
571                         priv->gfargrp[priv->num_grps].interruptReceive < 0 ||
572                         priv->gfargrp[priv->num_grps].interruptError < 0) {
573                         return -EINVAL;
574                 }
575         }
576
577         priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
578         priv->gfargrp[priv->num_grps].priv = priv;
579         spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
580         if(priv->mode == MQ_MG_MODE) {
581                 queue_mask = (u32 *)of_get_property(np,
582                                         "fsl,rx-bit-map", NULL);
583                 priv->gfargrp[priv->num_grps].rx_bit_map =
584                         queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
585                 queue_mask = (u32 *)of_get_property(np,
586                                         "fsl,tx-bit-map", NULL);
587                 priv->gfargrp[priv->num_grps].tx_bit_map =
588                         queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
589         } else {
590                 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
591                 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
592         }
593         priv->num_grps++;
594
595         return 0;
596 }
597
598 static int gfar_of_init(struct of_device *ofdev, struct net_device **pdev)
599 {
600         const char *model;
601         const char *ctype;
602         const void *mac_addr;
603         int err = 0, i;
604         struct net_device *dev = NULL;
605         struct gfar_private *priv = NULL;
606         struct device_node *np = ofdev->node;
607         struct device_node *child = NULL;
608         const u32 *stash;
609         const u32 *stash_len;
610         const u32 *stash_idx;
611         unsigned int num_tx_qs, num_rx_qs;
612         u32 *tx_queues, *rx_queues;
613
614         if (!np || !of_device_is_available(np))
615                 return -ENODEV;
616
617         /* parse the num of tx and rx queues */
618         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
619         num_tx_qs = tx_queues ? *tx_queues : 1;
620
621         if (num_tx_qs > MAX_TX_QS) {
622                 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
623                                 num_tx_qs, MAX_TX_QS);
624                 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
625                 return -EINVAL;
626         }
627
628         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
629         num_rx_qs = rx_queues ? *rx_queues : 1;
630
631         if (num_rx_qs > MAX_RX_QS) {
632                 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
633                                 num_tx_qs, MAX_TX_QS);
634                 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
635                 return -EINVAL;
636         }
637
638         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
639         dev = *pdev;
640         if (NULL == dev)
641                 return -ENOMEM;
642
643         priv = netdev_priv(dev);
644         priv->node = ofdev->node;
645         priv->ndev = dev;
646
647         dev->num_tx_queues = num_tx_qs;
648         dev->real_num_tx_queues = num_tx_qs;
649         priv->num_tx_queues = num_tx_qs;
650         priv->num_rx_queues = num_rx_qs;
651         priv->num_grps = 0x0;
652
653         model = of_get_property(np, "model", NULL);
654
655         for (i = 0; i < MAXGROUPS; i++)
656                 priv->gfargrp[i].regs = NULL;
657
658         /* Parse and initialize group specific information */
659         if (of_device_is_compatible(np, "fsl,etsec2")) {
660                 priv->mode = MQ_MG_MODE;
661                 for_each_child_of_node(np, child) {
662                         err = gfar_parse_group(child, priv, model);
663                         if (err)
664                                 goto err_grp_init;
665                 }
666         } else {
667                 priv->mode = SQ_SG_MODE;
668                 err = gfar_parse_group(np, priv, model);
669                 if(err)
670                         goto err_grp_init;
671         }
672
673         for (i = 0; i < priv->num_tx_queues; i++)
674                priv->tx_queue[i] = NULL;
675         for (i = 0; i < priv->num_rx_queues; i++)
676                 priv->rx_queue[i] = NULL;
677
678         for (i = 0; i < priv->num_tx_queues; i++) {
679                 priv->tx_queue[i] =  (struct gfar_priv_tx_q *)kzalloc(
680                                 sizeof (struct gfar_priv_tx_q), GFP_KERNEL);
681                 if (!priv->tx_queue[i]) {
682                         err = -ENOMEM;
683                         goto tx_alloc_failed;
684                 }
685                 priv->tx_queue[i]->tx_skbuff = NULL;
686                 priv->tx_queue[i]->qindex = i;
687                 priv->tx_queue[i]->dev = dev;
688                 spin_lock_init(&(priv->tx_queue[i]->txlock));
689         }
690
691         for (i = 0; i < priv->num_rx_queues; i++) {
692                 priv->rx_queue[i] = (struct gfar_priv_rx_q *)kzalloc(
693                                         sizeof (struct gfar_priv_rx_q), GFP_KERNEL);
694                 if (!priv->rx_queue[i]) {
695                         err = -ENOMEM;
696                         goto rx_alloc_failed;
697                 }
698                 priv->rx_queue[i]->rx_skbuff = NULL;
699                 priv->rx_queue[i]->qindex = i;
700                 priv->rx_queue[i]->dev = dev;
701                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
702         }
703
704
705         stash = of_get_property(np, "bd-stash", NULL);
706
707         if (stash) {
708                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
709                 priv->bd_stash_en = 1;
710         }
711
712         stash_len = of_get_property(np, "rx-stash-len", NULL);
713
714         if (stash_len)
715                 priv->rx_stash_size = *stash_len;
716
717         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
718
719         if (stash_idx)
720                 priv->rx_stash_index = *stash_idx;
721
722         if (stash_len || stash_idx)
723                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
724
725         mac_addr = of_get_mac_address(np);
726         if (mac_addr)
727                 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
728
729         if (model && !strcasecmp(model, "TSEC"))
730                 priv->device_flags =
731                         FSL_GIANFAR_DEV_HAS_GIGABIT |
732                         FSL_GIANFAR_DEV_HAS_COALESCE |
733                         FSL_GIANFAR_DEV_HAS_RMON |
734                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
735         if (model && !strcasecmp(model, "eTSEC"))
736                 priv->device_flags =
737                         FSL_GIANFAR_DEV_HAS_GIGABIT |
738                         FSL_GIANFAR_DEV_HAS_COALESCE |
739                         FSL_GIANFAR_DEV_HAS_RMON |
740                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
741                         FSL_GIANFAR_DEV_HAS_PADDING |
742                         FSL_GIANFAR_DEV_HAS_CSUM |
743                         FSL_GIANFAR_DEV_HAS_VLAN |
744                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
745                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
746
747         ctype = of_get_property(np, "phy-connection-type", NULL);
748
749         /* We only care about rgmii-id.  The rest are autodetected */
750         if (ctype && !strcmp(ctype, "rgmii-id"))
751                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
752         else
753                 priv->interface = PHY_INTERFACE_MODE_MII;
754
755         if (of_get_property(np, "fsl,magic-packet", NULL))
756                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
757
758         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
759
760         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
761         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
762
763         return 0;
764
765 rx_alloc_failed:
766         free_rx_pointers(priv);
767 tx_alloc_failed:
768         free_tx_pointers(priv);
769 err_grp_init:
770         unmap_group_regs(priv);
771         free_netdev(dev);
772         return err;
773 }
774
775 /* Ioctl MII Interface */
776 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
777 {
778         struct gfar_private *priv = netdev_priv(dev);
779
780         if (!netif_running(dev))
781                 return -EINVAL;
782
783         if (!priv->phydev)
784                 return -ENODEV;
785
786         return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
787 }
788
789 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
790 {
791         unsigned int new_bit_map = 0x0;
792         int mask = 0x1 << (max_qs - 1), i;
793         for (i = 0; i < max_qs; i++) {
794                 if (bit_map & mask)
795                         new_bit_map = new_bit_map + (1 << i);
796                 mask = mask >> 0x1;
797         }
798         return new_bit_map;
799 }
800
801 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
802                                    u32 class)
803 {
804         u32 rqfpr = FPR_FILER_MASK;
805         u32 rqfcr = 0x0;
806
807         rqfar--;
808         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
809         ftp_rqfpr[rqfar] = rqfpr;
810         ftp_rqfcr[rqfar] = rqfcr;
811         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
812
813         rqfar--;
814         rqfcr = RQFCR_CMP_NOMATCH;
815         ftp_rqfpr[rqfar] = rqfpr;
816         ftp_rqfcr[rqfar] = rqfcr;
817         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
818
819         rqfar--;
820         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
821         rqfpr = class;
822         ftp_rqfcr[rqfar] = rqfcr;
823         ftp_rqfpr[rqfar] = rqfpr;
824         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
825
826         rqfar--;
827         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
828         rqfpr = class;
829         ftp_rqfcr[rqfar] = rqfcr;
830         ftp_rqfpr[rqfar] = rqfpr;
831         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
832
833         return rqfar;
834 }
835
836 static void gfar_init_filer_table(struct gfar_private *priv)
837 {
838         int i = 0x0;
839         u32 rqfar = MAX_FILER_IDX;
840         u32 rqfcr = 0x0;
841         u32 rqfpr = FPR_FILER_MASK;
842
843         /* Default rule */
844         rqfcr = RQFCR_CMP_MATCH;
845         ftp_rqfcr[rqfar] = rqfcr;
846         ftp_rqfpr[rqfar] = rqfpr;
847         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
848
849         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
850         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
851         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
852         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
853         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
854         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
855
856         /* cur_filer_idx indicated the fisrt non-masked rule */
857         priv->cur_filer_idx = rqfar;
858
859         /* Rest are masked rules */
860         rqfcr = RQFCR_CMP_NOMATCH;
861         for (i = 0; i < rqfar; i++) {
862                 ftp_rqfcr[i] = rqfcr;
863                 ftp_rqfpr[i] = rqfpr;
864                 gfar_write_filer(priv, i, rqfcr, rqfpr);
865         }
866 }
867
868 /* Set up the ethernet device structure, private data,
869  * and anything else we need before we start */
870 static int gfar_probe(struct of_device *ofdev,
871                 const struct of_device_id *match)
872 {
873         u32 tempval;
874         struct net_device *dev = NULL;
875         struct gfar_private *priv = NULL;
876         struct gfar __iomem *regs = NULL;
877         int err = 0, i, grp_idx = 0;
878         int len_devname;
879         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
880         u32 isrg = 0;
881         u32 __iomem *baddr;
882
883         err = gfar_of_init(ofdev, &dev);
884
885         if (err)
886                 return err;
887
888         priv = netdev_priv(dev);
889         priv->ndev = dev;
890         priv->ofdev = ofdev;
891         priv->node = ofdev->node;
892         SET_NETDEV_DEV(dev, &ofdev->dev);
893
894         spin_lock_init(&priv->bflock);
895         INIT_WORK(&priv->reset_task, gfar_reset_task);
896
897         dev_set_drvdata(&ofdev->dev, priv);
898         regs = priv->gfargrp[0].regs;
899
900         /* Stop the DMA engine now, in case it was running before */
901         /* (The firmware could have used it, and left it running). */
902         gfar_halt(dev);
903
904         /* Reset MAC layer */
905         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
906
907         /* We need to delay at least 3 TX clocks */
908         udelay(2);
909
910         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
911         gfar_write(&regs->maccfg1, tempval);
912
913         /* Initialize MACCFG2. */
914         gfar_write(&regs->maccfg2, MACCFG2_INIT_SETTINGS);
915
916         /* Initialize ECNTRL */
917         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
918
919         /* Set the dev->base_addr to the gfar reg region */
920         dev->base_addr = (unsigned long) regs;
921
922         SET_NETDEV_DEV(dev, &ofdev->dev);
923
924         /* Fill in the dev structure */
925         dev->watchdog_timeo = TX_TIMEOUT;
926         dev->mtu = 1500;
927         dev->netdev_ops = &gfar_netdev_ops;
928         dev->ethtool_ops = &gfar_ethtool_ops;
929
930         /* Register for napi ...We are registering NAPI for each grp */
931         for (i = 0; i < priv->num_grps; i++)
932                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
933
934         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
935                 priv->rx_csum_enable = 1;
936                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
937         } else
938                 priv->rx_csum_enable = 0;
939
940         priv->vlgrp = NULL;
941
942         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
943                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
944
945         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
946                 priv->extended_hash = 1;
947                 priv->hash_width = 9;
948
949                 priv->hash_regs[0] = &regs->igaddr0;
950                 priv->hash_regs[1] = &regs->igaddr1;
951                 priv->hash_regs[2] = &regs->igaddr2;
952                 priv->hash_regs[3] = &regs->igaddr3;
953                 priv->hash_regs[4] = &regs->igaddr4;
954                 priv->hash_regs[5] = &regs->igaddr5;
955                 priv->hash_regs[6] = &regs->igaddr6;
956                 priv->hash_regs[7] = &regs->igaddr7;
957                 priv->hash_regs[8] = &regs->gaddr0;
958                 priv->hash_regs[9] = &regs->gaddr1;
959                 priv->hash_regs[10] = &regs->gaddr2;
960                 priv->hash_regs[11] = &regs->gaddr3;
961                 priv->hash_regs[12] = &regs->gaddr4;
962                 priv->hash_regs[13] = &regs->gaddr5;
963                 priv->hash_regs[14] = &regs->gaddr6;
964                 priv->hash_regs[15] = &regs->gaddr7;
965
966         } else {
967                 priv->extended_hash = 0;
968                 priv->hash_width = 8;
969
970                 priv->hash_regs[0] = &regs->gaddr0;
971                 priv->hash_regs[1] = &regs->gaddr1;
972                 priv->hash_regs[2] = &regs->gaddr2;
973                 priv->hash_regs[3] = &regs->gaddr3;
974                 priv->hash_regs[4] = &regs->gaddr4;
975                 priv->hash_regs[5] = &regs->gaddr5;
976                 priv->hash_regs[6] = &regs->gaddr6;
977                 priv->hash_regs[7] = &regs->gaddr7;
978         }
979
980         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
981                 priv->padding = DEFAULT_PADDING;
982         else
983                 priv->padding = 0;
984
985         if (dev->features & NETIF_F_IP_CSUM)
986                 dev->hard_header_len += GMAC_FCB_LEN;
987
988         /* Program the isrg regs only if number of grps > 1 */
989         if (priv->num_grps > 1) {
990                 baddr = &regs->isrg0;
991                 for (i = 0; i < priv->num_grps; i++) {
992                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
993                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
994                         gfar_write(baddr, isrg);
995                         baddr++;
996                         isrg = 0x0;
997                 }
998         }
999
1000         /* Need to reverse the bit maps as  bit_map's MSB is q0
1001          * but, for_each_set_bit parses from right to left, which
1002          * basically reverses the queue numbers */
1003         for (i = 0; i< priv->num_grps; i++) {
1004                 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1005                                 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1006                 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1007                                 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1008         }
1009
1010         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1011          * also assign queues to groups */
1012         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1013                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1014                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1015                                 priv->num_rx_queues) {
1016                         priv->gfargrp[grp_idx].num_rx_queues++;
1017                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1018                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1019                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1020                 }
1021                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1022                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1023                                 priv->num_tx_queues) {
1024                         priv->gfargrp[grp_idx].num_tx_queues++;
1025                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1026                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1027                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1028                 }
1029                 priv->gfargrp[grp_idx].rstat = rstat;
1030                 priv->gfargrp[grp_idx].tstat = tstat;
1031                 rstat = tstat =0;
1032         }
1033
1034         gfar_write(&regs->rqueue, rqueue);
1035         gfar_write(&regs->tqueue, tqueue);
1036
1037         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1038
1039         /* Initializing some of the rx/tx queue level parameters */
1040         for (i = 0; i < priv->num_tx_queues; i++) {
1041                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1042                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1043                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1044                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1045         }
1046
1047         for (i = 0; i < priv->num_rx_queues; i++) {
1048                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1049                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1050                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1051         }
1052
1053         /* enable filer if using multiple RX queues*/
1054         if(priv->num_rx_queues > 1)
1055                 priv->rx_filer_enable = 1;
1056         /* Enable most messages by default */
1057         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1058
1059         /* Carrier starts down, phylib will bring it up */
1060         netif_carrier_off(dev);
1061
1062         err = register_netdev(dev);
1063
1064         if (err) {
1065                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1066                                 dev->name);
1067                 goto register_fail;
1068         }
1069
1070         device_init_wakeup(&dev->dev,
1071                 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1072
1073         /* fill out IRQ number and name fields */
1074         len_devname = strlen(dev->name);
1075         for (i = 0; i < priv->num_grps; i++) {
1076                 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1077                                 len_devname);
1078                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1079                         strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1080                                 "_g", sizeof("_g"));
1081                         priv->gfargrp[i].int_name_tx[
1082                                 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1083                         strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1084                                 priv->gfargrp[i].int_name_tx)],
1085                                 "_tx", sizeof("_tx") + 1);
1086
1087                         strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1088                                         len_devname);
1089                         strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1090                                         "_g", sizeof("_g"));
1091                         priv->gfargrp[i].int_name_rx[
1092                                 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1093                         strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1094                                 priv->gfargrp[i].int_name_rx)],
1095                                 "_rx", sizeof("_rx") + 1);
1096
1097                         strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1098                                         len_devname);
1099                         strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1100                                 "_g", sizeof("_g"));
1101                         priv->gfargrp[i].int_name_er[strlen(
1102                                         priv->gfargrp[i].int_name_er)] = i+48;
1103                         strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1104                                 priv->gfargrp[i].int_name_er)],
1105                                 "_er", sizeof("_er") + 1);
1106                 } else
1107                         priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1108         }
1109
1110         /* Initialize the filer table */
1111         gfar_init_filer_table(priv);
1112
1113         /* Create all the sysfs files */
1114         gfar_init_sysfs(dev);
1115
1116         /* Print out the device info */
1117         printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1118
1119         /* Even more device info helps when determining which kernel */
1120         /* provided which set of benchmarks. */
1121         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1122         for (i = 0; i < priv->num_rx_queues; i++)
1123                 printk(KERN_INFO "%s: RX BD ring size for Q[%d]: %d\n",
1124                         dev->name, i, priv->rx_queue[i]->rx_ring_size);
1125         for(i = 0; i < priv->num_tx_queues; i++)
1126                  printk(KERN_INFO "%s: TX BD ring size for Q[%d]: %d\n",
1127                         dev->name, i, priv->tx_queue[i]->tx_ring_size);
1128
1129         return 0;
1130
1131 register_fail:
1132         unmap_group_regs(priv);
1133         free_tx_pointers(priv);
1134         free_rx_pointers(priv);
1135         if (priv->phy_node)
1136                 of_node_put(priv->phy_node);
1137         if (priv->tbi_node)
1138                 of_node_put(priv->tbi_node);
1139         free_netdev(dev);
1140         return err;
1141 }
1142
1143 static int gfar_remove(struct of_device *ofdev)
1144 {
1145         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1146
1147         if (priv->phy_node)
1148                 of_node_put(priv->phy_node);
1149         if (priv->tbi_node)
1150                 of_node_put(priv->tbi_node);
1151
1152         dev_set_drvdata(&ofdev->dev, NULL);
1153
1154         unregister_netdev(priv->ndev);
1155         unmap_group_regs(priv);
1156         free_netdev(priv->ndev);
1157
1158         return 0;
1159 }
1160
1161 #ifdef CONFIG_PM
1162
1163 static int gfar_suspend(struct device *dev)
1164 {
1165         struct gfar_private *priv = dev_get_drvdata(dev);
1166         struct net_device *ndev = priv->ndev;
1167         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1168         unsigned long flags;
1169         u32 tempval;
1170
1171         int magic_packet = priv->wol_en &&
1172                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1173
1174         netif_device_detach(ndev);
1175
1176         if (netif_running(ndev)) {
1177
1178                 local_irq_save(flags);
1179                 lock_tx_qs(priv);
1180                 lock_rx_qs(priv);
1181
1182                 gfar_halt_nodisable(ndev);
1183
1184                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1185                 tempval = gfar_read(&regs->maccfg1);
1186
1187                 tempval &= ~MACCFG1_TX_EN;
1188
1189                 if (!magic_packet)
1190                         tempval &= ~MACCFG1_RX_EN;
1191
1192                 gfar_write(&regs->maccfg1, tempval);
1193
1194                 unlock_rx_qs(priv);
1195                 unlock_tx_qs(priv);
1196                 local_irq_restore(flags);
1197
1198                 disable_napi(priv);
1199
1200                 if (magic_packet) {
1201                         /* Enable interrupt on Magic Packet */
1202                         gfar_write(&regs->imask, IMASK_MAG);
1203
1204                         /* Enable Magic Packet mode */
1205                         tempval = gfar_read(&regs->maccfg2);
1206                         tempval |= MACCFG2_MPEN;
1207                         gfar_write(&regs->maccfg2, tempval);
1208                 } else {
1209                         phy_stop(priv->phydev);
1210                 }
1211         }
1212
1213         return 0;
1214 }
1215
1216 static int gfar_resume(struct device *dev)
1217 {
1218         struct gfar_private *priv = dev_get_drvdata(dev);
1219         struct net_device *ndev = priv->ndev;
1220         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1221         unsigned long flags;
1222         u32 tempval;
1223         int magic_packet = priv->wol_en &&
1224                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1225
1226         if (!netif_running(ndev)) {
1227                 netif_device_attach(ndev);
1228                 return 0;
1229         }
1230
1231         if (!magic_packet && priv->phydev)
1232                 phy_start(priv->phydev);
1233
1234         /* Disable Magic Packet mode, in case something
1235          * else woke us up.
1236          */
1237         local_irq_save(flags);
1238         lock_tx_qs(priv);
1239         lock_rx_qs(priv);
1240
1241         tempval = gfar_read(&regs->maccfg2);
1242         tempval &= ~MACCFG2_MPEN;
1243         gfar_write(&regs->maccfg2, tempval);
1244
1245         gfar_start(ndev);
1246
1247         unlock_rx_qs(priv);
1248         unlock_tx_qs(priv);
1249         local_irq_restore(flags);
1250
1251         netif_device_attach(ndev);
1252
1253         enable_napi(priv);
1254
1255         return 0;
1256 }
1257
1258 static int gfar_restore(struct device *dev)
1259 {
1260         struct gfar_private *priv = dev_get_drvdata(dev);
1261         struct net_device *ndev = priv->ndev;
1262
1263         if (!netif_running(ndev))
1264                 return 0;
1265
1266         gfar_init_bds(ndev);
1267         init_registers(ndev);
1268         gfar_set_mac_address(ndev);
1269         gfar_init_mac(ndev);
1270         gfar_start(ndev);
1271
1272         priv->oldlink = 0;
1273         priv->oldspeed = 0;
1274         priv->oldduplex = -1;
1275
1276         if (priv->phydev)
1277                 phy_start(priv->phydev);
1278
1279         netif_device_attach(ndev);
1280         enable_napi(priv);
1281
1282         return 0;
1283 }
1284
1285 static struct dev_pm_ops gfar_pm_ops = {
1286         .suspend = gfar_suspend,
1287         .resume = gfar_resume,
1288         .freeze = gfar_suspend,
1289         .thaw = gfar_resume,
1290         .restore = gfar_restore,
1291 };
1292
1293 #define GFAR_PM_OPS (&gfar_pm_ops)
1294
1295 static int gfar_legacy_suspend(struct of_device *ofdev, pm_message_t state)
1296 {
1297         return gfar_suspend(&ofdev->dev);
1298 }
1299
1300 static int gfar_legacy_resume(struct of_device *ofdev)
1301 {
1302         return gfar_resume(&ofdev->dev);
1303 }
1304
1305 #else
1306
1307 #define GFAR_PM_OPS NULL
1308 #define gfar_legacy_suspend NULL
1309 #define gfar_legacy_resume NULL
1310
1311 #endif
1312
1313 /* Reads the controller's registers to determine what interface
1314  * connects it to the PHY.
1315  */
1316 static phy_interface_t gfar_get_interface(struct net_device *dev)
1317 {
1318         struct gfar_private *priv = netdev_priv(dev);
1319         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1320         u32 ecntrl;
1321
1322         ecntrl = gfar_read(&regs->ecntrl);
1323
1324         if (ecntrl & ECNTRL_SGMII_MODE)
1325                 return PHY_INTERFACE_MODE_SGMII;
1326
1327         if (ecntrl & ECNTRL_TBI_MODE) {
1328                 if (ecntrl & ECNTRL_REDUCED_MODE)
1329                         return PHY_INTERFACE_MODE_RTBI;
1330                 else
1331                         return PHY_INTERFACE_MODE_TBI;
1332         }
1333
1334         if (ecntrl & ECNTRL_REDUCED_MODE) {
1335                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1336                         return PHY_INTERFACE_MODE_RMII;
1337                 else {
1338                         phy_interface_t interface = priv->interface;
1339
1340                         /*
1341                          * This isn't autodetected right now, so it must
1342                          * be set by the device tree or platform code.
1343                          */
1344                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1345                                 return PHY_INTERFACE_MODE_RGMII_ID;
1346
1347                         return PHY_INTERFACE_MODE_RGMII;
1348                 }
1349         }
1350
1351         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1352                 return PHY_INTERFACE_MODE_GMII;
1353
1354         return PHY_INTERFACE_MODE_MII;
1355 }
1356
1357
1358 /* Initializes driver's PHY state, and attaches to the PHY.
1359  * Returns 0 on success.
1360  */
1361 static int init_phy(struct net_device *dev)
1362 {
1363         struct gfar_private *priv = netdev_priv(dev);
1364         uint gigabit_support =
1365                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1366                 SUPPORTED_1000baseT_Full : 0;
1367         phy_interface_t interface;
1368
1369         priv->oldlink = 0;
1370         priv->oldspeed = 0;
1371         priv->oldduplex = -1;
1372
1373         interface = gfar_get_interface(dev);
1374
1375         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1376                                       interface);
1377         if (!priv->phydev)
1378                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1379                                                          interface);
1380         if (!priv->phydev) {
1381                 dev_err(&dev->dev, "could not attach to PHY\n");
1382                 return -ENODEV;
1383         }
1384
1385         if (interface == PHY_INTERFACE_MODE_SGMII)
1386                 gfar_configure_serdes(dev);
1387
1388         /* Remove any features not supported by the controller */
1389         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1390         priv->phydev->advertising = priv->phydev->supported;
1391
1392         return 0;
1393 }
1394
1395 /*
1396  * Initialize TBI PHY interface for communicating with the
1397  * SERDES lynx PHY on the chip.  We communicate with this PHY
1398  * through the MDIO bus on each controller, treating it as a
1399  * "normal" PHY at the address found in the TBIPA register.  We assume
1400  * that the TBIPA register is valid.  Either the MDIO bus code will set
1401  * it to a value that doesn't conflict with other PHYs on the bus, or the
1402  * value doesn't matter, as there are no other PHYs on the bus.
1403  */
1404 static void gfar_configure_serdes(struct net_device *dev)
1405 {
1406         struct gfar_private *priv = netdev_priv(dev);
1407         struct phy_device *tbiphy;
1408
1409         if (!priv->tbi_node) {
1410                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1411                                     "device tree specify a tbi-handle\n");
1412                 return;
1413         }
1414
1415         tbiphy = of_phy_find_device(priv->tbi_node);
1416         if (!tbiphy) {
1417                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1418                 return;
1419         }
1420
1421         /*
1422          * If the link is already up, we must already be ok, and don't need to
1423          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1424          * everything for us?  Resetting it takes the link down and requires
1425          * several seconds for it to come back.
1426          */
1427         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1428                 return;
1429
1430         /* Single clk mode, mii mode off(for serdes communication) */
1431         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1432
1433         phy_write(tbiphy, MII_ADVERTISE,
1434                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1435                         ADVERTISE_1000XPSE_ASYM);
1436
1437         phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1438                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1439 }
1440
1441 static void init_registers(struct net_device *dev)
1442 {
1443         struct gfar_private *priv = netdev_priv(dev);
1444         struct gfar __iomem *regs = NULL;
1445         int i = 0;
1446
1447         for (i = 0; i < priv->num_grps; i++) {
1448                 regs = priv->gfargrp[i].regs;
1449                 /* Clear IEVENT */
1450                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1451
1452                 /* Initialize IMASK */
1453                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1454         }
1455
1456         regs = priv->gfargrp[0].regs;
1457         /* Init hash registers to zero */
1458         gfar_write(&regs->igaddr0, 0);
1459         gfar_write(&regs->igaddr1, 0);
1460         gfar_write(&regs->igaddr2, 0);
1461         gfar_write(&regs->igaddr3, 0);
1462         gfar_write(&regs->igaddr4, 0);
1463         gfar_write(&regs->igaddr5, 0);
1464         gfar_write(&regs->igaddr6, 0);
1465         gfar_write(&regs->igaddr7, 0);
1466
1467         gfar_write(&regs->gaddr0, 0);
1468         gfar_write(&regs->gaddr1, 0);
1469         gfar_write(&regs->gaddr2, 0);
1470         gfar_write(&regs->gaddr3, 0);
1471         gfar_write(&regs->gaddr4, 0);
1472         gfar_write(&regs->gaddr5, 0);
1473         gfar_write(&regs->gaddr6, 0);
1474         gfar_write(&regs->gaddr7, 0);
1475
1476         /* Zero out the rmon mib registers if it has them */
1477         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1478                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1479
1480                 /* Mask off the CAM interrupts */
1481                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1482                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1483         }
1484
1485         /* Initialize the max receive buffer length */
1486         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1487
1488         /* Initialize the Minimum Frame Length Register */
1489         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1490 }
1491
1492
1493 /* Halt the receive and transmit queues */
1494 static void gfar_halt_nodisable(struct net_device *dev)
1495 {
1496         struct gfar_private *priv = netdev_priv(dev);
1497         struct gfar __iomem *regs = NULL;
1498         u32 tempval;
1499         int i = 0;
1500
1501         for (i = 0; i < priv->num_grps; i++) {
1502                 regs = priv->gfargrp[i].regs;
1503                 /* Mask all interrupts */
1504                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1505
1506                 /* Clear all interrupts */
1507                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1508         }
1509
1510         regs = priv->gfargrp[0].regs;
1511         /* Stop the DMA, and wait for it to stop */
1512         tempval = gfar_read(&regs->dmactrl);
1513         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1514             != (DMACTRL_GRS | DMACTRL_GTS)) {
1515                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1516                 gfar_write(&regs->dmactrl, tempval);
1517
1518                 while (!(gfar_read(&regs->ievent) &
1519                          (IEVENT_GRSC | IEVENT_GTSC)))
1520                         cpu_relax();
1521         }
1522 }
1523
1524 /* Halt the receive and transmit queues */
1525 void gfar_halt(struct net_device *dev)
1526 {
1527         struct gfar_private *priv = netdev_priv(dev);
1528         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1529         u32 tempval;
1530
1531         gfar_halt_nodisable(dev);
1532
1533         /* Disable Rx and Tx */
1534         tempval = gfar_read(&regs->maccfg1);
1535         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1536         gfar_write(&regs->maccfg1, tempval);
1537 }
1538
1539 static void free_grp_irqs(struct gfar_priv_grp *grp)
1540 {
1541         free_irq(grp->interruptError, grp);
1542         free_irq(grp->interruptTransmit, grp);
1543         free_irq(grp->interruptReceive, grp);
1544 }
1545
1546 void stop_gfar(struct net_device *dev)
1547 {
1548         struct gfar_private *priv = netdev_priv(dev);
1549         unsigned long flags;
1550         int i;
1551
1552         phy_stop(priv->phydev);
1553
1554
1555         /* Lock it down */
1556         local_irq_save(flags);
1557         lock_tx_qs(priv);
1558         lock_rx_qs(priv);
1559
1560         gfar_halt(dev);
1561
1562         unlock_rx_qs(priv);
1563         unlock_tx_qs(priv);
1564         local_irq_restore(flags);
1565
1566         /* Free the IRQs */
1567         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1568                 for (i = 0; i < priv->num_grps; i++)
1569                         free_grp_irqs(&priv->gfargrp[i]);
1570         } else {
1571                 for (i = 0; i < priv->num_grps; i++)
1572                         free_irq(priv->gfargrp[i].interruptTransmit,
1573                                         &priv->gfargrp[i]);
1574         }
1575
1576         free_skb_resources(priv);
1577 }
1578
1579 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1580 {
1581         struct txbd8 *txbdp;
1582         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1583         int i, j;
1584
1585         txbdp = tx_queue->tx_bd_base;
1586
1587         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1588                 if (!tx_queue->tx_skbuff[i])
1589                         continue;
1590
1591                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1592                                 txbdp->length, DMA_TO_DEVICE);
1593                 txbdp->lstatus = 0;
1594                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1595                                 j++) {
1596                         txbdp++;
1597                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1598                                         txbdp->length, DMA_TO_DEVICE);
1599                 }
1600                 txbdp++;
1601                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1602                 tx_queue->tx_skbuff[i] = NULL;
1603         }
1604         kfree(tx_queue->tx_skbuff);
1605 }
1606
1607 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1608 {
1609         struct rxbd8 *rxbdp;
1610         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1611         int i;
1612
1613         rxbdp = rx_queue->rx_bd_base;
1614
1615         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1616                 if (rx_queue->rx_skbuff[i]) {
1617                         dma_unmap_single(&priv->ofdev->dev,
1618                                         rxbdp->bufPtr, priv->rx_buffer_size,
1619                                         DMA_FROM_DEVICE);
1620                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1621                         rx_queue->rx_skbuff[i] = NULL;
1622                 }
1623                 rxbdp->lstatus = 0;
1624                 rxbdp->bufPtr = 0;
1625                 rxbdp++;
1626         }
1627         kfree(rx_queue->rx_skbuff);
1628 }
1629
1630 /* If there are any tx skbs or rx skbs still around, free them.
1631  * Then free tx_skbuff and rx_skbuff */
1632 static void free_skb_resources(struct gfar_private *priv)
1633 {
1634         struct gfar_priv_tx_q *tx_queue = NULL;
1635         struct gfar_priv_rx_q *rx_queue = NULL;
1636         int i;
1637
1638         /* Go through all the buffer descriptors and free their data buffers */
1639         for (i = 0; i < priv->num_tx_queues; i++) {
1640                 tx_queue = priv->tx_queue[i];
1641                 if(tx_queue->tx_skbuff)
1642                         free_skb_tx_queue(tx_queue);
1643         }
1644
1645         for (i = 0; i < priv->num_rx_queues; i++) {
1646                 rx_queue = priv->rx_queue[i];
1647                 if(rx_queue->rx_skbuff)
1648                         free_skb_rx_queue(rx_queue);
1649         }
1650
1651         dma_free_coherent(&priv->ofdev->dev,
1652                         sizeof(struct txbd8) * priv->total_tx_ring_size +
1653                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
1654                         priv->tx_queue[0]->tx_bd_base,
1655                         priv->tx_queue[0]->tx_bd_dma_base);
1656 }
1657
1658 void gfar_start(struct net_device *dev)
1659 {
1660         struct gfar_private *priv = netdev_priv(dev);
1661         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1662         u32 tempval;
1663         int i = 0;
1664
1665         /* Enable Rx and Tx in MACCFG1 */
1666         tempval = gfar_read(&regs->maccfg1);
1667         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1668         gfar_write(&regs->maccfg1, tempval);
1669
1670         /* Initialize DMACTRL to have WWR and WOP */
1671         tempval = gfar_read(&regs->dmactrl);
1672         tempval |= DMACTRL_INIT_SETTINGS;
1673         gfar_write(&regs->dmactrl, tempval);
1674
1675         /* Make sure we aren't stopped */
1676         tempval = gfar_read(&regs->dmactrl);
1677         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1678         gfar_write(&regs->dmactrl, tempval);
1679
1680         for (i = 0; i < priv->num_grps; i++) {
1681                 regs = priv->gfargrp[i].regs;
1682                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1683                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1684                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1685                 /* Unmask the interrupts we look for */
1686                 gfar_write(&regs->imask, IMASK_DEFAULT);
1687         }
1688
1689         dev->trans_start = jiffies;
1690 }
1691
1692 void gfar_configure_coalescing(struct gfar_private *priv,
1693         unsigned long tx_mask, unsigned long rx_mask)
1694 {
1695         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1696         u32 __iomem *baddr;
1697         int i = 0;
1698
1699         /* Backward compatible case ---- even if we enable
1700          * multiple queues, there's only single reg to program
1701          */
1702         gfar_write(&regs->txic, 0);
1703         if(likely(priv->tx_queue[0]->txcoalescing))
1704                 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1705
1706         gfar_write(&regs->rxic, 0);
1707         if(unlikely(priv->rx_queue[0]->rxcoalescing))
1708                 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1709
1710         if (priv->mode == MQ_MG_MODE) {
1711                 baddr = &regs->txic0;
1712                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1713                         if (likely(priv->tx_queue[i]->txcoalescing)) {
1714                                 gfar_write(baddr + i, 0);
1715                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1716                         }
1717                 }
1718
1719                 baddr = &regs->rxic0;
1720                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1721                         if (likely(priv->rx_queue[i]->rxcoalescing)) {
1722                                 gfar_write(baddr + i, 0);
1723                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1724                         }
1725                 }
1726         }
1727 }
1728
1729 static int register_grp_irqs(struct gfar_priv_grp *grp)
1730 {
1731         struct gfar_private *priv = grp->priv;
1732         struct net_device *dev = priv->ndev;
1733         int err;
1734
1735         /* If the device has multiple interrupts, register for
1736          * them.  Otherwise, only register for the one */
1737         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1738                 /* Install our interrupt handlers for Error,
1739                  * Transmit, and Receive */
1740                 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1741                                 grp->int_name_er,grp)) < 0) {
1742                         if (netif_msg_intr(priv))
1743                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1744                                         dev->name, grp->interruptError);
1745
1746                                 goto err_irq_fail;
1747                 }
1748
1749                 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1750                                 0, grp->int_name_tx, grp)) < 0) {
1751                         if (netif_msg_intr(priv))
1752                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1753                                         dev->name, grp->interruptTransmit);
1754                         goto tx_irq_fail;
1755                 }
1756
1757                 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1758                                 grp->int_name_rx, grp)) < 0) {
1759                         if (netif_msg_intr(priv))
1760                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1761                                         dev->name, grp->interruptReceive);
1762                         goto rx_irq_fail;
1763                 }
1764         } else {
1765                 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1766                                 grp->int_name_tx, grp)) < 0) {
1767                         if (netif_msg_intr(priv))
1768                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1769                                         dev->name, grp->interruptTransmit);
1770                         goto err_irq_fail;
1771                 }
1772         }
1773
1774         return 0;
1775
1776 rx_irq_fail:
1777         free_irq(grp->interruptTransmit, grp);
1778 tx_irq_fail:
1779         free_irq(grp->interruptError, grp);
1780 err_irq_fail:
1781         return err;
1782
1783 }
1784
1785 /* Bring the controller up and running */
1786 int startup_gfar(struct net_device *ndev)
1787 {
1788         struct gfar_private *priv = netdev_priv(ndev);
1789         struct gfar __iomem *regs = NULL;
1790         int err, i, j;
1791
1792         for (i = 0; i < priv->num_grps; i++) {
1793                 regs= priv->gfargrp[i].regs;
1794                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1795         }
1796
1797         regs= priv->gfargrp[0].regs;
1798         err = gfar_alloc_skb_resources(ndev);
1799         if (err)
1800                 return err;
1801
1802         gfar_init_mac(ndev);
1803
1804         for (i = 0; i < priv->num_grps; i++) {
1805                 err = register_grp_irqs(&priv->gfargrp[i]);
1806                 if (err) {
1807                         for (j = 0; j < i; j++)
1808                                 free_grp_irqs(&priv->gfargrp[j]);
1809                                 goto irq_fail;
1810                 }
1811         }
1812
1813         /* Start the controller */
1814         gfar_start(ndev);
1815
1816         phy_start(priv->phydev);
1817
1818         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1819
1820         return 0;
1821
1822 irq_fail:
1823         free_skb_resources(priv);
1824         return err;
1825 }
1826
1827 /* Called when something needs to use the ethernet device */
1828 /* Returns 0 for success. */
1829 static int gfar_enet_open(struct net_device *dev)
1830 {
1831         struct gfar_private *priv = netdev_priv(dev);
1832         int err;
1833
1834         enable_napi(priv);
1835
1836         skb_queue_head_init(&priv->rx_recycle);
1837
1838         /* Initialize a bunch of registers */
1839         init_registers(dev);
1840
1841         gfar_set_mac_address(dev);
1842
1843         err = init_phy(dev);
1844
1845         if (err) {
1846                 disable_napi(priv);
1847                 return err;
1848         }
1849
1850         err = startup_gfar(dev);
1851         if (err) {
1852                 disable_napi(priv);
1853                 return err;
1854         }
1855
1856         netif_tx_start_all_queues(dev);
1857
1858         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1859
1860         return err;
1861 }
1862
1863 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1864 {
1865         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1866
1867         memset(fcb, 0, GMAC_FCB_LEN);
1868
1869         return fcb;
1870 }
1871
1872 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1873 {
1874         u8 flags = 0;
1875
1876         /* If we're here, it's a IP packet with a TCP or UDP
1877          * payload.  We set it to checksum, using a pseudo-header
1878          * we provide
1879          */
1880         flags = TXFCB_DEFAULT;
1881
1882         /* Tell the controller what the protocol is */
1883         /* And provide the already calculated phcs */
1884         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1885                 flags |= TXFCB_UDP;
1886                 fcb->phcs = udp_hdr(skb)->check;
1887         } else
1888                 fcb->phcs = tcp_hdr(skb)->check;
1889
1890         /* l3os is the distance between the start of the
1891          * frame (skb->data) and the start of the IP hdr.
1892          * l4os is the distance between the start of the
1893          * l3 hdr and the l4 hdr */
1894         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1895         fcb->l4os = skb_network_header_len(skb);
1896
1897         fcb->flags = flags;
1898 }
1899
1900 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1901 {
1902         fcb->flags |= TXFCB_VLN;
1903         fcb->vlctl = vlan_tx_tag_get(skb);
1904 }
1905
1906 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1907                                struct txbd8 *base, int ring_size)
1908 {
1909         struct txbd8 *new_bd = bdp + stride;
1910
1911         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1912 }
1913
1914 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1915                 int ring_size)
1916 {
1917         return skip_txbd(bdp, 1, base, ring_size);
1918 }
1919
1920 /* This is called by the kernel when a frame is ready for transmission. */
1921 /* It is pointed to by the dev->hard_start_xmit function pointer */
1922 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1923 {
1924         struct gfar_private *priv = netdev_priv(dev);
1925         struct gfar_priv_tx_q *tx_queue = NULL;
1926         struct netdev_queue *txq;
1927         struct gfar __iomem *regs = NULL;
1928         struct txfcb *fcb = NULL;
1929         struct txbd8 *txbdp, *txbdp_start, *base;
1930         u32 lstatus;
1931         int i, rq = 0;
1932         u32 bufaddr;
1933         unsigned long flags;
1934         unsigned int nr_frags, length;
1935
1936
1937         rq = skb->queue_mapping;
1938         tx_queue = priv->tx_queue[rq];
1939         txq = netdev_get_tx_queue(dev, rq);
1940         base = tx_queue->tx_bd_base;
1941         regs = tx_queue->grp->regs;
1942
1943         /* make space for additional header when fcb is needed */
1944         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
1945                         (priv->vlgrp && vlan_tx_tag_present(skb))) &&
1946                         (skb_headroom(skb) < GMAC_FCB_LEN)) {
1947                 struct sk_buff *skb_new;
1948
1949                 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
1950                 if (!skb_new) {
1951                         dev->stats.tx_errors++;
1952                         kfree_skb(skb);
1953                         return NETDEV_TX_OK;
1954                 }
1955                 kfree_skb(skb);
1956                 skb = skb_new;
1957         }
1958
1959         /* total number of fragments in the SKB */
1960         nr_frags = skb_shinfo(skb)->nr_frags;
1961
1962         /* check if there is space to queue this packet */
1963         if ((nr_frags+1) > tx_queue->num_txbdfree) {
1964                 /* no space, stop the queue */
1965                 netif_tx_stop_queue(txq);
1966                 dev->stats.tx_fifo_errors++;
1967                 return NETDEV_TX_BUSY;
1968         }
1969
1970         /* Update transmit stats */
1971         txq->tx_bytes += skb->len;
1972         txq->tx_packets ++;
1973
1974         txbdp = txbdp_start = tx_queue->cur_tx;
1975
1976         if (nr_frags == 0) {
1977                 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1978         } else {
1979                 /* Place the fragment addresses and lengths into the TxBDs */
1980                 for (i = 0; i < nr_frags; i++) {
1981                         /* Point at the next BD, wrapping as needed */
1982                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1983
1984                         length = skb_shinfo(skb)->frags[i].size;
1985
1986                         lstatus = txbdp->lstatus | length |
1987                                 BD_LFLAG(TXBD_READY);
1988
1989                         /* Handle the last BD specially */
1990                         if (i == nr_frags - 1)
1991                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1992
1993                         bufaddr = dma_map_page(&priv->ofdev->dev,
1994                                         skb_shinfo(skb)->frags[i].page,
1995                                         skb_shinfo(skb)->frags[i].page_offset,
1996                                         length,
1997                                         DMA_TO_DEVICE);
1998
1999                         /* set the TxBD length and buffer pointer */
2000                         txbdp->bufPtr = bufaddr;
2001                         txbdp->lstatus = lstatus;
2002                 }
2003
2004                 lstatus = txbdp_start->lstatus;
2005         }
2006
2007         /* Set up checksumming */
2008         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2009                 fcb = gfar_add_fcb(skb);
2010                 lstatus |= BD_LFLAG(TXBD_TOE);
2011                 gfar_tx_checksum(skb, fcb);
2012         }
2013
2014         if (priv->vlgrp && vlan_tx_tag_present(skb)) {
2015                 if (unlikely(NULL == fcb)) {
2016                         fcb = gfar_add_fcb(skb);
2017                         lstatus |= BD_LFLAG(TXBD_TOE);
2018                 }
2019
2020                 gfar_tx_vlan(skb, fcb);
2021         }
2022
2023         /* setup the TxBD length and buffer pointer for the first BD */
2024         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2025                         skb_headlen(skb), DMA_TO_DEVICE);
2026
2027         lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2028
2029         /*
2030          * We can work in parallel with gfar_clean_tx_ring(), except
2031          * when modifying num_txbdfree. Note that we didn't grab the lock
2032          * when we were reading the num_txbdfree and checking for available
2033          * space, that's because outside of this function it can only grow,
2034          * and once we've got needed space, it cannot suddenly disappear.
2035          *
2036          * The lock also protects us from gfar_error(), which can modify
2037          * regs->tstat and thus retrigger the transfers, which is why we
2038          * also must grab the lock before setting ready bit for the first
2039          * to be transmitted BD.
2040          */
2041         spin_lock_irqsave(&tx_queue->txlock, flags);
2042
2043         /*
2044          * The powerpc-specific eieio() is used, as wmb() has too strong
2045          * semantics (it requires synchronization between cacheable and
2046          * uncacheable mappings, which eieio doesn't provide and which we
2047          * don't need), thus requiring a more expensive sync instruction.  At
2048          * some point, the set of architecture-independent barrier functions
2049          * should be expanded to include weaker barriers.
2050          */
2051         eieio();
2052
2053         txbdp_start->lstatus = lstatus;
2054
2055         eieio(); /* force lstatus write before tx_skbuff */
2056
2057         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2058
2059         /* Update the current skb pointer to the next entry we will use
2060          * (wrapping if necessary) */
2061         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2062                 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2063
2064         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2065
2066         /* reduce TxBD free count */
2067         tx_queue->num_txbdfree -= (nr_frags + 1);
2068
2069         dev->trans_start = jiffies;
2070
2071         /* If the next BD still needs to be cleaned up, then the bds
2072            are full.  We need to tell the kernel to stop sending us stuff. */
2073         if (!tx_queue->num_txbdfree) {
2074                 netif_tx_stop_queue(txq);
2075
2076                 dev->stats.tx_fifo_errors++;
2077         }
2078
2079         /* Tell the DMA to go go go */
2080         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2081
2082         /* Unlock priv */
2083         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2084
2085         return NETDEV_TX_OK;
2086 }
2087
2088 /* Stops the kernel queue, and halts the controller */
2089 static int gfar_close(struct net_device *dev)
2090 {
2091         struct gfar_private *priv = netdev_priv(dev);
2092
2093         disable_napi(priv);
2094
2095         skb_queue_purge(&priv->rx_recycle);
2096         cancel_work_sync(&priv->reset_task);
2097         stop_gfar(dev);
2098
2099         /* Disconnect from the PHY */
2100         phy_disconnect(priv->phydev);
2101         priv->phydev = NULL;
2102
2103         netif_tx_stop_all_queues(dev);
2104
2105         return 0;
2106 }
2107
2108 /* Changes the mac address if the controller is not running. */
2109 static int gfar_set_mac_address(struct net_device *dev)
2110 {
2111         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2112
2113         return 0;
2114 }
2115
2116
2117 /* Enables and disables VLAN insertion/extraction */
2118 static void gfar_vlan_rx_register(struct net_device *dev,
2119                 struct vlan_group *grp)
2120 {
2121         struct gfar_private *priv = netdev_priv(dev);
2122         struct gfar __iomem *regs = NULL;
2123         unsigned long flags;
2124         u32 tempval;
2125
2126         regs = priv->gfargrp[0].regs;
2127         local_irq_save(flags);
2128         lock_rx_qs(priv);
2129
2130         priv->vlgrp = grp;
2131
2132         if (grp) {
2133                 /* Enable VLAN tag insertion */
2134                 tempval = gfar_read(&regs->tctrl);
2135                 tempval |= TCTRL_VLINS;
2136
2137                 gfar_write(&regs->tctrl, tempval);
2138
2139                 /* Enable VLAN tag extraction */
2140                 tempval = gfar_read(&regs->rctrl);
2141                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2142                 gfar_write(&regs->rctrl, tempval);
2143         } else {
2144                 /* Disable VLAN tag insertion */
2145                 tempval = gfar_read(&regs->tctrl);
2146                 tempval &= ~TCTRL_VLINS;
2147                 gfar_write(&regs->tctrl, tempval);
2148
2149                 /* Disable VLAN tag extraction */
2150                 tempval = gfar_read(&regs->rctrl);
2151                 tempval &= ~RCTRL_VLEX;
2152                 /* If parse is no longer required, then disable parser */
2153                 if (tempval & RCTRL_REQ_PARSER)
2154                         tempval |= RCTRL_PRSDEP_INIT;
2155                 else
2156                         tempval &= ~RCTRL_PRSDEP_INIT;
2157                 gfar_write(&regs->rctrl, tempval);
2158         }
2159
2160         gfar_change_mtu(dev, dev->mtu);
2161
2162         unlock_rx_qs(priv);
2163         local_irq_restore(flags);
2164 }
2165
2166 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2167 {
2168         int tempsize, tempval;
2169         struct gfar_private *priv = netdev_priv(dev);
2170         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2171         int oldsize = priv->rx_buffer_size;
2172         int frame_size = new_mtu + ETH_HLEN;
2173
2174         if (priv->vlgrp)
2175                 frame_size += VLAN_HLEN;
2176
2177         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2178                 if (netif_msg_drv(priv))
2179                         printk(KERN_ERR "%s: Invalid MTU setting\n",
2180                                         dev->name);
2181                 return -EINVAL;
2182         }
2183
2184         if (gfar_uses_fcb(priv))
2185                 frame_size += GMAC_FCB_LEN;
2186
2187         frame_size += priv->padding;
2188
2189         tempsize =
2190             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2191             INCREMENTAL_BUFFER_SIZE;
2192
2193         /* Only stop and start the controller if it isn't already
2194          * stopped, and we changed something */
2195         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2196                 stop_gfar(dev);
2197
2198         priv->rx_buffer_size = tempsize;
2199
2200         dev->mtu = new_mtu;
2201
2202         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2203         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2204
2205         /* If the mtu is larger than the max size for standard
2206          * ethernet frames (ie, a jumbo frame), then set maccfg2
2207          * to allow huge frames, and to check the length */
2208         tempval = gfar_read(&regs->maccfg2);
2209
2210         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
2211                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2212         else
2213                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2214
2215         gfar_write(&regs->maccfg2, tempval);
2216
2217         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2218                 startup_gfar(dev);
2219
2220         return 0;
2221 }
2222
2223 /* gfar_reset_task gets scheduled when a packet has not been
2224  * transmitted after a set amount of time.
2225  * For now, assume that clearing out all the structures, and
2226  * starting over will fix the problem.
2227  */
2228 static void gfar_reset_task(struct work_struct *work)
2229 {
2230         struct gfar_private *priv = container_of(work, struct gfar_private,
2231                         reset_task);
2232         struct net_device *dev = priv->ndev;
2233
2234         if (dev->flags & IFF_UP) {
2235                 netif_tx_stop_all_queues(dev);
2236                 stop_gfar(dev);
2237                 startup_gfar(dev);
2238                 netif_tx_start_all_queues(dev);
2239         }
2240
2241         netif_tx_schedule_all(dev);
2242 }
2243
2244 static void gfar_timeout(struct net_device *dev)
2245 {
2246         struct gfar_private *priv = netdev_priv(dev);
2247
2248         dev->stats.tx_errors++;
2249         schedule_work(&priv->reset_task);
2250 }
2251
2252 /* Interrupt Handler for Transmit complete */
2253 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2254 {
2255         struct net_device *dev = tx_queue->dev;
2256         struct gfar_private *priv = netdev_priv(dev);
2257         struct gfar_priv_rx_q *rx_queue = NULL;
2258         struct txbd8 *bdp;
2259         struct txbd8 *lbdp = NULL;
2260         struct txbd8 *base = tx_queue->tx_bd_base;
2261         struct sk_buff *skb;
2262         int skb_dirtytx;
2263         int tx_ring_size = tx_queue->tx_ring_size;
2264         int frags = 0;
2265         int i;
2266         int howmany = 0;
2267         u32 lstatus;
2268
2269         rx_queue = priv->rx_queue[tx_queue->qindex];
2270         bdp = tx_queue->dirty_tx;
2271         skb_dirtytx = tx_queue->skb_dirtytx;
2272
2273         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2274                 unsigned long flags;
2275
2276                 frags = skb_shinfo(skb)->nr_frags;
2277                 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
2278
2279                 lstatus = lbdp->lstatus;
2280
2281                 /* Only clean completed frames */
2282                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2283                                 (lstatus & BD_LENGTH_MASK))
2284                         break;
2285
2286                 dma_unmap_single(&priv->ofdev->dev,
2287                                 bdp->bufPtr,
2288                                 bdp->length,
2289                                 DMA_TO_DEVICE);
2290
2291                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2292                 bdp = next_txbd(bdp, base, tx_ring_size);
2293
2294                 for (i = 0; i < frags; i++) {
2295                         dma_unmap_page(&priv->ofdev->dev,
2296                                         bdp->bufPtr,
2297                                         bdp->length,
2298                                         DMA_TO_DEVICE);
2299                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2300                         bdp = next_txbd(bdp, base, tx_ring_size);
2301                 }
2302
2303                 /*
2304                  * If there's room in the queue (limit it to rx_buffer_size)
2305                  * we add this skb back into the pool, if it's the right size
2306                  */
2307                 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2308                                 skb_recycle_check(skb, priv->rx_buffer_size +
2309                                         RXBUF_ALIGNMENT))
2310                         __skb_queue_head(&priv->rx_recycle, skb);
2311                 else
2312                         dev_kfree_skb_any(skb);
2313
2314                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2315
2316                 skb_dirtytx = (skb_dirtytx + 1) &
2317                         TX_RING_MOD_MASK(tx_ring_size);
2318
2319                 howmany++;
2320                 spin_lock_irqsave(&tx_queue->txlock, flags);
2321                 tx_queue->num_txbdfree += frags + 1;
2322                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2323         }
2324
2325         /* If we freed a buffer, we can restart transmission, if necessary */
2326         if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2327                 netif_wake_subqueue(dev, tx_queue->qindex);
2328
2329         /* Update dirty indicators */
2330         tx_queue->skb_dirtytx = skb_dirtytx;
2331         tx_queue->dirty_tx = bdp;
2332
2333         return howmany;
2334 }
2335
2336 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2337 {
2338         unsigned long flags;
2339
2340         spin_lock_irqsave(&gfargrp->grplock, flags);
2341         if (napi_schedule_prep(&gfargrp->napi)) {
2342                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2343                 __napi_schedule(&gfargrp->napi);
2344         } else {
2345                 /*
2346                  * Clear IEVENT, so interrupts aren't called again
2347                  * because of the packets that have already arrived.
2348                  */
2349                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2350         }
2351         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2352
2353 }
2354
2355 /* Interrupt Handler for Transmit complete */
2356 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2357 {
2358         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2359         return IRQ_HANDLED;
2360 }
2361
2362 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2363                 struct sk_buff *skb)
2364 {
2365         struct net_device *dev = rx_queue->dev;
2366         struct gfar_private *priv = netdev_priv(dev);
2367         dma_addr_t buf;
2368
2369         buf = dma_map_single(&priv->ofdev->dev, skb->data,
2370                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2371         gfar_init_rxbdp(rx_queue, bdp, buf);
2372 }
2373
2374
2375 struct sk_buff * gfar_new_skb(struct net_device *dev)
2376 {
2377         unsigned int alignamount;
2378         struct gfar_private *priv = netdev_priv(dev);
2379         struct sk_buff *skb = NULL;
2380
2381         skb = __skb_dequeue(&priv->rx_recycle);
2382         if (!skb)
2383                 skb = netdev_alloc_skb(dev,
2384                                 priv->rx_buffer_size + RXBUF_ALIGNMENT);
2385
2386         if (!skb)
2387                 return NULL;
2388
2389         alignamount = RXBUF_ALIGNMENT -
2390                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
2391
2392         /* We need the data buffer to be aligned properly.  We will reserve
2393          * as many bytes as needed to align the data properly
2394          */
2395         skb_reserve(skb, alignamount);
2396         GFAR_CB(skb)->alignamount = alignamount;
2397
2398         return skb;
2399 }
2400
2401 static inline void count_errors(unsigned short status, struct net_device *dev)
2402 {
2403         struct gfar_private *priv = netdev_priv(dev);
2404         struct net_device_stats *stats = &dev->stats;
2405         struct gfar_extra_stats *estats = &priv->extra_stats;
2406
2407         /* If the packet was truncated, none of the other errors
2408          * matter */
2409         if (status & RXBD_TRUNCATED) {
2410                 stats->rx_length_errors++;
2411
2412                 estats->rx_trunc++;
2413
2414                 return;
2415         }
2416         /* Count the errors, if there were any */
2417         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2418                 stats->rx_length_errors++;
2419
2420                 if (status & RXBD_LARGE)
2421                         estats->rx_large++;
2422                 else
2423                         estats->rx_short++;
2424         }
2425         if (status & RXBD_NONOCTET) {
2426                 stats->rx_frame_errors++;
2427                 estats->rx_nonoctet++;
2428         }
2429         if (status & RXBD_CRCERR) {
2430                 estats->rx_crcerr++;
2431                 stats->rx_crc_errors++;
2432         }
2433         if (status & RXBD_OVERRUN) {
2434                 estats->rx_overrun++;
2435                 stats->rx_crc_errors++;
2436         }
2437 }
2438
2439 irqreturn_t gfar_receive(int irq, void *grp_id)
2440 {
2441         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2442         return IRQ_HANDLED;
2443 }
2444
2445 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2446 {
2447         /* If valid headers were found, and valid sums
2448          * were verified, then we tell the kernel that no
2449          * checksumming is necessary.  Otherwise, it is */
2450         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2451                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2452         else
2453                 skb->ip_summed = CHECKSUM_NONE;
2454 }
2455
2456
2457 /* gfar_process_frame() -- handle one incoming packet if skb
2458  * isn't NULL.  */
2459 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2460                               int amount_pull)
2461 {
2462         struct gfar_private *priv = netdev_priv(dev);
2463         struct rxfcb *fcb = NULL;
2464
2465         int ret;
2466
2467         /* fcb is at the beginning if exists */
2468         fcb = (struct rxfcb *)skb->data;
2469
2470         /* Remove the FCB from the skb */
2471         /* Remove the padded bytes, if there are any */
2472         if (amount_pull) {
2473                 skb_record_rx_queue(skb, fcb->rq);
2474                 skb_pull(skb, amount_pull);
2475         }
2476
2477         if (priv->rx_csum_enable)
2478                 gfar_rx_checksum(skb, fcb);
2479
2480         /* Tell the skb what kind of packet this is */
2481         skb->protocol = eth_type_trans(skb, dev);
2482
2483         /* Send the packet up the stack */
2484         if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2485                 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2486         else
2487                 ret = netif_receive_skb(skb);
2488
2489         if (NET_RX_DROP == ret)
2490                 priv->extra_stats.kernel_dropped++;
2491
2492         return 0;
2493 }
2494
2495 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2496  *   until the budget/quota has been reached. Returns the number
2497  *   of frames handled
2498  */
2499 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2500 {
2501         struct net_device *dev = rx_queue->dev;
2502         struct rxbd8 *bdp, *base;
2503         struct sk_buff *skb;
2504         int pkt_len;
2505         int amount_pull;
2506         int howmany = 0;
2507         struct gfar_private *priv = netdev_priv(dev);
2508
2509         /* Get the first full descriptor */
2510         bdp = rx_queue->cur_rx;
2511         base = rx_queue->rx_bd_base;
2512
2513         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
2514                 priv->padding;
2515
2516         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2517                 struct sk_buff *newskb;
2518                 rmb();
2519
2520                 /* Add another skb for the future */
2521                 newskb = gfar_new_skb(dev);
2522
2523                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2524
2525                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2526                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
2527
2528                 /* We drop the frame if we failed to allocate a new buffer */
2529                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2530                                  bdp->status & RXBD_ERR)) {
2531                         count_errors(bdp->status, dev);
2532
2533                         if (unlikely(!newskb))
2534                                 newskb = skb;
2535                         else if (skb) {
2536                                 /*
2537                                  * We need to un-reserve() the skb to what it
2538                                  * was before gfar_new_skb() re-aligned
2539                                  * it to an RXBUF_ALIGNMENT boundary
2540                                  * before we put the skb back on the
2541                                  * recycle list.
2542                                  */
2543                                 skb_reserve(skb, -GFAR_CB(skb)->alignamount);
2544                                 __skb_queue_head(&priv->rx_recycle, skb);
2545                         }
2546                 } else {
2547                         /* Increment the number of packets */
2548                         rx_queue->stats.rx_packets++;
2549                         howmany++;
2550
2551                         if (likely(skb)) {
2552                                 pkt_len = bdp->length - ETH_FCS_LEN;
2553                                 /* Remove the FCS from the packet length */
2554                                 skb_put(skb, pkt_len);
2555                                 rx_queue->stats.rx_bytes += pkt_len;
2556                                 skb_record_rx_queue(skb, rx_queue->qindex);
2557                                 gfar_process_frame(dev, skb, amount_pull);
2558
2559                         } else {
2560                                 if (netif_msg_rx_err(priv))
2561                                         printk(KERN_WARNING
2562                                                "%s: Missing skb!\n", dev->name);
2563                                 rx_queue->stats.rx_dropped++;
2564                                 priv->extra_stats.rx_skbmissing++;
2565                         }
2566
2567                 }
2568
2569                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2570
2571                 /* Setup the new bdp */
2572                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2573
2574                 /* Update to the next pointer */
2575                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2576
2577                 /* update to point at the next skb */
2578                 rx_queue->skb_currx =
2579                     (rx_queue->skb_currx + 1) &
2580                     RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2581         }
2582
2583         /* Update the current rxbd pointer to be the next one */
2584         rx_queue->cur_rx = bdp;
2585
2586         return howmany;
2587 }
2588
2589 static int gfar_poll(struct napi_struct *napi, int budget)
2590 {
2591         struct gfar_priv_grp *gfargrp = container_of(napi,
2592                         struct gfar_priv_grp, napi);
2593         struct gfar_private *priv = gfargrp->priv;
2594         struct gfar __iomem *regs = gfargrp->regs;
2595         struct gfar_priv_tx_q *tx_queue = NULL;
2596         struct gfar_priv_rx_q *rx_queue = NULL;
2597         int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2598         int tx_cleaned = 0, i, left_over_budget = budget;
2599         unsigned long serviced_queues = 0;
2600         int num_queues = 0;
2601
2602         num_queues = gfargrp->num_rx_queues;
2603         budget_per_queue = budget/num_queues;
2604
2605         /* Clear IEVENT, so interrupts aren't called again
2606          * because of the packets that have already arrived */
2607         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2608
2609         while (num_queues && left_over_budget) {
2610
2611                 budget_per_queue = left_over_budget/num_queues;
2612                 left_over_budget = 0;
2613
2614                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2615                         if (test_bit(i, &serviced_queues))
2616                                 continue;
2617                         rx_queue = priv->rx_queue[i];
2618                         tx_queue = priv->tx_queue[rx_queue->qindex];
2619
2620                         tx_cleaned += gfar_clean_tx_ring(tx_queue);
2621                         rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2622                                                         budget_per_queue);
2623                         rx_cleaned += rx_cleaned_per_queue;
2624                         if(rx_cleaned_per_queue < budget_per_queue) {
2625                                 left_over_budget = left_over_budget +
2626                                         (budget_per_queue - rx_cleaned_per_queue);
2627                                 set_bit(i, &serviced_queues);
2628                                 num_queues--;
2629                         }
2630                 }
2631         }
2632
2633         if (tx_cleaned)
2634                 return budget;
2635
2636         if (rx_cleaned < budget) {
2637                 napi_complete(napi);
2638
2639                 /* Clear the halt bit in RSTAT */
2640                 gfar_write(&regs->rstat, gfargrp->rstat);
2641
2642                 gfar_write(&regs->imask, IMASK_DEFAULT);
2643
2644                 /* If we are coalescing interrupts, update the timer */
2645                 /* Otherwise, clear it */
2646                 gfar_configure_coalescing(priv,
2647                                 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2648         }
2649
2650         return rx_cleaned;
2651 }
2652
2653 #ifdef CONFIG_NET_POLL_CONTROLLER
2654 /*
2655  * Polling 'interrupt' - used by things like netconsole to send skbs
2656  * without having to re-enable interrupts. It's not called while
2657  * the interrupt routine is executing.
2658  */
2659 static void gfar_netpoll(struct net_device *dev)
2660 {
2661         struct gfar_private *priv = netdev_priv(dev);
2662         int i = 0;
2663
2664         /* If the device has multiple interrupts, run tx/rx */
2665         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2666                 for (i = 0; i < priv->num_grps; i++) {
2667                         disable_irq(priv->gfargrp[i].interruptTransmit);
2668                         disable_irq(priv->gfargrp[i].interruptReceive);
2669                         disable_irq(priv->gfargrp[i].interruptError);
2670                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2671                                                 &priv->gfargrp[i]);
2672                         enable_irq(priv->gfargrp[i].interruptError);
2673                         enable_irq(priv->gfargrp[i].interruptReceive);
2674                         enable_irq(priv->gfargrp[i].interruptTransmit);
2675                 }
2676         } else {
2677                 for (i = 0; i < priv->num_grps; i++) {
2678                         disable_irq(priv->gfargrp[i].interruptTransmit);
2679                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2680                                                 &priv->gfargrp[i]);
2681                         enable_irq(priv->gfargrp[i].interruptTransmit);
2682                 }
2683         }
2684 }
2685 #endif
2686
2687 /* The interrupt handler for devices with one interrupt */
2688 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2689 {
2690         struct gfar_priv_grp *gfargrp = grp_id;
2691
2692         /* Save ievent for future reference */
2693         u32 events = gfar_read(&gfargrp->regs->ievent);
2694
2695         /* Check for reception */
2696         if (events & IEVENT_RX_MASK)
2697                 gfar_receive(irq, grp_id);
2698
2699         /* Check for transmit completion */
2700         if (events & IEVENT_TX_MASK)
2701                 gfar_transmit(irq, grp_id);
2702
2703         /* Check for errors */
2704         if (events & IEVENT_ERR_MASK)
2705                 gfar_error(irq, grp_id);
2706
2707         return IRQ_HANDLED;
2708 }
2709
2710 /* Called every time the controller might need to be made
2711  * aware of new link state.  The PHY code conveys this
2712  * information through variables in the phydev structure, and this
2713  * function converts those variables into the appropriate
2714  * register values, and can bring down the device if needed.
2715  */
2716 static void adjust_link(struct net_device *dev)
2717 {
2718         struct gfar_private *priv = netdev_priv(dev);
2719         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2720         unsigned long flags;
2721         struct phy_device *phydev = priv->phydev;
2722         int new_state = 0;
2723
2724         local_irq_save(flags);
2725         lock_tx_qs(priv);
2726
2727         if (phydev->link) {
2728                 u32 tempval = gfar_read(&regs->maccfg2);
2729                 u32 ecntrl = gfar_read(&regs->ecntrl);
2730
2731                 /* Now we make sure that we can be in full duplex mode.
2732                  * If not, we operate in half-duplex mode. */
2733                 if (phydev->duplex != priv->oldduplex) {
2734                         new_state = 1;
2735                         if (!(phydev->duplex))
2736                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2737                         else
2738                                 tempval |= MACCFG2_FULL_DUPLEX;
2739
2740                         priv->oldduplex = phydev->duplex;
2741                 }
2742
2743                 if (phydev->speed != priv->oldspeed) {
2744                         new_state = 1;
2745                         switch (phydev->speed) {
2746                         case 1000:
2747                                 tempval =
2748                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2749
2750                                 ecntrl &= ~(ECNTRL_R100);
2751                                 break;
2752                         case 100:
2753                         case 10:
2754                                 tempval =
2755                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2756
2757                                 /* Reduced mode distinguishes
2758                                  * between 10 and 100 */
2759                                 if (phydev->speed == SPEED_100)
2760                                         ecntrl |= ECNTRL_R100;
2761                                 else
2762                                         ecntrl &= ~(ECNTRL_R100);
2763                                 break;
2764                         default:
2765                                 if (netif_msg_link(priv))
2766                                         printk(KERN_WARNING
2767                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
2768                                                 dev->name, phydev->speed);
2769                                 break;
2770                         }
2771
2772                         priv->oldspeed = phydev->speed;
2773                 }
2774
2775                 gfar_write(&regs->maccfg2, tempval);
2776                 gfar_write(&regs->ecntrl, ecntrl);
2777
2778                 if (!priv->oldlink) {
2779                         new_state = 1;
2780                         priv->oldlink = 1;
2781                 }
2782         } else if (priv->oldlink) {
2783                 new_state = 1;
2784                 priv->oldlink = 0;
2785                 priv->oldspeed = 0;
2786                 priv->oldduplex = -1;
2787         }
2788
2789         if (new_state && netif_msg_link(priv))
2790                 phy_print_status(phydev);
2791         unlock_tx_qs(priv);
2792         local_irq_restore(flags);
2793 }
2794
2795 /* Update the hash table based on the current list of multicast
2796  * addresses we subscribe to.  Also, change the promiscuity of
2797  * the device based on the flags (this function is called
2798  * whenever dev->flags is changed */
2799 static void gfar_set_multi(struct net_device *dev)
2800 {
2801         struct dev_mc_list *mc_ptr;
2802         struct gfar_private *priv = netdev_priv(dev);
2803         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2804         u32 tempval;
2805
2806         if (dev->flags & IFF_PROMISC) {
2807                 /* Set RCTRL to PROM */
2808                 tempval = gfar_read(&regs->rctrl);
2809                 tempval |= RCTRL_PROM;
2810                 gfar_write(&regs->rctrl, tempval);
2811         } else {
2812                 /* Set RCTRL to not PROM */
2813                 tempval = gfar_read(&regs->rctrl);
2814                 tempval &= ~(RCTRL_PROM);
2815                 gfar_write(&regs->rctrl, tempval);
2816         }
2817
2818         if (dev->flags & IFF_ALLMULTI) {
2819                 /* Set the hash to rx all multicast frames */
2820                 gfar_write(&regs->igaddr0, 0xffffffff);
2821                 gfar_write(&regs->igaddr1, 0xffffffff);
2822                 gfar_write(&regs->igaddr2, 0xffffffff);
2823                 gfar_write(&regs->igaddr3, 0xffffffff);
2824                 gfar_write(&regs->igaddr4, 0xffffffff);
2825                 gfar_write(&regs->igaddr5, 0xffffffff);
2826                 gfar_write(&regs->igaddr6, 0xffffffff);
2827                 gfar_write(&regs->igaddr7, 0xffffffff);
2828                 gfar_write(&regs->gaddr0, 0xffffffff);
2829                 gfar_write(&regs->gaddr1, 0xffffffff);
2830                 gfar_write(&regs->gaddr2, 0xffffffff);
2831                 gfar_write(&regs->gaddr3, 0xffffffff);
2832                 gfar_write(&regs->gaddr4, 0xffffffff);
2833                 gfar_write(&regs->gaddr5, 0xffffffff);
2834                 gfar_write(&regs->gaddr6, 0xffffffff);
2835                 gfar_write(&regs->gaddr7, 0xffffffff);
2836         } else {
2837                 int em_num;
2838                 int idx;
2839
2840                 /* zero out the hash */
2841                 gfar_write(&regs->igaddr0, 0x0);
2842                 gfar_write(&regs->igaddr1, 0x0);
2843                 gfar_write(&regs->igaddr2, 0x0);
2844                 gfar_write(&regs->igaddr3, 0x0);
2845                 gfar_write(&regs->igaddr4, 0x0);
2846                 gfar_write(&regs->igaddr5, 0x0);
2847                 gfar_write(&regs->igaddr6, 0x0);
2848                 gfar_write(&regs->igaddr7, 0x0);
2849                 gfar_write(&regs->gaddr0, 0x0);
2850                 gfar_write(&regs->gaddr1, 0x0);
2851                 gfar_write(&regs->gaddr2, 0x0);
2852                 gfar_write(&regs->gaddr3, 0x0);
2853                 gfar_write(&regs->gaddr4, 0x0);
2854                 gfar_write(&regs->gaddr5, 0x0);
2855                 gfar_write(&regs->gaddr6, 0x0);
2856                 gfar_write(&regs->gaddr7, 0x0);
2857
2858                 /* If we have extended hash tables, we need to
2859                  * clear the exact match registers to prepare for
2860                  * setting them */
2861                 if (priv->extended_hash) {
2862                         em_num = GFAR_EM_NUM + 1;
2863                         gfar_clear_exact_match(dev);
2864                         idx = 1;
2865                 } else {
2866                         idx = 0;
2867                         em_num = 0;
2868                 }
2869
2870                 if (netdev_mc_empty(dev))
2871                         return;
2872
2873                 /* Parse the list, and set the appropriate bits */
2874                 netdev_for_each_mc_addr(mc_ptr, dev) {
2875                         if (idx < em_num) {
2876                                 gfar_set_mac_for_addr(dev, idx,
2877                                                 mc_ptr->dmi_addr);
2878                                 idx++;
2879                         } else
2880                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2881                 }
2882         }
2883
2884         return;
2885 }
2886
2887
2888 /* Clears each of the exact match registers to zero, so they
2889  * don't interfere with normal reception */
2890 static void gfar_clear_exact_match(struct net_device *dev)
2891 {
2892         int idx;
2893         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2894
2895         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2896                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2897 }
2898
2899 /* Set the appropriate hash bit for the given addr */
2900 /* The algorithm works like so:
2901  * 1) Take the Destination Address (ie the multicast address), and
2902  * do a CRC on it (little endian), and reverse the bits of the
2903  * result.
2904  * 2) Use the 8 most significant bits as a hash into a 256-entry
2905  * table.  The table is controlled through 8 32-bit registers:
2906  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
2907  * gaddr7.  This means that the 3 most significant bits in the
2908  * hash index which gaddr register to use, and the 5 other bits
2909  * indicate which bit (assuming an IBM numbering scheme, which
2910  * for PowerPC (tm) is usually the case) in the register holds
2911  * the entry. */
2912 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2913 {
2914         u32 tempval;
2915         struct gfar_private *priv = netdev_priv(dev);
2916         u32 result = ether_crc(MAC_ADDR_LEN, addr);
2917         int width = priv->hash_width;
2918         u8 whichbit = (result >> (32 - width)) & 0x1f;
2919         u8 whichreg = result >> (32 - width + 5);
2920         u32 value = (1 << (31-whichbit));
2921
2922         tempval = gfar_read(priv->hash_regs[whichreg]);
2923         tempval |= value;
2924         gfar_write(priv->hash_regs[whichreg], tempval);
2925
2926         return;
2927 }
2928
2929
2930 /* There are multiple MAC Address register pairs on some controllers
2931  * This function sets the numth pair to a given address
2932  */
2933 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2934 {
2935         struct gfar_private *priv = netdev_priv(dev);
2936         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2937         int idx;
2938         char tmpbuf[MAC_ADDR_LEN];
2939         u32 tempval;
2940         u32 __iomem *macptr = &regs->macstnaddr1;
2941
2942         macptr += num*2;
2943
2944         /* Now copy it into the mac registers backwards, cuz */
2945         /* little endian is silly */
2946         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2947                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2948
2949         gfar_write(macptr, *((u32 *) (tmpbuf)));
2950
2951         tempval = *((u32 *) (tmpbuf + 4));
2952
2953         gfar_write(macptr+1, tempval);
2954 }
2955
2956 /* GFAR error interrupt handler */
2957 static irqreturn_t gfar_error(int irq, void *grp_id)
2958 {
2959         struct gfar_priv_grp *gfargrp = grp_id;
2960         struct gfar __iomem *regs = gfargrp->regs;
2961         struct gfar_private *priv= gfargrp->priv;
2962         struct net_device *dev = priv->ndev;
2963
2964         /* Save ievent for future reference */
2965         u32 events = gfar_read(&regs->ievent);
2966
2967         /* Clear IEVENT */
2968         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2969
2970         /* Magic Packet is not an error. */
2971         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2972             (events & IEVENT_MAG))
2973                 events &= ~IEVENT_MAG;
2974
2975         /* Hmm... */
2976         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2977                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2978                        dev->name, events, gfar_read(&regs->imask));
2979
2980         /* Update the error counters */
2981         if (events & IEVENT_TXE) {
2982                 dev->stats.tx_errors++;
2983
2984                 if (events & IEVENT_LC)
2985                         dev->stats.tx_window_errors++;
2986                 if (events & IEVENT_CRL)
2987                         dev->stats.tx_aborted_errors++;
2988                 if (events & IEVENT_XFUN) {
2989                         unsigned long flags;
2990
2991                         if (netif_msg_tx_err(priv))
2992                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2993                                        "packet dropped.\n", dev->name);
2994                         dev->stats.tx_dropped++;
2995                         priv->extra_stats.tx_underrun++;
2996
2997                         local_irq_save(flags);
2998                         lock_tx_qs(priv);
2999
3000                         /* Reactivate the Tx Queues */
3001                         gfar_write(&regs->tstat, gfargrp->tstat);
3002
3003                         unlock_tx_qs(priv);
3004                         local_irq_restore(flags);
3005                 }
3006                 if (netif_msg_tx_err(priv))
3007                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
3008         }
3009         if (events & IEVENT_BSY) {
3010                 dev->stats.rx_errors++;
3011                 priv->extra_stats.rx_bsy++;
3012
3013                 gfar_receive(irq, grp_id);
3014
3015                 if (netif_msg_rx_err(priv))
3016                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
3017                                dev->name, gfar_read(&regs->rstat));
3018         }
3019         if (events & IEVENT_BABR) {
3020                 dev->stats.rx_errors++;
3021                 priv->extra_stats.rx_babr++;
3022
3023                 if (netif_msg_rx_err(priv))
3024                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
3025         }
3026         if (events & IEVENT_EBERR) {
3027                 priv->extra_stats.eberr++;
3028                 if (netif_msg_rx_err(priv))
3029                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
3030         }
3031         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
3032                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
3033
3034         if (events & IEVENT_BABT) {
3035                 priv->extra_stats.tx_babt++;
3036                 if (netif_msg_tx_err(priv))
3037                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
3038         }
3039         return IRQ_HANDLED;
3040 }
3041
3042 static struct of_device_id gfar_match[] =
3043 {
3044         {
3045                 .type = "network",
3046                 .compatible = "gianfar",
3047         },
3048         {
3049                 .compatible = "fsl,etsec2",
3050         },
3051         {},
3052 };
3053 MODULE_DEVICE_TABLE(of, gfar_match);
3054
3055 /* Structure for a device driver */
3056 static struct of_platform_driver gfar_driver = {
3057         .name = "fsl-gianfar",
3058         .match_table = gfar_match,
3059
3060         .probe = gfar_probe,
3061         .remove = gfar_remove,
3062         .suspend = gfar_legacy_suspend,
3063         .resume = gfar_legacy_resume,
3064         .driver.pm = GFAR_PM_OPS,
3065 };
3066
3067 static int __init gfar_init(void)
3068 {
3069         return of_register_platform_driver(&gfar_driver);
3070 }
3071
3072 static void __exit gfar_exit(void)
3073 {
3074         of_unregister_platform_driver(&gfar_driver);
3075 }
3076
3077 module_init(gfar_init);
3078 module_exit(gfar_exit);
3079