[PATCH] Replace 0xff.. with correct DMA_xBIT_MASK
[safe/jmp/linux-2.6] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey. It's neither supported nor endorsed
7  *      by NVIDIA Corp. Use at your own risk.
8  *
9  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10  * trademarks of NVIDIA Corporation in the United States and other
11  * countries.
12  *
13  * Copyright (C) 2003,4,5 Manfred Spraul
14  * Copyright (C) 2004 Andrew de Quincey (wol support)
15  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
17  * Copyright (c) 2004 NVIDIA Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  * Changelog:
34  *      0.01: 05 Oct 2003: First release that compiles without warnings.
35  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36  *                         Check all PCI BARs for the register window.
37  *                         udelay added to mii_rw.
38  *      0.03: 06 Oct 2003: Initialize dev->irq.
39  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42  *                         irq mask updated
43  *      0.07: 14 Oct 2003: Further irq mask updates.
44  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45  *                         added into irq handler, NULL check for drain_ring.
46  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47  *                         requested interrupt sources.
48  *      0.10: 20 Oct 2003: First cleanup for release.
49  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50  *                         MAC Address init fix, set_multicast cleanup.
51  *      0.12: 23 Oct 2003: Cleanups for release.
52  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53  *                         Set link speed correctly. start rx before starting
54  *                         tx (nv_start_rx sets the link speed).
55  *      0.14: 25 Oct 2003: Nic dependant irq mask.
56  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57  *                         open.
58  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59  *                         increased to 1628 bytes.
60  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61  *                         the tx length.
62  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64  *                         addresses, really stop rx if already running
65  *                         in nv_start_rx, clean up a bit.
66  *      0.20: 07 Dec 2003: alloc fixes
67  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69  *                         on close.
70  *      0.23: 26 Jan 2004: various small cleanups
71  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72  *      0.25: 09 Mar 2004: wol support
73  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75  *                         added CK804/MCP04 device IDs, code fixes
76  *                         for registers, link status and other minor fixes.
77  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
79  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80  *                         into nv_close, otherwise reenabling for wol can
81  *                         cause DMA to kfree'd memory.
82  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
83  *                         capabilities.
84  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
85  *      0.33: 16 May 2005: Support for MCP51 added.
86  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87  *      0.35: 26 Jun 2005: Support for MCP55 added.
88  *      0.36: 28 Jun 2005: Add jumbo frame support.
89  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91  *                         per-packet flags.
92  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
93  *      0.40: 19 Jul 2005: Add support for mac address change.
94  *      0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95  *                         of nv_remove
96  *      0.42: 06 Aug 2005: Fix lack of link speed initialization
97  *                         in the second (and later) nv_open call
98  *      0.43: 10 Aug 2005: Add support for tx checksum.
99  *      0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100  *      0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101  *      0.46: 20 Oct 2005: Add irq optimization modes.
102  *      0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103  *      0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104  *      0.49: 10 Dec 2005: Fix tso for large buffers.
105  *      0.50: 20 Jan 2006: Add 8021pq tagging support.
106  *      0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
107  *      0.52: 20 Jan 2006: Add MSI/MSIX support.
108  *
109  * Known bugs:
110  * We suspect that on some hardware no TX done interrupts are generated.
111  * This means recovery from netif_stop_queue only happens if the hw timer
112  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
113  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
114  * If your hardware reliably generates tx done interrupts, then you can remove
115  * DEV_NEED_TIMERIRQ from the driver_data flags.
116  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
117  * superfluous timer interrupts from the nic.
118  */
119 #define FORCEDETH_VERSION               "0.52"
120 #define DRV_NAME                        "forcedeth"
121
122 #include <linux/module.h>
123 #include <linux/types.h>
124 #include <linux/pci.h>
125 #include <linux/interrupt.h>
126 #include <linux/netdevice.h>
127 #include <linux/etherdevice.h>
128 #include <linux/delay.h>
129 #include <linux/spinlock.h>
130 #include <linux/ethtool.h>
131 #include <linux/timer.h>
132 #include <linux/skbuff.h>
133 #include <linux/mii.h>
134 #include <linux/random.h>
135 #include <linux/init.h>
136 #include <linux/if_vlan.h>
137 #include <linux/dma-mapping.h>
138
139 #include <asm/irq.h>
140 #include <asm/io.h>
141 #include <asm/uaccess.h>
142 #include <asm/system.h>
143
144 #if 0
145 #define dprintk                 printk
146 #else
147 #define dprintk(x...)           do { } while (0)
148 #endif
149
150
151 /*
152  * Hardware access:
153  */
154
155 #define DEV_NEED_TIMERIRQ       0x0001  /* set the timer irq flag in the irq mask */
156 #define DEV_NEED_LINKTIMER      0x0002  /* poll link settings. Relies on the timer irq */
157 #define DEV_HAS_LARGEDESC       0x0004  /* device supports jumbo frames and needs packet format 2 */
158 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
159 #define DEV_HAS_CHECKSUM        0x0010  /* device supports tx and rx checksum offloads */
160 #define DEV_HAS_VLAN            0x0020  /* device supports vlan tagging and striping */
161 #define DEV_HAS_MSI             0x0040  /* device supports MSI */
162 #define DEV_HAS_MSI_X           0x0080  /* device supports MSI-X */
163
164 enum {
165         NvRegIrqStatus = 0x000,
166 #define NVREG_IRQSTAT_MIIEVENT  0x040
167 #define NVREG_IRQSTAT_MASK              0x1ff
168         NvRegIrqMask = 0x004,
169 #define NVREG_IRQ_RX_ERROR              0x0001
170 #define NVREG_IRQ_RX                    0x0002
171 #define NVREG_IRQ_RX_NOBUF              0x0004
172 #define NVREG_IRQ_TX_ERR                0x0008
173 #define NVREG_IRQ_TX_OK                 0x0010
174 #define NVREG_IRQ_TIMER                 0x0020
175 #define NVREG_IRQ_LINK                  0x0040
176 #define NVREG_IRQ_RX_FORCED             0x0080
177 #define NVREG_IRQ_TX_FORCED             0x0100
178 #define NVREG_IRQMASK_THROUGHPUT        0x00df
179 #define NVREG_IRQMASK_CPU               0x0040
180 #define NVREG_IRQ_TX_ALL                (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
181 #define NVREG_IRQ_RX_ALL                (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
182 #define NVREG_IRQ_OTHER                 (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
183
184 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
185                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
186                                         NVREG_IRQ_TX_FORCED))
187
188         NvRegUnknownSetupReg6 = 0x008,
189 #define NVREG_UNKSETUP6_VAL             3
190
191 /*
192  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
193  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
194  */
195         NvRegPollingInterval = 0x00c,
196 #define NVREG_POLL_DEFAULT_THROUGHPUT   970
197 #define NVREG_POLL_DEFAULT_CPU  13
198         NvRegMSIMap0 = 0x020,
199         NvRegMSIMap1 = 0x024,
200         NvRegMSIIrqMask = 0x030,
201 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
202         NvRegMisc1 = 0x080,
203 #define NVREG_MISC1_HD          0x02
204 #define NVREG_MISC1_FORCE       0x3b0f3c
205
206         NvRegTransmitterControl = 0x084,
207 #define NVREG_XMITCTL_START     0x01
208         NvRegTransmitterStatus = 0x088,
209 #define NVREG_XMITSTAT_BUSY     0x01
210
211         NvRegPacketFilterFlags = 0x8c,
212 #define NVREG_PFF_ALWAYS        0x7F0008
213 #define NVREG_PFF_PROMISC       0x80
214 #define NVREG_PFF_MYADDR        0x20
215
216         NvRegOffloadConfig = 0x90,
217 #define NVREG_OFFLOAD_HOMEPHY   0x601
218 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
219         NvRegReceiverControl = 0x094,
220 #define NVREG_RCVCTL_START      0x01
221         NvRegReceiverStatus = 0x98,
222 #define NVREG_RCVSTAT_BUSY      0x01
223
224         NvRegRandomSeed = 0x9c,
225 #define NVREG_RNDSEED_MASK      0x00ff
226 #define NVREG_RNDSEED_FORCE     0x7f00
227 #define NVREG_RNDSEED_FORCE2    0x2d00
228 #define NVREG_RNDSEED_FORCE3    0x7400
229
230         NvRegUnknownSetupReg1 = 0xA0,
231 #define NVREG_UNKSETUP1_VAL     0x16070f
232         NvRegUnknownSetupReg2 = 0xA4,
233 #define NVREG_UNKSETUP2_VAL     0x16
234         NvRegMacAddrA = 0xA8,
235         NvRegMacAddrB = 0xAC,
236         NvRegMulticastAddrA = 0xB0,
237 #define NVREG_MCASTADDRA_FORCE  0x01
238         NvRegMulticastAddrB = 0xB4,
239         NvRegMulticastMaskA = 0xB8,
240         NvRegMulticastMaskB = 0xBC,
241
242         NvRegPhyInterface = 0xC0,
243 #define PHY_RGMII               0x10000000
244
245         NvRegTxRingPhysAddr = 0x100,
246         NvRegRxRingPhysAddr = 0x104,
247         NvRegRingSizes = 0x108,
248 #define NVREG_RINGSZ_TXSHIFT 0
249 #define NVREG_RINGSZ_RXSHIFT 16
250         NvRegUnknownTransmitterReg = 0x10c,
251         NvRegLinkSpeed = 0x110,
252 #define NVREG_LINKSPEED_FORCE 0x10000
253 #define NVREG_LINKSPEED_10      1000
254 #define NVREG_LINKSPEED_100     100
255 #define NVREG_LINKSPEED_1000    50
256 #define NVREG_LINKSPEED_MASK    (0xFFF)
257         NvRegUnknownSetupReg5 = 0x130,
258 #define NVREG_UNKSETUP5_BIT31   (1<<31)
259         NvRegUnknownSetupReg3 = 0x13c,
260 #define NVREG_UNKSETUP3_VAL1    0x200010
261         NvRegTxRxControl = 0x144,
262 #define NVREG_TXRXCTL_KICK      0x0001
263 #define NVREG_TXRXCTL_BIT1      0x0002
264 #define NVREG_TXRXCTL_BIT2      0x0004
265 #define NVREG_TXRXCTL_IDLE      0x0008
266 #define NVREG_TXRXCTL_RESET     0x0010
267 #define NVREG_TXRXCTL_RXCHECK   0x0400
268 #define NVREG_TXRXCTL_DESC_1    0
269 #define NVREG_TXRXCTL_DESC_2    0x02100
270 #define NVREG_TXRXCTL_DESC_3    0x02200
271 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
272 #define NVREG_TXRXCTL_VLANINS   0x00080
273         NvRegTxRingPhysAddrHigh = 0x148,
274         NvRegRxRingPhysAddrHigh = 0x14C,
275         NvRegMIIStatus = 0x180,
276 #define NVREG_MIISTAT_ERROR             0x0001
277 #define NVREG_MIISTAT_LINKCHANGE        0x0008
278 #define NVREG_MIISTAT_MASK              0x000f
279 #define NVREG_MIISTAT_MASK2             0x000f
280         NvRegUnknownSetupReg4 = 0x184,
281 #define NVREG_UNKSETUP4_VAL     8
282
283         NvRegAdapterControl = 0x188,
284 #define NVREG_ADAPTCTL_START    0x02
285 #define NVREG_ADAPTCTL_LINKUP   0x04
286 #define NVREG_ADAPTCTL_PHYVALID 0x40000
287 #define NVREG_ADAPTCTL_RUNNING  0x100000
288 #define NVREG_ADAPTCTL_PHYSHIFT 24
289         NvRegMIISpeed = 0x18c,
290 #define NVREG_MIISPEED_BIT8     (1<<8)
291 #define NVREG_MIIDELAY  5
292         NvRegMIIControl = 0x190,
293 #define NVREG_MIICTL_INUSE      0x08000
294 #define NVREG_MIICTL_WRITE      0x00400
295 #define NVREG_MIICTL_ADDRSHIFT  5
296         NvRegMIIData = 0x194,
297         NvRegWakeUpFlags = 0x200,
298 #define NVREG_WAKEUPFLAGS_VAL           0x7770
299 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
300 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
301 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
302 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
303 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
304 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
305 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
306 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
307 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
308 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
309
310         NvRegPatternCRC = 0x204,
311         NvRegPatternMask = 0x208,
312         NvRegPowerCap = 0x268,
313 #define NVREG_POWERCAP_D3SUPP   (1<<30)
314 #define NVREG_POWERCAP_D2SUPP   (1<<26)
315 #define NVREG_POWERCAP_D1SUPP   (1<<25)
316         NvRegPowerState = 0x26c,
317 #define NVREG_POWERSTATE_POWEREDUP      0x8000
318 #define NVREG_POWERSTATE_VALID          0x0100
319 #define NVREG_POWERSTATE_MASK           0x0003
320 #define NVREG_POWERSTATE_D0             0x0000
321 #define NVREG_POWERSTATE_D1             0x0001
322 #define NVREG_POWERSTATE_D2             0x0002
323 #define NVREG_POWERSTATE_D3             0x0003
324         NvRegVlanControl = 0x300,
325 #define NVREG_VLANCONTROL_ENABLE        0x2000
326         NvRegMSIXMap0 = 0x3e0,
327         NvRegMSIXMap1 = 0x3e4,
328         NvRegMSIXIrqStatus = 0x3f0,
329 };
330
331 /* Big endian: should work, but is untested */
332 struct ring_desc {
333         u32 PacketBuffer;
334         u32 FlagLen;
335 };
336
337 struct ring_desc_ex {
338         u32 PacketBufferHigh;
339         u32 PacketBufferLow;
340         u32 TxVlan;
341         u32 FlagLen;
342 };
343
344 typedef union _ring_type {
345         struct ring_desc* orig;
346         struct ring_desc_ex* ex;
347 } ring_type;
348
349 #define FLAG_MASK_V1 0xffff0000
350 #define FLAG_MASK_V2 0xffffc000
351 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
352 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
353
354 #define NV_TX_LASTPACKET        (1<<16)
355 #define NV_TX_RETRYERROR        (1<<19)
356 #define NV_TX_FORCED_INTERRUPT  (1<<24)
357 #define NV_TX_DEFERRED          (1<<26)
358 #define NV_TX_CARRIERLOST       (1<<27)
359 #define NV_TX_LATECOLLISION     (1<<28)
360 #define NV_TX_UNDERFLOW         (1<<29)
361 #define NV_TX_ERROR             (1<<30)
362 #define NV_TX_VALID             (1<<31)
363
364 #define NV_TX2_LASTPACKET       (1<<29)
365 #define NV_TX2_RETRYERROR       (1<<18)
366 #define NV_TX2_FORCED_INTERRUPT (1<<30)
367 #define NV_TX2_DEFERRED         (1<<25)
368 #define NV_TX2_CARRIERLOST      (1<<26)
369 #define NV_TX2_LATECOLLISION    (1<<27)
370 #define NV_TX2_UNDERFLOW        (1<<28)
371 /* error and valid are the same for both */
372 #define NV_TX2_ERROR            (1<<30)
373 #define NV_TX2_VALID            (1<<31)
374 #define NV_TX2_TSO              (1<<28)
375 #define NV_TX2_TSO_SHIFT        14
376 #define NV_TX2_TSO_MAX_SHIFT    14
377 #define NV_TX2_TSO_MAX_SIZE     (1<<NV_TX2_TSO_MAX_SHIFT)
378 #define NV_TX2_CHECKSUM_L3      (1<<27)
379 #define NV_TX2_CHECKSUM_L4      (1<<26)
380
381 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
382
383 #define NV_RX_DESCRIPTORVALID   (1<<16)
384 #define NV_RX_MISSEDFRAME       (1<<17)
385 #define NV_RX_SUBSTRACT1        (1<<18)
386 #define NV_RX_ERROR1            (1<<23)
387 #define NV_RX_ERROR2            (1<<24)
388 #define NV_RX_ERROR3            (1<<25)
389 #define NV_RX_ERROR4            (1<<26)
390 #define NV_RX_CRCERR            (1<<27)
391 #define NV_RX_OVERFLOW          (1<<28)
392 #define NV_RX_FRAMINGERR        (1<<29)
393 #define NV_RX_ERROR             (1<<30)
394 #define NV_RX_AVAIL             (1<<31)
395
396 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
397 #define NV_RX2_CHECKSUMOK1      (0x10000000)
398 #define NV_RX2_CHECKSUMOK2      (0x14000000)
399 #define NV_RX2_CHECKSUMOK3      (0x18000000)
400 #define NV_RX2_DESCRIPTORVALID  (1<<29)
401 #define NV_RX2_SUBSTRACT1       (1<<25)
402 #define NV_RX2_ERROR1           (1<<18)
403 #define NV_RX2_ERROR2           (1<<19)
404 #define NV_RX2_ERROR3           (1<<20)
405 #define NV_RX2_ERROR4           (1<<21)
406 #define NV_RX2_CRCERR           (1<<22)
407 #define NV_RX2_OVERFLOW         (1<<23)
408 #define NV_RX2_FRAMINGERR       (1<<24)
409 /* error and avail are the same for both */
410 #define NV_RX2_ERROR            (1<<30)
411 #define NV_RX2_AVAIL            (1<<31)
412
413 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
414 #define NV_RX3_VLAN_TAG_MASK    (0x0000FFFF)
415
416 /* Miscelaneous hardware related defines: */
417 #define NV_PCI_REGSZ            0x270
418
419 /* various timeout delays: all in usec */
420 #define NV_TXRX_RESET_DELAY     4
421 #define NV_TXSTOP_DELAY1        10
422 #define NV_TXSTOP_DELAY1MAX     500000
423 #define NV_TXSTOP_DELAY2        100
424 #define NV_RXSTOP_DELAY1        10
425 #define NV_RXSTOP_DELAY1MAX     500000
426 #define NV_RXSTOP_DELAY2        100
427 #define NV_SETUP5_DELAY         5
428 #define NV_SETUP5_DELAYMAX      50000
429 #define NV_POWERUP_DELAY        5
430 #define NV_POWERUP_DELAYMAX     5000
431 #define NV_MIIBUSY_DELAY        50
432 #define NV_MIIPHY_DELAY 10
433 #define NV_MIIPHY_DELAYMAX      10000
434
435 #define NV_WAKEUPPATTERNS       5
436 #define NV_WAKEUPMASKENTRIES    4
437
438 /* General driver defaults */
439 #define NV_WATCHDOG_TIMEO       (5*HZ)
440
441 #define RX_RING         128
442 #define TX_RING         256
443 /* 
444  * If your nic mysteriously hangs then try to reduce the limits
445  * to 1/0: It might be required to set NV_TX_LASTPACKET in the
446  * last valid ring entry. But this would be impossible to
447  * implement - probably a disassembly error.
448  */
449 #define TX_LIMIT_STOP   255
450 #define TX_LIMIT_START  254
451
452 /* rx/tx mac addr + type + vlan + align + slack*/
453 #define NV_RX_HEADERS           (64)
454 /* even more slack. */
455 #define NV_RX_ALLOC_PAD         (64)
456
457 /* maximum mtu size */
458 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
459 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
460
461 #define OOM_REFILL      (1+HZ/20)
462 #define POLL_WAIT       (1+HZ/100)
463 #define LINK_TIMEOUT    (3*HZ)
464
465 /* 
466  * desc_ver values:
467  * The nic supports three different descriptor types:
468  * - DESC_VER_1: Original
469  * - DESC_VER_2: support for jumbo frames.
470  * - DESC_VER_3: 64-bit format.
471  */
472 #define DESC_VER_1      1
473 #define DESC_VER_2      2
474 #define DESC_VER_3      3
475
476 /* PHY defines */
477 #define PHY_OUI_MARVELL 0x5043
478 #define PHY_OUI_CICADA  0x03f1
479 #define PHYID1_OUI_MASK 0x03ff
480 #define PHYID1_OUI_SHFT 6
481 #define PHYID2_OUI_MASK 0xfc00
482 #define PHYID2_OUI_SHFT 10
483 #define PHY_INIT1       0x0f000
484 #define PHY_INIT2       0x0e00
485 #define PHY_INIT3       0x01000
486 #define PHY_INIT4       0x0200
487 #define PHY_INIT5       0x0004
488 #define PHY_INIT6       0x02000
489 #define PHY_GIGABIT     0x0100
490
491 #define PHY_TIMEOUT     0x1
492 #define PHY_ERROR       0x2
493
494 #define PHY_100 0x1
495 #define PHY_1000        0x2
496 #define PHY_HALF        0x100
497
498 /* FIXME: MII defines that should be added to <linux/mii.h> */
499 #define MII_1000BT_CR   0x09
500 #define MII_1000BT_SR   0x0a
501 #define ADVERTISE_1000FULL      0x0200
502 #define ADVERTISE_1000HALF      0x0100
503 #define LPA_1000FULL    0x0800
504 #define LPA_1000HALF    0x0400
505
506 /* MSI/MSI-X defines */
507 #define NV_MSI_X_MAX_VECTORS  8
508 #define NV_MSI_X_VECTORS_MASK 0x000f
509 #define NV_MSI_CAPABLE        0x0010
510 #define NV_MSI_X_CAPABLE      0x0020
511 #define NV_MSI_ENABLED        0x0040
512 #define NV_MSI_X_ENABLED      0x0080
513
514 #define NV_MSI_X_VECTOR_ALL   0x0
515 #define NV_MSI_X_VECTOR_RX    0x0
516 #define NV_MSI_X_VECTOR_TX    0x1
517 #define NV_MSI_X_VECTOR_OTHER 0x2
518
519 /*
520  * SMP locking:
521  * All hardware access under dev->priv->lock, except the performance
522  * critical parts:
523  * - rx is (pseudo-) lockless: it relies on the single-threading provided
524  *      by the arch code for interrupts.
525  * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
526  *      needs dev->priv->lock :-(
527  * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
528  */
529
530 /* in dev: base, irq */
531 struct fe_priv {
532         spinlock_t lock;
533
534         /* General data:
535          * Locking: spin_lock(&np->lock); */
536         struct net_device_stats stats;
537         int in_shutdown;
538         u32 linkspeed;
539         int duplex;
540         int autoneg;
541         int fixed_mode;
542         int phyaddr;
543         int wolenabled;
544         unsigned int phy_oui;
545         u16 gigabit;
546
547         /* General data: RO fields */
548         dma_addr_t ring_addr;
549         struct pci_dev *pci_dev;
550         u32 orig_mac[2];
551         u32 irqmask;
552         u32 desc_ver;
553         u32 txrxctl_bits;
554         u32 vlanctl_bits;
555
556         void __iomem *base;
557
558         /* rx specific fields.
559          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
560          */
561         ring_type rx_ring;
562         unsigned int cur_rx, refill_rx;
563         struct sk_buff *rx_skbuff[RX_RING];
564         dma_addr_t rx_dma[RX_RING];
565         unsigned int rx_buf_sz;
566         unsigned int pkt_limit;
567         struct timer_list oom_kick;
568         struct timer_list nic_poll;
569         u32 nic_poll_irq;
570
571         /* media detection workaround.
572          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
573          */
574         int need_linktimer;
575         unsigned long link_timeout;
576         /*
577          * tx specific fields.
578          */
579         ring_type tx_ring;
580         unsigned int next_tx, nic_tx;
581         struct sk_buff *tx_skbuff[TX_RING];
582         dma_addr_t tx_dma[TX_RING];
583         unsigned int tx_dma_len[TX_RING];
584         u32 tx_flags;
585
586         /* vlan fields */
587         struct vlan_group *vlangrp;
588
589         /* msi/msi-x fields */
590         u32 msi_flags;
591         struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
592 };
593
594 /*
595  * Maximum number of loops until we assume that a bit in the irq mask
596  * is stuck. Overridable with module param.
597  */
598 static int max_interrupt_work = 5;
599
600 /*
601  * Optimization can be either throuput mode or cpu mode
602  * 
603  * Throughput Mode: Every tx and rx packet will generate an interrupt.
604  * CPU Mode: Interrupts are controlled by a timer.
605  */
606 #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
607 #define NV_OPTIMIZATION_MODE_CPU        1
608 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
609
610 /*
611  * Poll interval for timer irq
612  *
613  * This interval determines how frequent an interrupt is generated.
614  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
615  * Min = 0, and Max = 65535
616  */
617 static int poll_interval = -1;
618
619 /*
620  * Disable MSI interrupts
621  */
622 static int disable_msi = 0;
623
624 /*
625  * Disable MSIX interrupts
626  */
627 static int disable_msix = 0;
628
629 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
630 {
631         return netdev_priv(dev);
632 }
633
634 static inline u8 __iomem *get_hwbase(struct net_device *dev)
635 {
636         return ((struct fe_priv *)netdev_priv(dev))->base;
637 }
638
639 static inline void pci_push(u8 __iomem *base)
640 {
641         /* force out pending posted writes */
642         readl(base);
643 }
644
645 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
646 {
647         return le32_to_cpu(prd->FlagLen)
648                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
649 }
650
651 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
652 {
653         return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
654 }
655
656 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
657                                 int delay, int delaymax, const char *msg)
658 {
659         u8 __iomem *base = get_hwbase(dev);
660
661         pci_push(base);
662         do {
663                 udelay(delay);
664                 delaymax -= delay;
665                 if (delaymax < 0) {
666                         if (msg)
667                                 printk(msg);
668                         return 1;
669                 }
670         } while ((readl(base + offset) & mask) != target);
671         return 0;
672 }
673
674 #define NV_SETUP_RX_RING 0x01
675 #define NV_SETUP_TX_RING 0x02
676
677 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
678 {
679         struct fe_priv *np = get_nvpriv(dev);
680         u8 __iomem *base = get_hwbase(dev);
681
682         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
683                 if (rxtx_flags & NV_SETUP_RX_RING) {
684                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
685                 }
686                 if (rxtx_flags & NV_SETUP_TX_RING) {
687                         writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
688                 }
689         } else {
690                 if (rxtx_flags & NV_SETUP_RX_RING) {
691                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
692                         writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
693                 }
694                 if (rxtx_flags & NV_SETUP_TX_RING) {
695                         writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
696                         writel((u32) (cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
697                 }
698         }
699 }
700
701 #define MII_READ        (-1)
702 /* mii_rw: read/write a register on the PHY.
703  *
704  * Caller must guarantee serialization
705  */
706 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
707 {
708         u8 __iomem *base = get_hwbase(dev);
709         u32 reg;
710         int retval;
711
712         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
713
714         reg = readl(base + NvRegMIIControl);
715         if (reg & NVREG_MIICTL_INUSE) {
716                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
717                 udelay(NV_MIIBUSY_DELAY);
718         }
719
720         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
721         if (value != MII_READ) {
722                 writel(value, base + NvRegMIIData);
723                 reg |= NVREG_MIICTL_WRITE;
724         }
725         writel(reg, base + NvRegMIIControl);
726
727         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
728                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
729                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
730                                 dev->name, miireg, addr);
731                 retval = -1;
732         } else if (value != MII_READ) {
733                 /* it was a write operation - fewer failures are detectable */
734                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
735                                 dev->name, value, miireg, addr);
736                 retval = 0;
737         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
738                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
739                                 dev->name, miireg, addr);
740                 retval = -1;
741         } else {
742                 retval = readl(base + NvRegMIIData);
743                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
744                                 dev->name, miireg, addr, retval);
745         }
746
747         return retval;
748 }
749
750 static int phy_reset(struct net_device *dev)
751 {
752         struct fe_priv *np = netdev_priv(dev);
753         u32 miicontrol;
754         unsigned int tries = 0;
755
756         miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
757         miicontrol |= BMCR_RESET;
758         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
759                 return -1;
760         }
761
762         /* wait for 500ms */
763         msleep(500);
764
765         /* must wait till reset is deasserted */
766         while (miicontrol & BMCR_RESET) {
767                 msleep(10);
768                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
769                 /* FIXME: 100 tries seem excessive */
770                 if (tries++ > 100)
771                         return -1;
772         }
773         return 0;
774 }
775
776 static int phy_init(struct net_device *dev)
777 {
778         struct fe_priv *np = get_nvpriv(dev);
779         u8 __iomem *base = get_hwbase(dev);
780         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
781
782         /* set advertise register */
783         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
784         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
785         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
786                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
787                 return PHY_ERROR;
788         }
789
790         /* get phy interface type */
791         phyinterface = readl(base + NvRegPhyInterface);
792
793         /* see if gigabit phy */
794         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
795         if (mii_status & PHY_GIGABIT) {
796                 np->gigabit = PHY_GIGABIT;
797                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
798                 mii_control_1000 &= ~ADVERTISE_1000HALF;
799                 if (phyinterface & PHY_RGMII)
800                         mii_control_1000 |= ADVERTISE_1000FULL;
801                 else
802                         mii_control_1000 &= ~ADVERTISE_1000FULL;
803
804                 if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
805                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
806                         return PHY_ERROR;
807                 }
808         }
809         else
810                 np->gigabit = 0;
811
812         /* reset the phy */
813         if (phy_reset(dev)) {
814                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
815                 return PHY_ERROR;
816         }
817
818         /* phy vendor specific configuration */
819         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
820                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
821                 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
822                 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
823                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
824                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
825                         return PHY_ERROR;
826                 }
827                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
828                 phy_reserved |= PHY_INIT5;
829                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
830                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
831                         return PHY_ERROR;
832                 }
833         }
834         if (np->phy_oui == PHY_OUI_CICADA) {
835                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
836                 phy_reserved |= PHY_INIT6;
837                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
838                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
839                         return PHY_ERROR;
840                 }
841         }
842
843         /* restart auto negotiation */
844         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
845         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
846         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
847                 return PHY_ERROR;
848         }
849
850         return 0;
851 }
852
853 static void nv_start_rx(struct net_device *dev)
854 {
855         struct fe_priv *np = netdev_priv(dev);
856         u8 __iomem *base = get_hwbase(dev);
857
858         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
859         /* Already running? Stop it. */
860         if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
861                 writel(0, base + NvRegReceiverControl);
862                 pci_push(base);
863         }
864         writel(np->linkspeed, base + NvRegLinkSpeed);
865         pci_push(base);
866         writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
867         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
868                                 dev->name, np->duplex, np->linkspeed);
869         pci_push(base);
870 }
871
872 static void nv_stop_rx(struct net_device *dev)
873 {
874         u8 __iomem *base = get_hwbase(dev);
875
876         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
877         writel(0, base + NvRegReceiverControl);
878         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
879                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
880                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
881
882         udelay(NV_RXSTOP_DELAY2);
883         writel(0, base + NvRegLinkSpeed);
884 }
885
886 static void nv_start_tx(struct net_device *dev)
887 {
888         u8 __iomem *base = get_hwbase(dev);
889
890         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
891         writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
892         pci_push(base);
893 }
894
895 static void nv_stop_tx(struct net_device *dev)
896 {
897         u8 __iomem *base = get_hwbase(dev);
898
899         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
900         writel(0, base + NvRegTransmitterControl);
901         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
902                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
903                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
904
905         udelay(NV_TXSTOP_DELAY2);
906         writel(0, base + NvRegUnknownTransmitterReg);
907 }
908
909 static void nv_txrx_reset(struct net_device *dev)
910 {
911         struct fe_priv *np = netdev_priv(dev);
912         u8 __iomem *base = get_hwbase(dev);
913
914         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
915         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
916         pci_push(base);
917         udelay(NV_TXRX_RESET_DELAY);
918         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
919         pci_push(base);
920 }
921
922 /*
923  * nv_get_stats: dev->get_stats function
924  * Get latest stats value from the nic.
925  * Called with read_lock(&dev_base_lock) held for read -
926  * only synchronized against unregister_netdevice.
927  */
928 static struct net_device_stats *nv_get_stats(struct net_device *dev)
929 {
930         struct fe_priv *np = netdev_priv(dev);
931
932         /* It seems that the nic always generates interrupts and doesn't
933          * accumulate errors internally. Thus the current values in np->stats
934          * are already up to date.
935          */
936         return &np->stats;
937 }
938
939 /*
940  * nv_alloc_rx: fill rx ring entries.
941  * Return 1 if the allocations for the skbs failed and the
942  * rx engine is without Available descriptors
943  */
944 static int nv_alloc_rx(struct net_device *dev)
945 {
946         struct fe_priv *np = netdev_priv(dev);
947         unsigned int refill_rx = np->refill_rx;
948         int nr;
949
950         while (np->cur_rx != refill_rx) {
951                 struct sk_buff *skb;
952
953                 nr = refill_rx % RX_RING;
954                 if (np->rx_skbuff[nr] == NULL) {
955
956                         skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
957                         if (!skb)
958                                 break;
959
960                         skb->dev = dev;
961                         np->rx_skbuff[nr] = skb;
962                 } else {
963                         skb = np->rx_skbuff[nr];
964                 }
965                 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
966                                         skb->end-skb->data, PCI_DMA_FROMDEVICE);
967                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
968                         np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
969                         wmb();
970                         np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
971                 } else {
972                         np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
973                         np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
974                         wmb();
975                         np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
976                 }
977                 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
978                                         dev->name, refill_rx);
979                 refill_rx++;
980         }
981         np->refill_rx = refill_rx;
982         if (np->cur_rx - refill_rx == RX_RING)
983                 return 1;
984         return 0;
985 }
986
987 static void nv_do_rx_refill(unsigned long data)
988 {
989         struct net_device *dev = (struct net_device *) data;
990         struct fe_priv *np = netdev_priv(dev);
991
992
993         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
994             ((np->msi_flags & NV_MSI_X_ENABLED) && 
995              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
996                 disable_irq(dev->irq);
997         } else {
998                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
999         }
1000         if (nv_alloc_rx(dev)) {
1001                 spin_lock(&np->lock);
1002                 if (!np->in_shutdown)
1003                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1004                 spin_unlock(&np->lock);
1005         }
1006         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1007             ((np->msi_flags & NV_MSI_X_ENABLED) && 
1008              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
1009                 enable_irq(dev->irq);
1010         } else {
1011                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1012         }
1013 }
1014
1015 static void nv_init_rx(struct net_device *dev) 
1016 {
1017         struct fe_priv *np = netdev_priv(dev);
1018         int i;
1019
1020         np->cur_rx = RX_RING;
1021         np->refill_rx = 0;
1022         for (i = 0; i < RX_RING; i++)
1023                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1024                         np->rx_ring.orig[i].FlagLen = 0;
1025                 else
1026                         np->rx_ring.ex[i].FlagLen = 0;
1027 }
1028
1029 static void nv_init_tx(struct net_device *dev)
1030 {
1031         struct fe_priv *np = netdev_priv(dev);
1032         int i;
1033
1034         np->next_tx = np->nic_tx = 0;
1035         for (i = 0; i < TX_RING; i++) {
1036                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1037                         np->tx_ring.orig[i].FlagLen = 0;
1038                 else
1039                         np->tx_ring.ex[i].FlagLen = 0;
1040                 np->tx_skbuff[i] = NULL;
1041                 np->tx_dma[i] = 0;
1042         }
1043 }
1044
1045 static int nv_init_ring(struct net_device *dev)
1046 {
1047         nv_init_tx(dev);
1048         nv_init_rx(dev);
1049         return nv_alloc_rx(dev);
1050 }
1051
1052 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
1053 {
1054         struct fe_priv *np = netdev_priv(dev);
1055
1056         dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1057                 dev->name, skbnr);
1058
1059         if (np->tx_dma[skbnr]) {
1060                 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1061                                np->tx_dma_len[skbnr],
1062                                PCI_DMA_TODEVICE);
1063                 np->tx_dma[skbnr] = 0;
1064         }
1065
1066         if (np->tx_skbuff[skbnr]) {
1067                 dev_kfree_skb_any(np->tx_skbuff[skbnr]);
1068                 np->tx_skbuff[skbnr] = NULL;
1069                 return 1;
1070         } else {
1071                 return 0;
1072         }
1073 }
1074
1075 static void nv_drain_tx(struct net_device *dev)
1076 {
1077         struct fe_priv *np = netdev_priv(dev);
1078         unsigned int i;
1079         
1080         for (i = 0; i < TX_RING; i++) {
1081                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1082                         np->tx_ring.orig[i].FlagLen = 0;
1083                 else
1084                         np->tx_ring.ex[i].FlagLen = 0;
1085                 if (nv_release_txskb(dev, i))
1086                         np->stats.tx_dropped++;
1087         }
1088 }
1089
1090 static void nv_drain_rx(struct net_device *dev)
1091 {
1092         struct fe_priv *np = netdev_priv(dev);
1093         int i;
1094         for (i = 0; i < RX_RING; i++) {
1095                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1096                         np->rx_ring.orig[i].FlagLen = 0;
1097                 else
1098                         np->rx_ring.ex[i].FlagLen = 0;
1099                 wmb();
1100                 if (np->rx_skbuff[i]) {
1101                         pci_unmap_single(np->pci_dev, np->rx_dma[i],
1102                                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1103                                                 PCI_DMA_FROMDEVICE);
1104                         dev_kfree_skb(np->rx_skbuff[i]);
1105                         np->rx_skbuff[i] = NULL;
1106                 }
1107         }
1108 }
1109
1110 static void drain_ring(struct net_device *dev)
1111 {
1112         nv_drain_tx(dev);
1113         nv_drain_rx(dev);
1114 }
1115
1116 /*
1117  * nv_start_xmit: dev->hard_start_xmit function
1118  * Called with dev->xmit_lock held.
1119  */
1120 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1121 {
1122         struct fe_priv *np = netdev_priv(dev);
1123         u32 tx_flags = 0;
1124         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1125         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1126         unsigned int nr = (np->next_tx - 1) % TX_RING;
1127         unsigned int start_nr = np->next_tx % TX_RING;
1128         unsigned int i;
1129         u32 offset = 0;
1130         u32 bcnt;
1131         u32 size = skb->len-skb->data_len;
1132         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1133         u32 tx_flags_vlan = 0;
1134
1135         /* add fragments to entries count */
1136         for (i = 0; i < fragments; i++) {
1137                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1138                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1139         }
1140
1141         spin_lock_irq(&np->lock);
1142
1143         if ((np->next_tx - np->nic_tx + entries - 1) > TX_LIMIT_STOP) {
1144                 spin_unlock_irq(&np->lock);
1145                 netif_stop_queue(dev);
1146                 return NETDEV_TX_BUSY;
1147         }
1148
1149         /* setup the header buffer */
1150         do {
1151                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1152                 nr = (nr + 1) % TX_RING;
1153
1154                 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1155                                                 PCI_DMA_TODEVICE);
1156                 np->tx_dma_len[nr] = bcnt;
1157
1158                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1159                         np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1160                         np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1161                 } else {
1162                         np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1163                         np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1164                         np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1165                 }
1166                 tx_flags = np->tx_flags;
1167                 offset += bcnt;
1168                 size -= bcnt;
1169         } while(size);
1170
1171         /* setup the fragments */
1172         for (i = 0; i < fragments; i++) {
1173                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1174                 u32 size = frag->size;
1175                 offset = 0;
1176
1177                 do {
1178                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1179                         nr = (nr + 1) % TX_RING;
1180
1181                         np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1182                                                       PCI_DMA_TODEVICE);
1183                         np->tx_dma_len[nr] = bcnt;
1184
1185                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1186                                 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1187                                 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1188                         } else {
1189                                 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1190                                 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1191                                 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1192                         }
1193                         offset += bcnt;
1194                         size -= bcnt;
1195                 } while (size);
1196         }
1197
1198         /* set last fragment flag  */
1199         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1200                 np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1201         } else {
1202                 np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1203         }
1204
1205         np->tx_skbuff[nr] = skb;
1206
1207 #ifdef NETIF_F_TSO
1208         if (skb_shinfo(skb)->tso_size)
1209                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
1210         else
1211 #endif
1212         tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1213
1214         /* vlan tag */
1215         if (np->vlangrp && vlan_tx_tag_present(skb)) {
1216                 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1217         }
1218
1219         /* set tx flags */
1220         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1221                 np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1222         } else {
1223                 np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
1224                 np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1225         }       
1226
1227         dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1228                 dev->name, np->next_tx, entries, tx_flags_extra);
1229         {
1230                 int j;
1231                 for (j=0; j<64; j++) {
1232                         if ((j%16) == 0)
1233                                 dprintk("\n%03x:", j);
1234                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1235                 }
1236                 dprintk("\n");
1237         }
1238
1239         np->next_tx += entries;
1240
1241         dev->trans_start = jiffies;
1242         spin_unlock_irq(&np->lock);
1243         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1244         pci_push(get_hwbase(dev));
1245         return NETDEV_TX_OK;
1246 }
1247
1248 /*
1249  * nv_tx_done: check for completed packets, release the skbs.
1250  *
1251  * Caller must own np->lock.
1252  */
1253 static void nv_tx_done(struct net_device *dev)
1254 {
1255         struct fe_priv *np = netdev_priv(dev);
1256         u32 Flags;
1257         unsigned int i;
1258         struct sk_buff *skb;
1259
1260         while (np->nic_tx != np->next_tx) {
1261                 i = np->nic_tx % TX_RING;
1262
1263                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1264                         Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1265                 else
1266                         Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1267
1268                 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1269                                         dev->name, np->nic_tx, Flags);
1270                 if (Flags & NV_TX_VALID)
1271                         break;
1272                 if (np->desc_ver == DESC_VER_1) {
1273                         if (Flags & NV_TX_LASTPACKET) {
1274                                 skb = np->tx_skbuff[i];
1275                                 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1276                                              NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1277                                         if (Flags & NV_TX_UNDERFLOW)
1278                                                 np->stats.tx_fifo_errors++;
1279                                         if (Flags & NV_TX_CARRIERLOST)
1280                                                 np->stats.tx_carrier_errors++;
1281                                         np->stats.tx_errors++;
1282                                 } else {
1283                                         np->stats.tx_packets++;
1284                                         np->stats.tx_bytes += skb->len;
1285                                 }
1286                         }
1287                 } else {
1288                         if (Flags & NV_TX2_LASTPACKET) {
1289                                 skb = np->tx_skbuff[i];
1290                                 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1291                                              NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1292                                         if (Flags & NV_TX2_UNDERFLOW)
1293                                                 np->stats.tx_fifo_errors++;
1294                                         if (Flags & NV_TX2_CARRIERLOST)
1295                                                 np->stats.tx_carrier_errors++;
1296                                         np->stats.tx_errors++;
1297                                 } else {
1298                                         np->stats.tx_packets++;
1299                                         np->stats.tx_bytes += skb->len;
1300                                 }                               
1301                         }
1302                 }
1303                 nv_release_txskb(dev, i);
1304                 np->nic_tx++;
1305         }
1306         if (np->next_tx - np->nic_tx < TX_LIMIT_START)
1307                 netif_wake_queue(dev);
1308 }
1309
1310 /*
1311  * nv_tx_timeout: dev->tx_timeout function
1312  * Called with dev->xmit_lock held.
1313  */
1314 static void nv_tx_timeout(struct net_device *dev)
1315 {
1316         struct fe_priv *np = netdev_priv(dev);
1317         u8 __iomem *base = get_hwbase(dev);
1318         u32 status;
1319
1320         if (np->msi_flags & NV_MSI_X_ENABLED)
1321                 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1322         else
1323                 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1324
1325         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1326
1327         {
1328                 int i;
1329
1330                 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1331                                 dev->name, (unsigned long)np->ring_addr,
1332                                 np->next_tx, np->nic_tx);
1333                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1334                 for (i=0;i<0x400;i+= 32) {
1335                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1336                                         i,
1337                                         readl(base + i + 0), readl(base + i + 4),
1338                                         readl(base + i + 8), readl(base + i + 12),
1339                                         readl(base + i + 16), readl(base + i + 20),
1340                                         readl(base + i + 24), readl(base + i + 28));
1341                 }
1342                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1343                 for (i=0;i<TX_RING;i+= 4) {
1344                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1345                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1346                                        i, 
1347                                        le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1348                                        le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1349                                        le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1350                                        le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1351                                        le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1352                                        le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1353                                        le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1354                                        le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1355                         } else {
1356                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1357                                        i, 
1358                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1359                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1360                                        le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1361                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1362                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1363                                        le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1364                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1365                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1366                                        le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1367                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1368                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1369                                        le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1370                         }
1371                 }
1372         }
1373
1374         spin_lock_irq(&np->lock);
1375
1376         /* 1) stop tx engine */
1377         nv_stop_tx(dev);
1378
1379         /* 2) check that the packets were not sent already: */
1380         nv_tx_done(dev);
1381
1382         /* 3) if there are dead entries: clear everything */
1383         if (np->next_tx != np->nic_tx) {
1384                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1385                 nv_drain_tx(dev);
1386                 np->next_tx = np->nic_tx = 0;
1387                 setup_hw_rings(dev, NV_SETUP_TX_RING);
1388                 netif_wake_queue(dev);
1389         }
1390
1391         /* 4) restart tx engine */
1392         nv_start_tx(dev);
1393         spin_unlock_irq(&np->lock);
1394 }
1395
1396 /*
1397  * Called when the nic notices a mismatch between the actual data len on the
1398  * wire and the len indicated in the 802 header
1399  */
1400 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1401 {
1402         int hdrlen;     /* length of the 802 header */
1403         int protolen;   /* length as stored in the proto field */
1404
1405         /* 1) calculate len according to header */
1406         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1407                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1408                 hdrlen = VLAN_HLEN;
1409         } else {
1410                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1411                 hdrlen = ETH_HLEN;
1412         }
1413         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1414                                 dev->name, datalen, protolen, hdrlen);
1415         if (protolen > ETH_DATA_LEN)
1416                 return datalen; /* Value in proto field not a len, no checks possible */
1417
1418         protolen += hdrlen;
1419         /* consistency checks: */
1420         if (datalen > ETH_ZLEN) {
1421                 if (datalen >= protolen) {
1422                         /* more data on wire than in 802 header, trim of
1423                          * additional data.
1424                          */
1425                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1426                                         dev->name, protolen);
1427                         return protolen;
1428                 } else {
1429                         /* less data on wire than mentioned in header.
1430                          * Discard the packet.
1431                          */
1432                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1433                                         dev->name);
1434                         return -1;
1435                 }
1436         } else {
1437                 /* short packet. Accept only if 802 values are also short */
1438                 if (protolen > ETH_ZLEN) {
1439                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1440                                         dev->name);
1441                         return -1;
1442                 }
1443                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1444                                 dev->name, datalen);
1445                 return datalen;
1446         }
1447 }
1448
1449 static void nv_rx_process(struct net_device *dev)
1450 {
1451         struct fe_priv *np = netdev_priv(dev);
1452         u32 Flags;
1453         u32 vlanflags = 0;
1454
1455
1456         for (;;) {
1457                 struct sk_buff *skb;
1458                 int len;
1459                 int i;
1460                 if (np->cur_rx - np->refill_rx >= RX_RING)
1461                         break;  /* we scanned the whole ring - do not continue */
1462
1463                 i = np->cur_rx % RX_RING;
1464                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1465                         Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1466                         len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1467                 } else {
1468                         Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1469                         len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1470                         vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
1471                 }
1472
1473                 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1474                                         dev->name, np->cur_rx, Flags);
1475
1476                 if (Flags & NV_RX_AVAIL)
1477                         break;  /* still owned by hardware, */
1478
1479                 /*
1480                  * the packet is for us - immediately tear down the pci mapping.
1481                  * TODO: check if a prefetch of the first cacheline improves
1482                  * the performance.
1483                  */
1484                 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1485                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1486                                 PCI_DMA_FROMDEVICE);
1487
1488                 {
1489                         int j;
1490                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1491                         for (j=0; j<64; j++) {
1492                                 if ((j%16) == 0)
1493                                         dprintk("\n%03x:", j);
1494                                 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1495                         }
1496                         dprintk("\n");
1497                 }
1498                 /* look at what we actually got: */
1499                 if (np->desc_ver == DESC_VER_1) {
1500                         if (!(Flags & NV_RX_DESCRIPTORVALID))
1501                                 goto next_pkt;
1502
1503                         if (Flags & NV_RX_ERROR) {
1504                                 if (Flags & NV_RX_MISSEDFRAME) {
1505                                         np->stats.rx_missed_errors++;
1506                                         np->stats.rx_errors++;
1507                                         goto next_pkt;
1508                                 }
1509                                 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1510                                         np->stats.rx_errors++;
1511                                         goto next_pkt;
1512                                 }
1513                                 if (Flags & NV_RX_CRCERR) {
1514                                         np->stats.rx_crc_errors++;
1515                                         np->stats.rx_errors++;
1516                                         goto next_pkt;
1517                                 }
1518                                 if (Flags & NV_RX_OVERFLOW) {
1519                                         np->stats.rx_over_errors++;
1520                                         np->stats.rx_errors++;
1521                                         goto next_pkt;
1522                                 }
1523                                 if (Flags & NV_RX_ERROR4) {
1524                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1525                                         if (len < 0) {
1526                                                 np->stats.rx_errors++;
1527                                                 goto next_pkt;
1528                                         }
1529                                 }
1530                                 /* framing errors are soft errors. */
1531                                 if (Flags & NV_RX_FRAMINGERR) {
1532                                         if (Flags & NV_RX_SUBSTRACT1) {
1533                                                 len--;
1534                                         }
1535                                 }
1536                         }
1537                 } else {
1538                         if (!(Flags & NV_RX2_DESCRIPTORVALID))
1539                                 goto next_pkt;
1540
1541                         if (Flags & NV_RX2_ERROR) {
1542                                 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1543                                         np->stats.rx_errors++;
1544                                         goto next_pkt;
1545                                 }
1546                                 if (Flags & NV_RX2_CRCERR) {
1547                                         np->stats.rx_crc_errors++;
1548                                         np->stats.rx_errors++;
1549                                         goto next_pkt;
1550                                 }
1551                                 if (Flags & NV_RX2_OVERFLOW) {
1552                                         np->stats.rx_over_errors++;
1553                                         np->stats.rx_errors++;
1554                                         goto next_pkt;
1555                                 }
1556                                 if (Flags & NV_RX2_ERROR4) {
1557                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1558                                         if (len < 0) {
1559                                                 np->stats.rx_errors++;
1560                                                 goto next_pkt;
1561                                         }
1562                                 }
1563                                 /* framing errors are soft errors */
1564                                 if (Flags & NV_RX2_FRAMINGERR) {
1565                                         if (Flags & NV_RX2_SUBSTRACT1) {
1566                                                 len--;
1567                                         }
1568                                 }
1569                         }
1570                         Flags &= NV_RX2_CHECKSUMMASK;
1571                         if (Flags == NV_RX2_CHECKSUMOK1 ||
1572                                         Flags == NV_RX2_CHECKSUMOK2 ||
1573                                         Flags == NV_RX2_CHECKSUMOK3) {
1574                                 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1575                                 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1576                         } else {
1577                                 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1578                         }
1579                 }
1580                 /* got a valid packet - forward it to the network core */
1581                 skb = np->rx_skbuff[i];
1582                 np->rx_skbuff[i] = NULL;
1583
1584                 skb_put(skb, len);
1585                 skb->protocol = eth_type_trans(skb, dev);
1586                 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1587                                         dev->name, np->cur_rx, len, skb->protocol);
1588                 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
1589                         vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
1590                 } else {
1591                         netif_rx(skb);
1592                 }
1593                 dev->last_rx = jiffies;
1594                 np->stats.rx_packets++;
1595                 np->stats.rx_bytes += len;
1596 next_pkt:
1597                 np->cur_rx++;
1598         }
1599 }
1600
1601 static void set_bufsize(struct net_device *dev)
1602 {
1603         struct fe_priv *np = netdev_priv(dev);
1604
1605         if (dev->mtu <= ETH_DATA_LEN)
1606                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1607         else
1608                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1609 }
1610
1611 /*
1612  * nv_change_mtu: dev->change_mtu function
1613  * Called with dev_base_lock held for read.
1614  */
1615 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1616 {
1617         struct fe_priv *np = netdev_priv(dev);
1618         int old_mtu;
1619
1620         if (new_mtu < 64 || new_mtu > np->pkt_limit)
1621                 return -EINVAL;
1622
1623         old_mtu = dev->mtu;
1624         dev->mtu = new_mtu;
1625
1626         /* return early if the buffer sizes will not change */
1627         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1628                 return 0;
1629         if (old_mtu == new_mtu)
1630                 return 0;
1631
1632         /* synchronized against open : rtnl_lock() held by caller */
1633         if (netif_running(dev)) {
1634                 u8 __iomem *base = get_hwbase(dev);
1635                 /*
1636                  * It seems that the nic preloads valid ring entries into an
1637                  * internal buffer. The procedure for flushing everything is
1638                  * guessed, there is probably a simpler approach.
1639                  * Changing the MTU is a rare event, it shouldn't matter.
1640                  */
1641                 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1642                     ((np->msi_flags & NV_MSI_X_ENABLED) && 
1643                      ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
1644                         disable_irq(dev->irq);
1645                 } else {
1646                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1647                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1648                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1649                 }
1650                 spin_lock_bh(&dev->xmit_lock);
1651                 spin_lock(&np->lock);
1652                 /* stop engines */
1653                 nv_stop_rx(dev);
1654                 nv_stop_tx(dev);
1655                 nv_txrx_reset(dev);
1656                 /* drain rx queue */
1657                 nv_drain_rx(dev);
1658                 nv_drain_tx(dev);
1659                 /* reinit driver view of the rx queue */
1660                 nv_init_rx(dev);
1661                 nv_init_tx(dev);
1662                 /* alloc new rx buffers */
1663                 set_bufsize(dev);
1664                 if (nv_alloc_rx(dev)) {
1665                         if (!np->in_shutdown)
1666                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1667                 }
1668                 /* reinit nic view of the rx queue */
1669                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1670                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
1671                 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
1672                         base + NvRegRingSizes);
1673                 pci_push(base);
1674                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1675                 pci_push(base);
1676
1677                 /* restart rx engine */
1678                 nv_start_rx(dev);
1679                 nv_start_tx(dev);
1680                 spin_unlock(&np->lock);
1681                 spin_unlock_bh(&dev->xmit_lock);
1682                 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1683                     ((np->msi_flags & NV_MSI_X_ENABLED) && 
1684                      ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
1685                         enable_irq(dev->irq);
1686                 } else {
1687                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1688                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1689                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1690                 }
1691         }
1692         return 0;
1693 }
1694
1695 static void nv_copy_mac_to_hw(struct net_device *dev)
1696 {
1697         u8 __iomem *base = get_hwbase(dev);
1698         u32 mac[2];
1699
1700         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1701                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1702         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1703
1704         writel(mac[0], base + NvRegMacAddrA);
1705         writel(mac[1], base + NvRegMacAddrB);
1706 }
1707
1708 /*
1709  * nv_set_mac_address: dev->set_mac_address function
1710  * Called with rtnl_lock() held.
1711  */
1712 static int nv_set_mac_address(struct net_device *dev, void *addr)
1713 {
1714         struct fe_priv *np = netdev_priv(dev);
1715         struct sockaddr *macaddr = (struct sockaddr*)addr;
1716
1717         if(!is_valid_ether_addr(macaddr->sa_data))
1718                 return -EADDRNOTAVAIL;
1719
1720         /* synchronized against open : rtnl_lock() held by caller */
1721         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1722
1723         if (netif_running(dev)) {
1724                 spin_lock_bh(&dev->xmit_lock);
1725                 spin_lock_irq(&np->lock);
1726
1727                 /* stop rx engine */
1728                 nv_stop_rx(dev);
1729
1730                 /* set mac address */
1731                 nv_copy_mac_to_hw(dev);
1732
1733                 /* restart rx engine */
1734                 nv_start_rx(dev);
1735                 spin_unlock_irq(&np->lock);
1736                 spin_unlock_bh(&dev->xmit_lock);
1737         } else {
1738                 nv_copy_mac_to_hw(dev);
1739         }
1740         return 0;
1741 }
1742
1743 /*
1744  * nv_set_multicast: dev->set_multicast function
1745  * Called with dev->xmit_lock held.
1746  */
1747 static void nv_set_multicast(struct net_device *dev)
1748 {
1749         struct fe_priv *np = netdev_priv(dev);
1750         u8 __iomem *base = get_hwbase(dev);
1751         u32 addr[2];
1752         u32 mask[2];
1753         u32 pff;
1754
1755         memset(addr, 0, sizeof(addr));
1756         memset(mask, 0, sizeof(mask));
1757
1758         if (dev->flags & IFF_PROMISC) {
1759                 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
1760                 pff = NVREG_PFF_PROMISC;
1761         } else {
1762                 pff = NVREG_PFF_MYADDR;
1763
1764                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
1765                         u32 alwaysOff[2];
1766                         u32 alwaysOn[2];
1767
1768                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
1769                         if (dev->flags & IFF_ALLMULTI) {
1770                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
1771                         } else {
1772                                 struct dev_mc_list *walk;
1773
1774                                 walk = dev->mc_list;
1775                                 while (walk != NULL) {
1776                                         u32 a, b;
1777                                         a = le32_to_cpu(*(u32 *) walk->dmi_addr);
1778                                         b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
1779                                         alwaysOn[0] &= a;
1780                                         alwaysOff[0] &= ~a;
1781                                         alwaysOn[1] &= b;
1782                                         alwaysOff[1] &= ~b;
1783                                         walk = walk->next;
1784                                 }
1785                         }
1786                         addr[0] = alwaysOn[0];
1787                         addr[1] = alwaysOn[1];
1788                         mask[0] = alwaysOn[0] | alwaysOff[0];
1789                         mask[1] = alwaysOn[1] | alwaysOff[1];
1790                 }
1791         }
1792         addr[0] |= NVREG_MCASTADDRA_FORCE;
1793         pff |= NVREG_PFF_ALWAYS;
1794         spin_lock_irq(&np->lock);
1795         nv_stop_rx(dev);
1796         writel(addr[0], base + NvRegMulticastAddrA);
1797         writel(addr[1], base + NvRegMulticastAddrB);
1798         writel(mask[0], base + NvRegMulticastMaskA);
1799         writel(mask[1], base + NvRegMulticastMaskB);
1800         writel(pff, base + NvRegPacketFilterFlags);
1801         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
1802                 dev->name);
1803         nv_start_rx(dev);
1804         spin_unlock_irq(&np->lock);
1805 }
1806
1807 /**
1808  * nv_update_linkspeed: Setup the MAC according to the link partner
1809  * @dev: Network device to be configured
1810  *
1811  * The function queries the PHY and checks if there is a link partner.
1812  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
1813  * set to 10 MBit HD.
1814  *
1815  * The function returns 0 if there is no link partner and 1 if there is
1816  * a good link partner.
1817  */
1818 static int nv_update_linkspeed(struct net_device *dev)
1819 {
1820         struct fe_priv *np = netdev_priv(dev);
1821         u8 __iomem *base = get_hwbase(dev);
1822         int adv, lpa;
1823         int newls = np->linkspeed;
1824         int newdup = np->duplex;
1825         int mii_status;
1826         int retval = 0;
1827         u32 control_1000, status_1000, phyreg;
1828
1829         /* BMSR_LSTATUS is latched, read it twice:
1830          * we want the current value.
1831          */
1832         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1833         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1834
1835         if (!(mii_status & BMSR_LSTATUS)) {
1836                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
1837                                 dev->name);
1838                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1839                 newdup = 0;
1840                 retval = 0;
1841                 goto set_speed;
1842         }
1843
1844         if (np->autoneg == 0) {
1845                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
1846                                 dev->name, np->fixed_mode);
1847                 if (np->fixed_mode & LPA_100FULL) {
1848                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1849                         newdup = 1;
1850                 } else if (np->fixed_mode & LPA_100HALF) {
1851                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1852                         newdup = 0;
1853                 } else if (np->fixed_mode & LPA_10FULL) {
1854                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1855                         newdup = 1;
1856                 } else {
1857                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1858                         newdup = 0;
1859                 }
1860                 retval = 1;
1861                 goto set_speed;
1862         }
1863         /* check auto negotiation is complete */
1864         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
1865                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
1866                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1867                 newdup = 0;
1868                 retval = 0;
1869                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
1870                 goto set_speed;
1871         }
1872
1873         retval = 1;
1874         if (np->gigabit == PHY_GIGABIT) {
1875                 control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1876                 status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
1877
1878                 if ((control_1000 & ADVERTISE_1000FULL) &&
1879                         (status_1000 & LPA_1000FULL)) {
1880                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
1881                                 dev->name);
1882                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
1883                         newdup = 1;
1884                         goto set_speed;
1885                 }
1886         }
1887
1888         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1889         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
1890         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
1891                                 dev->name, adv, lpa);
1892
1893         /* FIXME: handle parallel detection properly */
1894         lpa = lpa & adv;
1895         if (lpa & LPA_100FULL) {
1896                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1897                 newdup = 1;
1898         } else if (lpa & LPA_100HALF) {
1899                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1900                 newdup = 0;
1901         } else if (lpa & LPA_10FULL) {
1902                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1903                 newdup = 1;
1904         } else if (lpa & LPA_10HALF) {
1905                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1906                 newdup = 0;
1907         } else {
1908                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
1909                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1910                 newdup = 0;
1911         }
1912
1913 set_speed:
1914         if (np->duplex == newdup && np->linkspeed == newls)
1915                 return retval;
1916
1917         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
1918                         dev->name, np->linkspeed, np->duplex, newls, newdup);
1919
1920         np->duplex = newdup;
1921         np->linkspeed = newls;
1922
1923         if (np->gigabit == PHY_GIGABIT) {
1924                 phyreg = readl(base + NvRegRandomSeed);
1925                 phyreg &= ~(0x3FF00);
1926                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
1927                         phyreg |= NVREG_RNDSEED_FORCE3;
1928                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
1929                         phyreg |= NVREG_RNDSEED_FORCE2;
1930                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
1931                         phyreg |= NVREG_RNDSEED_FORCE;
1932                 writel(phyreg, base + NvRegRandomSeed);
1933         }
1934
1935         phyreg = readl(base + NvRegPhyInterface);
1936         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
1937         if (np->duplex == 0)
1938                 phyreg |= PHY_HALF;
1939         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
1940                 phyreg |= PHY_100;
1941         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
1942                 phyreg |= PHY_1000;
1943         writel(phyreg, base + NvRegPhyInterface);
1944
1945         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
1946                 base + NvRegMisc1);
1947         pci_push(base);
1948         writel(np->linkspeed, base + NvRegLinkSpeed);
1949         pci_push(base);
1950
1951         return retval;
1952 }
1953
1954 static void nv_linkchange(struct net_device *dev)
1955 {
1956         if (nv_update_linkspeed(dev)) {
1957                 if (!netif_carrier_ok(dev)) {
1958                         netif_carrier_on(dev);
1959                         printk(KERN_INFO "%s: link up.\n", dev->name);
1960                         nv_start_rx(dev);
1961                 }
1962         } else {
1963                 if (netif_carrier_ok(dev)) {
1964                         netif_carrier_off(dev);
1965                         printk(KERN_INFO "%s: link down.\n", dev->name);
1966                         nv_stop_rx(dev);
1967                 }
1968         }
1969 }
1970
1971 static void nv_link_irq(struct net_device *dev)
1972 {
1973         u8 __iomem *base = get_hwbase(dev);
1974         u32 miistat;
1975
1976         miistat = readl(base + NvRegMIIStatus);
1977         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
1978         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
1979
1980         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
1981                 nv_linkchange(dev);
1982         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
1983 }
1984
1985 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
1986 {
1987         struct net_device *dev = (struct net_device *) data;
1988         struct fe_priv *np = netdev_priv(dev);
1989         u8 __iomem *base = get_hwbase(dev);
1990         u32 events;
1991         int i;
1992
1993         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
1994
1995         for (i=0; ; i++) {
1996                 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
1997                         events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1998                         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
1999                 } else {
2000                         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2001                         writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2002                 }
2003                 pci_push(base);
2004                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2005                 if (!(events & np->irqmask))
2006                         break;
2007
2008                 spin_lock(&np->lock);
2009                 nv_tx_done(dev);
2010                 spin_unlock(&np->lock);
2011                 
2012                 nv_rx_process(dev);
2013                 if (nv_alloc_rx(dev)) {
2014                         spin_lock(&np->lock);
2015                         if (!np->in_shutdown)
2016                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2017                         spin_unlock(&np->lock);
2018                 }
2019                 
2020                 if (events & NVREG_IRQ_LINK) {
2021                         spin_lock(&np->lock);
2022                         nv_link_irq(dev);
2023                         spin_unlock(&np->lock);
2024                 }
2025                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2026                         spin_lock(&np->lock);
2027                         nv_linkchange(dev);
2028                         spin_unlock(&np->lock);
2029                         np->link_timeout = jiffies + LINK_TIMEOUT;
2030                 }
2031                 if (events & (NVREG_IRQ_TX_ERR)) {
2032                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2033                                                 dev->name, events);
2034                 }
2035                 if (events & (NVREG_IRQ_UNKNOWN)) {
2036                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2037                                                 dev->name, events);
2038                 }
2039                 if (i > max_interrupt_work) {
2040                         spin_lock(&np->lock);
2041                         /* disable interrupts on the nic */
2042                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
2043                                 writel(0, base + NvRegIrqMask);
2044                         else
2045                                 writel(np->irqmask, base + NvRegIrqMask);
2046                         pci_push(base);
2047
2048                         if (!np->in_shutdown) {
2049                                 np->nic_poll_irq = np->irqmask;
2050                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2051                         }
2052                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2053                         spin_unlock(&np->lock);
2054                         break;
2055                 }
2056
2057         }
2058         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2059
2060         return IRQ_RETVAL(i);
2061 }
2062
2063 static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
2064 {
2065         struct net_device *dev = (struct net_device *) data;
2066         struct fe_priv *np = netdev_priv(dev);
2067         u8 __iomem *base = get_hwbase(dev);
2068         u32 events;
2069         int i;
2070
2071         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
2072
2073         for (i=0; ; i++) {
2074                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
2075                 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
2076                 pci_push(base);
2077                 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
2078                 if (!(events & np->irqmask))
2079                         break;
2080
2081                 spin_lock(&np->lock);
2082                 nv_tx_done(dev);
2083                 spin_unlock(&np->lock);
2084                 
2085                 if (events & (NVREG_IRQ_TX_ERR)) {
2086                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2087                                                 dev->name, events);
2088                 }
2089                 if (i > max_interrupt_work) {
2090                         spin_lock(&np->lock);
2091                         /* disable interrupts on the nic */
2092                         writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
2093                         pci_push(base);
2094
2095                         if (!np->in_shutdown) {
2096                                 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
2097                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2098                         }
2099                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
2100                         spin_unlock(&np->lock);
2101                         break;
2102                 }
2103
2104         }
2105         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
2106
2107         return IRQ_RETVAL(i);
2108 }
2109
2110 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2111 {
2112         struct net_device *dev = (struct net_device *) data;
2113         struct fe_priv *np = netdev_priv(dev);
2114         u8 __iomem *base = get_hwbase(dev);
2115         u32 events;
2116         int i;
2117
2118         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
2119
2120         for (i=0; ; i++) {
2121                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2122                 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2123                 pci_push(base);
2124                 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2125                 if (!(events & np->irqmask))
2126                         break;
2127                 
2128                 nv_rx_process(dev);
2129                 if (nv_alloc_rx(dev)) {
2130                         spin_lock(&np->lock);
2131                         if (!np->in_shutdown)
2132                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2133                         spin_unlock(&np->lock);
2134                 }
2135                 
2136                 if (i > max_interrupt_work) {
2137                         spin_lock(&np->lock);
2138                         /* disable interrupts on the nic */
2139                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2140                         pci_push(base);
2141
2142                         if (!np->in_shutdown) {
2143                                 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
2144                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2145                         }
2146                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
2147                         spin_unlock(&np->lock);
2148                         break;
2149                 }
2150
2151         }
2152         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
2153
2154         return IRQ_RETVAL(i);
2155 }
2156
2157 static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
2158 {
2159         struct net_device *dev = (struct net_device *) data;
2160         struct fe_priv *np = netdev_priv(dev);
2161         u8 __iomem *base = get_hwbase(dev);
2162         u32 events;
2163         int i;
2164
2165         dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
2166
2167         for (i=0; ; i++) {
2168                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
2169                 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
2170                 pci_push(base);
2171                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2172                 if (!(events & np->irqmask))
2173                         break;
2174                 
2175                 if (events & NVREG_IRQ_LINK) {
2176                         spin_lock(&np->lock);
2177                         nv_link_irq(dev);
2178                         spin_unlock(&np->lock);
2179                 }
2180                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2181                         spin_lock(&np->lock);
2182                         nv_linkchange(dev);
2183                         spin_unlock(&np->lock);
2184                         np->link_timeout = jiffies + LINK_TIMEOUT;
2185                 }
2186                 if (events & (NVREG_IRQ_UNKNOWN)) {
2187                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2188                                                 dev->name, events);
2189                 }
2190                 if (i > max_interrupt_work) {
2191                         spin_lock(&np->lock);
2192                         /* disable interrupts on the nic */
2193                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2194                         pci_push(base);
2195
2196                         if (!np->in_shutdown) {
2197                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2198                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2199                         }
2200                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
2201                         spin_unlock(&np->lock);
2202                         break;
2203                 }
2204
2205         }
2206         dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
2207
2208         return IRQ_RETVAL(i);
2209 }
2210
2211 static void nv_do_nic_poll(unsigned long data)
2212 {
2213         struct net_device *dev = (struct net_device *) data;
2214         struct fe_priv *np = netdev_priv(dev);
2215         u8 __iomem *base = get_hwbase(dev);
2216         u32 mask = 0;
2217
2218         /*
2219          * First disable irq(s) and then
2220          * reenable interrupts on the nic, we have to do this before calling
2221          * nv_nic_irq because that may decide to do otherwise
2222          */
2223
2224         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
2225             ((np->msi_flags & NV_MSI_X_ENABLED) && 
2226              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
2227                 disable_irq(dev->irq);
2228                 mask = np->irqmask;
2229         } else {
2230                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2231                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2232                         mask |= NVREG_IRQ_RX_ALL;
2233                 }
2234                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2235                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2236                         mask |= NVREG_IRQ_TX_ALL;
2237                 }
2238                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2239                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2240                         mask |= NVREG_IRQ_OTHER;
2241                 }
2242         }
2243         np->nic_poll_irq = 0;
2244
2245         /* FIXME: Do we need synchronize_irq(dev->irq) here? */
2246         
2247         writel(mask, base + NvRegIrqMask);
2248         pci_push(base);
2249
2250         if (!(np->msi_flags & NV_MSI_X_ENABLED) || 
2251             ((np->msi_flags & NV_MSI_X_ENABLED) && 
2252              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) {
2253                 nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
2254                 enable_irq(dev->irq);
2255         } else {
2256                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2257                         nv_nic_irq_rx((int) 0, (void *) data, (struct pt_regs *) NULL);
2258                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2259                 }
2260                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2261                         nv_nic_irq_tx((int) 0, (void *) data, (struct pt_regs *) NULL);
2262                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2263                 }
2264                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2265                         nv_nic_irq_other((int) 0, (void *) data, (struct pt_regs *) NULL);
2266                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2267                 }
2268         }
2269 }
2270
2271 #ifdef CONFIG_NET_POLL_CONTROLLER
2272 static void nv_poll_controller(struct net_device *dev)
2273 {
2274         nv_do_nic_poll((unsigned long) dev);
2275 }
2276 #endif
2277
2278 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2279 {
2280         struct fe_priv *np = netdev_priv(dev);
2281         strcpy(info->driver, "forcedeth");
2282         strcpy(info->version, FORCEDETH_VERSION);
2283         strcpy(info->bus_info, pci_name(np->pci_dev));
2284 }
2285
2286 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2287 {
2288         struct fe_priv *np = netdev_priv(dev);
2289         wolinfo->supported = WAKE_MAGIC;
2290
2291         spin_lock_irq(&np->lock);
2292         if (np->wolenabled)
2293                 wolinfo->wolopts = WAKE_MAGIC;
2294         spin_unlock_irq(&np->lock);
2295 }
2296
2297 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2298 {
2299         struct fe_priv *np = netdev_priv(dev);
2300         u8 __iomem *base = get_hwbase(dev);
2301
2302         spin_lock_irq(&np->lock);
2303         if (wolinfo->wolopts == 0) {
2304                 writel(0, base + NvRegWakeUpFlags);
2305                 np->wolenabled = 0;
2306         }
2307         if (wolinfo->wolopts & WAKE_MAGIC) {
2308                 writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
2309                 np->wolenabled = 1;
2310         }
2311         spin_unlock_irq(&np->lock);
2312         return 0;
2313 }
2314
2315 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2316 {
2317         struct fe_priv *np = netdev_priv(dev);
2318         int adv;
2319
2320         spin_lock_irq(&np->lock);
2321         ecmd->port = PORT_MII;
2322         if (!netif_running(dev)) {
2323                 /* We do not track link speed / duplex setting if the
2324                  * interface is disabled. Force a link check */
2325                 nv_update_linkspeed(dev);
2326         }
2327         switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
2328                 case NVREG_LINKSPEED_10:
2329                         ecmd->speed = SPEED_10;
2330                         break;
2331                 case NVREG_LINKSPEED_100:
2332                         ecmd->speed = SPEED_100;
2333                         break;
2334                 case NVREG_LINKSPEED_1000:
2335                         ecmd->speed = SPEED_1000;
2336                         break;
2337         }
2338         ecmd->duplex = DUPLEX_HALF;
2339         if (np->duplex)
2340                 ecmd->duplex = DUPLEX_FULL;
2341
2342         ecmd->autoneg = np->autoneg;
2343
2344         ecmd->advertising = ADVERTISED_MII;
2345         if (np->autoneg) {
2346                 ecmd->advertising |= ADVERTISED_Autoneg;
2347                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2348         } else {
2349                 adv = np->fixed_mode;
2350         }
2351         if (adv & ADVERTISE_10HALF)
2352                 ecmd->advertising |= ADVERTISED_10baseT_Half;
2353         if (adv & ADVERTISE_10FULL)
2354                 ecmd->advertising |= ADVERTISED_10baseT_Full;
2355         if (adv & ADVERTISE_100HALF)
2356                 ecmd->advertising |= ADVERTISED_100baseT_Half;
2357         if (adv & ADVERTISE_100FULL)
2358                 ecmd->advertising |= ADVERTISED_100baseT_Full;
2359         if (np->autoneg && np->gigabit == PHY_GIGABIT) {
2360                 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2361                 if (adv & ADVERTISE_1000FULL)
2362                         ecmd->advertising |= ADVERTISED_1000baseT_Full;
2363         }
2364
2365         ecmd->supported = (SUPPORTED_Autoneg |
2366                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2367                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2368                 SUPPORTED_MII);
2369         if (np->gigabit == PHY_GIGABIT)
2370                 ecmd->supported |= SUPPORTED_1000baseT_Full;
2371
2372         ecmd->phy_address = np->phyaddr;
2373         ecmd->transceiver = XCVR_EXTERNAL;
2374
2375         /* ignore maxtxpkt, maxrxpkt for now */
2376         spin_unlock_irq(&np->lock);
2377         return 0;
2378 }
2379
2380 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2381 {
2382         struct fe_priv *np = netdev_priv(dev);
2383
2384         if (ecmd->port != PORT_MII)
2385                 return -EINVAL;
2386         if (ecmd->transceiver != XCVR_EXTERNAL)
2387                 return -EINVAL;
2388         if (ecmd->phy_address != np->phyaddr) {
2389                 /* TODO: support switching between multiple phys. Should be
2390                  * trivial, but not enabled due to lack of test hardware. */
2391                 return -EINVAL;
2392         }
2393         if (ecmd->autoneg == AUTONEG_ENABLE) {
2394                 u32 mask;
2395
2396                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2397                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2398                 if (np->gigabit == PHY_GIGABIT)
2399                         mask |= ADVERTISED_1000baseT_Full;
2400
2401                 if ((ecmd->advertising & mask) == 0)
2402                         return -EINVAL;
2403
2404         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2405                 /* Note: autonegotiation disable, speed 1000 intentionally
2406                  * forbidden - noone should need that. */
2407
2408                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2409                         return -EINVAL;
2410                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2411                         return -EINVAL;
2412         } else {
2413                 return -EINVAL;
2414         }
2415
2416         spin_lock_irq(&np->lock);
2417         if (ecmd->autoneg == AUTONEG_ENABLE) {
2418                 int adv, bmcr;
2419
2420                 np->autoneg = 1;
2421
2422                 /* advertise only what has been requested */
2423                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2424                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2425                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2426                         adv |= ADVERTISE_10HALF;
2427                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2428                         adv |= ADVERTISE_10FULL;
2429                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2430                         adv |= ADVERTISE_100HALF;
2431                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2432                         adv |= ADVERTISE_100FULL;
2433                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2434
2435                 if (np->gigabit == PHY_GIGABIT) {
2436                         adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2437                         adv &= ~ADVERTISE_1000FULL;
2438                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
2439                                 adv |= ADVERTISE_1000FULL;
2440                         mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
2441                 }
2442
2443                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2444                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2445                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2446
2447         } else {
2448                 int adv, bmcr;
2449
2450                 np->autoneg = 0;
2451
2452                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2453                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2454                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
2455                         adv |= ADVERTISE_10HALF;
2456                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
2457                         adv |= ADVERTISE_10FULL;
2458                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
2459                         adv |= ADVERTISE_100HALF;
2460                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
2461                         adv |= ADVERTISE_100FULL;
2462                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2463                 np->fixed_mode = adv;
2464
2465                 if (np->gigabit == PHY_GIGABIT) {
2466                         adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2467                         adv &= ~ADVERTISE_1000FULL;
2468                         mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
2469                 }
2470
2471                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2472                 bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
2473                 if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
2474                         bmcr |= BMCR_FULLDPLX;
2475                 if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
2476                         bmcr |= BMCR_SPEED100;
2477                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2478
2479                 if (netif_running(dev)) {
2480                         /* Wait a bit and then reconfigure the nic. */
2481                         udelay(10);
2482                         nv_linkchange(dev);
2483                 }
2484         }
2485         spin_unlock_irq(&np->lock);
2486
2487         return 0;
2488 }
2489
2490 #define FORCEDETH_REGS_VER      1
2491 #define FORCEDETH_REGS_SIZE     0x400 /* 256 32-bit registers */
2492
2493 static int nv_get_regs_len(struct net_device *dev)
2494 {
2495         return FORCEDETH_REGS_SIZE;
2496 }
2497
2498 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2499 {
2500         struct fe_priv *np = netdev_priv(dev);
2501         u8 __iomem *base = get_hwbase(dev);
2502         u32 *rbuf = buf;
2503         int i;
2504
2505         regs->version = FORCEDETH_REGS_VER;
2506         spin_lock_irq(&np->lock);
2507         for (i=0;i<FORCEDETH_REGS_SIZE/sizeof(u32);i++)
2508                 rbuf[i] = readl(base + i*sizeof(u32));
2509         spin_unlock_irq(&np->lock);
2510 }
2511
2512 static int nv_nway_reset(struct net_device *dev)
2513 {
2514         struct fe_priv *np = netdev_priv(dev);
2515         int ret;
2516
2517         spin_lock_irq(&np->lock);
2518         if (np->autoneg) {
2519                 int bmcr;
2520
2521                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2522                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2523                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2524
2525                 ret = 0;
2526         } else {
2527                 ret = -EINVAL;
2528         }
2529         spin_unlock_irq(&np->lock);
2530
2531         return ret;
2532 }
2533
2534 static struct ethtool_ops ops = {
2535         .get_drvinfo = nv_get_drvinfo,
2536         .get_link = ethtool_op_get_link,
2537         .get_wol = nv_get_wol,
2538         .set_wol = nv_set_wol,
2539         .get_settings = nv_get_settings,
2540         .set_settings = nv_set_settings,
2541         .get_regs_len = nv_get_regs_len,
2542         .get_regs = nv_get_regs,
2543         .nway_reset = nv_nway_reset,
2544         .get_perm_addr = ethtool_op_get_perm_addr,
2545 };
2546
2547 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2548 {
2549         struct fe_priv *np = get_nvpriv(dev);
2550
2551         spin_lock_irq(&np->lock);
2552
2553         /* save vlan group */
2554         np->vlangrp = grp;
2555
2556         if (grp) {
2557                 /* enable vlan on MAC */
2558                 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
2559         } else {
2560                 /* disable vlan on MAC */
2561                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
2562                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
2563         }
2564
2565         writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2566
2567         spin_unlock_irq(&np->lock);
2568 };
2569
2570 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
2571 {
2572         /* nothing to do */
2573 };
2574
2575 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
2576 {
2577         u8 __iomem *base = get_hwbase(dev);
2578         int i;
2579         u32 msixmap = 0;
2580
2581         /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
2582          * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
2583          * the remaining 8 interrupts.
2584          */
2585         for (i = 0; i < 8; i++) {
2586                 if ((irqmask >> i) & 0x1) {
2587                         msixmap |= vector << (i << 2);
2588                 }
2589         }
2590         writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
2591
2592         msixmap = 0;
2593         for (i = 0; i < 8; i++) {
2594                 if ((irqmask >> (i + 8)) & 0x1) {
2595                         msixmap |= vector << (i << 2);
2596                 }
2597         }
2598         writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
2599 }
2600
2601 static int nv_open(struct net_device *dev)
2602 {
2603         struct fe_priv *np = netdev_priv(dev);
2604         u8 __iomem *base = get_hwbase(dev);
2605         int ret = 1;
2606         int oom, i;
2607
2608         dprintk(KERN_DEBUG "nv_open: begin\n");
2609
2610         /* 1) erase previous misconfiguration */
2611         /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
2612         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2613         writel(0, base + NvRegMulticastAddrB);
2614         writel(0, base + NvRegMulticastMaskA);
2615         writel(0, base + NvRegMulticastMaskB);
2616         writel(0, base + NvRegPacketFilterFlags);
2617
2618         writel(0, base + NvRegTransmitterControl);
2619         writel(0, base + NvRegReceiverControl);
2620
2621         writel(0, base + NvRegAdapterControl);
2622
2623         /* 2) initialize descriptor rings */
2624         set_bufsize(dev);
2625         oom = nv_init_ring(dev);
2626
2627         writel(0, base + NvRegLinkSpeed);
2628         writel(0, base + NvRegUnknownTransmitterReg);
2629         nv_txrx_reset(dev);
2630         writel(0, base + NvRegUnknownSetupReg6);
2631
2632         np->in_shutdown = 0;
2633
2634         /* 3) set mac address */
2635         nv_copy_mac_to_hw(dev);
2636
2637         /* 4) give hw rings */
2638         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2639         writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
2640                 base + NvRegRingSizes);
2641
2642         /* 5) continue setup */
2643         writel(np->linkspeed, base + NvRegLinkSpeed);
2644         writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
2645         writel(np->txrxctl_bits, base + NvRegTxRxControl);
2646         writel(np->vlanctl_bits, base + NvRegVlanControl);
2647         pci_push(base);
2648         writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
2649         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
2650                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
2651                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
2652
2653         writel(0, base + NvRegUnknownSetupReg4);
2654         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2655         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2656
2657         /* 6) continue setup */
2658         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
2659         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
2660         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
2661         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2662
2663         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
2664         get_random_bytes(&i, sizeof(i));
2665         writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
2666         writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
2667         writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
2668         if (poll_interval == -1) {
2669                 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
2670                         writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
2671                 else
2672                         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
2673         }
2674         else
2675                 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
2676         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
2677         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
2678                         base + NvRegAdapterControl);
2679         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
2680         writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
2681         writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
2682
2683         i = readl(base + NvRegPowerState);
2684         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
2685                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
2686
2687         pci_push(base);
2688         udelay(10);
2689         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
2690
2691         writel(0, base + NvRegIrqMask);
2692         pci_push(base);
2693         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2694         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2695         pci_push(base);
2696
2697         if (np->msi_flags & NV_MSI_X_CAPABLE) {
2698                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2699                         np->msi_x_entry[i].entry = i;
2700                 }
2701                 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
2702                         np->msi_flags |= NV_MSI_X_ENABLED;
2703                         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
2704                                 /* Request irq for rx handling */
2705                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
2706                                         printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
2707                                         pci_disable_msix(np->pci_dev);
2708                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2709                                         goto out_drain;
2710                                 }
2711                                 /* Request irq for tx handling */
2712                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
2713                                         printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
2714                                         pci_disable_msix(np->pci_dev);
2715                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2716                                         goto out_drain;
2717                                 }
2718                                 /* Request irq for link and timer handling */
2719                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
2720                                         printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
2721                                         pci_disable_msix(np->pci_dev);
2722                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2723                                         goto out_drain;
2724                                 }
2725
2726                                 /* map interrupts to their respective vector */
2727                                 writel(0, base + NvRegMSIXMap0);
2728                                 writel(0, base + NvRegMSIXMap1);
2729                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
2730                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
2731                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
2732                         } else {
2733                                 /* Request irq for all interrupts */
2734                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
2735                                         printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2736                                         pci_disable_msix(np->pci_dev);
2737                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2738                                         goto out_drain;
2739                                 }
2740
2741                                 /* map interrupts to vector 0 */
2742                                 writel(0, base + NvRegMSIXMap0);
2743                                 writel(0, base + NvRegMSIXMap1);
2744                         }
2745                 }
2746         }
2747         if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
2748                 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
2749                         np->msi_flags |= NV_MSI_ENABLED;
2750                         if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
2751                                 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2752                                 pci_disable_msi(np->pci_dev);
2753                                 np->msi_flags &= ~NV_MSI_ENABLED;
2754                                 goto out_drain;
2755                         }
2756
2757                         /* map interrupts to vector 0 */
2758                         writel(0, base + NvRegMSIMap0);
2759                         writel(0, base + NvRegMSIMap1);
2760                         /* enable msi vector 0 */
2761                         writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
2762                 }
2763         }
2764         if (ret != 0) {
2765                 if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0)
2766                         goto out_drain;
2767         }
2768
2769         /* ask for interrupts */
2770         writel(np->irqmask, base + NvRegIrqMask);
2771
2772         spin_lock_irq(&np->lock);
2773         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2774         writel(0, base + NvRegMulticastAddrB);
2775         writel(0, base + NvRegMulticastMaskA);
2776         writel(0, base + NvRegMulticastMaskB);
2777         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
2778         /* One manual link speed update: Interrupts are enabled, future link
2779          * speed changes cause interrupts and are handled by nv_link_irq().
2780          */
2781         {
2782                 u32 miistat;
2783                 miistat = readl(base + NvRegMIIStatus);
2784                 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2785                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
2786         }
2787         /* set linkspeed to invalid value, thus force nv_update_linkspeed
2788          * to init hw */
2789         np->linkspeed = 0;
2790         ret = nv_update_linkspeed(dev);
2791         nv_start_rx(dev);
2792         nv_start_tx(dev);
2793         netif_start_queue(dev);
2794         if (ret) {
2795                 netif_carrier_on(dev);
2796         } else {
2797                 printk("%s: no link during initialization.\n", dev->name);
2798                 netif_carrier_off(dev);
2799         }
2800         if (oom)
2801                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2802         spin_unlock_irq(&np->lock);
2803
2804         return 0;
2805 out_drain:
2806         drain_ring(dev);
2807         return ret;
2808 }
2809
2810 static int nv_close(struct net_device *dev)
2811 {
2812         struct fe_priv *np = netdev_priv(dev);
2813         u8 __iomem *base;
2814         int i;
2815
2816         spin_lock_irq(&np->lock);
2817         np->in_shutdown = 1;
2818         spin_unlock_irq(&np->lock);
2819         synchronize_irq(dev->irq);
2820
2821         del_timer_sync(&np->oom_kick);
2822         del_timer_sync(&np->nic_poll);
2823
2824         netif_stop_queue(dev);
2825         spin_lock_irq(&np->lock);
2826         nv_stop_tx(dev);
2827         nv_stop_rx(dev);
2828         nv_txrx_reset(dev);
2829
2830         /* disable interrupts on the nic or we will lock up */
2831         base = get_hwbase(dev);
2832         if (np->msi_flags & NV_MSI_X_ENABLED) {
2833                 writel(np->irqmask, base + NvRegIrqMask);
2834         } else {
2835                 if (np->msi_flags & NV_MSI_ENABLED)
2836                         writel(0, base + NvRegMSIIrqMask);
2837                 writel(0, base + NvRegIrqMask);
2838         }
2839         pci_push(base);
2840         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
2841
2842         spin_unlock_irq(&np->lock);
2843
2844         if (np->msi_flags & NV_MSI_X_ENABLED) {
2845                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2846                         free_irq(np->msi_x_entry[i].vector, dev);
2847                 }
2848                 pci_disable_msix(np->pci_dev);
2849                 np->msi_flags &= ~NV_MSI_X_ENABLED;
2850         } else {
2851                 free_irq(np->pci_dev->irq, dev);
2852                 if (np->msi_flags & NV_MSI_ENABLED) {
2853                         pci_disable_msi(np->pci_dev);
2854                         np->msi_flags &= ~NV_MSI_ENABLED;
2855                 }
2856         }
2857
2858         drain_ring(dev);
2859
2860         if (np->wolenabled)
2861                 nv_start_rx(dev);
2862
2863         /* special op: write back the misordered MAC address - otherwise
2864          * the next nv_probe would see a wrong address.
2865          */
2866         writel(np->orig_mac[0], base + NvRegMacAddrA);
2867         writel(np->orig_mac[1], base + NvRegMacAddrB);
2868
2869         /* FIXME: power down nic */
2870
2871         return 0;
2872 }
2873
2874 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
2875 {
2876         struct net_device *dev;
2877         struct fe_priv *np;
2878         unsigned long addr;
2879         u8 __iomem *base;
2880         int err, i;
2881
2882         dev = alloc_etherdev(sizeof(struct fe_priv));
2883         err = -ENOMEM;
2884         if (!dev)
2885                 goto out;
2886
2887         np = netdev_priv(dev);
2888         np->pci_dev = pci_dev;
2889         spin_lock_init(&np->lock);
2890         SET_MODULE_OWNER(dev);
2891         SET_NETDEV_DEV(dev, &pci_dev->dev);
2892
2893         init_timer(&np->oom_kick);
2894         np->oom_kick.data = (unsigned long) dev;
2895         np->oom_kick.function = &nv_do_rx_refill;       /* timer handler */
2896         init_timer(&np->nic_poll);
2897         np->nic_poll.data = (unsigned long) dev;
2898         np->nic_poll.function = &nv_do_nic_poll;        /* timer handler */
2899
2900         err = pci_enable_device(pci_dev);
2901         if (err) {
2902                 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
2903                                 err, pci_name(pci_dev));
2904                 goto out_free;
2905         }
2906
2907         pci_set_master(pci_dev);
2908
2909         err = pci_request_regions(pci_dev, DRV_NAME);
2910         if (err < 0)
2911                 goto out_disable;
2912
2913         err = -EINVAL;
2914         addr = 0;
2915         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2916                 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
2917                                 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
2918                                 pci_resource_len(pci_dev, i),
2919                                 pci_resource_flags(pci_dev, i));
2920                 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
2921                                 pci_resource_len(pci_dev, i) >= NV_PCI_REGSZ) {
2922                         addr = pci_resource_start(pci_dev, i);
2923                         break;
2924                 }
2925         }
2926         if (i == DEVICE_COUNT_RESOURCE) {
2927                 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
2928                                         pci_name(pci_dev));
2929                 goto out_relreg;
2930         }
2931
2932         /* handle different descriptor versions */
2933         if (id->driver_data & DEV_HAS_HIGH_DMA) {
2934                 /* packet format 3: supports 40-bit addressing */
2935                 np->desc_ver = DESC_VER_3;
2936                 if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
2937                         printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
2938                                         pci_name(pci_dev));
2939                 } else {
2940                         if (pci_set_consistent_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
2941                                 printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed for device %s.\n",
2942                                         pci_name(pci_dev));
2943                                 goto out_relreg;
2944                         } else {
2945                                 dev->features |= NETIF_F_HIGHDMA;
2946                                 printk(KERN_INFO "forcedeth: using HIGHDMA\n");
2947                         }
2948                 }
2949                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
2950         } else if (id->driver_data & DEV_HAS_LARGEDESC) {
2951                 /* packet format 2: supports jumbo frames */
2952                 np->desc_ver = DESC_VER_2;
2953                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
2954         } else {
2955                 /* original packet format */
2956                 np->desc_ver = DESC_VER_1;
2957                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
2958         }
2959
2960         np->pkt_limit = NV_PKTLIMIT_1;
2961         if (id->driver_data & DEV_HAS_LARGEDESC)
2962                 np->pkt_limit = NV_PKTLIMIT_2;
2963
2964         if (id->driver_data & DEV_HAS_CHECKSUM) {
2965                 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
2966                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
2967 #ifdef NETIF_F_TSO
2968                 dev->features |= NETIF_F_TSO;
2969 #endif
2970         }
2971
2972         np->vlanctl_bits = 0;
2973         if (id->driver_data & DEV_HAS_VLAN) {
2974                 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
2975                 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
2976                 dev->vlan_rx_register = nv_vlan_rx_register;
2977                 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
2978         }
2979
2980         np->msi_flags = 0;
2981         if ((id->driver_data & DEV_HAS_MSI) && !disable_msi) {
2982                 np->msi_flags |= NV_MSI_CAPABLE;
2983         }
2984         if ((id->driver_data & DEV_HAS_MSI_X) && !disable_msix) {
2985                 np->msi_flags |= NV_MSI_X_CAPABLE;
2986         }
2987
2988         err = -ENOMEM;
2989         np->base = ioremap(addr, NV_PCI_REGSZ);
2990         if (!np->base)
2991                 goto out_relreg;
2992         dev->base_addr = (unsigned long)np->base;
2993
2994         dev->irq = pci_dev->irq;
2995
2996         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2997                 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
2998                                         sizeof(struct ring_desc) * (RX_RING + TX_RING),
2999                                         &np->ring_addr);
3000                 if (!np->rx_ring.orig)
3001                         goto out_unmap;
3002                 np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
3003         } else {
3004                 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
3005                                         sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
3006                                         &np->ring_addr);
3007                 if (!np->rx_ring.ex)
3008                         goto out_unmap;
3009                 np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
3010         }
3011
3012         dev->open = nv_open;
3013         dev->stop = nv_close;
3014         dev->hard_start_xmit = nv_start_xmit;
3015         dev->get_stats = nv_get_stats;
3016         dev->change_mtu = nv_change_mtu;
3017         dev->set_mac_address = nv_set_mac_address;
3018         dev->set_multicast_list = nv_set_multicast;
3019 #ifdef CONFIG_NET_POLL_CONTROLLER
3020         dev->poll_controller = nv_poll_controller;
3021 #endif
3022         SET_ETHTOOL_OPS(dev, &ops);
3023         dev->tx_timeout = nv_tx_timeout;
3024         dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
3025
3026         pci_set_drvdata(pci_dev, dev);
3027
3028         /* read the mac address */
3029         base = get_hwbase(dev);
3030         np->orig_mac[0] = readl(base + NvRegMacAddrA);
3031         np->orig_mac[1] = readl(base + NvRegMacAddrB);
3032
3033         dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
3034         dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
3035         dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
3036         dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
3037         dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
3038         dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
3039         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3040
3041         if (!is_valid_ether_addr(dev->perm_addr)) {
3042                 /*
3043                  * Bad mac address. At least one bios sets the mac address
3044                  * to 01:23:45:67:89:ab
3045                  */
3046                 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
3047                         pci_name(pci_dev),
3048                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3049                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3050                 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
3051                 dev->dev_addr[0] = 0x00;
3052                 dev->dev_addr[1] = 0x00;
3053                 dev->dev_addr[2] = 0x6c;
3054                 get_random_bytes(&dev->dev_addr[3], 3);
3055         }
3056
3057         dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
3058                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3059                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3060
3061         /* disable WOL */
3062         writel(0, base + NvRegWakeUpFlags);
3063         np->wolenabled = 0;
3064
3065         if (np->desc_ver == DESC_VER_1) {
3066                 np->tx_flags = NV_TX_VALID;
3067         } else {
3068                 np->tx_flags = NV_TX2_VALID;
3069         }
3070         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
3071                 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
3072                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
3073                         np->msi_flags |= 0x0003;
3074         } else {
3075                 np->irqmask = NVREG_IRQMASK_CPU;
3076                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
3077                         np->msi_flags |= 0x0001;
3078         }
3079
3080         if (id->driver_data & DEV_NEED_TIMERIRQ)
3081                 np->irqmask |= NVREG_IRQ_TIMER;
3082         if (id->driver_data & DEV_NEED_LINKTIMER) {
3083                 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
3084                 np->need_linktimer = 1;
3085                 np->link_timeout = jiffies + LINK_TIMEOUT;
3086         } else {
3087                 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
3088                 np->need_linktimer = 0;
3089         }
3090
3091         /* find a suitable phy */
3092         for (i = 1; i <= 32; i++) {
3093                 int id1, id2;
3094                 int phyaddr = i & 0x1F;
3095
3096                 spin_lock_irq(&np->lock);
3097                 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
3098                 spin_unlock_irq(&np->lock);
3099                 if (id1 < 0 || id1 == 0xffff)
3100                         continue;
3101                 spin_lock_irq(&np->lock);
3102                 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
3103                 spin_unlock_irq(&np->lock);
3104                 if (id2 < 0 || id2 == 0xffff)
3105                         continue;
3106
3107                 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
3108                 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
3109                 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
3110                         pci_name(pci_dev), id1, id2, phyaddr);
3111                 np->phyaddr = phyaddr;
3112                 np->phy_oui = id1 | id2;
3113                 break;
3114         }
3115         if (i == 33) {
3116                 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
3117                        pci_name(pci_dev));
3118                 goto out_freering;
3119         }
3120         
3121         /* reset it */
3122         phy_init(dev);
3123
3124         /* set default link speed settings */
3125         np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3126         np->duplex = 0;
3127         np->autoneg = 1;
3128
3129         err = register_netdev(dev);
3130         if (err) {
3131                 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
3132                 goto out_freering;
3133         }
3134         printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
3135                         dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
3136                         pci_name(pci_dev));
3137
3138         return 0;
3139
3140 out_freering:
3141         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
3142                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
3143                                     np->rx_ring.orig, np->ring_addr);
3144         else
3145                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
3146                                     np->rx_ring.ex, np->ring_addr);
3147         pci_set_drvdata(pci_dev, NULL);
3148 out_unmap:
3149         iounmap(get_hwbase(dev));
3150 out_relreg:
3151         pci_release_regions(pci_dev);
3152 out_disable:
3153         pci_disable_device(pci_dev);
3154 out_free:
3155         free_netdev(dev);
3156 out:
3157         return err;
3158 }
3159
3160 static void __devexit nv_remove(struct pci_dev *pci_dev)
3161 {
3162         struct net_device *dev = pci_get_drvdata(pci_dev);
3163         struct fe_priv *np = netdev_priv(dev);
3164
3165         unregister_netdev(dev);
3166
3167         /* free all structures */
3168         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
3169                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
3170         else
3171                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
3172         iounmap(get_hwbase(dev));
3173         pci_release_regions(pci_dev);
3174         pci_disable_device(pci_dev);
3175         free_netdev(dev);
3176         pci_set_drvdata(pci_dev, NULL);
3177 }
3178
3179 static struct pci_device_id pci_tbl[] = {
3180         {       /* nForce Ethernet Controller */
3181                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
3182                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
3183         },
3184         {       /* nForce2 Ethernet Controller */
3185                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
3186                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
3187         },
3188         {       /* nForce3 Ethernet Controller */
3189                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
3190                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
3191         },
3192         {       /* nForce3 Ethernet Controller */
3193                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
3194                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3195         },
3196         {       /* nForce3 Ethernet Controller */
3197                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
3198                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3199         },
3200         {       /* nForce3 Ethernet Controller */
3201                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
3202                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3203         },
3204         {       /* nForce3 Ethernet Controller */
3205                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
3206                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3207         },
3208         {       /* CK804 Ethernet Controller */
3209                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
3210                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3211         },
3212         {       /* CK804 Ethernet Controller */
3213                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
3214                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3215         },
3216         {       /* MCP04 Ethernet Controller */
3217                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
3218                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3219         },
3220         {       /* MCP04 Ethernet Controller */
3221                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
3222                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3223         },
3224         {       /* MCP51 Ethernet Controller */
3225                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
3226                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
3227         },
3228         {       /* MCP51 Ethernet Controller */
3229                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
3230                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
3231         },
3232         {       /* MCP55 Ethernet Controller */
3233                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
3234                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X,
3235         },
3236         {       /* MCP55 Ethernet Controller */
3237                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
3238                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X,
3239         },
3240         {0,},
3241 };
3242
3243 static struct pci_driver driver = {
3244         .name = "forcedeth",
3245         .id_table = pci_tbl,
3246         .probe = nv_probe,
3247         .remove = __devexit_p(nv_remove),
3248 };
3249
3250
3251 static int __init init_nic(void)
3252 {
3253         printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
3254         return pci_module_init(&driver);
3255 }
3256
3257 static void __exit exit_nic(void)
3258 {
3259         pci_unregister_driver(&driver);
3260 }
3261
3262 module_param(max_interrupt_work, int, 0);
3263 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
3264 module_param(optimization_mode, int, 0);
3265 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
3266 module_param(poll_interval, int, 0);
3267 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
3268 module_param(disable_msi, int, 0);
3269 MODULE_PARM_DESC(disable_msi, "Disable MSI interrupts by setting to 1.");
3270 module_param(disable_msix, int, 0);
3271 MODULE_PARM_DESC(disable_msix, "Disable MSIX interrupts by setting to 1.");
3272
3273 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
3274 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
3275 MODULE_LICENSE("GPL");
3276
3277 MODULE_DEVICE_TABLE(pci, pci_tbl);
3278
3279 module_init(init_nic);
3280 module_exit(exit_nic);