e1000e: disable correctable errors for quad ports while going to D3
[safe/jmp/linux-2.6] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
47
48 #include "e1000.h"
49
50 #define DRV_VERSION "0.3.3.3-k6"
51 char e1000e_driver_name[] = "e1000e";
52 const char e1000e_driver_version[] = DRV_VERSION;
53
54 static const struct e1000_info *e1000_info_tbl[] = {
55         [board_82571]           = &e1000_82571_info,
56         [board_82572]           = &e1000_82572_info,
57         [board_82573]           = &e1000_82573_info,
58         [board_82574]           = &e1000_82574_info,
59         [board_80003es2lan]     = &e1000_es2_info,
60         [board_ich8lan]         = &e1000_ich8_info,
61         [board_ich9lan]         = &e1000_ich9_info,
62         [board_ich10lan]        = &e1000_ich10_info,
63 };
64
65 #ifdef DEBUG
66 /**
67  * e1000_get_hw_dev_name - return device name string
68  * used by hardware layer to print debugging information
69  **/
70 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
71 {
72         return hw->adapter->netdev->name;
73 }
74 #endif
75
76 /**
77  * e1000_desc_unused - calculate if we have unused descriptors
78  **/
79 static int e1000_desc_unused(struct e1000_ring *ring)
80 {
81         if (ring->next_to_clean > ring->next_to_use)
82                 return ring->next_to_clean - ring->next_to_use - 1;
83
84         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
85 }
86
87 /**
88  * e1000_receive_skb - helper function to handle Rx indications
89  * @adapter: board private structure
90  * @status: descriptor status field as written by hardware
91  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
92  * @skb: pointer to sk_buff to be indicated to stack
93  **/
94 static void e1000_receive_skb(struct e1000_adapter *adapter,
95                               struct net_device *netdev,
96                               struct sk_buff *skb,
97                               u8 status, __le16 vlan)
98 {
99         skb->protocol = eth_type_trans(skb, netdev);
100
101         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
102                 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
103                                          le16_to_cpu(vlan));
104         else
105                 netif_receive_skb(skb);
106 }
107
108 /**
109  * e1000_rx_checksum - Receive Checksum Offload for 82543
110  * @adapter:     board private structure
111  * @status_err:  receive descriptor status and error fields
112  * @csum:       receive descriptor csum field
113  * @sk_buff:     socket buffer with received data
114  **/
115 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116                               u32 csum, struct sk_buff *skb)
117 {
118         u16 status = (u16)status_err;
119         u8 errors = (u8)(status_err >> 24);
120         skb->ip_summed = CHECKSUM_NONE;
121
122         /* Ignore Checksum bit is set */
123         if (status & E1000_RXD_STAT_IXSM)
124                 return;
125         /* TCP/UDP checksum error bit is set */
126         if (errors & E1000_RXD_ERR_TCPE) {
127                 /* let the stack verify checksum errors */
128                 adapter->hw_csum_err++;
129                 return;
130         }
131
132         /* TCP/UDP Checksum has not been calculated */
133         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
134                 return;
135
136         /* It must be a TCP or UDP packet with a valid checksum */
137         if (status & E1000_RXD_STAT_TCPCS) {
138                 /* TCP checksum is good */
139                 skb->ip_summed = CHECKSUM_UNNECESSARY;
140         } else {
141                 /*
142                  * IP fragment with UDP payload
143                  * Hardware complements the payload checksum, so we undo it
144                  * and then put the value in host order for further stack use.
145                  */
146                 __sum16 sum = (__force __sum16)htons(csum);
147                 skb->csum = csum_unfold(~sum);
148                 skb->ip_summed = CHECKSUM_COMPLETE;
149         }
150         adapter->hw_csum_good++;
151 }
152
153 /**
154  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
155  * @adapter: address of board private structure
156  **/
157 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
158                                    int cleaned_count)
159 {
160         struct net_device *netdev = adapter->netdev;
161         struct pci_dev *pdev = adapter->pdev;
162         struct e1000_ring *rx_ring = adapter->rx_ring;
163         struct e1000_rx_desc *rx_desc;
164         struct e1000_buffer *buffer_info;
165         struct sk_buff *skb;
166         unsigned int i;
167         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
168
169         i = rx_ring->next_to_use;
170         buffer_info = &rx_ring->buffer_info[i];
171
172         while (cleaned_count--) {
173                 skb = buffer_info->skb;
174                 if (skb) {
175                         skb_trim(skb, 0);
176                         goto map_skb;
177                 }
178
179                 skb = netdev_alloc_skb(netdev, bufsz);
180                 if (!skb) {
181                         /* Better luck next round */
182                         adapter->alloc_rx_buff_failed++;
183                         break;
184                 }
185
186                 /*
187                  * Make buffer alignment 2 beyond a 16 byte boundary
188                  * this will result in a 16 byte aligned IP header after
189                  * the 14 byte MAC header is removed
190                  */
191                 skb_reserve(skb, NET_IP_ALIGN);
192
193                 buffer_info->skb = skb;
194 map_skb:
195                 buffer_info->dma = pci_map_single(pdev, skb->data,
196                                                   adapter->rx_buffer_len,
197                                                   PCI_DMA_FROMDEVICE);
198                 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
199                         dev_err(&pdev->dev, "RX DMA map failed\n");
200                         adapter->rx_dma_failed++;
201                         break;
202                 }
203
204                 rx_desc = E1000_RX_DESC(*rx_ring, i);
205                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
206
207                 i++;
208                 if (i == rx_ring->count)
209                         i = 0;
210                 buffer_info = &rx_ring->buffer_info[i];
211         }
212
213         if (rx_ring->next_to_use != i) {
214                 rx_ring->next_to_use = i;
215                 if (i-- == 0)
216                         i = (rx_ring->count - 1);
217
218                 /*
219                  * Force memory writes to complete before letting h/w
220                  * know there are new descriptors to fetch.  (Only
221                  * applicable for weak-ordered memory model archs,
222                  * such as IA-64).
223                  */
224                 wmb();
225                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
226         }
227 }
228
229 /**
230  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
231  * @adapter: address of board private structure
232  **/
233 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
234                                       int cleaned_count)
235 {
236         struct net_device *netdev = adapter->netdev;
237         struct pci_dev *pdev = adapter->pdev;
238         union e1000_rx_desc_packet_split *rx_desc;
239         struct e1000_ring *rx_ring = adapter->rx_ring;
240         struct e1000_buffer *buffer_info;
241         struct e1000_ps_page *ps_page;
242         struct sk_buff *skb;
243         unsigned int i, j;
244
245         i = rx_ring->next_to_use;
246         buffer_info = &rx_ring->buffer_info[i];
247
248         while (cleaned_count--) {
249                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
250
251                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
252                         ps_page = &buffer_info->ps_pages[j];
253                         if (j >= adapter->rx_ps_pages) {
254                                 /* all unused desc entries get hw null ptr */
255                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
256                                 continue;
257                         }
258                         if (!ps_page->page) {
259                                 ps_page->page = alloc_page(GFP_ATOMIC);
260                                 if (!ps_page->page) {
261                                         adapter->alloc_rx_buff_failed++;
262                                         goto no_buffers;
263                                 }
264                                 ps_page->dma = pci_map_page(pdev,
265                                                    ps_page->page,
266                                                    0, PAGE_SIZE,
267                                                    PCI_DMA_FROMDEVICE);
268                                 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
269                                         dev_err(&adapter->pdev->dev,
270                                           "RX DMA page map failed\n");
271                                         adapter->rx_dma_failed++;
272                                         goto no_buffers;
273                                 }
274                         }
275                         /*
276                          * Refresh the desc even if buffer_addrs
277                          * didn't change because each write-back
278                          * erases this info.
279                          */
280                         rx_desc->read.buffer_addr[j+1] =
281                              cpu_to_le64(ps_page->dma);
282                 }
283
284                 skb = netdev_alloc_skb(netdev,
285                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
286
287                 if (!skb) {
288                         adapter->alloc_rx_buff_failed++;
289                         break;
290                 }
291
292                 /*
293                  * Make buffer alignment 2 beyond a 16 byte boundary
294                  * this will result in a 16 byte aligned IP header after
295                  * the 14 byte MAC header is removed
296                  */
297                 skb_reserve(skb, NET_IP_ALIGN);
298
299                 buffer_info->skb = skb;
300                 buffer_info->dma = pci_map_single(pdev, skb->data,
301                                                   adapter->rx_ps_bsize0,
302                                                   PCI_DMA_FROMDEVICE);
303                 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
304                         dev_err(&pdev->dev, "RX DMA map failed\n");
305                         adapter->rx_dma_failed++;
306                         /* cleanup skb */
307                         dev_kfree_skb_any(skb);
308                         buffer_info->skb = NULL;
309                         break;
310                 }
311
312                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
313
314                 i++;
315                 if (i == rx_ring->count)
316                         i = 0;
317                 buffer_info = &rx_ring->buffer_info[i];
318         }
319
320 no_buffers:
321         if (rx_ring->next_to_use != i) {
322                 rx_ring->next_to_use = i;
323
324                 if (!(i--))
325                         i = (rx_ring->count - 1);
326
327                 /*
328                  * Force memory writes to complete before letting h/w
329                  * know there are new descriptors to fetch.  (Only
330                  * applicable for weak-ordered memory model archs,
331                  * such as IA-64).
332                  */
333                 wmb();
334                 /*
335                  * Hardware increments by 16 bytes, but packet split
336                  * descriptors are 32 bytes...so we increment tail
337                  * twice as much.
338                  */
339                 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
340         }
341 }
342
343 /**
344  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
345  * @adapter: address of board private structure
346  * @rx_ring: pointer to receive ring structure
347  * @cleaned_count: number of buffers to allocate this pass
348  **/
349
350 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
351                                          int cleaned_count)
352 {
353         struct net_device *netdev = adapter->netdev;
354         struct pci_dev *pdev = adapter->pdev;
355         struct e1000_rx_desc *rx_desc;
356         struct e1000_ring *rx_ring = adapter->rx_ring;
357         struct e1000_buffer *buffer_info;
358         struct sk_buff *skb;
359         unsigned int i;
360         unsigned int bufsz = 256 -
361                              16 /* for skb_reserve */ -
362                              NET_IP_ALIGN;
363
364         i = rx_ring->next_to_use;
365         buffer_info = &rx_ring->buffer_info[i];
366
367         while (cleaned_count--) {
368                 skb = buffer_info->skb;
369                 if (skb) {
370                         skb_trim(skb, 0);
371                         goto check_page;
372                 }
373
374                 skb = netdev_alloc_skb(netdev, bufsz);
375                 if (unlikely(!skb)) {
376                         /* Better luck next round */
377                         adapter->alloc_rx_buff_failed++;
378                         break;
379                 }
380
381                 /* Make buffer alignment 2 beyond a 16 byte boundary
382                  * this will result in a 16 byte aligned IP header after
383                  * the 14 byte MAC header is removed
384                  */
385                 skb_reserve(skb, NET_IP_ALIGN);
386
387                 buffer_info->skb = skb;
388 check_page:
389                 /* allocate a new page if necessary */
390                 if (!buffer_info->page) {
391                         buffer_info->page = alloc_page(GFP_ATOMIC);
392                         if (unlikely(!buffer_info->page)) {
393                                 adapter->alloc_rx_buff_failed++;
394                                 break;
395                         }
396                 }
397
398                 if (!buffer_info->dma)
399                         buffer_info->dma = pci_map_page(pdev,
400                                                         buffer_info->page, 0,
401                                                         PAGE_SIZE,
402                                                         PCI_DMA_FROMDEVICE);
403
404                 rx_desc = E1000_RX_DESC(*rx_ring, i);
405                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
406
407                 if (unlikely(++i == rx_ring->count))
408                         i = 0;
409                 buffer_info = &rx_ring->buffer_info[i];
410         }
411
412         if (likely(rx_ring->next_to_use != i)) {
413                 rx_ring->next_to_use = i;
414                 if (unlikely(i-- == 0))
415                         i = (rx_ring->count - 1);
416
417                 /* Force memory writes to complete before letting h/w
418                  * know there are new descriptors to fetch.  (Only
419                  * applicable for weak-ordered memory model archs,
420                  * such as IA-64). */
421                 wmb();
422                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
423         }
424 }
425
426 /**
427  * e1000_clean_rx_irq - Send received data up the network stack; legacy
428  * @adapter: board private structure
429  *
430  * the return value indicates whether actual cleaning was done, there
431  * is no guarantee that everything was cleaned
432  **/
433 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
434                                int *work_done, int work_to_do)
435 {
436         struct net_device *netdev = adapter->netdev;
437         struct pci_dev *pdev = adapter->pdev;
438         struct e1000_ring *rx_ring = adapter->rx_ring;
439         struct e1000_rx_desc *rx_desc, *next_rxd;
440         struct e1000_buffer *buffer_info, *next_buffer;
441         u32 length;
442         unsigned int i;
443         int cleaned_count = 0;
444         bool cleaned = 0;
445         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
446
447         i = rx_ring->next_to_clean;
448         rx_desc = E1000_RX_DESC(*rx_ring, i);
449         buffer_info = &rx_ring->buffer_info[i];
450
451         while (rx_desc->status & E1000_RXD_STAT_DD) {
452                 struct sk_buff *skb;
453                 u8 status;
454
455                 if (*work_done >= work_to_do)
456                         break;
457                 (*work_done)++;
458
459                 status = rx_desc->status;
460                 skb = buffer_info->skb;
461                 buffer_info->skb = NULL;
462
463                 prefetch(skb->data - NET_IP_ALIGN);
464
465                 i++;
466                 if (i == rx_ring->count)
467                         i = 0;
468                 next_rxd = E1000_RX_DESC(*rx_ring, i);
469                 prefetch(next_rxd);
470
471                 next_buffer = &rx_ring->buffer_info[i];
472
473                 cleaned = 1;
474                 cleaned_count++;
475                 pci_unmap_single(pdev,
476                                  buffer_info->dma,
477                                  adapter->rx_buffer_len,
478                                  PCI_DMA_FROMDEVICE);
479                 buffer_info->dma = 0;
480
481                 length = le16_to_cpu(rx_desc->length);
482
483                 /* !EOP means multiple descriptors were used to store a single
484                  * packet, also make sure the frame isn't just CRC only */
485                 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
486                         /* All receives must fit into a single buffer */
487                         e_dbg("%s: Receive packet consumed multiple buffers\n",
488                               netdev->name);
489                         /* recycle */
490                         buffer_info->skb = skb;
491                         goto next_desc;
492                 }
493
494                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
495                         /* recycle */
496                         buffer_info->skb = skb;
497                         goto next_desc;
498                 }
499
500                 /* adjust length to remove Ethernet CRC */
501                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
502                         length -= 4;
503
504                 total_rx_bytes += length;
505                 total_rx_packets++;
506
507                 /*
508                  * code added for copybreak, this should improve
509                  * performance for small packets with large amounts
510                  * of reassembly being done in the stack
511                  */
512                 if (length < copybreak) {
513                         struct sk_buff *new_skb =
514                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
515                         if (new_skb) {
516                                 skb_reserve(new_skb, NET_IP_ALIGN);
517                                 skb_copy_to_linear_data_offset(new_skb,
518                                                                -NET_IP_ALIGN,
519                                                                (skb->data -
520                                                                 NET_IP_ALIGN),
521                                                                (length +
522                                                                 NET_IP_ALIGN));
523                                 /* save the skb in buffer_info as good */
524                                 buffer_info->skb = skb;
525                                 skb = new_skb;
526                         }
527                         /* else just continue with the old one */
528                 }
529                 /* end copybreak code */
530                 skb_put(skb, length);
531
532                 /* Receive Checksum Offload */
533                 e1000_rx_checksum(adapter,
534                                   (u32)(status) |
535                                   ((u32)(rx_desc->errors) << 24),
536                                   le16_to_cpu(rx_desc->csum), skb);
537
538                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
539
540 next_desc:
541                 rx_desc->status = 0;
542
543                 /* return some buffers to hardware, one at a time is too slow */
544                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
545                         adapter->alloc_rx_buf(adapter, cleaned_count);
546                         cleaned_count = 0;
547                 }
548
549                 /* use prefetched values */
550                 rx_desc = next_rxd;
551                 buffer_info = next_buffer;
552         }
553         rx_ring->next_to_clean = i;
554
555         cleaned_count = e1000_desc_unused(rx_ring);
556         if (cleaned_count)
557                 adapter->alloc_rx_buf(adapter, cleaned_count);
558
559         adapter->total_rx_bytes += total_rx_bytes;
560         adapter->total_rx_packets += total_rx_packets;
561         adapter->net_stats.rx_bytes += total_rx_bytes;
562         adapter->net_stats.rx_packets += total_rx_packets;
563         return cleaned;
564 }
565
566 static void e1000_put_txbuf(struct e1000_adapter *adapter,
567                              struct e1000_buffer *buffer_info)
568 {
569         if (buffer_info->dma) {
570                 pci_unmap_page(adapter->pdev, buffer_info->dma,
571                                buffer_info->length, PCI_DMA_TODEVICE);
572                 buffer_info->dma = 0;
573         }
574         if (buffer_info->skb) {
575                 dev_kfree_skb_any(buffer_info->skb);
576                 buffer_info->skb = NULL;
577         }
578 }
579
580 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
581 {
582         struct e1000_ring *tx_ring = adapter->tx_ring;
583         unsigned int i = tx_ring->next_to_clean;
584         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
585         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
586
587         /* detected Tx unit hang */
588         e_err("Detected Tx Unit Hang:\n"
589               "  TDH                  <%x>\n"
590               "  TDT                  <%x>\n"
591               "  next_to_use          <%x>\n"
592               "  next_to_clean        <%x>\n"
593               "buffer_info[next_to_clean]:\n"
594               "  time_stamp           <%lx>\n"
595               "  next_to_watch        <%x>\n"
596               "  jiffies              <%lx>\n"
597               "  next_to_watch.status <%x>\n",
598               readl(adapter->hw.hw_addr + tx_ring->head),
599               readl(adapter->hw.hw_addr + tx_ring->tail),
600               tx_ring->next_to_use,
601               tx_ring->next_to_clean,
602               tx_ring->buffer_info[eop].time_stamp,
603               eop,
604               jiffies,
605               eop_desc->upper.fields.status);
606 }
607
608 /**
609  * e1000_clean_tx_irq - Reclaim resources after transmit completes
610  * @adapter: board private structure
611  *
612  * the return value indicates whether actual cleaning was done, there
613  * is no guarantee that everything was cleaned
614  **/
615 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
616 {
617         struct net_device *netdev = adapter->netdev;
618         struct e1000_hw *hw = &adapter->hw;
619         struct e1000_ring *tx_ring = adapter->tx_ring;
620         struct e1000_tx_desc *tx_desc, *eop_desc;
621         struct e1000_buffer *buffer_info;
622         unsigned int i, eop;
623         unsigned int count = 0;
624         bool cleaned = 0;
625         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
626
627         i = tx_ring->next_to_clean;
628         eop = tx_ring->buffer_info[i].next_to_watch;
629         eop_desc = E1000_TX_DESC(*tx_ring, eop);
630
631         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
632                 for (cleaned = 0; !cleaned; ) {
633                         tx_desc = E1000_TX_DESC(*tx_ring, i);
634                         buffer_info = &tx_ring->buffer_info[i];
635                         cleaned = (i == eop);
636
637                         if (cleaned) {
638                                 struct sk_buff *skb = buffer_info->skb;
639                                 unsigned int segs, bytecount;
640                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
641                                 /* multiply data chunks by size of headers */
642                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
643                                             skb->len;
644                                 total_tx_packets += segs;
645                                 total_tx_bytes += bytecount;
646                         }
647
648                         e1000_put_txbuf(adapter, buffer_info);
649                         tx_desc->upper.data = 0;
650
651                         i++;
652                         if (i == tx_ring->count)
653                                 i = 0;
654                 }
655
656                 eop = tx_ring->buffer_info[i].next_to_watch;
657                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
658 #define E1000_TX_WEIGHT 64
659                 /* weight of a sort for tx, to avoid endless transmit cleanup */
660                 if (count++ == E1000_TX_WEIGHT)
661                         break;
662         }
663
664         tx_ring->next_to_clean = i;
665
666 #define TX_WAKE_THRESHOLD 32
667         if (cleaned && netif_carrier_ok(netdev) &&
668                      e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
669                 /* Make sure that anybody stopping the queue after this
670                  * sees the new next_to_clean.
671                  */
672                 smp_mb();
673
674                 if (netif_queue_stopped(netdev) &&
675                     !(test_bit(__E1000_DOWN, &adapter->state))) {
676                         netif_wake_queue(netdev);
677                         ++adapter->restart_queue;
678                 }
679         }
680
681         if (adapter->detect_tx_hung) {
682                 /*
683                  * Detect a transmit hang in hardware, this serializes the
684                  * check with the clearing of time_stamp and movement of i
685                  */
686                 adapter->detect_tx_hung = 0;
687                 if (tx_ring->buffer_info[eop].dma &&
688                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
689                                + (adapter->tx_timeout_factor * HZ))
690                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
691                         e1000_print_tx_hang(adapter);
692                         netif_stop_queue(netdev);
693                 }
694         }
695         adapter->total_tx_bytes += total_tx_bytes;
696         adapter->total_tx_packets += total_tx_packets;
697         adapter->net_stats.tx_bytes += total_tx_bytes;
698         adapter->net_stats.tx_packets += total_tx_packets;
699         return cleaned;
700 }
701
702 /**
703  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
704  * @adapter: board private structure
705  *
706  * the return value indicates whether actual cleaning was done, there
707  * is no guarantee that everything was cleaned
708  **/
709 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
710                                   int *work_done, int work_to_do)
711 {
712         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
713         struct net_device *netdev = adapter->netdev;
714         struct pci_dev *pdev = adapter->pdev;
715         struct e1000_ring *rx_ring = adapter->rx_ring;
716         struct e1000_buffer *buffer_info, *next_buffer;
717         struct e1000_ps_page *ps_page;
718         struct sk_buff *skb;
719         unsigned int i, j;
720         u32 length, staterr;
721         int cleaned_count = 0;
722         bool cleaned = 0;
723         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
724
725         i = rx_ring->next_to_clean;
726         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
727         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
728         buffer_info = &rx_ring->buffer_info[i];
729
730         while (staterr & E1000_RXD_STAT_DD) {
731                 if (*work_done >= work_to_do)
732                         break;
733                 (*work_done)++;
734                 skb = buffer_info->skb;
735
736                 /* in the packet split case this is header only */
737                 prefetch(skb->data - NET_IP_ALIGN);
738
739                 i++;
740                 if (i == rx_ring->count)
741                         i = 0;
742                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
743                 prefetch(next_rxd);
744
745                 next_buffer = &rx_ring->buffer_info[i];
746
747                 cleaned = 1;
748                 cleaned_count++;
749                 pci_unmap_single(pdev, buffer_info->dma,
750                                  adapter->rx_ps_bsize0,
751                                  PCI_DMA_FROMDEVICE);
752                 buffer_info->dma = 0;
753
754                 if (!(staterr & E1000_RXD_STAT_EOP)) {
755                         e_dbg("%s: Packet Split buffers didn't pick up the "
756                               "full packet\n", netdev->name);
757                         dev_kfree_skb_irq(skb);
758                         goto next_desc;
759                 }
760
761                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
762                         dev_kfree_skb_irq(skb);
763                         goto next_desc;
764                 }
765
766                 length = le16_to_cpu(rx_desc->wb.middle.length0);
767
768                 if (!length) {
769                         e_dbg("%s: Last part of the packet spanning multiple "
770                               "descriptors\n", netdev->name);
771                         dev_kfree_skb_irq(skb);
772                         goto next_desc;
773                 }
774
775                 /* Good Receive */
776                 skb_put(skb, length);
777
778                 {
779                 /*
780                  * this looks ugly, but it seems compiler issues make it
781                  * more efficient than reusing j
782                  */
783                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
784
785                 /*
786                  * page alloc/put takes too long and effects small packet
787                  * throughput, so unsplit small packets and save the alloc/put
788                  * only valid in softirq (napi) context to call kmap_*
789                  */
790                 if (l1 && (l1 <= copybreak) &&
791                     ((length + l1) <= adapter->rx_ps_bsize0)) {
792                         u8 *vaddr;
793
794                         ps_page = &buffer_info->ps_pages[0];
795
796                         /*
797                          * there is no documentation about how to call
798                          * kmap_atomic, so we can't hold the mapping
799                          * very long
800                          */
801                         pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
802                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
803                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
804                         memcpy(skb_tail_pointer(skb), vaddr, l1);
805                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
806                         pci_dma_sync_single_for_device(pdev, ps_page->dma,
807                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
808
809                         /* remove the CRC */
810                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
811                                 l1 -= 4;
812
813                         skb_put(skb, l1);
814                         goto copydone;
815                 } /* if */
816                 }
817
818                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
819                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
820                         if (!length)
821                                 break;
822
823                         ps_page = &buffer_info->ps_pages[j];
824                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
825                                        PCI_DMA_FROMDEVICE);
826                         ps_page->dma = 0;
827                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
828                         ps_page->page = NULL;
829                         skb->len += length;
830                         skb->data_len += length;
831                         skb->truesize += length;
832                 }
833
834                 /* strip the ethernet crc, problem is we're using pages now so
835                  * this whole operation can get a little cpu intensive
836                  */
837                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
838                         pskb_trim(skb, skb->len - 4);
839
840 copydone:
841                 total_rx_bytes += skb->len;
842                 total_rx_packets++;
843
844                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
845                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
846
847                 if (rx_desc->wb.upper.header_status &
848                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
849                         adapter->rx_hdr_split++;
850
851                 e1000_receive_skb(adapter, netdev, skb,
852                                   staterr, rx_desc->wb.middle.vlan);
853
854 next_desc:
855                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
856                 buffer_info->skb = NULL;
857
858                 /* return some buffers to hardware, one at a time is too slow */
859                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
860                         adapter->alloc_rx_buf(adapter, cleaned_count);
861                         cleaned_count = 0;
862                 }
863
864                 /* use prefetched values */
865                 rx_desc = next_rxd;
866                 buffer_info = next_buffer;
867
868                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
869         }
870         rx_ring->next_to_clean = i;
871
872         cleaned_count = e1000_desc_unused(rx_ring);
873         if (cleaned_count)
874                 adapter->alloc_rx_buf(adapter, cleaned_count);
875
876         adapter->total_rx_bytes += total_rx_bytes;
877         adapter->total_rx_packets += total_rx_packets;
878         adapter->net_stats.rx_bytes += total_rx_bytes;
879         adapter->net_stats.rx_packets += total_rx_packets;
880         return cleaned;
881 }
882
883 /**
884  * e1000_consume_page - helper function
885  **/
886 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
887                                u16 length)
888 {
889         bi->page = NULL;
890         skb->len += length;
891         skb->data_len += length;
892         skb->truesize += length;
893 }
894
895 /**
896  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
897  * @adapter: board private structure
898  *
899  * the return value indicates whether actual cleaning was done, there
900  * is no guarantee that everything was cleaned
901  **/
902
903 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
904                                      int *work_done, int work_to_do)
905 {
906         struct net_device *netdev = adapter->netdev;
907         struct pci_dev *pdev = adapter->pdev;
908         struct e1000_ring *rx_ring = adapter->rx_ring;
909         struct e1000_rx_desc *rx_desc, *next_rxd;
910         struct e1000_buffer *buffer_info, *next_buffer;
911         u32 length;
912         unsigned int i;
913         int cleaned_count = 0;
914         bool cleaned = false;
915         unsigned int total_rx_bytes=0, total_rx_packets=0;
916
917         i = rx_ring->next_to_clean;
918         rx_desc = E1000_RX_DESC(*rx_ring, i);
919         buffer_info = &rx_ring->buffer_info[i];
920
921         while (rx_desc->status & E1000_RXD_STAT_DD) {
922                 struct sk_buff *skb;
923                 u8 status;
924
925                 if (*work_done >= work_to_do)
926                         break;
927                 (*work_done)++;
928
929                 status = rx_desc->status;
930                 skb = buffer_info->skb;
931                 buffer_info->skb = NULL;
932
933                 ++i;
934                 if (i == rx_ring->count)
935                         i = 0;
936                 next_rxd = E1000_RX_DESC(*rx_ring, i);
937                 prefetch(next_rxd);
938
939                 next_buffer = &rx_ring->buffer_info[i];
940
941                 cleaned = true;
942                 cleaned_count++;
943                 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
944                                PCI_DMA_FROMDEVICE);
945                 buffer_info->dma = 0;
946
947                 length = le16_to_cpu(rx_desc->length);
948
949                 /* errors is only valid for DD + EOP descriptors */
950                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
951                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
952                                 /* recycle both page and skb */
953                                 buffer_info->skb = skb;
954                                 /* an error means any chain goes out the window
955                                  * too */
956                                 if (rx_ring->rx_skb_top)
957                                         dev_kfree_skb(rx_ring->rx_skb_top);
958                                 rx_ring->rx_skb_top = NULL;
959                                 goto next_desc;
960                 }
961
962 #define rxtop rx_ring->rx_skb_top
963                 if (!(status & E1000_RXD_STAT_EOP)) {
964                         /* this descriptor is only the beginning (or middle) */
965                         if (!rxtop) {
966                                 /* this is the beginning of a chain */
967                                 rxtop = skb;
968                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
969                                                    0, length);
970                         } else {
971                                 /* this is the middle of a chain */
972                                 skb_fill_page_desc(rxtop,
973                                     skb_shinfo(rxtop)->nr_frags,
974                                     buffer_info->page, 0, length);
975                                 /* re-use the skb, only consumed the page */
976                                 buffer_info->skb = skb;
977                         }
978                         e1000_consume_page(buffer_info, rxtop, length);
979                         goto next_desc;
980                 } else {
981                         if (rxtop) {
982                                 /* end of the chain */
983                                 skb_fill_page_desc(rxtop,
984                                     skb_shinfo(rxtop)->nr_frags,
985                                     buffer_info->page, 0, length);
986                                 /* re-use the current skb, we only consumed the
987                                  * page */
988                                 buffer_info->skb = skb;
989                                 skb = rxtop;
990                                 rxtop = NULL;
991                                 e1000_consume_page(buffer_info, skb, length);
992                         } else {
993                                 /* no chain, got EOP, this buf is the packet
994                                  * copybreak to save the put_page/alloc_page */
995                                 if (length <= copybreak &&
996                                     skb_tailroom(skb) >= length) {
997                                         u8 *vaddr;
998                                         vaddr = kmap_atomic(buffer_info->page,
999                                                            KM_SKB_DATA_SOFTIRQ);
1000                                         memcpy(skb_tail_pointer(skb), vaddr,
1001                                                length);
1002                                         kunmap_atomic(vaddr,
1003                                                       KM_SKB_DATA_SOFTIRQ);
1004                                         /* re-use the page, so don't erase
1005                                          * buffer_info->page */
1006                                         skb_put(skb, length);
1007                                 } else {
1008                                         skb_fill_page_desc(skb, 0,
1009                                                            buffer_info->page, 0,
1010                                                            length);
1011                                         e1000_consume_page(buffer_info, skb,
1012                                                            length);
1013                                 }
1014                         }
1015                 }
1016
1017                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1018                 e1000_rx_checksum(adapter,
1019                                   (u32)(status) |
1020                                   ((u32)(rx_desc->errors) << 24),
1021                                   le16_to_cpu(rx_desc->csum), skb);
1022
1023                 /* probably a little skewed due to removing CRC */
1024                 total_rx_bytes += skb->len;
1025                 total_rx_packets++;
1026
1027                 /* eth type trans needs skb->data to point to something */
1028                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1029                         e_err("pskb_may_pull failed.\n");
1030                         dev_kfree_skb(skb);
1031                         goto next_desc;
1032                 }
1033
1034                 e1000_receive_skb(adapter, netdev, skb, status,
1035                                   rx_desc->special);
1036
1037 next_desc:
1038                 rx_desc->status = 0;
1039
1040                 /* return some buffers to hardware, one at a time is too slow */
1041                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1042                         adapter->alloc_rx_buf(adapter, cleaned_count);
1043                         cleaned_count = 0;
1044                 }
1045
1046                 /* use prefetched values */
1047                 rx_desc = next_rxd;
1048                 buffer_info = next_buffer;
1049         }
1050         rx_ring->next_to_clean = i;
1051
1052         cleaned_count = e1000_desc_unused(rx_ring);
1053         if (cleaned_count)
1054                 adapter->alloc_rx_buf(adapter, cleaned_count);
1055
1056         adapter->total_rx_bytes += total_rx_bytes;
1057         adapter->total_rx_packets += total_rx_packets;
1058         adapter->net_stats.rx_bytes += total_rx_bytes;
1059         adapter->net_stats.rx_packets += total_rx_packets;
1060         return cleaned;
1061 }
1062
1063 /**
1064  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1065  * @adapter: board private structure
1066  **/
1067 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1068 {
1069         struct e1000_ring *rx_ring = adapter->rx_ring;
1070         struct e1000_buffer *buffer_info;
1071         struct e1000_ps_page *ps_page;
1072         struct pci_dev *pdev = adapter->pdev;
1073         unsigned int i, j;
1074
1075         /* Free all the Rx ring sk_buffs */
1076         for (i = 0; i < rx_ring->count; i++) {
1077                 buffer_info = &rx_ring->buffer_info[i];
1078                 if (buffer_info->dma) {
1079                         if (adapter->clean_rx == e1000_clean_rx_irq)
1080                                 pci_unmap_single(pdev, buffer_info->dma,
1081                                                  adapter->rx_buffer_len,
1082                                                  PCI_DMA_FROMDEVICE);
1083                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1084                                 pci_unmap_page(pdev, buffer_info->dma,
1085                                                PAGE_SIZE,
1086                                                PCI_DMA_FROMDEVICE);
1087                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1088                                 pci_unmap_single(pdev, buffer_info->dma,
1089                                                  adapter->rx_ps_bsize0,
1090                                                  PCI_DMA_FROMDEVICE);
1091                         buffer_info->dma = 0;
1092                 }
1093
1094                 if (buffer_info->page) {
1095                         put_page(buffer_info->page);
1096                         buffer_info->page = NULL;
1097                 }
1098
1099                 if (buffer_info->skb) {
1100                         dev_kfree_skb(buffer_info->skb);
1101                         buffer_info->skb = NULL;
1102                 }
1103
1104                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1105                         ps_page = &buffer_info->ps_pages[j];
1106                         if (!ps_page->page)
1107                                 break;
1108                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1109                                        PCI_DMA_FROMDEVICE);
1110                         ps_page->dma = 0;
1111                         put_page(ps_page->page);
1112                         ps_page->page = NULL;
1113                 }
1114         }
1115
1116         /* there also may be some cached data from a chained receive */
1117         if (rx_ring->rx_skb_top) {
1118                 dev_kfree_skb(rx_ring->rx_skb_top);
1119                 rx_ring->rx_skb_top = NULL;
1120         }
1121
1122         /* Zero out the descriptor ring */
1123         memset(rx_ring->desc, 0, rx_ring->size);
1124
1125         rx_ring->next_to_clean = 0;
1126         rx_ring->next_to_use = 0;
1127
1128         writel(0, adapter->hw.hw_addr + rx_ring->head);
1129         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1130 }
1131
1132 static void e1000e_downshift_workaround(struct work_struct *work)
1133 {
1134         struct e1000_adapter *adapter = container_of(work,
1135                                         struct e1000_adapter, downshift_task);
1136
1137         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1138 }
1139
1140 /**
1141  * e1000_intr_msi - Interrupt Handler
1142  * @irq: interrupt number
1143  * @data: pointer to a network interface device structure
1144  **/
1145 static irqreturn_t e1000_intr_msi(int irq, void *data)
1146 {
1147         struct net_device *netdev = data;
1148         struct e1000_adapter *adapter = netdev_priv(netdev);
1149         struct e1000_hw *hw = &adapter->hw;
1150         u32 icr = er32(ICR);
1151
1152         /*
1153          * read ICR disables interrupts using IAM
1154          */
1155
1156         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1157                 hw->mac.get_link_status = 1;
1158                 /*
1159                  * ICH8 workaround-- Call gig speed drop workaround on cable
1160                  * disconnect (LSC) before accessing any PHY registers
1161                  */
1162                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1163                     (!(er32(STATUS) & E1000_STATUS_LU)))
1164                         schedule_work(&adapter->downshift_task);
1165
1166                 /*
1167                  * 80003ES2LAN workaround-- For packet buffer work-around on
1168                  * link down event; disable receives here in the ISR and reset
1169                  * adapter in watchdog
1170                  */
1171                 if (netif_carrier_ok(netdev) &&
1172                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1173                         /* disable receives */
1174                         u32 rctl = er32(RCTL);
1175                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1176                         adapter->flags |= FLAG_RX_RESTART_NOW;
1177                 }
1178                 /* guard against interrupt when we're going down */
1179                 if (!test_bit(__E1000_DOWN, &adapter->state))
1180                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1181         }
1182
1183         if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1184                 adapter->total_tx_bytes = 0;
1185                 adapter->total_tx_packets = 0;
1186                 adapter->total_rx_bytes = 0;
1187                 adapter->total_rx_packets = 0;
1188                 __netif_rx_schedule(netdev, &adapter->napi);
1189         }
1190
1191         return IRQ_HANDLED;
1192 }
1193
1194 /**
1195  * e1000_intr - Interrupt Handler
1196  * @irq: interrupt number
1197  * @data: pointer to a network interface device structure
1198  **/
1199 static irqreturn_t e1000_intr(int irq, void *data)
1200 {
1201         struct net_device *netdev = data;
1202         struct e1000_adapter *adapter = netdev_priv(netdev);
1203         struct e1000_hw *hw = &adapter->hw;
1204         u32 rctl, icr = er32(ICR);
1205
1206         if (!icr)
1207                 return IRQ_NONE;  /* Not our interrupt */
1208
1209         /*
1210          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1211          * not set, then the adapter didn't send an interrupt
1212          */
1213         if (!(icr & E1000_ICR_INT_ASSERTED))
1214                 return IRQ_NONE;
1215
1216         /*
1217          * Interrupt Auto-Mask...upon reading ICR,
1218          * interrupts are masked.  No need for the
1219          * IMC write
1220          */
1221
1222         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1223                 hw->mac.get_link_status = 1;
1224                 /*
1225                  * ICH8 workaround-- Call gig speed drop workaround on cable
1226                  * disconnect (LSC) before accessing any PHY registers
1227                  */
1228                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1229                     (!(er32(STATUS) & E1000_STATUS_LU)))
1230                         schedule_work(&adapter->downshift_task);
1231
1232                 /*
1233                  * 80003ES2LAN workaround--
1234                  * For packet buffer work-around on link down event;
1235                  * disable receives here in the ISR and
1236                  * reset adapter in watchdog
1237                  */
1238                 if (netif_carrier_ok(netdev) &&
1239                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1240                         /* disable receives */
1241                         rctl = er32(RCTL);
1242                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1243                         adapter->flags |= FLAG_RX_RESTART_NOW;
1244                 }
1245                 /* guard against interrupt when we're going down */
1246                 if (!test_bit(__E1000_DOWN, &adapter->state))
1247                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1248         }
1249
1250         if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1251                 adapter->total_tx_bytes = 0;
1252                 adapter->total_tx_packets = 0;
1253                 adapter->total_rx_bytes = 0;
1254                 adapter->total_rx_packets = 0;
1255                 __netif_rx_schedule(netdev, &adapter->napi);
1256         }
1257
1258         return IRQ_HANDLED;
1259 }
1260
1261 static irqreturn_t e1000_msix_other(int irq, void *data)
1262 {
1263         struct net_device *netdev = data;
1264         struct e1000_adapter *adapter = netdev_priv(netdev);
1265         struct e1000_hw *hw = &adapter->hw;
1266         u32 icr = er32(ICR);
1267
1268         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1269                 ew32(IMS, E1000_IMS_OTHER);
1270                 return IRQ_NONE;
1271         }
1272
1273         if (icr & adapter->eiac_mask)
1274                 ew32(ICS, (icr & adapter->eiac_mask));
1275
1276         if (icr & E1000_ICR_OTHER) {
1277                 if (!(icr & E1000_ICR_LSC))
1278                         goto no_link_interrupt;
1279                 hw->mac.get_link_status = 1;
1280                 /* guard against interrupt when we're going down */
1281                 if (!test_bit(__E1000_DOWN, &adapter->state))
1282                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1283         }
1284
1285 no_link_interrupt:
1286         ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1287
1288         return IRQ_HANDLED;
1289 }
1290
1291
1292 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1293 {
1294         struct net_device *netdev = data;
1295         struct e1000_adapter *adapter = netdev_priv(netdev);
1296         struct e1000_hw *hw = &adapter->hw;
1297         struct e1000_ring *tx_ring = adapter->tx_ring;
1298
1299
1300         adapter->total_tx_bytes = 0;
1301         adapter->total_tx_packets = 0;
1302
1303         if (!e1000_clean_tx_irq(adapter))
1304                 /* Ring was not completely cleaned, so fire another interrupt */
1305                 ew32(ICS, tx_ring->ims_val);
1306
1307         return IRQ_HANDLED;
1308 }
1309
1310 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1311 {
1312         struct net_device *netdev = data;
1313         struct e1000_adapter *adapter = netdev_priv(netdev);
1314
1315         /* Write the ITR value calculated at the end of the
1316          * previous interrupt.
1317          */
1318         if (adapter->rx_ring->set_itr) {
1319                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1320                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1321                 adapter->rx_ring->set_itr = 0;
1322         }
1323
1324         if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1325                 adapter->total_rx_bytes = 0;
1326                 adapter->total_rx_packets = 0;
1327                 __netif_rx_schedule(netdev, &adapter->napi);
1328         }
1329         return IRQ_HANDLED;
1330 }
1331
1332 /**
1333  * e1000_configure_msix - Configure MSI-X hardware
1334  *
1335  * e1000_configure_msix sets up the hardware to properly
1336  * generate MSI-X interrupts.
1337  **/
1338 static void e1000_configure_msix(struct e1000_adapter *adapter)
1339 {
1340         struct e1000_hw *hw = &adapter->hw;
1341         struct e1000_ring *rx_ring = adapter->rx_ring;
1342         struct e1000_ring *tx_ring = adapter->tx_ring;
1343         int vector = 0;
1344         u32 ctrl_ext, ivar = 0;
1345
1346         adapter->eiac_mask = 0;
1347
1348         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1349         if (hw->mac.type == e1000_82574) {
1350                 u32 rfctl = er32(RFCTL);
1351                 rfctl |= E1000_RFCTL_ACK_DIS;
1352                 ew32(RFCTL, rfctl);
1353         }
1354
1355 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1356         /* Configure Rx vector */
1357         rx_ring->ims_val = E1000_IMS_RXQ0;
1358         adapter->eiac_mask |= rx_ring->ims_val;
1359         if (rx_ring->itr_val)
1360                 writel(1000000000 / (rx_ring->itr_val * 256),
1361                        hw->hw_addr + rx_ring->itr_register);
1362         else
1363                 writel(1, hw->hw_addr + rx_ring->itr_register);
1364         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1365
1366         /* Configure Tx vector */
1367         tx_ring->ims_val = E1000_IMS_TXQ0;
1368         vector++;
1369         if (tx_ring->itr_val)
1370                 writel(1000000000 / (tx_ring->itr_val * 256),
1371                        hw->hw_addr + tx_ring->itr_register);
1372         else
1373                 writel(1, hw->hw_addr + tx_ring->itr_register);
1374         adapter->eiac_mask |= tx_ring->ims_val;
1375         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1376
1377         /* set vector for Other Causes, e.g. link changes */
1378         vector++;
1379         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1380         if (rx_ring->itr_val)
1381                 writel(1000000000 / (rx_ring->itr_val * 256),
1382                        hw->hw_addr + E1000_EITR_82574(vector));
1383         else
1384                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1385
1386         /* Cause Tx interrupts on every write back */
1387         ivar |= (1 << 31);
1388
1389         ew32(IVAR, ivar);
1390
1391         /* enable MSI-X PBA support */
1392         ctrl_ext = er32(CTRL_EXT);
1393         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1394
1395         /* Auto-Mask Other interrupts upon ICR read */
1396 #define E1000_EIAC_MASK_82574   0x01F00000
1397         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1398         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1399         ew32(CTRL_EXT, ctrl_ext);
1400         e1e_flush();
1401 }
1402
1403 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1404 {
1405         if (adapter->msix_entries) {
1406                 pci_disable_msix(adapter->pdev);
1407                 kfree(adapter->msix_entries);
1408                 adapter->msix_entries = NULL;
1409         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1410                 pci_disable_msi(adapter->pdev);
1411                 adapter->flags &= ~FLAG_MSI_ENABLED;
1412         }
1413
1414         return;
1415 }
1416
1417 /**
1418  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1419  *
1420  * Attempt to configure interrupts using the best available
1421  * capabilities of the hardware and kernel.
1422  **/
1423 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1424 {
1425         int err;
1426         int numvecs, i;
1427
1428
1429         switch (adapter->int_mode) {
1430         case E1000E_INT_MODE_MSIX:
1431                 if (adapter->flags & FLAG_HAS_MSIX) {
1432                         numvecs = 3; /* RxQ0, TxQ0 and other */
1433                         adapter->msix_entries = kcalloc(numvecs,
1434                                                       sizeof(struct msix_entry),
1435                                                       GFP_KERNEL);
1436                         if (adapter->msix_entries) {
1437                                 for (i = 0; i < numvecs; i++)
1438                                         adapter->msix_entries[i].entry = i;
1439
1440                                 err = pci_enable_msix(adapter->pdev,
1441                                                       adapter->msix_entries,
1442                                                       numvecs);
1443                                 if (err == 0)
1444                                         return;
1445                         }
1446                         /* MSI-X failed, so fall through and try MSI */
1447                         e_err("Failed to initialize MSI-X interrupts.  "
1448                               "Falling back to MSI interrupts.\n");
1449                         e1000e_reset_interrupt_capability(adapter);
1450                 }
1451                 adapter->int_mode = E1000E_INT_MODE_MSI;
1452                 /* Fall through */
1453         case E1000E_INT_MODE_MSI:
1454                 if (!pci_enable_msi(adapter->pdev)) {
1455                         adapter->flags |= FLAG_MSI_ENABLED;
1456                 } else {
1457                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1458                         e_err("Failed to initialize MSI interrupts.  Falling "
1459                               "back to legacy interrupts.\n");
1460                 }
1461                 /* Fall through */
1462         case E1000E_INT_MODE_LEGACY:
1463                 /* Don't do anything; this is the system default */
1464                 break;
1465         }
1466
1467         return;
1468 }
1469
1470 /**
1471  * e1000_request_msix - Initialize MSI-X interrupts
1472  *
1473  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1474  * kernel.
1475  **/
1476 static int e1000_request_msix(struct e1000_adapter *adapter)
1477 {
1478         struct net_device *netdev = adapter->netdev;
1479         int err = 0, vector = 0;
1480
1481         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1482                 sprintf(adapter->rx_ring->name, "%s-rx0", netdev->name);
1483         else
1484                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1485         err = request_irq(adapter->msix_entries[vector].vector,
1486                           &e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1487                           netdev);
1488         if (err)
1489                 goto out;
1490         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1491         adapter->rx_ring->itr_val = adapter->itr;
1492         vector++;
1493
1494         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1495                 sprintf(adapter->tx_ring->name, "%s-tx0", netdev->name);
1496         else
1497                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1498         err = request_irq(adapter->msix_entries[vector].vector,
1499                           &e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1500                           netdev);
1501         if (err)
1502                 goto out;
1503         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1504         adapter->tx_ring->itr_val = adapter->itr;
1505         vector++;
1506
1507         err = request_irq(adapter->msix_entries[vector].vector,
1508                           &e1000_msix_other, 0, netdev->name, netdev);
1509         if (err)
1510                 goto out;
1511
1512         e1000_configure_msix(adapter);
1513         return 0;
1514 out:
1515         return err;
1516 }
1517
1518 /**
1519  * e1000_request_irq - initialize interrupts
1520  *
1521  * Attempts to configure interrupts using the best available
1522  * capabilities of the hardware and kernel.
1523  **/
1524 static int e1000_request_irq(struct e1000_adapter *adapter)
1525 {
1526         struct net_device *netdev = adapter->netdev;
1527         int err;
1528
1529         if (adapter->msix_entries) {
1530                 err = e1000_request_msix(adapter);
1531                 if (!err)
1532                         return err;
1533                 /* fall back to MSI */
1534                 e1000e_reset_interrupt_capability(adapter);
1535                 adapter->int_mode = E1000E_INT_MODE_MSI;
1536                 e1000e_set_interrupt_capability(adapter);
1537         }
1538         if (adapter->flags & FLAG_MSI_ENABLED) {
1539                 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0,
1540                                   netdev->name, netdev);
1541                 if (!err)
1542                         return err;
1543
1544                 /* fall back to legacy interrupt */
1545                 e1000e_reset_interrupt_capability(adapter);
1546                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1547         }
1548
1549         err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED,
1550                           netdev->name, netdev);
1551         if (err)
1552                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1553
1554         return err;
1555 }
1556
1557 static void e1000_free_irq(struct e1000_adapter *adapter)
1558 {
1559         struct net_device *netdev = adapter->netdev;
1560
1561         if (adapter->msix_entries) {
1562                 int vector = 0;
1563
1564                 free_irq(adapter->msix_entries[vector].vector, netdev);
1565                 vector++;
1566
1567                 free_irq(adapter->msix_entries[vector].vector, netdev);
1568                 vector++;
1569
1570                 /* Other Causes interrupt vector */
1571                 free_irq(adapter->msix_entries[vector].vector, netdev);
1572                 return;
1573         }
1574
1575         free_irq(adapter->pdev->irq, netdev);
1576 }
1577
1578 /**
1579  * e1000_irq_disable - Mask off interrupt generation on the NIC
1580  **/
1581 static void e1000_irq_disable(struct e1000_adapter *adapter)
1582 {
1583         struct e1000_hw *hw = &adapter->hw;
1584
1585         ew32(IMC, ~0);
1586         if (adapter->msix_entries)
1587                 ew32(EIAC_82574, 0);
1588         e1e_flush();
1589         synchronize_irq(adapter->pdev->irq);
1590 }
1591
1592 /**
1593  * e1000_irq_enable - Enable default interrupt generation settings
1594  **/
1595 static void e1000_irq_enable(struct e1000_adapter *adapter)
1596 {
1597         struct e1000_hw *hw = &adapter->hw;
1598
1599         if (adapter->msix_entries) {
1600                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1601                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1602         } else {
1603                 ew32(IMS, IMS_ENABLE_MASK);
1604         }
1605         e1e_flush();
1606 }
1607
1608 /**
1609  * e1000_get_hw_control - get control of the h/w from f/w
1610  * @adapter: address of board private structure
1611  *
1612  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1613  * For ASF and Pass Through versions of f/w this means that
1614  * the driver is loaded. For AMT version (only with 82573)
1615  * of the f/w this means that the network i/f is open.
1616  **/
1617 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1618 {
1619         struct e1000_hw *hw = &adapter->hw;
1620         u32 ctrl_ext;
1621         u32 swsm;
1622
1623         /* Let firmware know the driver has taken over */
1624         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1625                 swsm = er32(SWSM);
1626                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1627         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1628                 ctrl_ext = er32(CTRL_EXT);
1629                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1630         }
1631 }
1632
1633 /**
1634  * e1000_release_hw_control - release control of the h/w to f/w
1635  * @adapter: address of board private structure
1636  *
1637  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1638  * For ASF and Pass Through versions of f/w this means that the
1639  * driver is no longer loaded. For AMT version (only with 82573) i
1640  * of the f/w this means that the network i/f is closed.
1641  *
1642  **/
1643 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1644 {
1645         struct e1000_hw *hw = &adapter->hw;
1646         u32 ctrl_ext;
1647         u32 swsm;
1648
1649         /* Let firmware taken over control of h/w */
1650         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1651                 swsm = er32(SWSM);
1652                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1653         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1654                 ctrl_ext = er32(CTRL_EXT);
1655                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1656         }
1657 }
1658
1659 /**
1660  * @e1000_alloc_ring - allocate memory for a ring structure
1661  **/
1662 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1663                                 struct e1000_ring *ring)
1664 {
1665         struct pci_dev *pdev = adapter->pdev;
1666
1667         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1668                                         GFP_KERNEL);
1669         if (!ring->desc)
1670                 return -ENOMEM;
1671
1672         return 0;
1673 }
1674
1675 /**
1676  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1677  * @adapter: board private structure
1678  *
1679  * Return 0 on success, negative on failure
1680  **/
1681 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1682 {
1683         struct e1000_ring *tx_ring = adapter->tx_ring;
1684         int err = -ENOMEM, size;
1685
1686         size = sizeof(struct e1000_buffer) * tx_ring->count;
1687         tx_ring->buffer_info = vmalloc(size);
1688         if (!tx_ring->buffer_info)
1689                 goto err;
1690         memset(tx_ring->buffer_info, 0, size);
1691
1692         /* round up to nearest 4K */
1693         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1694         tx_ring->size = ALIGN(tx_ring->size, 4096);
1695
1696         err = e1000_alloc_ring_dma(adapter, tx_ring);
1697         if (err)
1698                 goto err;
1699
1700         tx_ring->next_to_use = 0;
1701         tx_ring->next_to_clean = 0;
1702         spin_lock_init(&adapter->tx_queue_lock);
1703
1704         return 0;
1705 err:
1706         vfree(tx_ring->buffer_info);
1707         e_err("Unable to allocate memory for the transmit descriptor ring\n");
1708         return err;
1709 }
1710
1711 /**
1712  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1713  * @adapter: board private structure
1714  *
1715  * Returns 0 on success, negative on failure
1716  **/
1717 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1718 {
1719         struct e1000_ring *rx_ring = adapter->rx_ring;
1720         struct e1000_buffer *buffer_info;
1721         int i, size, desc_len, err = -ENOMEM;
1722
1723         size = sizeof(struct e1000_buffer) * rx_ring->count;
1724         rx_ring->buffer_info = vmalloc(size);
1725         if (!rx_ring->buffer_info)
1726                 goto err;
1727         memset(rx_ring->buffer_info, 0, size);
1728
1729         for (i = 0; i < rx_ring->count; i++) {
1730                 buffer_info = &rx_ring->buffer_info[i];
1731                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1732                                                 sizeof(struct e1000_ps_page),
1733                                                 GFP_KERNEL);
1734                 if (!buffer_info->ps_pages)
1735                         goto err_pages;
1736         }
1737
1738         desc_len = sizeof(union e1000_rx_desc_packet_split);
1739
1740         /* Round up to nearest 4K */
1741         rx_ring->size = rx_ring->count * desc_len;
1742         rx_ring->size = ALIGN(rx_ring->size, 4096);
1743
1744         err = e1000_alloc_ring_dma(adapter, rx_ring);
1745         if (err)
1746                 goto err_pages;
1747
1748         rx_ring->next_to_clean = 0;
1749         rx_ring->next_to_use = 0;
1750         rx_ring->rx_skb_top = NULL;
1751
1752         return 0;
1753
1754 err_pages:
1755         for (i = 0; i < rx_ring->count; i++) {
1756                 buffer_info = &rx_ring->buffer_info[i];
1757                 kfree(buffer_info->ps_pages);
1758         }
1759 err:
1760         vfree(rx_ring->buffer_info);
1761         e_err("Unable to allocate memory for the transmit descriptor ring\n");
1762         return err;
1763 }
1764
1765 /**
1766  * e1000_clean_tx_ring - Free Tx Buffers
1767  * @adapter: board private structure
1768  **/
1769 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1770 {
1771         struct e1000_ring *tx_ring = adapter->tx_ring;
1772         struct e1000_buffer *buffer_info;
1773         unsigned long size;
1774         unsigned int i;
1775
1776         for (i = 0; i < tx_ring->count; i++) {
1777                 buffer_info = &tx_ring->buffer_info[i];
1778                 e1000_put_txbuf(adapter, buffer_info);
1779         }
1780
1781         size = sizeof(struct e1000_buffer) * tx_ring->count;
1782         memset(tx_ring->buffer_info, 0, size);
1783
1784         memset(tx_ring->desc, 0, tx_ring->size);
1785
1786         tx_ring->next_to_use = 0;
1787         tx_ring->next_to_clean = 0;
1788
1789         writel(0, adapter->hw.hw_addr + tx_ring->head);
1790         writel(0, adapter->hw.hw_addr + tx_ring->tail);
1791 }
1792
1793 /**
1794  * e1000e_free_tx_resources - Free Tx Resources per Queue
1795  * @adapter: board private structure
1796  *
1797  * Free all transmit software resources
1798  **/
1799 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1800 {
1801         struct pci_dev *pdev = adapter->pdev;
1802         struct e1000_ring *tx_ring = adapter->tx_ring;
1803
1804         e1000_clean_tx_ring(adapter);
1805
1806         vfree(tx_ring->buffer_info);
1807         tx_ring->buffer_info = NULL;
1808
1809         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1810                           tx_ring->dma);
1811         tx_ring->desc = NULL;
1812 }
1813
1814 /**
1815  * e1000e_free_rx_resources - Free Rx Resources
1816  * @adapter: board private structure
1817  *
1818  * Free all receive software resources
1819  **/
1820
1821 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1822 {
1823         struct pci_dev *pdev = adapter->pdev;
1824         struct e1000_ring *rx_ring = adapter->rx_ring;
1825         int i;
1826
1827         e1000_clean_rx_ring(adapter);
1828
1829         for (i = 0; i < rx_ring->count; i++) {
1830                 kfree(rx_ring->buffer_info[i].ps_pages);
1831         }
1832
1833         vfree(rx_ring->buffer_info);
1834         rx_ring->buffer_info = NULL;
1835
1836         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1837                           rx_ring->dma);
1838         rx_ring->desc = NULL;
1839 }
1840
1841 /**
1842  * e1000_update_itr - update the dynamic ITR value based on statistics
1843  * @adapter: pointer to adapter
1844  * @itr_setting: current adapter->itr
1845  * @packets: the number of packets during this measurement interval
1846  * @bytes: the number of bytes during this measurement interval
1847  *
1848  *      Stores a new ITR value based on packets and byte
1849  *      counts during the last interrupt.  The advantage of per interrupt
1850  *      computation is faster updates and more accurate ITR for the current
1851  *      traffic pattern.  Constants in this function were computed
1852  *      based on theoretical maximum wire speed and thresholds were set based
1853  *      on testing data as well as attempting to minimize response time
1854  *      while increasing bulk throughput.  This functionality is controlled
1855  *      by the InterruptThrottleRate module parameter.
1856  **/
1857 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1858                                      u16 itr_setting, int packets,
1859                                      int bytes)
1860 {
1861         unsigned int retval = itr_setting;
1862
1863         if (packets == 0)
1864                 goto update_itr_done;
1865
1866         switch (itr_setting) {
1867         case lowest_latency:
1868                 /* handle TSO and jumbo frames */
1869                 if (bytes/packets > 8000)
1870                         retval = bulk_latency;
1871                 else if ((packets < 5) && (bytes > 512)) {
1872                         retval = low_latency;
1873                 }
1874                 break;
1875         case low_latency:  /* 50 usec aka 20000 ints/s */
1876                 if (bytes > 10000) {
1877                         /* this if handles the TSO accounting */
1878                         if (bytes/packets > 8000) {
1879                                 retval = bulk_latency;
1880                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1881                                 retval = bulk_latency;
1882                         } else if ((packets > 35)) {
1883                                 retval = lowest_latency;
1884                         }
1885                 } else if (bytes/packets > 2000) {
1886                         retval = bulk_latency;
1887                 } else if (packets <= 2 && bytes < 512) {
1888                         retval = lowest_latency;
1889                 }
1890                 break;
1891         case bulk_latency: /* 250 usec aka 4000 ints/s */
1892                 if (bytes > 25000) {
1893                         if (packets > 35) {
1894                                 retval = low_latency;
1895                         }
1896                 } else if (bytes < 6000) {
1897                         retval = low_latency;
1898                 }
1899                 break;
1900         }
1901
1902 update_itr_done:
1903         return retval;
1904 }
1905
1906 static void e1000_set_itr(struct e1000_adapter *adapter)
1907 {
1908         struct e1000_hw *hw = &adapter->hw;
1909         u16 current_itr;
1910         u32 new_itr = adapter->itr;
1911
1912         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1913         if (adapter->link_speed != SPEED_1000) {
1914                 current_itr = 0;
1915                 new_itr = 4000;
1916                 goto set_itr_now;
1917         }
1918
1919         adapter->tx_itr = e1000_update_itr(adapter,
1920                                     adapter->tx_itr,
1921                                     adapter->total_tx_packets,
1922                                     adapter->total_tx_bytes);
1923         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1924         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1925                 adapter->tx_itr = low_latency;
1926
1927         adapter->rx_itr = e1000_update_itr(adapter,
1928                                     adapter->rx_itr,
1929                                     adapter->total_rx_packets,
1930                                     adapter->total_rx_bytes);
1931         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1932         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1933                 adapter->rx_itr = low_latency;
1934
1935         current_itr = max(adapter->rx_itr, adapter->tx_itr);
1936
1937         switch (current_itr) {
1938         /* counts and packets in update_itr are dependent on these numbers */
1939         case lowest_latency:
1940                 new_itr = 70000;
1941                 break;
1942         case low_latency:
1943                 new_itr = 20000; /* aka hwitr = ~200 */
1944                 break;
1945         case bulk_latency:
1946                 new_itr = 4000;
1947                 break;
1948         default:
1949                 break;
1950         }
1951
1952 set_itr_now:
1953         if (new_itr != adapter->itr) {
1954                 /*
1955                  * this attempts to bias the interrupt rate towards Bulk
1956                  * by adding intermediate steps when interrupt rate is
1957                  * increasing
1958                  */
1959                 new_itr = new_itr > adapter->itr ?
1960                              min(adapter->itr + (new_itr >> 2), new_itr) :
1961                              new_itr;
1962                 adapter->itr = new_itr;
1963                 adapter->rx_ring->itr_val = new_itr;
1964                 if (adapter->msix_entries)
1965                         adapter->rx_ring->set_itr = 1;
1966                 else
1967                         ew32(ITR, 1000000000 / (new_itr * 256));
1968         }
1969 }
1970
1971 /**
1972  * e1000_alloc_queues - Allocate memory for all rings
1973  * @adapter: board private structure to initialize
1974  **/
1975 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1976 {
1977         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1978         if (!adapter->tx_ring)
1979                 goto err;
1980
1981         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1982         if (!adapter->rx_ring)
1983                 goto err;
1984
1985         return 0;
1986 err:
1987         e_err("Unable to allocate memory for queues\n");
1988         kfree(adapter->rx_ring);
1989         kfree(adapter->tx_ring);
1990         return -ENOMEM;
1991 }
1992
1993 /**
1994  * e1000_clean - NAPI Rx polling callback
1995  * @napi: struct associated with this polling callback
1996  * @budget: amount of packets driver is allowed to process this poll
1997  **/
1998 static int e1000_clean(struct napi_struct *napi, int budget)
1999 {
2000         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2001         struct e1000_hw *hw = &adapter->hw;
2002         struct net_device *poll_dev = adapter->netdev;
2003         int tx_cleaned = 0, work_done = 0;
2004
2005         adapter = netdev_priv(poll_dev);
2006
2007         if (adapter->msix_entries &&
2008             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2009                 goto clean_rx;
2010
2011         /*
2012          * e1000_clean is called per-cpu.  This lock protects
2013          * tx_ring from being cleaned by multiple cpus
2014          * simultaneously.  A failure obtaining the lock means
2015          * tx_ring is currently being cleaned anyway.
2016          */
2017         if (spin_trylock(&adapter->tx_queue_lock)) {
2018                 tx_cleaned = e1000_clean_tx_irq(adapter);
2019                 spin_unlock(&adapter->tx_queue_lock);
2020         }
2021
2022 clean_rx:
2023         adapter->clean_rx(adapter, &work_done, budget);
2024
2025         if (tx_cleaned)
2026                 work_done = budget;
2027
2028         /* If budget not fully consumed, exit the polling mode */
2029         if (work_done < budget) {
2030                 if (adapter->itr_setting & 3)
2031                         e1000_set_itr(adapter);
2032                 netif_rx_complete(poll_dev, napi);
2033                 if (adapter->msix_entries)
2034                         ew32(IMS, adapter->rx_ring->ims_val);
2035                 else
2036                         e1000_irq_enable(adapter);
2037         }
2038
2039         return work_done;
2040 }
2041
2042 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2043 {
2044         struct e1000_adapter *adapter = netdev_priv(netdev);
2045         struct e1000_hw *hw = &adapter->hw;
2046         u32 vfta, index;
2047
2048         /* don't update vlan cookie if already programmed */
2049         if ((adapter->hw.mng_cookie.status &
2050              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2051             (vid == adapter->mng_vlan_id))
2052                 return;
2053         /* add VID to filter table */
2054         index = (vid >> 5) & 0x7F;
2055         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2056         vfta |= (1 << (vid & 0x1F));
2057         e1000e_write_vfta(hw, index, vfta);
2058 }
2059
2060 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2061 {
2062         struct e1000_adapter *adapter = netdev_priv(netdev);
2063         struct e1000_hw *hw = &adapter->hw;
2064         u32 vfta, index;
2065
2066         if (!test_bit(__E1000_DOWN, &adapter->state))
2067                 e1000_irq_disable(adapter);
2068         vlan_group_set_device(adapter->vlgrp, vid, NULL);
2069
2070         if (!test_bit(__E1000_DOWN, &adapter->state))
2071                 e1000_irq_enable(adapter);
2072
2073         if ((adapter->hw.mng_cookie.status &
2074              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2075             (vid == adapter->mng_vlan_id)) {
2076                 /* release control to f/w */
2077                 e1000_release_hw_control(adapter);
2078                 return;
2079         }
2080
2081         /* remove VID from filter table */
2082         index = (vid >> 5) & 0x7F;
2083         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2084         vfta &= ~(1 << (vid & 0x1F));
2085         e1000e_write_vfta(hw, index, vfta);
2086 }
2087
2088 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2089 {
2090         struct net_device *netdev = adapter->netdev;
2091         u16 vid = adapter->hw.mng_cookie.vlan_id;
2092         u16 old_vid = adapter->mng_vlan_id;
2093
2094         if (!adapter->vlgrp)
2095                 return;
2096
2097         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2098                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2099                 if (adapter->hw.mng_cookie.status &
2100                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2101                         e1000_vlan_rx_add_vid(netdev, vid);
2102                         adapter->mng_vlan_id = vid;
2103                 }
2104
2105                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2106                                 (vid != old_vid) &&
2107                     !vlan_group_get_device(adapter->vlgrp, old_vid))
2108                         e1000_vlan_rx_kill_vid(netdev, old_vid);
2109         } else {
2110                 adapter->mng_vlan_id = vid;
2111         }
2112 }
2113
2114
2115 static void e1000_vlan_rx_register(struct net_device *netdev,
2116                                    struct vlan_group *grp)
2117 {
2118         struct e1000_adapter *adapter = netdev_priv(netdev);
2119         struct e1000_hw *hw = &adapter->hw;
2120         u32 ctrl, rctl;
2121
2122         if (!test_bit(__E1000_DOWN, &adapter->state))
2123                 e1000_irq_disable(adapter);
2124         adapter->vlgrp = grp;
2125
2126         if (grp) {
2127                 /* enable VLAN tag insert/strip */
2128                 ctrl = er32(CTRL);
2129                 ctrl |= E1000_CTRL_VME;
2130                 ew32(CTRL, ctrl);
2131
2132                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2133                         /* enable VLAN receive filtering */
2134                         rctl = er32(RCTL);
2135                         rctl &= ~E1000_RCTL_CFIEN;
2136                         ew32(RCTL, rctl);
2137                         e1000_update_mng_vlan(adapter);
2138                 }
2139         } else {
2140                 /* disable VLAN tag insert/strip */
2141                 ctrl = er32(CTRL);
2142                 ctrl &= ~E1000_CTRL_VME;
2143                 ew32(CTRL, ctrl);
2144
2145                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2146                         if (adapter->mng_vlan_id !=
2147                             (u16)E1000_MNG_VLAN_NONE) {
2148                                 e1000_vlan_rx_kill_vid(netdev,
2149                                                        adapter->mng_vlan_id);
2150                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2151                         }
2152                 }
2153         }
2154
2155         if (!test_bit(__E1000_DOWN, &adapter->state))
2156                 e1000_irq_enable(adapter);
2157 }
2158
2159 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2160 {
2161         u16 vid;
2162
2163         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2164
2165         if (!adapter->vlgrp)
2166                 return;
2167
2168         for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2169                 if (!vlan_group_get_device(adapter->vlgrp, vid))
2170                         continue;
2171                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2172         }
2173 }
2174
2175 static void e1000_init_manageability(struct e1000_adapter *adapter)
2176 {
2177         struct e1000_hw *hw = &adapter->hw;
2178         u32 manc, manc2h;
2179
2180         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2181                 return;
2182
2183         manc = er32(MANC);
2184
2185         /*
2186          * enable receiving management packets to the host. this will probably
2187          * generate destination unreachable messages from the host OS, but
2188          * the packets will be handled on SMBUS
2189          */
2190         manc |= E1000_MANC_EN_MNG2HOST;
2191         manc2h = er32(MANC2H);
2192 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2193 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2194         manc2h |= E1000_MNG2HOST_PORT_623;
2195         manc2h |= E1000_MNG2HOST_PORT_664;
2196         ew32(MANC2H, manc2h);
2197         ew32(MANC, manc);
2198 }
2199
2200 /**
2201  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2202  * @adapter: board private structure
2203  *
2204  * Configure the Tx unit of the MAC after a reset.
2205  **/
2206 static void e1000_configure_tx(struct e1000_adapter *adapter)
2207 {
2208         struct e1000_hw *hw = &adapter->hw;
2209         struct e1000_ring *tx_ring = adapter->tx_ring;
2210         u64 tdba;
2211         u32 tdlen, tctl, tipg, tarc;
2212         u32 ipgr1, ipgr2;
2213
2214         /* Setup the HW Tx Head and Tail descriptor pointers */
2215         tdba = tx_ring->dma;
2216         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2217         ew32(TDBAL, (tdba & DMA_32BIT_MASK));
2218         ew32(TDBAH, (tdba >> 32));
2219         ew32(TDLEN, tdlen);
2220         ew32(TDH, 0);
2221         ew32(TDT, 0);
2222         tx_ring->head = E1000_TDH;
2223         tx_ring->tail = E1000_TDT;
2224
2225         /* Set the default values for the Tx Inter Packet Gap timer */
2226         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2227         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2228         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2229
2230         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2231                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2232
2233         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2234         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2235         ew32(TIPG, tipg);
2236
2237         /* Set the Tx Interrupt Delay register */
2238         ew32(TIDV, adapter->tx_int_delay);
2239         /* Tx irq moderation */
2240         ew32(TADV, adapter->tx_abs_int_delay);
2241
2242         /* Program the Transmit Control Register */
2243         tctl = er32(TCTL);
2244         tctl &= ~E1000_TCTL_CT;
2245         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2246                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2247
2248         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2249                 tarc = er32(TARC(0));
2250                 /*
2251                  * set the speed mode bit, we'll clear it if we're not at
2252                  * gigabit link later
2253                  */
2254 #define SPEED_MODE_BIT (1 << 21)
2255                 tarc |= SPEED_MODE_BIT;
2256                 ew32(TARC(0), tarc);
2257         }
2258
2259         /* errata: program both queues to unweighted RR */
2260         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2261                 tarc = er32(TARC(0));
2262                 tarc |= 1;
2263                 ew32(TARC(0), tarc);
2264                 tarc = er32(TARC(1));
2265                 tarc |= 1;
2266                 ew32(TARC(1), tarc);
2267         }
2268
2269         e1000e_config_collision_dist(hw);
2270
2271         /* Setup Transmit Descriptor Settings for eop descriptor */
2272         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2273
2274         /* only set IDE if we are delaying interrupts using the timers */
2275         if (adapter->tx_int_delay)
2276                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2277
2278         /* enable Report Status bit */
2279         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2280
2281         ew32(TCTL, tctl);
2282
2283         adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2284 }
2285
2286 /**
2287  * e1000_setup_rctl - configure the receive control registers
2288  * @adapter: Board private structure
2289  **/
2290 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2291                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2292 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2293 {
2294         struct e1000_hw *hw = &adapter->hw;
2295         u32 rctl, rfctl;
2296         u32 psrctl = 0;
2297         u32 pages = 0;
2298
2299         /* Program MC offset vector base */
2300         rctl = er32(RCTL);
2301         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2302         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2303                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2304                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2305
2306         /* Do not Store bad packets */
2307         rctl &= ~E1000_RCTL_SBP;
2308
2309         /* Enable Long Packet receive */
2310         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2311                 rctl &= ~E1000_RCTL_LPE;
2312         else
2313                 rctl |= E1000_RCTL_LPE;
2314
2315         /* Some systems expect that the CRC is included in SMBUS traffic. The
2316          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2317          * host memory when this is enabled
2318          */
2319         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2320                 rctl |= E1000_RCTL_SECRC;
2321
2322         /* Setup buffer sizes */
2323         rctl &= ~E1000_RCTL_SZ_4096;
2324         rctl |= E1000_RCTL_BSEX;
2325         switch (adapter->rx_buffer_len) {
2326         case 256:
2327                 rctl |= E1000_RCTL_SZ_256;
2328                 rctl &= ~E1000_RCTL_BSEX;
2329                 break;
2330         case 512:
2331                 rctl |= E1000_RCTL_SZ_512;
2332                 rctl &= ~E1000_RCTL_BSEX;
2333                 break;
2334         case 1024:
2335                 rctl |= E1000_RCTL_SZ_1024;
2336                 rctl &= ~E1000_RCTL_BSEX;
2337                 break;
2338         case 2048:
2339         default:
2340                 rctl |= E1000_RCTL_SZ_2048;
2341                 rctl &= ~E1000_RCTL_BSEX;
2342                 break;
2343         case 4096:
2344                 rctl |= E1000_RCTL_SZ_4096;
2345                 break;
2346         case 8192:
2347                 rctl |= E1000_RCTL_SZ_8192;
2348                 break;
2349         case 16384:
2350                 rctl |= E1000_RCTL_SZ_16384;
2351                 break;
2352         }
2353
2354         /*
2355          * 82571 and greater support packet-split where the protocol
2356          * header is placed in skb->data and the packet data is
2357          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2358          * In the case of a non-split, skb->data is linearly filled,
2359          * followed by the page buffers.  Therefore, skb->data is
2360          * sized to hold the largest protocol header.
2361          *
2362          * allocations using alloc_page take too long for regular MTU
2363          * so only enable packet split for jumbo frames
2364          *
2365          * Using pages when the page size is greater than 16k wastes
2366          * a lot of memory, since we allocate 3 pages at all times
2367          * per packet.
2368          */
2369         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2370         if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2371             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2372                 adapter->rx_ps_pages = pages;
2373         else
2374                 adapter->rx_ps_pages = 0;
2375
2376         if (adapter->rx_ps_pages) {
2377                 /* Configure extra packet-split registers */
2378                 rfctl = er32(RFCTL);
2379                 rfctl |= E1000_RFCTL_EXTEN;
2380                 /*
2381                  * disable packet split support for IPv6 extension headers,
2382                  * because some malformed IPv6 headers can hang the Rx
2383                  */
2384                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2385                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2386
2387                 ew32(RFCTL, rfctl);
2388
2389                 /* Enable Packet split descriptors */
2390                 rctl |= E1000_RCTL_DTYP_PS;
2391
2392                 psrctl |= adapter->rx_ps_bsize0 >>
2393                         E1000_PSRCTL_BSIZE0_SHIFT;
2394
2395                 switch (adapter->rx_ps_pages) {
2396                 case 3:
2397                         psrctl |= PAGE_SIZE <<
2398                                 E1000_PSRCTL_BSIZE3_SHIFT;
2399                 case 2:
2400                         psrctl |= PAGE_SIZE <<
2401                                 E1000_PSRCTL_BSIZE2_SHIFT;
2402                 case 1:
2403                         psrctl |= PAGE_SIZE >>
2404                                 E1000_PSRCTL_BSIZE1_SHIFT;
2405                         break;
2406                 }
2407
2408                 ew32(PSRCTL, psrctl);
2409         }
2410
2411         ew32(RCTL, rctl);
2412         /* just started the receive unit, no need to restart */
2413         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2414 }
2415
2416 /**
2417  * e1000_configure_rx - Configure Receive Unit after Reset
2418  * @adapter: board private structure
2419  *
2420  * Configure the Rx unit of the MAC after a reset.
2421  **/
2422 static void e1000_configure_rx(struct e1000_adapter *adapter)
2423 {
2424         struct e1000_hw *hw = &adapter->hw;
2425         struct e1000_ring *rx_ring = adapter->rx_ring;
2426         u64 rdba;
2427         u32 rdlen, rctl, rxcsum, ctrl_ext;
2428
2429         if (adapter->rx_ps_pages) {
2430                 /* this is a 32 byte descriptor */
2431                 rdlen = rx_ring->count *
2432                         sizeof(union e1000_rx_desc_packet_split);
2433                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2434                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2435         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2436                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2437                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2438                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2439         } else {
2440                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2441                 adapter->clean_rx = e1000_clean_rx_irq;
2442                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2443         }
2444
2445         /* disable receives while setting up the descriptors */
2446         rctl = er32(RCTL);
2447         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2448         e1e_flush();
2449         msleep(10);
2450
2451         /* set the Receive Delay Timer Register */
2452         ew32(RDTR, adapter->rx_int_delay);
2453
2454         /* irq moderation */
2455         ew32(RADV, adapter->rx_abs_int_delay);
2456         if (adapter->itr_setting != 0)
2457                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2458
2459         ctrl_ext = er32(CTRL_EXT);
2460         /* Reset delay timers after every interrupt */
2461         ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2462         /* Auto-Mask interrupts upon ICR access */
2463         ctrl_ext |= E1000_CTRL_EXT_IAME;
2464         ew32(IAM, 0xffffffff);
2465         ew32(CTRL_EXT, ctrl_ext);
2466         e1e_flush();
2467
2468         /*
2469          * Setup the HW Rx Head and Tail Descriptor Pointers and
2470          * the Base and Length of the Rx Descriptor Ring
2471          */
2472         rdba = rx_ring->dma;
2473         ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2474         ew32(RDBAH, (rdba >> 32));
2475         ew32(RDLEN, rdlen);
2476         ew32(RDH, 0);
2477         ew32(RDT, 0);
2478         rx_ring->head = E1000_RDH;
2479         rx_ring->tail = E1000_RDT;
2480
2481         /* Enable Receive Checksum Offload for TCP and UDP */
2482         rxcsum = er32(RXCSUM);
2483         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2484                 rxcsum |= E1000_RXCSUM_TUOFL;
2485
2486                 /*
2487                  * IPv4 payload checksum for UDP fragments must be
2488                  * used in conjunction with packet-split.
2489                  */
2490                 if (adapter->rx_ps_pages)
2491                         rxcsum |= E1000_RXCSUM_IPPCSE;
2492         } else {
2493                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2494                 /* no need to clear IPPCSE as it defaults to 0 */
2495         }
2496         ew32(RXCSUM, rxcsum);
2497
2498         /*
2499          * Enable early receives on supported devices, only takes effect when
2500          * packet size is equal or larger than the specified value (in 8 byte
2501          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2502          */
2503         if ((adapter->flags & FLAG_HAS_ERT) &&
2504             (adapter->netdev->mtu > ETH_DATA_LEN)) {
2505                 u32 rxdctl = er32(RXDCTL(0));
2506                 ew32(RXDCTL(0), rxdctl | 0x3);
2507                 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2508                 /*
2509                  * With jumbo frames and early-receive enabled, excessive
2510                  * C4->C2 latencies result in dropped transactions.
2511                  */
2512                 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2513                                           e1000e_driver_name, 55);
2514         } else {
2515                 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2516                                           e1000e_driver_name,
2517                                           PM_QOS_DEFAULT_VALUE);
2518         }
2519
2520         /* Enable Receives */
2521         ew32(RCTL, rctl);
2522 }
2523
2524 /**
2525  *  e1000_update_mc_addr_list - Update Multicast addresses
2526  *  @hw: pointer to the HW structure
2527  *  @mc_addr_list: array of multicast addresses to program
2528  *  @mc_addr_count: number of multicast addresses to program
2529  *  @rar_used_count: the first RAR register free to program
2530  *  @rar_count: total number of supported Receive Address Registers
2531  *
2532  *  Updates the Receive Address Registers and Multicast Table Array.
2533  *  The caller must have a packed mc_addr_list of multicast addresses.
2534  *  The parameter rar_count will usually be hw->mac.rar_entry_count
2535  *  unless there are workarounds that change this.  Currently no func pointer
2536  *  exists and all implementations are handled in the generic version of this
2537  *  function.
2538  **/
2539 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2540                                       u32 mc_addr_count, u32 rar_used_count,
2541                                       u32 rar_count)
2542 {
2543         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2544                                         rar_used_count, rar_count);
2545 }
2546
2547 /**
2548  * e1000_set_multi - Multicast and Promiscuous mode set
2549  * @netdev: network interface device structure
2550  *
2551  * The set_multi entry point is called whenever the multicast address
2552  * list or the network interface flags are updated.  This routine is
2553  * responsible for configuring the hardware for proper multicast,
2554  * promiscuous mode, and all-multi behavior.
2555  **/
2556 static void e1000_set_multi(struct net_device *netdev)
2557 {
2558         struct e1000_adapter *adapter = netdev_priv(netdev);
2559         struct e1000_hw *hw = &adapter->hw;
2560         struct e1000_mac_info *mac = &hw->mac;
2561         struct dev_mc_list *mc_ptr;
2562         u8  *mta_list;
2563         u32 rctl;
2564         int i;
2565
2566         /* Check for Promiscuous and All Multicast modes */
2567
2568         rctl = er32(RCTL);
2569
2570         if (netdev->flags & IFF_PROMISC) {
2571                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2572                 rctl &= ~E1000_RCTL_VFE;
2573         } else {
2574                 if (netdev->flags & IFF_ALLMULTI) {
2575                         rctl |= E1000_RCTL_MPE;
2576                         rctl &= ~E1000_RCTL_UPE;
2577                 } else {
2578                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2579                 }
2580                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2581                         rctl |= E1000_RCTL_VFE;
2582         }
2583
2584         ew32(RCTL, rctl);
2585
2586         if (netdev->mc_count) {
2587                 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2588                 if (!mta_list)
2589                         return;
2590
2591                 /* prepare a packed array of only addresses. */
2592                 mc_ptr = netdev->mc_list;
2593
2594                 for (i = 0; i < netdev->mc_count; i++) {
2595                         if (!mc_ptr)
2596                                 break;
2597                         memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2598                                ETH_ALEN);
2599                         mc_ptr = mc_ptr->next;
2600                 }
2601
2602                 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2603                                           mac->rar_entry_count);
2604                 kfree(mta_list);
2605         } else {
2606                 /*
2607                  * if we're called from probe, we might not have
2608                  * anything to do here, so clear out the list
2609                  */
2610                 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2611         }
2612 }
2613
2614 /**
2615  * e1000_configure - configure the hardware for Rx and Tx
2616  * @adapter: private board structure
2617  **/
2618 static void e1000_configure(struct e1000_adapter *adapter)
2619 {
2620         e1000_set_multi(adapter->netdev);
2621
2622         e1000_restore_vlan(adapter);
2623         e1000_init_manageability(adapter);
2624
2625         e1000_configure_tx(adapter);
2626         e1000_setup_rctl(adapter);
2627         e1000_configure_rx(adapter);
2628         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2629 }
2630
2631 /**
2632  * e1000e_power_up_phy - restore link in case the phy was powered down
2633  * @adapter: address of board private structure
2634  *
2635  * The phy may be powered down to save power and turn off link when the
2636  * driver is unloaded and wake on lan is not enabled (among others)
2637  * *** this routine MUST be followed by a call to e1000e_reset ***
2638  **/
2639 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2640 {
2641         u16 mii_reg = 0;
2642
2643         /* Just clear the power down bit to wake the phy back up */
2644         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2645                 /*
2646                  * According to the manual, the phy will retain its
2647                  * settings across a power-down/up cycle
2648                  */
2649                 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2650                 mii_reg &= ~MII_CR_POWER_DOWN;
2651                 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2652         }
2653
2654         adapter->hw.mac.ops.setup_link(&adapter->hw);
2655 }
2656
2657 /**
2658  * e1000_power_down_phy - Power down the PHY
2659  *
2660  * Power down the PHY so no link is implied when interface is down
2661  * The PHY cannot be powered down is management or WoL is active
2662  */
2663 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2664 {
2665         struct e1000_hw *hw = &adapter->hw;
2666         u16 mii_reg;
2667
2668         /* WoL is enabled */
2669         if (adapter->wol)
2670                 return;
2671
2672         /* non-copper PHY? */
2673         if (adapter->hw.phy.media_type != e1000_media_type_copper)
2674                 return;
2675
2676         /* reset is blocked because of a SoL/IDER session */
2677         if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2678                 return;
2679
2680         /* manageability (AMT) is enabled */
2681         if (er32(MANC) & E1000_MANC_SMBUS_EN)
2682                 return;
2683
2684         /* power down the PHY */
2685         e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2686         mii_reg |= MII_CR_POWER_DOWN;
2687         e1e_wphy(hw, PHY_CONTROL, mii_reg);
2688         mdelay(1);
2689 }
2690
2691 /**
2692  * e1000e_reset - bring the hardware into a known good state
2693  *
2694  * This function boots the hardware and enables some settings that
2695  * require a configuration cycle of the hardware - those cannot be
2696  * set/changed during runtime. After reset the device needs to be
2697  * properly configured for Rx, Tx etc.
2698  */
2699 void e1000e_reset(struct e1000_adapter *adapter)
2700 {
2701         struct e1000_mac_info *mac = &adapter->hw.mac;
2702         struct e1000_fc_info *fc = &adapter->hw.fc;
2703         struct e1000_hw *hw = &adapter->hw;
2704         u32 tx_space, min_tx_space, min_rx_space;
2705         u32 pba = adapter->pba;
2706         u16 hwm;
2707
2708         /* reset Packet Buffer Allocation to default */
2709         ew32(PBA, pba);
2710
2711         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2712                 /*
2713                  * To maintain wire speed transmits, the Tx FIFO should be
2714                  * large enough to accommodate two full transmit packets,
2715                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2716                  * the Rx FIFO should be large enough to accommodate at least
2717                  * one full receive packet and is similarly rounded up and
2718                  * expressed in KB.
2719                  */
2720                 pba = er32(PBA);
2721                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2722                 tx_space = pba >> 16;
2723                 /* lower 16 bits has Rx packet buffer allocation size in KB */
2724                 pba &= 0xffff;
2725                 /*
2726                  * the Tx fifo also stores 16 bytes of information about the tx
2727                  * but don't include ethernet FCS because hardware appends it
2728                  */
2729                 min_tx_space = (adapter->max_frame_size +
2730                                 sizeof(struct e1000_tx_desc) -
2731                                 ETH_FCS_LEN) * 2;
2732                 min_tx_space = ALIGN(min_tx_space, 1024);
2733                 min_tx_space >>= 10;
2734                 /* software strips receive CRC, so leave room for it */
2735                 min_rx_space = adapter->max_frame_size;
2736                 min_rx_space = ALIGN(min_rx_space, 1024);
2737                 min_rx_space >>= 10;
2738
2739                 /*
2740                  * If current Tx allocation is less than the min Tx FIFO size,
2741                  * and the min Tx FIFO size is less than the current Rx FIFO
2742                  * allocation, take space away from current Rx allocation
2743                  */
2744                 if ((tx_space < min_tx_space) &&
2745                     ((min_tx_space - tx_space) < pba)) {
2746                         pba -= min_tx_space - tx_space;
2747
2748                         /*
2749                          * if short on Rx space, Rx wins and must trump tx
2750                          * adjustment or use Early Receive if available
2751                          */
2752                         if ((pba < min_rx_space) &&
2753                             (!(adapter->flags & FLAG_HAS_ERT)))
2754                                 /* ERT enabled in e1000_configure_rx */
2755                                 pba = min_rx_space;
2756                 }
2757
2758                 ew32(PBA, pba);
2759         }
2760
2761
2762         /*
2763          * flow control settings
2764          *
2765          * The high water mark must be low enough to fit one full frame
2766          * (or the size used for early receive) above it in the Rx FIFO.
2767          * Set it to the lower of:
2768          * - 90% of the Rx FIFO size, and
2769          * - the full Rx FIFO size minus the early receive size (for parts
2770          *   with ERT support assuming ERT set to E1000_ERT_2048), or
2771          * - the full Rx FIFO size minus one full frame
2772          */
2773         if (adapter->flags & FLAG_HAS_ERT)
2774                 hwm = min(((pba << 10) * 9 / 10),
2775                           ((pba << 10) - (E1000_ERT_2048 << 3)));
2776         else
2777                 hwm = min(((pba << 10) * 9 / 10),
2778                           ((pba << 10) - adapter->max_frame_size));
2779
2780         fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2781         fc->low_water = fc->high_water - 8;
2782
2783         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2784                 fc->pause_time = 0xFFFF;
2785         else
2786                 fc->pause_time = E1000_FC_PAUSE_TIME;
2787         fc->send_xon = 1;
2788         fc->type = fc->original_type;
2789
2790         /* Allow time for pending master requests to run */
2791         mac->ops.reset_hw(hw);
2792
2793         /*
2794          * For parts with AMT enabled, let the firmware know
2795          * that the network interface is in control
2796          */
2797         if (adapter->flags & FLAG_HAS_AMT)
2798                 e1000_get_hw_control(adapter);
2799
2800         ew32(WUC, 0);
2801
2802         if (mac->ops.init_hw(hw))
2803                 e_err("Hardware Error\n");
2804
2805         e1000_update_mng_vlan(adapter);
2806
2807         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2808         ew32(VET, ETH_P_8021Q);
2809
2810         e1000e_reset_adaptive(hw);
2811         e1000_get_phy_info(hw);
2812
2813         if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2814                 u16 phy_data = 0;
2815                 /*
2816                  * speed up time to link by disabling smart power down, ignore
2817                  * the return value of this function because there is nothing
2818                  * different we would do if it failed
2819                  */
2820                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2821                 phy_data &= ~IGP02E1000_PM_SPD;
2822                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2823         }
2824 }
2825
2826 int e1000e_up(struct e1000_adapter *adapter)
2827 {
2828         struct e1000_hw *hw = &adapter->hw;
2829
2830         /* hardware has been reset, we need to reload some things */
2831         e1000_configure(adapter);
2832
2833         clear_bit(__E1000_DOWN, &adapter->state);
2834
2835         napi_enable(&adapter->napi);
2836         if (adapter->msix_entries)
2837                 e1000_configure_msix(adapter);
2838         e1000_irq_enable(adapter);
2839
2840         /* fire a link change interrupt to start the watchdog */
2841         ew32(ICS, E1000_ICS_LSC);
2842         return 0;
2843 }
2844
2845 void e1000e_down(struct e1000_adapter *adapter)
2846 {
2847         struct net_device *netdev = adapter->netdev;
2848         struct e1000_hw *hw = &adapter->hw;
2849         u32 tctl, rctl;
2850
2851         /*
2852          * signal that we're down so the interrupt handler does not
2853          * reschedule our watchdog timer
2854          */
2855         set_bit(__E1000_DOWN, &adapter->state);
2856
2857         /* disable receives in the hardware */
2858         rctl = er32(RCTL);
2859         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2860         /* flush and sleep below */
2861
2862         netif_tx_stop_all_queues(netdev);
2863
2864         /* disable transmits in the hardware */
2865         tctl = er32(TCTL);
2866         tctl &= ~E1000_TCTL_EN;
2867         ew32(TCTL, tctl);
2868         /* flush both disables and wait for them to finish */
2869         e1e_flush();
2870         msleep(10);
2871
2872         napi_disable(&adapter->napi);
2873         e1000_irq_disable(adapter);
2874
2875         del_timer_sync(&adapter->watchdog_timer);
2876         del_timer_sync(&adapter->phy_info_timer);
2877
2878         netdev->tx_queue_len = adapter->tx_queue_len;
2879         netif_carrier_off(netdev);
2880         adapter->link_speed = 0;
2881         adapter->link_duplex = 0;
2882
2883         if (!pci_channel_offline(adapter->pdev))
2884                 e1000e_reset(adapter);
2885         e1000_clean_tx_ring(adapter);
2886         e1000_clean_rx_ring(adapter);
2887
2888         /*
2889          * TODO: for power management, we could drop the link and
2890          * pci_disable_device here.
2891          */
2892 }
2893
2894 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2895 {
2896         might_sleep();
2897         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2898                 msleep(1);
2899         e1000e_down(adapter);
2900         e1000e_up(adapter);
2901         clear_bit(__E1000_RESETTING, &adapter->state);
2902 }
2903
2904 /**
2905  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2906  * @adapter: board private structure to initialize
2907  *
2908  * e1000_sw_init initializes the Adapter private data structure.
2909  * Fields are initialized based on PCI device information and
2910  * OS network device settings (MTU size).
2911  **/
2912 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2913 {
2914         struct net_device *netdev = adapter->netdev;
2915
2916         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2917         adapter->rx_ps_bsize0 = 128;
2918         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2919         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2920
2921         e1000e_set_interrupt_capability(adapter);
2922
2923         if (e1000_alloc_queues(adapter))
2924                 return -ENOMEM;
2925
2926         spin_lock_init(&adapter->tx_queue_lock);
2927
2928         /* Explicitly disable IRQ since the NIC can be in any state. */
2929         e1000_irq_disable(adapter);
2930
2931         set_bit(__E1000_DOWN, &adapter->state);
2932         return 0;
2933 }
2934
2935 /**
2936  * e1000_intr_msi_test - Interrupt Handler
2937  * @irq: interrupt number
2938  * @data: pointer to a network interface device structure
2939  **/
2940 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2941 {
2942         struct net_device *netdev = data;
2943         struct e1000_adapter *adapter = netdev_priv(netdev);
2944         struct e1000_hw *hw = &adapter->hw;
2945         u32 icr = er32(ICR);
2946
2947         e_dbg("%s: icr is %08X\n", netdev->name, icr);
2948         if (icr & E1000_ICR_RXSEQ) {
2949                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2950                 wmb();
2951         }
2952
2953         return IRQ_HANDLED;
2954 }
2955
2956 /**
2957  * e1000_test_msi_interrupt - Returns 0 for successful test
2958  * @adapter: board private struct
2959  *
2960  * code flow taken from tg3.c
2961  **/
2962 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2963 {
2964         struct net_device *netdev = adapter->netdev;
2965         struct e1000_hw *hw = &adapter->hw;
2966         int err;
2967
2968         /* poll_enable hasn't been called yet, so don't need disable */
2969         /* clear any pending events */
2970         er32(ICR);
2971
2972         /* free the real vector and request a test handler */
2973         e1000_free_irq(adapter);
2974         e1000e_reset_interrupt_capability(adapter);
2975
2976         /* Assume that the test fails, if it succeeds then the test
2977          * MSI irq handler will unset this flag */
2978         adapter->flags |= FLAG_MSI_TEST_FAILED;
2979
2980         err = pci_enable_msi(adapter->pdev);
2981         if (err)
2982                 goto msi_test_failed;
2983
2984         err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
2985                           netdev->name, netdev);
2986         if (err) {
2987                 pci_disable_msi(adapter->pdev);
2988                 goto msi_test_failed;
2989         }
2990
2991         wmb();
2992
2993         e1000_irq_enable(adapter);
2994
2995         /* fire an unusual interrupt on the test handler */
2996         ew32(ICS, E1000_ICS_RXSEQ);
2997         e1e_flush();
2998         msleep(50);
2999
3000         e1000_irq_disable(adapter);
3001
3002         rmb();
3003
3004         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3005                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3006                 err = -EIO;
3007                 e_info("MSI interrupt test failed!\n");
3008         }
3009
3010         free_irq(adapter->pdev->irq, netdev);
3011         pci_disable_msi(adapter->pdev);
3012
3013         if (err == -EIO)
3014                 goto msi_test_failed;
3015
3016         /* okay so the test worked, restore settings */
3017         e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
3018 msi_test_failed:
3019         e1000e_set_interrupt_capability(adapter);
3020         e1000_request_irq(adapter);
3021         return err;
3022 }
3023
3024 /**
3025  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3026  * @adapter: board private struct
3027  *
3028  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3029  **/
3030 static int e1000_test_msi(struct e1000_adapter *adapter)
3031 {
3032         int err;
3033         u16 pci_cmd;
3034
3035         if (!(adapter->flags & FLAG_MSI_ENABLED))
3036                 return 0;
3037
3038         /* disable SERR in case the MSI write causes a master abort */
3039         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3040         pci_write_config_word(adapter->pdev, PCI_COMMAND,
3041                               pci_cmd & ~PCI_COMMAND_SERR);
3042
3043         err = e1000_test_msi_interrupt(adapter);
3044
3045         /* restore previous setting of command word */
3046         pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3047
3048         /* success ! */
3049         if (!err)
3050                 return 0;
3051
3052         /* EIO means MSI test failed */
3053         if (err != -EIO)
3054                 return err;
3055
3056         /* back to INTx mode */
3057         e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3058
3059         e1000_free_irq(adapter);
3060
3061         err = e1000_request_irq(adapter);
3062
3063         return err;
3064 }
3065
3066 /**
3067  * e1000_open - Called when a network interface is made active
3068  * @netdev: network interface device structure
3069  *
3070  * Returns 0 on success, negative value on failure
3071  *
3072  * The open entry point is called when a network interface is made
3073  * active by the system (IFF_UP).  At this point all resources needed
3074  * for transmit and receive operations are allocated, the interrupt
3075  * handler is registered with the OS, the watchdog timer is started,
3076  * and the stack is notified that the interface is ready.
3077  **/
3078 static int e1000_open(struct net_device *netdev)
3079 {
3080         struct e1000_adapter *adapter = netdev_priv(netdev);
3081         struct e1000_hw *hw = &adapter->hw;
3082         int err;
3083
3084         /* disallow open during test */
3085         if (test_bit(__E1000_TESTING, &adapter->state))
3086                 return -EBUSY;
3087
3088         /* allocate transmit descriptors */
3089         err = e1000e_setup_tx_resources(adapter);
3090         if (err)
3091                 goto err_setup_tx;
3092
3093         /* allocate receive descriptors */
3094         err = e1000e_setup_rx_resources(adapter);
3095         if (err)
3096                 goto err_setup_rx;
3097
3098         e1000e_power_up_phy(adapter);
3099
3100         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3101         if ((adapter->hw.mng_cookie.status &
3102              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3103                 e1000_update_mng_vlan(adapter);
3104
3105         /*
3106          * If AMT is enabled, let the firmware know that the network
3107          * interface is now open
3108          */
3109         if (adapter->flags & FLAG_HAS_AMT)
3110                 e1000_get_hw_control(adapter);
3111
3112         /*
3113          * before we allocate an interrupt, we must be ready to handle it.
3114          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3115          * as soon as we call pci_request_irq, so we have to setup our
3116          * clean_rx handler before we do so.
3117          */
3118         e1000_configure(adapter);
3119
3120         err = e1000_request_irq(adapter);
3121         if (err)
3122                 goto err_req_irq;
3123
3124         /*
3125          * Work around PCIe errata with MSI interrupts causing some chipsets to
3126          * ignore e1000e MSI messages, which means we need to test our MSI
3127          * interrupt now
3128          */
3129         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3130                 err = e1000_test_msi(adapter);
3131                 if (err) {
3132                         e_err("Interrupt allocation failed\n");
3133                         goto err_req_irq;
3134                 }
3135         }
3136
3137         /* From here on the code is the same as e1000e_up() */
3138         clear_bit(__E1000_DOWN, &adapter->state);
3139
3140         napi_enable(&adapter->napi);
3141
3142         e1000_irq_enable(adapter);
3143
3144         netif_tx_start_all_queues(netdev);
3145
3146         /* fire a link status change interrupt to start the watchdog */
3147         ew32(ICS, E1000_ICS_LSC);
3148
3149         return 0;
3150
3151 err_req_irq:
3152         e1000_release_hw_control(adapter);
3153         e1000_power_down_phy(adapter);
3154         e1000e_free_rx_resources(adapter);
3155 err_setup_rx:
3156         e1000e_free_tx_resources(adapter);
3157 err_setup_tx:
3158         e1000e_reset(adapter);
3159
3160         return err;
3161 }
3162
3163 /**
3164  * e1000_close - Disables a network interface
3165  * @netdev: network interface device structure
3166  *
3167  * Returns 0, this is not allowed to fail
3168  *
3169  * The close entry point is called when an interface is de-activated
3170  * by the OS.  The hardware is still under the drivers control, but
3171  * needs to be disabled.  A global MAC reset is issued to stop the
3172  * hardware, and all transmit and receive resources are freed.
3173  **/
3174 static int e1000_close(struct net_device *netdev)
3175 {
3176         struct e1000_adapter *adapter = netdev_priv(netdev);
3177
3178         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3179         e1000e_down(adapter);
3180         e1000_power_down_phy(adapter);
3181         e1000_free_irq(adapter);
3182
3183         e1000e_free_tx_resources(adapter);
3184         e1000e_free_rx_resources(adapter);
3185
3186         /*
3187          * kill manageability vlan ID if supported, but not if a vlan with
3188          * the same ID is registered on the host OS (let 8021q kill it)
3189          */
3190         if ((adapter->hw.mng_cookie.status &
3191                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3192              !(adapter->vlgrp &&
3193                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3194                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3195
3196         /*
3197          * If AMT is enabled, let the firmware know that the network
3198          * interface is now closed
3199          */
3200         if (adapter->flags & FLAG_HAS_AMT)
3201                 e1000_release_hw_control(adapter);
3202
3203         return 0;
3204 }
3205 /**
3206  * e1000_set_mac - Change the Ethernet Address of the NIC
3207  * @netdev: network interface device structure
3208  * @p: pointer to an address structure
3209  *
3210  * Returns 0 on success, negative on failure
3211  **/
3212 static int e1000_set_mac(struct net_device *netdev, void *p)
3213 {
3214         struct e1000_adapter *adapter = netdev_priv(netdev);
3215         struct sockaddr *addr = p;
3216
3217         if (!is_valid_ether_addr(addr->sa_data))
3218                 return -EADDRNOTAVAIL;
3219
3220         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3221         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3222
3223         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3224
3225         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3226                 /* activate the work around */
3227                 e1000e_set_laa_state_82571(&adapter->hw, 1);
3228
3229                 /*
3230                  * Hold a copy of the LAA in RAR[14] This is done so that
3231                  * between the time RAR[0] gets clobbered  and the time it
3232                  * gets fixed (in e1000_watchdog), the actual LAA is in one
3233                  * of the RARs and no incoming packets directed to this port
3234                  * are dropped. Eventually the LAA will be in RAR[0] and
3235                  * RAR[14]
3236                  */
3237                 e1000e_rar_set(&adapter->hw,
3238                               adapter->hw.mac.addr,
3239                               adapter->hw.mac.rar_entry_count - 1);
3240         }
3241
3242         return 0;
3243 }
3244
3245 /**
3246  * e1000e_update_phy_task - work thread to update phy
3247  * @work: pointer to our work struct
3248  *
3249  * this worker thread exists because we must acquire a
3250  * semaphore to read the phy, which we could msleep while
3251  * waiting for it, and we can't msleep in a timer.
3252  **/
3253 static void e1000e_update_phy_task(struct work_struct *work)
3254 {
3255         struct e1000_adapter *adapter = container_of(work,
3256                                         struct e1000_adapter, update_phy_task);
3257         e1000_get_phy_info(&adapter->hw);
3258 }
3259
3260 /*
3261  * Need to wait a few seconds after link up to get diagnostic information from
3262  * the phy
3263  */
3264 static void e1000_update_phy_info(unsigned long data)
3265 {
3266         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3267         schedule_work(&adapter->update_phy_task);
3268 }
3269
3270 /**
3271  * e1000e_update_stats - Update the board statistics counters
3272  * @adapter: board private structure
3273  **/
3274 void e1000e_update_stats(struct e1000_adapter *adapter)
3275 {
3276         struct e1000_hw *hw = &adapter->hw;
3277         struct pci_dev *pdev = adapter->pdev;
3278
3279         /*
3280          * Prevent stats update while adapter is being reset, or if the pci
3281          * connection is down.
3282          */
3283         if (adapter->link_speed == 0)
3284                 return;
3285         if (pci_channel_offline(pdev))
3286                 return;
3287
3288         adapter->stats.crcerrs += er32(CRCERRS);
3289         adapter->stats.gprc += er32(GPRC);
3290         adapter->stats.gorc += er32(GORCL);
3291         er32(GORCH); /* Clear gorc */
3292         adapter->stats.bprc += er32(BPRC);
3293         adapter->stats.mprc += er32(MPRC);
3294         adapter->stats.roc += er32(ROC);
3295
3296         adapter->stats.mpc += er32(MPC);
3297         adapter->stats.scc += er32(SCC);
3298         adapter->stats.ecol += er32(ECOL);
3299         adapter->stats.mcc += er32(MCC);
3300         adapter->stats.latecol += er32(LATECOL);
3301         adapter->stats.dc += er32(DC);
3302         adapter->stats.xonrxc += er32(XONRXC);
3303         adapter->stats.xontxc += er32(XONTXC);
3304         adapter->stats.xoffrxc += er32(XOFFRXC);
3305         adapter->stats.xofftxc += er32(XOFFTXC);
3306         adapter->stats.gptc += er32(GPTC);
3307         adapter->stats.gotc += er32(GOTCL);
3308         er32(GOTCH); /* Clear gotc */
3309         adapter->stats.rnbc += er32(RNBC);
3310         adapter->stats.ruc += er32(RUC);
3311
3312         adapter->stats.mptc += er32(MPTC);
3313         adapter->stats.bptc += er32(BPTC);
3314
3315         /* used for adaptive IFS */
3316
3317         hw->mac.tx_packet_delta = er32(TPT);
3318         adapter->stats.tpt += hw->mac.tx_packet_delta;
3319         hw->mac.collision_delta = er32(COLC);
3320         adapter->stats.colc += hw->mac.collision_delta;
3321
3322         adapter->stats.algnerrc += er32(ALGNERRC);
3323         adapter->stats.rxerrc += er32(RXERRC);
3324         if (hw->mac.type != e1000_82574)
3325                 adapter->stats.tncrs += er32(TNCRS);
3326         adapter->stats.cexterr += er32(CEXTERR);
3327         adapter->stats.tsctc += er32(TSCTC);
3328         adapter->stats.tsctfc += er32(TSCTFC);
3329
3330         /* Fill out the OS statistics structure */
3331         adapter->net_stats.multicast = adapter->stats.mprc;
3332         adapter->net_stats.collisions = adapter->stats.colc;
3333
3334         /* Rx Errors */
3335
3336         /*
3337          * RLEC on some newer hardware can be incorrect so build
3338          * our own version based on RUC and ROC
3339          */
3340         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3341                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3342                 adapter->stats.ruc + adapter->stats.roc +
3343                 adapter->stats.cexterr;
3344         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3345                                               adapter->stats.roc;
3346         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3347         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3348         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3349
3350         /* Tx Errors */
3351         adapter->net_stats.tx_errors = adapter->stats.ecol +
3352                                        adapter->stats.latecol;
3353         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3354         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3355         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3356
3357         /* Tx Dropped needs to be maintained elsewhere */
3358
3359         /* Management Stats */
3360         adapter->stats.mgptc += er32(MGTPTC);
3361         adapter->stats.mgprc += er32(MGTPRC);
3362         adapter->stats.mgpdc += er32(MGTPDC);
3363 }
3364
3365 /**
3366  * e1000_phy_read_status - Update the PHY register status snapshot
3367  * @adapter: board private structure
3368  **/
3369 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3370 {
3371         struct e1000_hw *hw = &adapter->hw;
3372         struct e1000_phy_regs *phy = &adapter->phy_regs;
3373         int ret_val;
3374
3375         if ((er32(STATUS) & E1000_STATUS_LU) &&
3376             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3377                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3378                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3379                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3380                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3381                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3382                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3383                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3384                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3385                 if (ret_val)
3386                         e_warn("Error reading PHY register\n");
3387         } else {
3388                 /*
3389                  * Do not read PHY registers if link is not up
3390                  * Set values to typical power-on defaults
3391                  */
3392                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3393                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3394                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3395                              BMSR_ERCAP);
3396                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3397                                   ADVERTISE_ALL | ADVERTISE_CSMA);
3398                 phy->lpa = 0;
3399                 phy->expansion = EXPANSION_ENABLENPAGE;
3400                 phy->ctrl1000 = ADVERTISE_1000FULL;
3401                 phy->stat1000 = 0;
3402                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3403         }
3404 }
3405
3406 static void e1000_print_link_info(struct e1000_adapter *adapter)
3407 {
3408         struct e1000_hw *hw = &adapter->hw;
3409         u32 ctrl = er32(CTRL);
3410
3411         e_info("Link is Up %d Mbps %s, Flow Control: %s\n",
3412                adapter->link_speed,
3413                (adapter->link_duplex == FULL_DUPLEX) ?
3414                                 "Full Duplex" : "Half Duplex",
3415                ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3416                                 "RX/TX" :
3417                ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3418                ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3419 }
3420
3421 static bool e1000_has_link(struct e1000_adapter *adapter)
3422 {
3423         struct e1000_hw *hw = &adapter->hw;
3424         bool link_active = 0;
3425         s32 ret_val = 0;
3426
3427         /*
3428          * get_link_status is set on LSC (link status) interrupt or
3429          * Rx sequence error interrupt.  get_link_status will stay
3430          * false until the check_for_link establishes link
3431          * for copper adapters ONLY
3432          */
3433         switch (hw->phy.media_type) {
3434         case e1000_media_type_copper:
3435                 if (hw->mac.get_link_status) {
3436                         ret_val = hw->mac.ops.check_for_link(hw);
3437                         link_active = !hw->mac.get_link_status;
3438                 } else {
3439                         link_active = 1;
3440                 }
3441                 break;
3442         case e1000_media_type_fiber:
3443                 ret_val = hw->mac.ops.check_for_link(hw);
3444                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3445                 break;
3446         case e1000_media_type_internal_serdes:
3447                 ret_val = hw->mac.ops.check_for_link(hw);
3448                 link_active = adapter->hw.mac.serdes_has_link;
3449                 break;
3450         default:
3451         case e1000_media_type_unknown:
3452                 break;
3453         }
3454
3455         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3456             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3457                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3458                 e_info("Gigabit has been disabled, downgrading speed\n");
3459         }
3460
3461         return link_active;
3462 }
3463
3464 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3465 {
3466         /* make sure the receive unit is started */
3467         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3468             (adapter->flags & FLAG_RX_RESTART_NOW)) {
3469                 struct e1000_hw *hw = &adapter->hw;
3470                 u32 rctl = er32(RCTL);
3471                 ew32(RCTL, rctl | E1000_RCTL_EN);
3472                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3473         }
3474 }
3475
3476 /**
3477  * e1000_watchdog - Timer Call-back
3478  * @data: pointer to adapter cast into an unsigned long
3479  **/
3480 static void e1000_watchdog(unsigned long data)
3481 {
3482         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3483
3484         /* Do the rest outside of interrupt context */
3485         schedule_work(&adapter->watchdog_task);
3486
3487         /* TODO: make this use queue_delayed_work() */
3488 }
3489
3490 static void e1000_watchdog_task(struct work_struct *work)
3491 {
3492         struct e1000_adapter *adapter = container_of(work,
3493                                         struct e1000_adapter, watchdog_task);
3494         struct net_device *netdev = adapter->netdev;
3495         struct e1000_mac_info *mac = &adapter->hw.mac;
3496         struct e1000_ring *tx_ring = adapter->tx_ring;
3497         struct e1000_hw *hw = &adapter->hw;
3498         u32 link, tctl;
3499         int tx_pending = 0;
3500
3501         link = e1000_has_link(adapter);
3502         if ((netif_carrier_ok(netdev)) && link) {
3503                 e1000e_enable_receives(adapter);
3504                 goto link_up;
3505         }
3506
3507         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3508             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3509                 e1000_update_mng_vlan(adapter);
3510
3511         if (link) {
3512                 if (!netif_carrier_ok(netdev)) {
3513                         bool txb2b = 1;
3514                         /* update snapshot of PHY registers on LSC */
3515                         e1000_phy_read_status(adapter);
3516                         mac->ops.get_link_up_info(&adapter->hw,
3517                                                    &adapter->link_speed,
3518                                                    &adapter->link_duplex);
3519                         e1000_print_link_info(adapter);
3520                         /*
3521                          * On supported PHYs, check for duplex mismatch only
3522                          * if link has autonegotiated at 10/100 half
3523                          */
3524                         if ((hw->phy.type == e1000_phy_igp_3 ||
3525                              hw->phy.type == e1000_phy_bm) &&
3526                             (hw->mac.autoneg == true) &&
3527                             (adapter->link_speed == SPEED_10 ||
3528                              adapter->link_speed == SPEED_100) &&
3529                             (adapter->link_duplex == HALF_DUPLEX)) {
3530                                 u16 autoneg_exp;
3531
3532                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3533
3534                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3535                                         e_info("Autonegotiated half duplex but"
3536                                                " link partner cannot autoneg. "
3537                                                " Try forcing full duplex if "
3538                                                "link gets many collisions.\n");
3539                         }
3540
3541                         /*
3542                          * tweak tx_queue_len according to speed/duplex
3543                          * and adjust the timeout factor
3544                          */
3545                         netdev->tx_queue_len = adapter->tx_queue_len;
3546                         adapter->tx_timeout_factor = 1;
3547                         switch (adapter->link_speed) {
3548                         case SPEED_10:
3549                                 txb2b = 0;
3550                                 netdev->tx_queue_len = 10;
3551                                 adapter->tx_timeout_factor = 16;
3552                                 break;
3553                         case SPEED_100:
3554                                 txb2b = 0;
3555                                 netdev->tx_queue_len = 100;
3556                                 /* maybe add some timeout factor ? */
3557                                 break;
3558                         }
3559
3560                         /*
3561                          * workaround: re-program speed mode bit after
3562                          * link-up event
3563                          */
3564                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3565                             !txb2b) {
3566                                 u32 tarc0;
3567                                 tarc0 = er32(TARC(0));
3568                                 tarc0 &= ~SPEED_MODE_BIT;
3569                                 ew32(TARC(0), tarc0);
3570                         }
3571
3572                         /*
3573                          * disable TSO for pcie and 10/100 speeds, to avoid
3574                          * some hardware issues
3575                          */
3576                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
3577                                 switch (adapter->link_speed) {
3578                                 case SPEED_10:
3579                                 case SPEED_100:
3580                                         e_info("10/100 speed: disabling TSO\n");
3581                                         netdev->features &= ~NETIF_F_TSO;
3582                                         netdev->features &= ~NETIF_F_TSO6;
3583                                         break;
3584                                 case SPEED_1000:
3585                                         netdev->features |= NETIF_F_TSO;
3586                                         netdev->features |= NETIF_F_TSO6;
3587                                         break;
3588                                 default:
3589                                         /* oops */
3590                                         break;
3591                                 }
3592                         }
3593
3594                         /*
3595                          * enable transmits in the hardware, need to do this
3596                          * after setting TARC(0)
3597                          */
3598                         tctl = er32(TCTL);
3599                         tctl |= E1000_TCTL_EN;
3600                         ew32(TCTL, tctl);
3601
3602                         netif_carrier_on(netdev);
3603                         netif_tx_wake_all_queues(netdev);
3604
3605                         if (!test_bit(__E1000_DOWN, &adapter->state))
3606                                 mod_timer(&adapter->phy_info_timer,
3607                                           round_jiffies(jiffies + 2 * HZ));
3608                 }
3609         } else {
3610                 if (netif_carrier_ok(netdev)) {
3611                         adapter->link_speed = 0;
3612                         adapter->link_duplex = 0;
3613                         e_info("Link is Down\n");
3614                         netif_carrier_off(netdev);
3615                         netif_tx_stop_all_queues(netdev);
3616                         if (!test_bit(__E1000_DOWN, &adapter->state))
3617                                 mod_timer(&adapter->phy_info_timer,
3618                                           round_jiffies(jiffies + 2 * HZ));
3619
3620                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3621                                 schedule_work(&adapter->reset_task);
3622                 }
3623         }
3624
3625 link_up:
3626         e1000e_update_stats(adapter);
3627
3628         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3629         adapter->tpt_old = adapter->stats.tpt;
3630         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3631         adapter->colc_old = adapter->stats.colc;
3632
3633         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3634         adapter->gorc_old = adapter->stats.gorc;
3635         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3636         adapter->gotc_old = adapter->stats.gotc;
3637
3638         e1000e_update_adaptive(&adapter->hw);
3639
3640         if (!netif_carrier_ok(netdev)) {
3641                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3642                                tx_ring->count);
3643                 if (tx_pending) {
3644                         /*
3645                          * We've lost link, so the controller stops DMA,
3646                          * but we've got queued Tx work that's never going
3647                          * to get done, so reset controller to flush Tx.
3648                          * (Do the reset outside of interrupt context).
3649                          */
3650                         adapter->tx_timeout_count++;
3651                         schedule_work(&adapter->reset_task);
3652                 }
3653         }
3654
3655         /* Cause software interrupt to ensure Rx ring is cleaned */
3656         if (adapter->msix_entries)
3657                 ew32(ICS, adapter->rx_ring->ims_val);
3658         else
3659                 ew32(ICS, E1000_ICS_RXDMT0);
3660
3661         /* Force detection of hung controller every watchdog period */
3662         adapter->detect_tx_hung = 1;
3663
3664         /*
3665          * With 82571 controllers, LAA may be overwritten due to controller
3666          * reset from the other port. Set the appropriate LAA in RAR[0]
3667          */
3668         if (e1000e_get_laa_state_82571(hw))
3669                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3670
3671         /* Reset the timer */
3672         if (!test_bit(__E1000_DOWN, &adapter->state))
3673                 mod_timer(&adapter->watchdog_timer,
3674                           round_jiffies(jiffies + 2 * HZ));
3675 }
3676
3677 #define E1000_TX_FLAGS_CSUM             0x00000001
3678 #define E1000_TX_FLAGS_VLAN             0x00000002
3679 #define E1000_TX_FLAGS_TSO              0x00000004
3680 #define E1000_TX_FLAGS_IPV4             0x00000008
3681 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
3682 #define E1000_TX_FLAGS_VLAN_SHIFT       16
3683
3684 static int e1000_tso(struct e1000_adapter *adapter,
3685                      struct sk_buff *skb)
3686 {
3687         struct e1000_ring *tx_ring = adapter->tx_ring;
3688         struct e1000_context_desc *context_desc;
3689         struct e1000_buffer *buffer_info;
3690         unsigned int i;
3691         u32 cmd_length = 0;
3692         u16 ipcse = 0, tucse, mss;
3693         u8 ipcss, ipcso, tucss, tucso, hdr_len;
3694         int err;
3695
3696         if (skb_is_gso(skb)) {
3697                 if (skb_header_cloned(skb)) {
3698                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3699                         if (err)
3700                                 return err;
3701                 }
3702
3703                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3704                 mss = skb_shinfo(skb)->gso_size;
3705                 if (skb->protocol == htons(ETH_P_IP)) {
3706                         struct iphdr *iph = ip_hdr(skb);
3707                         iph->tot_len = 0;
3708                         iph->check = 0;
3709                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3710                                                                  iph->daddr, 0,
3711                                                                  IPPROTO_TCP,
3712                                                                  0);
3713                         cmd_length = E1000_TXD_CMD_IP;
3714                         ipcse = skb_transport_offset(skb) - 1;
3715                 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3716                         ipv6_hdr(skb)->payload_len = 0;
3717                         tcp_hdr(skb)->check =
3718                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3719                                                  &ipv6_hdr(skb)->daddr,
3720                                                  0, IPPROTO_TCP, 0);
3721                         ipcse = 0;
3722                 }
3723                 ipcss = skb_network_offset(skb);
3724                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3725                 tucss = skb_transport_offset(skb);
3726                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3727                 tucse = 0;
3728
3729                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3730                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3731
3732                 i = tx_ring->next_to_use;
3733                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3734                 buffer_info = &tx_ring->buffer_info[i];
3735
3736                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
3737                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
3738                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
3739                 context_desc->upper_setup.tcp_fields.tucss = tucss;
3740                 context_desc->upper_setup.tcp_fields.tucso = tucso;
3741                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3742                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
3743                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3744                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3745
3746                 buffer_info->time_stamp = jiffies;
3747                 buffer_info->next_to_watch = i;
3748
3749                 i++;
3750                 if (i == tx_ring->count)
3751                         i = 0;
3752                 tx_ring->next_to_use = i;
3753
3754                 return 1;
3755         }
3756
3757         return 0;
3758 }
3759
3760 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3761 {
3762         struct e1000_ring *tx_ring = adapter->tx_ring;
3763         struct e1000_context_desc *context_desc;
3764         struct e1000_buffer *buffer_info;
3765         unsigned int i;
3766         u8 css;
3767         u32 cmd_len = E1000_TXD_CMD_DEXT;
3768
3769         if (skb->ip_summed != CHECKSUM_PARTIAL)
3770                 return 0;
3771
3772         switch (skb->protocol) {
3773         case __constant_htons(ETH_P_IP):
3774                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3775                         cmd_len |= E1000_TXD_CMD_TCP;
3776                 break;
3777         case __constant_htons(ETH_P_IPV6):
3778                 /* XXX not handling all IPV6 headers */
3779                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3780                         cmd_len |= E1000_TXD_CMD_TCP;
3781                 break;
3782         default:
3783                 if (unlikely(net_ratelimit()))
3784                         e_warn("checksum_partial proto=%x!\n", skb->protocol);
3785                 break;
3786         }
3787
3788         css = skb_transport_offset(skb);
3789
3790         i = tx_ring->next_to_use;
3791         buffer_info = &tx_ring->buffer_info[i];
3792         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3793
3794         context_desc->lower_setup.ip_config = 0;
3795         context_desc->upper_setup.tcp_fields.tucss = css;
3796         context_desc->upper_setup.tcp_fields.tucso =
3797                                 css + skb->csum_offset;
3798         context_desc->upper_setup.tcp_fields.tucse = 0;
3799         context_desc->tcp_seg_setup.data = 0;
3800         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3801
3802         buffer_info->time_stamp = jiffies;
3803         buffer_info->next_to_watch = i;
3804
3805         i++;
3806         if (i == tx_ring->count)
3807                 i = 0;
3808         tx_ring->next_to_use = i;
3809
3810         return 1;
3811 }
3812
3813 #define E1000_MAX_PER_TXD       8192
3814 #define E1000_MAX_TXD_PWR       12
3815
3816 static int e1000_tx_map(struct e1000_adapter *adapter,
3817                         struct sk_buff *skb, unsigned int first,
3818                         unsigned int max_per_txd, unsigned int nr_frags,
3819                         unsigned int mss)
3820 {
3821         struct e1000_ring *tx_ring = adapter->tx_ring;
3822         struct e1000_buffer *buffer_info;
3823         unsigned int len = skb->len - skb->data_len;
3824         unsigned int offset = 0, size, count = 0, i;
3825         unsigned int f;
3826
3827         i = tx_ring->next_to_use;
3828
3829         while (len) {
3830                 buffer_info = &tx_ring->buffer_info[i];
3831                 size = min(len, max_per_txd);
3832
3833                 /* Workaround for premature desc write-backs
3834                  * in TSO mode.  Append 4-byte sentinel desc */
3835                 if (mss && !nr_frags && size == len && size > 8)
3836                         size -= 4;
3837
3838                 buffer_info->length = size;
3839                 /* set time_stamp *before* dma to help avoid a possible race */
3840                 buffer_info->time_stamp = jiffies;
3841                 buffer_info->dma =
3842                         pci_map_single(adapter->pdev,
3843                                 skb->data + offset,
3844                                 size,
3845                                 PCI_DMA_TODEVICE);
3846                 if (pci_dma_mapping_error(adapter->pdev, buffer_info->dma)) {
3847                         dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3848                         adapter->tx_dma_failed++;
3849                         return -1;
3850                 }
3851                 buffer_info->next_to_watch = i;
3852
3853                 len -= size;
3854                 offset += size;
3855                 count++;
3856                 i++;
3857                 if (i == tx_ring->count)
3858                         i = 0;
3859         }
3860
3861         for (f = 0; f < nr_frags; f++) {
3862                 struct skb_frag_struct *frag;
3863
3864                 frag = &skb_shinfo(skb)->frags[f];
3865                 len = frag->size;
3866                 offset = frag->page_offset;
3867
3868                 while (len) {
3869                         buffer_info = &tx_ring->buffer_info[i];
3870                         size = min(len, max_per_txd);
3871                         /* Workaround for premature desc write-backs
3872                          * in TSO mode.  Append 4-byte sentinel desc */
3873                         if (mss && f == (nr_frags-1) && size == len && size > 8)
3874                                 size -= 4;
3875
3876                         buffer_info->length = size;
3877                         buffer_info->time_stamp = jiffies;
3878                         buffer_info->dma =
3879                                 pci_map_page(adapter->pdev,
3880                                         frag->page,
3881                                         offset,
3882                                         size,
3883                                         PCI_DMA_TODEVICE);
3884                         if (pci_dma_mapping_error(adapter->pdev,
3885                                                   buffer_info->dma)) {
3886                                 dev_err(&adapter->pdev->dev,
3887                                         "TX DMA page map failed\n");
3888                                 adapter->tx_dma_failed++;
3889                                 return -1;
3890                         }
3891
3892                         buffer_info->next_to_watch = i;
3893
3894                         len -= size;
3895                         offset += size;
3896                         count++;
3897
3898                         i++;
3899                         if (i == tx_ring->count)
3900                                 i = 0;
3901                 }
3902         }
3903
3904         if (i == 0)
3905                 i = tx_ring->count - 1;
3906         else
3907                 i--;
3908
3909         tx_ring->buffer_info[i].skb = skb;
3910         tx_ring->buffer_info[first].next_to_watch = i;
3911
3912         return count;
3913 }
3914
3915 static void e1000_tx_queue(struct e1000_adapter *adapter,
3916                            int tx_flags, int count)
3917 {
3918         struct e1000_ring *tx_ring = adapter->tx_ring;
3919         struct e1000_tx_desc *tx_desc = NULL;
3920         struct e1000_buffer *buffer_info;
3921         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3922         unsigned int i;
3923
3924         if (tx_flags & E1000_TX_FLAGS_TSO) {
3925                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3926                              E1000_TXD_CMD_TSE;
3927                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3928
3929                 if (tx_flags & E1000_TX_FLAGS_IPV4)
3930                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3931         }
3932
3933         if (tx_flags & E1000_TX_FLAGS_CSUM) {
3934                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3935                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3936         }
3937
3938         if (tx_flags & E1000_TX_FLAGS_VLAN) {
3939                 txd_lower |= E1000_TXD_CMD_VLE;
3940                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3941         }
3942
3943         i = tx_ring->next_to_use;
3944
3945         while (count--) {
3946                 buffer_info = &tx_ring->buffer_info[i];
3947                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3948                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3949                 tx_desc->lower.data =
3950                         cpu_to_le32(txd_lower | buffer_info->length);
3951                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3952
3953                 i++;
3954                 if (i == tx_ring->count)
3955                         i = 0;
3956         }
3957
3958         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3959
3960         /*
3961          * Force memory writes to complete before letting h/w
3962          * know there are new descriptors to fetch.  (Only
3963          * applicable for weak-ordered memory model archs,
3964          * such as IA-64).
3965          */
3966         wmb();
3967
3968         tx_ring->next_to_use = i;
3969         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3970         /*
3971          * we need this if more than one processor can write to our tail
3972          * at a time, it synchronizes IO on IA64/Altix systems
3973          */
3974         mmiowb();
3975 }
3976
3977 #define MINIMUM_DHCP_PACKET_SIZE 282
3978 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3979                                     struct sk_buff *skb)
3980 {
3981         struct e1000_hw *hw =  &adapter->hw;
3982         u16 length, offset;
3983
3984         if (vlan_tx_tag_present(skb)) {
3985                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3986                     && (adapter->hw.mng_cookie.status &
3987                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3988                         return 0;
3989         }
3990
3991         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3992                 return 0;
3993
3994         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3995                 return 0;
3996
3997         {
3998                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3999                 struct udphdr *udp;
4000
4001                 if (ip->protocol != IPPROTO_UDP)
4002                         return 0;
4003
4004                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4005                 if (ntohs(udp->dest) != 67)
4006                         return 0;
4007
4008                 offset = (u8 *)udp + 8 - skb->data;
4009                 length = skb->len - offset;
4010                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4011         }
4012
4013         return 0;
4014 }
4015
4016 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4017 {
4018         struct e1000_adapter *adapter = netdev_priv(netdev);
4019
4020         netif_stop_queue(netdev);
4021         /*
4022          * Herbert's original patch had:
4023          *  smp_mb__after_netif_stop_queue();
4024          * but since that doesn't exist yet, just open code it.
4025          */
4026         smp_mb();
4027
4028         /*
4029          * We need to check again in a case another CPU has just
4030          * made room available.
4031          */
4032         if (e1000_desc_unused(adapter->tx_ring) < size)
4033                 return -EBUSY;
4034
4035         /* A reprieve! */
4036         netif_start_queue(netdev);
4037         ++adapter->restart_queue;
4038         return 0;
4039 }
4040
4041 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4042 {
4043         struct e1000_adapter *adapter = netdev_priv(netdev);
4044
4045         if (e1000_desc_unused(adapter->tx_ring) >= size)
4046                 return 0;
4047         return __e1000_maybe_stop_tx(netdev, size);
4048 }
4049
4050 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4051 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4052 {
4053         struct e1000_adapter *adapter = netdev_priv(netdev);
4054         struct e1000_ring *tx_ring = adapter->tx_ring;
4055         unsigned int first;
4056         unsigned int max_per_txd = E1000_MAX_PER_TXD;
4057         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4058         unsigned int tx_flags = 0;
4059         unsigned int len = skb->len - skb->data_len;
4060         unsigned long irq_flags;
4061         unsigned int nr_frags;
4062         unsigned int mss;
4063         int count = 0;
4064         int tso;
4065         unsigned int f;
4066
4067         if (test_bit(__E1000_DOWN, &adapter->state)) {
4068                 dev_kfree_skb_any(skb);
4069                 return NETDEV_TX_OK;
4070         }
4071
4072         if (skb->len <= 0) {
4073                 dev_kfree_skb_any(skb);
4074                 return NETDEV_TX_OK;
4075         }
4076
4077         mss = skb_shinfo(skb)->gso_size;
4078         /*
4079          * The controller does a simple calculation to
4080          * make sure there is enough room in the FIFO before
4081          * initiating the DMA for each buffer.  The calc is:
4082          * 4 = ceil(buffer len/mss).  To make sure we don't
4083          * overrun the FIFO, adjust the max buffer len if mss
4084          * drops.
4085          */
4086         if (mss) {
4087                 u8 hdr_len;
4088                 max_per_txd = min(mss << 2, max_per_txd);
4089                 max_txd_pwr = fls(max_per_txd) - 1;
4090
4091                 /*
4092                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4093                  * points to just header, pull a few bytes of payload from
4094                  * frags into skb->data
4095                  */
4096                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4097                 /*
4098                  * we do this workaround for ES2LAN, but it is un-necessary,
4099                  * avoiding it could save a lot of cycles
4100                  */
4101                 if (skb->data_len && (hdr_len == len)) {
4102                         unsigned int pull_size;
4103
4104                         pull_size = min((unsigned int)4, skb->data_len);
4105                         if (!__pskb_pull_tail(skb, pull_size)) {
4106                                 e_err("__pskb_pull_tail failed.\n");
4107                                 dev_kfree_skb_any(skb);
4108                                 return NETDEV_TX_OK;
4109                         }
4110                         len = skb->len - skb->data_len;
4111                 }
4112         }
4113
4114         /* reserve a descriptor for the offload context */
4115         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4116                 count++;
4117         count++;
4118
4119         count += TXD_USE_COUNT(len, max_txd_pwr);
4120
4121         nr_frags = skb_shinfo(skb)->nr_frags;
4122         for (f = 0; f < nr_frags; f++)
4123                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4124                                        max_txd_pwr);
4125
4126         if (adapter->hw.mac.tx_pkt_filtering)
4127                 e1000_transfer_dhcp_info(adapter, skb);
4128
4129         if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
4130                 /* Collision - tell upper layer to requeue */
4131                 return NETDEV_TX_LOCKED;
4132
4133         /*
4134          * need: count + 2 desc gap to keep tail from touching
4135          * head, otherwise try next time
4136          */
4137         if (e1000_maybe_stop_tx(netdev, count + 2)) {
4138                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4139                 return NETDEV_TX_BUSY;
4140         }
4141
4142         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4143                 tx_flags |= E1000_TX_FLAGS_VLAN;
4144                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4145         }
4146
4147         first = tx_ring->next_to_use;
4148
4149         tso = e1000_tso(adapter, skb);
4150         if (tso < 0) {
4151                 dev_kfree_skb_any(skb);
4152                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4153                 return NETDEV_TX_OK;
4154         }
4155
4156         if (tso)
4157                 tx_flags |= E1000_TX_FLAGS_TSO;
4158         else if (e1000_tx_csum(adapter, skb))
4159                 tx_flags |= E1000_TX_FLAGS_CSUM;
4160
4161         /*
4162          * Old method was to assume IPv4 packet by default if TSO was enabled.
4163          * 82571 hardware supports TSO capabilities for IPv6 as well...
4164          * no longer assume, we must.
4165          */
4166         if (skb->protocol == htons(ETH_P_IP))
4167                 tx_flags |= E1000_TX_FLAGS_IPV4;
4168
4169         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4170         if (count < 0) {
4171                 /* handle pci_map_single() error in e1000_tx_map */
4172                 dev_kfree_skb_any(skb);
4173                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4174                 return NETDEV_TX_OK;
4175         }
4176
4177         e1000_tx_queue(adapter, tx_flags, count);
4178
4179         netdev->trans_start = jiffies;
4180
4181         /* Make sure there is space in the ring for the next send. */
4182         e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4183
4184         spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4185         return NETDEV_TX_OK;
4186 }
4187
4188 /**
4189  * e1000_tx_timeout - Respond to a Tx Hang
4190  * @netdev: network interface device structure
4191  **/
4192 static void e1000_tx_timeout(struct net_device *netdev)
4193 {
4194         struct e1000_adapter *adapter = netdev_priv(netdev);
4195
4196         /* Do the reset outside of interrupt context */
4197         adapter->tx_timeout_count++;
4198         schedule_work(&adapter->reset_task);
4199 }
4200
4201 static void e1000_reset_task(struct work_struct *work)
4202 {
4203         struct e1000_adapter *adapter;
4204         adapter = container_of(work, struct e1000_adapter, reset_task);
4205
4206         e1000e_reinit_locked(adapter);
4207 }
4208
4209 /**
4210  * e1000_get_stats - Get System Network Statistics
4211  * @netdev: network interface device structure
4212  *
4213  * Returns the address of the device statistics structure.
4214  * The statistics are actually updated from the timer callback.
4215  **/
4216 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4217 {
4218         struct e1000_adapter *adapter = netdev_priv(netdev);
4219
4220         /* only return the current stats */
4221         return &adapter->net_stats;
4222 }
4223
4224 /**
4225  * e1000_change_mtu - Change the Maximum Transfer Unit
4226  * @netdev: network interface device structure
4227  * @new_mtu: new value for maximum frame size
4228  *
4229  * Returns 0 on success, negative on failure
4230  **/
4231 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4232 {
4233         struct e1000_adapter *adapter = netdev_priv(netdev);
4234         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4235
4236         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4237             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4238                 e_err("Invalid MTU setting\n");
4239                 return -EINVAL;
4240         }
4241
4242         /* Jumbo frame size limits */
4243         if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
4244                 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4245                         e_err("Jumbo Frames not supported.\n");
4246                         return -EINVAL;
4247                 }
4248                 if (adapter->hw.phy.type == e1000_phy_ife) {
4249                         e_err("Jumbo Frames not supported.\n");
4250                         return -EINVAL;
4251                 }
4252         }
4253
4254 #define MAX_STD_JUMBO_FRAME_SIZE 9234
4255         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4256                 e_err("MTU > 9216 not supported.\n");
4257                 return -EINVAL;
4258         }
4259
4260         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4261                 msleep(1);
4262         /* e1000e_down has a dependency on max_frame_size */
4263         adapter->max_frame_size = max_frame;
4264         if (netif_running(netdev))
4265                 e1000e_down(adapter);
4266
4267         /*
4268          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4269          * means we reserve 2 more, this pushes us to allocate from the next
4270          * larger slab size.
4271          * i.e. RXBUFFER_2048 --> size-4096 slab
4272          * However with the new *_jumbo_rx* routines, jumbo receives will use
4273          * fragmented skbs
4274          */
4275
4276         if (max_frame <= 256)
4277                 adapter->rx_buffer_len = 256;
4278         else if (max_frame <= 512)
4279                 adapter->rx_buffer_len = 512;
4280         else if (max_frame <= 1024)
4281                 adapter->rx_buffer_len = 1024;
4282         else if (max_frame <= 2048)
4283                 adapter->rx_buffer_len = 2048;
4284         else
4285                 adapter->rx_buffer_len = 4096;
4286
4287         /* adjust allocation if LPE protects us, and we aren't using SBP */
4288         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4289              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4290                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4291                                          + ETH_FCS_LEN;
4292
4293         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4294         netdev->mtu = new_mtu;
4295
4296         if (netif_running(netdev))
4297                 e1000e_up(adapter);
4298         else
4299                 e1000e_reset(adapter);
4300
4301         clear_bit(__E1000_RESETTING, &adapter->state);
4302
4303         return 0;
4304 }
4305
4306 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4307                            int cmd)
4308 {
4309         struct e1000_adapter *adapter = netdev_priv(netdev);
4310         struct mii_ioctl_data *data = if_mii(ifr);
4311
4312         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4313                 return -EOPNOTSUPP;
4314
4315         switch (cmd) {
4316         case SIOCGMIIPHY:
4317                 data->phy_id = adapter->hw.phy.addr;
4318                 break;
4319         case SIOCGMIIREG:
4320                 if (!capable(CAP_NET_ADMIN))
4321                         return -EPERM;
4322                 switch (data->reg_num & 0x1F) {
4323                 case MII_BMCR:
4324                         data->val_out = adapter->phy_regs.bmcr;
4325                         break;
4326                 case MII_BMSR:
4327                         data->val_out = adapter->phy_regs.bmsr;
4328                         break;
4329                 case MII_PHYSID1:
4330                         data->val_out = (adapter->hw.phy.id >> 16);
4331                         break;
4332                 case MII_PHYSID2:
4333                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
4334                         break;
4335                 case MII_ADVERTISE:
4336                         data->val_out = adapter->phy_regs.advertise;
4337                         break;
4338                 case MII_LPA:
4339                         data->val_out = adapter->phy_regs.lpa;
4340                         break;
4341                 case MII_EXPANSION:
4342                         data->val_out = adapter->phy_regs.expansion;
4343                         break;
4344                 case MII_CTRL1000:
4345                         data->val_out = adapter->phy_regs.ctrl1000;
4346                         break;
4347                 case MII_STAT1000:
4348                         data->val_out = adapter->phy_regs.stat1000;
4349                         break;
4350                 case MII_ESTATUS:
4351                         data->val_out = adapter->phy_regs.estatus;
4352                         break;
4353                 default:
4354                         return -EIO;
4355                 }
4356                 break;
4357         case SIOCSMIIREG:
4358         default:
4359                 return -EOPNOTSUPP;
4360         }
4361         return 0;
4362 }
4363
4364 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4365 {
4366         switch (cmd) {
4367         case SIOCGMIIPHY:
4368         case SIOCGMIIREG:
4369         case SIOCSMIIREG:
4370                 return e1000_mii_ioctl(netdev, ifr, cmd);
4371         default:
4372                 return -EOPNOTSUPP;
4373         }
4374 }
4375
4376 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4377 {
4378         struct net_device *netdev = pci_get_drvdata(pdev);
4379         struct e1000_adapter *adapter = netdev_priv(netdev);
4380         struct e1000_hw *hw = &adapter->hw;
4381         u32 ctrl, ctrl_ext, rctl, status;
4382         u32 wufc = adapter->wol;
4383         int retval = 0;
4384
4385         netif_device_detach(netdev);
4386
4387         if (netif_running(netdev)) {
4388                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4389                 e1000e_down(adapter);
4390                 e1000_free_irq(adapter);
4391         }
4392         e1000e_reset_interrupt_capability(adapter);
4393
4394         retval = pci_save_state(pdev);
4395         if (retval)
4396                 return retval;
4397
4398         status = er32(STATUS);
4399         if (status & E1000_STATUS_LU)
4400                 wufc &= ~E1000_WUFC_LNKC;
4401
4402         if (wufc) {
4403                 e1000_setup_rctl(adapter);
4404                 e1000_set_multi(netdev);
4405
4406                 /* turn on all-multi mode if wake on multicast is enabled */
4407                 if (wufc & E1000_WUFC_MC) {
4408                         rctl = er32(RCTL);
4409                         rctl |= E1000_RCTL_MPE;
4410                         ew32(RCTL, rctl);
4411                 }
4412
4413                 ctrl = er32(CTRL);
4414                 /* advertise wake from D3Cold */
4415                 #define E1000_CTRL_ADVD3WUC 0x00100000
4416                 /* phy power management enable */
4417                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4418                 ctrl |= E1000_CTRL_ADVD3WUC |
4419                         E1000_CTRL_EN_PHY_PWR_MGMT;
4420                 ew32(CTRL, ctrl);
4421
4422                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4423                     adapter->hw.phy.media_type ==
4424                     e1000_media_type_internal_serdes) {
4425                         /* keep the laser running in D3 */
4426                         ctrl_ext = er32(CTRL_EXT);
4427                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4428                         ew32(CTRL_EXT, ctrl_ext);
4429                 }
4430
4431                 if (adapter->flags & FLAG_IS_ICH)
4432                         e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4433
4434                 /* Allow time for pending master requests to run */
4435                 e1000e_disable_pcie_master(&adapter->hw);
4436
4437                 ew32(WUC, E1000_WUC_PME_EN);
4438                 ew32(WUFC, wufc);
4439                 pci_enable_wake(pdev, PCI_D3hot, 1);
4440                 pci_enable_wake(pdev, PCI_D3cold, 1);
4441         } else {
4442                 ew32(WUC, 0);
4443                 ew32(WUFC, 0);
4444                 pci_enable_wake(pdev, PCI_D3hot, 0);
4445                 pci_enable_wake(pdev, PCI_D3cold, 0);
4446         }
4447
4448         /* make sure adapter isn't asleep if manageability is enabled */
4449         if (adapter->flags & FLAG_MNG_PT_ENABLED) {
4450                 pci_enable_wake(pdev, PCI_D3hot, 1);
4451                 pci_enable_wake(pdev, PCI_D3cold, 1);
4452         }
4453
4454         if (adapter->hw.phy.type == e1000_phy_igp_3)
4455                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4456
4457         /*
4458          * Release control of h/w to f/w.  If f/w is AMT enabled, this
4459          * would have already happened in close and is redundant.
4460          */
4461         e1000_release_hw_control(adapter);
4462
4463         pci_disable_device(pdev);
4464
4465         /*
4466          * The pci-e switch on some quad port adapters will report a
4467          * correctable error when the MAC transitions from D0 to D3.  To
4468          * prevent this we need to mask off the correctable errors on the
4469          * downstream port of the pci-e switch.
4470          */
4471         if (adapter->flags & FLAG_IS_QUAD_PORT) {
4472                 struct pci_dev *us_dev = pdev->bus->self;
4473                 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
4474                 u16 devctl;
4475
4476                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
4477                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
4478                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
4479
4480                 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4481
4482                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
4483         } else {
4484                 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4485         }
4486
4487         return 0;
4488 }
4489
4490 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4491 {
4492         int pos;
4493         u16 val;
4494
4495         /*
4496          * 82573 workaround - disable L1 ASPM on mobile chipsets
4497          *
4498          * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4499          * resulting in lost data or garbage information on the pci-e link
4500          * level. This could result in (false) bad EEPROM checksum errors,
4501          * long ping times (up to 2s) or even a system freeze/hang.
4502          *
4503          * Unfortunately this feature saves about 1W power consumption when
4504          * active.
4505          */
4506         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
4507         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4508         if (val & 0x2) {
4509                 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4510                 val &= ~0x2;
4511                 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4512         }
4513 }
4514
4515 #ifdef CONFIG_PM
4516 static int e1000_resume(struct pci_dev *pdev)
4517 {
4518         struct net_device *netdev = pci_get_drvdata(pdev);
4519         struct e1000_adapter *adapter = netdev_priv(netdev);
4520         struct e1000_hw *hw = &adapter->hw;
4521         u32 err;
4522
4523         pci_set_power_state(pdev, PCI_D0);
4524         pci_restore_state(pdev);
4525         e1000e_disable_l1aspm(pdev);
4526
4527         err = pci_enable_device_mem(pdev);
4528         if (err) {
4529                 dev_err(&pdev->dev,
4530                         "Cannot enable PCI device from suspend\n");
4531                 return err;
4532         }
4533
4534         pci_set_master(pdev);
4535
4536         pci_enable_wake(pdev, PCI_D3hot, 0);
4537         pci_enable_wake(pdev, PCI_D3cold, 0);
4538
4539         e1000e_set_interrupt_capability(adapter);
4540         if (netif_running(netdev)) {
4541                 err = e1000_request_irq(adapter);
4542                 if (err)
4543                         return err;
4544         }
4545
4546         e1000e_power_up_phy(adapter);
4547         e1000e_reset(adapter);
4548         ew32(WUS, ~0);
4549
4550         e1000_init_manageability(adapter);
4551
4552         if (netif_running(netdev))
4553                 e1000e_up(adapter);
4554
4555         netif_device_attach(netdev);
4556
4557         /*
4558          * If the controller has AMT, do not set DRV_LOAD until the interface
4559          * is up.  For all other cases, let the f/w know that the h/w is now
4560          * under the control of the driver.
4561          */
4562         if (!(adapter->flags & FLAG_HAS_AMT))
4563                 e1000_get_hw_control(adapter);
4564
4565         return 0;
4566 }
4567 #endif
4568
4569 static void e1000_shutdown(struct pci_dev *pdev)
4570 {
4571         e1000_suspend(pdev, PMSG_SUSPEND);
4572 }
4573
4574 #ifdef CONFIG_NET_POLL_CONTROLLER
4575 /*
4576  * Polling 'interrupt' - used by things like netconsole to send skbs
4577  * without having to re-enable interrupts. It's not called while
4578  * the interrupt routine is executing.
4579  */
4580 static void e1000_netpoll(struct net_device *netdev)
4581 {
4582         struct e1000_adapter *adapter = netdev_priv(netdev);
4583
4584         disable_irq(adapter->pdev->irq);
4585         e1000_intr(adapter->pdev->irq, netdev);
4586
4587         enable_irq(adapter->pdev->irq);
4588 }
4589 #endif
4590
4591 /**
4592  * e1000_io_error_detected - called when PCI error is detected
4593  * @pdev: Pointer to PCI device
4594  * @state: The current pci connection state
4595  *
4596  * This function is called after a PCI bus error affecting
4597  * this device has been detected.
4598  */
4599 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4600                                                 pci_channel_state_t state)
4601 {
4602         struct net_device *netdev = pci_get_drvdata(pdev);
4603         struct e1000_adapter *adapter = netdev_priv(netdev);
4604
4605         netif_device_detach(netdev);
4606
4607         if (netif_running(netdev))
4608                 e1000e_down(adapter);
4609         pci_disable_device(pdev);
4610
4611         /* Request a slot slot reset. */
4612         return PCI_ERS_RESULT_NEED_RESET;
4613 }
4614
4615 /**
4616  * e1000_io_slot_reset - called after the pci bus has been reset.
4617  * @pdev: Pointer to PCI device
4618  *
4619  * Restart the card from scratch, as if from a cold-boot. Implementation
4620  * resembles the first-half of the e1000_resume routine.
4621  */
4622 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4623 {
4624         struct net_device *netdev = pci_get_drvdata(pdev);
4625         struct e1000_adapter *adapter = netdev_priv(netdev);
4626         struct e1000_hw *hw = &adapter->hw;
4627         int err;
4628
4629         e1000e_disable_l1aspm(pdev);
4630         err = pci_enable_device_mem(pdev);
4631         if (err) {
4632                 dev_err(&pdev->dev,
4633                         "Cannot re-enable PCI device after reset.\n");
4634                 return PCI_ERS_RESULT_DISCONNECT;
4635         }
4636         pci_set_master(pdev);
4637         pci_restore_state(pdev);
4638
4639         pci_enable_wake(pdev, PCI_D3hot, 0);
4640         pci_enable_wake(pdev, PCI_D3cold, 0);
4641
4642         e1000e_reset(adapter);
4643         ew32(WUS, ~0);
4644
4645         return PCI_ERS_RESULT_RECOVERED;
4646 }
4647
4648 /**
4649  * e1000_io_resume - called when traffic can start flowing again.
4650  * @pdev: Pointer to PCI device
4651  *
4652  * This callback is called when the error recovery driver tells us that
4653  * its OK to resume normal operation. Implementation resembles the
4654  * second-half of the e1000_resume routine.
4655  */
4656 static void e1000_io_resume(struct pci_dev *pdev)
4657 {
4658         struct net_device *netdev = pci_get_drvdata(pdev);
4659         struct e1000_adapter *adapter = netdev_priv(netdev);
4660
4661         e1000_init_manageability(adapter);
4662
4663         if (netif_running(netdev)) {
4664                 if (e1000e_up(adapter)) {
4665                         dev_err(&pdev->dev,
4666                                 "can't bring device back up after reset\n");
4667                         return;
4668                 }
4669         }
4670
4671         netif_device_attach(netdev);
4672
4673         /*
4674          * If the controller has AMT, do not set DRV_LOAD until the interface
4675          * is up.  For all other cases, let the f/w know that the h/w is now
4676          * under the control of the driver.
4677          */
4678         if (!(adapter->flags & FLAG_HAS_AMT))
4679                 e1000_get_hw_control(adapter);
4680
4681 }
4682
4683 static void e1000_print_device_info(struct e1000_adapter *adapter)
4684 {
4685         struct e1000_hw *hw = &adapter->hw;
4686         struct net_device *netdev = adapter->netdev;
4687         u32 pba_num;
4688
4689         /* print bus type/speed/width info */
4690         e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4691                /* bus width */
4692                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4693                 "Width x1"),
4694                /* MAC address */
4695                netdev->dev_addr);
4696         e_info("Intel(R) PRO/%s Network Connection\n",
4697                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4698         e1000e_read_pba_num(hw, &pba_num);
4699         e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4700                hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4701 }
4702
4703 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4704 {
4705         struct e1000_hw *hw = &adapter->hw;
4706         int ret_val;
4707         u16 buf = 0;
4708
4709         if (hw->mac.type != e1000_82573)
4710                 return;
4711
4712         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4713         if (!(le16_to_cpu(buf) & (1 << 0))) {
4714                 /* Deep Smart Power Down (DSPD) */
4715                 dev_warn(&adapter->pdev->dev,
4716                          "Warning: detected DSPD enabled in EEPROM\n");
4717         }
4718
4719         ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4720         if (le16_to_cpu(buf) & (3 << 2)) {
4721                 /* ASPM enable */
4722                 dev_warn(&adapter->pdev->dev,
4723                          "Warning: detected ASPM enabled in EEPROM\n");
4724         }
4725 }
4726
4727 static const struct net_device_ops e1000e_netdev_ops = {
4728         .ndo_open               = e1000_open,
4729         .ndo_stop               = e1000_close,
4730         .ndo_start_xmit         = e1000_xmit_frame,
4731         .ndo_get_stats          = e1000_get_stats,
4732         .ndo_set_multicast_list = e1000_set_multi,
4733         .ndo_set_mac_address    = e1000_set_mac,
4734         .ndo_change_mtu         = e1000_change_mtu,
4735         .ndo_do_ioctl           = e1000_ioctl,
4736         .ndo_tx_timeout         = e1000_tx_timeout,
4737         .ndo_validate_addr      = eth_validate_addr,
4738
4739         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
4740         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
4741         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
4742 #ifdef CONFIG_NET_POLL_CONTROLLER
4743         .ndo_poll_controller    = e1000_netpoll,
4744 #endif
4745 };
4746
4747 /**
4748  * e1000_probe - Device Initialization Routine
4749  * @pdev: PCI device information struct
4750  * @ent: entry in e1000_pci_tbl
4751  *
4752  * Returns 0 on success, negative on failure
4753  *
4754  * e1000_probe initializes an adapter identified by a pci_dev structure.
4755  * The OS initialization, configuring of the adapter private structure,
4756  * and a hardware reset occur.
4757  **/
4758 static int __devinit e1000_probe(struct pci_dev *pdev,
4759                                  const struct pci_device_id *ent)
4760 {
4761         struct net_device *netdev;
4762         struct e1000_adapter *adapter;
4763         struct e1000_hw *hw;
4764         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4765         resource_size_t mmio_start, mmio_len;
4766         resource_size_t flash_start, flash_len;
4767
4768         static int cards_found;
4769         int i, err, pci_using_dac;
4770         u16 eeprom_data = 0;
4771         u16 eeprom_apme_mask = E1000_EEPROM_APME;
4772
4773         e1000e_disable_l1aspm(pdev);
4774
4775         err = pci_enable_device_mem(pdev);
4776         if (err)
4777                 return err;
4778
4779         pci_using_dac = 0;
4780         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4781         if (!err) {
4782                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4783                 if (!err)
4784                         pci_using_dac = 1;
4785         } else {
4786                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4787                 if (err) {
4788                         err = pci_set_consistent_dma_mask(pdev,
4789                                                           DMA_32BIT_MASK);
4790                         if (err) {
4791                                 dev_err(&pdev->dev, "No usable DMA "
4792                                         "configuration, aborting\n");
4793                                 goto err_dma;
4794                         }
4795                 }
4796         }
4797
4798         err = pci_request_selected_regions(pdev,
4799                                           pci_select_bars(pdev, IORESOURCE_MEM),
4800                                           e1000e_driver_name);
4801         if (err)
4802                 goto err_pci_reg;
4803
4804         pci_set_master(pdev);
4805         pci_save_state(pdev);
4806
4807         err = -ENOMEM;
4808         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4809         if (!netdev)
4810                 goto err_alloc_etherdev;
4811
4812         SET_NETDEV_DEV(netdev, &pdev->dev);
4813
4814         pci_set_drvdata(pdev, netdev);
4815         adapter = netdev_priv(netdev);
4816         hw = &adapter->hw;
4817         adapter->netdev = netdev;
4818         adapter->pdev = pdev;
4819         adapter->ei = ei;
4820         adapter->pba = ei->pba;
4821         adapter->flags = ei->flags;
4822         adapter->flags2 = ei->flags2;
4823         adapter->hw.adapter = adapter;
4824         adapter->hw.mac.type = ei->mac;
4825         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4826
4827         mmio_start = pci_resource_start(pdev, 0);
4828         mmio_len = pci_resource_len(pdev, 0);
4829
4830         err = -EIO;
4831         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4832         if (!adapter->hw.hw_addr)
4833                 goto err_ioremap;
4834
4835         if ((adapter->flags & FLAG_HAS_FLASH) &&
4836             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4837                 flash_start = pci_resource_start(pdev, 1);
4838                 flash_len = pci_resource_len(pdev, 1);
4839                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4840                 if (!adapter->hw.flash_address)
4841                         goto err_flashmap;
4842         }
4843
4844         /* construct the net_device struct */
4845         netdev->netdev_ops              = &e1000e_netdev_ops;
4846         e1000e_set_ethtool_ops(netdev);
4847         netdev->watchdog_timeo          = 5 * HZ;
4848         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4849         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4850
4851         netdev->mem_start = mmio_start;
4852         netdev->mem_end = mmio_start + mmio_len;
4853
4854         adapter->bd_number = cards_found++;
4855
4856         e1000e_check_options(adapter);
4857
4858         /* setup adapter struct */
4859         err = e1000_sw_init(adapter);
4860         if (err)
4861                 goto err_sw_init;
4862
4863         err = -EIO;
4864
4865         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4866         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4867         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4868
4869         err = ei->get_variants(adapter);
4870         if (err)
4871                 goto err_hw_init;
4872
4873         if ((adapter->flags & FLAG_IS_ICH) &&
4874             (adapter->flags & FLAG_READ_ONLY_NVM))
4875                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
4876
4877         hw->mac.ops.get_bus_info(&adapter->hw);
4878
4879         adapter->hw.phy.autoneg_wait_to_complete = 0;
4880
4881         /* Copper options */
4882         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
4883                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4884                 adapter->hw.phy.disable_polarity_correction = 0;
4885                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4886         }
4887
4888         if (e1000_check_reset_block(&adapter->hw))
4889                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
4890
4891         netdev->features = NETIF_F_SG |
4892                            NETIF_F_HW_CSUM |
4893                            NETIF_F_HW_VLAN_TX |
4894                            NETIF_F_HW_VLAN_RX;
4895
4896         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4897                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4898
4899         netdev->features |= NETIF_F_TSO;
4900         netdev->features |= NETIF_F_TSO6;
4901
4902         netdev->vlan_features |= NETIF_F_TSO;
4903         netdev->vlan_features |= NETIF_F_TSO6;
4904         netdev->vlan_features |= NETIF_F_HW_CSUM;
4905         netdev->vlan_features |= NETIF_F_SG;
4906
4907         if (pci_using_dac)
4908                 netdev->features |= NETIF_F_HIGHDMA;
4909
4910         /*
4911          * We should not be using LLTX anymore, but we are still Tx faster with
4912          * it.
4913          */
4914         netdev->features |= NETIF_F_LLTX;
4915
4916         if (e1000e_enable_mng_pass_thru(&adapter->hw))
4917                 adapter->flags |= FLAG_MNG_PT_ENABLED;
4918
4919         /*
4920          * before reading the NVM, reset the controller to
4921          * put the device in a known good starting state
4922          */
4923         adapter->hw.mac.ops.reset_hw(&adapter->hw);
4924
4925         /*
4926          * systems with ASPM and others may see the checksum fail on the first
4927          * attempt. Let's give it a few tries
4928          */
4929         for (i = 0;; i++) {
4930                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4931                         break;
4932                 if (i == 2) {
4933                         e_err("The NVM Checksum Is Not Valid\n");
4934                         err = -EIO;
4935                         goto err_eeprom;
4936                 }
4937         }
4938
4939         e1000_eeprom_checks(adapter);
4940
4941         /* copy the MAC address out of the NVM */
4942         if (e1000e_read_mac_addr(&adapter->hw))
4943                 e_err("NVM Read Error while reading MAC address\n");
4944
4945         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4946         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4947
4948         if (!is_valid_ether_addr(netdev->perm_addr)) {
4949                 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
4950                 err = -EIO;
4951                 goto err_eeprom;
4952         }
4953
4954         init_timer(&adapter->watchdog_timer);
4955         adapter->watchdog_timer.function = &e1000_watchdog;
4956         adapter->watchdog_timer.data = (unsigned long) adapter;
4957
4958         init_timer(&adapter->phy_info_timer);
4959         adapter->phy_info_timer.function = &e1000_update_phy_info;
4960         adapter->phy_info_timer.data = (unsigned long) adapter;
4961
4962         INIT_WORK(&adapter->reset_task, e1000_reset_task);
4963         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4964         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
4965         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
4966
4967         /* Initialize link parameters. User can change them with ethtool */
4968         adapter->hw.mac.autoneg = 1;
4969         adapter->fc_autoneg = 1;
4970         adapter->hw.fc.original_type = e1000_fc_default;
4971         adapter->hw.fc.type = e1000_fc_default;
4972         adapter->hw.phy.autoneg_advertised = 0x2f;
4973
4974         /* ring size defaults */
4975         adapter->rx_ring->count = 256;
4976         adapter->tx_ring->count = 256;
4977
4978         /*
4979          * Initial Wake on LAN setting - If APM wake is enabled in
4980          * the EEPROM, enable the ACPI Magic Packet filter
4981          */
4982         if (adapter->flags & FLAG_APME_IN_WUC) {
4983                 /* APME bit in EEPROM is mapped to WUC.APME */
4984                 eeprom_data = er32(WUC);
4985                 eeprom_apme_mask = E1000_WUC_APME;
4986         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4987                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4988                     (adapter->hw.bus.func == 1))
4989                         e1000_read_nvm(&adapter->hw,
4990                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4991                 else
4992                         e1000_read_nvm(&adapter->hw,
4993                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4994         }
4995
4996         /* fetch WoL from EEPROM */
4997         if (eeprom_data & eeprom_apme_mask)
4998                 adapter->eeprom_wol |= E1000_WUFC_MAG;
4999
5000         /*
5001          * now that we have the eeprom settings, apply the special cases
5002          * where the eeprom may be wrong or the board simply won't support
5003          * wake on lan on a particular port
5004          */
5005         if (!(adapter->flags & FLAG_HAS_WOL))
5006                 adapter->eeprom_wol = 0;
5007
5008         /* initialize the wol settings based on the eeprom settings */
5009         adapter->wol = adapter->eeprom_wol;
5010         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5011
5012         /* reset the hardware with the new settings */
5013         e1000e_reset(adapter);
5014
5015         /*
5016          * If the controller has AMT, do not set DRV_LOAD until the interface
5017          * is up.  For all other cases, let the f/w know that the h/w is now
5018          * under the control of the driver.
5019          */
5020         if (!(adapter->flags & FLAG_HAS_AMT))
5021                 e1000_get_hw_control(adapter);
5022
5023         /* tell the stack to leave us alone until e1000_open() is called */
5024         netif_carrier_off(netdev);
5025         netif_tx_stop_all_queues(netdev);
5026
5027         strcpy(netdev->name, "eth%d");
5028         err = register_netdev(netdev);
5029         if (err)
5030                 goto err_register;
5031
5032         e1000_print_device_info(adapter);
5033
5034         return 0;
5035
5036 err_register:
5037         if (!(adapter->flags & FLAG_HAS_AMT))
5038                 e1000_release_hw_control(adapter);
5039 err_eeprom:
5040         if (!e1000_check_reset_block(&adapter->hw))
5041                 e1000_phy_hw_reset(&adapter->hw);
5042 err_hw_init:
5043
5044         kfree(adapter->tx_ring);
5045         kfree(adapter->rx_ring);
5046 err_sw_init:
5047         if (adapter->hw.flash_address)
5048                 iounmap(adapter->hw.flash_address);
5049         e1000e_reset_interrupt_capability(adapter);
5050 err_flashmap:
5051         iounmap(adapter->hw.hw_addr);
5052 err_ioremap:
5053         free_netdev(netdev);
5054 err_alloc_etherdev:
5055         pci_release_selected_regions(pdev,
5056                                      pci_select_bars(pdev, IORESOURCE_MEM));
5057 err_pci_reg:
5058 err_dma:
5059         pci_disable_device(pdev);
5060         return err;
5061 }
5062
5063 /**
5064  * e1000_remove - Device Removal Routine
5065  * @pdev: PCI device information struct
5066  *
5067  * e1000_remove is called by the PCI subsystem to alert the driver
5068  * that it should release a PCI device.  The could be caused by a
5069  * Hot-Plug event, or because the driver is going to be removed from
5070  * memory.
5071  **/
5072 static void __devexit e1000_remove(struct pci_dev *pdev)
5073 {
5074         struct net_device *netdev = pci_get_drvdata(pdev);
5075         struct e1000_adapter *adapter = netdev_priv(netdev);
5076
5077         /*
5078          * flush_scheduled work may reschedule our watchdog task, so
5079          * explicitly disable watchdog tasks from being rescheduled
5080          */
5081         set_bit(__E1000_DOWN, &adapter->state);
5082         del_timer_sync(&adapter->watchdog_timer);
5083         del_timer_sync(&adapter->phy_info_timer);
5084
5085         flush_scheduled_work();
5086
5087         /*
5088          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5089          * would have already happened in close and is redundant.
5090          */
5091         e1000_release_hw_control(adapter);
5092
5093         unregister_netdev(netdev);
5094
5095         if (!e1000_check_reset_block(&adapter->hw))
5096                 e1000_phy_hw_reset(&adapter->hw);
5097
5098         e1000e_reset_interrupt_capability(adapter);
5099         kfree(adapter->tx_ring);
5100         kfree(adapter->rx_ring);
5101
5102         iounmap(adapter->hw.hw_addr);
5103         if (adapter->hw.flash_address)
5104                 iounmap(adapter->hw.flash_address);
5105         pci_release_selected_regions(pdev,
5106                                      pci_select_bars(pdev, IORESOURCE_MEM));
5107
5108         free_netdev(netdev);
5109
5110         pci_disable_device(pdev);
5111 }
5112
5113 /* PCI Error Recovery (ERS) */
5114 static struct pci_error_handlers e1000_err_handler = {
5115         .error_detected = e1000_io_error_detected,
5116         .slot_reset = e1000_io_slot_reset,
5117         .resume = e1000_io_resume,
5118 };
5119
5120 static struct pci_device_id e1000_pci_tbl[] = {
5121         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5122         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5123         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5124         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5125         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5126         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5127         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5128         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5129         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5130
5131         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5132         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5133         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5134         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5135
5136         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5137         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5138         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5139
5140         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5141
5142         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5143           board_80003es2lan },
5144         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5145           board_80003es2lan },
5146         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5147           board_80003es2lan },
5148         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5149           board_80003es2lan },
5150
5151         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5152         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5153         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5154         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5155         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5156         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5157         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5158
5159         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5160         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5161         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5162         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5163         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5164         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5165         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5166         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5167         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5168
5169         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5170         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5171         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5172
5173         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5174         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5175
5176         { }     /* terminate list */
5177 };
5178 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5179
5180 /* PCI Device API Driver */
5181 static struct pci_driver e1000_driver = {
5182         .name     = e1000e_driver_name,
5183         .id_table = e1000_pci_tbl,
5184         .probe    = e1000_probe,
5185         .remove   = __devexit_p(e1000_remove),
5186 #ifdef CONFIG_PM
5187         /* Power Management Hooks */
5188         .suspend  = e1000_suspend,
5189         .resume   = e1000_resume,
5190 #endif
5191         .shutdown = e1000_shutdown,
5192         .err_handler = &e1000_err_handler
5193 };
5194
5195 /**
5196  * e1000_init_module - Driver Registration Routine
5197  *
5198  * e1000_init_module is the first routine called when the driver is
5199  * loaded. All it does is register with the PCI subsystem.
5200  **/
5201 static int __init e1000_init_module(void)
5202 {
5203         int ret;
5204         printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5205                e1000e_driver_name, e1000e_driver_version);
5206         printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
5207                e1000e_driver_name);
5208         ret = pci_register_driver(&e1000_driver);
5209         pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
5210                                PM_QOS_DEFAULT_VALUE);
5211                                 
5212         return ret;
5213 }
5214 module_init(e1000_init_module);
5215
5216 /**
5217  * e1000_exit_module - Driver Exit Cleanup Routine
5218  *
5219  * e1000_exit_module is called just before the driver is removed
5220  * from memory.
5221  **/
5222 static void __exit e1000_exit_module(void)
5223 {
5224         pci_unregister_driver(&e1000_driver);
5225         pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
5226 }
5227 module_exit(e1000_exit_module);
5228
5229
5230 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5231 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5232 MODULE_LICENSE("GPL");
5233 MODULE_VERSION(DRV_VERSION);
5234
5235 /* e1000_main.c */