e1000e: add support for new 82574L part
[safe/jmp/linux-2.6] / drivers / net / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G-2 10/100 Network Connection
31  * 82562GT 10/100 Network Connection
32  * 82562GT-2 10/100 Network Connection
33  * 82562V 10/100 Network Connection
34  * 82562V-2 10/100 Network Connection
35  * 82566DC-2 Gigabit Network Connection
36  * 82566DC Gigabit Network Connection
37  * 82566DM-2 Gigabit Network Connection
38  * 82566DM Gigabit Network Connection
39  * 82566MC Gigabit Network Connection
40  * 82566MM Gigabit Network Connection
41  * 82567LM Gigabit Network Connection
42  * 82567LF Gigabit Network Connection
43  * 82567LM-2 Gigabit Network Connection
44  * 82567LF-2 Gigabit Network Connection
45  * 82567V-2 Gigabit Network Connection
46  * 82567LF-3 Gigabit Network Connection
47  * 82567LM-3 Gigabit Network Connection
48  * 82567LM-4 Gigabit Network Connection
49  */
50
51 #include <linux/netdevice.h>
52 #include <linux/ethtool.h>
53 #include <linux/delay.h>
54 #include <linux/pci.h>
55
56 #include "e1000.h"
57
58 #define ICH_FLASH_GFPREG                0x0000
59 #define ICH_FLASH_HSFSTS                0x0004
60 #define ICH_FLASH_HSFCTL                0x0006
61 #define ICH_FLASH_FADDR                 0x0008
62 #define ICH_FLASH_FDATA0                0x0010
63
64 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
65 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
66 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
67 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
68 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
69
70 #define ICH_CYCLE_READ                  0
71 #define ICH_CYCLE_WRITE                 2
72 #define ICH_CYCLE_ERASE                 3
73
74 #define FLASH_GFPREG_BASE_MASK          0x1FFF
75 #define FLASH_SECTOR_ADDR_SHIFT         12
76
77 #define ICH_FLASH_SEG_SIZE_256          256
78 #define ICH_FLASH_SEG_SIZE_4K           4096
79 #define ICH_FLASH_SEG_SIZE_8K           8192
80 #define ICH_FLASH_SEG_SIZE_64K          65536
81
82
83 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
84
85 #define E1000_ICH_MNG_IAMT_MODE         0x2
86
87 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
88                                  (ID_LED_DEF1_OFF2 <<  8) | \
89                                  (ID_LED_DEF1_ON2  <<  4) | \
90                                  (ID_LED_DEF1_DEF2))
91
92 #define E1000_ICH_NVM_SIG_WORD          0x13
93 #define E1000_ICH_NVM_SIG_MASK          0xC000
94
95 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
96
97 #define E1000_FEXTNVM_SW_CONFIG         1
98 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
99
100 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
101
102 #define E1000_ICH_RAR_ENTRIES           7
103
104 #define PHY_PAGE_SHIFT 5
105 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
106                            ((reg) & MAX_PHY_REG_ADDRESS))
107 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
108 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
109
110 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
111 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
112 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
113
114 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
115 /* Offset 04h HSFSTS */
116 union ich8_hws_flash_status {
117         struct ich8_hsfsts {
118                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
119                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
120                 u16 dael       :1; /* bit 2 Direct Access error Log */
121                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
122                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
123                 u16 reserved1  :2; /* bit 13:6 Reserved */
124                 u16 reserved2  :6; /* bit 13:6 Reserved */
125                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
126                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
127         } hsf_status;
128         u16 regval;
129 };
130
131 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
132 /* Offset 06h FLCTL */
133 union ich8_hws_flash_ctrl {
134         struct ich8_hsflctl {
135                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
136                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
137                 u16 reserved   :5;   /* 7:3 Reserved  */
138                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
139                 u16 flockdn    :6;   /* 15:10 Reserved */
140         } hsf_ctrl;
141         u16 regval;
142 };
143
144 /* ICH Flash Region Access Permissions */
145 union ich8_hws_flash_regacc {
146         struct ich8_flracc {
147                 u32 grra      :8; /* 0:7 GbE region Read Access */
148                 u32 grwa      :8; /* 8:15 GbE region Write Access */
149                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
150                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
151         } hsf_flregacc;
152         u16 regval;
153 };
154
155 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
156 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
157 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
158 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
159 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
160 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
161                                                 u32 offset, u8 byte);
162 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
163                                          u8 *data);
164 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
165                                          u16 *data);
166 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
167                                          u8 size, u16 *data);
168 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
169 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
170 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
171
172 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
173 {
174         return readw(hw->flash_address + reg);
175 }
176
177 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
178 {
179         return readl(hw->flash_address + reg);
180 }
181
182 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
183 {
184         writew(val, hw->flash_address + reg);
185 }
186
187 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
188 {
189         writel(val, hw->flash_address + reg);
190 }
191
192 #define er16flash(reg)          __er16flash(hw, (reg))
193 #define er32flash(reg)          __er32flash(hw, (reg))
194 #define ew16flash(reg,val)      __ew16flash(hw, (reg), (val))
195 #define ew32flash(reg,val)      __ew32flash(hw, (reg), (val))
196
197 /**
198  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
199  *  @hw: pointer to the HW structure
200  *
201  *  Initialize family-specific PHY parameters and function pointers.
202  **/
203 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
204 {
205         struct e1000_phy_info *phy = &hw->phy;
206         s32 ret_val;
207         u16 i = 0;
208
209         phy->addr                       = 1;
210         phy->reset_delay_us             = 100;
211
212         /*
213          * We may need to do this twice - once for IGP and if that fails,
214          * we'll set BM func pointers and try again
215          */
216         ret_val = e1000e_determine_phy_address(hw);
217         if (ret_val) {
218                 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
219                 hw->phy.ops.read_phy_reg  = e1000e_read_phy_reg_bm;
220                 ret_val = e1000e_determine_phy_address(hw);
221                 if (ret_val)
222                         return ret_val;
223         }
224
225         phy->id = 0;
226         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
227                (i++ < 100)) {
228                 msleep(1);
229                 ret_val = e1000e_get_phy_id(hw);
230                 if (ret_val)
231                         return ret_val;
232         }
233
234         /* Verify phy id */
235         switch (phy->id) {
236         case IGP03E1000_E_PHY_ID:
237                 phy->type = e1000_phy_igp_3;
238                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
239                 break;
240         case IFE_E_PHY_ID:
241         case IFE_PLUS_E_PHY_ID:
242         case IFE_C_E_PHY_ID:
243                 phy->type = e1000_phy_ife;
244                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
245                 break;
246         case BME1000_E_PHY_ID:
247                 phy->type = e1000_phy_bm;
248                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
249                 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
250                 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
251                 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
252                 break;
253         default:
254                 return -E1000_ERR_PHY;
255                 break;
256         }
257
258         return 0;
259 }
260
261 /**
262  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
263  *  @hw: pointer to the HW structure
264  *
265  *  Initialize family-specific NVM parameters and function
266  *  pointers.
267  **/
268 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
269 {
270         struct e1000_nvm_info *nvm = &hw->nvm;
271         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
272         u32 gfpreg;
273         u32 sector_base_addr;
274         u32 sector_end_addr;
275         u16 i;
276
277         /* Can't read flash registers if the register set isn't mapped. */
278         if (!hw->flash_address) {
279                 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
280                 return -E1000_ERR_CONFIG;
281         }
282
283         nvm->type = e1000_nvm_flash_sw;
284
285         gfpreg = er32flash(ICH_FLASH_GFPREG);
286
287         /*
288          * sector_X_addr is a "sector"-aligned address (4096 bytes)
289          * Add 1 to sector_end_addr since this sector is included in
290          * the overall size.
291          */
292         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
293         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
294
295         /* flash_base_addr is byte-aligned */
296         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
297
298         /*
299          * find total size of the NVM, then cut in half since the total
300          * size represents two separate NVM banks.
301          */
302         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
303                                 << FLASH_SECTOR_ADDR_SHIFT;
304         nvm->flash_bank_size /= 2;
305         /* Adjust to word count */
306         nvm->flash_bank_size /= sizeof(u16);
307
308         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
309
310         /* Clear shadow ram */
311         for (i = 0; i < nvm->word_size; i++) {
312                 dev_spec->shadow_ram[i].modified = 0;
313                 dev_spec->shadow_ram[i].value    = 0xFFFF;
314         }
315
316         return 0;
317 }
318
319 /**
320  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
321  *  @hw: pointer to the HW structure
322  *
323  *  Initialize family-specific MAC parameters and function
324  *  pointers.
325  **/
326 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
327 {
328         struct e1000_hw *hw = &adapter->hw;
329         struct e1000_mac_info *mac = &hw->mac;
330
331         /* Set media type function pointer */
332         hw->phy.media_type = e1000_media_type_copper;
333
334         /* Set mta register count */
335         mac->mta_reg_count = 32;
336         /* Set rar entry count */
337         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
338         if (mac->type == e1000_ich8lan)
339                 mac->rar_entry_count--;
340         /* Set if manageability features are enabled. */
341         mac->arc_subsystem_valid = 1;
342
343         /* Enable PCS Lock-loss workaround for ICH8 */
344         if (mac->type == e1000_ich8lan)
345                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
346
347         return 0;
348 }
349
350 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
351 {
352         struct e1000_hw *hw = &adapter->hw;
353         s32 rc;
354
355         rc = e1000_init_mac_params_ich8lan(adapter);
356         if (rc)
357                 return rc;
358
359         rc = e1000_init_nvm_params_ich8lan(hw);
360         if (rc)
361                 return rc;
362
363         rc = e1000_init_phy_params_ich8lan(hw);
364         if (rc)
365                 return rc;
366
367         if ((adapter->hw.mac.type == e1000_ich8lan) &&
368             (adapter->hw.phy.type == e1000_phy_igp_3))
369                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
370
371         return 0;
372 }
373
374 /**
375  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
376  *  @hw: pointer to the HW structure
377  *
378  *  Acquires the software control flag for performing NVM and PHY
379  *  operations.  This is a function pointer entry point only called by
380  *  read/write routines for the PHY and NVM parts.
381  **/
382 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
383 {
384         u32 extcnf_ctrl;
385         u32 timeout = PHY_CFG_TIMEOUT;
386
387         while (timeout) {
388                 extcnf_ctrl = er32(EXTCNF_CTRL);
389                 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
390                 ew32(EXTCNF_CTRL, extcnf_ctrl);
391
392                 extcnf_ctrl = er32(EXTCNF_CTRL);
393                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
394                         break;
395                 mdelay(1);
396                 timeout--;
397         }
398
399         if (!timeout) {
400                 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
401                 return -E1000_ERR_CONFIG;
402         }
403
404         return 0;
405 }
406
407 /**
408  *  e1000_release_swflag_ich8lan - Release software control flag
409  *  @hw: pointer to the HW structure
410  *
411  *  Releases the software control flag for performing NVM and PHY operations.
412  *  This is a function pointer entry point only called by read/write
413  *  routines for the PHY and NVM parts.
414  **/
415 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
416 {
417         u32 extcnf_ctrl;
418
419         extcnf_ctrl = er32(EXTCNF_CTRL);
420         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
421         ew32(EXTCNF_CTRL, extcnf_ctrl);
422 }
423
424 /**
425  *  e1000_check_mng_mode_ich8lan - Checks management mode
426  *  @hw: pointer to the HW structure
427  *
428  *  This checks if the adapter has manageability enabled.
429  *  This is a function pointer entry point only called by read/write
430  *  routines for the PHY and NVM parts.
431  **/
432 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
433 {
434         u32 fwsm = er32(FWSM);
435
436         return (fwsm & E1000_FWSM_MODE_MASK) ==
437                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
438 }
439
440 /**
441  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
442  *  @hw: pointer to the HW structure
443  *
444  *  Checks if firmware is blocking the reset of the PHY.
445  *  This is a function pointer entry point only called by
446  *  reset routines.
447  **/
448 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
449 {
450         u32 fwsm;
451
452         fwsm = er32(FWSM);
453
454         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
455 }
456
457 /**
458  *  e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
459  *  @hw: pointer to the HW structure
460  *
461  *  Forces the speed and duplex settings of the PHY.
462  *  This is a function pointer entry point only called by
463  *  PHY setup routines.
464  **/
465 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
466 {
467         struct e1000_phy_info *phy = &hw->phy;
468         s32 ret_val;
469         u16 data;
470         bool link;
471
472         if (phy->type != e1000_phy_ife) {
473                 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
474                 return ret_val;
475         }
476
477         ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
478         if (ret_val)
479                 return ret_val;
480
481         e1000e_phy_force_speed_duplex_setup(hw, &data);
482
483         ret_val = e1e_wphy(hw, PHY_CONTROL, data);
484         if (ret_val)
485                 return ret_val;
486
487         /* Disable MDI-X support for 10/100 */
488         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
489         if (ret_val)
490                 return ret_val;
491
492         data &= ~IFE_PMC_AUTO_MDIX;
493         data &= ~IFE_PMC_FORCE_MDIX;
494
495         ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
496         if (ret_val)
497                 return ret_val;
498
499         hw_dbg(hw, "IFE PMC: %X\n", data);
500
501         udelay(1);
502
503         if (phy->autoneg_wait_to_complete) {
504                 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
505
506                 ret_val = e1000e_phy_has_link_generic(hw,
507                                                      PHY_FORCE_LIMIT,
508                                                      100000,
509                                                      &link);
510                 if (ret_val)
511                         return ret_val;
512
513                 if (!link)
514                         hw_dbg(hw, "Link taking longer than expected.\n");
515
516                 /* Try once more */
517                 ret_val = e1000e_phy_has_link_generic(hw,
518                                                      PHY_FORCE_LIMIT,
519                                                      100000,
520                                                      &link);
521                 if (ret_val)
522                         return ret_val;
523         }
524
525         return 0;
526 }
527
528 /**
529  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
530  *  @hw: pointer to the HW structure
531  *
532  *  Resets the PHY
533  *  This is a function pointer entry point called by drivers
534  *  or other shared routines.
535  **/
536 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
537 {
538         struct e1000_phy_info *phy = &hw->phy;
539         u32 i;
540         u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
541         s32 ret_val;
542         u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
543         u16 word_addr, reg_data, reg_addr, phy_page = 0;
544
545         ret_val = e1000e_phy_hw_reset_generic(hw);
546         if (ret_val)
547                 return ret_val;
548
549         /*
550          * Initialize the PHY from the NVM on ICH platforms.  This
551          * is needed due to an issue where the NVM configuration is
552          * not properly autoloaded after power transitions.
553          * Therefore, after each PHY reset, we will load the
554          * configuration data out of the NVM manually.
555          */
556         if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
557                 struct e1000_adapter *adapter = hw->adapter;
558
559                 /* Check if SW needs configure the PHY */
560                 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
561                     (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
562                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
563                 else
564                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
565
566                 data = er32(FEXTNVM);
567                 if (!(data & sw_cfg_mask))
568                         return 0;
569
570                 /* Wait for basic configuration completes before proceeding*/
571                 do {
572                         data = er32(STATUS);
573                         data &= E1000_STATUS_LAN_INIT_DONE;
574                         udelay(100);
575                 } while ((!data) && --loop);
576
577                 /*
578                  * If basic configuration is incomplete before the above loop
579                  * count reaches 0, loading the configuration from NVM will
580                  * leave the PHY in a bad state possibly resulting in no link.
581                  */
582                 if (loop == 0) {
583                         hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
584                 }
585
586                 /* Clear the Init Done bit for the next init event */
587                 data = er32(STATUS);
588                 data &= ~E1000_STATUS_LAN_INIT_DONE;
589                 ew32(STATUS, data);
590
591                 /*
592                  * Make sure HW does not configure LCD from PHY
593                  * extended configuration before SW configuration
594                  */
595                 data = er32(EXTCNF_CTRL);
596                 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
597                         return 0;
598
599                 cnf_size = er32(EXTCNF_SIZE);
600                 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
601                 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
602                 if (!cnf_size)
603                         return 0;
604
605                 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
606                 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
607
608                 /* Configure LCD from extended configuration region. */
609
610                 /* cnf_base_addr is in DWORD */
611                 word_addr = (u16)(cnf_base_addr << 1);
612
613                 for (i = 0; i < cnf_size; i++) {
614                         ret_val = e1000_read_nvm(hw,
615                                                 (word_addr + i * 2),
616                                                 1,
617                                                 &reg_data);
618                         if (ret_val)
619                                 return ret_val;
620
621                         ret_val = e1000_read_nvm(hw,
622                                                 (word_addr + i * 2 + 1),
623                                                 1,
624                                                 &reg_addr);
625                         if (ret_val)
626                                 return ret_val;
627
628                         /* Save off the PHY page for future writes. */
629                         if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
630                                 phy_page = reg_data;
631                                 continue;
632                         }
633
634                         reg_addr |= phy_page;
635
636                         ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
637                         if (ret_val)
638                                 return ret_val;
639                 }
640         }
641
642         return 0;
643 }
644
645 /**
646  *  e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
647  *  @hw: pointer to the HW structure
648  *
649  *  Populates "phy" structure with various feature states.
650  *  This function is only called by other family-specific
651  *  routines.
652  **/
653 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
654 {
655         struct e1000_phy_info *phy = &hw->phy;
656         s32 ret_val;
657         u16 data;
658         bool link;
659
660         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
661         if (ret_val)
662                 return ret_val;
663
664         if (!link) {
665                 hw_dbg(hw, "Phy info is only valid if link is up\n");
666                 return -E1000_ERR_CONFIG;
667         }
668
669         ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
670         if (ret_val)
671                 return ret_val;
672         phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
673
674         if (phy->polarity_correction) {
675                 ret_val = e1000_check_polarity_ife_ich8lan(hw);
676                 if (ret_val)
677                         return ret_val;
678         } else {
679                 /* Polarity is forced */
680                 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
681                                       ? e1000_rev_polarity_reversed
682                                       : e1000_rev_polarity_normal;
683         }
684
685         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
686         if (ret_val)
687                 return ret_val;
688
689         phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
690
691         /* The following parameters are undefined for 10/100 operation. */
692         phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
693         phy->local_rx = e1000_1000t_rx_status_undefined;
694         phy->remote_rx = e1000_1000t_rx_status_undefined;
695
696         return 0;
697 }
698
699 /**
700  *  e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
701  *  @hw: pointer to the HW structure
702  *
703  *  Wrapper for calling the get_phy_info routines for the appropriate phy type.
704  *  This is a function pointer entry point called by drivers
705  *  or other shared routines.
706  **/
707 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
708 {
709         switch (hw->phy.type) {
710         case e1000_phy_ife:
711                 return e1000_get_phy_info_ife_ich8lan(hw);
712                 break;
713         case e1000_phy_igp_3:
714         case e1000_phy_bm:
715                 return e1000e_get_phy_info_igp(hw);
716                 break;
717         default:
718                 break;
719         }
720
721         return -E1000_ERR_PHY_TYPE;
722 }
723
724 /**
725  *  e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
726  *  @hw: pointer to the HW structure
727  *
728  *  Polarity is determined on the polarity reversal feature being enabled.
729  *  This function is only called by other family-specific
730  *  routines.
731  **/
732 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
733 {
734         struct e1000_phy_info *phy = &hw->phy;
735         s32 ret_val;
736         u16 phy_data, offset, mask;
737
738         /*
739          * Polarity is determined based on the reversal feature being enabled.
740          */
741         if (phy->polarity_correction) {
742                 offset  = IFE_PHY_EXTENDED_STATUS_CONTROL;
743                 mask    = IFE_PESC_POLARITY_REVERSED;
744         } else {
745                 offset  = IFE_PHY_SPECIAL_CONTROL;
746                 mask    = IFE_PSC_FORCE_POLARITY;
747         }
748
749         ret_val = e1e_rphy(hw, offset, &phy_data);
750
751         if (!ret_val)
752                 phy->cable_polarity = (phy_data & mask)
753                                       ? e1000_rev_polarity_reversed
754                                       : e1000_rev_polarity_normal;
755
756         return ret_val;
757 }
758
759 /**
760  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
761  *  @hw: pointer to the HW structure
762  *  @active: TRUE to enable LPLU, FALSE to disable
763  *
764  *  Sets the LPLU D0 state according to the active flag.  When
765  *  activating LPLU this function also disables smart speed
766  *  and vice versa.  LPLU will not be activated unless the
767  *  device autonegotiation advertisement meets standards of
768  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
769  *  This is a function pointer entry point only called by
770  *  PHY setup routines.
771  **/
772 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
773 {
774         struct e1000_phy_info *phy = &hw->phy;
775         u32 phy_ctrl;
776         s32 ret_val = 0;
777         u16 data;
778
779         if (phy->type == e1000_phy_ife)
780                 return ret_val;
781
782         phy_ctrl = er32(PHY_CTRL);
783
784         if (active) {
785                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
786                 ew32(PHY_CTRL, phy_ctrl);
787
788                 /*
789                  * Call gig speed drop workaround on LPLU before accessing
790                  * any PHY registers
791                  */
792                 if ((hw->mac.type == e1000_ich8lan) &&
793                     (hw->phy.type == e1000_phy_igp_3))
794                         e1000e_gig_downshift_workaround_ich8lan(hw);
795
796                 /* When LPLU is enabled, we should disable SmartSpeed */
797                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
798                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
799                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
800                 if (ret_val)
801                         return ret_val;
802         } else {
803                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
804                 ew32(PHY_CTRL, phy_ctrl);
805
806                 /*
807                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
808                  * during Dx states where the power conservation is most
809                  * important.  During driver activity we should enable
810                  * SmartSpeed, so performance is maintained.
811                  */
812                 if (phy->smart_speed == e1000_smart_speed_on) {
813                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
814                                            &data);
815                         if (ret_val)
816                                 return ret_val;
817
818                         data |= IGP01E1000_PSCFR_SMART_SPEED;
819                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
820                                            data);
821                         if (ret_val)
822                                 return ret_val;
823                 } else if (phy->smart_speed == e1000_smart_speed_off) {
824                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
825                                            &data);
826                         if (ret_val)
827                                 return ret_val;
828
829                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
830                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
831                                            data);
832                         if (ret_val)
833                                 return ret_val;
834                 }
835         }
836
837         return 0;
838 }
839
840 /**
841  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
842  *  @hw: pointer to the HW structure
843  *  @active: TRUE to enable LPLU, FALSE to disable
844  *
845  *  Sets the LPLU D3 state according to the active flag.  When
846  *  activating LPLU this function also disables smart speed
847  *  and vice versa.  LPLU will not be activated unless the
848  *  device autonegotiation advertisement meets standards of
849  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
850  *  This is a function pointer entry point only called by
851  *  PHY setup routines.
852  **/
853 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
854 {
855         struct e1000_phy_info *phy = &hw->phy;
856         u32 phy_ctrl;
857         s32 ret_val;
858         u16 data;
859
860         phy_ctrl = er32(PHY_CTRL);
861
862         if (!active) {
863                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
864                 ew32(PHY_CTRL, phy_ctrl);
865                 /*
866                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
867                  * during Dx states where the power conservation is most
868                  * important.  During driver activity we should enable
869                  * SmartSpeed, so performance is maintained.
870                  */
871                 if (phy->smart_speed == e1000_smart_speed_on) {
872                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
873                                            &data);
874                         if (ret_val)
875                                 return ret_val;
876
877                         data |= IGP01E1000_PSCFR_SMART_SPEED;
878                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
879                                            data);
880                         if (ret_val)
881                                 return ret_val;
882                 } else if (phy->smart_speed == e1000_smart_speed_off) {
883                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
884                                            &data);
885                         if (ret_val)
886                                 return ret_val;
887
888                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
889                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
890                                            data);
891                         if (ret_val)
892                                 return ret_val;
893                 }
894         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
895                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
896                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
897                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
898                 ew32(PHY_CTRL, phy_ctrl);
899
900                 /*
901                  * Call gig speed drop workaround on LPLU before accessing
902                  * any PHY registers
903                  */
904                 if ((hw->mac.type == e1000_ich8lan) &&
905                     (hw->phy.type == e1000_phy_igp_3))
906                         e1000e_gig_downshift_workaround_ich8lan(hw);
907
908                 /* When LPLU is enabled, we should disable SmartSpeed */
909                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
910                 if (ret_val)
911                         return ret_val;
912
913                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
914                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
915         }
916
917         return 0;
918 }
919
920 /**
921  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
922  *  @hw: pointer to the HW structure
923  *  @bank:  pointer to the variable that returns the active bank
924  *
925  *  Reads signature byte from the NVM using the flash access registers.
926  **/
927 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
928 {
929         struct e1000_nvm_info *nvm = &hw->nvm;
930         /* flash bank size is in words */
931         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
932         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
933         u8 bank_high_byte = 0;
934
935         if (hw->mac.type != e1000_ich10lan) {
936                 if (er32(EECD) & E1000_EECD_SEC1VAL)
937                         *bank = 1;
938                 else
939                         *bank = 0;
940         } else {
941                 /*
942                  * Make sure the signature for bank 0 is valid,
943                  * if not check for bank1
944                  */
945                 e1000_read_flash_byte_ich8lan(hw, act_offset, &bank_high_byte);
946                 if ((bank_high_byte & 0xC0) == 0x80) {
947                         *bank = 0;
948                 } else {
949                         /*
950                          * find if segment 1 is valid by verifying
951                          * bit 15:14 = 10b in word 0x13
952                          */
953                         e1000_read_flash_byte_ich8lan(hw,
954                                                       act_offset + bank1_offset,
955                                                       &bank_high_byte);
956
957                         /* bank1 has a valid signature equivalent to SEC1V */
958                         if ((bank_high_byte & 0xC0) == 0x80) {
959                                 *bank = 1;
960                         } else {
961                                 hw_dbg(hw, "ERROR: EEPROM not present\n");
962                                 return -E1000_ERR_NVM;
963                         }
964                 }
965         }
966
967         return 0;
968 }
969
970 /**
971  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
972  *  @hw: pointer to the HW structure
973  *  @offset: The offset (in bytes) of the word(s) to read.
974  *  @words: Size of data to read in words
975  *  @data: Pointer to the word(s) to read at offset.
976  *
977  *  Reads a word(s) from the NVM using the flash access registers.
978  **/
979 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
980                                   u16 *data)
981 {
982         struct e1000_nvm_info *nvm = &hw->nvm;
983         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
984         u32 act_offset;
985         s32 ret_val;
986         u32 bank = 0;
987         u16 i, word;
988
989         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
990             (words == 0)) {
991                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
992                 return -E1000_ERR_NVM;
993         }
994
995         ret_val = e1000_acquire_swflag_ich8lan(hw);
996         if (ret_val)
997                 return ret_val;
998
999         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1000         if (ret_val)
1001                 return ret_val;
1002
1003         act_offset = (bank) ? nvm->flash_bank_size : 0;
1004         act_offset += offset;
1005
1006         for (i = 0; i < words; i++) {
1007                 if ((dev_spec->shadow_ram) &&
1008                     (dev_spec->shadow_ram[offset+i].modified)) {
1009                         data[i] = dev_spec->shadow_ram[offset+i].value;
1010                 } else {
1011                         ret_val = e1000_read_flash_word_ich8lan(hw,
1012                                                                 act_offset + i,
1013                                                                 &word);
1014                         if (ret_val)
1015                                 break;
1016                         data[i] = word;
1017                 }
1018         }
1019
1020         e1000_release_swflag_ich8lan(hw);
1021
1022         return ret_val;
1023 }
1024
1025 /**
1026  *  e1000_flash_cycle_init_ich8lan - Initialize flash
1027  *  @hw: pointer to the HW structure
1028  *
1029  *  This function does initial flash setup so that a new read/write/erase cycle
1030  *  can be started.
1031  **/
1032 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1033 {
1034         union ich8_hws_flash_status hsfsts;
1035         s32 ret_val = -E1000_ERR_NVM;
1036         s32 i = 0;
1037
1038         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1039
1040         /* Check if the flash descriptor is valid */
1041         if (hsfsts.hsf_status.fldesvalid == 0) {
1042                 hw_dbg(hw, "Flash descriptor invalid.  "
1043                          "SW Sequencing must be used.");
1044                 return -E1000_ERR_NVM;
1045         }
1046
1047         /* Clear FCERR and DAEL in hw status by writing 1 */
1048         hsfsts.hsf_status.flcerr = 1;
1049         hsfsts.hsf_status.dael = 1;
1050
1051         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1052
1053         /*
1054          * Either we should have a hardware SPI cycle in progress
1055          * bit to check against, in order to start a new cycle or
1056          * FDONE bit should be changed in the hardware so that it
1057          * is 1 after hardware reset, which can then be used as an
1058          * indication whether a cycle is in progress or has been
1059          * completed.
1060          */
1061
1062         if (hsfsts.hsf_status.flcinprog == 0) {
1063                 /*
1064                  * There is no cycle running at present,
1065                  * so we can start a cycle
1066                  * Begin by setting Flash Cycle Done.
1067                  */
1068                 hsfsts.hsf_status.flcdone = 1;
1069                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1070                 ret_val = 0;
1071         } else {
1072                 /*
1073                  * otherwise poll for sometime so the current
1074                  * cycle has a chance to end before giving up.
1075                  */
1076                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1077                         hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1078                         if (hsfsts.hsf_status.flcinprog == 0) {
1079                                 ret_val = 0;
1080                                 break;
1081                         }
1082                         udelay(1);
1083                 }
1084                 if (ret_val == 0) {
1085                         /*
1086                          * Successful in waiting for previous cycle to timeout,
1087                          * now set the Flash Cycle Done.
1088                          */
1089                         hsfsts.hsf_status.flcdone = 1;
1090                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1091                 } else {
1092                         hw_dbg(hw, "Flash controller busy, cannot get access");
1093                 }
1094         }
1095
1096         return ret_val;
1097 }
1098
1099 /**
1100  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1101  *  @hw: pointer to the HW structure
1102  *  @timeout: maximum time to wait for completion
1103  *
1104  *  This function starts a flash cycle and waits for its completion.
1105  **/
1106 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1107 {
1108         union ich8_hws_flash_ctrl hsflctl;
1109         union ich8_hws_flash_status hsfsts;
1110         s32 ret_val = -E1000_ERR_NVM;
1111         u32 i = 0;
1112
1113         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1114         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1115         hsflctl.hsf_ctrl.flcgo = 1;
1116         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1117
1118         /* wait till FDONE bit is set to 1 */
1119         do {
1120                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1121                 if (hsfsts.hsf_status.flcdone == 1)
1122                         break;
1123                 udelay(1);
1124         } while (i++ < timeout);
1125
1126         if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1127                 return 0;
1128
1129         return ret_val;
1130 }
1131
1132 /**
1133  *  e1000_read_flash_word_ich8lan - Read word from flash
1134  *  @hw: pointer to the HW structure
1135  *  @offset: offset to data location
1136  *  @data: pointer to the location for storing the data
1137  *
1138  *  Reads the flash word at offset into data.  Offset is converted
1139  *  to bytes before read.
1140  **/
1141 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1142                                          u16 *data)
1143 {
1144         /* Must convert offset into bytes. */
1145         offset <<= 1;
1146
1147         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1148 }
1149
1150 /**
1151  *  e1000_read_flash_byte_ich8lan - Read byte from flash
1152  *  @hw: pointer to the HW structure
1153  *  @offset: The offset of the byte to read.
1154  *  @data: Pointer to a byte to store the value read.
1155  *
1156  *  Reads a single byte from the NVM using the flash access registers.
1157  **/
1158 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1159                                          u8 *data)
1160 {
1161         s32 ret_val;
1162         u16 word = 0;
1163
1164         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1165         if (ret_val)
1166                 return ret_val;
1167
1168         *data = (u8)word;
1169
1170         return 0;
1171 }
1172
1173 /**
1174  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
1175  *  @hw: pointer to the HW structure
1176  *  @offset: The offset (in bytes) of the byte or word to read.
1177  *  @size: Size of data to read, 1=byte 2=word
1178  *  @data: Pointer to the word to store the value read.
1179  *
1180  *  Reads a byte or word from the NVM using the flash access registers.
1181  **/
1182 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1183                                          u8 size, u16 *data)
1184 {
1185         union ich8_hws_flash_status hsfsts;
1186         union ich8_hws_flash_ctrl hsflctl;
1187         u32 flash_linear_addr;
1188         u32 flash_data = 0;
1189         s32 ret_val = -E1000_ERR_NVM;
1190         u8 count = 0;
1191
1192         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1193                 return -E1000_ERR_NVM;
1194
1195         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1196                             hw->nvm.flash_base_addr;
1197
1198         do {
1199                 udelay(1);
1200                 /* Steps */
1201                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1202                 if (ret_val != 0)
1203                         break;
1204
1205                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1206                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1207                 hsflctl.hsf_ctrl.fldbcount = size - 1;
1208                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1209                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1210
1211                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1212
1213                 ret_val = e1000_flash_cycle_ich8lan(hw,
1214                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
1215
1216                 /*
1217                  * Check if FCERR is set to 1, if set to 1, clear it
1218                  * and try the whole sequence a few more times, else
1219                  * read in (shift in) the Flash Data0, the order is
1220                  * least significant byte first msb to lsb
1221                  */
1222                 if (ret_val == 0) {
1223                         flash_data = er32flash(ICH_FLASH_FDATA0);
1224                         if (size == 1) {
1225                                 *data = (u8)(flash_data & 0x000000FF);
1226                         } else if (size == 2) {
1227                                 *data = (u16)(flash_data & 0x0000FFFF);
1228                         }
1229                         break;
1230                 } else {
1231                         /*
1232                          * If we've gotten here, then things are probably
1233                          * completely hosed, but if the error condition is
1234                          * detected, it won't hurt to give it another try...
1235                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1236                          */
1237                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1238                         if (hsfsts.hsf_status.flcerr == 1) {
1239                                 /* Repeat for some time before giving up. */
1240                                 continue;
1241                         } else if (hsfsts.hsf_status.flcdone == 0) {
1242                                 hw_dbg(hw, "Timeout error - flash cycle "
1243                                          "did not complete.");
1244                                 break;
1245                         }
1246                 }
1247         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1248
1249         return ret_val;
1250 }
1251
1252 /**
1253  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
1254  *  @hw: pointer to the HW structure
1255  *  @offset: The offset (in bytes) of the word(s) to write.
1256  *  @words: Size of data to write in words
1257  *  @data: Pointer to the word(s) to write at offset.
1258  *
1259  *  Writes a byte or word to the NVM using the flash access registers.
1260  **/
1261 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1262                                    u16 *data)
1263 {
1264         struct e1000_nvm_info *nvm = &hw->nvm;
1265         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1266         s32 ret_val;
1267         u16 i;
1268
1269         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1270             (words == 0)) {
1271                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1272                 return -E1000_ERR_NVM;
1273         }
1274
1275         ret_val = e1000_acquire_swflag_ich8lan(hw);
1276         if (ret_val)
1277                 return ret_val;
1278
1279         for (i = 0; i < words; i++) {
1280                 dev_spec->shadow_ram[offset+i].modified = 1;
1281                 dev_spec->shadow_ram[offset+i].value = data[i];
1282         }
1283
1284         e1000_release_swflag_ich8lan(hw);
1285
1286         return 0;
1287 }
1288
1289 /**
1290  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1291  *  @hw: pointer to the HW structure
1292  *
1293  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
1294  *  which writes the checksum to the shadow ram.  The changes in the shadow
1295  *  ram are then committed to the EEPROM by processing each bank at a time
1296  *  checking for the modified bit and writing only the pending changes.
1297  *  After a successful commit, the shadow ram is cleared and is ready for
1298  *  future writes.
1299  **/
1300 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1301 {
1302         struct e1000_nvm_info *nvm = &hw->nvm;
1303         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1304         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1305         s32 ret_val;
1306         u16 data;
1307
1308         ret_val = e1000e_update_nvm_checksum_generic(hw);
1309         if (ret_val)
1310                 return ret_val;
1311
1312         if (nvm->type != e1000_nvm_flash_sw)
1313                 return ret_val;
1314
1315         ret_val = e1000_acquire_swflag_ich8lan(hw);
1316         if (ret_val)
1317                 return ret_val;
1318
1319         /*
1320          * We're writing to the opposite bank so if we're on bank 1,
1321          * write to bank 0 etc.  We also need to erase the segment that
1322          * is going to be written
1323          */
1324         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1325         if (ret_val)
1326                 return ret_val;
1327
1328         if (bank == 0) {
1329                 new_bank_offset = nvm->flash_bank_size;
1330                 old_bank_offset = 0;
1331                 e1000_erase_flash_bank_ich8lan(hw, 1);
1332         } else {
1333                 old_bank_offset = nvm->flash_bank_size;
1334                 new_bank_offset = 0;
1335                 e1000_erase_flash_bank_ich8lan(hw, 0);
1336         }
1337
1338         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1339                 /*
1340                  * Determine whether to write the value stored
1341                  * in the other NVM bank or a modified value stored
1342                  * in the shadow RAM
1343                  */
1344                 if (dev_spec->shadow_ram[i].modified) {
1345                         data = dev_spec->shadow_ram[i].value;
1346                 } else {
1347                         e1000_read_flash_word_ich8lan(hw,
1348                                                       i + old_bank_offset,
1349                                                       &data);
1350                 }
1351
1352                 /*
1353                  * If the word is 0x13, then make sure the signature bits
1354                  * (15:14) are 11b until the commit has completed.
1355                  * This will allow us to write 10b which indicates the
1356                  * signature is valid.  We want to do this after the write
1357                  * has completed so that we don't mark the segment valid
1358                  * while the write is still in progress
1359                  */
1360                 if (i == E1000_ICH_NVM_SIG_WORD)
1361                         data |= E1000_ICH_NVM_SIG_MASK;
1362
1363                 /* Convert offset to bytes. */
1364                 act_offset = (i + new_bank_offset) << 1;
1365
1366                 udelay(100);
1367                 /* Write the bytes to the new bank. */
1368                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1369                                                                act_offset,
1370                                                                (u8)data);
1371                 if (ret_val)
1372                         break;
1373
1374                 udelay(100);
1375                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1376                                                           act_offset + 1,
1377                                                           (u8)(data >> 8));
1378                 if (ret_val)
1379                         break;
1380         }
1381
1382         /*
1383          * Don't bother writing the segment valid bits if sector
1384          * programming failed.
1385          */
1386         if (ret_val) {
1387                 hw_dbg(hw, "Flash commit failed.\n");
1388                 e1000_release_swflag_ich8lan(hw);
1389                 return ret_val;
1390         }
1391
1392         /*
1393          * Finally validate the new segment by setting bit 15:14
1394          * to 10b in word 0x13 , this can be done without an
1395          * erase as well since these bits are 11 to start with
1396          * and we need to change bit 14 to 0b
1397          */
1398         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1399         e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1400         data &= 0xBFFF;
1401         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1402                                                        act_offset * 2 + 1,
1403                                                        (u8)(data >> 8));
1404         if (ret_val) {
1405                 e1000_release_swflag_ich8lan(hw);
1406                 return ret_val;
1407         }
1408
1409         /*
1410          * And invalidate the previously valid segment by setting
1411          * its signature word (0x13) high_byte to 0b. This can be
1412          * done without an erase because flash erase sets all bits
1413          * to 1's. We can write 1's to 0's without an erase
1414          */
1415         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1416         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1417         if (ret_val) {
1418                 e1000_release_swflag_ich8lan(hw);
1419                 return ret_val;
1420         }
1421
1422         /* Great!  Everything worked, we can now clear the cached entries. */
1423         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1424                 dev_spec->shadow_ram[i].modified = 0;
1425                 dev_spec->shadow_ram[i].value = 0xFFFF;
1426         }
1427
1428         e1000_release_swflag_ich8lan(hw);
1429
1430         /*
1431          * Reload the EEPROM, or else modifications will not appear
1432          * until after the next adapter reset.
1433          */
1434         e1000e_reload_nvm(hw);
1435         msleep(10);
1436
1437         return ret_val;
1438 }
1439
1440 /**
1441  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1442  *  @hw: pointer to the HW structure
1443  *
1444  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1445  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
1446  *  calculated, in which case we need to calculate the checksum and set bit 6.
1447  **/
1448 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1449 {
1450         s32 ret_val;
1451         u16 data;
1452
1453         /*
1454          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
1455          * needs to be fixed.  This bit is an indication that the NVM
1456          * was prepared by OEM software and did not calculate the
1457          * checksum...a likely scenario.
1458          */
1459         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1460         if (ret_val)
1461                 return ret_val;
1462
1463         if ((data & 0x40) == 0) {
1464                 data |= 0x40;
1465                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1466                 if (ret_val)
1467                         return ret_val;
1468                 ret_val = e1000e_update_nvm_checksum(hw);
1469                 if (ret_val)
1470                         return ret_val;
1471         }
1472
1473         return e1000e_validate_nvm_checksum_generic(hw);
1474 }
1475
1476 /**
1477  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1478  *  @hw: pointer to the HW structure
1479  *  @offset: The offset (in bytes) of the byte/word to read.
1480  *  @size: Size of data to read, 1=byte 2=word
1481  *  @data: The byte(s) to write to the NVM.
1482  *
1483  *  Writes one/two bytes to the NVM using the flash access registers.
1484  **/
1485 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1486                                           u8 size, u16 data)
1487 {
1488         union ich8_hws_flash_status hsfsts;
1489         union ich8_hws_flash_ctrl hsflctl;
1490         u32 flash_linear_addr;
1491         u32 flash_data = 0;
1492         s32 ret_val;
1493         u8 count = 0;
1494
1495         if (size < 1 || size > 2 || data > size * 0xff ||
1496             offset > ICH_FLASH_LINEAR_ADDR_MASK)
1497                 return -E1000_ERR_NVM;
1498
1499         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1500                             hw->nvm.flash_base_addr;
1501
1502         do {
1503                 udelay(1);
1504                 /* Steps */
1505                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1506                 if (ret_val)
1507                         break;
1508
1509                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1510                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1511                 hsflctl.hsf_ctrl.fldbcount = size -1;
1512                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1513                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1514
1515                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1516
1517                 if (size == 1)
1518                         flash_data = (u32)data & 0x00FF;
1519                 else
1520                         flash_data = (u32)data;
1521
1522                 ew32flash(ICH_FLASH_FDATA0, flash_data);
1523
1524                 /*
1525                  * check if FCERR is set to 1 , if set to 1, clear it
1526                  * and try the whole sequence a few more times else done
1527                  */
1528                 ret_val = e1000_flash_cycle_ich8lan(hw,
1529                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1530                 if (!ret_val)
1531                         break;
1532
1533                 /*
1534                  * If we're here, then things are most likely
1535                  * completely hosed, but if the error condition
1536                  * is detected, it won't hurt to give it another
1537                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1538                  */
1539                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1540                 if (hsfsts.hsf_status.flcerr == 1)
1541                         /* Repeat for some time before giving up. */
1542                         continue;
1543                 if (hsfsts.hsf_status.flcdone == 0) {
1544                         hw_dbg(hw, "Timeout error - flash cycle "
1545                                  "did not complete.");
1546                         break;
1547                 }
1548         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1549
1550         return ret_val;
1551 }
1552
1553 /**
1554  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1555  *  @hw: pointer to the HW structure
1556  *  @offset: The index of the byte to read.
1557  *  @data: The byte to write to the NVM.
1558  *
1559  *  Writes a single byte to the NVM using the flash access registers.
1560  **/
1561 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1562                                           u8 data)
1563 {
1564         u16 word = (u16)data;
1565
1566         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1567 }
1568
1569 /**
1570  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1571  *  @hw: pointer to the HW structure
1572  *  @offset: The offset of the byte to write.
1573  *  @byte: The byte to write to the NVM.
1574  *
1575  *  Writes a single byte to the NVM using the flash access registers.
1576  *  Goes through a retry algorithm before giving up.
1577  **/
1578 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1579                                                 u32 offset, u8 byte)
1580 {
1581         s32 ret_val;
1582         u16 program_retries;
1583
1584         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1585         if (!ret_val)
1586                 return ret_val;
1587
1588         for (program_retries = 0; program_retries < 100; program_retries++) {
1589                 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1590                 udelay(100);
1591                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1592                 if (!ret_val)
1593                         break;
1594         }
1595         if (program_retries == 100)
1596                 return -E1000_ERR_NVM;
1597
1598         return 0;
1599 }
1600
1601 /**
1602  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1603  *  @hw: pointer to the HW structure
1604  *  @bank: 0 for first bank, 1 for second bank, etc.
1605  *
1606  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1607  *  bank N is 4096 * N + flash_reg_addr.
1608  **/
1609 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
1610 {
1611         struct e1000_nvm_info *nvm = &hw->nvm;
1612         union ich8_hws_flash_status hsfsts;
1613         union ich8_hws_flash_ctrl hsflctl;
1614         u32 flash_linear_addr;
1615         /* bank size is in 16bit words - adjust to bytes */
1616         u32 flash_bank_size = nvm->flash_bank_size * 2;
1617         s32 ret_val;
1618         s32 count = 0;
1619         s32 iteration;
1620         s32 sector_size;
1621         s32 j;
1622
1623         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1624
1625         /*
1626          * Determine HW Sector size: Read BERASE bits of hw flash status
1627          * register
1628          * 00: The Hw sector is 256 bytes, hence we need to erase 16
1629          *     consecutive sectors.  The start index for the nth Hw sector
1630          *     can be calculated as = bank * 4096 + n * 256
1631          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1632          *     The start index for the nth Hw sector can be calculated
1633          *     as = bank * 4096
1634          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1635          *     (ich9 only, otherwise error condition)
1636          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1637          */
1638         switch (hsfsts.hsf_status.berasesz) {
1639         case 0:
1640                 /* Hw sector size 256 */
1641                 sector_size = ICH_FLASH_SEG_SIZE_256;
1642                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
1643                 break;
1644         case 1:
1645                 sector_size = ICH_FLASH_SEG_SIZE_4K;
1646                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
1647                 break;
1648         case 2:
1649                 if (hw->mac.type == e1000_ich9lan) {
1650                         sector_size = ICH_FLASH_SEG_SIZE_8K;
1651                         iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
1652                 } else {
1653                         return -E1000_ERR_NVM;
1654                 }
1655                 break;
1656         case 3:
1657                 sector_size = ICH_FLASH_SEG_SIZE_64K;
1658                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
1659                 break;
1660         default:
1661                 return -E1000_ERR_NVM;
1662         }
1663
1664         /* Start with the base address, then add the sector offset. */
1665         flash_linear_addr = hw->nvm.flash_base_addr;
1666         flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
1667
1668         for (j = 0; j < iteration ; j++) {
1669                 do {
1670                         /* Steps */
1671                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
1672                         if (ret_val)
1673                                 return ret_val;
1674
1675                         /*
1676                          * Write a value 11 (block Erase) in Flash
1677                          * Cycle field in hw flash control
1678                          */
1679                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1680                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
1681                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1682
1683                         /*
1684                          * Write the last 24 bits of an index within the
1685                          * block into Flash Linear address field in Flash
1686                          * Address.
1687                          */
1688                         flash_linear_addr += (j * sector_size);
1689                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1690
1691                         ret_val = e1000_flash_cycle_ich8lan(hw,
1692                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
1693                         if (ret_val == 0)
1694                                 break;
1695
1696                         /*
1697                          * Check if FCERR is set to 1.  If 1,
1698                          * clear it and try the whole sequence
1699                          * a few more times else Done
1700                          */
1701                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1702                         if (hsfsts.hsf_status.flcerr == 1)
1703                                 /* repeat for some time before giving up */
1704                                 continue;
1705                         else if (hsfsts.hsf_status.flcdone == 0)
1706                                 return ret_val;
1707                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
1708         }
1709
1710         return 0;
1711 }
1712
1713 /**
1714  *  e1000_valid_led_default_ich8lan - Set the default LED settings
1715  *  @hw: pointer to the HW structure
1716  *  @data: Pointer to the LED settings
1717  *
1718  *  Reads the LED default settings from the NVM to data.  If the NVM LED
1719  *  settings is all 0's or F's, set the LED default to a valid LED default
1720  *  setting.
1721  **/
1722 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
1723 {
1724         s32 ret_val;
1725
1726         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1727         if (ret_val) {
1728                 hw_dbg(hw, "NVM Read Error\n");
1729                 return ret_val;
1730         }
1731
1732         if (*data == ID_LED_RESERVED_0000 ||
1733             *data == ID_LED_RESERVED_FFFF)
1734                 *data = ID_LED_DEFAULT_ICH8LAN;
1735
1736         return 0;
1737 }
1738
1739 /**
1740  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
1741  *  @hw: pointer to the HW structure
1742  *
1743  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
1744  *  register, so the the bus width is hard coded.
1745  **/
1746 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
1747 {
1748         struct e1000_bus_info *bus = &hw->bus;
1749         s32 ret_val;
1750
1751         ret_val = e1000e_get_bus_info_pcie(hw);
1752
1753         /*
1754          * ICH devices are "PCI Express"-ish.  They have
1755          * a configuration space, but do not contain
1756          * PCI Express Capability registers, so bus width
1757          * must be hardcoded.
1758          */
1759         if (bus->width == e1000_bus_width_unknown)
1760                 bus->width = e1000_bus_width_pcie_x1;
1761
1762         return ret_val;
1763 }
1764
1765 /**
1766  *  e1000_reset_hw_ich8lan - Reset the hardware
1767  *  @hw: pointer to the HW structure
1768  *
1769  *  Does a full reset of the hardware which includes a reset of the PHY and
1770  *  MAC.
1771  **/
1772 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
1773 {
1774         u32 ctrl, icr, kab;
1775         s32 ret_val;
1776
1777         /*
1778          * Prevent the PCI-E bus from sticking if there is no TLP connection
1779          * on the last TLP read/write transaction when MAC is reset.
1780          */
1781         ret_val = e1000e_disable_pcie_master(hw);
1782         if (ret_val) {
1783                 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
1784         }
1785
1786         hw_dbg(hw, "Masking off all interrupts\n");
1787         ew32(IMC, 0xffffffff);
1788
1789         /*
1790          * Disable the Transmit and Receive units.  Then delay to allow
1791          * any pending transactions to complete before we hit the MAC
1792          * with the global reset.
1793          */
1794         ew32(RCTL, 0);
1795         ew32(TCTL, E1000_TCTL_PSP);
1796         e1e_flush();
1797
1798         msleep(10);
1799
1800         /* Workaround for ICH8 bit corruption issue in FIFO memory */
1801         if (hw->mac.type == e1000_ich8lan) {
1802                 /* Set Tx and Rx buffer allocation to 8k apiece. */
1803                 ew32(PBA, E1000_PBA_8K);
1804                 /* Set Packet Buffer Size to 16k. */
1805                 ew32(PBS, E1000_PBS_16K);
1806         }
1807
1808         ctrl = er32(CTRL);
1809
1810         if (!e1000_check_reset_block(hw)) {
1811                 /*
1812                  * PHY HW reset requires MAC CORE reset at the same
1813                  * time to make sure the interface between MAC and the
1814                  * external PHY is reset.
1815                  */
1816                 ctrl |= E1000_CTRL_PHY_RST;
1817         }
1818         ret_val = e1000_acquire_swflag_ich8lan(hw);
1819         hw_dbg(hw, "Issuing a global reset to ich8lan");
1820         ew32(CTRL, (ctrl | E1000_CTRL_RST));
1821         msleep(20);
1822
1823         ret_val = e1000e_get_auto_rd_done(hw);
1824         if (ret_val) {
1825                 /*
1826                  * When auto config read does not complete, do not
1827                  * return with an error. This can happen in situations
1828                  * where there is no eeprom and prevents getting link.
1829                  */
1830                 hw_dbg(hw, "Auto Read Done did not complete\n");
1831         }
1832
1833         ew32(IMC, 0xffffffff);
1834         icr = er32(ICR);
1835
1836         kab = er32(KABGTXD);
1837         kab |= E1000_KABGTXD_BGSQLBIAS;
1838         ew32(KABGTXD, kab);
1839
1840         return ret_val;
1841 }
1842
1843 /**
1844  *  e1000_init_hw_ich8lan - Initialize the hardware
1845  *  @hw: pointer to the HW structure
1846  *
1847  *  Prepares the hardware for transmit and receive by doing the following:
1848  *   - initialize hardware bits
1849  *   - initialize LED identification
1850  *   - setup receive address registers
1851  *   - setup flow control
1852  *   - setup transmit descriptors
1853  *   - clear statistics
1854  **/
1855 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
1856 {
1857         struct e1000_mac_info *mac = &hw->mac;
1858         u32 ctrl_ext, txdctl, snoop;
1859         s32 ret_val;
1860         u16 i;
1861
1862         e1000_initialize_hw_bits_ich8lan(hw);
1863
1864         /* Initialize identification LED */
1865         ret_val = e1000e_id_led_init(hw);
1866         if (ret_val) {
1867                 hw_dbg(hw, "Error initializing identification LED\n");
1868                 return ret_val;
1869         }
1870
1871         /* Setup the receive address. */
1872         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
1873
1874         /* Zero out the Multicast HASH table */
1875         hw_dbg(hw, "Zeroing the MTA\n");
1876         for (i = 0; i < mac->mta_reg_count; i++)
1877                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1878
1879         /* Setup link and flow control */
1880         ret_val = e1000_setup_link_ich8lan(hw);
1881
1882         /* Set the transmit descriptor write-back policy for both queues */
1883         txdctl = er32(TXDCTL(0));
1884         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
1885                  E1000_TXDCTL_FULL_TX_DESC_WB;
1886         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
1887                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
1888         ew32(TXDCTL(0), txdctl);
1889         txdctl = er32(TXDCTL(1));
1890         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
1891                  E1000_TXDCTL_FULL_TX_DESC_WB;
1892         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
1893                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
1894         ew32(TXDCTL(1), txdctl);
1895
1896         /*
1897          * ICH8 has opposite polarity of no_snoop bits.
1898          * By default, we should use snoop behavior.
1899          */
1900         if (mac->type == e1000_ich8lan)
1901                 snoop = PCIE_ICH8_SNOOP_ALL;
1902         else
1903                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
1904         e1000e_set_pcie_no_snoop(hw, snoop);
1905
1906         ctrl_ext = er32(CTRL_EXT);
1907         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1908         ew32(CTRL_EXT, ctrl_ext);
1909
1910         /*
1911          * Clear all of the statistics registers (clear on read).  It is
1912          * important that we do this after we have tried to establish link
1913          * because the symbol error count will increment wildly if there
1914          * is no link.
1915          */
1916         e1000_clear_hw_cntrs_ich8lan(hw);
1917
1918         return 0;
1919 }
1920 /**
1921  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
1922  *  @hw: pointer to the HW structure
1923  *
1924  *  Sets/Clears required hardware bits necessary for correctly setting up the
1925  *  hardware for transmit and receive.
1926  **/
1927 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
1928 {
1929         u32 reg;
1930
1931         /* Extended Device Control */
1932         reg = er32(CTRL_EXT);
1933         reg |= (1 << 22);
1934         ew32(CTRL_EXT, reg);
1935
1936         /* Transmit Descriptor Control 0 */
1937         reg = er32(TXDCTL(0));
1938         reg |= (1 << 22);
1939         ew32(TXDCTL(0), reg);
1940
1941         /* Transmit Descriptor Control 1 */
1942         reg = er32(TXDCTL(1));
1943         reg |= (1 << 22);
1944         ew32(TXDCTL(1), reg);
1945
1946         /* Transmit Arbitration Control 0 */
1947         reg = er32(TARC(0));
1948         if (hw->mac.type == e1000_ich8lan)
1949                 reg |= (1 << 28) | (1 << 29);
1950         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
1951         ew32(TARC(0), reg);
1952
1953         /* Transmit Arbitration Control 1 */
1954         reg = er32(TARC(1));
1955         if (er32(TCTL) & E1000_TCTL_MULR)
1956                 reg &= ~(1 << 28);
1957         else
1958                 reg |= (1 << 28);
1959         reg |= (1 << 24) | (1 << 26) | (1 << 30);
1960         ew32(TARC(1), reg);
1961
1962         /* Device Status */
1963         if (hw->mac.type == e1000_ich8lan) {
1964                 reg = er32(STATUS);
1965                 reg &= ~(1 << 31);
1966                 ew32(STATUS, reg);
1967         }
1968 }
1969
1970 /**
1971  *  e1000_setup_link_ich8lan - Setup flow control and link settings
1972  *  @hw: pointer to the HW structure
1973  *
1974  *  Determines which flow control settings to use, then configures flow
1975  *  control.  Calls the appropriate media-specific link configuration
1976  *  function.  Assuming the adapter has a valid link partner, a valid link
1977  *  should be established.  Assumes the hardware has previously been reset
1978  *  and the transmitter and receiver are not enabled.
1979  **/
1980 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
1981 {
1982         s32 ret_val;
1983
1984         if (e1000_check_reset_block(hw))
1985                 return 0;
1986
1987         /*
1988          * ICH parts do not have a word in the NVM to determine
1989          * the default flow control setting, so we explicitly
1990          * set it to full.
1991          */
1992         if (hw->fc.type == e1000_fc_default)
1993                 hw->fc.type = e1000_fc_full;
1994
1995         hw->fc.original_type = hw->fc.type;
1996
1997         hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", hw->fc.type);
1998
1999         /* Continue to configure the copper link. */
2000         ret_val = e1000_setup_copper_link_ich8lan(hw);
2001         if (ret_val)
2002                 return ret_val;
2003
2004         ew32(FCTTV, hw->fc.pause_time);
2005
2006         return e1000e_set_fc_watermarks(hw);
2007 }
2008
2009 /**
2010  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2011  *  @hw: pointer to the HW structure
2012  *
2013  *  Configures the kumeran interface to the PHY to wait the appropriate time
2014  *  when polling the PHY, then call the generic setup_copper_link to finish
2015  *  configuring the copper link.
2016  **/
2017 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2018 {
2019         u32 ctrl;
2020         s32 ret_val;
2021         u16 reg_data;
2022
2023         ctrl = er32(CTRL);
2024         ctrl |= E1000_CTRL_SLU;
2025         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2026         ew32(CTRL, ctrl);
2027
2028         /*
2029          * Set the mac to wait the maximum time between each iteration
2030          * and increase the max iterations when polling the phy;
2031          * this fixes erroneous timeouts at 10Mbps.
2032          */
2033         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2034         if (ret_val)
2035                 return ret_val;
2036         ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2037         if (ret_val)
2038                 return ret_val;
2039         reg_data |= 0x3F;
2040         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2041         if (ret_val)
2042                 return ret_val;
2043
2044         if (hw->phy.type == e1000_phy_igp_3) {
2045                 ret_val = e1000e_copper_link_setup_igp(hw);
2046                 if (ret_val)
2047                         return ret_val;
2048         } else if (hw->phy.type == e1000_phy_bm) {
2049                 ret_val = e1000e_copper_link_setup_m88(hw);
2050                 if (ret_val)
2051                         return ret_val;
2052         }
2053
2054         if (hw->phy.type == e1000_phy_ife) {
2055                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
2056                 if (ret_val)
2057                         return ret_val;
2058
2059                 reg_data &= ~IFE_PMC_AUTO_MDIX;
2060
2061                 switch (hw->phy.mdix) {
2062                 case 1:
2063                         reg_data &= ~IFE_PMC_FORCE_MDIX;
2064                         break;
2065                 case 2:
2066                         reg_data |= IFE_PMC_FORCE_MDIX;
2067                         break;
2068                 case 0:
2069                 default:
2070                         reg_data |= IFE_PMC_AUTO_MDIX;
2071                         break;
2072                 }
2073                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
2074                 if (ret_val)
2075                         return ret_val;
2076         }
2077         return e1000e_setup_copper_link(hw);
2078 }
2079
2080 /**
2081  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2082  *  @hw: pointer to the HW structure
2083  *  @speed: pointer to store current link speed
2084  *  @duplex: pointer to store the current link duplex
2085  *
2086  *  Calls the generic get_speed_and_duplex to retrieve the current link
2087  *  information and then calls the Kumeran lock loss workaround for links at
2088  *  gigabit speeds.
2089  **/
2090 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2091                                           u16 *duplex)
2092 {
2093         s32 ret_val;
2094
2095         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2096         if (ret_val)
2097                 return ret_val;
2098
2099         if ((hw->mac.type == e1000_ich8lan) &&
2100             (hw->phy.type == e1000_phy_igp_3) &&
2101             (*speed == SPEED_1000)) {
2102                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2103         }
2104
2105         return ret_val;
2106 }
2107
2108 /**
2109  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2110  *  @hw: pointer to the HW structure
2111  *
2112  *  Work-around for 82566 Kumeran PCS lock loss:
2113  *  On link status change (i.e. PCI reset, speed change) and link is up and
2114  *  speed is gigabit-
2115  *    0) if workaround is optionally disabled do nothing
2116  *    1) wait 1ms for Kumeran link to come up
2117  *    2) check Kumeran Diagnostic register PCS lock loss bit
2118  *    3) if not set the link is locked (all is good), otherwise...
2119  *    4) reset the PHY
2120  *    5) repeat up to 10 times
2121  *  Note: this is only called for IGP3 copper when speed is 1gb.
2122  **/
2123 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2124 {
2125         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2126         u32 phy_ctrl;
2127         s32 ret_val;
2128         u16 i, data;
2129         bool link;
2130
2131         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2132                 return 0;
2133
2134         /*
2135          * Make sure link is up before proceeding.  If not just return.
2136          * Attempting this while link is negotiating fouled up link
2137          * stability
2138          */
2139         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2140         if (!link)
2141                 return 0;
2142
2143         for (i = 0; i < 10; i++) {
2144                 /* read once to clear */
2145                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2146                 if (ret_val)
2147                         return ret_val;
2148                 /* and again to get new status */
2149                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2150                 if (ret_val)
2151                         return ret_val;
2152
2153                 /* check for PCS lock */
2154                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2155                         return 0;
2156
2157                 /* Issue PHY reset */
2158                 e1000_phy_hw_reset(hw);
2159                 mdelay(5);
2160         }
2161         /* Disable GigE link negotiation */
2162         phy_ctrl = er32(PHY_CTRL);
2163         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2164                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2165         ew32(PHY_CTRL, phy_ctrl);
2166
2167         /*
2168          * Call gig speed drop workaround on Gig disable before accessing
2169          * any PHY registers
2170          */
2171         e1000e_gig_downshift_workaround_ich8lan(hw);
2172
2173         /* unable to acquire PCS lock */
2174         return -E1000_ERR_PHY;
2175 }
2176
2177 /**
2178  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2179  *  @hw: pointer to the HW structure
2180  *  @state: boolean value used to set the current Kumeran workaround state
2181  *
2182  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
2183  *  /disabled - FALSE).
2184  **/
2185 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2186                                                  bool state)
2187 {
2188         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2189
2190         if (hw->mac.type != e1000_ich8lan) {
2191                 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2192                 return;
2193         }
2194
2195         dev_spec->kmrn_lock_loss_workaround_enabled = state;
2196 }
2197
2198 /**
2199  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2200  *  @hw: pointer to the HW structure
2201  *
2202  *  Workaround for 82566 power-down on D3 entry:
2203  *    1) disable gigabit link
2204  *    2) write VR power-down enable
2205  *    3) read it back
2206  *  Continue if successful, else issue LCD reset and repeat
2207  **/
2208 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2209 {
2210         u32 reg;
2211         u16 data;
2212         u8  retry = 0;
2213
2214         if (hw->phy.type != e1000_phy_igp_3)
2215                 return;
2216
2217         /* Try the workaround twice (if needed) */
2218         do {
2219                 /* Disable link */
2220                 reg = er32(PHY_CTRL);
2221                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2222                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2223                 ew32(PHY_CTRL, reg);
2224
2225                 /*
2226                  * Call gig speed drop workaround on Gig disable before
2227                  * accessing any PHY registers
2228                  */
2229                 if (hw->mac.type == e1000_ich8lan)
2230                         e1000e_gig_downshift_workaround_ich8lan(hw);
2231
2232                 /* Write VR power-down enable */
2233                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2234                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2235                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2236
2237                 /* Read it back and test */
2238                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2239                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2240                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2241                         break;
2242
2243                 /* Issue PHY reset and repeat at most one more time */
2244                 reg = er32(CTRL);
2245                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2246                 retry++;
2247         } while (retry);
2248 }
2249
2250 /**
2251  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2252  *  @hw: pointer to the HW structure
2253  *
2254  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2255  *  LPLU, Gig disable, MDIC PHY reset):
2256  *    1) Set Kumeran Near-end loopback
2257  *    2) Clear Kumeran Near-end loopback
2258  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
2259  **/
2260 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2261 {
2262         s32 ret_val;
2263         u16 reg_data;
2264
2265         if ((hw->mac.type != e1000_ich8lan) ||
2266             (hw->phy.type != e1000_phy_igp_3))
2267                 return;
2268
2269         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2270                                       &reg_data);
2271         if (ret_val)
2272                 return;
2273         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2274         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2275                                        reg_data);
2276         if (ret_val)
2277                 return;
2278         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2279         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2280                                        reg_data);
2281 }
2282
2283 /**
2284  *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2285  *  @hw: pointer to the HW structure
2286  *
2287  *  During S0 to Sx transition, it is possible the link remains at gig
2288  *  instead of negotiating to a lower speed.  Before going to Sx, set
2289  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2290  *  to a lower speed.
2291  *
2292  *  Should only be called for ICH9 and ICH10 devices.
2293  **/
2294 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2295 {
2296         u32 phy_ctrl;
2297
2298         if ((hw->mac.type == e1000_ich10lan) ||
2299             (hw->mac.type == e1000_ich9lan)) {
2300                 phy_ctrl = er32(PHY_CTRL);
2301                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2302                             E1000_PHY_CTRL_GBE_DISABLE;
2303                 ew32(PHY_CTRL, phy_ctrl);
2304         }
2305
2306         return;
2307 }
2308
2309 /**
2310  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
2311  *  @hw: pointer to the HW structure
2312  *
2313  *  Return the LED back to the default configuration.
2314  **/
2315 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2316 {
2317         if (hw->phy.type == e1000_phy_ife)
2318                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2319
2320         ew32(LEDCTL, hw->mac.ledctl_default);
2321         return 0;
2322 }
2323
2324 /**
2325  *  e1000_led_on_ich8lan - Turn LEDs on
2326  *  @hw: pointer to the HW structure
2327  *
2328  *  Turn on the LEDs.
2329  **/
2330 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2331 {
2332         if (hw->phy.type == e1000_phy_ife)
2333                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2334                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2335
2336         ew32(LEDCTL, hw->mac.ledctl_mode2);
2337         return 0;
2338 }
2339
2340 /**
2341  *  e1000_led_off_ich8lan - Turn LEDs off
2342  *  @hw: pointer to the HW structure
2343  *
2344  *  Turn off the LEDs.
2345  **/
2346 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2347 {
2348         if (hw->phy.type == e1000_phy_ife)
2349                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2350                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2351
2352         ew32(LEDCTL, hw->mac.ledctl_mode1);
2353         return 0;
2354 }
2355
2356 /**
2357  *  e1000_get_cfg_done_ich8lan - Read config done bit
2358  *  @hw: pointer to the HW structure
2359  *
2360  *  Read the management control register for the config done bit for
2361  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
2362  *  to read the config done bit, so an error is *ONLY* logged and returns
2363  *  E1000_SUCCESS.  If we were to return with error, EEPROM-less silicon
2364  *  would not be able to be reset or change link.
2365  **/
2366 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
2367 {
2368         u32 bank = 0;
2369
2370         e1000e_get_cfg_done(hw);
2371
2372         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
2373         if (hw->mac.type != e1000_ich10lan) {
2374                 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
2375                     (hw->phy.type == e1000_phy_igp_3)) {
2376                         e1000e_phy_init_script_igp3(hw);
2377                 }
2378         } else {
2379                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
2380                         /* Maybe we should do a basic PHY config */
2381                         hw_dbg(hw, "EEPROM not present\n");
2382                         return -E1000_ERR_CONFIG;
2383                 }
2384         }
2385
2386         return 0;
2387 }
2388
2389 /**
2390  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2391  *  @hw: pointer to the HW structure
2392  *
2393  *  Clears hardware counters specific to the silicon family and calls
2394  *  clear_hw_cntrs_generic to clear all general purpose counters.
2395  **/
2396 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
2397 {
2398         u32 temp;
2399
2400         e1000e_clear_hw_cntrs_base(hw);
2401
2402         temp = er32(ALGNERRC);
2403         temp = er32(RXERRC);
2404         temp = er32(TNCRS);
2405         temp = er32(CEXTERR);
2406         temp = er32(TSCTC);
2407         temp = er32(TSCTFC);
2408
2409         temp = er32(MGTPRC);
2410         temp = er32(MGTPDC);
2411         temp = er32(MGTPTC);
2412
2413         temp = er32(IAC);
2414         temp = er32(ICRXOC);
2415
2416 }
2417
2418 static struct e1000_mac_operations ich8_mac_ops = {
2419         .check_mng_mode         = e1000_check_mng_mode_ich8lan,
2420         .check_for_link         = e1000e_check_for_copper_link,
2421         .cleanup_led            = e1000_cleanup_led_ich8lan,
2422         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
2423         .get_bus_info           = e1000_get_bus_info_ich8lan,
2424         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
2425         .led_on                 = e1000_led_on_ich8lan,
2426         .led_off                = e1000_led_off_ich8lan,
2427         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
2428         .reset_hw               = e1000_reset_hw_ich8lan,
2429         .init_hw                = e1000_init_hw_ich8lan,
2430         .setup_link             = e1000_setup_link_ich8lan,
2431         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
2432 };
2433
2434 static struct e1000_phy_operations ich8_phy_ops = {
2435         .acquire_phy            = e1000_acquire_swflag_ich8lan,
2436         .check_reset_block      = e1000_check_reset_block_ich8lan,
2437         .commit_phy             = NULL,
2438         .force_speed_duplex     = e1000_phy_force_speed_duplex_ich8lan,
2439         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
2440         .get_cable_length       = e1000e_get_cable_length_igp_2,
2441         .get_phy_info           = e1000_get_phy_info_ich8lan,
2442         .read_phy_reg           = e1000e_read_phy_reg_igp,
2443         .release_phy            = e1000_release_swflag_ich8lan,
2444         .reset_phy              = e1000_phy_hw_reset_ich8lan,
2445         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
2446         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
2447         .write_phy_reg          = e1000e_write_phy_reg_igp,
2448 };
2449
2450 static struct e1000_nvm_operations ich8_nvm_ops = {
2451         .acquire_nvm            = e1000_acquire_swflag_ich8lan,
2452         .read_nvm               = e1000_read_nvm_ich8lan,
2453         .release_nvm            = e1000_release_swflag_ich8lan,
2454         .update_nvm             = e1000_update_nvm_checksum_ich8lan,
2455         .valid_led_default      = e1000_valid_led_default_ich8lan,
2456         .validate_nvm           = e1000_validate_nvm_checksum_ich8lan,
2457         .write_nvm              = e1000_write_nvm_ich8lan,
2458 };
2459
2460 struct e1000_info e1000_ich8_info = {
2461         .mac                    = e1000_ich8lan,
2462         .flags                  = FLAG_HAS_WOL
2463                                   | FLAG_IS_ICH
2464                                   | FLAG_RX_CSUM_ENABLED
2465                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2466                                   | FLAG_HAS_AMT
2467                                   | FLAG_HAS_FLASH
2468                                   | FLAG_APME_IN_WUC,
2469         .pba                    = 8,
2470         .get_variants           = e1000_get_variants_ich8lan,
2471         .mac_ops                = &ich8_mac_ops,
2472         .phy_ops                = &ich8_phy_ops,
2473         .nvm_ops                = &ich8_nvm_ops,
2474 };
2475
2476 struct e1000_info e1000_ich9_info = {
2477         .mac                    = e1000_ich9lan,
2478         .flags                  = FLAG_HAS_JUMBO_FRAMES
2479                                   | FLAG_IS_ICH
2480                                   | FLAG_HAS_WOL
2481                                   | FLAG_RX_CSUM_ENABLED
2482                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2483                                   | FLAG_HAS_AMT
2484                                   | FLAG_HAS_ERT
2485                                   | FLAG_HAS_FLASH
2486                                   | FLAG_APME_IN_WUC,
2487         .pba                    = 10,
2488         .get_variants           = e1000_get_variants_ich8lan,
2489         .mac_ops                = &ich8_mac_ops,
2490         .phy_ops                = &ich8_phy_ops,
2491         .nvm_ops                = &ich8_nvm_ops,
2492 };
2493
2494 struct e1000_info e1000_ich10_info = {
2495         .mac                    = e1000_ich10lan,
2496         .flags                  = FLAG_HAS_JUMBO_FRAMES
2497                                   | FLAG_IS_ICH
2498                                   | FLAG_HAS_WOL
2499                                   | FLAG_RX_CSUM_ENABLED
2500                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2501                                   | FLAG_HAS_AMT
2502                                   | FLAG_HAS_ERT
2503                                   | FLAG_HAS_FLASH
2504                                   | FLAG_APME_IN_WUC,
2505         .pba                    = 10,
2506         .get_variants           = e1000_get_variants_ich8lan,
2507         .mac_ops                = &ich8_mac_ops,
2508         .phy_ops                = &ich8_phy_ops,
2509         .nvm_ops                = &ich8_nvm_ops,
2510 };