ARM: 5910/1: ARM: Add tmp register for addruart and loadsp
[safe/jmp/linux-2.6] / drivers / net / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  */
56
57 #include "e1000.h"
58
59 #define ICH_FLASH_GFPREG                0x0000
60 #define ICH_FLASH_HSFSTS                0x0004
61 #define ICH_FLASH_HSFCTL                0x0006
62 #define ICH_FLASH_FADDR                 0x0008
63 #define ICH_FLASH_FDATA0                0x0010
64 #define ICH_FLASH_PR0                   0x0074
65
66 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
67 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
68 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
69 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
70 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
71
72 #define ICH_CYCLE_READ                  0
73 #define ICH_CYCLE_WRITE                 2
74 #define ICH_CYCLE_ERASE                 3
75
76 #define FLASH_GFPREG_BASE_MASK          0x1FFF
77 #define FLASH_SECTOR_ADDR_SHIFT         12
78
79 #define ICH_FLASH_SEG_SIZE_256          256
80 #define ICH_FLASH_SEG_SIZE_4K           4096
81 #define ICH_FLASH_SEG_SIZE_8K           8192
82 #define ICH_FLASH_SEG_SIZE_64K          65536
83
84
85 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
86
87 #define E1000_ICH_MNG_IAMT_MODE         0x2
88
89 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
90                                  (ID_LED_DEF1_OFF2 <<  8) | \
91                                  (ID_LED_DEF1_ON2  <<  4) | \
92                                  (ID_LED_DEF1_DEF2))
93
94 #define E1000_ICH_NVM_SIG_WORD          0x13
95 #define E1000_ICH_NVM_SIG_MASK          0xC000
96 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
97 #define E1000_ICH_NVM_SIG_VALUE         0x80
98
99 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
100
101 #define E1000_FEXTNVM_SW_CONFIG         1
102 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
103
104 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
105
106 #define E1000_ICH_RAR_ENTRIES           7
107
108 #define PHY_PAGE_SHIFT 5
109 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
110                            ((reg) & MAX_PHY_REG_ADDRESS))
111 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
112 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
113
114 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
115 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
116 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
117
118 #define HV_LED_CONFIG           PHY_REG(768, 30) /* LED Configuration */
119
120 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
121
122 /* SMBus Address Phy Register */
123 #define HV_SMB_ADDR            PHY_REG(768, 26)
124 #define HV_SMB_ADDR_PEC_EN     0x0200
125 #define HV_SMB_ADDR_VALID      0x0080
126
127 /* Strapping Option Register - RO */
128 #define E1000_STRAP                     0x0000C
129 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
130 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
131
132 /* OEM Bits Phy Register */
133 #define HV_OEM_BITS            PHY_REG(768, 25)
134 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
135 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
136 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
137
138 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
139 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
140
141 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
142 /* Offset 04h HSFSTS */
143 union ich8_hws_flash_status {
144         struct ich8_hsfsts {
145                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
146                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
147                 u16 dael       :1; /* bit 2 Direct Access error Log */
148                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
149                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
150                 u16 reserved1  :2; /* bit 13:6 Reserved */
151                 u16 reserved2  :6; /* bit 13:6 Reserved */
152                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
153                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
154         } hsf_status;
155         u16 regval;
156 };
157
158 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
159 /* Offset 06h FLCTL */
160 union ich8_hws_flash_ctrl {
161         struct ich8_hsflctl {
162                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
163                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
164                 u16 reserved   :5;   /* 7:3 Reserved  */
165                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
166                 u16 flockdn    :6;   /* 15:10 Reserved */
167         } hsf_ctrl;
168         u16 regval;
169 };
170
171 /* ICH Flash Region Access Permissions */
172 union ich8_hws_flash_regacc {
173         struct ich8_flracc {
174                 u32 grra      :8; /* 0:7 GbE region Read Access */
175                 u32 grwa      :8; /* 8:15 GbE region Write Access */
176                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
177                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
178         } hsf_flregacc;
179         u16 regval;
180 };
181
182 /* ICH Flash Protected Region */
183 union ich8_flash_protected_range {
184         struct ich8_pr {
185                 u32 base:13;     /* 0:12 Protected Range Base */
186                 u32 reserved1:2; /* 13:14 Reserved */
187                 u32 rpe:1;       /* 15 Read Protection Enable */
188                 u32 limit:13;    /* 16:28 Protected Range Limit */
189                 u32 reserved2:2; /* 29:30 Reserved */
190                 u32 wpe:1;       /* 31 Write Protection Enable */
191         } range;
192         u32 regval;
193 };
194
195 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
196 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
197 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
198 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
199 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
200                                                 u32 offset, u8 byte);
201 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
202                                          u8 *data);
203 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
204                                          u16 *data);
205 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
206                                          u8 size, u16 *data);
207 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
208 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
209 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
210 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
211 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
212 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
213 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
214 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
215 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
216 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
217 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
218 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
219 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
220 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
221 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
222
223 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
224 {
225         return readw(hw->flash_address + reg);
226 }
227
228 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
229 {
230         return readl(hw->flash_address + reg);
231 }
232
233 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
234 {
235         writew(val, hw->flash_address + reg);
236 }
237
238 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
239 {
240         writel(val, hw->flash_address + reg);
241 }
242
243 #define er16flash(reg)          __er16flash(hw, (reg))
244 #define er32flash(reg)          __er32flash(hw, (reg))
245 #define ew16flash(reg,val)      __ew16flash(hw, (reg), (val))
246 #define ew32flash(reg,val)      __ew32flash(hw, (reg), (val))
247
248 /**
249  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
250  *  @hw: pointer to the HW structure
251  *
252  *  Initialize family-specific PHY parameters and function pointers.
253  **/
254 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
255 {
256         struct e1000_phy_info *phy = &hw->phy;
257         s32 ret_val = 0;
258
259         phy->addr                     = 1;
260         phy->reset_delay_us           = 100;
261
262         phy->ops.read_reg             = e1000_read_phy_reg_hv;
263         phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
264         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
265         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
266         phy->ops.write_reg            = e1000_write_phy_reg_hv;
267         phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
268         phy->ops.power_up             = e1000_power_up_phy_copper;
269         phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
270         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
271
272         phy->id = e1000_phy_unknown;
273         e1000e_get_phy_id(hw);
274         phy->type = e1000e_get_phy_type_from_id(phy->id);
275
276         switch (phy->type) {
277         case e1000_phy_82577:
278                 phy->ops.check_polarity = e1000_check_polarity_82577;
279                 phy->ops.force_speed_duplex =
280                         e1000_phy_force_speed_duplex_82577;
281                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
282                 phy->ops.get_info = e1000_get_phy_info_82577;
283                 phy->ops.commit = e1000e_phy_sw_reset;
284         case e1000_phy_82578:
285                 phy->ops.check_polarity = e1000_check_polarity_m88;
286                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
287                 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
288                 phy->ops.get_info = e1000e_get_phy_info_m88;
289                 break;
290         default:
291                 ret_val = -E1000_ERR_PHY;
292                 break;
293         }
294
295         return ret_val;
296 }
297
298 /**
299  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
300  *  @hw: pointer to the HW structure
301  *
302  *  Initialize family-specific PHY parameters and function pointers.
303  **/
304 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
305 {
306         struct e1000_phy_info *phy = &hw->phy;
307         s32 ret_val;
308         u16 i = 0;
309
310         phy->addr                       = 1;
311         phy->reset_delay_us             = 100;
312
313         phy->ops.power_up               = e1000_power_up_phy_copper;
314         phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
315
316         /*
317          * We may need to do this twice - once for IGP and if that fails,
318          * we'll set BM func pointers and try again
319          */
320         ret_val = e1000e_determine_phy_address(hw);
321         if (ret_val) {
322                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
323                 phy->ops.read_reg  = e1000e_read_phy_reg_bm;
324                 ret_val = e1000e_determine_phy_address(hw);
325                 if (ret_val) {
326                         e_dbg("Cannot determine PHY addr. Erroring out\n");
327                         return ret_val;
328                 }
329         }
330
331         phy->id = 0;
332         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
333                (i++ < 100)) {
334                 msleep(1);
335                 ret_val = e1000e_get_phy_id(hw);
336                 if (ret_val)
337                         return ret_val;
338         }
339
340         /* Verify phy id */
341         switch (phy->id) {
342         case IGP03E1000_E_PHY_ID:
343                 phy->type = e1000_phy_igp_3;
344                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
345                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
346                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
347                 phy->ops.get_info = e1000e_get_phy_info_igp;
348                 phy->ops.check_polarity = e1000_check_polarity_igp;
349                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
350                 break;
351         case IFE_E_PHY_ID:
352         case IFE_PLUS_E_PHY_ID:
353         case IFE_C_E_PHY_ID:
354                 phy->type = e1000_phy_ife;
355                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
356                 phy->ops.get_info = e1000_get_phy_info_ife;
357                 phy->ops.check_polarity = e1000_check_polarity_ife;
358                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
359                 break;
360         case BME1000_E_PHY_ID:
361                 phy->type = e1000_phy_bm;
362                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
363                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
364                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
365                 phy->ops.commit = e1000e_phy_sw_reset;
366                 phy->ops.get_info = e1000e_get_phy_info_m88;
367                 phy->ops.check_polarity = e1000_check_polarity_m88;
368                 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
369                 break;
370         default:
371                 return -E1000_ERR_PHY;
372                 break;
373         }
374
375         return 0;
376 }
377
378 /**
379  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
380  *  @hw: pointer to the HW structure
381  *
382  *  Initialize family-specific NVM parameters and function
383  *  pointers.
384  **/
385 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
386 {
387         struct e1000_nvm_info *nvm = &hw->nvm;
388         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
389         u32 gfpreg, sector_base_addr, sector_end_addr;
390         u16 i;
391
392         /* Can't read flash registers if the register set isn't mapped. */
393         if (!hw->flash_address) {
394                 e_dbg("ERROR: Flash registers not mapped\n");
395                 return -E1000_ERR_CONFIG;
396         }
397
398         nvm->type = e1000_nvm_flash_sw;
399
400         gfpreg = er32flash(ICH_FLASH_GFPREG);
401
402         /*
403          * sector_X_addr is a "sector"-aligned address (4096 bytes)
404          * Add 1 to sector_end_addr since this sector is included in
405          * the overall size.
406          */
407         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
408         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
409
410         /* flash_base_addr is byte-aligned */
411         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
412
413         /*
414          * find total size of the NVM, then cut in half since the total
415          * size represents two separate NVM banks.
416          */
417         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
418                                 << FLASH_SECTOR_ADDR_SHIFT;
419         nvm->flash_bank_size /= 2;
420         /* Adjust to word count */
421         nvm->flash_bank_size /= sizeof(u16);
422
423         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
424
425         /* Clear shadow ram */
426         for (i = 0; i < nvm->word_size; i++) {
427                 dev_spec->shadow_ram[i].modified = false;
428                 dev_spec->shadow_ram[i].value    = 0xFFFF;
429         }
430
431         return 0;
432 }
433
434 /**
435  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
436  *  @hw: pointer to the HW structure
437  *
438  *  Initialize family-specific MAC parameters and function
439  *  pointers.
440  **/
441 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
442 {
443         struct e1000_hw *hw = &adapter->hw;
444         struct e1000_mac_info *mac = &hw->mac;
445
446         /* Set media type function pointer */
447         hw->phy.media_type = e1000_media_type_copper;
448
449         /* Set mta register count */
450         mac->mta_reg_count = 32;
451         /* Set rar entry count */
452         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
453         if (mac->type == e1000_ich8lan)
454                 mac->rar_entry_count--;
455         /* Set if manageability features are enabled. */
456         mac->arc_subsystem_valid = true;
457         /* Adaptive IFS supported */
458         mac->adaptive_ifs = true;
459
460         /* LED operations */
461         switch (mac->type) {
462         case e1000_ich8lan:
463         case e1000_ich9lan:
464         case e1000_ich10lan:
465                 /* ID LED init */
466                 mac->ops.id_led_init = e1000e_id_led_init;
467                 /* setup LED */
468                 mac->ops.setup_led = e1000e_setup_led_generic;
469                 /* cleanup LED */
470                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
471                 /* turn on/off LED */
472                 mac->ops.led_on = e1000_led_on_ich8lan;
473                 mac->ops.led_off = e1000_led_off_ich8lan;
474                 break;
475         case e1000_pchlan:
476                 /* ID LED init */
477                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
478                 /* setup LED */
479                 mac->ops.setup_led = e1000_setup_led_pchlan;
480                 /* cleanup LED */
481                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
482                 /* turn on/off LED */
483                 mac->ops.led_on = e1000_led_on_pchlan;
484                 mac->ops.led_off = e1000_led_off_pchlan;
485                 break;
486         default:
487                 break;
488         }
489
490         /* Enable PCS Lock-loss workaround for ICH8 */
491         if (mac->type == e1000_ich8lan)
492                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
493
494         return 0;
495 }
496
497 /**
498  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
499  *  @hw: pointer to the HW structure
500  *
501  *  Checks to see of the link status of the hardware has changed.  If a
502  *  change in link status has been detected, then we read the PHY registers
503  *  to get the current speed/duplex if link exists.
504  **/
505 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
506 {
507         struct e1000_mac_info *mac = &hw->mac;
508         s32 ret_val;
509         bool link;
510
511         /*
512          * We only want to go out to the PHY registers to see if Auto-Neg
513          * has completed and/or if our link status has changed.  The
514          * get_link_status flag is set upon receiving a Link Status
515          * Change or Rx Sequence Error interrupt.
516          */
517         if (!mac->get_link_status) {
518                 ret_val = 0;
519                 goto out;
520         }
521
522         /*
523          * First we want to see if the MII Status Register reports
524          * link.  If so, then we want to get the current speed/duplex
525          * of the PHY.
526          */
527         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
528         if (ret_val)
529                 goto out;
530
531         if (hw->mac.type == e1000_pchlan) {
532                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
533                 if (ret_val)
534                         goto out;
535         }
536
537         if (!link)
538                 goto out; /* No link detected */
539
540         mac->get_link_status = false;
541
542         if (hw->phy.type == e1000_phy_82578) {
543                 ret_val = e1000_link_stall_workaround_hv(hw);
544                 if (ret_val)
545                         goto out;
546         }
547
548         /*
549          * Check if there was DownShift, must be checked
550          * immediately after link-up
551          */
552         e1000e_check_downshift(hw);
553
554         /*
555          * If we are forcing speed/duplex, then we simply return since
556          * we have already determined whether we have link or not.
557          */
558         if (!mac->autoneg) {
559                 ret_val = -E1000_ERR_CONFIG;
560                 goto out;
561         }
562
563         /*
564          * Auto-Neg is enabled.  Auto Speed Detection takes care
565          * of MAC speed/duplex configuration.  So we only need to
566          * configure Collision Distance in the MAC.
567          */
568         e1000e_config_collision_dist(hw);
569
570         /*
571          * Configure Flow Control now that Auto-Neg has completed.
572          * First, we need to restore the desired flow control
573          * settings because we may have had to re-autoneg with a
574          * different link partner.
575          */
576         ret_val = e1000e_config_fc_after_link_up(hw);
577         if (ret_val)
578                 e_dbg("Error configuring flow control\n");
579
580 out:
581         return ret_val;
582 }
583
584 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
585 {
586         struct e1000_hw *hw = &adapter->hw;
587         s32 rc;
588
589         rc = e1000_init_mac_params_ich8lan(adapter);
590         if (rc)
591                 return rc;
592
593         rc = e1000_init_nvm_params_ich8lan(hw);
594         if (rc)
595                 return rc;
596
597         if (hw->mac.type == e1000_pchlan)
598                 rc = e1000_init_phy_params_pchlan(hw);
599         else
600                 rc = e1000_init_phy_params_ich8lan(hw);
601         if (rc)
602                 return rc;
603
604         if (adapter->hw.phy.type == e1000_phy_ife) {
605                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
606                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
607         }
608
609         if ((adapter->hw.mac.type == e1000_ich8lan) &&
610             (adapter->hw.phy.type == e1000_phy_igp_3))
611                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
612
613         return 0;
614 }
615
616 static DEFINE_MUTEX(nvm_mutex);
617
618 /**
619  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
620  *  @hw: pointer to the HW structure
621  *
622  *  Acquires the mutex for performing NVM operations.
623  **/
624 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
625 {
626         mutex_lock(&nvm_mutex);
627
628         return 0;
629 }
630
631 /**
632  *  e1000_release_nvm_ich8lan - Release NVM mutex
633  *  @hw: pointer to the HW structure
634  *
635  *  Releases the mutex used while performing NVM operations.
636  **/
637 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
638 {
639         mutex_unlock(&nvm_mutex);
640
641         return;
642 }
643
644 static DEFINE_MUTEX(swflag_mutex);
645
646 /**
647  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
648  *  @hw: pointer to the HW structure
649  *
650  *  Acquires the software control flag for performing PHY and select
651  *  MAC CSR accesses.
652  **/
653 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
654 {
655         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
656         s32 ret_val = 0;
657
658         mutex_lock(&swflag_mutex);
659
660         while (timeout) {
661                 extcnf_ctrl = er32(EXTCNF_CTRL);
662                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
663                         break;
664
665                 mdelay(1);
666                 timeout--;
667         }
668
669         if (!timeout) {
670                 e_dbg("SW/FW/HW has locked the resource for too long.\n");
671                 ret_val = -E1000_ERR_CONFIG;
672                 goto out;
673         }
674
675         timeout = SW_FLAG_TIMEOUT;
676
677         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
678         ew32(EXTCNF_CTRL, extcnf_ctrl);
679
680         while (timeout) {
681                 extcnf_ctrl = er32(EXTCNF_CTRL);
682                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
683                         break;
684
685                 mdelay(1);
686                 timeout--;
687         }
688
689         if (!timeout) {
690                 e_dbg("Failed to acquire the semaphore.\n");
691                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
692                 ew32(EXTCNF_CTRL, extcnf_ctrl);
693                 ret_val = -E1000_ERR_CONFIG;
694                 goto out;
695         }
696
697 out:
698         if (ret_val)
699                 mutex_unlock(&swflag_mutex);
700
701         return ret_val;
702 }
703
704 /**
705  *  e1000_release_swflag_ich8lan - Release software control flag
706  *  @hw: pointer to the HW structure
707  *
708  *  Releases the software control flag for performing PHY and select
709  *  MAC CSR accesses.
710  **/
711 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
712 {
713         u32 extcnf_ctrl;
714
715         extcnf_ctrl = er32(EXTCNF_CTRL);
716         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
717         ew32(EXTCNF_CTRL, extcnf_ctrl);
718
719         mutex_unlock(&swflag_mutex);
720
721         return;
722 }
723
724 /**
725  *  e1000_check_mng_mode_ich8lan - Checks management mode
726  *  @hw: pointer to the HW structure
727  *
728  *  This checks if the adapter has manageability enabled.
729  *  This is a function pointer entry point only called by read/write
730  *  routines for the PHY and NVM parts.
731  **/
732 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
733 {
734         u32 fwsm;
735
736         fwsm = er32(FWSM);
737
738         return (fwsm & E1000_FWSM_MODE_MASK) ==
739                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
740 }
741
742 /**
743  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
744  *  @hw: pointer to the HW structure
745  *
746  *  Checks if firmware is blocking the reset of the PHY.
747  *  This is a function pointer entry point only called by
748  *  reset routines.
749  **/
750 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
751 {
752         u32 fwsm;
753
754         fwsm = er32(FWSM);
755
756         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
757 }
758
759 /**
760  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
761  *  @hw:   pointer to the HW structure
762  *
763  *  SW should configure the LCD from the NVM extended configuration region
764  *  as a workaround for certain parts.
765  **/
766 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
767 {
768         struct e1000_phy_info *phy = &hw->phy;
769         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
770         s32 ret_val;
771         u16 word_addr, reg_data, reg_addr, phy_page = 0;
772
773         ret_val = hw->phy.ops.acquire(hw);
774         if (ret_val)
775                 return ret_val;
776
777         /*
778          * Initialize the PHY from the NVM on ICH platforms.  This
779          * is needed due to an issue where the NVM configuration is
780          * not properly autoloaded after power transitions.
781          * Therefore, after each PHY reset, we will load the
782          * configuration data out of the NVM manually.
783          */
784         if ((hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) ||
785                 (hw->mac.type == e1000_pchlan)) {
786                 struct e1000_adapter *adapter = hw->adapter;
787
788                 /* Check if SW needs to configure the PHY */
789                 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
790                     (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
791                     (hw->mac.type == e1000_pchlan))
792                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
793                 else
794                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
795
796                 data = er32(FEXTNVM);
797                 if (!(data & sw_cfg_mask))
798                         goto out;
799
800                 /* Wait for basic configuration completes before proceeding */
801                 e1000_lan_init_done_ich8lan(hw);
802
803                 /*
804                  * Make sure HW does not configure LCD from PHY
805                  * extended configuration before SW configuration
806                  */
807                 data = er32(EXTCNF_CTRL);
808                 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
809                         goto out;
810
811                 cnf_size = er32(EXTCNF_SIZE);
812                 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
813                 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
814                 if (!cnf_size)
815                         goto out;
816
817                 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
818                 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
819
820                 if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
821                     (hw->mac.type == e1000_pchlan)) {
822                         /*
823                          * HW configures the SMBus address and LEDs when the
824                          * OEM and LCD Write Enable bits are set in the NVM.
825                          * When both NVM bits are cleared, SW will configure
826                          * them instead.
827                          */
828                         data = er32(STRAP);
829                         data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
830                         reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
831                         reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
832                         ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
833                                                                 reg_data);
834                         if (ret_val)
835                                 goto out;
836
837                         data = er32(LEDCTL);
838                         ret_val = e1000_write_phy_reg_hv_locked(hw,
839                                                                 HV_LED_CONFIG,
840                                                                 (u16)data);
841                         if (ret_val)
842                                 goto out;
843                 }
844                 /* Configure LCD from extended configuration region. */
845
846                 /* cnf_base_addr is in DWORD */
847                 word_addr = (u16)(cnf_base_addr << 1);
848
849                 for (i = 0; i < cnf_size; i++) {
850                         ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
851                                                    &reg_data);
852                         if (ret_val)
853                                 goto out;
854
855                         ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
856                                                    1, &reg_addr);
857                         if (ret_val)
858                                 goto out;
859
860                         /* Save off the PHY page for future writes. */
861                         if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
862                                 phy_page = reg_data;
863                                 continue;
864                         }
865
866                         reg_addr &= PHY_REG_MASK;
867                         reg_addr |= phy_page;
868
869                         ret_val = phy->ops.write_reg_locked(hw,
870                                                             (u32)reg_addr,
871                                                             reg_data);
872                         if (ret_val)
873                                 goto out;
874                 }
875         }
876
877 out:
878         hw->phy.ops.release(hw);
879         return ret_val;
880 }
881
882 /**
883  *  e1000_k1_gig_workaround_hv - K1 Si workaround
884  *  @hw:   pointer to the HW structure
885  *  @link: link up bool flag
886  *
887  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
888  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
889  *  If link is down, the function will restore the default K1 setting located
890  *  in the NVM.
891  **/
892 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
893 {
894         s32 ret_val = 0;
895         u16 status_reg = 0;
896         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
897
898         if (hw->mac.type != e1000_pchlan)
899                 goto out;
900
901         /* Wrap the whole flow with the sw flag */
902         ret_val = hw->phy.ops.acquire(hw);
903         if (ret_val)
904                 goto out;
905
906         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
907         if (link) {
908                 if (hw->phy.type == e1000_phy_82578) {
909                         ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
910                                                                   &status_reg);
911                         if (ret_val)
912                                 goto release;
913
914                         status_reg &= BM_CS_STATUS_LINK_UP |
915                                       BM_CS_STATUS_RESOLVED |
916                                       BM_CS_STATUS_SPEED_MASK;
917
918                         if (status_reg == (BM_CS_STATUS_LINK_UP |
919                                            BM_CS_STATUS_RESOLVED |
920                                            BM_CS_STATUS_SPEED_1000))
921                                 k1_enable = false;
922                 }
923
924                 if (hw->phy.type == e1000_phy_82577) {
925                         ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
926                                                                   &status_reg);
927                         if (ret_val)
928                                 goto release;
929
930                         status_reg &= HV_M_STATUS_LINK_UP |
931                                       HV_M_STATUS_AUTONEG_COMPLETE |
932                                       HV_M_STATUS_SPEED_MASK;
933
934                         if (status_reg == (HV_M_STATUS_LINK_UP |
935                                            HV_M_STATUS_AUTONEG_COMPLETE |
936                                            HV_M_STATUS_SPEED_1000))
937                                 k1_enable = false;
938                 }
939
940                 /* Link stall fix for link up */
941                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
942                                                            0x0100);
943                 if (ret_val)
944                         goto release;
945
946         } else {
947                 /* Link stall fix for link down */
948                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
949                                                            0x4100);
950                 if (ret_val)
951                         goto release;
952         }
953
954         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
955
956 release:
957         hw->phy.ops.release(hw);
958 out:
959         return ret_val;
960 }
961
962 /**
963  *  e1000_configure_k1_ich8lan - Configure K1 power state
964  *  @hw: pointer to the HW structure
965  *  @enable: K1 state to configure
966  *
967  *  Configure the K1 power state based on the provided parameter.
968  *  Assumes semaphore already acquired.
969  *
970  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
971  **/
972 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
973 {
974         s32 ret_val = 0;
975         u32 ctrl_reg = 0;
976         u32 ctrl_ext = 0;
977         u32 reg = 0;
978         u16 kmrn_reg = 0;
979
980         ret_val = e1000e_read_kmrn_reg_locked(hw,
981                                              E1000_KMRNCTRLSTA_K1_CONFIG,
982                                              &kmrn_reg);
983         if (ret_val)
984                 goto out;
985
986         if (k1_enable)
987                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
988         else
989                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
990
991         ret_val = e1000e_write_kmrn_reg_locked(hw,
992                                               E1000_KMRNCTRLSTA_K1_CONFIG,
993                                               kmrn_reg);
994         if (ret_val)
995                 goto out;
996
997         udelay(20);
998         ctrl_ext = er32(CTRL_EXT);
999         ctrl_reg = er32(CTRL);
1000
1001         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1002         reg |= E1000_CTRL_FRCSPD;
1003         ew32(CTRL, reg);
1004
1005         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1006         udelay(20);
1007         ew32(CTRL, ctrl_reg);
1008         ew32(CTRL_EXT, ctrl_ext);
1009         udelay(20);
1010
1011 out:
1012         return ret_val;
1013 }
1014
1015 /**
1016  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1017  *  @hw:       pointer to the HW structure
1018  *  @d0_state: boolean if entering d0 or d3 device state
1019  *
1020  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1021  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1022  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1023  **/
1024 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1025 {
1026         s32 ret_val = 0;
1027         u32 mac_reg;
1028         u16 oem_reg;
1029
1030         if (hw->mac.type != e1000_pchlan)
1031                 return ret_val;
1032
1033         ret_val = hw->phy.ops.acquire(hw);
1034         if (ret_val)
1035                 return ret_val;
1036
1037         mac_reg = er32(EXTCNF_CTRL);
1038         if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1039                 goto out;
1040
1041         mac_reg = er32(FEXTNVM);
1042         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1043                 goto out;
1044
1045         mac_reg = er32(PHY_CTRL);
1046
1047         ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1048         if (ret_val)
1049                 goto out;
1050
1051         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1052
1053         if (d0_state) {
1054                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1055                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1056
1057                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1058                         oem_reg |= HV_OEM_BITS_LPLU;
1059         } else {
1060                 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1061                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1062
1063                 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1064                         oem_reg |= HV_OEM_BITS_LPLU;
1065         }
1066         /* Restart auto-neg to activate the bits */
1067         if (!e1000_check_reset_block(hw))
1068                 oem_reg |= HV_OEM_BITS_RESTART_AN;
1069         ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1070
1071 out:
1072         hw->phy.ops.release(hw);
1073
1074         return ret_val;
1075 }
1076
1077
1078 /**
1079  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1080  *  done after every PHY reset.
1081  **/
1082 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1083 {
1084         s32 ret_val = 0;
1085
1086         if (hw->mac.type != e1000_pchlan)
1087                 return ret_val;
1088
1089         if (((hw->phy.type == e1000_phy_82577) &&
1090              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1091             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1092                 /* Disable generation of early preamble */
1093                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1094                 if (ret_val)
1095                         return ret_val;
1096
1097                 /* Preamble tuning for SSC */
1098                 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1099                 if (ret_val)
1100                         return ret_val;
1101         }
1102
1103         if (hw->phy.type == e1000_phy_82578) {
1104                 /*
1105                  * Return registers to default by doing a soft reset then
1106                  * writing 0x3140 to the control register.
1107                  */
1108                 if (hw->phy.revision < 2) {
1109                         e1000e_phy_sw_reset(hw);
1110                         ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1111                 }
1112         }
1113
1114         /* Select page 0 */
1115         ret_val = hw->phy.ops.acquire(hw);
1116         if (ret_val)
1117                 return ret_val;
1118
1119         hw->phy.addr = 1;
1120         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1121         if (ret_val)
1122                 goto out;
1123         hw->phy.ops.release(hw);
1124
1125         /*
1126          * Configure the K1 Si workaround during phy reset assuming there is
1127          * link so that it disables K1 if link is in 1Gbps.
1128          */
1129         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1130
1131 out:
1132         return ret_val;
1133 }
1134
1135 /**
1136  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1137  *  @hw: pointer to the HW structure
1138  *
1139  *  Check the appropriate indication the MAC has finished configuring the
1140  *  PHY after a software reset.
1141  **/
1142 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1143 {
1144         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1145
1146         /* Wait for basic configuration completes before proceeding */
1147         do {
1148                 data = er32(STATUS);
1149                 data &= E1000_STATUS_LAN_INIT_DONE;
1150                 udelay(100);
1151         } while ((!data) && --loop);
1152
1153         /*
1154          * If basic configuration is incomplete before the above loop
1155          * count reaches 0, loading the configuration from NVM will
1156          * leave the PHY in a bad state possibly resulting in no link.
1157          */
1158         if (loop == 0)
1159                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1160
1161         /* Clear the Init Done bit for the next init event */
1162         data = er32(STATUS);
1163         data &= ~E1000_STATUS_LAN_INIT_DONE;
1164         ew32(STATUS, data);
1165 }
1166
1167 /**
1168  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1169  *  @hw: pointer to the HW structure
1170  *
1171  *  Resets the PHY
1172  *  This is a function pointer entry point called by drivers
1173  *  or other shared routines.
1174  **/
1175 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1176 {
1177         s32 ret_val = 0;
1178         u16 reg;
1179
1180         ret_val = e1000e_phy_hw_reset_generic(hw);
1181         if (ret_val)
1182                 return ret_val;
1183
1184         /* Allow time for h/w to get to a quiescent state after reset */
1185         mdelay(10);
1186
1187         if (hw->mac.type == e1000_pchlan) {
1188                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1189                 if (ret_val)
1190                         return ret_val;
1191         }
1192
1193         /* Dummy read to clear the phy wakeup bit after lcd reset */
1194         if (hw->mac.type == e1000_pchlan)
1195                 e1e_rphy(hw, BM_WUC, &reg);
1196
1197         /* Configure the LCD with the extended configuration region in NVM */
1198         ret_val = e1000_sw_lcd_config_ich8lan(hw);
1199         if (ret_val)
1200                 goto out;
1201
1202         /* Configure the LCD with the OEM bits in NVM */
1203         if (hw->mac.type == e1000_pchlan)
1204                 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1205
1206 out:
1207         return 0;
1208 }
1209
1210 /**
1211  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1212  *  @hw: pointer to the HW structure
1213  *  @active: true to enable LPLU, false to disable
1214  *
1215  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1216  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1217  *  the phy speed. This function will manually set the LPLU bit and restart
1218  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1219  *  since it configures the same bit.
1220  **/
1221 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1222 {
1223         s32 ret_val = 0;
1224         u16 oem_reg;
1225
1226         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1227         if (ret_val)
1228                 goto out;
1229
1230         if (active)
1231                 oem_reg |= HV_OEM_BITS_LPLU;
1232         else
1233                 oem_reg &= ~HV_OEM_BITS_LPLU;
1234
1235         oem_reg |= HV_OEM_BITS_RESTART_AN;
1236         ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1237
1238 out:
1239         return ret_val;
1240 }
1241
1242 /**
1243  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1244  *  @hw: pointer to the HW structure
1245  *  @active: true to enable LPLU, false to disable
1246  *
1247  *  Sets the LPLU D0 state according to the active flag.  When
1248  *  activating LPLU this function also disables smart speed
1249  *  and vice versa.  LPLU will not be activated unless the
1250  *  device autonegotiation advertisement meets standards of
1251  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1252  *  This is a function pointer entry point only called by
1253  *  PHY setup routines.
1254  **/
1255 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1256 {
1257         struct e1000_phy_info *phy = &hw->phy;
1258         u32 phy_ctrl;
1259         s32 ret_val = 0;
1260         u16 data;
1261
1262         if (phy->type == e1000_phy_ife)
1263                 return ret_val;
1264
1265         phy_ctrl = er32(PHY_CTRL);
1266
1267         if (active) {
1268                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1269                 ew32(PHY_CTRL, phy_ctrl);
1270
1271                 if (phy->type != e1000_phy_igp_3)
1272                         return 0;
1273
1274                 /*
1275                  * Call gig speed drop workaround on LPLU before accessing
1276                  * any PHY registers
1277                  */
1278                 if (hw->mac.type == e1000_ich8lan)
1279                         e1000e_gig_downshift_workaround_ich8lan(hw);
1280
1281                 /* When LPLU is enabled, we should disable SmartSpeed */
1282                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1283                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1284                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1285                 if (ret_val)
1286                         return ret_val;
1287         } else {
1288                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1289                 ew32(PHY_CTRL, phy_ctrl);
1290
1291                 if (phy->type != e1000_phy_igp_3)
1292                         return 0;
1293
1294                 /*
1295                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1296                  * during Dx states where the power conservation is most
1297                  * important.  During driver activity we should enable
1298                  * SmartSpeed, so performance is maintained.
1299                  */
1300                 if (phy->smart_speed == e1000_smart_speed_on) {
1301                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1302                                            &data);
1303                         if (ret_val)
1304                                 return ret_val;
1305
1306                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1307                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1308                                            data);
1309                         if (ret_val)
1310                                 return ret_val;
1311                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1312                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1313                                            &data);
1314                         if (ret_val)
1315                                 return ret_val;
1316
1317                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1318                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1319                                            data);
1320                         if (ret_val)
1321                                 return ret_val;
1322                 }
1323         }
1324
1325         return 0;
1326 }
1327
1328 /**
1329  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1330  *  @hw: pointer to the HW structure
1331  *  @active: true to enable LPLU, false to disable
1332  *
1333  *  Sets the LPLU D3 state according to the active flag.  When
1334  *  activating LPLU this function also disables smart speed
1335  *  and vice versa.  LPLU will not be activated unless the
1336  *  device autonegotiation advertisement meets standards of
1337  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1338  *  This is a function pointer entry point only called by
1339  *  PHY setup routines.
1340  **/
1341 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1342 {
1343         struct e1000_phy_info *phy = &hw->phy;
1344         u32 phy_ctrl;
1345         s32 ret_val;
1346         u16 data;
1347
1348         phy_ctrl = er32(PHY_CTRL);
1349
1350         if (!active) {
1351                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1352                 ew32(PHY_CTRL, phy_ctrl);
1353
1354                 if (phy->type != e1000_phy_igp_3)
1355                         return 0;
1356
1357                 /*
1358                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1359                  * during Dx states where the power conservation is most
1360                  * important.  During driver activity we should enable
1361                  * SmartSpeed, so performance is maintained.
1362                  */
1363                 if (phy->smart_speed == e1000_smart_speed_on) {
1364                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1365                                            &data);
1366                         if (ret_val)
1367                                 return ret_val;
1368
1369                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1370                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1371                                            data);
1372                         if (ret_val)
1373                                 return ret_val;
1374                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1375                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1376                                            &data);
1377                         if (ret_val)
1378                                 return ret_val;
1379
1380                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1381                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1382                                            data);
1383                         if (ret_val)
1384                                 return ret_val;
1385                 }
1386         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1387                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1388                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1389                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1390                 ew32(PHY_CTRL, phy_ctrl);
1391
1392                 if (phy->type != e1000_phy_igp_3)
1393                         return 0;
1394
1395                 /*
1396                  * Call gig speed drop workaround on LPLU before accessing
1397                  * any PHY registers
1398                  */
1399                 if (hw->mac.type == e1000_ich8lan)
1400                         e1000e_gig_downshift_workaround_ich8lan(hw);
1401
1402                 /* When LPLU is enabled, we should disable SmartSpeed */
1403                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1404                 if (ret_val)
1405                         return ret_val;
1406
1407                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1408                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1409         }
1410
1411         return 0;
1412 }
1413
1414 /**
1415  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1416  *  @hw: pointer to the HW structure
1417  *  @bank:  pointer to the variable that returns the active bank
1418  *
1419  *  Reads signature byte from the NVM using the flash access registers.
1420  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1421  **/
1422 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1423 {
1424         u32 eecd;
1425         struct e1000_nvm_info *nvm = &hw->nvm;
1426         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1427         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1428         u8 sig_byte = 0;
1429         s32 ret_val = 0;
1430
1431         switch (hw->mac.type) {
1432         case e1000_ich8lan:
1433         case e1000_ich9lan:
1434                 eecd = er32(EECD);
1435                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1436                     E1000_EECD_SEC1VAL_VALID_MASK) {
1437                         if (eecd & E1000_EECD_SEC1VAL)
1438                                 *bank = 1;
1439                         else
1440                                 *bank = 0;
1441
1442                         return 0;
1443                 }
1444                 e_dbg("Unable to determine valid NVM bank via EEC - "
1445                        "reading flash signature\n");
1446                 /* fall-thru */
1447         default:
1448                 /* set bank to 0 in case flash read fails */
1449                 *bank = 0;
1450
1451                 /* Check bank 0 */
1452                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1453                                                         &sig_byte);
1454                 if (ret_val)
1455                         return ret_val;
1456                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1457                     E1000_ICH_NVM_SIG_VALUE) {
1458                         *bank = 0;
1459                         return 0;
1460                 }
1461
1462                 /* Check bank 1 */
1463                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1464                                                         bank1_offset,
1465                                                         &sig_byte);
1466                 if (ret_val)
1467                         return ret_val;
1468                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1469                     E1000_ICH_NVM_SIG_VALUE) {
1470                         *bank = 1;
1471                         return 0;
1472                 }
1473
1474                 e_dbg("ERROR: No valid NVM bank present\n");
1475                 return -E1000_ERR_NVM;
1476         }
1477
1478         return 0;
1479 }
1480
1481 /**
1482  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
1483  *  @hw: pointer to the HW structure
1484  *  @offset: The offset (in bytes) of the word(s) to read.
1485  *  @words: Size of data to read in words
1486  *  @data: Pointer to the word(s) to read at offset.
1487  *
1488  *  Reads a word(s) from the NVM using the flash access registers.
1489  **/
1490 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1491                                   u16 *data)
1492 {
1493         struct e1000_nvm_info *nvm = &hw->nvm;
1494         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1495         u32 act_offset;
1496         s32 ret_val = 0;
1497         u32 bank = 0;
1498         u16 i, word;
1499
1500         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1501             (words == 0)) {
1502                 e_dbg("nvm parameter(s) out of bounds\n");
1503                 ret_val = -E1000_ERR_NVM;
1504                 goto out;
1505         }
1506
1507         nvm->ops.acquire(hw);
1508
1509         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1510         if (ret_val) {
1511                 e_dbg("Could not detect valid bank, assuming bank 0\n");
1512                 bank = 0;
1513         }
1514
1515         act_offset = (bank) ? nvm->flash_bank_size : 0;
1516         act_offset += offset;
1517
1518         ret_val = 0;
1519         for (i = 0; i < words; i++) {
1520                 if ((dev_spec->shadow_ram) &&
1521                     (dev_spec->shadow_ram[offset+i].modified)) {
1522                         data[i] = dev_spec->shadow_ram[offset+i].value;
1523                 } else {
1524                         ret_val = e1000_read_flash_word_ich8lan(hw,
1525                                                                 act_offset + i,
1526                                                                 &word);
1527                         if (ret_val)
1528                                 break;
1529                         data[i] = word;
1530                 }
1531         }
1532
1533         nvm->ops.release(hw);
1534
1535 out:
1536         if (ret_val)
1537                 e_dbg("NVM read error: %d\n", ret_val);
1538
1539         return ret_val;
1540 }
1541
1542 /**
1543  *  e1000_flash_cycle_init_ich8lan - Initialize flash
1544  *  @hw: pointer to the HW structure
1545  *
1546  *  This function does initial flash setup so that a new read/write/erase cycle
1547  *  can be started.
1548  **/
1549 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1550 {
1551         union ich8_hws_flash_status hsfsts;
1552         s32 ret_val = -E1000_ERR_NVM;
1553         s32 i = 0;
1554
1555         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1556
1557         /* Check if the flash descriptor is valid */
1558         if (hsfsts.hsf_status.fldesvalid == 0) {
1559                 e_dbg("Flash descriptor invalid.  "
1560                          "SW Sequencing must be used.");
1561                 return -E1000_ERR_NVM;
1562         }
1563
1564         /* Clear FCERR and DAEL in hw status by writing 1 */
1565         hsfsts.hsf_status.flcerr = 1;
1566         hsfsts.hsf_status.dael = 1;
1567
1568         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1569
1570         /*
1571          * Either we should have a hardware SPI cycle in progress
1572          * bit to check against, in order to start a new cycle or
1573          * FDONE bit should be changed in the hardware so that it
1574          * is 1 after hardware reset, which can then be used as an
1575          * indication whether a cycle is in progress or has been
1576          * completed.
1577          */
1578
1579         if (hsfsts.hsf_status.flcinprog == 0) {
1580                 /*
1581                  * There is no cycle running at present,
1582                  * so we can start a cycle.
1583                  * Begin by setting Flash Cycle Done.
1584                  */
1585                 hsfsts.hsf_status.flcdone = 1;
1586                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1587                 ret_val = 0;
1588         } else {
1589                 /*
1590                  * Otherwise poll for sometime so the current
1591                  * cycle has a chance to end before giving up.
1592                  */
1593                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1594                         hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1595                         if (hsfsts.hsf_status.flcinprog == 0) {
1596                                 ret_val = 0;
1597                                 break;
1598                         }
1599                         udelay(1);
1600                 }
1601                 if (ret_val == 0) {
1602                         /*
1603                          * Successful in waiting for previous cycle to timeout,
1604                          * now set the Flash Cycle Done.
1605                          */
1606                         hsfsts.hsf_status.flcdone = 1;
1607                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1608                 } else {
1609                         e_dbg("Flash controller busy, cannot get access");
1610                 }
1611         }
1612
1613         return ret_val;
1614 }
1615
1616 /**
1617  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1618  *  @hw: pointer to the HW structure
1619  *  @timeout: maximum time to wait for completion
1620  *
1621  *  This function starts a flash cycle and waits for its completion.
1622  **/
1623 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1624 {
1625         union ich8_hws_flash_ctrl hsflctl;
1626         union ich8_hws_flash_status hsfsts;
1627         s32 ret_val = -E1000_ERR_NVM;
1628         u32 i = 0;
1629
1630         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1631         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1632         hsflctl.hsf_ctrl.flcgo = 1;
1633         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1634
1635         /* wait till FDONE bit is set to 1 */
1636         do {
1637                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1638                 if (hsfsts.hsf_status.flcdone == 1)
1639                         break;
1640                 udelay(1);
1641         } while (i++ < timeout);
1642
1643         if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1644                 return 0;
1645
1646         return ret_val;
1647 }
1648
1649 /**
1650  *  e1000_read_flash_word_ich8lan - Read word from flash
1651  *  @hw: pointer to the HW structure
1652  *  @offset: offset to data location
1653  *  @data: pointer to the location for storing the data
1654  *
1655  *  Reads the flash word at offset into data.  Offset is converted
1656  *  to bytes before read.
1657  **/
1658 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1659                                          u16 *data)
1660 {
1661         /* Must convert offset into bytes. */
1662         offset <<= 1;
1663
1664         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1665 }
1666
1667 /**
1668  *  e1000_read_flash_byte_ich8lan - Read byte from flash
1669  *  @hw: pointer to the HW structure
1670  *  @offset: The offset of the byte to read.
1671  *  @data: Pointer to a byte to store the value read.
1672  *
1673  *  Reads a single byte from the NVM using the flash access registers.
1674  **/
1675 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1676                                          u8 *data)
1677 {
1678         s32 ret_val;
1679         u16 word = 0;
1680
1681         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1682         if (ret_val)
1683                 return ret_val;
1684
1685         *data = (u8)word;
1686
1687         return 0;
1688 }
1689
1690 /**
1691  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
1692  *  @hw: pointer to the HW structure
1693  *  @offset: The offset (in bytes) of the byte or word to read.
1694  *  @size: Size of data to read, 1=byte 2=word
1695  *  @data: Pointer to the word to store the value read.
1696  *
1697  *  Reads a byte or word from the NVM using the flash access registers.
1698  **/
1699 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1700                                          u8 size, u16 *data)
1701 {
1702         union ich8_hws_flash_status hsfsts;
1703         union ich8_hws_flash_ctrl hsflctl;
1704         u32 flash_linear_addr;
1705         u32 flash_data = 0;
1706         s32 ret_val = -E1000_ERR_NVM;
1707         u8 count = 0;
1708
1709         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1710                 return -E1000_ERR_NVM;
1711
1712         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1713                             hw->nvm.flash_base_addr;
1714
1715         do {
1716                 udelay(1);
1717                 /* Steps */
1718                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1719                 if (ret_val != 0)
1720                         break;
1721
1722                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1723                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1724                 hsflctl.hsf_ctrl.fldbcount = size - 1;
1725                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1726                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1727
1728                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1729
1730                 ret_val = e1000_flash_cycle_ich8lan(hw,
1731                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
1732
1733                 /*
1734                  * Check if FCERR is set to 1, if set to 1, clear it
1735                  * and try the whole sequence a few more times, else
1736                  * read in (shift in) the Flash Data0, the order is
1737                  * least significant byte first msb to lsb
1738                  */
1739                 if (ret_val == 0) {
1740                         flash_data = er32flash(ICH_FLASH_FDATA0);
1741                         if (size == 1) {
1742                                 *data = (u8)(flash_data & 0x000000FF);
1743                         } else if (size == 2) {
1744                                 *data = (u16)(flash_data & 0x0000FFFF);
1745                         }
1746                         break;
1747                 } else {
1748                         /*
1749                          * If we've gotten here, then things are probably
1750                          * completely hosed, but if the error condition is
1751                          * detected, it won't hurt to give it another try...
1752                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1753                          */
1754                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1755                         if (hsfsts.hsf_status.flcerr == 1) {
1756                                 /* Repeat for some time before giving up. */
1757                                 continue;
1758                         } else if (hsfsts.hsf_status.flcdone == 0) {
1759                                 e_dbg("Timeout error - flash cycle "
1760                                          "did not complete.");
1761                                 break;
1762                         }
1763                 }
1764         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1765
1766         return ret_val;
1767 }
1768
1769 /**
1770  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
1771  *  @hw: pointer to the HW structure
1772  *  @offset: The offset (in bytes) of the word(s) to write.
1773  *  @words: Size of data to write in words
1774  *  @data: Pointer to the word(s) to write at offset.
1775  *
1776  *  Writes a byte or word to the NVM using the flash access registers.
1777  **/
1778 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1779                                    u16 *data)
1780 {
1781         struct e1000_nvm_info *nvm = &hw->nvm;
1782         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1783         u16 i;
1784
1785         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1786             (words == 0)) {
1787                 e_dbg("nvm parameter(s) out of bounds\n");
1788                 return -E1000_ERR_NVM;
1789         }
1790
1791         nvm->ops.acquire(hw);
1792
1793         for (i = 0; i < words; i++) {
1794                 dev_spec->shadow_ram[offset+i].modified = true;
1795                 dev_spec->shadow_ram[offset+i].value = data[i];
1796         }
1797
1798         nvm->ops.release(hw);
1799
1800         return 0;
1801 }
1802
1803 /**
1804  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1805  *  @hw: pointer to the HW structure
1806  *
1807  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
1808  *  which writes the checksum to the shadow ram.  The changes in the shadow
1809  *  ram are then committed to the EEPROM by processing each bank at a time
1810  *  checking for the modified bit and writing only the pending changes.
1811  *  After a successful commit, the shadow ram is cleared and is ready for
1812  *  future writes.
1813  **/
1814 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1815 {
1816         struct e1000_nvm_info *nvm = &hw->nvm;
1817         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1818         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1819         s32 ret_val;
1820         u16 data;
1821
1822         ret_val = e1000e_update_nvm_checksum_generic(hw);
1823         if (ret_val)
1824                 goto out;
1825
1826         if (nvm->type != e1000_nvm_flash_sw)
1827                 goto out;
1828
1829         nvm->ops.acquire(hw);
1830
1831         /*
1832          * We're writing to the opposite bank so if we're on bank 1,
1833          * write to bank 0 etc.  We also need to erase the segment that
1834          * is going to be written
1835          */
1836         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1837         if (ret_val) {
1838                 e_dbg("Could not detect valid bank, assuming bank 0\n");
1839                 bank = 0;
1840         }
1841
1842         if (bank == 0) {
1843                 new_bank_offset = nvm->flash_bank_size;
1844                 old_bank_offset = 0;
1845                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1846                 if (ret_val) {
1847                         nvm->ops.release(hw);
1848                         goto out;
1849                 }
1850         } else {
1851                 old_bank_offset = nvm->flash_bank_size;
1852                 new_bank_offset = 0;
1853                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1854                 if (ret_val) {
1855                         nvm->ops.release(hw);
1856                         goto out;
1857                 }
1858         }
1859
1860         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1861                 /*
1862                  * Determine whether to write the value stored
1863                  * in the other NVM bank or a modified value stored
1864                  * in the shadow RAM
1865                  */
1866                 if (dev_spec->shadow_ram[i].modified) {
1867                         data = dev_spec->shadow_ram[i].value;
1868                 } else {
1869                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
1870                                                                 old_bank_offset,
1871                                                                 &data);
1872                         if (ret_val)
1873                                 break;
1874                 }
1875
1876                 /*
1877                  * If the word is 0x13, then make sure the signature bits
1878                  * (15:14) are 11b until the commit has completed.
1879                  * This will allow us to write 10b which indicates the
1880                  * signature is valid.  We want to do this after the write
1881                  * has completed so that we don't mark the segment valid
1882                  * while the write is still in progress
1883                  */
1884                 if (i == E1000_ICH_NVM_SIG_WORD)
1885                         data |= E1000_ICH_NVM_SIG_MASK;
1886
1887                 /* Convert offset to bytes. */
1888                 act_offset = (i + new_bank_offset) << 1;
1889
1890                 udelay(100);
1891                 /* Write the bytes to the new bank. */
1892                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1893                                                                act_offset,
1894                                                                (u8)data);
1895                 if (ret_val)
1896                         break;
1897
1898                 udelay(100);
1899                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1900                                                           act_offset + 1,
1901                                                           (u8)(data >> 8));
1902                 if (ret_val)
1903                         break;
1904         }
1905
1906         /*
1907          * Don't bother writing the segment valid bits if sector
1908          * programming failed.
1909          */
1910         if (ret_val) {
1911                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1912                 e_dbg("Flash commit failed.\n");
1913                 nvm->ops.release(hw);
1914                 goto out;
1915         }
1916
1917         /*
1918          * Finally validate the new segment by setting bit 15:14
1919          * to 10b in word 0x13 , this can be done without an
1920          * erase as well since these bits are 11 to start with
1921          * and we need to change bit 14 to 0b
1922          */
1923         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1924         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1925         if (ret_val) {
1926                 nvm->ops.release(hw);
1927                 goto out;
1928         }
1929         data &= 0xBFFF;
1930         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1931                                                        act_offset * 2 + 1,
1932                                                        (u8)(data >> 8));
1933         if (ret_val) {
1934                 nvm->ops.release(hw);
1935                 goto out;
1936         }
1937
1938         /*
1939          * And invalidate the previously valid segment by setting
1940          * its signature word (0x13) high_byte to 0b. This can be
1941          * done without an erase because flash erase sets all bits
1942          * to 1's. We can write 1's to 0's without an erase
1943          */
1944         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1945         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1946         if (ret_val) {
1947                 nvm->ops.release(hw);
1948                 goto out;
1949         }
1950
1951         /* Great!  Everything worked, we can now clear the cached entries. */
1952         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1953                 dev_spec->shadow_ram[i].modified = false;
1954                 dev_spec->shadow_ram[i].value = 0xFFFF;
1955         }
1956
1957         nvm->ops.release(hw);
1958
1959         /*
1960          * Reload the EEPROM, or else modifications will not appear
1961          * until after the next adapter reset.
1962          */
1963         e1000e_reload_nvm(hw);
1964         msleep(10);
1965
1966 out:
1967         if (ret_val)
1968                 e_dbg("NVM update error: %d\n", ret_val);
1969
1970         return ret_val;
1971 }
1972
1973 /**
1974  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1975  *  @hw: pointer to the HW structure
1976  *
1977  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1978  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
1979  *  calculated, in which case we need to calculate the checksum and set bit 6.
1980  **/
1981 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1982 {
1983         s32 ret_val;
1984         u16 data;
1985
1986         /*
1987          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
1988          * needs to be fixed.  This bit is an indication that the NVM
1989          * was prepared by OEM software and did not calculate the
1990          * checksum...a likely scenario.
1991          */
1992         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1993         if (ret_val)
1994                 return ret_val;
1995
1996         if ((data & 0x40) == 0) {
1997                 data |= 0x40;
1998                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1999                 if (ret_val)
2000                         return ret_val;
2001                 ret_val = e1000e_update_nvm_checksum(hw);
2002                 if (ret_val)
2003                         return ret_val;
2004         }
2005
2006         return e1000e_validate_nvm_checksum_generic(hw);
2007 }
2008
2009 /**
2010  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2011  *  @hw: pointer to the HW structure
2012  *
2013  *  To prevent malicious write/erase of the NVM, set it to be read-only
2014  *  so that the hardware ignores all write/erase cycles of the NVM via
2015  *  the flash control registers.  The shadow-ram copy of the NVM will
2016  *  still be updated, however any updates to this copy will not stick
2017  *  across driver reloads.
2018  **/
2019 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2020 {
2021         struct e1000_nvm_info *nvm = &hw->nvm;
2022         union ich8_flash_protected_range pr0;
2023         union ich8_hws_flash_status hsfsts;
2024         u32 gfpreg;
2025
2026         nvm->ops.acquire(hw);
2027
2028         gfpreg = er32flash(ICH_FLASH_GFPREG);
2029
2030         /* Write-protect GbE Sector of NVM */
2031         pr0.regval = er32flash(ICH_FLASH_PR0);
2032         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2033         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2034         pr0.range.wpe = true;
2035         ew32flash(ICH_FLASH_PR0, pr0.regval);
2036
2037         /*
2038          * Lock down a subset of GbE Flash Control Registers, e.g.
2039          * PR0 to prevent the write-protection from being lifted.
2040          * Once FLOCKDN is set, the registers protected by it cannot
2041          * be written until FLOCKDN is cleared by a hardware reset.
2042          */
2043         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2044         hsfsts.hsf_status.flockdn = true;
2045         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2046
2047         nvm->ops.release(hw);
2048 }
2049
2050 /**
2051  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2052  *  @hw: pointer to the HW structure
2053  *  @offset: The offset (in bytes) of the byte/word to read.
2054  *  @size: Size of data to read, 1=byte 2=word
2055  *  @data: The byte(s) to write to the NVM.
2056  *
2057  *  Writes one/two bytes to the NVM using the flash access registers.
2058  **/
2059 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2060                                           u8 size, u16 data)
2061 {
2062         union ich8_hws_flash_status hsfsts;
2063         union ich8_hws_flash_ctrl hsflctl;
2064         u32 flash_linear_addr;
2065         u32 flash_data = 0;
2066         s32 ret_val;
2067         u8 count = 0;
2068
2069         if (size < 1 || size > 2 || data > size * 0xff ||
2070             offset > ICH_FLASH_LINEAR_ADDR_MASK)
2071                 return -E1000_ERR_NVM;
2072
2073         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2074                             hw->nvm.flash_base_addr;
2075
2076         do {
2077                 udelay(1);
2078                 /* Steps */
2079                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2080                 if (ret_val)
2081                         break;
2082
2083                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2084                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2085                 hsflctl.hsf_ctrl.fldbcount = size -1;
2086                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2087                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2088
2089                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2090
2091                 if (size == 1)
2092                         flash_data = (u32)data & 0x00FF;
2093                 else
2094                         flash_data = (u32)data;
2095
2096                 ew32flash(ICH_FLASH_FDATA0, flash_data);
2097
2098                 /*
2099                  * check if FCERR is set to 1 , if set to 1, clear it
2100                  * and try the whole sequence a few more times else done
2101                  */
2102                 ret_val = e1000_flash_cycle_ich8lan(hw,
2103                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2104                 if (!ret_val)
2105                         break;
2106
2107                 /*
2108                  * If we're here, then things are most likely
2109                  * completely hosed, but if the error condition
2110                  * is detected, it won't hurt to give it another
2111                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2112                  */
2113                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2114                 if (hsfsts.hsf_status.flcerr == 1)
2115                         /* Repeat for some time before giving up. */
2116                         continue;
2117                 if (hsfsts.hsf_status.flcdone == 0) {
2118                         e_dbg("Timeout error - flash cycle "
2119                                  "did not complete.");
2120                         break;
2121                 }
2122         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2123
2124         return ret_val;
2125 }
2126
2127 /**
2128  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2129  *  @hw: pointer to the HW structure
2130  *  @offset: The index of the byte to read.
2131  *  @data: The byte to write to the NVM.
2132  *
2133  *  Writes a single byte to the NVM using the flash access registers.
2134  **/
2135 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2136                                           u8 data)
2137 {
2138         u16 word = (u16)data;
2139
2140         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2141 }
2142
2143 /**
2144  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2145  *  @hw: pointer to the HW structure
2146  *  @offset: The offset of the byte to write.
2147  *  @byte: The byte to write to the NVM.
2148  *
2149  *  Writes a single byte to the NVM using the flash access registers.
2150  *  Goes through a retry algorithm before giving up.
2151  **/
2152 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2153                                                 u32 offset, u8 byte)
2154 {
2155         s32 ret_val;
2156         u16 program_retries;
2157
2158         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2159         if (!ret_val)
2160                 return ret_val;
2161
2162         for (program_retries = 0; program_retries < 100; program_retries++) {
2163                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2164                 udelay(100);
2165                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2166                 if (!ret_val)
2167                         break;
2168         }
2169         if (program_retries == 100)
2170                 return -E1000_ERR_NVM;
2171
2172         return 0;
2173 }
2174
2175 /**
2176  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2177  *  @hw: pointer to the HW structure
2178  *  @bank: 0 for first bank, 1 for second bank, etc.
2179  *
2180  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2181  *  bank N is 4096 * N + flash_reg_addr.
2182  **/
2183 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2184 {
2185         struct e1000_nvm_info *nvm = &hw->nvm;
2186         union ich8_hws_flash_status hsfsts;
2187         union ich8_hws_flash_ctrl hsflctl;
2188         u32 flash_linear_addr;
2189         /* bank size is in 16bit words - adjust to bytes */
2190         u32 flash_bank_size = nvm->flash_bank_size * 2;
2191         s32 ret_val;
2192         s32 count = 0;
2193         s32 j, iteration, sector_size;
2194
2195         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2196
2197         /*
2198          * Determine HW Sector size: Read BERASE bits of hw flash status
2199          * register
2200          * 00: The Hw sector is 256 bytes, hence we need to erase 16
2201          *     consecutive sectors.  The start index for the nth Hw sector
2202          *     can be calculated as = bank * 4096 + n * 256
2203          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2204          *     The start index for the nth Hw sector can be calculated
2205          *     as = bank * 4096
2206          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2207          *     (ich9 only, otherwise error condition)
2208          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2209          */
2210         switch (hsfsts.hsf_status.berasesz) {
2211         case 0:
2212                 /* Hw sector size 256 */
2213                 sector_size = ICH_FLASH_SEG_SIZE_256;
2214                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2215                 break;
2216         case 1:
2217                 sector_size = ICH_FLASH_SEG_SIZE_4K;
2218                 iteration = 1;
2219                 break;
2220         case 2:
2221                 sector_size = ICH_FLASH_SEG_SIZE_8K;
2222                 iteration = 1;
2223                 break;
2224         case 3:
2225                 sector_size = ICH_FLASH_SEG_SIZE_64K;
2226                 iteration = 1;
2227                 break;
2228         default:
2229                 return -E1000_ERR_NVM;
2230         }
2231
2232         /* Start with the base address, then add the sector offset. */
2233         flash_linear_addr = hw->nvm.flash_base_addr;
2234         flash_linear_addr += (bank) ? flash_bank_size : 0;
2235
2236         for (j = 0; j < iteration ; j++) {
2237                 do {
2238                         /* Steps */
2239                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
2240                         if (ret_val)
2241                                 return ret_val;
2242
2243                         /*
2244                          * Write a value 11 (block Erase) in Flash
2245                          * Cycle field in hw flash control
2246                          */
2247                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2248                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2249                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2250
2251                         /*
2252                          * Write the last 24 bits of an index within the
2253                          * block into Flash Linear address field in Flash
2254                          * Address.
2255                          */
2256                         flash_linear_addr += (j * sector_size);
2257                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2258
2259                         ret_val = e1000_flash_cycle_ich8lan(hw,
2260                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2261                         if (ret_val == 0)
2262                                 break;
2263
2264                         /*
2265                          * Check if FCERR is set to 1.  If 1,
2266                          * clear it and try the whole sequence
2267                          * a few more times else Done
2268                          */
2269                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2270                         if (hsfsts.hsf_status.flcerr == 1)
2271                                 /* repeat for some time before giving up */
2272                                 continue;
2273                         else if (hsfsts.hsf_status.flcdone == 0)
2274                                 return ret_val;
2275                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2276         }
2277
2278         return 0;
2279 }
2280
2281 /**
2282  *  e1000_valid_led_default_ich8lan - Set the default LED settings
2283  *  @hw: pointer to the HW structure
2284  *  @data: Pointer to the LED settings
2285  *
2286  *  Reads the LED default settings from the NVM to data.  If the NVM LED
2287  *  settings is all 0's or F's, set the LED default to a valid LED default
2288  *  setting.
2289  **/
2290 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2291 {
2292         s32 ret_val;
2293
2294         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2295         if (ret_val) {
2296                 e_dbg("NVM Read Error\n");
2297                 return ret_val;
2298         }
2299
2300         if (*data == ID_LED_RESERVED_0000 ||
2301             *data == ID_LED_RESERVED_FFFF)
2302                 *data = ID_LED_DEFAULT_ICH8LAN;
2303
2304         return 0;
2305 }
2306
2307 /**
2308  *  e1000_id_led_init_pchlan - store LED configurations
2309  *  @hw: pointer to the HW structure
2310  *
2311  *  PCH does not control LEDs via the LEDCTL register, rather it uses
2312  *  the PHY LED configuration register.
2313  *
2314  *  PCH also does not have an "always on" or "always off" mode which
2315  *  complicates the ID feature.  Instead of using the "on" mode to indicate
2316  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2317  *  use "link_up" mode.  The LEDs will still ID on request if there is no
2318  *  link based on logic in e1000_led_[on|off]_pchlan().
2319  **/
2320 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2321 {
2322         struct e1000_mac_info *mac = &hw->mac;
2323         s32 ret_val;
2324         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2325         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2326         u16 data, i, temp, shift;
2327
2328         /* Get default ID LED modes */
2329         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2330         if (ret_val)
2331                 goto out;
2332
2333         mac->ledctl_default = er32(LEDCTL);
2334         mac->ledctl_mode1 = mac->ledctl_default;
2335         mac->ledctl_mode2 = mac->ledctl_default;
2336
2337         for (i = 0; i < 4; i++) {
2338                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2339                 shift = (i * 5);
2340                 switch (temp) {
2341                 case ID_LED_ON1_DEF2:
2342                 case ID_LED_ON1_ON2:
2343                 case ID_LED_ON1_OFF2:
2344                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2345                         mac->ledctl_mode1 |= (ledctl_on << shift);
2346                         break;
2347                 case ID_LED_OFF1_DEF2:
2348                 case ID_LED_OFF1_ON2:
2349                 case ID_LED_OFF1_OFF2:
2350                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2351                         mac->ledctl_mode1 |= (ledctl_off << shift);
2352                         break;
2353                 default:
2354                         /* Do nothing */
2355                         break;
2356                 }
2357                 switch (temp) {
2358                 case ID_LED_DEF1_ON2:
2359                 case ID_LED_ON1_ON2:
2360                 case ID_LED_OFF1_ON2:
2361                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2362                         mac->ledctl_mode2 |= (ledctl_on << shift);
2363                         break;
2364                 case ID_LED_DEF1_OFF2:
2365                 case ID_LED_ON1_OFF2:
2366                 case ID_LED_OFF1_OFF2:
2367                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2368                         mac->ledctl_mode2 |= (ledctl_off << shift);
2369                         break;
2370                 default:
2371                         /* Do nothing */
2372                         break;
2373                 }
2374         }
2375
2376 out:
2377         return ret_val;
2378 }
2379
2380 /**
2381  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2382  *  @hw: pointer to the HW structure
2383  *
2384  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2385  *  register, so the the bus width is hard coded.
2386  **/
2387 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2388 {
2389         struct e1000_bus_info *bus = &hw->bus;
2390         s32 ret_val;
2391
2392         ret_val = e1000e_get_bus_info_pcie(hw);
2393
2394         /*
2395          * ICH devices are "PCI Express"-ish.  They have
2396          * a configuration space, but do not contain
2397          * PCI Express Capability registers, so bus width
2398          * must be hardcoded.
2399          */
2400         if (bus->width == e1000_bus_width_unknown)
2401                 bus->width = e1000_bus_width_pcie_x1;
2402
2403         return ret_val;
2404 }
2405
2406 /**
2407  *  e1000_reset_hw_ich8lan - Reset the hardware
2408  *  @hw: pointer to the HW structure
2409  *
2410  *  Does a full reset of the hardware which includes a reset of the PHY and
2411  *  MAC.
2412  **/
2413 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2414 {
2415         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2416         u16 reg;
2417         u32 ctrl, icr, kab;
2418         s32 ret_val;
2419
2420         /*
2421          * Prevent the PCI-E bus from sticking if there is no TLP connection
2422          * on the last TLP read/write transaction when MAC is reset.
2423          */
2424         ret_val = e1000e_disable_pcie_master(hw);
2425         if (ret_val) {
2426                 e_dbg("PCI-E Master disable polling has failed.\n");
2427         }
2428
2429         e_dbg("Masking off all interrupts\n");
2430         ew32(IMC, 0xffffffff);
2431
2432         /*
2433          * Disable the Transmit and Receive units.  Then delay to allow
2434          * any pending transactions to complete before we hit the MAC
2435          * with the global reset.
2436          */
2437         ew32(RCTL, 0);
2438         ew32(TCTL, E1000_TCTL_PSP);
2439         e1e_flush();
2440
2441         msleep(10);
2442
2443         /* Workaround for ICH8 bit corruption issue in FIFO memory */
2444         if (hw->mac.type == e1000_ich8lan) {
2445                 /* Set Tx and Rx buffer allocation to 8k apiece. */
2446                 ew32(PBA, E1000_PBA_8K);
2447                 /* Set Packet Buffer Size to 16k. */
2448                 ew32(PBS, E1000_PBS_16K);
2449         }
2450
2451         if (hw->mac.type == e1000_pchlan) {
2452                 /* Save the NVM K1 bit setting*/
2453                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
2454                 if (ret_val)
2455                         return ret_val;
2456
2457                 if (reg & E1000_NVM_K1_ENABLE)
2458                         dev_spec->nvm_k1_enabled = true;
2459                 else
2460                         dev_spec->nvm_k1_enabled = false;
2461         }
2462
2463         ctrl = er32(CTRL);
2464
2465         if (!e1000_check_reset_block(hw)) {
2466                 /* Clear PHY Reset Asserted bit */
2467                 if (hw->mac.type >= e1000_pchlan) {
2468                         u32 status = er32(STATUS);
2469                         ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2470                 }
2471
2472                 /*
2473                  * PHY HW reset requires MAC CORE reset at the same
2474                  * time to make sure the interface between MAC and the
2475                  * external PHY is reset.
2476                  */
2477                 ctrl |= E1000_CTRL_PHY_RST;
2478         }
2479         ret_val = e1000_acquire_swflag_ich8lan(hw);
2480         e_dbg("Issuing a global reset to ich8lan\n");
2481         ew32(CTRL, (ctrl | E1000_CTRL_RST));
2482         msleep(20);
2483
2484         if (!ret_val)
2485                 e1000_release_swflag_ich8lan(hw);
2486
2487         if (ctrl & E1000_CTRL_PHY_RST)
2488                 ret_val = hw->phy.ops.get_cfg_done(hw);
2489
2490         if (hw->mac.type >= e1000_ich10lan) {
2491                 e1000_lan_init_done_ich8lan(hw);
2492         } else {
2493                 ret_val = e1000e_get_auto_rd_done(hw);
2494                 if (ret_val) {
2495                         /*
2496                          * When auto config read does not complete, do not
2497                          * return with an error. This can happen in situations
2498                          * where there is no eeprom and prevents getting link.
2499                          */
2500                         e_dbg("Auto Read Done did not complete\n");
2501                 }
2502         }
2503         /* Dummy read to clear the phy wakeup bit after lcd reset */
2504         if (hw->mac.type == e1000_pchlan)
2505                 e1e_rphy(hw, BM_WUC, &reg);
2506
2507         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2508         if (ret_val)
2509                 goto out;
2510
2511         if (hw->mac.type == e1000_pchlan) {
2512                 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2513                 if (ret_val)
2514                         goto out;
2515         }
2516         /*
2517          * For PCH, this write will make sure that any noise
2518          * will be detected as a CRC error and be dropped rather than show up
2519          * as a bad packet to the DMA engine.
2520          */
2521         if (hw->mac.type == e1000_pchlan)
2522                 ew32(CRC_OFFSET, 0x65656565);
2523
2524         ew32(IMC, 0xffffffff);
2525         icr = er32(ICR);
2526
2527         kab = er32(KABGTXD);
2528         kab |= E1000_KABGTXD_BGSQLBIAS;
2529         ew32(KABGTXD, kab);
2530
2531         if (hw->mac.type == e1000_pchlan)
2532                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2533
2534 out:
2535         return ret_val;
2536 }
2537
2538 /**
2539  *  e1000_init_hw_ich8lan - Initialize the hardware
2540  *  @hw: pointer to the HW structure
2541  *
2542  *  Prepares the hardware for transmit and receive by doing the following:
2543  *   - initialize hardware bits
2544  *   - initialize LED identification
2545  *   - setup receive address registers
2546  *   - setup flow control
2547  *   - setup transmit descriptors
2548  *   - clear statistics
2549  **/
2550 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2551 {
2552         struct e1000_mac_info *mac = &hw->mac;
2553         u32 ctrl_ext, txdctl, snoop;
2554         s32 ret_val;
2555         u16 i;
2556
2557         e1000_initialize_hw_bits_ich8lan(hw);
2558
2559         /* Initialize identification LED */
2560         ret_val = mac->ops.id_led_init(hw);
2561         if (ret_val)
2562                 e_dbg("Error initializing identification LED\n");
2563                 /* This is not fatal and we should not stop init due to this */
2564
2565         /* Setup the receive address. */
2566         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2567
2568         /* Zero out the Multicast HASH table */
2569         e_dbg("Zeroing the MTA\n");
2570         for (i = 0; i < mac->mta_reg_count; i++)
2571                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2572
2573         /*
2574          * The 82578 Rx buffer will stall if wakeup is enabled in host and
2575          * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
2576          * Reset the phy after disabling host wakeup to reset the Rx buffer.
2577          */
2578         if (hw->phy.type == e1000_phy_82578) {
2579                 hw->phy.ops.read_reg(hw, BM_WUC, &i);
2580                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2581                 if (ret_val)
2582                         return ret_val;
2583         }
2584
2585         /* Setup link and flow control */
2586         ret_val = e1000_setup_link_ich8lan(hw);
2587
2588         /* Set the transmit descriptor write-back policy for both queues */
2589         txdctl = er32(TXDCTL(0));
2590         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2591                  E1000_TXDCTL_FULL_TX_DESC_WB;
2592         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2593                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2594         ew32(TXDCTL(0), txdctl);
2595         txdctl = er32(TXDCTL(1));
2596         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2597                  E1000_TXDCTL_FULL_TX_DESC_WB;
2598         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2599                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2600         ew32(TXDCTL(1), txdctl);
2601
2602         /*
2603          * ICH8 has opposite polarity of no_snoop bits.
2604          * By default, we should use snoop behavior.
2605          */
2606         if (mac->type == e1000_ich8lan)
2607                 snoop = PCIE_ICH8_SNOOP_ALL;
2608         else
2609                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2610         e1000e_set_pcie_no_snoop(hw, snoop);
2611
2612         ctrl_ext = er32(CTRL_EXT);
2613         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2614         ew32(CTRL_EXT, ctrl_ext);
2615
2616         /*
2617          * Clear all of the statistics registers (clear on read).  It is
2618          * important that we do this after we have tried to establish link
2619          * because the symbol error count will increment wildly if there
2620          * is no link.
2621          */
2622         e1000_clear_hw_cntrs_ich8lan(hw);
2623
2624         return 0;
2625 }
2626 /**
2627  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2628  *  @hw: pointer to the HW structure
2629  *
2630  *  Sets/Clears required hardware bits necessary for correctly setting up the
2631  *  hardware for transmit and receive.
2632  **/
2633 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2634 {
2635         u32 reg;
2636
2637         /* Extended Device Control */
2638         reg = er32(CTRL_EXT);
2639         reg |= (1 << 22);
2640         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2641         if (hw->mac.type >= e1000_pchlan)
2642                 reg |= E1000_CTRL_EXT_PHYPDEN;
2643         ew32(CTRL_EXT, reg);
2644
2645         /* Transmit Descriptor Control 0 */
2646         reg = er32(TXDCTL(0));
2647         reg |= (1 << 22);
2648         ew32(TXDCTL(0), reg);
2649
2650         /* Transmit Descriptor Control 1 */
2651         reg = er32(TXDCTL(1));
2652         reg |= (1 << 22);
2653         ew32(TXDCTL(1), reg);
2654
2655         /* Transmit Arbitration Control 0 */
2656         reg = er32(TARC(0));
2657         if (hw->mac.type == e1000_ich8lan)
2658                 reg |= (1 << 28) | (1 << 29);
2659         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2660         ew32(TARC(0), reg);
2661
2662         /* Transmit Arbitration Control 1 */
2663         reg = er32(TARC(1));
2664         if (er32(TCTL) & E1000_TCTL_MULR)
2665                 reg &= ~(1 << 28);
2666         else
2667                 reg |= (1 << 28);
2668         reg |= (1 << 24) | (1 << 26) | (1 << 30);
2669         ew32(TARC(1), reg);
2670
2671         /* Device Status */
2672         if (hw->mac.type == e1000_ich8lan) {
2673                 reg = er32(STATUS);
2674                 reg &= ~(1 << 31);
2675                 ew32(STATUS, reg);
2676         }
2677 }
2678
2679 /**
2680  *  e1000_setup_link_ich8lan - Setup flow control and link settings
2681  *  @hw: pointer to the HW structure
2682  *
2683  *  Determines which flow control settings to use, then configures flow
2684  *  control.  Calls the appropriate media-specific link configuration
2685  *  function.  Assuming the adapter has a valid link partner, a valid link
2686  *  should be established.  Assumes the hardware has previously been reset
2687  *  and the transmitter and receiver are not enabled.
2688  **/
2689 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2690 {
2691         s32 ret_val;
2692
2693         if (e1000_check_reset_block(hw))
2694                 return 0;
2695
2696         /*
2697          * ICH parts do not have a word in the NVM to determine
2698          * the default flow control setting, so we explicitly
2699          * set it to full.
2700          */
2701         if (hw->fc.requested_mode == e1000_fc_default) {
2702                 /* Workaround h/w hang when Tx flow control enabled */
2703                 if (hw->mac.type == e1000_pchlan)
2704                         hw->fc.requested_mode = e1000_fc_rx_pause;
2705                 else
2706                         hw->fc.requested_mode = e1000_fc_full;
2707         }
2708
2709         /*
2710          * Save off the requested flow control mode for use later.  Depending
2711          * on the link partner's capabilities, we may or may not use this mode.
2712          */
2713         hw->fc.current_mode = hw->fc.requested_mode;
2714
2715         e_dbg("After fix-ups FlowControl is now = %x\n",
2716                 hw->fc.current_mode);
2717
2718         /* Continue to configure the copper link. */
2719         ret_val = e1000_setup_copper_link_ich8lan(hw);
2720         if (ret_val)
2721                 return ret_val;
2722
2723         ew32(FCTTV, hw->fc.pause_time);
2724         if ((hw->phy.type == e1000_phy_82578) ||
2725             (hw->phy.type == e1000_phy_82577)) {
2726                 ret_val = hw->phy.ops.write_reg(hw,
2727                                              PHY_REG(BM_PORT_CTRL_PAGE, 27),
2728                                              hw->fc.pause_time);
2729                 if (ret_val)
2730                         return ret_val;
2731         }
2732
2733         return e1000e_set_fc_watermarks(hw);
2734 }
2735
2736 /**
2737  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2738  *  @hw: pointer to the HW structure
2739  *
2740  *  Configures the kumeran interface to the PHY to wait the appropriate time
2741  *  when polling the PHY, then call the generic setup_copper_link to finish
2742  *  configuring the copper link.
2743  **/
2744 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2745 {
2746         u32 ctrl;
2747         s32 ret_val;
2748         u16 reg_data;
2749
2750         ctrl = er32(CTRL);
2751         ctrl |= E1000_CTRL_SLU;
2752         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2753         ew32(CTRL, ctrl);
2754
2755         /*
2756          * Set the mac to wait the maximum time between each iteration
2757          * and increase the max iterations when polling the phy;
2758          * this fixes erroneous timeouts at 10Mbps.
2759          */
2760         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
2761         if (ret_val)
2762                 return ret_val;
2763         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
2764                                        &reg_data);
2765         if (ret_val)
2766                 return ret_val;
2767         reg_data |= 0x3F;
2768         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
2769                                         reg_data);
2770         if (ret_val)
2771                 return ret_val;
2772
2773         switch (hw->phy.type) {
2774         case e1000_phy_igp_3:
2775                 ret_val = e1000e_copper_link_setup_igp(hw);
2776                 if (ret_val)
2777                         return ret_val;
2778                 break;
2779         case e1000_phy_bm:
2780         case e1000_phy_82578:
2781                 ret_val = e1000e_copper_link_setup_m88(hw);
2782                 if (ret_val)
2783                         return ret_val;
2784                 break;
2785         case e1000_phy_82577:
2786                 ret_val = e1000_copper_link_setup_82577(hw);
2787                 if (ret_val)
2788                         return ret_val;
2789                 break;
2790         case e1000_phy_ife:
2791                 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
2792                                                &reg_data);
2793                 if (ret_val)
2794                         return ret_val;
2795
2796                 reg_data &= ~IFE_PMC_AUTO_MDIX;
2797
2798                 switch (hw->phy.mdix) {
2799                 case 1:
2800                         reg_data &= ~IFE_PMC_FORCE_MDIX;
2801                         break;
2802                 case 2:
2803                         reg_data |= IFE_PMC_FORCE_MDIX;
2804                         break;
2805                 case 0:
2806                 default:
2807                         reg_data |= IFE_PMC_AUTO_MDIX;
2808                         break;
2809                 }
2810                 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
2811                                                 reg_data);
2812                 if (ret_val)
2813                         return ret_val;
2814                 break;
2815         default:
2816                 break;
2817         }
2818         return e1000e_setup_copper_link(hw);
2819 }
2820
2821 /**
2822  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2823  *  @hw: pointer to the HW structure
2824  *  @speed: pointer to store current link speed
2825  *  @duplex: pointer to store the current link duplex
2826  *
2827  *  Calls the generic get_speed_and_duplex to retrieve the current link
2828  *  information and then calls the Kumeran lock loss workaround for links at
2829  *  gigabit speeds.
2830  **/
2831 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2832                                           u16 *duplex)
2833 {
2834         s32 ret_val;
2835
2836         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2837         if (ret_val)
2838                 return ret_val;
2839
2840         if ((hw->mac.type == e1000_ich8lan) &&
2841             (hw->phy.type == e1000_phy_igp_3) &&
2842             (*speed == SPEED_1000)) {
2843                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2844         }
2845
2846         return ret_val;
2847 }
2848
2849 /**
2850  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2851  *  @hw: pointer to the HW structure
2852  *
2853  *  Work-around for 82566 Kumeran PCS lock loss:
2854  *  On link status change (i.e. PCI reset, speed change) and link is up and
2855  *  speed is gigabit-
2856  *    0) if workaround is optionally disabled do nothing
2857  *    1) wait 1ms for Kumeran link to come up
2858  *    2) check Kumeran Diagnostic register PCS lock loss bit
2859  *    3) if not set the link is locked (all is good), otherwise...
2860  *    4) reset the PHY
2861  *    5) repeat up to 10 times
2862  *  Note: this is only called for IGP3 copper when speed is 1gb.
2863  **/
2864 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2865 {
2866         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2867         u32 phy_ctrl;
2868         s32 ret_val;
2869         u16 i, data;
2870         bool link;
2871
2872         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2873                 return 0;
2874
2875         /*
2876          * Make sure link is up before proceeding.  If not just return.
2877          * Attempting this while link is negotiating fouled up link
2878          * stability
2879          */
2880         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2881         if (!link)
2882                 return 0;
2883
2884         for (i = 0; i < 10; i++) {
2885                 /* read once to clear */
2886                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2887                 if (ret_val)
2888                         return ret_val;
2889                 /* and again to get new status */
2890                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2891                 if (ret_val)
2892                         return ret_val;
2893
2894                 /* check for PCS lock */
2895                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2896                         return 0;
2897
2898                 /* Issue PHY reset */
2899                 e1000_phy_hw_reset(hw);
2900                 mdelay(5);
2901         }
2902         /* Disable GigE link negotiation */
2903         phy_ctrl = er32(PHY_CTRL);
2904         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2905                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2906         ew32(PHY_CTRL, phy_ctrl);
2907
2908         /*
2909          * Call gig speed drop workaround on Gig disable before accessing
2910          * any PHY registers
2911          */
2912         e1000e_gig_downshift_workaround_ich8lan(hw);
2913
2914         /* unable to acquire PCS lock */
2915         return -E1000_ERR_PHY;
2916 }
2917
2918 /**
2919  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2920  *  @hw: pointer to the HW structure
2921  *  @state: boolean value used to set the current Kumeran workaround state
2922  *
2923  *  If ICH8, set the current Kumeran workaround state (enabled - true
2924  *  /disabled - false).
2925  **/
2926 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2927                                                  bool state)
2928 {
2929         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2930
2931         if (hw->mac.type != e1000_ich8lan) {
2932                 e_dbg("Workaround applies to ICH8 only.\n");
2933                 return;
2934         }
2935
2936         dev_spec->kmrn_lock_loss_workaround_enabled = state;
2937 }
2938
2939 /**
2940  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2941  *  @hw: pointer to the HW structure
2942  *
2943  *  Workaround for 82566 power-down on D3 entry:
2944  *    1) disable gigabit link
2945  *    2) write VR power-down enable
2946  *    3) read it back
2947  *  Continue if successful, else issue LCD reset and repeat
2948  **/
2949 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2950 {
2951         u32 reg;
2952         u16 data;
2953         u8  retry = 0;
2954
2955         if (hw->phy.type != e1000_phy_igp_3)
2956                 return;
2957
2958         /* Try the workaround twice (if needed) */
2959         do {
2960                 /* Disable link */
2961                 reg = er32(PHY_CTRL);
2962                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2963                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2964                 ew32(PHY_CTRL, reg);
2965
2966                 /*
2967                  * Call gig speed drop workaround on Gig disable before
2968                  * accessing any PHY registers
2969                  */
2970                 if (hw->mac.type == e1000_ich8lan)
2971                         e1000e_gig_downshift_workaround_ich8lan(hw);
2972
2973                 /* Write VR power-down enable */
2974                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2975                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2976                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2977
2978                 /* Read it back and test */
2979                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2980                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2981                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2982                         break;
2983
2984                 /* Issue PHY reset and repeat at most one more time */
2985                 reg = er32(CTRL);
2986                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2987                 retry++;
2988         } while (retry);
2989 }
2990
2991 /**
2992  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2993  *  @hw: pointer to the HW structure
2994  *
2995  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2996  *  LPLU, Gig disable, MDIC PHY reset):
2997  *    1) Set Kumeran Near-end loopback
2998  *    2) Clear Kumeran Near-end loopback
2999  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
3000  **/
3001 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3002 {
3003         s32 ret_val;
3004         u16 reg_data;
3005
3006         if ((hw->mac.type != e1000_ich8lan) ||
3007             (hw->phy.type != e1000_phy_igp_3))
3008                 return;
3009
3010         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3011                                       &reg_data);
3012         if (ret_val)
3013                 return;
3014         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3015         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3016                                        reg_data);
3017         if (ret_val)
3018                 return;
3019         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3020         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3021                                        reg_data);
3022 }
3023
3024 /**
3025  *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3026  *  @hw: pointer to the HW structure
3027  *
3028  *  During S0 to Sx transition, it is possible the link remains at gig
3029  *  instead of negotiating to a lower speed.  Before going to Sx, set
3030  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3031  *  to a lower speed.
3032  *
3033  *  Should only be called for applicable parts.
3034  **/
3035 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3036 {
3037         u32 phy_ctrl;
3038
3039         switch (hw->mac.type) {
3040         case e1000_ich8lan:
3041         case e1000_ich9lan:
3042         case e1000_ich10lan:
3043         case e1000_pchlan:
3044                 phy_ctrl = er32(PHY_CTRL);
3045                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
3046                             E1000_PHY_CTRL_GBE_DISABLE;
3047                 ew32(PHY_CTRL, phy_ctrl);
3048
3049                 if (hw->mac.type == e1000_pchlan)
3050                         e1000_phy_hw_reset_ich8lan(hw);
3051         default:
3052                 break;
3053         }
3054
3055         return;
3056 }
3057
3058 /**
3059  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3060  *  @hw: pointer to the HW structure
3061  *
3062  *  Return the LED back to the default configuration.
3063  **/
3064 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3065 {
3066         if (hw->phy.type == e1000_phy_ife)
3067                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3068
3069         ew32(LEDCTL, hw->mac.ledctl_default);
3070         return 0;
3071 }
3072
3073 /**
3074  *  e1000_led_on_ich8lan - Turn LEDs on
3075  *  @hw: pointer to the HW structure
3076  *
3077  *  Turn on the LEDs.
3078  **/
3079 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3080 {
3081         if (hw->phy.type == e1000_phy_ife)
3082                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3083                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3084
3085         ew32(LEDCTL, hw->mac.ledctl_mode2);
3086         return 0;
3087 }
3088
3089 /**
3090  *  e1000_led_off_ich8lan - Turn LEDs off
3091  *  @hw: pointer to the HW structure
3092  *
3093  *  Turn off the LEDs.
3094  **/
3095 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3096 {
3097         if (hw->phy.type == e1000_phy_ife)
3098                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3099                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3100
3101         ew32(LEDCTL, hw->mac.ledctl_mode1);
3102         return 0;
3103 }
3104
3105 /**
3106  *  e1000_setup_led_pchlan - Configures SW controllable LED
3107  *  @hw: pointer to the HW structure
3108  *
3109  *  This prepares the SW controllable LED for use.
3110  **/
3111 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3112 {
3113         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3114                                         (u16)hw->mac.ledctl_mode1);
3115 }
3116
3117 /**
3118  *  e1000_cleanup_led_pchlan - Restore the default LED operation
3119  *  @hw: pointer to the HW structure
3120  *
3121  *  Return the LED back to the default configuration.
3122  **/
3123 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3124 {
3125         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3126                                         (u16)hw->mac.ledctl_default);
3127 }
3128
3129 /**
3130  *  e1000_led_on_pchlan - Turn LEDs on
3131  *  @hw: pointer to the HW structure
3132  *
3133  *  Turn on the LEDs.
3134  **/
3135 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3136 {
3137         u16 data = (u16)hw->mac.ledctl_mode2;
3138         u32 i, led;
3139
3140         /*
3141          * If no link, then turn LED on by setting the invert bit
3142          * for each LED that's mode is "link_up" in ledctl_mode2.
3143          */
3144         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3145                 for (i = 0; i < 3; i++) {
3146                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3147                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3148                             E1000_LEDCTL_MODE_LINK_UP)
3149                                 continue;
3150                         if (led & E1000_PHY_LED0_IVRT)
3151                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3152                         else
3153                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3154                 }
3155         }
3156
3157         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3158 }
3159
3160 /**
3161  *  e1000_led_off_pchlan - Turn LEDs off
3162  *  @hw: pointer to the HW structure
3163  *
3164  *  Turn off the LEDs.
3165  **/
3166 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3167 {
3168         u16 data = (u16)hw->mac.ledctl_mode1;
3169         u32 i, led;
3170
3171         /*
3172          * If no link, then turn LED off by clearing the invert bit
3173          * for each LED that's mode is "link_up" in ledctl_mode1.
3174          */
3175         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3176                 for (i = 0; i < 3; i++) {
3177                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3178                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3179                             E1000_LEDCTL_MODE_LINK_UP)
3180                                 continue;
3181                         if (led & E1000_PHY_LED0_IVRT)
3182                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3183                         else
3184                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3185                 }
3186         }
3187
3188         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3189 }
3190
3191 /**
3192  *  e1000_get_cfg_done_ich8lan - Read config done bit
3193  *  @hw: pointer to the HW structure
3194  *
3195  *  Read the management control register for the config done bit for
3196  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
3197  *  to read the config done bit, so an error is *ONLY* logged and returns
3198  *  0.  If we were to return with error, EEPROM-less silicon
3199  *  would not be able to be reset or change link.
3200  **/
3201 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3202 {
3203         u32 bank = 0;
3204
3205         if (hw->mac.type >= e1000_pchlan) {
3206                 u32 status = er32(STATUS);
3207
3208                 if (status & E1000_STATUS_PHYRA)
3209                         ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3210                 else
3211                         e_dbg("PHY Reset Asserted not set - needs delay\n");
3212         }
3213
3214         e1000e_get_cfg_done(hw);
3215
3216         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3217         if ((hw->mac.type != e1000_ich10lan) &&
3218             (hw->mac.type != e1000_pchlan)) {
3219                 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3220                     (hw->phy.type == e1000_phy_igp_3)) {
3221                         e1000e_phy_init_script_igp3(hw);
3222                 }
3223         } else {
3224                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3225                         /* Maybe we should do a basic PHY config */
3226                         e_dbg("EEPROM not present\n");
3227                         return -E1000_ERR_CONFIG;
3228                 }
3229         }
3230
3231         return 0;
3232 }
3233
3234 /**
3235  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3236  * @hw: pointer to the HW structure
3237  *
3238  * In the case of a PHY power down to save power, or to turn off link during a
3239  * driver unload, or wake on lan is not enabled, remove the link.
3240  **/
3241 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3242 {
3243         /* If the management interface is not enabled, then power down */
3244         if (!(hw->mac.ops.check_mng_mode(hw) ||
3245               hw->phy.ops.check_reset_block(hw)))
3246                 e1000_power_down_phy_copper(hw);
3247
3248         return;
3249 }
3250
3251 /**
3252  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3253  *  @hw: pointer to the HW structure
3254  *
3255  *  Clears hardware counters specific to the silicon family and calls
3256  *  clear_hw_cntrs_generic to clear all general purpose counters.
3257  **/
3258 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3259 {
3260         u16 phy_data;
3261
3262         e1000e_clear_hw_cntrs_base(hw);
3263
3264         er32(ALGNERRC);
3265         er32(RXERRC);
3266         er32(TNCRS);
3267         er32(CEXTERR);
3268         er32(TSCTC);
3269         er32(TSCTFC);
3270
3271         er32(MGTPRC);
3272         er32(MGTPDC);
3273         er32(MGTPTC);
3274
3275         er32(IAC);
3276         er32(ICRXOC);
3277
3278         /* Clear PHY statistics registers */
3279         if ((hw->phy.type == e1000_phy_82578) ||
3280             (hw->phy.type == e1000_phy_82577)) {
3281                 hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
3282                 hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
3283                 hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
3284                 hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
3285                 hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
3286                 hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
3287                 hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
3288                 hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
3289                 hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
3290                 hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
3291                 hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
3292                 hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
3293                 hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
3294                 hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
3295         }
3296 }
3297
3298 static struct e1000_mac_operations ich8_mac_ops = {
3299         .id_led_init            = e1000e_id_led_init,
3300         .check_mng_mode         = e1000_check_mng_mode_ich8lan,
3301         .check_for_link         = e1000_check_for_copper_link_ich8lan,
3302         /* cleanup_led dependent on mac type */
3303         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
3304         .get_bus_info           = e1000_get_bus_info_ich8lan,
3305         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
3306         /* led_on dependent on mac type */
3307         /* led_off dependent on mac type */
3308         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
3309         .reset_hw               = e1000_reset_hw_ich8lan,
3310         .init_hw                = e1000_init_hw_ich8lan,
3311         .setup_link             = e1000_setup_link_ich8lan,
3312         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
3313         /* id_led_init dependent on mac type */
3314 };
3315
3316 static struct e1000_phy_operations ich8_phy_ops = {
3317         .acquire                = e1000_acquire_swflag_ich8lan,
3318         .check_reset_block      = e1000_check_reset_block_ich8lan,
3319         .commit                 = NULL,
3320         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
3321         .get_cable_length       = e1000e_get_cable_length_igp_2,
3322         .read_reg               = e1000e_read_phy_reg_igp,
3323         .release                = e1000_release_swflag_ich8lan,
3324         .reset                  = e1000_phy_hw_reset_ich8lan,
3325         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
3326         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
3327         .write_reg              = e1000e_write_phy_reg_igp,
3328 };
3329
3330 static struct e1000_nvm_operations ich8_nvm_ops = {
3331         .acquire                = e1000_acquire_nvm_ich8lan,
3332         .read                   = e1000_read_nvm_ich8lan,
3333         .release                = e1000_release_nvm_ich8lan,
3334         .update                 = e1000_update_nvm_checksum_ich8lan,
3335         .valid_led_default      = e1000_valid_led_default_ich8lan,
3336         .validate               = e1000_validate_nvm_checksum_ich8lan,
3337         .write                  = e1000_write_nvm_ich8lan,
3338 };
3339
3340 struct e1000_info e1000_ich8_info = {
3341         .mac                    = e1000_ich8lan,
3342         .flags                  = FLAG_HAS_WOL
3343                                   | FLAG_IS_ICH
3344                                   | FLAG_RX_CSUM_ENABLED
3345                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3346                                   | FLAG_HAS_AMT
3347                                   | FLAG_HAS_FLASH
3348                                   | FLAG_APME_IN_WUC,
3349         .pba                    = 8,
3350         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
3351         .get_variants           = e1000_get_variants_ich8lan,
3352         .mac_ops                = &ich8_mac_ops,
3353         .phy_ops                = &ich8_phy_ops,
3354         .nvm_ops                = &ich8_nvm_ops,
3355 };
3356
3357 struct e1000_info e1000_ich9_info = {
3358         .mac                    = e1000_ich9lan,
3359         .flags                  = FLAG_HAS_JUMBO_FRAMES
3360                                   | FLAG_IS_ICH
3361                                   | FLAG_HAS_WOL
3362                                   | FLAG_RX_CSUM_ENABLED
3363                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3364                                   | FLAG_HAS_AMT
3365                                   | FLAG_HAS_ERT
3366                                   | FLAG_HAS_FLASH
3367                                   | FLAG_APME_IN_WUC,
3368         .pba                    = 10,
3369         .max_hw_frame_size      = DEFAULT_JUMBO,
3370         .get_variants           = e1000_get_variants_ich8lan,
3371         .mac_ops                = &ich8_mac_ops,
3372         .phy_ops                = &ich8_phy_ops,
3373         .nvm_ops                = &ich8_nvm_ops,
3374 };
3375
3376 struct e1000_info e1000_ich10_info = {
3377         .mac                    = e1000_ich10lan,
3378         .flags                  = FLAG_HAS_JUMBO_FRAMES
3379                                   | FLAG_IS_ICH
3380                                   | FLAG_HAS_WOL
3381                                   | FLAG_RX_CSUM_ENABLED
3382                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3383                                   | FLAG_HAS_AMT
3384                                   | FLAG_HAS_ERT
3385                                   | FLAG_HAS_FLASH
3386                                   | FLAG_APME_IN_WUC,
3387         .pba                    = 10,
3388         .max_hw_frame_size      = DEFAULT_JUMBO,
3389         .get_variants           = e1000_get_variants_ich8lan,
3390         .mac_ops                = &ich8_mac_ops,
3391         .phy_ops                = &ich8_phy_ops,
3392         .nvm_ops                = &ich8_nvm_ops,
3393 };
3394
3395 struct e1000_info e1000_pch_info = {
3396         .mac                    = e1000_pchlan,
3397         .flags                  = FLAG_IS_ICH
3398                                   | FLAG_HAS_WOL
3399                                   | FLAG_RX_CSUM_ENABLED
3400                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3401                                   | FLAG_HAS_AMT
3402                                   | FLAG_HAS_FLASH
3403                                   | FLAG_HAS_JUMBO_FRAMES
3404                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
3405                                   | FLAG_APME_IN_WUC,
3406         .pba                    = 26,
3407         .max_hw_frame_size      = 4096,
3408         .get_variants           = e1000_get_variants_ich8lan,
3409         .mac_ops                = &ich8_mac_ops,
3410         .phy_ops                = &ich8_phy_ops,
3411         .nvm_ops                = &ich8_nvm_ops,
3412 };