e1000e: write protect ICHx NVM to prevent malicious write/erase
[safe/jmp/linux-2.6] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 struct e1000_stats {
39         char stat_string[ETH_GSTRING_LEN];
40         int sizeof_stat;
41         int stat_offset;
42 };
43
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45                       offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47         { "rx_packets", E1000_STAT(stats.gprc) },
48         { "tx_packets", E1000_STAT(stats.gptc) },
49         { "rx_bytes", E1000_STAT(stats.gorc) },
50         { "tx_bytes", E1000_STAT(stats.gotc) },
51         { "rx_broadcast", E1000_STAT(stats.bprc) },
52         { "tx_broadcast", E1000_STAT(stats.bptc) },
53         { "rx_multicast", E1000_STAT(stats.mprc) },
54         { "tx_multicast", E1000_STAT(stats.mptc) },
55         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58         { "multicast", E1000_STAT(stats.mprc) },
59         { "collisions", E1000_STAT(stats.colc) },
60         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65         { "rx_missed_errors", E1000_STAT(stats.mpc) },
66         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70         { "tx_window_errors", E1000_STAT(stats.latecol) },
71         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72         { "tx_deferred_ok", E1000_STAT(stats.dc) },
73         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76         { "tx_restart_queue", E1000_STAT(restart_queue) },
77         { "rx_long_length_errors", E1000_STAT(stats.roc) },
78         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86         { "rx_long_byte_count", E1000_STAT(stats.gorc) },
87         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89         { "rx_header_split", E1000_STAT(rx_hdr_split) },
90         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91         { "tx_smbus", E1000_STAT(stats.mgptc) },
92         { "rx_smbus", E1000_STAT(stats.mgprc) },
93         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
96 };
97
98 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
101         "Register test  (offline)", "Eeprom test    (offline)",
102         "Interrupt test (offline)", "Loopback test  (offline)",
103         "Link test   (on/offline)"
104 };
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
106
107 static int e1000_get_settings(struct net_device *netdev,
108                               struct ethtool_cmd *ecmd)
109 {
110         struct e1000_adapter *adapter = netdev_priv(netdev);
111         struct e1000_hw *hw = &adapter->hw;
112         u32 status;
113
114         if (hw->phy.media_type == e1000_media_type_copper) {
115
116                 ecmd->supported = (SUPPORTED_10baseT_Half |
117                                    SUPPORTED_10baseT_Full |
118                                    SUPPORTED_100baseT_Half |
119                                    SUPPORTED_100baseT_Full |
120                                    SUPPORTED_1000baseT_Full |
121                                    SUPPORTED_Autoneg |
122                                    SUPPORTED_TP);
123                 if (hw->phy.type == e1000_phy_ife)
124                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125                 ecmd->advertising = ADVERTISED_TP;
126
127                 if (hw->mac.autoneg == 1) {
128                         ecmd->advertising |= ADVERTISED_Autoneg;
129                         /* the e1000 autoneg seems to match ethtool nicely */
130                         ecmd->advertising |= hw->phy.autoneg_advertised;
131                 }
132
133                 ecmd->port = PORT_TP;
134                 ecmd->phy_address = hw->phy.addr;
135                 ecmd->transceiver = XCVR_INTERNAL;
136
137         } else {
138                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
139                                      SUPPORTED_FIBRE |
140                                      SUPPORTED_Autoneg);
141
142                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143                                      ADVERTISED_FIBRE |
144                                      ADVERTISED_Autoneg);
145
146                 ecmd->port = PORT_FIBRE;
147                 ecmd->transceiver = XCVR_EXTERNAL;
148         }
149
150         status = er32(STATUS);
151         if (status & E1000_STATUS_LU) {
152                 if (status & E1000_STATUS_SPEED_1000)
153                         ecmd->speed = 1000;
154                 else if (status & E1000_STATUS_SPEED_100)
155                         ecmd->speed = 100;
156                 else
157                         ecmd->speed = 10;
158
159                 if (status & E1000_STATUS_FD)
160                         ecmd->duplex = DUPLEX_FULL;
161                 else
162                         ecmd->duplex = DUPLEX_HALF;
163         } else {
164                 ecmd->speed = -1;
165                 ecmd->duplex = -1;
166         }
167
168         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
169                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170         return 0;
171 }
172
173 static u32 e1000_get_link(struct net_device *netdev)
174 {
175         struct e1000_adapter *adapter = netdev_priv(netdev);
176         struct e1000_hw *hw = &adapter->hw;
177         u32 status;
178         
179         status = er32(STATUS);
180         return (status & E1000_STATUS_LU) ? 1 : 0;
181 }
182
183 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
184 {
185         struct e1000_mac_info *mac = &adapter->hw.mac;
186
187         mac->autoneg = 0;
188
189         /* Fiber NICs only allow 1000 gbps Full duplex */
190         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
191                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
192                 e_err("Unsupported Speed/Duplex configuration\n");
193                 return -EINVAL;
194         }
195
196         switch (spddplx) {
197         case SPEED_10 + DUPLEX_HALF:
198                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
199                 break;
200         case SPEED_10 + DUPLEX_FULL:
201                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
202                 break;
203         case SPEED_100 + DUPLEX_HALF:
204                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
205                 break;
206         case SPEED_100 + DUPLEX_FULL:
207                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
208                 break;
209         case SPEED_1000 + DUPLEX_FULL:
210                 mac->autoneg = 1;
211                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
212                 break;
213         case SPEED_1000 + DUPLEX_HALF: /* not supported */
214         default:
215                 e_err("Unsupported Speed/Duplex configuration\n");
216                 return -EINVAL;
217         }
218         return 0;
219 }
220
221 static int e1000_set_settings(struct net_device *netdev,
222                               struct ethtool_cmd *ecmd)
223 {
224         struct e1000_adapter *adapter = netdev_priv(netdev);
225         struct e1000_hw *hw = &adapter->hw;
226
227         /*
228          * When SoL/IDER sessions are active, autoneg/speed/duplex
229          * cannot be changed
230          */
231         if (e1000_check_reset_block(hw)) {
232                 e_err("Cannot change link characteristics when SoL/IDER is "
233                       "active.\n");
234                 return -EINVAL;
235         }
236
237         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
238                 msleep(1);
239
240         if (ecmd->autoneg == AUTONEG_ENABLE) {
241                 hw->mac.autoneg = 1;
242                 if (hw->phy.media_type == e1000_media_type_fiber)
243                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
244                                                      ADVERTISED_FIBRE |
245                                                      ADVERTISED_Autoneg;
246                 else
247                         hw->phy.autoneg_advertised = ecmd->advertising |
248                                                      ADVERTISED_TP |
249                                                      ADVERTISED_Autoneg;
250                 ecmd->advertising = hw->phy.autoneg_advertised;
251                 if (adapter->fc_autoneg)
252                         hw->fc.original_type = e1000_fc_default;
253         } else {
254                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
255                         clear_bit(__E1000_RESETTING, &adapter->state);
256                         return -EINVAL;
257                 }
258         }
259
260         /* reset the link */
261
262         if (netif_running(adapter->netdev)) {
263                 e1000e_down(adapter);
264                 e1000e_up(adapter);
265         } else {
266                 e1000e_reset(adapter);
267         }
268
269         clear_bit(__E1000_RESETTING, &adapter->state);
270         return 0;
271 }
272
273 static void e1000_get_pauseparam(struct net_device *netdev,
274                                  struct ethtool_pauseparam *pause)
275 {
276         struct e1000_adapter *adapter = netdev_priv(netdev);
277         struct e1000_hw *hw = &adapter->hw;
278
279         pause->autoneg =
280                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
281
282         if (hw->fc.type == e1000_fc_rx_pause) {
283                 pause->rx_pause = 1;
284         } else if (hw->fc.type == e1000_fc_tx_pause) {
285                 pause->tx_pause = 1;
286         } else if (hw->fc.type == e1000_fc_full) {
287                 pause->rx_pause = 1;
288                 pause->tx_pause = 1;
289         }
290 }
291
292 static int e1000_set_pauseparam(struct net_device *netdev,
293                                 struct ethtool_pauseparam *pause)
294 {
295         struct e1000_adapter *adapter = netdev_priv(netdev);
296         struct e1000_hw *hw = &adapter->hw;
297         int retval = 0;
298
299         adapter->fc_autoneg = pause->autoneg;
300
301         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
302                 msleep(1);
303
304         if (pause->rx_pause && pause->tx_pause)
305                 hw->fc.type = e1000_fc_full;
306         else if (pause->rx_pause && !pause->tx_pause)
307                 hw->fc.type = e1000_fc_rx_pause;
308         else if (!pause->rx_pause && pause->tx_pause)
309                 hw->fc.type = e1000_fc_tx_pause;
310         else if (!pause->rx_pause && !pause->tx_pause)
311                 hw->fc.type = e1000_fc_none;
312
313         hw->fc.original_type = hw->fc.type;
314
315         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
316                 hw->fc.type = e1000_fc_default;
317                 if (netif_running(adapter->netdev)) {
318                         e1000e_down(adapter);
319                         e1000e_up(adapter);
320                 } else {
321                         e1000e_reset(adapter);
322                 }
323         } else {
324                 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
325                           hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
326         }
327
328         clear_bit(__E1000_RESETTING, &adapter->state);
329         return retval;
330 }
331
332 static u32 e1000_get_rx_csum(struct net_device *netdev)
333 {
334         struct e1000_adapter *adapter = netdev_priv(netdev);
335         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
336 }
337
338 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
339 {
340         struct e1000_adapter *adapter = netdev_priv(netdev);
341
342         if (data)
343                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
344         else
345                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
346
347         if (netif_running(netdev))
348                 e1000e_reinit_locked(adapter);
349         else
350                 e1000e_reset(adapter);
351         return 0;
352 }
353
354 static u32 e1000_get_tx_csum(struct net_device *netdev)
355 {
356         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
357 }
358
359 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
360 {
361         if (data)
362                 netdev->features |= NETIF_F_HW_CSUM;
363         else
364                 netdev->features &= ~NETIF_F_HW_CSUM;
365
366         return 0;
367 }
368
369 static int e1000_set_tso(struct net_device *netdev, u32 data)
370 {
371         struct e1000_adapter *adapter = netdev_priv(netdev);
372
373         if (data) {
374                 netdev->features |= NETIF_F_TSO;
375                 netdev->features |= NETIF_F_TSO6;
376         } else {
377                 netdev->features &= ~NETIF_F_TSO;
378                 netdev->features &= ~NETIF_F_TSO6;
379         }
380
381         e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
382         adapter->flags |= FLAG_TSO_FORCE;
383         return 0;
384 }
385
386 static u32 e1000_get_msglevel(struct net_device *netdev)
387 {
388         struct e1000_adapter *adapter = netdev_priv(netdev);
389         return adapter->msg_enable;
390 }
391
392 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
393 {
394         struct e1000_adapter *adapter = netdev_priv(netdev);
395         adapter->msg_enable = data;
396 }
397
398 static int e1000_get_regs_len(struct net_device *netdev)
399 {
400 #define E1000_REGS_LEN 32 /* overestimate */
401         return E1000_REGS_LEN * sizeof(u32);
402 }
403
404 static void e1000_get_regs(struct net_device *netdev,
405                            struct ethtool_regs *regs, void *p)
406 {
407         struct e1000_adapter *adapter = netdev_priv(netdev);
408         struct e1000_hw *hw = &adapter->hw;
409         u32 *regs_buff = p;
410         u16 phy_data;
411         u8 revision_id;
412
413         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
414
415         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
416
417         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
418
419         regs_buff[0]  = er32(CTRL);
420         regs_buff[1]  = er32(STATUS);
421
422         regs_buff[2]  = er32(RCTL);
423         regs_buff[3]  = er32(RDLEN);
424         regs_buff[4]  = er32(RDH);
425         regs_buff[5]  = er32(RDT);
426         regs_buff[6]  = er32(RDTR);
427
428         regs_buff[7]  = er32(TCTL);
429         regs_buff[8]  = er32(TDLEN);
430         regs_buff[9]  = er32(TDH);
431         regs_buff[10] = er32(TDT);
432         regs_buff[11] = er32(TIDV);
433
434         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
435         if (hw->phy.type == e1000_phy_m88) {
436                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
437                 regs_buff[13] = (u32)phy_data; /* cable length */
438                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
439                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
440                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
441                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
442                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
443                 regs_buff[18] = regs_buff[13]; /* cable polarity */
444                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
445                 regs_buff[20] = regs_buff[17]; /* polarity correction */
446                 /* phy receive errors */
447                 regs_buff[22] = adapter->phy_stats.receive_errors;
448                 regs_buff[23] = regs_buff[13]; /* mdix mode */
449         }
450         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
451         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
452         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
453         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
454 }
455
456 static int e1000_get_eeprom_len(struct net_device *netdev)
457 {
458         struct e1000_adapter *adapter = netdev_priv(netdev);
459         return adapter->hw.nvm.word_size * 2;
460 }
461
462 static int e1000_get_eeprom(struct net_device *netdev,
463                             struct ethtool_eeprom *eeprom, u8 *bytes)
464 {
465         struct e1000_adapter *adapter = netdev_priv(netdev);
466         struct e1000_hw *hw = &adapter->hw;
467         u16 *eeprom_buff;
468         int first_word;
469         int last_word;
470         int ret_val = 0;
471         u16 i;
472
473         if (eeprom->len == 0)
474                 return -EINVAL;
475
476         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
477
478         first_word = eeprom->offset >> 1;
479         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
480
481         eeprom_buff = kmalloc(sizeof(u16) *
482                         (last_word - first_word + 1), GFP_KERNEL);
483         if (!eeprom_buff)
484                 return -ENOMEM;
485
486         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
487                 ret_val = e1000_read_nvm(hw, first_word,
488                                          last_word - first_word + 1,
489                                          eeprom_buff);
490         } else {
491                 for (i = 0; i < last_word - first_word + 1; i++) {
492                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
493                                                       &eeprom_buff[i]);
494                         if (ret_val) {
495                                 /* a read error occurred, throw away the
496                                  * result */
497                                 memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
498                                 break;
499                         }
500                 }
501         }
502
503         /* Device's eeprom is always little-endian, word addressable */
504         for (i = 0; i < last_word - first_word + 1; i++)
505                 le16_to_cpus(&eeprom_buff[i]);
506
507         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
508         kfree(eeprom_buff);
509
510         return ret_val;
511 }
512
513 static int e1000_set_eeprom(struct net_device *netdev,
514                             struct ethtool_eeprom *eeprom, u8 *bytes)
515 {
516         struct e1000_adapter *adapter = netdev_priv(netdev);
517         struct e1000_hw *hw = &adapter->hw;
518         u16 *eeprom_buff;
519         void *ptr;
520         int max_len;
521         int first_word;
522         int last_word;
523         int ret_val = 0;
524         u16 i;
525
526         if (eeprom->len == 0)
527                 return -EOPNOTSUPP;
528
529         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
530                 return -EFAULT;
531
532         if (adapter->flags & FLAG_READ_ONLY_NVM)
533                 return -EINVAL;
534
535         max_len = hw->nvm.word_size * 2;
536
537         first_word = eeprom->offset >> 1;
538         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
539         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
540         if (!eeprom_buff)
541                 return -ENOMEM;
542
543         ptr = (void *)eeprom_buff;
544
545         if (eeprom->offset & 1) {
546                 /* need read/modify/write of first changed EEPROM word */
547                 /* only the second byte of the word is being modified */
548                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
549                 ptr++;
550         }
551         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
552                 /* need read/modify/write of last changed EEPROM word */
553                 /* only the first byte of the word is being modified */
554                 ret_val = e1000_read_nvm(hw, last_word, 1,
555                                   &eeprom_buff[last_word - first_word]);
556
557         /* Device's eeprom is always little-endian, word addressable */
558         for (i = 0; i < last_word - first_word + 1; i++)
559                 le16_to_cpus(&eeprom_buff[i]);
560
561         memcpy(ptr, bytes, eeprom->len);
562
563         for (i = 0; i < last_word - first_word + 1; i++)
564                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
565
566         ret_val = e1000_write_nvm(hw, first_word,
567                                   last_word - first_word + 1, eeprom_buff);
568
569         /*
570          * Update the checksum over the first part of the EEPROM if needed
571          * and flush shadow RAM for 82573 controllers
572          */
573         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
574                                (hw->mac.type == e1000_82573)))
575                 e1000e_update_nvm_checksum(hw);
576
577         kfree(eeprom_buff);
578         return ret_val;
579 }
580
581 static void e1000_get_drvinfo(struct net_device *netdev,
582                               struct ethtool_drvinfo *drvinfo)
583 {
584         struct e1000_adapter *adapter = netdev_priv(netdev);
585         char firmware_version[32];
586         u16 eeprom_data;
587
588         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
589         strncpy(drvinfo->version, e1000e_driver_version, 32);
590
591         /*
592          * EEPROM image version # is reported as firmware version # for
593          * PCI-E controllers
594          */
595         e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
596         sprintf(firmware_version, "%d.%d-%d",
597                 (eeprom_data & 0xF000) >> 12,
598                 (eeprom_data & 0x0FF0) >> 4,
599                 eeprom_data & 0x000F);
600
601         strncpy(drvinfo->fw_version, firmware_version, 32);
602         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
603         drvinfo->regdump_len = e1000_get_regs_len(netdev);
604         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
605 }
606
607 static void e1000_get_ringparam(struct net_device *netdev,
608                                 struct ethtool_ringparam *ring)
609 {
610         struct e1000_adapter *adapter = netdev_priv(netdev);
611         struct e1000_ring *tx_ring = adapter->tx_ring;
612         struct e1000_ring *rx_ring = adapter->rx_ring;
613
614         ring->rx_max_pending = E1000_MAX_RXD;
615         ring->tx_max_pending = E1000_MAX_TXD;
616         ring->rx_mini_max_pending = 0;
617         ring->rx_jumbo_max_pending = 0;
618         ring->rx_pending = rx_ring->count;
619         ring->tx_pending = tx_ring->count;
620         ring->rx_mini_pending = 0;
621         ring->rx_jumbo_pending = 0;
622 }
623
624 static int e1000_set_ringparam(struct net_device *netdev,
625                                struct ethtool_ringparam *ring)
626 {
627         struct e1000_adapter *adapter = netdev_priv(netdev);
628         struct e1000_ring *tx_ring, *tx_old;
629         struct e1000_ring *rx_ring, *rx_old;
630         int err;
631
632         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
633                 return -EINVAL;
634
635         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
636                 msleep(1);
637
638         if (netif_running(adapter->netdev))
639                 e1000e_down(adapter);
640
641         tx_old = adapter->tx_ring;
642         rx_old = adapter->rx_ring;
643
644         err = -ENOMEM;
645         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
646         if (!tx_ring)
647                 goto err_alloc_tx;
648         /*
649          * use a memcpy to save any previously configured
650          * items like napi structs from having to be
651          * reinitialized
652          */
653         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
654
655         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
656         if (!rx_ring)
657                 goto err_alloc_rx;
658         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
659
660         adapter->tx_ring = tx_ring;
661         adapter->rx_ring = rx_ring;
662
663         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
664         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
665         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
666
667         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
668         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
669         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
670
671         if (netif_running(adapter->netdev)) {
672                 /* Try to get new resources before deleting old */
673                 err = e1000e_setup_rx_resources(adapter);
674                 if (err)
675                         goto err_setup_rx;
676                 err = e1000e_setup_tx_resources(adapter);
677                 if (err)
678                         goto err_setup_tx;
679
680                 /*
681                  * restore the old in order to free it,
682                  * then add in the new
683                  */
684                 adapter->rx_ring = rx_old;
685                 adapter->tx_ring = tx_old;
686                 e1000e_free_rx_resources(adapter);
687                 e1000e_free_tx_resources(adapter);
688                 kfree(tx_old);
689                 kfree(rx_old);
690                 adapter->rx_ring = rx_ring;
691                 adapter->tx_ring = tx_ring;
692                 err = e1000e_up(adapter);
693                 if (err)
694                         goto err_setup;
695         }
696
697         clear_bit(__E1000_RESETTING, &adapter->state);
698         return 0;
699 err_setup_tx:
700         e1000e_free_rx_resources(adapter);
701 err_setup_rx:
702         adapter->rx_ring = rx_old;
703         adapter->tx_ring = tx_old;
704         kfree(rx_ring);
705 err_alloc_rx:
706         kfree(tx_ring);
707 err_alloc_tx:
708         e1000e_up(adapter);
709 err_setup:
710         clear_bit(__E1000_RESETTING, &adapter->state);
711         return err;
712 }
713
714 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
715                              int reg, int offset, u32 mask, u32 write)
716 {
717         u32 pat, val;
718         static const u32 test[] =
719                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
720         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
721                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
722                                       (test[pat] & write));
723                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
724                 if (val != (test[pat] & write & mask)) {
725                         e_err("pattern test reg %04X failed: got 0x%08X "
726                               "expected 0x%08X\n", reg + offset, val,
727                               (test[pat] & write & mask));
728                         *data = reg;
729                         return 1;
730                 }
731         }
732         return 0;
733 }
734
735 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
736                               int reg, u32 mask, u32 write)
737 {
738         u32 val;
739         __ew32(&adapter->hw, reg, write & mask);
740         val = __er32(&adapter->hw, reg);
741         if ((write & mask) != (val & mask)) {
742                 e_err("set/check reg %04X test failed: got 0x%08X "
743                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
744                 *data = reg;
745                 return 1;
746         }
747         return 0;
748 }
749 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
750         do {                                                                   \
751                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
752                         return 1;                                              \
753         } while (0)
754 #define REG_PATTERN_TEST(reg, mask, write)                                     \
755         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
756
757 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
758         do {                                                                   \
759                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
760                         return 1;                                              \
761         } while (0)
762
763 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
764 {
765         struct e1000_hw *hw = &adapter->hw;
766         struct e1000_mac_info *mac = &adapter->hw.mac;
767         u32 value;
768         u32 before;
769         u32 after;
770         u32 i;
771         u32 toggle;
772
773         /*
774          * The status register is Read Only, so a write should fail.
775          * Some bits that get toggled are ignored.
776          */
777         switch (mac->type) {
778         /* there are several bits on newer hardware that are r/w */
779         case e1000_82571:
780         case e1000_82572:
781         case e1000_80003es2lan:
782                 toggle = 0x7FFFF3FF;
783                 break;
784         case e1000_82573:
785         case e1000_ich8lan:
786         case e1000_ich9lan:
787                 toggle = 0x7FFFF033;
788                 break;
789         default:
790                 toggle = 0xFFFFF833;
791                 break;
792         }
793
794         before = er32(STATUS);
795         value = (er32(STATUS) & toggle);
796         ew32(STATUS, toggle);
797         after = er32(STATUS) & toggle;
798         if (value != after) {
799                 e_err("failed STATUS register test got: 0x%08X expected: "
800                       "0x%08X\n", after, value);
801                 *data = 1;
802                 return 1;
803         }
804         /* restore previous status */
805         ew32(STATUS, before);
806
807         if (!(adapter->flags & FLAG_IS_ICH)) {
808                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
809                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
810                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
811                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
812         }
813
814         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
815         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
816         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
817         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
818         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
819         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
820         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
821         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
822         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
823         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
824
825         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
826
827         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
828         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
829         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
830
831         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
832         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
833         if (!(adapter->flags & FLAG_IS_ICH))
834                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
835         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
836         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
837         for (i = 0; i < mac->rar_entry_count; i++)
838                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
839                                        0x8003FFFF, 0xFFFFFFFF);
840
841         for (i = 0; i < mac->mta_reg_count; i++)
842                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
843
844         *data = 0;
845         return 0;
846 }
847
848 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
849 {
850         u16 temp;
851         u16 checksum = 0;
852         u16 i;
853
854         *data = 0;
855         /* Read and add up the contents of the EEPROM */
856         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
857                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
858                         *data = 1;
859                         break;
860                 }
861                 checksum += temp;
862         }
863
864         /* If Checksum is not Correct return error else test passed */
865         if ((checksum != (u16) NVM_SUM) && !(*data))
866                 *data = 2;
867
868         return *data;
869 }
870
871 static irqreturn_t e1000_test_intr(int irq, void *data)
872 {
873         struct net_device *netdev = (struct net_device *) data;
874         struct e1000_adapter *adapter = netdev_priv(netdev);
875         struct e1000_hw *hw = &adapter->hw;
876
877         adapter->test_icr |= er32(ICR);
878
879         return IRQ_HANDLED;
880 }
881
882 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
883 {
884         struct net_device *netdev = adapter->netdev;
885         struct e1000_hw *hw = &adapter->hw;
886         u32 mask;
887         u32 shared_int = 1;
888         u32 irq = adapter->pdev->irq;
889         int i;
890
891         *data = 0;
892
893         /* NOTE: we don't test MSI interrupts here, yet */
894         /* Hook up test interrupt handler just for this test */
895         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
896                          netdev)) {
897                 shared_int = 0;
898         } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
899                  netdev->name, netdev)) {
900                 *data = 1;
901                 return -1;
902         }
903         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
904
905         /* Disable all the interrupts */
906         ew32(IMC, 0xFFFFFFFF);
907         msleep(10);
908
909         /* Test each interrupt */
910         for (i = 0; i < 10; i++) {
911                 if ((adapter->flags & FLAG_IS_ICH) && (i == 8))
912                         continue;
913
914                 /* Interrupt to test */
915                 mask = 1 << i;
916
917                 if (!shared_int) {
918                         /*
919                          * Disable the interrupt to be reported in
920                          * the cause register and then force the same
921                          * interrupt and see if one gets posted.  If
922                          * an interrupt was posted to the bus, the
923                          * test failed.
924                          */
925                         adapter->test_icr = 0;
926                         ew32(IMC, mask);
927                         ew32(ICS, mask);
928                         msleep(10);
929
930                         if (adapter->test_icr & mask) {
931                                 *data = 3;
932                                 break;
933                         }
934                 }
935
936                 /*
937                  * Enable the interrupt to be reported in
938                  * the cause register and then force the same
939                  * interrupt and see if one gets posted.  If
940                  * an interrupt was not posted to the bus, the
941                  * test failed.
942                  */
943                 adapter->test_icr = 0;
944                 ew32(IMS, mask);
945                 ew32(ICS, mask);
946                 msleep(10);
947
948                 if (!(adapter->test_icr & mask)) {
949                         *data = 4;
950                         break;
951                 }
952
953                 if (!shared_int) {
954                         /*
955                          * Disable the other interrupts to be reported in
956                          * the cause register and then force the other
957                          * interrupts and see if any get posted.  If
958                          * an interrupt was posted to the bus, the
959                          * test failed.
960                          */
961                         adapter->test_icr = 0;
962                         ew32(IMC, ~mask & 0x00007FFF);
963                         ew32(ICS, ~mask & 0x00007FFF);
964                         msleep(10);
965
966                         if (adapter->test_icr) {
967                                 *data = 5;
968                                 break;
969                         }
970                 }
971         }
972
973         /* Disable all the interrupts */
974         ew32(IMC, 0xFFFFFFFF);
975         msleep(10);
976
977         /* Unhook test interrupt handler */
978         free_irq(irq, netdev);
979
980         return *data;
981 }
982
983 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
984 {
985         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
986         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
987         struct pci_dev *pdev = adapter->pdev;
988         int i;
989
990         if (tx_ring->desc && tx_ring->buffer_info) {
991                 for (i = 0; i < tx_ring->count; i++) {
992                         if (tx_ring->buffer_info[i].dma)
993                                 pci_unmap_single(pdev,
994                                         tx_ring->buffer_info[i].dma,
995                                         tx_ring->buffer_info[i].length,
996                                         PCI_DMA_TODEVICE);
997                         if (tx_ring->buffer_info[i].skb)
998                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
999                 }
1000         }
1001
1002         if (rx_ring->desc && rx_ring->buffer_info) {
1003                 for (i = 0; i < rx_ring->count; i++) {
1004                         if (rx_ring->buffer_info[i].dma)
1005                                 pci_unmap_single(pdev,
1006                                         rx_ring->buffer_info[i].dma,
1007                                         2048, PCI_DMA_FROMDEVICE);
1008                         if (rx_ring->buffer_info[i].skb)
1009                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1010                 }
1011         }
1012
1013         if (tx_ring->desc) {
1014                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1015                                   tx_ring->dma);
1016                 tx_ring->desc = NULL;
1017         }
1018         if (rx_ring->desc) {
1019                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1020                                   rx_ring->dma);
1021                 rx_ring->desc = NULL;
1022         }
1023
1024         kfree(tx_ring->buffer_info);
1025         tx_ring->buffer_info = NULL;
1026         kfree(rx_ring->buffer_info);
1027         rx_ring->buffer_info = NULL;
1028 }
1029
1030 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1031 {
1032         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1033         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1034         struct pci_dev *pdev = adapter->pdev;
1035         struct e1000_hw *hw = &adapter->hw;
1036         u32 rctl;
1037         int i;
1038         int ret_val;
1039
1040         /* Setup Tx descriptor ring and Tx buffers */
1041
1042         if (!tx_ring->count)
1043                 tx_ring->count = E1000_DEFAULT_TXD;
1044
1045         tx_ring->buffer_info = kcalloc(tx_ring->count,
1046                                        sizeof(struct e1000_buffer),
1047                                        GFP_KERNEL);
1048         if (!(tx_ring->buffer_info)) {
1049                 ret_val = 1;
1050                 goto err_nomem;
1051         }
1052
1053         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1054         tx_ring->size = ALIGN(tx_ring->size, 4096);
1055         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1056                                            &tx_ring->dma, GFP_KERNEL);
1057         if (!tx_ring->desc) {
1058                 ret_val = 2;
1059                 goto err_nomem;
1060         }
1061         tx_ring->next_to_use = 0;
1062         tx_ring->next_to_clean = 0;
1063
1064         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1065         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1066         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1067         ew32(TDH, 0);
1068         ew32(TDT, 0);
1069         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1070              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1071              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1072
1073         for (i = 0; i < tx_ring->count; i++) {
1074                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1075                 struct sk_buff *skb;
1076                 unsigned int skb_size = 1024;
1077
1078                 skb = alloc_skb(skb_size, GFP_KERNEL);
1079                 if (!skb) {
1080                         ret_val = 3;
1081                         goto err_nomem;
1082                 }
1083                 skb_put(skb, skb_size);
1084                 tx_ring->buffer_info[i].skb = skb;
1085                 tx_ring->buffer_info[i].length = skb->len;
1086                 tx_ring->buffer_info[i].dma =
1087                         pci_map_single(pdev, skb->data, skb->len,
1088                                        PCI_DMA_TODEVICE);
1089                 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1090                         ret_val = 4;
1091                         goto err_nomem;
1092                 }
1093                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1094                 tx_desc->lower.data = cpu_to_le32(skb->len);
1095                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1096                                                    E1000_TXD_CMD_IFCS |
1097                                                    E1000_TXD_CMD_RS);
1098                 tx_desc->upper.data = 0;
1099         }
1100
1101         /* Setup Rx descriptor ring and Rx buffers */
1102
1103         if (!rx_ring->count)
1104                 rx_ring->count = E1000_DEFAULT_RXD;
1105
1106         rx_ring->buffer_info = kcalloc(rx_ring->count,
1107                                        sizeof(struct e1000_buffer),
1108                                        GFP_KERNEL);
1109         if (!(rx_ring->buffer_info)) {
1110                 ret_val = 5;
1111                 goto err_nomem;
1112         }
1113
1114         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1115         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1116                                            &rx_ring->dma, GFP_KERNEL);
1117         if (!rx_ring->desc) {
1118                 ret_val = 6;
1119                 goto err_nomem;
1120         }
1121         rx_ring->next_to_use = 0;
1122         rx_ring->next_to_clean = 0;
1123
1124         rctl = er32(RCTL);
1125         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1126         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1127         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1128         ew32(RDLEN, rx_ring->size);
1129         ew32(RDH, 0);
1130         ew32(RDT, 0);
1131         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1132                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1133                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1134                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1135                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1136         ew32(RCTL, rctl);
1137
1138         for (i = 0; i < rx_ring->count; i++) {
1139                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1140                 struct sk_buff *skb;
1141
1142                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1143                 if (!skb) {
1144                         ret_val = 7;
1145                         goto err_nomem;
1146                 }
1147                 skb_reserve(skb, NET_IP_ALIGN);
1148                 rx_ring->buffer_info[i].skb = skb;
1149                 rx_ring->buffer_info[i].dma =
1150                         pci_map_single(pdev, skb->data, 2048,
1151                                        PCI_DMA_FROMDEVICE);
1152                 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1153                         ret_val = 8;
1154                         goto err_nomem;
1155                 }
1156                 rx_desc->buffer_addr =
1157                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1158                 memset(skb->data, 0x00, skb->len);
1159         }
1160
1161         return 0;
1162
1163 err_nomem:
1164         e1000_free_desc_rings(adapter);
1165         return ret_val;
1166 }
1167
1168 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1169 {
1170         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1171         e1e_wphy(&adapter->hw, 29, 0x001F);
1172         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1173         e1e_wphy(&adapter->hw, 29, 0x001A);
1174         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1175 }
1176
1177 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1178 {
1179         struct e1000_hw *hw = &adapter->hw;
1180         u32 ctrl_reg = 0;
1181         u32 stat_reg = 0;
1182         u16 phy_reg = 0;
1183
1184         hw->mac.autoneg = 0;
1185
1186         if (hw->phy.type == e1000_phy_m88) {
1187                 /* Auto-MDI/MDIX Off */
1188                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1189                 /* reset to update Auto-MDI/MDIX */
1190                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1191                 /* autoneg off */
1192                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1193         } else if (hw->phy.type == e1000_phy_gg82563)
1194                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1195
1196         ctrl_reg = er32(CTRL);
1197
1198         switch (hw->phy.type) {
1199         case e1000_phy_ife:
1200                 /* force 100, set loopback */
1201                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1202
1203                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1204                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1205                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1206                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1207                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1208                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1209                 break;
1210         case e1000_phy_bm:
1211                 /* Set Default MAC Interface speed to 1GB */
1212                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1213                 phy_reg &= ~0x0007;
1214                 phy_reg |= 0x006;
1215                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1216                 /* Assert SW reset for above settings to take effect */
1217                 e1000e_commit_phy(hw);
1218                 mdelay(1);
1219                 /* Force Full Duplex */
1220                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1221                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1222                 /* Set Link Up (in force link) */
1223                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1224                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1225                 /* Force Link */
1226                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1227                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1228                 /* Set Early Link Enable */
1229                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1230                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1231                 /* fall through */
1232         default:
1233                 /* force 1000, set loopback */
1234                 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1235                 mdelay(250);
1236
1237                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1238                 ctrl_reg = er32(CTRL);
1239                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1240                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1241                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1242                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1243                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1244
1245                 if (adapter->flags & FLAG_IS_ICH)
1246                         ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1247         }
1248
1249         if (hw->phy.media_type == e1000_media_type_copper &&
1250             hw->phy.type == e1000_phy_m88) {
1251                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1252         } else {
1253                 /*
1254                  * Set the ILOS bit on the fiber Nic if half duplex link is
1255                  * detected.
1256                  */
1257                 stat_reg = er32(STATUS);
1258                 if ((stat_reg & E1000_STATUS_FD) == 0)
1259                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1260         }
1261
1262         ew32(CTRL, ctrl_reg);
1263
1264         /*
1265          * Disable the receiver on the PHY so when a cable is plugged in, the
1266          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1267          */
1268         if (hw->phy.type == e1000_phy_m88)
1269                 e1000_phy_disable_receiver(adapter);
1270
1271         udelay(500);
1272
1273         return 0;
1274 }
1275
1276 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1277 {
1278         struct e1000_hw *hw = &adapter->hw;
1279         u32 ctrl = er32(CTRL);
1280         int link = 0;
1281
1282         /* special requirements for 82571/82572 fiber adapters */
1283
1284         /*
1285          * jump through hoops to make sure link is up because serdes
1286          * link is hardwired up
1287          */
1288         ctrl |= E1000_CTRL_SLU;
1289         ew32(CTRL, ctrl);
1290
1291         /* disable autoneg */
1292         ctrl = er32(TXCW);
1293         ctrl &= ~(1 << 31);
1294         ew32(TXCW, ctrl);
1295
1296         link = (er32(STATUS) & E1000_STATUS_LU);
1297
1298         if (!link) {
1299                 /* set invert loss of signal */
1300                 ctrl = er32(CTRL);
1301                 ctrl |= E1000_CTRL_ILOS;
1302                 ew32(CTRL, ctrl);
1303         }
1304
1305         /*
1306          * special write to serdes control register to enable SerDes analog
1307          * loopback
1308          */
1309 #define E1000_SERDES_LB_ON 0x410
1310         ew32(SCTL, E1000_SERDES_LB_ON);
1311         msleep(10);
1312
1313         return 0;
1314 }
1315
1316 /* only call this for fiber/serdes connections to es2lan */
1317 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1318 {
1319         struct e1000_hw *hw = &adapter->hw;
1320         u32 ctrlext = er32(CTRL_EXT);
1321         u32 ctrl = er32(CTRL);
1322
1323         /*
1324          * save CTRL_EXT to restore later, reuse an empty variable (unused
1325          * on mac_type 80003es2lan)
1326          */
1327         adapter->tx_fifo_head = ctrlext;
1328
1329         /* clear the serdes mode bits, putting the device into mac loopback */
1330         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1331         ew32(CTRL_EXT, ctrlext);
1332
1333         /* force speed to 1000/FD, link up */
1334         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1335         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1336                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1337         ew32(CTRL, ctrl);
1338
1339         /* set mac loopback */
1340         ctrl = er32(RCTL);
1341         ctrl |= E1000_RCTL_LBM_MAC;
1342         ew32(RCTL, ctrl);
1343
1344         /* set testing mode parameters (no need to reset later) */
1345 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1346 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1347         ew32(KMRNCTRLSTA,
1348              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1349
1350         return 0;
1351 }
1352
1353 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1354 {
1355         struct e1000_hw *hw = &adapter->hw;
1356         u32 rctl;
1357
1358         if (hw->phy.media_type == e1000_media_type_fiber ||
1359             hw->phy.media_type == e1000_media_type_internal_serdes) {
1360                 switch (hw->mac.type) {
1361                 case e1000_80003es2lan:
1362                         return e1000_set_es2lan_mac_loopback(adapter);
1363                         break;
1364                 case e1000_82571:
1365                 case e1000_82572:
1366                         return e1000_set_82571_fiber_loopback(adapter);
1367                         break;
1368                 default:
1369                         rctl = er32(RCTL);
1370                         rctl |= E1000_RCTL_LBM_TCVR;
1371                         ew32(RCTL, rctl);
1372                         return 0;
1373                 }
1374         } else if (hw->phy.media_type == e1000_media_type_copper) {
1375                 return e1000_integrated_phy_loopback(adapter);
1376         }
1377
1378         return 7;
1379 }
1380
1381 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1382 {
1383         struct e1000_hw *hw = &adapter->hw;
1384         u32 rctl;
1385         u16 phy_reg;
1386
1387         rctl = er32(RCTL);
1388         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1389         ew32(RCTL, rctl);
1390
1391         switch (hw->mac.type) {
1392         case e1000_80003es2lan:
1393                 if (hw->phy.media_type == e1000_media_type_fiber ||
1394                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1395                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1396                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1397                         adapter->tx_fifo_head = 0;
1398                 }
1399                 /* fall through */
1400         case e1000_82571:
1401         case e1000_82572:
1402                 if (hw->phy.media_type == e1000_media_type_fiber ||
1403                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1404 #define E1000_SERDES_LB_OFF 0x400
1405                         ew32(SCTL, E1000_SERDES_LB_OFF);
1406                         msleep(10);
1407                         break;
1408                 }
1409                 /* Fall Through */
1410         default:
1411                 hw->mac.autoneg = 1;
1412                 if (hw->phy.type == e1000_phy_gg82563)
1413                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1414                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1415                 if (phy_reg & MII_CR_LOOPBACK) {
1416                         phy_reg &= ~MII_CR_LOOPBACK;
1417                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1418                         e1000e_commit_phy(hw);
1419                 }
1420                 break;
1421         }
1422 }
1423
1424 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1425                                       unsigned int frame_size)
1426 {
1427         memset(skb->data, 0xFF, frame_size);
1428         frame_size &= ~1;
1429         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1430         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1431         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1432 }
1433
1434 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1435                                     unsigned int frame_size)
1436 {
1437         frame_size &= ~1;
1438         if (*(skb->data + 3) == 0xFF)
1439                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1440                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1441                         return 0;
1442         return 13;
1443 }
1444
1445 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1446 {
1447         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1448         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1449         struct pci_dev *pdev = adapter->pdev;
1450         struct e1000_hw *hw = &adapter->hw;
1451         int i, j, k, l;
1452         int lc;
1453         int good_cnt;
1454         int ret_val = 0;
1455         unsigned long time;
1456
1457         ew32(RDT, rx_ring->count - 1);
1458
1459         /*
1460          * Calculate the loop count based on the largest descriptor ring
1461          * The idea is to wrap the largest ring a number of times using 64
1462          * send/receive pairs during each loop
1463          */
1464
1465         if (rx_ring->count <= tx_ring->count)
1466                 lc = ((tx_ring->count / 64) * 2) + 1;
1467         else
1468                 lc = ((rx_ring->count / 64) * 2) + 1;
1469
1470         k = 0;
1471         l = 0;
1472         for (j = 0; j <= lc; j++) { /* loop count loop */
1473                 for (i = 0; i < 64; i++) { /* send the packets */
1474                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1475                                                   1024);
1476                         pci_dma_sync_single_for_device(pdev,
1477                                         tx_ring->buffer_info[k].dma,
1478                                         tx_ring->buffer_info[k].length,
1479                                         PCI_DMA_TODEVICE);
1480                         k++;
1481                         if (k == tx_ring->count)
1482                                 k = 0;
1483                 }
1484                 ew32(TDT, k);
1485                 msleep(200);
1486                 time = jiffies; /* set the start time for the receive */
1487                 good_cnt = 0;
1488                 do { /* receive the sent packets */
1489                         pci_dma_sync_single_for_cpu(pdev,
1490                                         rx_ring->buffer_info[l].dma, 2048,
1491                                         PCI_DMA_FROMDEVICE);
1492
1493                         ret_val = e1000_check_lbtest_frame(
1494                                         rx_ring->buffer_info[l].skb, 1024);
1495                         if (!ret_val)
1496                                 good_cnt++;
1497                         l++;
1498                         if (l == rx_ring->count)
1499                                 l = 0;
1500                         /*
1501                          * time + 20 msecs (200 msecs on 2.4) is more than
1502                          * enough time to complete the receives, if it's
1503                          * exceeded, break and error off
1504                          */
1505                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1506                 if (good_cnt != 64) {
1507                         ret_val = 13; /* ret_val is the same as mis-compare */
1508                         break;
1509                 }
1510                 if (jiffies >= (time + 20)) {
1511                         ret_val = 14; /* error code for time out error */
1512                         break;
1513                 }
1514         } /* end loop count loop */
1515         return ret_val;
1516 }
1517
1518 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1519 {
1520         /*
1521          * PHY loopback cannot be performed if SoL/IDER
1522          * sessions are active
1523          */
1524         if (e1000_check_reset_block(&adapter->hw)) {
1525                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1526                 *data = 0;
1527                 goto out;
1528         }
1529
1530         *data = e1000_setup_desc_rings(adapter);
1531         if (*data)
1532                 goto out;
1533
1534         *data = e1000_setup_loopback_test(adapter);
1535         if (*data)
1536                 goto err_loopback;
1537
1538         *data = e1000_run_loopback_test(adapter);
1539         e1000_loopback_cleanup(adapter);
1540
1541 err_loopback:
1542         e1000_free_desc_rings(adapter);
1543 out:
1544         return *data;
1545 }
1546
1547 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1548 {
1549         struct e1000_hw *hw = &adapter->hw;
1550
1551         *data = 0;
1552         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1553                 int i = 0;
1554                 hw->mac.serdes_has_link = 0;
1555
1556                 /*
1557                  * On some blade server designs, link establishment
1558                  * could take as long as 2-3 minutes
1559                  */
1560                 do {
1561                         hw->mac.ops.check_for_link(hw);
1562                         if (hw->mac.serdes_has_link)
1563                                 return *data;
1564                         msleep(20);
1565                 } while (i++ < 3750);
1566
1567                 *data = 1;
1568         } else {
1569                 hw->mac.ops.check_for_link(hw);
1570                 if (hw->mac.autoneg)
1571                         msleep(4000);
1572
1573                 if (!(er32(STATUS) &
1574                       E1000_STATUS_LU))
1575                         *data = 1;
1576         }
1577         return *data;
1578 }
1579
1580 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1581 {
1582         switch (sset) {
1583         case ETH_SS_TEST:
1584                 return E1000_TEST_LEN;
1585         case ETH_SS_STATS:
1586                 return E1000_STATS_LEN;
1587         default:
1588                 return -EOPNOTSUPP;
1589         }
1590 }
1591
1592 static void e1000_diag_test(struct net_device *netdev,
1593                             struct ethtool_test *eth_test, u64 *data)
1594 {
1595         struct e1000_adapter *adapter = netdev_priv(netdev);
1596         u16 autoneg_advertised;
1597         u8 forced_speed_duplex;
1598         u8 autoneg;
1599         bool if_running = netif_running(netdev);
1600
1601         set_bit(__E1000_TESTING, &adapter->state);
1602         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1603                 /* Offline tests */
1604
1605                 /* save speed, duplex, autoneg settings */
1606                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1607                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1608                 autoneg = adapter->hw.mac.autoneg;
1609
1610                 e_info("offline testing starting\n");
1611
1612                 /*
1613                  * Link test performed before hardware reset so autoneg doesn't
1614                  * interfere with test result
1615                  */
1616                 if (e1000_link_test(adapter, &data[4]))
1617                         eth_test->flags |= ETH_TEST_FL_FAILED;
1618
1619                 if (if_running)
1620                         /* indicate we're in test mode */
1621                         dev_close(netdev);
1622                 else
1623                         e1000e_reset(adapter);
1624
1625                 if (e1000_reg_test(adapter, &data[0]))
1626                         eth_test->flags |= ETH_TEST_FL_FAILED;
1627
1628                 e1000e_reset(adapter);
1629                 if (e1000_eeprom_test(adapter, &data[1]))
1630                         eth_test->flags |= ETH_TEST_FL_FAILED;
1631
1632                 e1000e_reset(adapter);
1633                 if (e1000_intr_test(adapter, &data[2]))
1634                         eth_test->flags |= ETH_TEST_FL_FAILED;
1635
1636                 e1000e_reset(adapter);
1637                 /* make sure the phy is powered up */
1638                 e1000e_power_up_phy(adapter);
1639                 if (e1000_loopback_test(adapter, &data[3]))
1640                         eth_test->flags |= ETH_TEST_FL_FAILED;
1641
1642                 /* restore speed, duplex, autoneg settings */
1643                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1644                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1645                 adapter->hw.mac.autoneg = autoneg;
1646
1647                 /* force this routine to wait until autoneg complete/timeout */
1648                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1649                 e1000e_reset(adapter);
1650                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1651
1652                 clear_bit(__E1000_TESTING, &adapter->state);
1653                 if (if_running)
1654                         dev_open(netdev);
1655         } else {
1656                 e_info("online testing starting\n");
1657                 /* Online tests */
1658                 if (e1000_link_test(adapter, &data[4]))
1659                         eth_test->flags |= ETH_TEST_FL_FAILED;
1660
1661                 /* Online tests aren't run; pass by default */
1662                 data[0] = 0;
1663                 data[1] = 0;
1664                 data[2] = 0;
1665                 data[3] = 0;
1666
1667                 clear_bit(__E1000_TESTING, &adapter->state);
1668         }
1669         msleep_interruptible(4 * 1000);
1670 }
1671
1672 static void e1000_get_wol(struct net_device *netdev,
1673                           struct ethtool_wolinfo *wol)
1674 {
1675         struct e1000_adapter *adapter = netdev_priv(netdev);
1676
1677         wol->supported = 0;
1678         wol->wolopts = 0;
1679
1680         if (!(adapter->flags & FLAG_HAS_WOL))
1681                 return;
1682
1683         wol->supported = WAKE_UCAST | WAKE_MCAST |
1684                          WAKE_BCAST | WAKE_MAGIC |
1685                          WAKE_PHY | WAKE_ARP;
1686
1687         /* apply any specific unsupported masks here */
1688         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1689                 wol->supported &= ~WAKE_UCAST;
1690
1691                 if (adapter->wol & E1000_WUFC_EX)
1692                         e_err("Interface does not support directed (unicast) "
1693                               "frame wake-up packets\n");
1694         }
1695
1696         if (adapter->wol & E1000_WUFC_EX)
1697                 wol->wolopts |= WAKE_UCAST;
1698         if (adapter->wol & E1000_WUFC_MC)
1699                 wol->wolopts |= WAKE_MCAST;
1700         if (adapter->wol & E1000_WUFC_BC)
1701                 wol->wolopts |= WAKE_BCAST;
1702         if (adapter->wol & E1000_WUFC_MAG)
1703                 wol->wolopts |= WAKE_MAGIC;
1704         if (adapter->wol & E1000_WUFC_LNKC)
1705                 wol->wolopts |= WAKE_PHY;
1706         if (adapter->wol & E1000_WUFC_ARP)
1707                 wol->wolopts |= WAKE_ARP;
1708 }
1709
1710 static int e1000_set_wol(struct net_device *netdev,
1711                          struct ethtool_wolinfo *wol)
1712 {
1713         struct e1000_adapter *adapter = netdev_priv(netdev);
1714
1715         if (wol->wolopts & WAKE_MAGICSECURE)
1716                 return -EOPNOTSUPP;
1717
1718         if (!(adapter->flags & FLAG_HAS_WOL))
1719                 return wol->wolopts ? -EOPNOTSUPP : 0;
1720
1721         /* these settings will always override what we currently have */
1722         adapter->wol = 0;
1723
1724         if (wol->wolopts & WAKE_UCAST)
1725                 adapter->wol |= E1000_WUFC_EX;
1726         if (wol->wolopts & WAKE_MCAST)
1727                 adapter->wol |= E1000_WUFC_MC;
1728         if (wol->wolopts & WAKE_BCAST)
1729                 adapter->wol |= E1000_WUFC_BC;
1730         if (wol->wolopts & WAKE_MAGIC)
1731                 adapter->wol |= E1000_WUFC_MAG;
1732         if (wol->wolopts & WAKE_PHY)
1733                 adapter->wol |= E1000_WUFC_LNKC;
1734         if (wol->wolopts & WAKE_ARP)
1735                 adapter->wol |= E1000_WUFC_ARP;
1736
1737         return 0;
1738 }
1739
1740 /* toggle LED 4 times per second = 2 "blinks" per second */
1741 #define E1000_ID_INTERVAL       (HZ/4)
1742
1743 /* bit defines for adapter->led_status */
1744 #define E1000_LED_ON            0
1745
1746 static void e1000_led_blink_callback(unsigned long data)
1747 {
1748         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1749
1750         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1751                 adapter->hw.mac.ops.led_off(&adapter->hw);
1752         else
1753                 adapter->hw.mac.ops.led_on(&adapter->hw);
1754
1755         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1756 }
1757
1758 static int e1000_phys_id(struct net_device *netdev, u32 data)
1759 {
1760         struct e1000_adapter *adapter = netdev_priv(netdev);
1761
1762         if (!data)
1763                 data = INT_MAX;
1764
1765         if (adapter->hw.phy.type == e1000_phy_ife) {
1766                 if (!adapter->blink_timer.function) {
1767                         init_timer(&adapter->blink_timer);
1768                         adapter->blink_timer.function =
1769                                 e1000_led_blink_callback;
1770                         adapter->blink_timer.data = (unsigned long) adapter;
1771                 }
1772                 mod_timer(&adapter->blink_timer, jiffies);
1773                 msleep_interruptible(data * 1000);
1774                 del_timer_sync(&adapter->blink_timer);
1775                 e1e_wphy(&adapter->hw,
1776                                     IFE_PHY_SPECIAL_CONTROL_LED, 0);
1777         } else {
1778                 e1000e_blink_led(&adapter->hw);
1779                 msleep_interruptible(data * 1000);
1780         }
1781
1782         adapter->hw.mac.ops.led_off(&adapter->hw);
1783         clear_bit(E1000_LED_ON, &adapter->led_status);
1784         adapter->hw.mac.ops.cleanup_led(&adapter->hw);
1785
1786         return 0;
1787 }
1788
1789 static int e1000_get_coalesce(struct net_device *netdev,
1790                               struct ethtool_coalesce *ec)
1791 {
1792         struct e1000_adapter *adapter = netdev_priv(netdev);
1793
1794         if (adapter->itr_setting <= 3)
1795                 ec->rx_coalesce_usecs = adapter->itr_setting;
1796         else
1797                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1798
1799         return 0;
1800 }
1801
1802 static int e1000_set_coalesce(struct net_device *netdev,
1803                               struct ethtool_coalesce *ec)
1804 {
1805         struct e1000_adapter *adapter = netdev_priv(netdev);
1806         struct e1000_hw *hw = &adapter->hw;
1807
1808         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1809             ((ec->rx_coalesce_usecs > 3) &&
1810              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1811             (ec->rx_coalesce_usecs == 2))
1812                 return -EINVAL;
1813
1814         if (ec->rx_coalesce_usecs <= 3) {
1815                 adapter->itr = 20000;
1816                 adapter->itr_setting = ec->rx_coalesce_usecs;
1817         } else {
1818                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1819                 adapter->itr_setting = adapter->itr & ~3;
1820         }
1821
1822         if (adapter->itr_setting != 0)
1823                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1824         else
1825                 ew32(ITR, 0);
1826
1827         return 0;
1828 }
1829
1830 static int e1000_nway_reset(struct net_device *netdev)
1831 {
1832         struct e1000_adapter *adapter = netdev_priv(netdev);
1833         if (netif_running(netdev))
1834                 e1000e_reinit_locked(adapter);
1835         return 0;
1836 }
1837
1838 static void e1000_get_ethtool_stats(struct net_device *netdev,
1839                                     struct ethtool_stats *stats,
1840                                     u64 *data)
1841 {
1842         struct e1000_adapter *adapter = netdev_priv(netdev);
1843         int i;
1844
1845         e1000e_update_stats(adapter);
1846         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1847                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1848                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1849                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1850         }
1851 }
1852
1853 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1854                               u8 *data)
1855 {
1856         u8 *p = data;
1857         int i;
1858
1859         switch (stringset) {
1860         case ETH_SS_TEST:
1861                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1862                 break;
1863         case ETH_SS_STATS:
1864                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1865                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1866                                ETH_GSTRING_LEN);
1867                         p += ETH_GSTRING_LEN;
1868                 }
1869                 break;
1870         }
1871 }
1872
1873 static const struct ethtool_ops e1000_ethtool_ops = {
1874         .get_settings           = e1000_get_settings,
1875         .set_settings           = e1000_set_settings,
1876         .get_drvinfo            = e1000_get_drvinfo,
1877         .get_regs_len           = e1000_get_regs_len,
1878         .get_regs               = e1000_get_regs,
1879         .get_wol                = e1000_get_wol,
1880         .set_wol                = e1000_set_wol,
1881         .get_msglevel           = e1000_get_msglevel,
1882         .set_msglevel           = e1000_set_msglevel,
1883         .nway_reset             = e1000_nway_reset,
1884         .get_link               = e1000_get_link,
1885         .get_eeprom_len         = e1000_get_eeprom_len,
1886         .get_eeprom             = e1000_get_eeprom,
1887         .set_eeprom             = e1000_set_eeprom,
1888         .get_ringparam          = e1000_get_ringparam,
1889         .set_ringparam          = e1000_set_ringparam,
1890         .get_pauseparam         = e1000_get_pauseparam,
1891         .set_pauseparam         = e1000_set_pauseparam,
1892         .get_rx_csum            = e1000_get_rx_csum,
1893         .set_rx_csum            = e1000_set_rx_csum,
1894         .get_tx_csum            = e1000_get_tx_csum,
1895         .set_tx_csum            = e1000_set_tx_csum,
1896         .get_sg                 = ethtool_op_get_sg,
1897         .set_sg                 = ethtool_op_set_sg,
1898         .get_tso                = ethtool_op_get_tso,
1899         .set_tso                = e1000_set_tso,
1900         .self_test              = e1000_diag_test,
1901         .get_strings            = e1000_get_strings,
1902         .phys_id                = e1000_phys_id,
1903         .get_ethtool_stats      = e1000_get_ethtool_stats,
1904         .get_sset_count         = e1000e_get_sset_count,
1905         .get_coalesce           = e1000_get_coalesce,
1906         .set_coalesce           = e1000_set_coalesce,
1907 };
1908
1909 void e1000e_set_ethtool_ops(struct net_device *netdev)
1910 {
1911         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1912 }