Merge branch 'topic/core-cleanup' into for-linus
[safe/jmp/linux-2.6] / drivers / net / e1000e / 82571.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82571EB Gigabit Ethernet Controller
31  * 82571EB Gigabit Ethernet Controller (Copper)
32  * 82571EB Gigabit Ethernet Controller (Fiber)
33  * 82571EB Dual Port Gigabit Mezzanine Adapter
34  * 82571EB Quad Port Gigabit Mezzanine Adapter
35  * 82571PT Gigabit PT Quad Port Server ExpressModule
36  * 82572EI Gigabit Ethernet Controller (Copper)
37  * 82572EI Gigabit Ethernet Controller (Fiber)
38  * 82572EI Gigabit Ethernet Controller
39  * 82573V Gigabit Ethernet Controller (Copper)
40  * 82573E Gigabit Ethernet Controller (Copper)
41  * 82573L Gigabit Ethernet Controller
42  * 82574L Gigabit Network Connection
43  * 82583V Gigabit Network Connection
44  */
45
46 #include "e1000.h"
47
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50                               (ID_LED_OFF1_ON2  <<  8) | \
51                               (ID_LED_DEF1_DEF2 <<  4) | \
52                               (ID_LED_DEF1_DEF2))
53
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55
56 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
57
58 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
59 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
60 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
61 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
62 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
63                                       u16 words, u16 *data);
64 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
65 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
66 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
67 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
68 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
69 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
70 static s32 e1000_led_on_82574(struct e1000_hw *hw);
71 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
72 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
73
74 /**
75  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
76  *  @hw: pointer to the HW structure
77  **/
78 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
79 {
80         struct e1000_phy_info *phy = &hw->phy;
81         s32 ret_val;
82
83         if (hw->phy.media_type != e1000_media_type_copper) {
84                 phy->type = e1000_phy_none;
85                 return 0;
86         }
87
88         phy->addr                        = 1;
89         phy->autoneg_mask                = AUTONEG_ADVERTISE_SPEED_DEFAULT;
90         phy->reset_delay_us              = 100;
91
92         phy->ops.power_up                = e1000_power_up_phy_copper;
93         phy->ops.power_down              = e1000_power_down_phy_copper_82571;
94
95         switch (hw->mac.type) {
96         case e1000_82571:
97         case e1000_82572:
98                 phy->type                = e1000_phy_igp_2;
99                 break;
100         case e1000_82573:
101                 phy->type                = e1000_phy_m88;
102                 break;
103         case e1000_82574:
104         case e1000_82583:
105                 phy->type                = e1000_phy_bm;
106                 break;
107         default:
108                 return -E1000_ERR_PHY;
109                 break;
110         }
111
112         /* This can only be done after all function pointers are setup. */
113         ret_val = e1000_get_phy_id_82571(hw);
114
115         /* Verify phy id */
116         switch (hw->mac.type) {
117         case e1000_82571:
118         case e1000_82572:
119                 if (phy->id != IGP01E1000_I_PHY_ID)
120                         return -E1000_ERR_PHY;
121                 break;
122         case e1000_82573:
123                 if (phy->id != M88E1111_I_PHY_ID)
124                         return -E1000_ERR_PHY;
125                 break;
126         case e1000_82574:
127         case e1000_82583:
128                 if (phy->id != BME1000_E_PHY_ID_R2)
129                         return -E1000_ERR_PHY;
130                 break;
131         default:
132                 return -E1000_ERR_PHY;
133                 break;
134         }
135
136         return 0;
137 }
138
139 /**
140  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
141  *  @hw: pointer to the HW structure
142  **/
143 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
144 {
145         struct e1000_nvm_info *nvm = &hw->nvm;
146         u32 eecd = er32(EECD);
147         u16 size;
148
149         nvm->opcode_bits = 8;
150         nvm->delay_usec = 1;
151         switch (nvm->override) {
152         case e1000_nvm_override_spi_large:
153                 nvm->page_size = 32;
154                 nvm->address_bits = 16;
155                 break;
156         case e1000_nvm_override_spi_small:
157                 nvm->page_size = 8;
158                 nvm->address_bits = 8;
159                 break;
160         default:
161                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
162                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
163                 break;
164         }
165
166         switch (hw->mac.type) {
167         case e1000_82573:
168         case e1000_82574:
169         case e1000_82583:
170                 if (((eecd >> 15) & 0x3) == 0x3) {
171                         nvm->type = e1000_nvm_flash_hw;
172                         nvm->word_size = 2048;
173                         /*
174                          * Autonomous Flash update bit must be cleared due
175                          * to Flash update issue.
176                          */
177                         eecd &= ~E1000_EECD_AUPDEN;
178                         ew32(EECD, eecd);
179                         break;
180                 }
181                 /* Fall Through */
182         default:
183                 nvm->type = e1000_nvm_eeprom_spi;
184                 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
185                                   E1000_EECD_SIZE_EX_SHIFT);
186                 /*
187                  * Added to a constant, "size" becomes the left-shift value
188                  * for setting word_size.
189                  */
190                 size += NVM_WORD_SIZE_BASE_SHIFT;
191
192                 /* EEPROM access above 16k is unsupported */
193                 if (size > 14)
194                         size = 14;
195                 nvm->word_size  = 1 << size;
196                 break;
197         }
198
199         return 0;
200 }
201
202 /**
203  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
204  *  @hw: pointer to the HW structure
205  **/
206 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
207 {
208         struct e1000_hw *hw = &adapter->hw;
209         struct e1000_mac_info *mac = &hw->mac;
210         struct e1000_mac_operations *func = &mac->ops;
211         u32 swsm = 0;
212         u32 swsm2 = 0;
213         bool force_clear_smbi = false;
214
215         /* Set media type */
216         switch (adapter->pdev->device) {
217         case E1000_DEV_ID_82571EB_FIBER:
218         case E1000_DEV_ID_82572EI_FIBER:
219         case E1000_DEV_ID_82571EB_QUAD_FIBER:
220                 hw->phy.media_type = e1000_media_type_fiber;
221                 break;
222         case E1000_DEV_ID_82571EB_SERDES:
223         case E1000_DEV_ID_82572EI_SERDES:
224         case E1000_DEV_ID_82571EB_SERDES_DUAL:
225         case E1000_DEV_ID_82571EB_SERDES_QUAD:
226                 hw->phy.media_type = e1000_media_type_internal_serdes;
227                 break;
228         default:
229                 hw->phy.media_type = e1000_media_type_copper;
230                 break;
231         }
232
233         /* Set mta register count */
234         mac->mta_reg_count = 128;
235         /* Set rar entry count */
236         mac->rar_entry_count = E1000_RAR_ENTRIES;
237         /* Set if manageability features are enabled. */
238         mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK)
239                         ? true : false;
240         /* Adaptive IFS supported */
241         mac->adaptive_ifs = true;
242
243         /* check for link */
244         switch (hw->phy.media_type) {
245         case e1000_media_type_copper:
246                 func->setup_physical_interface = e1000_setup_copper_link_82571;
247                 func->check_for_link = e1000e_check_for_copper_link;
248                 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
249                 break;
250         case e1000_media_type_fiber:
251                 func->setup_physical_interface =
252                         e1000_setup_fiber_serdes_link_82571;
253                 func->check_for_link = e1000e_check_for_fiber_link;
254                 func->get_link_up_info =
255                         e1000e_get_speed_and_duplex_fiber_serdes;
256                 break;
257         case e1000_media_type_internal_serdes:
258                 func->setup_physical_interface =
259                         e1000_setup_fiber_serdes_link_82571;
260                 func->check_for_link = e1000_check_for_serdes_link_82571;
261                 func->get_link_up_info =
262                         e1000e_get_speed_and_duplex_fiber_serdes;
263                 break;
264         default:
265                 return -E1000_ERR_CONFIG;
266                 break;
267         }
268
269         switch (hw->mac.type) {
270         case e1000_82573:
271                 func->set_lan_id = e1000_set_lan_id_single_port;
272                 func->check_mng_mode = e1000e_check_mng_mode_generic;
273                 func->led_on = e1000e_led_on_generic;
274                 break;
275         case e1000_82574:
276         case e1000_82583:
277                 func->set_lan_id = e1000_set_lan_id_single_port;
278                 func->check_mng_mode = e1000_check_mng_mode_82574;
279                 func->led_on = e1000_led_on_82574;
280                 break;
281         default:
282                 func->check_mng_mode = e1000e_check_mng_mode_generic;
283                 func->led_on = e1000e_led_on_generic;
284                 break;
285         }
286
287         /*
288          * Ensure that the inter-port SWSM.SMBI lock bit is clear before
289          * first NVM or PHY acess. This should be done for single-port
290          * devices, and for one port only on dual-port devices so that
291          * for those devices we can still use the SMBI lock to synchronize
292          * inter-port accesses to the PHY & NVM.
293          */
294         switch (hw->mac.type) {
295         case e1000_82571:
296         case e1000_82572:
297                 swsm2 = er32(SWSM2);
298
299                 if (!(swsm2 & E1000_SWSM2_LOCK)) {
300                         /* Only do this for the first interface on this card */
301                         ew32(SWSM2,
302                             swsm2 | E1000_SWSM2_LOCK);
303                         force_clear_smbi = true;
304                 } else
305                         force_clear_smbi = false;
306                 break;
307         default:
308                 force_clear_smbi = true;
309                 break;
310         }
311
312         if (force_clear_smbi) {
313                 /* Make sure SWSM.SMBI is clear */
314                 swsm = er32(SWSM);
315                 if (swsm & E1000_SWSM_SMBI) {
316                         /* This bit should not be set on a first interface, and
317                          * indicates that the bootagent or EFI code has
318                          * improperly left this bit enabled
319                          */
320                         e_dbg("Please update your 82571 Bootagent\n");
321                 }
322                 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
323         }
324
325         /*
326          * Initialze device specific counter of SMBI acquisition
327          * timeouts.
328          */
329          hw->dev_spec.e82571.smb_counter = 0;
330
331         return 0;
332 }
333
334 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
335 {
336         struct e1000_hw *hw = &adapter->hw;
337         static int global_quad_port_a; /* global port a indication */
338         struct pci_dev *pdev = adapter->pdev;
339         int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
340         s32 rc;
341
342         rc = e1000_init_mac_params_82571(adapter);
343         if (rc)
344                 return rc;
345
346         rc = e1000_init_nvm_params_82571(hw);
347         if (rc)
348                 return rc;
349
350         rc = e1000_init_phy_params_82571(hw);
351         if (rc)
352                 return rc;
353
354         /* tag quad port adapters first, it's used below */
355         switch (pdev->device) {
356         case E1000_DEV_ID_82571EB_QUAD_COPPER:
357         case E1000_DEV_ID_82571EB_QUAD_FIBER:
358         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
359         case E1000_DEV_ID_82571PT_QUAD_COPPER:
360                 adapter->flags |= FLAG_IS_QUAD_PORT;
361                 /* mark the first port */
362                 if (global_quad_port_a == 0)
363                         adapter->flags |= FLAG_IS_QUAD_PORT_A;
364                 /* Reset for multiple quad port adapters */
365                 global_quad_port_a++;
366                 if (global_quad_port_a == 4)
367                         global_quad_port_a = 0;
368                 break;
369         default:
370                 break;
371         }
372
373         switch (adapter->hw.mac.type) {
374         case e1000_82571:
375                 /* these dual ports don't have WoL on port B at all */
376                 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
377                      (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
378                      (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
379                     (is_port_b))
380                         adapter->flags &= ~FLAG_HAS_WOL;
381                 /* quad ports only support WoL on port A */
382                 if (adapter->flags & FLAG_IS_QUAD_PORT &&
383                     (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
384                         adapter->flags &= ~FLAG_HAS_WOL;
385                 /* Does not support WoL on any port */
386                 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
387                         adapter->flags &= ~FLAG_HAS_WOL;
388                 break;
389         case e1000_82573:
390         case e1000_82574:
391         case e1000_82583:
392                 /* Disable ASPM L0s due to hardware errata */
393                 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L0S);
394
395                 if (pdev->device == E1000_DEV_ID_82573L) {
396                         adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
397                         adapter->max_hw_frame_size = DEFAULT_JUMBO;
398                 }
399                 break;
400         default:
401                 break;
402         }
403
404         return 0;
405 }
406
407 /**
408  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
409  *  @hw: pointer to the HW structure
410  *
411  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
412  *  revision in the hardware structure.
413  **/
414 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
415 {
416         struct e1000_phy_info *phy = &hw->phy;
417         s32 ret_val;
418         u16 phy_id = 0;
419
420         switch (hw->mac.type) {
421         case e1000_82571:
422         case e1000_82572:
423                 /*
424                  * The 82571 firmware may still be configuring the PHY.
425                  * In this case, we cannot access the PHY until the
426                  * configuration is done.  So we explicitly set the
427                  * PHY ID.
428                  */
429                 phy->id = IGP01E1000_I_PHY_ID;
430                 break;
431         case e1000_82573:
432                 return e1000e_get_phy_id(hw);
433                 break;
434         case e1000_82574:
435         case e1000_82583:
436                 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
437                 if (ret_val)
438                         return ret_val;
439
440                 phy->id = (u32)(phy_id << 16);
441                 udelay(20);
442                 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
443                 if (ret_val)
444                         return ret_val;
445
446                 phy->id |= (u32)(phy_id);
447                 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
448                 break;
449         default:
450                 return -E1000_ERR_PHY;
451                 break;
452         }
453
454         return 0;
455 }
456
457 /**
458  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
459  *  @hw: pointer to the HW structure
460  *
461  *  Acquire the HW semaphore to access the PHY or NVM
462  **/
463 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
464 {
465         u32 swsm;
466         s32 sw_timeout = hw->nvm.word_size + 1;
467         s32 fw_timeout = hw->nvm.word_size + 1;
468         s32 i = 0;
469
470         /*
471          * If we have timedout 3 times on trying to acquire
472          * the inter-port SMBI semaphore, there is old code
473          * operating on the other port, and it is not
474          * releasing SMBI. Modify the number of times that
475          * we try for the semaphore to interwork with this
476          * older code.
477          */
478         if (hw->dev_spec.e82571.smb_counter > 2)
479                 sw_timeout = 1;
480
481         /* Get the SW semaphore */
482         while (i < sw_timeout) {
483                 swsm = er32(SWSM);
484                 if (!(swsm & E1000_SWSM_SMBI))
485                         break;
486
487                 udelay(50);
488                 i++;
489         }
490
491         if (i == sw_timeout) {
492                 e_dbg("Driver can't access device - SMBI bit is set.\n");
493                 hw->dev_spec.e82571.smb_counter++;
494         }
495         /* Get the FW semaphore. */
496         for (i = 0; i < fw_timeout; i++) {
497                 swsm = er32(SWSM);
498                 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
499
500                 /* Semaphore acquired if bit latched */
501                 if (er32(SWSM) & E1000_SWSM_SWESMBI)
502                         break;
503
504                 udelay(50);
505         }
506
507         if (i == fw_timeout) {
508                 /* Release semaphores */
509                 e1000_put_hw_semaphore_82571(hw);
510                 e_dbg("Driver can't access the NVM\n");
511                 return -E1000_ERR_NVM;
512         }
513
514         return 0;
515 }
516
517 /**
518  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
519  *  @hw: pointer to the HW structure
520  *
521  *  Release hardware semaphore used to access the PHY or NVM
522  **/
523 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
524 {
525         u32 swsm;
526
527         swsm = er32(SWSM);
528         swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
529         ew32(SWSM, swsm);
530 }
531
532 /**
533  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
534  *  @hw: pointer to the HW structure
535  *
536  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
537  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
538  *  for EEPROM access grant bit.  If the access grant bit is not set, release
539  *  hardware semaphore.
540  **/
541 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
542 {
543         s32 ret_val;
544
545         ret_val = e1000_get_hw_semaphore_82571(hw);
546         if (ret_val)
547                 return ret_val;
548
549         switch (hw->mac.type) {
550         case e1000_82573:
551         case e1000_82574:
552         case e1000_82583:
553                 break;
554         default:
555                 ret_val = e1000e_acquire_nvm(hw);
556                 break;
557         }
558
559         if (ret_val)
560                 e1000_put_hw_semaphore_82571(hw);
561
562         return ret_val;
563 }
564
565 /**
566  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
567  *  @hw: pointer to the HW structure
568  *
569  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
570  **/
571 static void e1000_release_nvm_82571(struct e1000_hw *hw)
572 {
573         e1000e_release_nvm(hw);
574         e1000_put_hw_semaphore_82571(hw);
575 }
576
577 /**
578  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
579  *  @hw: pointer to the HW structure
580  *  @offset: offset within the EEPROM to be written to
581  *  @words: number of words to write
582  *  @data: 16 bit word(s) to be written to the EEPROM
583  *
584  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
585  *
586  *  If e1000e_update_nvm_checksum is not called after this function, the
587  *  EEPROM will most likely contain an invalid checksum.
588  **/
589 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
590                                  u16 *data)
591 {
592         s32 ret_val;
593
594         switch (hw->mac.type) {
595         case e1000_82573:
596         case e1000_82574:
597         case e1000_82583:
598                 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
599                 break;
600         case e1000_82571:
601         case e1000_82572:
602                 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
603                 break;
604         default:
605                 ret_val = -E1000_ERR_NVM;
606                 break;
607         }
608
609         return ret_val;
610 }
611
612 /**
613  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
614  *  @hw: pointer to the HW structure
615  *
616  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
617  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
618  *  value to the EEPROM.
619  **/
620 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
621 {
622         u32 eecd;
623         s32 ret_val;
624         u16 i;
625
626         ret_val = e1000e_update_nvm_checksum_generic(hw);
627         if (ret_val)
628                 return ret_val;
629
630         /*
631          * If our nvm is an EEPROM, then we're done
632          * otherwise, commit the checksum to the flash NVM.
633          */
634         if (hw->nvm.type != e1000_nvm_flash_hw)
635                 return ret_val;
636
637         /* Check for pending operations. */
638         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
639                 msleep(1);
640                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
641                         break;
642         }
643
644         if (i == E1000_FLASH_UPDATES)
645                 return -E1000_ERR_NVM;
646
647         /* Reset the firmware if using STM opcode. */
648         if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
649                 /*
650                  * The enabling of and the actual reset must be done
651                  * in two write cycles.
652                  */
653                 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
654                 e1e_flush();
655                 ew32(HICR, E1000_HICR_FW_RESET);
656         }
657
658         /* Commit the write to flash */
659         eecd = er32(EECD) | E1000_EECD_FLUPD;
660         ew32(EECD, eecd);
661
662         for (i = 0; i < E1000_FLASH_UPDATES; i++) {
663                 msleep(1);
664                 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
665                         break;
666         }
667
668         if (i == E1000_FLASH_UPDATES)
669                 return -E1000_ERR_NVM;
670
671         return 0;
672 }
673
674 /**
675  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
676  *  @hw: pointer to the HW structure
677  *
678  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
679  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
680  **/
681 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
682 {
683         if (hw->nvm.type == e1000_nvm_flash_hw)
684                 e1000_fix_nvm_checksum_82571(hw);
685
686         return e1000e_validate_nvm_checksum_generic(hw);
687 }
688
689 /**
690  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
691  *  @hw: pointer to the HW structure
692  *  @offset: offset within the EEPROM to be written to
693  *  @words: number of words to write
694  *  @data: 16 bit word(s) to be written to the EEPROM
695  *
696  *  After checking for invalid values, poll the EEPROM to ensure the previous
697  *  command has completed before trying to write the next word.  After write
698  *  poll for completion.
699  *
700  *  If e1000e_update_nvm_checksum is not called after this function, the
701  *  EEPROM will most likely contain an invalid checksum.
702  **/
703 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
704                                       u16 words, u16 *data)
705 {
706         struct e1000_nvm_info *nvm = &hw->nvm;
707         u32 i, eewr = 0;
708         s32 ret_val = 0;
709
710         /*
711          * A check for invalid values:  offset too large, too many words,
712          * and not enough words.
713          */
714         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
715             (words == 0)) {
716                 e_dbg("nvm parameter(s) out of bounds\n");
717                 return -E1000_ERR_NVM;
718         }
719
720         for (i = 0; i < words; i++) {
721                 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
722                        ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
723                        E1000_NVM_RW_REG_START;
724
725                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
726                 if (ret_val)
727                         break;
728
729                 ew32(EEWR, eewr);
730
731                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
732                 if (ret_val)
733                         break;
734         }
735
736         return ret_val;
737 }
738
739 /**
740  *  e1000_get_cfg_done_82571 - Poll for configuration done
741  *  @hw: pointer to the HW structure
742  *
743  *  Reads the management control register for the config done bit to be set.
744  **/
745 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
746 {
747         s32 timeout = PHY_CFG_TIMEOUT;
748
749         while (timeout) {
750                 if (er32(EEMNGCTL) &
751                     E1000_NVM_CFG_DONE_PORT_0)
752                         break;
753                 msleep(1);
754                 timeout--;
755         }
756         if (!timeout) {
757                 e_dbg("MNG configuration cycle has not completed.\n");
758                 return -E1000_ERR_RESET;
759         }
760
761         return 0;
762 }
763
764 /**
765  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
766  *  @hw: pointer to the HW structure
767  *  @active: true to enable LPLU, false to disable
768  *
769  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
770  *  this function also disables smart speed and vice versa.  LPLU will not be
771  *  activated unless the device autonegotiation advertisement meets standards
772  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
773  *  pointer entry point only called by PHY setup routines.
774  **/
775 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
776 {
777         struct e1000_phy_info *phy = &hw->phy;
778         s32 ret_val;
779         u16 data;
780
781         ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
782         if (ret_val)
783                 return ret_val;
784
785         if (active) {
786                 data |= IGP02E1000_PM_D0_LPLU;
787                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
788                 if (ret_val)
789                         return ret_val;
790
791                 /* When LPLU is enabled, we should disable SmartSpeed */
792                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
793                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
794                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
795                 if (ret_val)
796                         return ret_val;
797         } else {
798                 data &= ~IGP02E1000_PM_D0_LPLU;
799                 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
800                 /*
801                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
802                  * during Dx states where the power conservation is most
803                  * important.  During driver activity we should enable
804                  * SmartSpeed, so performance is maintained.
805                  */
806                 if (phy->smart_speed == e1000_smart_speed_on) {
807                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
808                                            &data);
809                         if (ret_val)
810                                 return ret_val;
811
812                         data |= IGP01E1000_PSCFR_SMART_SPEED;
813                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
814                                            data);
815                         if (ret_val)
816                                 return ret_val;
817                 } else if (phy->smart_speed == e1000_smart_speed_off) {
818                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
819                                            &data);
820                         if (ret_val)
821                                 return ret_val;
822
823                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
824                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
825                                            data);
826                         if (ret_val)
827                                 return ret_val;
828                 }
829         }
830
831         return 0;
832 }
833
834 /**
835  *  e1000_reset_hw_82571 - Reset hardware
836  *  @hw: pointer to the HW structure
837  *
838  *  This resets the hardware into a known state.
839  **/
840 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
841 {
842         u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
843         s32 ret_val;
844         u16 i = 0;
845
846         /*
847          * Prevent the PCI-E bus from sticking if there is no TLP connection
848          * on the last TLP read/write transaction when MAC is reset.
849          */
850         ret_val = e1000e_disable_pcie_master(hw);
851         if (ret_val)
852                 e_dbg("PCI-E Master disable polling has failed.\n");
853
854         e_dbg("Masking off all interrupts\n");
855         ew32(IMC, 0xffffffff);
856
857         ew32(RCTL, 0);
858         ew32(TCTL, E1000_TCTL_PSP);
859         e1e_flush();
860
861         msleep(10);
862
863         /*
864          * Must acquire the MDIO ownership before MAC reset.
865          * Ownership defaults to firmware after a reset.
866          */
867         switch (hw->mac.type) {
868         case e1000_82573:
869         case e1000_82574:
870         case e1000_82583:
871                 extcnf_ctrl = er32(EXTCNF_CTRL);
872                 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
873
874                 do {
875                         ew32(EXTCNF_CTRL, extcnf_ctrl);
876                         extcnf_ctrl = er32(EXTCNF_CTRL);
877
878                         if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
879                                 break;
880
881                         extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
882
883                         msleep(2);
884                         i++;
885                 } while (i < MDIO_OWNERSHIP_TIMEOUT);
886                 break;
887         default:
888                 break;
889         }
890
891         ctrl = er32(CTRL);
892
893         e_dbg("Issuing a global reset to MAC\n");
894         ew32(CTRL, ctrl | E1000_CTRL_RST);
895
896         if (hw->nvm.type == e1000_nvm_flash_hw) {
897                 udelay(10);
898                 ctrl_ext = er32(CTRL_EXT);
899                 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
900                 ew32(CTRL_EXT, ctrl_ext);
901                 e1e_flush();
902         }
903
904         ret_val = e1000e_get_auto_rd_done(hw);
905         if (ret_val)
906                 /* We don't want to continue accessing MAC registers. */
907                 return ret_val;
908
909         /*
910          * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
911          * Need to wait for Phy configuration completion before accessing
912          * NVM and Phy.
913          */
914
915         switch (hw->mac.type) {
916         case e1000_82573:
917         case e1000_82574:
918         case e1000_82583:
919                 msleep(25);
920                 break;
921         default:
922                 break;
923         }
924
925         /* Clear any pending interrupt events. */
926         ew32(IMC, 0xffffffff);
927         icr = er32(ICR);
928
929         /* Install any alternate MAC address into RAR0 */
930         ret_val = e1000_check_alt_mac_addr_generic(hw);
931         if (ret_val)
932                 return ret_val;
933
934         e1000e_set_laa_state_82571(hw, true);
935
936         /* Reinitialize the 82571 serdes link state machine */
937         if (hw->phy.media_type == e1000_media_type_internal_serdes)
938                 hw->mac.serdes_link_state = e1000_serdes_link_down;
939
940         return 0;
941 }
942
943 /**
944  *  e1000_init_hw_82571 - Initialize hardware
945  *  @hw: pointer to the HW structure
946  *
947  *  This inits the hardware readying it for operation.
948  **/
949 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
950 {
951         struct e1000_mac_info *mac = &hw->mac;
952         u32 reg_data;
953         s32 ret_val;
954         u16 i, rar_count = mac->rar_entry_count;
955
956         e1000_initialize_hw_bits_82571(hw);
957
958         /* Initialize identification LED */
959         ret_val = e1000e_id_led_init(hw);
960         if (ret_val)
961                 e_dbg("Error initializing identification LED\n");
962                 /* This is not fatal and we should not stop init due to this */
963
964         /* Disabling VLAN filtering */
965         e_dbg("Initializing the IEEE VLAN\n");
966         mac->ops.clear_vfta(hw);
967
968         /* Setup the receive address. */
969         /*
970          * If, however, a locally administered address was assigned to the
971          * 82571, we must reserve a RAR for it to work around an issue where
972          * resetting one port will reload the MAC on the other port.
973          */
974         if (e1000e_get_laa_state_82571(hw))
975                 rar_count--;
976         e1000e_init_rx_addrs(hw, rar_count);
977
978         /* Zero out the Multicast HASH table */
979         e_dbg("Zeroing the MTA\n");
980         for (i = 0; i < mac->mta_reg_count; i++)
981                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
982
983         /* Setup link and flow control */
984         ret_val = e1000_setup_link_82571(hw);
985
986         /* Set the transmit descriptor write-back policy */
987         reg_data = er32(TXDCTL(0));
988         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
989                    E1000_TXDCTL_FULL_TX_DESC_WB |
990                    E1000_TXDCTL_COUNT_DESC;
991         ew32(TXDCTL(0), reg_data);
992
993         /* ...for both queues. */
994         switch (mac->type) {
995         case e1000_82573:
996         case e1000_82574:
997         case e1000_82583:
998                 e1000e_enable_tx_pkt_filtering(hw);
999                 reg_data = er32(GCR);
1000                 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1001                 ew32(GCR, reg_data);
1002                 break;
1003         default:
1004                 reg_data = er32(TXDCTL(1));
1005                 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1006                            E1000_TXDCTL_FULL_TX_DESC_WB |
1007                            E1000_TXDCTL_COUNT_DESC;
1008                 ew32(TXDCTL(1), reg_data);
1009                 break;
1010         }
1011
1012         /*
1013          * Clear all of the statistics registers (clear on read).  It is
1014          * important that we do this after we have tried to establish link
1015          * because the symbol error count will increment wildly if there
1016          * is no link.
1017          */
1018         e1000_clear_hw_cntrs_82571(hw);
1019
1020         return ret_val;
1021 }
1022
1023 /**
1024  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1025  *  @hw: pointer to the HW structure
1026  *
1027  *  Initializes required hardware-dependent bits needed for normal operation.
1028  **/
1029 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1030 {
1031         u32 reg;
1032
1033         /* Transmit Descriptor Control 0 */
1034         reg = er32(TXDCTL(0));
1035         reg |= (1 << 22);
1036         ew32(TXDCTL(0), reg);
1037
1038         /* Transmit Descriptor Control 1 */
1039         reg = er32(TXDCTL(1));
1040         reg |= (1 << 22);
1041         ew32(TXDCTL(1), reg);
1042
1043         /* Transmit Arbitration Control 0 */
1044         reg = er32(TARC(0));
1045         reg &= ~(0xF << 27); /* 30:27 */
1046         switch (hw->mac.type) {
1047         case e1000_82571:
1048         case e1000_82572:
1049                 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1050                 break;
1051         default:
1052                 break;
1053         }
1054         ew32(TARC(0), reg);
1055
1056         /* Transmit Arbitration Control 1 */
1057         reg = er32(TARC(1));
1058         switch (hw->mac.type) {
1059         case e1000_82571:
1060         case e1000_82572:
1061                 reg &= ~((1 << 29) | (1 << 30));
1062                 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1063                 if (er32(TCTL) & E1000_TCTL_MULR)
1064                         reg &= ~(1 << 28);
1065                 else
1066                         reg |= (1 << 28);
1067                 ew32(TARC(1), reg);
1068                 break;
1069         default:
1070                 break;
1071         }
1072
1073         /* Device Control */
1074         switch (hw->mac.type) {
1075         case e1000_82573:
1076         case e1000_82574:
1077         case e1000_82583:
1078                 reg = er32(CTRL);
1079                 reg &= ~(1 << 29);
1080                 ew32(CTRL, reg);
1081                 break;
1082         default:
1083                 break;
1084         }
1085
1086         /* Extended Device Control */
1087         switch (hw->mac.type) {
1088         case e1000_82573:
1089         case e1000_82574:
1090         case e1000_82583:
1091                 reg = er32(CTRL_EXT);
1092                 reg &= ~(1 << 23);
1093                 reg |= (1 << 22);
1094                 ew32(CTRL_EXT, reg);
1095                 break;
1096         default:
1097                 break;
1098         }
1099
1100         if (hw->mac.type == e1000_82571) {
1101                 reg = er32(PBA_ECC);
1102                 reg |= E1000_PBA_ECC_CORR_EN;
1103                 ew32(PBA_ECC, reg);
1104         }
1105         /*
1106          * Workaround for hardware errata.
1107          * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1108          */
1109
1110         if ((hw->mac.type == e1000_82571) ||
1111            (hw->mac.type == e1000_82572)) {
1112                 reg = er32(CTRL_EXT);
1113                 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1114                 ew32(CTRL_EXT, reg);
1115         }
1116
1117
1118         /* PCI-Ex Control Registers */
1119         switch (hw->mac.type) {
1120         case e1000_82574:
1121         case e1000_82583:
1122                 reg = er32(GCR);
1123                 reg |= (1 << 22);
1124                 ew32(GCR, reg);
1125
1126                 /*
1127                  * Workaround for hardware errata.
1128                  * apply workaround for hardware errata documented in errata
1129                  * docs Fixes issue where some error prone or unreliable PCIe
1130                  * completions are occurring, particularly with ASPM enabled.
1131                  * Without fix, issue can cause tx timeouts.
1132                  */
1133                 reg = er32(GCR2);
1134                 reg |= 1;
1135                 ew32(GCR2, reg);
1136                 break;
1137         default:
1138                 break;
1139         }
1140
1141         return;
1142 }
1143
1144 /**
1145  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1146  *  @hw: pointer to the HW structure
1147  *
1148  *  Clears the register array which contains the VLAN filter table by
1149  *  setting all the values to 0.
1150  **/
1151 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1152 {
1153         u32 offset;
1154         u32 vfta_value = 0;
1155         u32 vfta_offset = 0;
1156         u32 vfta_bit_in_reg = 0;
1157
1158         switch (hw->mac.type) {
1159         case e1000_82573:
1160         case e1000_82574:
1161         case e1000_82583:
1162                 if (hw->mng_cookie.vlan_id != 0) {
1163                         /*
1164                          * The VFTA is a 4096b bit-field, each identifying
1165                          * a single VLAN ID.  The following operations
1166                          * determine which 32b entry (i.e. offset) into the
1167                          * array we want to set the VLAN ID (i.e. bit) of
1168                          * the manageability unit.
1169                          */
1170                         vfta_offset = (hw->mng_cookie.vlan_id >>
1171                                        E1000_VFTA_ENTRY_SHIFT) &
1172                                       E1000_VFTA_ENTRY_MASK;
1173                         vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1174                                                E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1175                 }
1176                 break;
1177         default:
1178                 break;
1179         }
1180         for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1181                 /*
1182                  * If the offset we want to clear is the same offset of the
1183                  * manageability VLAN ID, then clear all bits except that of
1184                  * the manageability unit.
1185                  */
1186                 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1187                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1188                 e1e_flush();
1189         }
1190 }
1191
1192 /**
1193  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1194  *  @hw: pointer to the HW structure
1195  *
1196  *  Reads the NVM Initialization Control Word 2 and returns true
1197  *  (>0) if any manageability is enabled, else false (0).
1198  **/
1199 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1200 {
1201         u16 data;
1202
1203         e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1204         return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1205 }
1206
1207 /**
1208  *  e1000_led_on_82574 - Turn LED on
1209  *  @hw: pointer to the HW structure
1210  *
1211  *  Turn LED on.
1212  **/
1213 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1214 {
1215         u32 ctrl;
1216         u32 i;
1217
1218         ctrl = hw->mac.ledctl_mode2;
1219         if (!(E1000_STATUS_LU & er32(STATUS))) {
1220                 /*
1221                  * If no link, then turn LED on by setting the invert bit
1222                  * for each LED that's "on" (0x0E) in ledctl_mode2.
1223                  */
1224                 for (i = 0; i < 4; i++)
1225                         if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1226                             E1000_LEDCTL_MODE_LED_ON)
1227                                 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1228         }
1229         ew32(LEDCTL, ctrl);
1230
1231         return 0;
1232 }
1233
1234 /**
1235  *  e1000_setup_link_82571 - Setup flow control and link settings
1236  *  @hw: pointer to the HW structure
1237  *
1238  *  Determines which flow control settings to use, then configures flow
1239  *  control.  Calls the appropriate media-specific link configuration
1240  *  function.  Assuming the adapter has a valid link partner, a valid link
1241  *  should be established.  Assumes the hardware has previously been reset
1242  *  and the transmitter and receiver are not enabled.
1243  **/
1244 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1245 {
1246         /*
1247          * 82573 does not have a word in the NVM to determine
1248          * the default flow control setting, so we explicitly
1249          * set it to full.
1250          */
1251         switch (hw->mac.type) {
1252         case e1000_82573:
1253         case e1000_82574:
1254         case e1000_82583:
1255                 if (hw->fc.requested_mode == e1000_fc_default)
1256                         hw->fc.requested_mode = e1000_fc_full;
1257                 break;
1258         default:
1259                 break;
1260         }
1261
1262         return e1000e_setup_link(hw);
1263 }
1264
1265 /**
1266  *  e1000_setup_copper_link_82571 - Configure copper link settings
1267  *  @hw: pointer to the HW structure
1268  *
1269  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1270  *  for link, once link is established calls to configure collision distance
1271  *  and flow control are called.
1272  **/
1273 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1274 {
1275         u32 ctrl;
1276         s32 ret_val;
1277
1278         ctrl = er32(CTRL);
1279         ctrl |= E1000_CTRL_SLU;
1280         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1281         ew32(CTRL, ctrl);
1282
1283         switch (hw->phy.type) {
1284         case e1000_phy_m88:
1285         case e1000_phy_bm:
1286                 ret_val = e1000e_copper_link_setup_m88(hw);
1287                 break;
1288         case e1000_phy_igp_2:
1289                 ret_val = e1000e_copper_link_setup_igp(hw);
1290                 break;
1291         default:
1292                 return -E1000_ERR_PHY;
1293                 break;
1294         }
1295
1296         if (ret_val)
1297                 return ret_val;
1298
1299         ret_val = e1000e_setup_copper_link(hw);
1300
1301         return ret_val;
1302 }
1303
1304 /**
1305  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1306  *  @hw: pointer to the HW structure
1307  *
1308  *  Configures collision distance and flow control for fiber and serdes links.
1309  *  Upon successful setup, poll for link.
1310  **/
1311 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1312 {
1313         switch (hw->mac.type) {
1314         case e1000_82571:
1315         case e1000_82572:
1316                 /*
1317                  * If SerDes loopback mode is entered, there is no form
1318                  * of reset to take the adapter out of that mode.  So we
1319                  * have to explicitly take the adapter out of loopback
1320                  * mode.  This prevents drivers from twiddling their thumbs
1321                  * if another tool failed to take it out of loopback mode.
1322                  */
1323                 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1324                 break;
1325         default:
1326                 break;
1327         }
1328
1329         return e1000e_setup_fiber_serdes_link(hw);
1330 }
1331
1332 /**
1333  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1334  *  @hw: pointer to the HW structure
1335  *
1336  *  Reports the link state as up or down.
1337  *
1338  *  If autonegotiation is supported by the link partner, the link state is
1339  *  determined by the result of autonegotiation. This is the most likely case.
1340  *  If autonegotiation is not supported by the link partner, and the link
1341  *  has a valid signal, force the link up.
1342  *
1343  *  The link state is represented internally here by 4 states:
1344  *
1345  *  1) down
1346  *  2) autoneg_progress
1347  *  3) autoneg_complete (the link successfully autonegotiated)
1348  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1349  *
1350  **/
1351 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1352 {
1353         struct e1000_mac_info *mac = &hw->mac;
1354         u32 rxcw;
1355         u32 ctrl;
1356         u32 status;
1357         s32 ret_val = 0;
1358
1359         ctrl = er32(CTRL);
1360         status = er32(STATUS);
1361         rxcw = er32(RXCW);
1362
1363         if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1364
1365                 /* Receiver is synchronized with no invalid bits.  */
1366                 switch (mac->serdes_link_state) {
1367                 case e1000_serdes_link_autoneg_complete:
1368                         if (!(status & E1000_STATUS_LU)) {
1369                                 /*
1370                                  * We have lost link, retry autoneg before
1371                                  * reporting link failure
1372                                  */
1373                                 mac->serdes_link_state =
1374                                     e1000_serdes_link_autoneg_progress;
1375                                 mac->serdes_has_link = false;
1376                                 e_dbg("AN_UP     -> AN_PROG\n");
1377                         }
1378                 break;
1379
1380                 case e1000_serdes_link_forced_up:
1381                         /*
1382                          * If we are receiving /C/ ordered sets, re-enable
1383                          * auto-negotiation in the TXCW register and disable
1384                          * forced link in the Device Control register in an
1385                          * attempt to auto-negotiate with our link partner.
1386                          */
1387                         if (rxcw & E1000_RXCW_C) {
1388                                 /* Enable autoneg, and unforce link up */
1389                                 ew32(TXCW, mac->txcw);
1390                                 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1391                                 mac->serdes_link_state =
1392                                     e1000_serdes_link_autoneg_progress;
1393                                 mac->serdes_has_link = false;
1394                                 e_dbg("FORCED_UP -> AN_PROG\n");
1395                         }
1396                         break;
1397
1398                 case e1000_serdes_link_autoneg_progress:
1399                         if (rxcw & E1000_RXCW_C) {
1400                                 /*
1401                                  * We received /C/ ordered sets, meaning the
1402                                  * link partner has autonegotiated, and we can
1403                                  * trust the Link Up (LU) status bit.
1404                                  */
1405                                 if (status & E1000_STATUS_LU) {
1406                                         mac->serdes_link_state =
1407                                             e1000_serdes_link_autoneg_complete;
1408                                         e_dbg("AN_PROG   -> AN_UP\n");
1409                                         mac->serdes_has_link = true;
1410                                 } else {
1411                                         /* Autoneg completed, but failed. */
1412                                         mac->serdes_link_state =
1413                                             e1000_serdes_link_down;
1414                                         e_dbg("AN_PROG   -> DOWN\n");
1415                                 }
1416                         } else {
1417                                 /*
1418                                  * The link partner did not autoneg.
1419                                  * Force link up and full duplex, and change
1420                                  * state to forced.
1421                                  */
1422                                 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1423                                 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1424                                 ew32(CTRL, ctrl);
1425
1426                                 /* Configure Flow Control after link up. */
1427                                 ret_val = e1000e_config_fc_after_link_up(hw);
1428                                 if (ret_val) {
1429                                         e_dbg("Error config flow control\n");
1430                                         break;
1431                                 }
1432                                 mac->serdes_link_state =
1433                                     e1000_serdes_link_forced_up;
1434                                 mac->serdes_has_link = true;
1435                                 e_dbg("AN_PROG   -> FORCED_UP\n");
1436                         }
1437                         break;
1438
1439                 case e1000_serdes_link_down:
1440                 default:
1441                         /*
1442                          * The link was down but the receiver has now gained
1443                          * valid sync, so lets see if we can bring the link
1444                          * up.
1445                          */
1446                         ew32(TXCW, mac->txcw);
1447                         ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1448                         mac->serdes_link_state =
1449                             e1000_serdes_link_autoneg_progress;
1450                         e_dbg("DOWN      -> AN_PROG\n");
1451                         break;
1452                 }
1453         } else {
1454                 if (!(rxcw & E1000_RXCW_SYNCH)) {
1455                         mac->serdes_has_link = false;
1456                         mac->serdes_link_state = e1000_serdes_link_down;
1457                         e_dbg("ANYSTATE  -> DOWN\n");
1458                 } else {
1459                         /*
1460                          * We have sync, and can tolerate one invalid (IV)
1461                          * codeword before declaring link down, so reread
1462                          * to look again.
1463                          */
1464                         udelay(10);
1465                         rxcw = er32(RXCW);
1466                         if (rxcw & E1000_RXCW_IV) {
1467                                 mac->serdes_link_state = e1000_serdes_link_down;
1468                                 mac->serdes_has_link = false;
1469                                 e_dbg("ANYSTATE  -> DOWN\n");
1470                         }
1471                 }
1472         }
1473
1474         return ret_val;
1475 }
1476
1477 /**
1478  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1479  *  @hw: pointer to the HW structure
1480  *  @data: pointer to the NVM (EEPROM)
1481  *
1482  *  Read the EEPROM for the current default LED configuration.  If the
1483  *  LED configuration is not valid, set to a valid LED configuration.
1484  **/
1485 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1486 {
1487         s32 ret_val;
1488
1489         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1490         if (ret_val) {
1491                 e_dbg("NVM Read Error\n");
1492                 return ret_val;
1493         }
1494
1495         switch (hw->mac.type) {
1496         case e1000_82573:
1497         case e1000_82574:
1498         case e1000_82583:
1499                 if (*data == ID_LED_RESERVED_F746)
1500                         *data = ID_LED_DEFAULT_82573;
1501                 break;
1502         default:
1503                 if (*data == ID_LED_RESERVED_0000 ||
1504                     *data == ID_LED_RESERVED_FFFF)
1505                         *data = ID_LED_DEFAULT;
1506                 break;
1507         }
1508
1509         return 0;
1510 }
1511
1512 /**
1513  *  e1000e_get_laa_state_82571 - Get locally administered address state
1514  *  @hw: pointer to the HW structure
1515  *
1516  *  Retrieve and return the current locally administered address state.
1517  **/
1518 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1519 {
1520         if (hw->mac.type != e1000_82571)
1521                 return false;
1522
1523         return hw->dev_spec.e82571.laa_is_present;
1524 }
1525
1526 /**
1527  *  e1000e_set_laa_state_82571 - Set locally administered address state
1528  *  @hw: pointer to the HW structure
1529  *  @state: enable/disable locally administered address
1530  *
1531  *  Enable/Disable the current locally administered address state.
1532  **/
1533 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1534 {
1535         if (hw->mac.type != e1000_82571)
1536                 return;
1537
1538         hw->dev_spec.e82571.laa_is_present = state;
1539
1540         /* If workaround is activated... */
1541         if (state)
1542                 /*
1543                  * Hold a copy of the LAA in RAR[14] This is done so that
1544                  * between the time RAR[0] gets clobbered and the time it
1545                  * gets fixed, the actual LAA is in one of the RARs and no
1546                  * incoming packets directed to this port are dropped.
1547                  * Eventually the LAA will be in RAR[0] and RAR[14].
1548                  */
1549                 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1550 }
1551
1552 /**
1553  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1554  *  @hw: pointer to the HW structure
1555  *
1556  *  Verifies that the EEPROM has completed the update.  After updating the
1557  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1558  *  the checksum fix is not implemented, we need to set the bit and update
1559  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1560  *  we need to return bad checksum.
1561  **/
1562 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1563 {
1564         struct e1000_nvm_info *nvm = &hw->nvm;
1565         s32 ret_val;
1566         u16 data;
1567
1568         if (nvm->type != e1000_nvm_flash_hw)
1569                 return 0;
1570
1571         /*
1572          * Check bit 4 of word 10h.  If it is 0, firmware is done updating
1573          * 10h-12h.  Checksum may need to be fixed.
1574          */
1575         ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1576         if (ret_val)
1577                 return ret_val;
1578
1579         if (!(data & 0x10)) {
1580                 /*
1581                  * Read 0x23 and check bit 15.  This bit is a 1
1582                  * when the checksum has already been fixed.  If
1583                  * the checksum is still wrong and this bit is a
1584                  * 1, we need to return bad checksum.  Otherwise,
1585                  * we need to set this bit to a 1 and update the
1586                  * checksum.
1587                  */
1588                 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1589                 if (ret_val)
1590                         return ret_val;
1591
1592                 if (!(data & 0x8000)) {
1593                         data |= 0x8000;
1594                         ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1595                         if (ret_val)
1596                                 return ret_val;
1597                         ret_val = e1000e_update_nvm_checksum(hw);
1598                 }
1599         }
1600
1601         return 0;
1602 }
1603
1604 /**
1605  *  e1000_read_mac_addr_82571 - Read device MAC address
1606  *  @hw: pointer to the HW structure
1607  **/
1608 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1609 {
1610         s32 ret_val = 0;
1611
1612         /*
1613          * If there's an alternate MAC address place it in RAR0
1614          * so that it will override the Si installed default perm
1615          * address.
1616          */
1617         ret_val = e1000_check_alt_mac_addr_generic(hw);
1618         if (ret_val)
1619                 goto out;
1620
1621         ret_val = e1000_read_mac_addr_generic(hw);
1622
1623 out:
1624         return ret_val;
1625 }
1626
1627 /**
1628  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1629  * @hw: pointer to the HW structure
1630  *
1631  * In the case of a PHY power down to save power, or to turn off link during a
1632  * driver unload, or wake on lan is not enabled, remove the link.
1633  **/
1634 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1635 {
1636         struct e1000_phy_info *phy = &hw->phy;
1637         struct e1000_mac_info *mac = &hw->mac;
1638
1639         if (!(phy->ops.check_reset_block))
1640                 return;
1641
1642         /* If the management interface is not enabled, then power down */
1643         if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1644                 e1000_power_down_phy_copper(hw);
1645
1646         return;
1647 }
1648
1649 /**
1650  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1651  *  @hw: pointer to the HW structure
1652  *
1653  *  Clears the hardware counters by reading the counter registers.
1654  **/
1655 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1656 {
1657         e1000e_clear_hw_cntrs_base(hw);
1658
1659         er32(PRC64);
1660         er32(PRC127);
1661         er32(PRC255);
1662         er32(PRC511);
1663         er32(PRC1023);
1664         er32(PRC1522);
1665         er32(PTC64);
1666         er32(PTC127);
1667         er32(PTC255);
1668         er32(PTC511);
1669         er32(PTC1023);
1670         er32(PTC1522);
1671
1672         er32(ALGNERRC);
1673         er32(RXERRC);
1674         er32(TNCRS);
1675         er32(CEXTERR);
1676         er32(TSCTC);
1677         er32(TSCTFC);
1678
1679         er32(MGTPRC);
1680         er32(MGTPDC);
1681         er32(MGTPTC);
1682
1683         er32(IAC);
1684         er32(ICRXOC);
1685
1686         er32(ICRXPTC);
1687         er32(ICRXATC);
1688         er32(ICTXPTC);
1689         er32(ICTXATC);
1690         er32(ICTXQEC);
1691         er32(ICTXQMTC);
1692         er32(ICRXDMTC);
1693 }
1694
1695 static struct e1000_mac_operations e82571_mac_ops = {
1696         /* .check_mng_mode: mac type dependent */
1697         /* .check_for_link: media type dependent */
1698         .id_led_init            = e1000e_id_led_init,
1699         .cleanup_led            = e1000e_cleanup_led_generic,
1700         .clear_hw_cntrs         = e1000_clear_hw_cntrs_82571,
1701         .get_bus_info           = e1000e_get_bus_info_pcie,
1702         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1703         /* .get_link_up_info: media type dependent */
1704         /* .led_on: mac type dependent */
1705         .led_off                = e1000e_led_off_generic,
1706         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1707         .write_vfta             = e1000_write_vfta_generic,
1708         .clear_vfta             = e1000_clear_vfta_82571,
1709         .reset_hw               = e1000_reset_hw_82571,
1710         .init_hw                = e1000_init_hw_82571,
1711         .setup_link             = e1000_setup_link_82571,
1712         /* .setup_physical_interface: media type dependent */
1713         .setup_led              = e1000e_setup_led_generic,
1714         .read_mac_addr          = e1000_read_mac_addr_82571,
1715 };
1716
1717 static struct e1000_phy_operations e82_phy_ops_igp = {
1718         .acquire                = e1000_get_hw_semaphore_82571,
1719         .check_polarity         = e1000_check_polarity_igp,
1720         .check_reset_block      = e1000e_check_reset_block_generic,
1721         .commit                 = NULL,
1722         .force_speed_duplex     = e1000e_phy_force_speed_duplex_igp,
1723         .get_cfg_done           = e1000_get_cfg_done_82571,
1724         .get_cable_length       = e1000e_get_cable_length_igp_2,
1725         .get_info               = e1000e_get_phy_info_igp,
1726         .read_reg               = e1000e_read_phy_reg_igp,
1727         .release                = e1000_put_hw_semaphore_82571,
1728         .reset                  = e1000e_phy_hw_reset_generic,
1729         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1730         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1731         .write_reg              = e1000e_write_phy_reg_igp,
1732         .cfg_on_link_up         = NULL,
1733 };
1734
1735 static struct e1000_phy_operations e82_phy_ops_m88 = {
1736         .acquire                = e1000_get_hw_semaphore_82571,
1737         .check_polarity         = e1000_check_polarity_m88,
1738         .check_reset_block      = e1000e_check_reset_block_generic,
1739         .commit                 = e1000e_phy_sw_reset,
1740         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1741         .get_cfg_done           = e1000e_get_cfg_done,
1742         .get_cable_length       = e1000e_get_cable_length_m88,
1743         .get_info               = e1000e_get_phy_info_m88,
1744         .read_reg               = e1000e_read_phy_reg_m88,
1745         .release                = e1000_put_hw_semaphore_82571,
1746         .reset                  = e1000e_phy_hw_reset_generic,
1747         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1748         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1749         .write_reg              = e1000e_write_phy_reg_m88,
1750         .cfg_on_link_up         = NULL,
1751 };
1752
1753 static struct e1000_phy_operations e82_phy_ops_bm = {
1754         .acquire                = e1000_get_hw_semaphore_82571,
1755         .check_polarity         = e1000_check_polarity_m88,
1756         .check_reset_block      = e1000e_check_reset_block_generic,
1757         .commit                 = e1000e_phy_sw_reset,
1758         .force_speed_duplex     = e1000e_phy_force_speed_duplex_m88,
1759         .get_cfg_done           = e1000e_get_cfg_done,
1760         .get_cable_length       = e1000e_get_cable_length_m88,
1761         .get_info               = e1000e_get_phy_info_m88,
1762         .read_reg               = e1000e_read_phy_reg_bm2,
1763         .release                = e1000_put_hw_semaphore_82571,
1764         .reset                  = e1000e_phy_hw_reset_generic,
1765         .set_d0_lplu_state      = e1000_set_d0_lplu_state_82571,
1766         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1767         .write_reg              = e1000e_write_phy_reg_bm2,
1768         .cfg_on_link_up         = NULL,
1769 };
1770
1771 static struct e1000_nvm_operations e82571_nvm_ops = {
1772         .acquire                = e1000_acquire_nvm_82571,
1773         .read                   = e1000e_read_nvm_eerd,
1774         .release                = e1000_release_nvm_82571,
1775         .update                 = e1000_update_nvm_checksum_82571,
1776         .valid_led_default      = e1000_valid_led_default_82571,
1777         .validate               = e1000_validate_nvm_checksum_82571,
1778         .write                  = e1000_write_nvm_82571,
1779 };
1780
1781 struct e1000_info e1000_82571_info = {
1782         .mac                    = e1000_82571,
1783         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1784                                   | FLAG_HAS_JUMBO_FRAMES
1785                                   | FLAG_HAS_WOL
1786                                   | FLAG_APME_IN_CTRL3
1787                                   | FLAG_RX_CSUM_ENABLED
1788                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1789                                   | FLAG_HAS_SMART_POWER_DOWN
1790                                   | FLAG_RESET_OVERWRITES_LAA /* errata */
1791                                   | FLAG_TARC_SPEED_MODE_BIT /* errata */
1792                                   | FLAG_APME_CHECK_PORT_B,
1793         .flags2                 = FLAG2_DISABLE_ASPM_L1, /* errata 13 */
1794         .pba                    = 38,
1795         .max_hw_frame_size      = DEFAULT_JUMBO,
1796         .get_variants           = e1000_get_variants_82571,
1797         .mac_ops                = &e82571_mac_ops,
1798         .phy_ops                = &e82_phy_ops_igp,
1799         .nvm_ops                = &e82571_nvm_ops,
1800 };
1801
1802 struct e1000_info e1000_82572_info = {
1803         .mac                    = e1000_82572,
1804         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1805                                   | FLAG_HAS_JUMBO_FRAMES
1806                                   | FLAG_HAS_WOL
1807                                   | FLAG_APME_IN_CTRL3
1808                                   | FLAG_RX_CSUM_ENABLED
1809                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1810                                   | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1811         .flags2                 = FLAG2_DISABLE_ASPM_L1, /* errata 13 */
1812         .pba                    = 38,
1813         .max_hw_frame_size      = DEFAULT_JUMBO,
1814         .get_variants           = e1000_get_variants_82571,
1815         .mac_ops                = &e82571_mac_ops,
1816         .phy_ops                = &e82_phy_ops_igp,
1817         .nvm_ops                = &e82571_nvm_ops,
1818 };
1819
1820 struct e1000_info e1000_82573_info = {
1821         .mac                    = e1000_82573,
1822         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1823                                   | FLAG_HAS_WOL
1824                                   | FLAG_APME_IN_CTRL3
1825                                   | FLAG_RX_CSUM_ENABLED
1826                                   | FLAG_HAS_SMART_POWER_DOWN
1827                                   | FLAG_HAS_AMT
1828                                   | FLAG_HAS_SWSM_ON_LOAD,
1829         .pba                    = 20,
1830         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
1831         .get_variants           = e1000_get_variants_82571,
1832         .mac_ops                = &e82571_mac_ops,
1833         .phy_ops                = &e82_phy_ops_m88,
1834         .nvm_ops                = &e82571_nvm_ops,
1835 };
1836
1837 struct e1000_info e1000_82574_info = {
1838         .mac                    = e1000_82574,
1839         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1840                                   | FLAG_HAS_MSIX
1841                                   | FLAG_HAS_JUMBO_FRAMES
1842                                   | FLAG_HAS_WOL
1843                                   | FLAG_APME_IN_CTRL3
1844                                   | FLAG_RX_CSUM_ENABLED
1845                                   | FLAG_HAS_SMART_POWER_DOWN
1846                                   | FLAG_HAS_AMT
1847                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
1848         .pba                    = 20,
1849         .max_hw_frame_size      = DEFAULT_JUMBO,
1850         .get_variants           = e1000_get_variants_82571,
1851         .mac_ops                = &e82571_mac_ops,
1852         .phy_ops                = &e82_phy_ops_bm,
1853         .nvm_ops                = &e82571_nvm_ops,
1854 };
1855
1856 struct e1000_info e1000_82583_info = {
1857         .mac                    = e1000_82583,
1858         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1859                                   | FLAG_HAS_WOL
1860                                   | FLAG_APME_IN_CTRL3
1861                                   | FLAG_RX_CSUM_ENABLED
1862                                   | FLAG_HAS_SMART_POWER_DOWN
1863                                   | FLAG_HAS_AMT
1864                                   | FLAG_HAS_CTRLEXT_ON_LOAD,
1865         .pba                    = 20,
1866         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
1867         .get_variants           = e1000_get_variants_82571,
1868         .mac_ops                = &e82571_mac_ops,
1869         .phy_ops                = &e82_phy_ops_bm,
1870         .nvm_ops                = &e82571_nvm_ops,
1871 };
1872