e1000: test link state conclusively
[safe/jmp/linux-2.6] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32 #include <asm/uaccess.h>
33
34 struct e1000_stats {
35         char stat_string[ETH_GSTRING_LEN];
36         int sizeof_stat;
37         int stat_offset;
38 };
39
40 #define E1000_STAT(m) FIELD_SIZEOF(struct e1000_adapter, m), \
41                       offsetof(struct e1000_adapter, m)
42 static const struct e1000_stats e1000_gstrings_stats[] = {
43         { "rx_packets", E1000_STAT(stats.gprc) },
44         { "tx_packets", E1000_STAT(stats.gptc) },
45         { "rx_bytes", E1000_STAT(stats.gorcl) },
46         { "tx_bytes", E1000_STAT(stats.gotcl) },
47         { "rx_broadcast", E1000_STAT(stats.bprc) },
48         { "tx_broadcast", E1000_STAT(stats.bptc) },
49         { "rx_multicast", E1000_STAT(stats.mprc) },
50         { "tx_multicast", E1000_STAT(stats.mptc) },
51         { "rx_errors", E1000_STAT(stats.rxerrc) },
52         { "tx_errors", E1000_STAT(stats.txerrc) },
53         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
54         { "multicast", E1000_STAT(stats.mprc) },
55         { "collisions", E1000_STAT(stats.colc) },
56         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
57         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
58         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
59         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
60         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
61         { "rx_missed_errors", E1000_STAT(stats.mpc) },
62         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
63         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
64         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
65         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
66         { "tx_window_errors", E1000_STAT(stats.latecol) },
67         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
68         { "tx_deferred_ok", E1000_STAT(stats.dc) },
69         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
70         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
71         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
72         { "tx_restart_queue", E1000_STAT(restart_queue) },
73         { "rx_long_length_errors", E1000_STAT(stats.roc) },
74         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
75         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
76         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
77         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
78         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
79         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
80         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
81         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
82         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
83         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
84         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
85         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
86         { "tx_smbus", E1000_STAT(stats.mgptc) },
87         { "rx_smbus", E1000_STAT(stats.mgprc) },
88         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
89 };
90
91 #define E1000_QUEUE_STATS_LEN 0
92 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
93 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
94 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
95         "Register test  (offline)", "Eeprom test    (offline)",
96         "Interrupt test (offline)", "Loopback test  (offline)",
97         "Link test   (on/offline)"
98 };
99 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
100
101 static int e1000_get_settings(struct net_device *netdev,
102                               struct ethtool_cmd *ecmd)
103 {
104         struct e1000_adapter *adapter = netdev_priv(netdev);
105         struct e1000_hw *hw = &adapter->hw;
106
107         if (hw->media_type == e1000_media_type_copper) {
108
109                 ecmd->supported = (SUPPORTED_10baseT_Half |
110                                    SUPPORTED_10baseT_Full |
111                                    SUPPORTED_100baseT_Half |
112                                    SUPPORTED_100baseT_Full |
113                                    SUPPORTED_1000baseT_Full|
114                                    SUPPORTED_Autoneg |
115                                    SUPPORTED_TP);
116                 ecmd->advertising = ADVERTISED_TP;
117
118                 if (hw->autoneg == 1) {
119                         ecmd->advertising |= ADVERTISED_Autoneg;
120                         /* the e1000 autoneg seems to match ethtool nicely */
121                         ecmd->advertising |= hw->autoneg_advertised;
122                 }
123
124                 ecmd->port = PORT_TP;
125                 ecmd->phy_address = hw->phy_addr;
126
127                 if (hw->mac_type == e1000_82543)
128                         ecmd->transceiver = XCVR_EXTERNAL;
129                 else
130                         ecmd->transceiver = XCVR_INTERNAL;
131
132         } else {
133                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
134                                      SUPPORTED_FIBRE |
135                                      SUPPORTED_Autoneg);
136
137                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
138                                      ADVERTISED_FIBRE |
139                                      ADVERTISED_Autoneg);
140
141                 ecmd->port = PORT_FIBRE;
142
143                 if (hw->mac_type >= e1000_82545)
144                         ecmd->transceiver = XCVR_INTERNAL;
145                 else
146                         ecmd->transceiver = XCVR_EXTERNAL;
147         }
148
149         if (er32(STATUS) & E1000_STATUS_LU) {
150
151                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
152                                                    &adapter->link_duplex);
153                 ecmd->speed = adapter->link_speed;
154
155                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
156                  *          and HALF_DUPLEX != DUPLEX_HALF */
157
158                 if (adapter->link_duplex == FULL_DUPLEX)
159                         ecmd->duplex = DUPLEX_FULL;
160                 else
161                         ecmd->duplex = DUPLEX_HALF;
162         } else {
163                 ecmd->speed = -1;
164                 ecmd->duplex = -1;
165         }
166
167         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
168                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
169         return 0;
170 }
171
172 static int e1000_set_settings(struct net_device *netdev,
173                               struct ethtool_cmd *ecmd)
174 {
175         struct e1000_adapter *adapter = netdev_priv(netdev);
176         struct e1000_hw *hw = &adapter->hw;
177
178         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
179                 msleep(1);
180
181         if (ecmd->autoneg == AUTONEG_ENABLE) {
182                 hw->autoneg = 1;
183                 if (hw->media_type == e1000_media_type_fiber)
184                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
185                                      ADVERTISED_FIBRE |
186                                      ADVERTISED_Autoneg;
187                 else
188                         hw->autoneg_advertised = ecmd->advertising |
189                                                  ADVERTISED_TP |
190                                                  ADVERTISED_Autoneg;
191                 ecmd->advertising = hw->autoneg_advertised;
192         } else
193                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
194                         clear_bit(__E1000_RESETTING, &adapter->flags);
195                         return -EINVAL;
196                 }
197
198         /* reset the link */
199
200         if (netif_running(adapter->netdev)) {
201                 e1000_down(adapter);
202                 e1000_up(adapter);
203         } else
204                 e1000_reset(adapter);
205
206         clear_bit(__E1000_RESETTING, &adapter->flags);
207         return 0;
208 }
209
210 static void e1000_get_pauseparam(struct net_device *netdev,
211                                  struct ethtool_pauseparam *pause)
212 {
213         struct e1000_adapter *adapter = netdev_priv(netdev);
214         struct e1000_hw *hw = &adapter->hw;
215
216         pause->autoneg =
217                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
218
219         if (hw->fc == E1000_FC_RX_PAUSE)
220                 pause->rx_pause = 1;
221         else if (hw->fc == E1000_FC_TX_PAUSE)
222                 pause->tx_pause = 1;
223         else if (hw->fc == E1000_FC_FULL) {
224                 pause->rx_pause = 1;
225                 pause->tx_pause = 1;
226         }
227 }
228
229 static int e1000_set_pauseparam(struct net_device *netdev,
230                                 struct ethtool_pauseparam *pause)
231 {
232         struct e1000_adapter *adapter = netdev_priv(netdev);
233         struct e1000_hw *hw = &adapter->hw;
234         int retval = 0;
235
236         adapter->fc_autoneg = pause->autoneg;
237
238         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
239                 msleep(1);
240
241         if (pause->rx_pause && pause->tx_pause)
242                 hw->fc = E1000_FC_FULL;
243         else if (pause->rx_pause && !pause->tx_pause)
244                 hw->fc = E1000_FC_RX_PAUSE;
245         else if (!pause->rx_pause && pause->tx_pause)
246                 hw->fc = E1000_FC_TX_PAUSE;
247         else if (!pause->rx_pause && !pause->tx_pause)
248                 hw->fc = E1000_FC_NONE;
249
250         hw->original_fc = hw->fc;
251
252         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
253                 if (netif_running(adapter->netdev)) {
254                         e1000_down(adapter);
255                         e1000_up(adapter);
256                 } else
257                         e1000_reset(adapter);
258         } else
259                 retval = ((hw->media_type == e1000_media_type_fiber) ?
260                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
261
262         clear_bit(__E1000_RESETTING, &adapter->flags);
263         return retval;
264 }
265
266 static u32 e1000_get_rx_csum(struct net_device *netdev)
267 {
268         struct e1000_adapter *adapter = netdev_priv(netdev);
269         return adapter->rx_csum;
270 }
271
272 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
273 {
274         struct e1000_adapter *adapter = netdev_priv(netdev);
275         adapter->rx_csum = data;
276
277         if (netif_running(netdev))
278                 e1000_reinit_locked(adapter);
279         else
280                 e1000_reset(adapter);
281         return 0;
282 }
283
284 static u32 e1000_get_tx_csum(struct net_device *netdev)
285 {
286         return (netdev->features & NETIF_F_HW_CSUM) != 0;
287 }
288
289 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
290 {
291         struct e1000_adapter *adapter = netdev_priv(netdev);
292         struct e1000_hw *hw = &adapter->hw;
293
294         if (hw->mac_type < e1000_82543) {
295                 if (!data)
296                         return -EINVAL;
297                 return 0;
298         }
299
300         if (data)
301                 netdev->features |= NETIF_F_HW_CSUM;
302         else
303                 netdev->features &= ~NETIF_F_HW_CSUM;
304
305         return 0;
306 }
307
308 static int e1000_set_tso(struct net_device *netdev, u32 data)
309 {
310         struct e1000_adapter *adapter = netdev_priv(netdev);
311         struct e1000_hw *hw = &adapter->hw;
312
313         if ((hw->mac_type < e1000_82544) ||
314             (hw->mac_type == e1000_82547))
315                 return data ? -EINVAL : 0;
316
317         if (data)
318                 netdev->features |= NETIF_F_TSO;
319         else
320                 netdev->features &= ~NETIF_F_TSO;
321
322         netdev->features &= ~NETIF_F_TSO6;
323
324         DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
325         adapter->tso_force = true;
326         return 0;
327 }
328
329 static u32 e1000_get_msglevel(struct net_device *netdev)
330 {
331         struct e1000_adapter *adapter = netdev_priv(netdev);
332         return adapter->msg_enable;
333 }
334
335 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
336 {
337         struct e1000_adapter *adapter = netdev_priv(netdev);
338         adapter->msg_enable = data;
339 }
340
341 static int e1000_get_regs_len(struct net_device *netdev)
342 {
343 #define E1000_REGS_LEN 32
344         return E1000_REGS_LEN * sizeof(u32);
345 }
346
347 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
348                            void *p)
349 {
350         struct e1000_adapter *adapter = netdev_priv(netdev);
351         struct e1000_hw *hw = &adapter->hw;
352         u32 *regs_buff = p;
353         u16 phy_data;
354
355         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
356
357         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
358
359         regs_buff[0]  = er32(CTRL);
360         regs_buff[1]  = er32(STATUS);
361
362         regs_buff[2]  = er32(RCTL);
363         regs_buff[3]  = er32(RDLEN);
364         regs_buff[4]  = er32(RDH);
365         regs_buff[5]  = er32(RDT);
366         regs_buff[6]  = er32(RDTR);
367
368         regs_buff[7]  = er32(TCTL);
369         regs_buff[8]  = er32(TDLEN);
370         regs_buff[9]  = er32(TDH);
371         regs_buff[10] = er32(TDT);
372         regs_buff[11] = er32(TIDV);
373
374         regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
375         if (hw->phy_type == e1000_phy_igp) {
376                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
377                                     IGP01E1000_PHY_AGC_A);
378                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
379                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
380                 regs_buff[13] = (u32)phy_data; /* cable length */
381                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
382                                     IGP01E1000_PHY_AGC_B);
383                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
384                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
385                 regs_buff[14] = (u32)phy_data; /* cable length */
386                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
387                                     IGP01E1000_PHY_AGC_C);
388                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
389                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
390                 regs_buff[15] = (u32)phy_data; /* cable length */
391                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
392                                     IGP01E1000_PHY_AGC_D);
393                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
394                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
395                 regs_buff[16] = (u32)phy_data; /* cable length */
396                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
397                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
398                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
399                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
400                 regs_buff[18] = (u32)phy_data; /* cable polarity */
401                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
402                                     IGP01E1000_PHY_PCS_INIT_REG);
403                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
404                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
405                 regs_buff[19] = (u32)phy_data; /* cable polarity */
406                 regs_buff[20] = 0; /* polarity correction enabled (always) */
407                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
408                 regs_buff[23] = regs_buff[18]; /* mdix mode */
409                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
410         } else {
411                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
412                 regs_buff[13] = (u32)phy_data; /* cable length */
413                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
414                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
415                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
416                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
417                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
418                 regs_buff[18] = regs_buff[13]; /* cable polarity */
419                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
420                 regs_buff[20] = regs_buff[17]; /* polarity correction */
421                 /* phy receive errors */
422                 regs_buff[22] = adapter->phy_stats.receive_errors;
423                 regs_buff[23] = regs_buff[13]; /* mdix mode */
424         }
425         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
426         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
427         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
428         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
429         if (hw->mac_type >= e1000_82540 &&
430             hw->media_type == e1000_media_type_copper) {
431                 regs_buff[26] = er32(MANC);
432         }
433 }
434
435 static int e1000_get_eeprom_len(struct net_device *netdev)
436 {
437         struct e1000_adapter *adapter = netdev_priv(netdev);
438         struct e1000_hw *hw = &adapter->hw;
439
440         return hw->eeprom.word_size * 2;
441 }
442
443 static int e1000_get_eeprom(struct net_device *netdev,
444                             struct ethtool_eeprom *eeprom, u8 *bytes)
445 {
446         struct e1000_adapter *adapter = netdev_priv(netdev);
447         struct e1000_hw *hw = &adapter->hw;
448         u16 *eeprom_buff;
449         int first_word, last_word;
450         int ret_val = 0;
451         u16 i;
452
453         if (eeprom->len == 0)
454                 return -EINVAL;
455
456         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
457
458         first_word = eeprom->offset >> 1;
459         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
460
461         eeprom_buff = kmalloc(sizeof(u16) *
462                         (last_word - first_word + 1), GFP_KERNEL);
463         if (!eeprom_buff)
464                 return -ENOMEM;
465
466         if (hw->eeprom.type == e1000_eeprom_spi)
467                 ret_val = e1000_read_eeprom(hw, first_word,
468                                             last_word - first_word + 1,
469                                             eeprom_buff);
470         else {
471                 for (i = 0; i < last_word - first_word + 1; i++) {
472                         ret_val = e1000_read_eeprom(hw, first_word + i, 1,
473                                                     &eeprom_buff[i]);
474                         if (ret_val)
475                                 break;
476                 }
477         }
478
479         /* Device's eeprom is always little-endian, word addressable */
480         for (i = 0; i < last_word - first_word + 1; i++)
481                 le16_to_cpus(&eeprom_buff[i]);
482
483         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
484                         eeprom->len);
485         kfree(eeprom_buff);
486
487         return ret_val;
488 }
489
490 static int e1000_set_eeprom(struct net_device *netdev,
491                             struct ethtool_eeprom *eeprom, u8 *bytes)
492 {
493         struct e1000_adapter *adapter = netdev_priv(netdev);
494         struct e1000_hw *hw = &adapter->hw;
495         u16 *eeprom_buff;
496         void *ptr;
497         int max_len, first_word, last_word, ret_val = 0;
498         u16 i;
499
500         if (eeprom->len == 0)
501                 return -EOPNOTSUPP;
502
503         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
504                 return -EFAULT;
505
506         max_len = hw->eeprom.word_size * 2;
507
508         first_word = eeprom->offset >> 1;
509         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
510         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
511         if (!eeprom_buff)
512                 return -ENOMEM;
513
514         ptr = (void *)eeprom_buff;
515
516         if (eeprom->offset & 1) {
517                 /* need read/modify/write of first changed EEPROM word */
518                 /* only the second byte of the word is being modified */
519                 ret_val = e1000_read_eeprom(hw, first_word, 1,
520                                             &eeprom_buff[0]);
521                 ptr++;
522         }
523         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
524                 /* need read/modify/write of last changed EEPROM word */
525                 /* only the first byte of the word is being modified */
526                 ret_val = e1000_read_eeprom(hw, last_word, 1,
527                                   &eeprom_buff[last_word - first_word]);
528         }
529
530         /* Device's eeprom is always little-endian, word addressable */
531         for (i = 0; i < last_word - first_word + 1; i++)
532                 le16_to_cpus(&eeprom_buff[i]);
533
534         memcpy(ptr, bytes, eeprom->len);
535
536         for (i = 0; i < last_word - first_word + 1; i++)
537                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
538
539         ret_val = e1000_write_eeprom(hw, first_word,
540                                      last_word - first_word + 1, eeprom_buff);
541
542         /* Update the checksum over the first part of the EEPROM if needed */
543         if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
544                 e1000_update_eeprom_checksum(hw);
545
546         kfree(eeprom_buff);
547         return ret_val;
548 }
549
550 static void e1000_get_drvinfo(struct net_device *netdev,
551                               struct ethtool_drvinfo *drvinfo)
552 {
553         struct e1000_adapter *adapter = netdev_priv(netdev);
554         char firmware_version[32];
555
556         strncpy(drvinfo->driver,  e1000_driver_name, 32);
557         strncpy(drvinfo->version, e1000_driver_version, 32);
558
559         sprintf(firmware_version, "N/A");
560         strncpy(drvinfo->fw_version, firmware_version, 32);
561         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
562         drvinfo->regdump_len = e1000_get_regs_len(netdev);
563         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
564 }
565
566 static void e1000_get_ringparam(struct net_device *netdev,
567                                 struct ethtool_ringparam *ring)
568 {
569         struct e1000_adapter *adapter = netdev_priv(netdev);
570         struct e1000_hw *hw = &adapter->hw;
571         e1000_mac_type mac_type = hw->mac_type;
572         struct e1000_tx_ring *txdr = adapter->tx_ring;
573         struct e1000_rx_ring *rxdr = adapter->rx_ring;
574
575         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
576                 E1000_MAX_82544_RXD;
577         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
578                 E1000_MAX_82544_TXD;
579         ring->rx_mini_max_pending = 0;
580         ring->rx_jumbo_max_pending = 0;
581         ring->rx_pending = rxdr->count;
582         ring->tx_pending = txdr->count;
583         ring->rx_mini_pending = 0;
584         ring->rx_jumbo_pending = 0;
585 }
586
587 static int e1000_set_ringparam(struct net_device *netdev,
588                                struct ethtool_ringparam *ring)
589 {
590         struct e1000_adapter *adapter = netdev_priv(netdev);
591         struct e1000_hw *hw = &adapter->hw;
592         e1000_mac_type mac_type = hw->mac_type;
593         struct e1000_tx_ring *txdr, *tx_old;
594         struct e1000_rx_ring *rxdr, *rx_old;
595         int i, err;
596
597         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
598                 return -EINVAL;
599
600         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
601                 msleep(1);
602
603         if (netif_running(adapter->netdev))
604                 e1000_down(adapter);
605
606         tx_old = adapter->tx_ring;
607         rx_old = adapter->rx_ring;
608
609         err = -ENOMEM;
610         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
611         if (!txdr)
612                 goto err_alloc_tx;
613
614         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
615         if (!rxdr)
616                 goto err_alloc_rx;
617
618         adapter->tx_ring = txdr;
619         adapter->rx_ring = rxdr;
620
621         rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
622         rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
623                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
624         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
625
626         txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
627         txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
628                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
629         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
630
631         for (i = 0; i < adapter->num_tx_queues; i++)
632                 txdr[i].count = txdr->count;
633         for (i = 0; i < adapter->num_rx_queues; i++)
634                 rxdr[i].count = rxdr->count;
635
636         if (netif_running(adapter->netdev)) {
637                 /* Try to get new resources before deleting old */
638                 err = e1000_setup_all_rx_resources(adapter);
639                 if (err)
640                         goto err_setup_rx;
641                 err = e1000_setup_all_tx_resources(adapter);
642                 if (err)
643                         goto err_setup_tx;
644
645                 /* save the new, restore the old in order to free it,
646                  * then restore the new back again */
647
648                 adapter->rx_ring = rx_old;
649                 adapter->tx_ring = tx_old;
650                 e1000_free_all_rx_resources(adapter);
651                 e1000_free_all_tx_resources(adapter);
652                 kfree(tx_old);
653                 kfree(rx_old);
654                 adapter->rx_ring = rxdr;
655                 adapter->tx_ring = txdr;
656                 err = e1000_up(adapter);
657                 if (err)
658                         goto err_setup;
659         }
660
661         clear_bit(__E1000_RESETTING, &adapter->flags);
662         return 0;
663 err_setup_tx:
664         e1000_free_all_rx_resources(adapter);
665 err_setup_rx:
666         adapter->rx_ring = rx_old;
667         adapter->tx_ring = tx_old;
668         kfree(rxdr);
669 err_alloc_rx:
670         kfree(txdr);
671 err_alloc_tx:
672         e1000_up(adapter);
673 err_setup:
674         clear_bit(__E1000_RESETTING, &adapter->flags);
675         return err;
676 }
677
678 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
679                              u32 mask, u32 write)
680 {
681         struct e1000_hw *hw = &adapter->hw;
682         static const u32 test[] =
683                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
684         u8 __iomem *address = hw->hw_addr + reg;
685         u32 read;
686         int i;
687
688         for (i = 0; i < ARRAY_SIZE(test); i++) {
689                 writel(write & test[i], address);
690                 read = readl(address);
691                 if (read != (write & test[i] & mask)) {
692                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: "
693                                 "got 0x%08X expected 0x%08X\n",
694                                 reg, read, (write & test[i] & mask));
695                         *data = reg;
696                         return true;
697                 }
698         }
699         return false;
700 }
701
702 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
703                               u32 mask, u32 write)
704 {
705         struct e1000_hw *hw = &adapter->hw;
706         u8 __iomem *address = hw->hw_addr + reg;
707         u32 read;
708
709         writel(write & mask, address);
710         read = readl(address);
711         if ((read & mask) != (write & mask)) {
712                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: "
713                         "got 0x%08X expected 0x%08X\n",
714                         reg, (read & mask), (write & mask));
715                 *data = reg;
716                 return true;
717         }
718         return false;
719 }
720
721 #define REG_PATTERN_TEST(reg, mask, write)                           \
722         do {                                                         \
723                 if (reg_pattern_test(adapter, data,                  \
724                              (hw->mac_type >= e1000_82543)   \
725                              ? E1000_##reg : E1000_82542_##reg,      \
726                              mask, write))                           \
727                         return 1;                                    \
728         } while (0)
729
730 #define REG_SET_AND_CHECK(reg, mask, write)                          \
731         do {                                                         \
732                 if (reg_set_and_check(adapter, data,                 \
733                               (hw->mac_type >= e1000_82543)  \
734                               ? E1000_##reg : E1000_82542_##reg,     \
735                               mask, write))                          \
736                         return 1;                                    \
737         } while (0)
738
739 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
740 {
741         u32 value, before, after;
742         u32 i, toggle;
743         struct e1000_hw *hw = &adapter->hw;
744
745         /* The status register is Read Only, so a write should fail.
746          * Some bits that get toggled are ignored.
747          */
748
749         /* there are several bits on newer hardware that are r/w */
750         toggle = 0xFFFFF833;
751
752         before = er32(STATUS);
753         value = (er32(STATUS) & toggle);
754         ew32(STATUS, toggle);
755         after = er32(STATUS) & toggle;
756         if (value != after) {
757                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
758                         "0x%08X expected: 0x%08X\n", after, value);
759                 *data = 1;
760                 return 1;
761         }
762         /* restore previous status */
763         ew32(STATUS, before);
764
765         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
766         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
767         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
768         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
769
770         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
771         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
772         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
773         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
774         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
775         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
776         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
777         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
778         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
779         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
780
781         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
782
783         before = 0x06DFB3FE;
784         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
785         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
786
787         if (hw->mac_type >= e1000_82543) {
788
789                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
790                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
791                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
792                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
793                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
794                 value = E1000_RAR_ENTRIES;
795                 for (i = 0; i < value; i++) {
796                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
797                                          0xFFFFFFFF);
798                 }
799
800         } else {
801
802                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
803                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
804                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
805                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
806
807         }
808
809         value = E1000_MC_TBL_SIZE;
810         for (i = 0; i < value; i++)
811                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
812
813         *data = 0;
814         return 0;
815 }
816
817 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
818 {
819         struct e1000_hw *hw = &adapter->hw;
820         u16 temp;
821         u16 checksum = 0;
822         u16 i;
823
824         *data = 0;
825         /* Read and add up the contents of the EEPROM */
826         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
827                 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
828                         *data = 1;
829                         break;
830                 }
831                 checksum += temp;
832         }
833
834         /* If Checksum is not Correct return error else test passed */
835         if ((checksum != (u16)EEPROM_SUM) && !(*data))
836                 *data = 2;
837
838         return *data;
839 }
840
841 static irqreturn_t e1000_test_intr(int irq, void *data)
842 {
843         struct net_device *netdev = (struct net_device *)data;
844         struct e1000_adapter *adapter = netdev_priv(netdev);
845         struct e1000_hw *hw = &adapter->hw;
846
847         adapter->test_icr |= er32(ICR);
848
849         return IRQ_HANDLED;
850 }
851
852 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
853 {
854         struct net_device *netdev = adapter->netdev;
855         u32 mask, i = 0;
856         bool shared_int = true;
857         u32 irq = adapter->pdev->irq;
858         struct e1000_hw *hw = &adapter->hw;
859
860         *data = 0;
861
862         /* NOTE: we don't test MSI interrupts here, yet */
863         /* Hook up test interrupt handler just for this test */
864         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
865                          netdev))
866                 shared_int = false;
867         else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
868                  netdev->name, netdev)) {
869                 *data = 1;
870                 return -1;
871         }
872         DPRINTK(HW, INFO, "testing %s interrupt\n",
873                 (shared_int ? "shared" : "unshared"));
874
875         /* Disable all the interrupts */
876         ew32(IMC, 0xFFFFFFFF);
877         msleep(10);
878
879         /* Test each interrupt */
880         for (; i < 10; i++) {
881
882                 /* Interrupt to test */
883                 mask = 1 << i;
884
885                 if (!shared_int) {
886                         /* Disable the interrupt to be reported in
887                          * the cause register and then force the same
888                          * interrupt and see if one gets posted.  If
889                          * an interrupt was posted to the bus, the
890                          * test failed.
891                          */
892                         adapter->test_icr = 0;
893                         ew32(IMC, mask);
894                         ew32(ICS, mask);
895                         msleep(10);
896
897                         if (adapter->test_icr & mask) {
898                                 *data = 3;
899                                 break;
900                         }
901                 }
902
903                 /* Enable the interrupt to be reported in
904                  * the cause register and then force the same
905                  * interrupt and see if one gets posted.  If
906                  * an interrupt was not posted to the bus, the
907                  * test failed.
908                  */
909                 adapter->test_icr = 0;
910                 ew32(IMS, mask);
911                 ew32(ICS, mask);
912                 msleep(10);
913
914                 if (!(adapter->test_icr & mask)) {
915                         *data = 4;
916                         break;
917                 }
918
919                 if (!shared_int) {
920                         /* Disable the other interrupts to be reported in
921                          * the cause register and then force the other
922                          * interrupts and see if any get posted.  If
923                          * an interrupt was posted to the bus, the
924                          * test failed.
925                          */
926                         adapter->test_icr = 0;
927                         ew32(IMC, ~mask & 0x00007FFF);
928                         ew32(ICS, ~mask & 0x00007FFF);
929                         msleep(10);
930
931                         if (adapter->test_icr) {
932                                 *data = 5;
933                                 break;
934                         }
935                 }
936         }
937
938         /* Disable all the interrupts */
939         ew32(IMC, 0xFFFFFFFF);
940         msleep(10);
941
942         /* Unhook test interrupt handler */
943         free_irq(irq, netdev);
944
945         return *data;
946 }
947
948 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
949 {
950         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
951         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
952         struct pci_dev *pdev = adapter->pdev;
953         int i;
954
955         if (txdr->desc && txdr->buffer_info) {
956                 for (i = 0; i < txdr->count; i++) {
957                         if (txdr->buffer_info[i].dma)
958                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
959                                                  txdr->buffer_info[i].length,
960                                                  PCI_DMA_TODEVICE);
961                         if (txdr->buffer_info[i].skb)
962                                 dev_kfree_skb(txdr->buffer_info[i].skb);
963                 }
964         }
965
966         if (rxdr->desc && rxdr->buffer_info) {
967                 for (i = 0; i < rxdr->count; i++) {
968                         if (rxdr->buffer_info[i].dma)
969                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
970                                                  rxdr->buffer_info[i].length,
971                                                  PCI_DMA_FROMDEVICE);
972                         if (rxdr->buffer_info[i].skb)
973                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
974                 }
975         }
976
977         if (txdr->desc) {
978                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
979                 txdr->desc = NULL;
980         }
981         if (rxdr->desc) {
982                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
983                 rxdr->desc = NULL;
984         }
985
986         kfree(txdr->buffer_info);
987         txdr->buffer_info = NULL;
988         kfree(rxdr->buffer_info);
989         rxdr->buffer_info = NULL;
990
991         return;
992 }
993
994 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
995 {
996         struct e1000_hw *hw = &adapter->hw;
997         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
998         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
999         struct pci_dev *pdev = adapter->pdev;
1000         u32 rctl;
1001         int i, ret_val;
1002
1003         /* Setup Tx descriptor ring and Tx buffers */
1004
1005         if (!txdr->count)
1006                 txdr->count = E1000_DEFAULT_TXD;
1007
1008         txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1009                                     GFP_KERNEL);
1010         if (!txdr->buffer_info) {
1011                 ret_val = 1;
1012                 goto err_nomem;
1013         }
1014
1015         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1016         txdr->size = ALIGN(txdr->size, 4096);
1017         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1018         if (!txdr->desc) {
1019                 ret_val = 2;
1020                 goto err_nomem;
1021         }
1022         memset(txdr->desc, 0, txdr->size);
1023         txdr->next_to_use = txdr->next_to_clean = 0;
1024
1025         ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1026         ew32(TDBAH, ((u64)txdr->dma >> 32));
1027         ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1028         ew32(TDH, 0);
1029         ew32(TDT, 0);
1030         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1031              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1032              E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1033
1034         for (i = 0; i < txdr->count; i++) {
1035                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1036                 struct sk_buff *skb;
1037                 unsigned int size = 1024;
1038
1039                 skb = alloc_skb(size, GFP_KERNEL);
1040                 if (!skb) {
1041                         ret_val = 3;
1042                         goto err_nomem;
1043                 }
1044                 skb_put(skb, size);
1045                 txdr->buffer_info[i].skb = skb;
1046                 txdr->buffer_info[i].length = skb->len;
1047                 txdr->buffer_info[i].dma =
1048                         pci_map_single(pdev, skb->data, skb->len,
1049                                        PCI_DMA_TODEVICE);
1050                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1051                 tx_desc->lower.data = cpu_to_le32(skb->len);
1052                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1053                                                    E1000_TXD_CMD_IFCS |
1054                                                    E1000_TXD_CMD_RPS);
1055                 tx_desc->upper.data = 0;
1056         }
1057
1058         /* Setup Rx descriptor ring and Rx buffers */
1059
1060         if (!rxdr->count)
1061                 rxdr->count = E1000_DEFAULT_RXD;
1062
1063         rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1064                                     GFP_KERNEL);
1065         if (!rxdr->buffer_info) {
1066                 ret_val = 4;
1067                 goto err_nomem;
1068         }
1069
1070         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1071         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1072         if (!rxdr->desc) {
1073                 ret_val = 5;
1074                 goto err_nomem;
1075         }
1076         memset(rxdr->desc, 0, rxdr->size);
1077         rxdr->next_to_use = rxdr->next_to_clean = 0;
1078
1079         rctl = er32(RCTL);
1080         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1081         ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1082         ew32(RDBAH, ((u64)rxdr->dma >> 32));
1083         ew32(RDLEN, rxdr->size);
1084         ew32(RDH, 0);
1085         ew32(RDT, 0);
1086         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1087                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1088                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1089         ew32(RCTL, rctl);
1090
1091         for (i = 0; i < rxdr->count; i++) {
1092                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1093                 struct sk_buff *skb;
1094
1095                 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1096                 if (!skb) {
1097                         ret_val = 6;
1098                         goto err_nomem;
1099                 }
1100                 skb_reserve(skb, NET_IP_ALIGN);
1101                 rxdr->buffer_info[i].skb = skb;
1102                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1103                 rxdr->buffer_info[i].dma =
1104                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1105                                        PCI_DMA_FROMDEVICE);
1106                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1107                 memset(skb->data, 0x00, skb->len);
1108         }
1109
1110         return 0;
1111
1112 err_nomem:
1113         e1000_free_desc_rings(adapter);
1114         return ret_val;
1115 }
1116
1117 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1118 {
1119         struct e1000_hw *hw = &adapter->hw;
1120
1121         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1122         e1000_write_phy_reg(hw, 29, 0x001F);
1123         e1000_write_phy_reg(hw, 30, 0x8FFC);
1124         e1000_write_phy_reg(hw, 29, 0x001A);
1125         e1000_write_phy_reg(hw, 30, 0x8FF0);
1126 }
1127
1128 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1129 {
1130         struct e1000_hw *hw = &adapter->hw;
1131         u16 phy_reg;
1132
1133         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1134          * Extended PHY Specific Control Register to 25MHz clock.  This
1135          * value defaults back to a 2.5MHz clock when the PHY is reset.
1136          */
1137         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1138         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1139         e1000_write_phy_reg(hw,
1140                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1141
1142         /* In addition, because of the s/w reset above, we need to enable
1143          * CRS on TX.  This must be set for both full and half duplex
1144          * operation.
1145          */
1146         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1147         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1148         e1000_write_phy_reg(hw,
1149                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1150 }
1151
1152 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1153 {
1154         struct e1000_hw *hw = &adapter->hw;
1155         u32 ctrl_reg;
1156         u16 phy_reg;
1157
1158         /* Setup the Device Control Register for PHY loopback test. */
1159
1160         ctrl_reg = er32(CTRL);
1161         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1162                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1163                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1164                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1165                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1166
1167         ew32(CTRL, ctrl_reg);
1168
1169         /* Read the PHY Specific Control Register (0x10) */
1170         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1171
1172         /* Clear Auto-Crossover bits in PHY Specific Control Register
1173          * (bits 6:5).
1174          */
1175         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1176         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1177
1178         /* Perform software reset on the PHY */
1179         e1000_phy_reset(hw);
1180
1181         /* Have to setup TX_CLK and TX_CRS after software reset */
1182         e1000_phy_reset_clk_and_crs(adapter);
1183
1184         e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1185
1186         /* Wait for reset to complete. */
1187         udelay(500);
1188
1189         /* Have to setup TX_CLK and TX_CRS after software reset */
1190         e1000_phy_reset_clk_and_crs(adapter);
1191
1192         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1193         e1000_phy_disable_receiver(adapter);
1194
1195         /* Set the loopback bit in the PHY control register. */
1196         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1197         phy_reg |= MII_CR_LOOPBACK;
1198         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1199
1200         /* Setup TX_CLK and TX_CRS one more time. */
1201         e1000_phy_reset_clk_and_crs(adapter);
1202
1203         /* Check Phy Configuration */
1204         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1205         if (phy_reg != 0x4100)
1206                  return 9;
1207
1208         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1209         if (phy_reg != 0x0070)
1210                 return 10;
1211
1212         e1000_read_phy_reg(hw, 29, &phy_reg);
1213         if (phy_reg != 0x001A)
1214                 return 11;
1215
1216         return 0;
1217 }
1218
1219 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1220 {
1221         struct e1000_hw *hw = &adapter->hw;
1222         u32 ctrl_reg = 0;
1223         u32 stat_reg = 0;
1224
1225         hw->autoneg = false;
1226
1227         if (hw->phy_type == e1000_phy_m88) {
1228                 /* Auto-MDI/MDIX Off */
1229                 e1000_write_phy_reg(hw,
1230                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1231                 /* reset to update Auto-MDI/MDIX */
1232                 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1233                 /* autoneg off */
1234                 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1235         }
1236
1237         ctrl_reg = er32(CTRL);
1238
1239         /* force 1000, set loopback */
1240         e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1241
1242         /* Now set up the MAC to the same speed/duplex as the PHY. */
1243         ctrl_reg = er32(CTRL);
1244         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1245         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1246                         E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1247                         E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1248                         E1000_CTRL_FD);  /* Force Duplex to FULL */
1249
1250         if (hw->media_type == e1000_media_type_copper &&
1251            hw->phy_type == e1000_phy_m88)
1252                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1253         else {
1254                 /* Set the ILOS bit on the fiber Nic is half
1255                  * duplex link is detected. */
1256                 stat_reg = er32(STATUS);
1257                 if ((stat_reg & E1000_STATUS_FD) == 0)
1258                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1259         }
1260
1261         ew32(CTRL, ctrl_reg);
1262
1263         /* Disable the receiver on the PHY so when a cable is plugged in, the
1264          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1265          */
1266         if (hw->phy_type == e1000_phy_m88)
1267                 e1000_phy_disable_receiver(adapter);
1268
1269         udelay(500);
1270
1271         return 0;
1272 }
1273
1274 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1275 {
1276         struct e1000_hw *hw = &adapter->hw;
1277         u16 phy_reg = 0;
1278         u16 count = 0;
1279
1280         switch (hw->mac_type) {
1281         case e1000_82543:
1282                 if (hw->media_type == e1000_media_type_copper) {
1283                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1284                          * Some PHY registers get corrupted at random, so
1285                          * attempt this 10 times.
1286                          */
1287                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1288                               count++ < 10);
1289                         if (count < 11)
1290                                 return 0;
1291                 }
1292                 break;
1293
1294         case e1000_82544:
1295         case e1000_82540:
1296         case e1000_82545:
1297         case e1000_82545_rev_3:
1298         case e1000_82546:
1299         case e1000_82546_rev_3:
1300         case e1000_82541:
1301         case e1000_82541_rev_2:
1302         case e1000_82547:
1303         case e1000_82547_rev_2:
1304                 return e1000_integrated_phy_loopback(adapter);
1305                 break;
1306         default:
1307                 /* Default PHY loopback work is to read the MII
1308                  * control register and assert bit 14 (loopback mode).
1309                  */
1310                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1311                 phy_reg |= MII_CR_LOOPBACK;
1312                 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1313                 return 0;
1314                 break;
1315         }
1316
1317         return 8;
1318 }
1319
1320 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1321 {
1322         struct e1000_hw *hw = &adapter->hw;
1323         u32 rctl;
1324
1325         if (hw->media_type == e1000_media_type_fiber ||
1326             hw->media_type == e1000_media_type_internal_serdes) {
1327                 switch (hw->mac_type) {
1328                 case e1000_82545:
1329                 case e1000_82546:
1330                 case e1000_82545_rev_3:
1331                 case e1000_82546_rev_3:
1332                         return e1000_set_phy_loopback(adapter);
1333                         break;
1334                 default:
1335                         rctl = er32(RCTL);
1336                         rctl |= E1000_RCTL_LBM_TCVR;
1337                         ew32(RCTL, rctl);
1338                         return 0;
1339                 }
1340         } else if (hw->media_type == e1000_media_type_copper)
1341                 return e1000_set_phy_loopback(adapter);
1342
1343         return 7;
1344 }
1345
1346 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1347 {
1348         struct e1000_hw *hw = &adapter->hw;
1349         u32 rctl;
1350         u16 phy_reg;
1351
1352         rctl = er32(RCTL);
1353         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1354         ew32(RCTL, rctl);
1355
1356         switch (hw->mac_type) {
1357         case e1000_82545:
1358         case e1000_82546:
1359         case e1000_82545_rev_3:
1360         case e1000_82546_rev_3:
1361         default:
1362                 hw->autoneg = true;
1363                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1364                 if (phy_reg & MII_CR_LOOPBACK) {
1365                         phy_reg &= ~MII_CR_LOOPBACK;
1366                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1367                         e1000_phy_reset(hw);
1368                 }
1369                 break;
1370         }
1371 }
1372
1373 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1374                                       unsigned int frame_size)
1375 {
1376         memset(skb->data, 0xFF, frame_size);
1377         frame_size &= ~1;
1378         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1379         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1380         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1381 }
1382
1383 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1384                                     unsigned int frame_size)
1385 {
1386         frame_size &= ~1;
1387         if (*(skb->data + 3) == 0xFF) {
1388                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1389                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1390                         return 0;
1391                 }
1392         }
1393         return 13;
1394 }
1395
1396 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1397 {
1398         struct e1000_hw *hw = &adapter->hw;
1399         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1400         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1401         struct pci_dev *pdev = adapter->pdev;
1402         int i, j, k, l, lc, good_cnt, ret_val=0;
1403         unsigned long time;
1404
1405         ew32(RDT, rxdr->count - 1);
1406
1407         /* Calculate the loop count based on the largest descriptor ring
1408          * The idea is to wrap the largest ring a number of times using 64
1409          * send/receive pairs during each loop
1410          */
1411
1412         if (rxdr->count <= txdr->count)
1413                 lc = ((txdr->count / 64) * 2) + 1;
1414         else
1415                 lc = ((rxdr->count / 64) * 2) + 1;
1416
1417         k = l = 0;
1418         for (j = 0; j <= lc; j++) { /* loop count loop */
1419                 for (i = 0; i < 64; i++) { /* send the packets */
1420                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1421                                         1024);
1422                         pci_dma_sync_single_for_device(pdev,
1423                                         txdr->buffer_info[k].dma,
1424                                         txdr->buffer_info[k].length,
1425                                         PCI_DMA_TODEVICE);
1426                         if (unlikely(++k == txdr->count)) k = 0;
1427                 }
1428                 ew32(TDT, k);
1429                 msleep(200);
1430                 time = jiffies; /* set the start time for the receive */
1431                 good_cnt = 0;
1432                 do { /* receive the sent packets */
1433                         pci_dma_sync_single_for_cpu(pdev,
1434                                         rxdr->buffer_info[l].dma,
1435                                         rxdr->buffer_info[l].length,
1436                                         PCI_DMA_FROMDEVICE);
1437
1438                         ret_val = e1000_check_lbtest_frame(
1439                                         rxdr->buffer_info[l].skb,
1440                                         1024);
1441                         if (!ret_val)
1442                                 good_cnt++;
1443                         if (unlikely(++l == rxdr->count)) l = 0;
1444                         /* time + 20 msecs (200 msecs on 2.4) is more than
1445                          * enough time to complete the receives, if it's
1446                          * exceeded, break and error off
1447                          */
1448                 } while (good_cnt < 64 && jiffies < (time + 20));
1449                 if (good_cnt != 64) {
1450                         ret_val = 13; /* ret_val is the same as mis-compare */
1451                         break;
1452                 }
1453                 if (jiffies >= (time + 2)) {
1454                         ret_val = 14; /* error code for time out error */
1455                         break;
1456                 }
1457         } /* end loop count loop */
1458         return ret_val;
1459 }
1460
1461 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1462 {
1463         *data = e1000_setup_desc_rings(adapter);
1464         if (*data)
1465                 goto out;
1466         *data = e1000_setup_loopback_test(adapter);
1467         if (*data)
1468                 goto err_loopback;
1469         *data = e1000_run_loopback_test(adapter);
1470         e1000_loopback_cleanup(adapter);
1471
1472 err_loopback:
1473         e1000_free_desc_rings(adapter);
1474 out:
1475         return *data;
1476 }
1477
1478 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1479 {
1480         struct e1000_hw *hw = &adapter->hw;
1481         *data = 0;
1482         if (hw->media_type == e1000_media_type_internal_serdes) {
1483                 int i = 0;
1484                 hw->serdes_has_link = false;
1485
1486                 /* On some blade server designs, link establishment
1487                  * could take as long as 2-3 minutes */
1488                 do {
1489                         e1000_check_for_link(hw);
1490                         if (hw->serdes_has_link)
1491                                 return *data;
1492                         msleep(20);
1493                 } while (i++ < 3750);
1494
1495                 *data = 1;
1496         } else {
1497                 e1000_check_for_link(hw);
1498                 if (hw->autoneg)  /* if auto_neg is set wait for it */
1499                         msleep(4000);
1500
1501                 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1502                         *data = 1;
1503                 }
1504         }
1505         return *data;
1506 }
1507
1508 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1509 {
1510         switch (sset) {
1511         case ETH_SS_TEST:
1512                 return E1000_TEST_LEN;
1513         case ETH_SS_STATS:
1514                 return E1000_STATS_LEN;
1515         default:
1516                 return -EOPNOTSUPP;
1517         }
1518 }
1519
1520 static void e1000_diag_test(struct net_device *netdev,
1521                             struct ethtool_test *eth_test, u64 *data)
1522 {
1523         struct e1000_adapter *adapter = netdev_priv(netdev);
1524         struct e1000_hw *hw = &adapter->hw;
1525         bool if_running = netif_running(netdev);
1526
1527         set_bit(__E1000_TESTING, &adapter->flags);
1528         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1529                 /* Offline tests */
1530
1531                 /* save speed, duplex, autoneg settings */
1532                 u16 autoneg_advertised = hw->autoneg_advertised;
1533                 u8 forced_speed_duplex = hw->forced_speed_duplex;
1534                 u8 autoneg = hw->autoneg;
1535
1536                 DPRINTK(HW, INFO, "offline testing starting\n");
1537
1538                 /* Link test performed before hardware reset so autoneg doesn't
1539                  * interfere with test result */
1540                 if (e1000_link_test(adapter, &data[4]))
1541                         eth_test->flags |= ETH_TEST_FL_FAILED;
1542
1543                 if (if_running)
1544                         /* indicate we're in test mode */
1545                         dev_close(netdev);
1546                 else
1547                         e1000_reset(adapter);
1548
1549                 if (e1000_reg_test(adapter, &data[0]))
1550                         eth_test->flags |= ETH_TEST_FL_FAILED;
1551
1552                 e1000_reset(adapter);
1553                 if (e1000_eeprom_test(adapter, &data[1]))
1554                         eth_test->flags |= ETH_TEST_FL_FAILED;
1555
1556                 e1000_reset(adapter);
1557                 if (e1000_intr_test(adapter, &data[2]))
1558                         eth_test->flags |= ETH_TEST_FL_FAILED;
1559
1560                 e1000_reset(adapter);
1561                 /* make sure the phy is powered up */
1562                 e1000_power_up_phy(adapter);
1563                 if (e1000_loopback_test(adapter, &data[3]))
1564                         eth_test->flags |= ETH_TEST_FL_FAILED;
1565
1566                 /* restore speed, duplex, autoneg settings */
1567                 hw->autoneg_advertised = autoneg_advertised;
1568                 hw->forced_speed_duplex = forced_speed_duplex;
1569                 hw->autoneg = autoneg;
1570
1571                 e1000_reset(adapter);
1572                 clear_bit(__E1000_TESTING, &adapter->flags);
1573                 if (if_running)
1574                         dev_open(netdev);
1575         } else {
1576                 DPRINTK(HW, INFO, "online testing starting\n");
1577                 /* Online tests */
1578                 if (e1000_link_test(adapter, &data[4]))
1579                         eth_test->flags |= ETH_TEST_FL_FAILED;
1580
1581                 /* Online tests aren't run; pass by default */
1582                 data[0] = 0;
1583                 data[1] = 0;
1584                 data[2] = 0;
1585                 data[3] = 0;
1586
1587                 clear_bit(__E1000_TESTING, &adapter->flags);
1588         }
1589         msleep_interruptible(4 * 1000);
1590 }
1591
1592 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1593                                struct ethtool_wolinfo *wol)
1594 {
1595         struct e1000_hw *hw = &adapter->hw;
1596         int retval = 1; /* fail by default */
1597
1598         switch (hw->device_id) {
1599         case E1000_DEV_ID_82542:
1600         case E1000_DEV_ID_82543GC_FIBER:
1601         case E1000_DEV_ID_82543GC_COPPER:
1602         case E1000_DEV_ID_82544EI_FIBER:
1603         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1604         case E1000_DEV_ID_82545EM_FIBER:
1605         case E1000_DEV_ID_82545EM_COPPER:
1606         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1607         case E1000_DEV_ID_82546GB_PCIE:
1608                 /* these don't support WoL at all */
1609                 wol->supported = 0;
1610                 break;
1611         case E1000_DEV_ID_82546EB_FIBER:
1612         case E1000_DEV_ID_82546GB_FIBER:
1613                 /* Wake events not supported on port B */
1614                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1615                         wol->supported = 0;
1616                         break;
1617                 }
1618                 /* return success for non excluded adapter ports */
1619                 retval = 0;
1620                 break;
1621         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1622                 /* quad port adapters only support WoL on port A */
1623                 if (!adapter->quad_port_a) {
1624                         wol->supported = 0;
1625                         break;
1626                 }
1627                 /* return success for non excluded adapter ports */
1628                 retval = 0;
1629                 break;
1630         default:
1631                 /* dual port cards only support WoL on port A from now on
1632                  * unless it was enabled in the eeprom for port B
1633                  * so exclude FUNC_1 ports from having WoL enabled */
1634                 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1635                     !adapter->eeprom_wol) {
1636                         wol->supported = 0;
1637                         break;
1638                 }
1639
1640                 retval = 0;
1641         }
1642
1643         return retval;
1644 }
1645
1646 static void e1000_get_wol(struct net_device *netdev,
1647                           struct ethtool_wolinfo *wol)
1648 {
1649         struct e1000_adapter *adapter = netdev_priv(netdev);
1650         struct e1000_hw *hw = &adapter->hw;
1651
1652         wol->supported = WAKE_UCAST | WAKE_MCAST |
1653                          WAKE_BCAST | WAKE_MAGIC;
1654         wol->wolopts = 0;
1655
1656         /* this function will set ->supported = 0 and return 1 if wol is not
1657          * supported by this hardware */
1658         if (e1000_wol_exclusion(adapter, wol) ||
1659             !device_can_wakeup(&adapter->pdev->dev))
1660                 return;
1661
1662         /* apply any specific unsupported masks here */
1663         switch (hw->device_id) {
1664         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1665                 /* KSP3 does not suppport UCAST wake-ups */
1666                 wol->supported &= ~WAKE_UCAST;
1667
1668                 if (adapter->wol & E1000_WUFC_EX)
1669                         DPRINTK(DRV, ERR, "Interface does not support "
1670                         "directed (unicast) frame wake-up packets\n");
1671                 break;
1672         default:
1673                 break;
1674         }
1675
1676         if (adapter->wol & E1000_WUFC_EX)
1677                 wol->wolopts |= WAKE_UCAST;
1678         if (adapter->wol & E1000_WUFC_MC)
1679                 wol->wolopts |= WAKE_MCAST;
1680         if (adapter->wol & E1000_WUFC_BC)
1681                 wol->wolopts |= WAKE_BCAST;
1682         if (adapter->wol & E1000_WUFC_MAG)
1683                 wol->wolopts |= WAKE_MAGIC;
1684
1685         return;
1686 }
1687
1688 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1689 {
1690         struct e1000_adapter *adapter = netdev_priv(netdev);
1691         struct e1000_hw *hw = &adapter->hw;
1692
1693         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1694                 return -EOPNOTSUPP;
1695
1696         if (e1000_wol_exclusion(adapter, wol) ||
1697             !device_can_wakeup(&adapter->pdev->dev))
1698                 return wol->wolopts ? -EOPNOTSUPP : 0;
1699
1700         switch (hw->device_id) {
1701         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1702                 if (wol->wolopts & WAKE_UCAST) {
1703                         DPRINTK(DRV, ERR, "Interface does not support "
1704                         "directed (unicast) frame wake-up packets\n");
1705                         return -EOPNOTSUPP;
1706                 }
1707                 break;
1708         default:
1709                 break;
1710         }
1711
1712         /* these settings will always override what we currently have */
1713         adapter->wol = 0;
1714
1715         if (wol->wolopts & WAKE_UCAST)
1716                 adapter->wol |= E1000_WUFC_EX;
1717         if (wol->wolopts & WAKE_MCAST)
1718                 adapter->wol |= E1000_WUFC_MC;
1719         if (wol->wolopts & WAKE_BCAST)
1720                 adapter->wol |= E1000_WUFC_BC;
1721         if (wol->wolopts & WAKE_MAGIC)
1722                 adapter->wol |= E1000_WUFC_MAG;
1723
1724         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1725
1726         return 0;
1727 }
1728
1729 /* toggle LED 4 times per second = 2 "blinks" per second */
1730 #define E1000_ID_INTERVAL       (HZ/4)
1731
1732 /* bit defines for adapter->led_status */
1733 #define E1000_LED_ON            0
1734
1735 static void e1000_led_blink_callback(unsigned long data)
1736 {
1737         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1738         struct e1000_hw *hw = &adapter->hw;
1739
1740         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1741                 e1000_led_off(hw);
1742         else
1743                 e1000_led_on(hw);
1744
1745         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1746 }
1747
1748 static int e1000_phys_id(struct net_device *netdev, u32 data)
1749 {
1750         struct e1000_adapter *adapter = netdev_priv(netdev);
1751         struct e1000_hw *hw = &adapter->hw;
1752
1753         if (!data)
1754                 data = INT_MAX;
1755
1756         if (!adapter->blink_timer.function) {
1757                 init_timer(&adapter->blink_timer);
1758                 adapter->blink_timer.function = e1000_led_blink_callback;
1759                 adapter->blink_timer.data = (unsigned long)adapter;
1760         }
1761         e1000_setup_led(hw);
1762         mod_timer(&adapter->blink_timer, jiffies);
1763         msleep_interruptible(data * 1000);
1764         del_timer_sync(&adapter->blink_timer);
1765
1766         e1000_led_off(hw);
1767         clear_bit(E1000_LED_ON, &adapter->led_status);
1768         e1000_cleanup_led(hw);
1769
1770         return 0;
1771 }
1772
1773 static int e1000_get_coalesce(struct net_device *netdev,
1774                               struct ethtool_coalesce *ec)
1775 {
1776         struct e1000_adapter *adapter = netdev_priv(netdev);
1777
1778         if (adapter->hw.mac_type < e1000_82545)
1779                 return -EOPNOTSUPP;
1780
1781         if (adapter->itr_setting <= 3)
1782                 ec->rx_coalesce_usecs = adapter->itr_setting;
1783         else
1784                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1785
1786         return 0;
1787 }
1788
1789 static int e1000_set_coalesce(struct net_device *netdev,
1790                               struct ethtool_coalesce *ec)
1791 {
1792         struct e1000_adapter *adapter = netdev_priv(netdev);
1793         struct e1000_hw *hw = &adapter->hw;
1794
1795         if (hw->mac_type < e1000_82545)
1796                 return -EOPNOTSUPP;
1797
1798         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1799             ((ec->rx_coalesce_usecs > 3) &&
1800              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1801             (ec->rx_coalesce_usecs == 2))
1802                 return -EINVAL;
1803
1804         if (ec->rx_coalesce_usecs <= 3) {
1805                 adapter->itr = 20000;
1806                 adapter->itr_setting = ec->rx_coalesce_usecs;
1807         } else {
1808                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1809                 adapter->itr_setting = adapter->itr & ~3;
1810         }
1811
1812         if (adapter->itr_setting != 0)
1813                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1814         else
1815                 ew32(ITR, 0);
1816
1817         return 0;
1818 }
1819
1820 static int e1000_nway_reset(struct net_device *netdev)
1821 {
1822         struct e1000_adapter *adapter = netdev_priv(netdev);
1823         if (netif_running(netdev))
1824                 e1000_reinit_locked(adapter);
1825         return 0;
1826 }
1827
1828 static void e1000_get_ethtool_stats(struct net_device *netdev,
1829                                     struct ethtool_stats *stats, u64 *data)
1830 {
1831         struct e1000_adapter *adapter = netdev_priv(netdev);
1832         int i;
1833
1834         e1000_update_stats(adapter);
1835         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1836                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1837                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1838                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1839         }
1840 /*      BUG_ON(i != E1000_STATS_LEN); */
1841 }
1842
1843 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1844                               u8 *data)
1845 {
1846         u8 *p = data;
1847         int i;
1848
1849         switch (stringset) {
1850         case ETH_SS_TEST:
1851                 memcpy(data, *e1000_gstrings_test,
1852                         sizeof(e1000_gstrings_test));
1853                 break;
1854         case ETH_SS_STATS:
1855                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1856                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1857                                ETH_GSTRING_LEN);
1858                         p += ETH_GSTRING_LEN;
1859                 }
1860 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1861                 break;
1862         }
1863 }
1864
1865 static const struct ethtool_ops e1000_ethtool_ops = {
1866         .get_settings           = e1000_get_settings,
1867         .set_settings           = e1000_set_settings,
1868         .get_drvinfo            = e1000_get_drvinfo,
1869         .get_regs_len           = e1000_get_regs_len,
1870         .get_regs               = e1000_get_regs,
1871         .get_wol                = e1000_get_wol,
1872         .set_wol                = e1000_set_wol,
1873         .get_msglevel           = e1000_get_msglevel,
1874         .set_msglevel           = e1000_set_msglevel,
1875         .nway_reset             = e1000_nway_reset,
1876         .get_link               = ethtool_op_get_link,
1877         .get_eeprom_len         = e1000_get_eeprom_len,
1878         .get_eeprom             = e1000_get_eeprom,
1879         .set_eeprom             = e1000_set_eeprom,
1880         .get_ringparam          = e1000_get_ringparam,
1881         .set_ringparam          = e1000_set_ringparam,
1882         .get_pauseparam         = e1000_get_pauseparam,
1883         .set_pauseparam         = e1000_set_pauseparam,
1884         .get_rx_csum            = e1000_get_rx_csum,
1885         .set_rx_csum            = e1000_set_rx_csum,
1886         .get_tx_csum            = e1000_get_tx_csum,
1887         .set_tx_csum            = e1000_set_tx_csum,
1888         .set_sg                 = ethtool_op_set_sg,
1889         .set_tso                = e1000_set_tso,
1890         .self_test              = e1000_diag_test,
1891         .get_strings            = e1000_get_strings,
1892         .phys_id                = e1000_phys_id,
1893         .get_ethtool_stats      = e1000_get_ethtool_stats,
1894         .get_sset_count         = e1000_get_sset_count,
1895         .get_coalesce           = e1000_get_coalesce,
1896         .set_coalesce           = e1000_set_coalesce,
1897 };
1898
1899 void e1000_set_ethtool_ops(struct net_device *netdev)
1900 {
1901         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1902 }