cxgb - fix T2 GSO
[safe/jmp/linux-2.6] / drivers / net / chelsio / sge.c
1 /*****************************************************************************
2  *                                                                           *
3  * File: sge.c                                                               *
4  * $Revision: 1.26 $                                                         *
5  * $Date: 2005/06/21 18:29:48 $                                              *
6  * Description:                                                              *
7  *  DMA engine.                                                              *
8  *  part of the Chelsio 10Gb Ethernet Driver.                                *
9  *                                                                           *
10  * This program is free software; you can redistribute it and/or modify      *
11  * it under the terms of the GNU General Public License, version 2, as       *
12  * published by the Free Software Foundation.                                *
13  *                                                                           *
14  * You should have received a copy of the GNU General Public License along   *
15  * with this program; if not, write to the Free Software Foundation, Inc.,   *
16  * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.                 *
17  *                                                                           *
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
21  *                                                                           *
22  * http://www.chelsio.com                                                    *
23  *                                                                           *
24  * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
25  * All rights reserved.                                                      *
26  *                                                                           *
27  * Maintainers: maintainers@chelsio.com                                      *
28  *                                                                           *
29  * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
30  *          Tina Yang               <tainay@chelsio.com>                     *
31  *          Felix Marti             <felix@chelsio.com>                      *
32  *          Scott Bardone           <sbardone@chelsio.com>                   *
33  *          Kurt Ottaway            <kottaway@chelsio.com>                   *
34  *          Frank DiMambro          <frank@chelsio.com>                      *
35  *                                                                           *
36  * History:                                                                  *
37  *                                                                           *
38  ****************************************************************************/
39
40 #include "common.h"
41
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/pci.h>
45 #include <linux/ktime.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/if_vlan.h>
49 #include <linux/skbuff.h>
50 #include <linux/init.h>
51 #include <linux/mm.h>
52 #include <linux/tcp.h>
53 #include <linux/ip.h>
54 #include <linux/in.h>
55 #include <linux/if_arp.h>
56
57 #include "cpl5_cmd.h"
58 #include "sge.h"
59 #include "regs.h"
60 #include "espi.h"
61
62 /* This belongs in if_ether.h */
63 #define ETH_P_CPL5 0xf
64
65 #define SGE_CMDQ_N              2
66 #define SGE_FREELQ_N            2
67 #define SGE_CMDQ0_E_N           1024
68 #define SGE_CMDQ1_E_N           128
69 #define SGE_FREEL_SIZE          4096
70 #define SGE_JUMBO_FREEL_SIZE    512
71 #define SGE_FREEL_REFILL_THRESH 16
72 #define SGE_RESPQ_E_N           1024
73 #define SGE_INTRTIMER_NRES      1000
74 #define SGE_RX_SM_BUF_SIZE      1536
75 #define SGE_TX_DESC_MAX_PLEN    16384
76
77 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
78
79 /*
80  * Period of the TX buffer reclaim timer.  This timer does not need to run
81  * frequently as TX buffers are usually reclaimed by new TX packets.
82  */
83 #define TX_RECLAIM_PERIOD (HZ / 4)
84
85 #define M_CMD_LEN       0x7fffffff
86 #define V_CMD_LEN(v)    (v)
87 #define G_CMD_LEN(v)    ((v) & M_CMD_LEN)
88 #define V_CMD_GEN1(v)   ((v) << 31)
89 #define V_CMD_GEN2(v)   (v)
90 #define F_CMD_DATAVALID (1 << 1)
91 #define F_CMD_SOP       (1 << 2)
92 #define V_CMD_EOP(v)    ((v) << 3)
93
94 /*
95  * Command queue, receive buffer list, and response queue descriptors.
96  */
97 #if defined(__BIG_ENDIAN_BITFIELD)
98 struct cmdQ_e {
99         u32 addr_lo;
100         u32 len_gen;
101         u32 flags;
102         u32 addr_hi;
103 };
104
105 struct freelQ_e {
106         u32 addr_lo;
107         u32 len_gen;
108         u32 gen2;
109         u32 addr_hi;
110 };
111
112 struct respQ_e {
113         u32 Qsleeping           : 4;
114         u32 Cmdq1CreditReturn   : 5;
115         u32 Cmdq1DmaComplete    : 5;
116         u32 Cmdq0CreditReturn   : 5;
117         u32 Cmdq0DmaComplete    : 5;
118         u32 FreelistQid         : 2;
119         u32 CreditValid         : 1;
120         u32 DataValid           : 1;
121         u32 Offload             : 1;
122         u32 Eop                 : 1;
123         u32 Sop                 : 1;
124         u32 GenerationBit       : 1;
125         u32 BufferLength;
126 };
127 #elif defined(__LITTLE_ENDIAN_BITFIELD)
128 struct cmdQ_e {
129         u32 len_gen;
130         u32 addr_lo;
131         u32 addr_hi;
132         u32 flags;
133 };
134
135 struct freelQ_e {
136         u32 len_gen;
137         u32 addr_lo;
138         u32 addr_hi;
139         u32 gen2;
140 };
141
142 struct respQ_e {
143         u32 BufferLength;
144         u32 GenerationBit       : 1;
145         u32 Sop                 : 1;
146         u32 Eop                 : 1;
147         u32 Offload             : 1;
148         u32 DataValid           : 1;
149         u32 CreditValid         : 1;
150         u32 FreelistQid         : 2;
151         u32 Cmdq0DmaComplete    : 5;
152         u32 Cmdq0CreditReturn   : 5;
153         u32 Cmdq1DmaComplete    : 5;
154         u32 Cmdq1CreditReturn   : 5;
155         u32 Qsleeping           : 4;
156 } ;
157 #endif
158
159 /*
160  * SW Context Command and Freelist Queue Descriptors
161  */
162 struct cmdQ_ce {
163         struct sk_buff *skb;
164         DECLARE_PCI_UNMAP_ADDR(dma_addr);
165         DECLARE_PCI_UNMAP_LEN(dma_len);
166 };
167
168 struct freelQ_ce {
169         struct sk_buff *skb;
170         DECLARE_PCI_UNMAP_ADDR(dma_addr);
171         DECLARE_PCI_UNMAP_LEN(dma_len);
172 };
173
174 /*
175  * SW command, freelist and response rings
176  */
177 struct cmdQ {
178         unsigned long   status;         /* HW DMA fetch status */
179         unsigned int    in_use;         /* # of in-use command descriptors */
180         unsigned int    size;           /* # of descriptors */
181         unsigned int    processed;      /* total # of descs HW has processed */
182         unsigned int    cleaned;        /* total # of descs SW has reclaimed */
183         unsigned int    stop_thres;     /* SW TX queue suspend threshold */
184         u16             pidx;           /* producer index (SW) */
185         u16             cidx;           /* consumer index (HW) */
186         u8              genbit;         /* current generation (=valid) bit */
187         u8              sop;            /* is next entry start of packet? */
188         struct cmdQ_e  *entries;        /* HW command descriptor Q */
189         struct cmdQ_ce *centries;       /* SW command context descriptor Q */
190         dma_addr_t      dma_addr;       /* DMA addr HW command descriptor Q */
191         spinlock_t      lock;           /* Lock to protect cmdQ enqueuing */
192 };
193
194 struct freelQ {
195         unsigned int    credits;        /* # of available RX buffers */
196         unsigned int    size;           /* free list capacity */
197         u16             pidx;           /* producer index (SW) */
198         u16             cidx;           /* consumer index (HW) */
199         u16             rx_buffer_size; /* Buffer size on this free list */
200         u16             dma_offset;     /* DMA offset to align IP headers */
201         u16             recycleq_idx;   /* skb recycle q to use */
202         u8              genbit;         /* current generation (=valid) bit */
203         struct freelQ_e *entries;       /* HW freelist descriptor Q */
204         struct freelQ_ce *centries;     /* SW freelist context descriptor Q */
205         dma_addr_t      dma_addr;       /* DMA addr HW freelist descriptor Q */
206 };
207
208 struct respQ {
209         unsigned int    credits;        /* credits to be returned to SGE */
210         unsigned int    size;           /* # of response Q descriptors */
211         u16             cidx;           /* consumer index (SW) */
212         u8              genbit;         /* current generation(=valid) bit */
213         struct respQ_e *entries;        /* HW response descriptor Q */
214         dma_addr_t      dma_addr;       /* DMA addr HW response descriptor Q */
215 };
216
217 /* Bit flags for cmdQ.status */
218 enum {
219         CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */
220         CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */
221 };
222
223 /* T204 TX SW scheduler */
224
225 /* Per T204 TX port */
226 struct sched_port {
227         unsigned int    avail;          /* available bits - quota */
228         unsigned int    drain_bits_per_1024ns; /* drain rate */
229         unsigned int    speed;          /* drain rate, mbps */
230         unsigned int    mtu;            /* mtu size */
231         struct sk_buff_head skbq;       /* pending skbs */
232 };
233
234 /* Per T204 device */
235 struct sched {
236         ktime_t         last_updated;   /* last time quotas were computed */
237         unsigned int    max_avail;      /* max bits to be sent to any port */
238         unsigned int    port;           /* port index (round robin ports) */
239         unsigned int    num;            /* num skbs in per port queues */
240         struct sched_port p[MAX_NPORTS];
241         struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
242 };
243 static void restart_sched(unsigned long);
244
245
246 /*
247  * Main SGE data structure
248  *
249  * Interrupts are handled by a single CPU and it is likely that on a MP system
250  * the application is migrated to another CPU. In that scenario, we try to
251  * seperate the RX(in irq context) and TX state in order to decrease memory
252  * contention.
253  */
254 struct sge {
255         struct adapter *adapter;        /* adapter backpointer */
256         struct net_device *netdev;      /* netdevice backpointer */
257         struct freelQ   freelQ[SGE_FREELQ_N]; /* buffer free lists */
258         struct respQ    respQ;          /* response Q */
259         unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */
260         unsigned int    rx_pkt_pad;     /* RX padding for L2 packets */
261         unsigned int    jumbo_fl;       /* jumbo freelist Q index */
262         unsigned int    intrtimer_nres; /* no-resource interrupt timer */
263         unsigned int    fixed_intrtimer;/* non-adaptive interrupt timer */
264         struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
265         struct timer_list espibug_timer;
266         unsigned long   espibug_timeout;
267         struct sk_buff  *espibug_skb[MAX_NPORTS];
268         u32             sge_control;    /* shadow value of sge control reg */
269         struct sge_intr_counts stats;
270         struct sge_port_stats *port_stats[MAX_NPORTS];
271         struct sched    *tx_sched;
272         struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
273 };
274
275 /*
276  * stop tasklet and free all pending skb's
277  */
278 static void tx_sched_stop(struct sge *sge)
279 {
280         struct sched *s = sge->tx_sched;
281         int i;
282
283         tasklet_kill(&s->sched_tsk);
284
285         for (i = 0; i < MAX_NPORTS; i++)
286                 __skb_queue_purge(&s->p[s->port].skbq);
287 }
288
289 /*
290  * t1_sched_update_parms() is called when the MTU or link speed changes. It
291  * re-computes scheduler parameters to scope with the change.
292  */
293 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
294                                    unsigned int mtu, unsigned int speed)
295 {
296         struct sched *s = sge->tx_sched;
297         struct sched_port *p = &s->p[port];
298         unsigned int max_avail_segs;
299
300         pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
301         if (speed)
302                 p->speed = speed;
303         if (mtu)
304                 p->mtu = mtu;
305
306         if (speed || mtu) {
307                 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
308                 do_div(drain, (p->mtu + 50) * 1000);
309                 p->drain_bits_per_1024ns = (unsigned int) drain;
310
311                 if (p->speed < 1000)
312                         p->drain_bits_per_1024ns =
313                                 90 * p->drain_bits_per_1024ns / 100;
314         }
315
316         if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
317                 p->drain_bits_per_1024ns -= 16;
318                 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
319                 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
320         } else {
321                 s->max_avail = 16384;
322                 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
323         }
324
325         pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
326                  "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
327                  p->speed, s->max_avail, max_avail_segs,
328                  p->drain_bits_per_1024ns);
329
330         return max_avail_segs * (p->mtu - 40);
331 }
332
333 /*
334  * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
335  * data that can be pushed per port.
336  */
337 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
338 {
339         struct sched *s = sge->tx_sched;
340         unsigned int i;
341
342         s->max_avail = val;
343         for (i = 0; i < MAX_NPORTS; i++)
344                 t1_sched_update_parms(sge, i, 0, 0);
345 }
346
347 /*
348  * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
349  * is draining.
350  */
351 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
352                                          unsigned int val)
353 {
354         struct sched *s = sge->tx_sched;
355         struct sched_port *p = &s->p[port];
356         p->drain_bits_per_1024ns = val * 1024 / 1000;
357         t1_sched_update_parms(sge, port, 0, 0);
358 }
359
360
361 /*
362  * get_clock() implements a ns clock (see ktime_get)
363  */
364 static inline ktime_t get_clock(void)
365 {
366         struct timespec ts;
367
368         ktime_get_ts(&ts);
369         return timespec_to_ktime(ts);
370 }
371
372 /*
373  * tx_sched_init() allocates resources and does basic initialization.
374  */
375 static int tx_sched_init(struct sge *sge)
376 {
377         struct sched *s;
378         int i;
379
380         s = kzalloc(sizeof (struct sched), GFP_KERNEL);
381         if (!s)
382                 return -ENOMEM;
383
384         pr_debug("tx_sched_init\n");
385         tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
386         sge->tx_sched = s;
387
388         for (i = 0; i < MAX_NPORTS; i++) {
389                 skb_queue_head_init(&s->p[i].skbq);
390                 t1_sched_update_parms(sge, i, 1500, 1000);
391         }
392
393         return 0;
394 }
395
396 /*
397  * sched_update_avail() computes the delta since the last time it was called
398  * and updates the per port quota (number of bits that can be sent to the any
399  * port).
400  */
401 static inline int sched_update_avail(struct sge *sge)
402 {
403         struct sched *s = sge->tx_sched;
404         ktime_t now = get_clock();
405         unsigned int i;
406         long long delta_time_ns;
407
408         delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
409
410         pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
411         if (delta_time_ns < 15000)
412                 return 0;
413
414         for (i = 0; i < MAX_NPORTS; i++) {
415                 struct sched_port *p = &s->p[i];
416                 unsigned int delta_avail;
417
418                 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
419                 p->avail = min(p->avail + delta_avail, s->max_avail);
420         }
421
422         s->last_updated = now;
423
424         return 1;
425 }
426
427 /*
428  * sched_skb() is called from two different places. In the tx path, any
429  * packet generating load on an output port will call sched_skb()
430  * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
431  * context (skb == NULL).
432  * The scheduler only returns a skb (which will then be sent) if the
433  * length of the skb is <= the current quota of the output port.
434  */
435 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
436                                 unsigned int credits)
437 {
438         struct sched *s = sge->tx_sched;
439         struct sk_buff_head *skbq;
440         unsigned int i, len, update = 1;
441
442         pr_debug("sched_skb %p\n", skb);
443         if (!skb) {
444                 if (!s->num)
445                         return NULL;
446         } else {
447                 skbq = &s->p[skb->dev->if_port].skbq;
448                 __skb_queue_tail(skbq, skb);
449                 s->num++;
450                 skb = NULL;
451         }
452
453         if (credits < MAX_SKB_FRAGS + 1)
454                 goto out;
455
456 again:
457         for (i = 0; i < MAX_NPORTS; i++) {
458                 s->port = ++s->port & (MAX_NPORTS - 1);
459                 skbq = &s->p[s->port].skbq;
460
461                 skb = skb_peek(skbq);
462
463                 if (!skb)
464                         continue;
465
466                 len = skb->len;
467                 if (len <= s->p[s->port].avail) {
468                         s->p[s->port].avail -= len;
469                         s->num--;
470                         __skb_unlink(skb, skbq);
471                         goto out;
472                 }
473                 skb = NULL;
474         }
475
476         if (update-- && sched_update_avail(sge))
477                 goto again;
478
479 out:
480         /* If there are more pending skbs, we use the hardware to schedule us
481          * again.
482          */
483         if (s->num && !skb) {
484                 struct cmdQ *q = &sge->cmdQ[0];
485                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
486                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
487                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
488                         writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
489                 }
490         }
491         pr_debug("sched_skb ret %p\n", skb);
492
493         return skb;
494 }
495
496 /*
497  * PIO to indicate that memory mapped Q contains valid descriptor(s).
498  */
499 static inline void doorbell_pio(struct adapter *adapter, u32 val)
500 {
501         wmb();
502         writel(val, adapter->regs + A_SG_DOORBELL);
503 }
504
505 /*
506  * Frees all RX buffers on the freelist Q. The caller must make sure that
507  * the SGE is turned off before calling this function.
508  */
509 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
510 {
511         unsigned int cidx = q->cidx;
512
513         while (q->credits--) {
514                 struct freelQ_ce *ce = &q->centries[cidx];
515
516                 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
517                                  pci_unmap_len(ce, dma_len),
518                                  PCI_DMA_FROMDEVICE);
519                 dev_kfree_skb(ce->skb);
520                 ce->skb = NULL;
521                 if (++cidx == q->size)
522                         cidx = 0;
523         }
524 }
525
526 /*
527  * Free RX free list and response queue resources.
528  */
529 static void free_rx_resources(struct sge *sge)
530 {
531         struct pci_dev *pdev = sge->adapter->pdev;
532         unsigned int size, i;
533
534         if (sge->respQ.entries) {
535                 size = sizeof(struct respQ_e) * sge->respQ.size;
536                 pci_free_consistent(pdev, size, sge->respQ.entries,
537                                     sge->respQ.dma_addr);
538         }
539
540         for (i = 0; i < SGE_FREELQ_N; i++) {
541                 struct freelQ *q = &sge->freelQ[i];
542
543                 if (q->centries) {
544                         free_freelQ_buffers(pdev, q);
545                         kfree(q->centries);
546                 }
547                 if (q->entries) {
548                         size = sizeof(struct freelQ_e) * q->size;
549                         pci_free_consistent(pdev, size, q->entries,
550                                             q->dma_addr);
551                 }
552         }
553 }
554
555 /*
556  * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
557  * response queue.
558  */
559 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
560 {
561         struct pci_dev *pdev = sge->adapter->pdev;
562         unsigned int size, i;
563
564         for (i = 0; i < SGE_FREELQ_N; i++) {
565                 struct freelQ *q = &sge->freelQ[i];
566
567                 q->genbit = 1;
568                 q->size = p->freelQ_size[i];
569                 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
570                 size = sizeof(struct freelQ_e) * q->size;
571                 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
572                 if (!q->entries)
573                         goto err_no_mem;
574
575                 size = sizeof(struct freelQ_ce) * q->size;
576                 q->centries = kzalloc(size, GFP_KERNEL);
577                 if (!q->centries)
578                         goto err_no_mem;
579         }
580
581         /*
582          * Calculate the buffer sizes for the two free lists.  FL0 accommodates
583          * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
584          * including all the sk_buff overhead.
585          *
586          * Note: For T2 FL0 and FL1 are reversed.
587          */
588         sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
589                 sizeof(struct cpl_rx_data) +
590                 sge->freelQ[!sge->jumbo_fl].dma_offset;
591
592                 size = (16 * 1024) -
593                     SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
594
595         sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
596
597         /*
598          * Setup which skb recycle Q should be used when recycling buffers from
599          * each free list.
600          */
601         sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
602         sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
603
604         sge->respQ.genbit = 1;
605         sge->respQ.size = SGE_RESPQ_E_N;
606         sge->respQ.credits = 0;
607         size = sizeof(struct respQ_e) * sge->respQ.size;
608         sge->respQ.entries =
609                 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
610         if (!sge->respQ.entries)
611                 goto err_no_mem;
612         return 0;
613
614 err_no_mem:
615         free_rx_resources(sge);
616         return -ENOMEM;
617 }
618
619 /*
620  * Reclaims n TX descriptors and frees the buffers associated with them.
621  */
622 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
623 {
624         struct cmdQ_ce *ce;
625         struct pci_dev *pdev = sge->adapter->pdev;
626         unsigned int cidx = q->cidx;
627
628         q->in_use -= n;
629         ce = &q->centries[cidx];
630         while (n--) {
631                 if (likely(pci_unmap_len(ce, dma_len))) {
632                         pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
633                                          pci_unmap_len(ce, dma_len),
634                                          PCI_DMA_TODEVICE);
635                         if (q->sop)
636                                 q->sop = 0;
637                 }
638                 if (ce->skb) {
639                         dev_kfree_skb_any(ce->skb);
640                         q->sop = 1;
641                 }
642                 ce++;
643                 if (++cidx == q->size) {
644                         cidx = 0;
645                         ce = q->centries;
646                 }
647         }
648         q->cidx = cidx;
649 }
650
651 /*
652  * Free TX resources.
653  *
654  * Assumes that SGE is stopped and all interrupts are disabled.
655  */
656 static void free_tx_resources(struct sge *sge)
657 {
658         struct pci_dev *pdev = sge->adapter->pdev;
659         unsigned int size, i;
660
661         for (i = 0; i < SGE_CMDQ_N; i++) {
662                 struct cmdQ *q = &sge->cmdQ[i];
663
664                 if (q->centries) {
665                         if (q->in_use)
666                                 free_cmdQ_buffers(sge, q, q->in_use);
667                         kfree(q->centries);
668                 }
669                 if (q->entries) {
670                         size = sizeof(struct cmdQ_e) * q->size;
671                         pci_free_consistent(pdev, size, q->entries,
672                                             q->dma_addr);
673                 }
674         }
675 }
676
677 /*
678  * Allocates basic TX resources, consisting of memory mapped command Qs.
679  */
680 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
681 {
682         struct pci_dev *pdev = sge->adapter->pdev;
683         unsigned int size, i;
684
685         for (i = 0; i < SGE_CMDQ_N; i++) {
686                 struct cmdQ *q = &sge->cmdQ[i];
687
688                 q->genbit = 1;
689                 q->sop = 1;
690                 q->size = p->cmdQ_size[i];
691                 q->in_use = 0;
692                 q->status = 0;
693                 q->processed = q->cleaned = 0;
694                 q->stop_thres = 0;
695                 spin_lock_init(&q->lock);
696                 size = sizeof(struct cmdQ_e) * q->size;
697                 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
698                 if (!q->entries)
699                         goto err_no_mem;
700
701                 size = sizeof(struct cmdQ_ce) * q->size;
702                 q->centries = kzalloc(size, GFP_KERNEL);
703                 if (!q->centries)
704                         goto err_no_mem;
705         }
706
707         /*
708          * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
709          * only.  For queue 0 set the stop threshold so we can handle one more
710          * packet from each port, plus reserve an additional 24 entries for
711          * Ethernet packets only.  Queue 1 never suspends nor do we reserve
712          * space for Ethernet packets.
713          */
714         sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
715                 (MAX_SKB_FRAGS + 1);
716         return 0;
717
718 err_no_mem:
719         free_tx_resources(sge);
720         return -ENOMEM;
721 }
722
723 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
724                                      u32 size, int base_reg_lo,
725                                      int base_reg_hi, int size_reg)
726 {
727         writel((u32)addr, adapter->regs + base_reg_lo);
728         writel(addr >> 32, adapter->regs + base_reg_hi);
729         writel(size, adapter->regs + size_reg);
730 }
731
732 /*
733  * Enable/disable VLAN acceleration.
734  */
735 void t1_set_vlan_accel(struct adapter *adapter, int on_off)
736 {
737         struct sge *sge = adapter->sge;
738
739         sge->sge_control &= ~F_VLAN_XTRACT;
740         if (on_off)
741                 sge->sge_control |= F_VLAN_XTRACT;
742         if (adapter->open_device_map) {
743                 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
744                 readl(adapter->regs + A_SG_CONTROL);   /* flush */
745         }
746 }
747
748 /*
749  * Programs the various SGE registers. However, the engine is not yet enabled,
750  * but sge->sge_control is setup and ready to go.
751  */
752 static void configure_sge(struct sge *sge, struct sge_params *p)
753 {
754         struct adapter *ap = sge->adapter;
755
756         writel(0, ap->regs + A_SG_CONTROL);
757         setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
758                           A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
759         setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
760                           A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
761         setup_ring_params(ap, sge->freelQ[0].dma_addr,
762                           sge->freelQ[0].size, A_SG_FL0BASELWR,
763                           A_SG_FL0BASEUPR, A_SG_FL0SIZE);
764         setup_ring_params(ap, sge->freelQ[1].dma_addr,
765                           sge->freelQ[1].size, A_SG_FL1BASELWR,
766                           A_SG_FL1BASEUPR, A_SG_FL1SIZE);
767
768         /* The threshold comparison uses <. */
769         writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
770
771         setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
772                           A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
773         writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
774
775         sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
776                 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
777                 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
778                 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
779
780 #if defined(__BIG_ENDIAN_BITFIELD)
781         sge->sge_control |= F_ENABLE_BIG_ENDIAN;
782 #endif
783
784         /* Initialize no-resource timer */
785         sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
786
787         t1_sge_set_coalesce_params(sge, p);
788 }
789
790 /*
791  * Return the payload capacity of the jumbo free-list buffers.
792  */
793 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
794 {
795         return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
796                 sge->freelQ[sge->jumbo_fl].dma_offset -
797                 sizeof(struct cpl_rx_data);
798 }
799
800 /*
801  * Frees all SGE related resources and the sge structure itself
802  */
803 void t1_sge_destroy(struct sge *sge)
804 {
805         int i;
806
807         for_each_port(sge->adapter, i)
808                 free_percpu(sge->port_stats[i]);
809
810         kfree(sge->tx_sched);
811         free_tx_resources(sge);
812         free_rx_resources(sge);
813         kfree(sge);
814 }
815
816 /*
817  * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
818  * context Q) until the Q is full or alloc_skb fails.
819  *
820  * It is possible that the generation bits already match, indicating that the
821  * buffer is already valid and nothing needs to be done. This happens when we
822  * copied a received buffer into a new sk_buff during the interrupt processing.
823  *
824  * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
825  * we specify a RX_OFFSET in order to make sure that the IP header is 4B
826  * aligned.
827  */
828 static void refill_free_list(struct sge *sge, struct freelQ *q)
829 {
830         struct pci_dev *pdev = sge->adapter->pdev;
831         struct freelQ_ce *ce = &q->centries[q->pidx];
832         struct freelQ_e *e = &q->entries[q->pidx];
833         unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
834
835         while (q->credits < q->size) {
836                 struct sk_buff *skb;
837                 dma_addr_t mapping;
838
839                 skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
840                 if (!skb)
841                         break;
842
843                 skb_reserve(skb, q->dma_offset);
844                 mapping = pci_map_single(pdev, skb->data, dma_len,
845                                          PCI_DMA_FROMDEVICE);
846                 skb_reserve(skb, sge->rx_pkt_pad);
847
848                 ce->skb = skb;
849                 pci_unmap_addr_set(ce, dma_addr, mapping);
850                 pci_unmap_len_set(ce, dma_len, dma_len);
851                 e->addr_lo = (u32)mapping;
852                 e->addr_hi = (u64)mapping >> 32;
853                 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
854                 wmb();
855                 e->gen2 = V_CMD_GEN2(q->genbit);
856
857                 e++;
858                 ce++;
859                 if (++q->pidx == q->size) {
860                         q->pidx = 0;
861                         q->genbit ^= 1;
862                         ce = q->centries;
863                         e = q->entries;
864                 }
865                 q->credits++;
866         }
867 }
868
869 /*
870  * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
871  * of both rings, we go into 'few interrupt mode' in order to give the system
872  * time to free up resources.
873  */
874 static void freelQs_empty(struct sge *sge)
875 {
876         struct adapter *adapter = sge->adapter;
877         u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
878         u32 irqholdoff_reg;
879
880         refill_free_list(sge, &sge->freelQ[0]);
881         refill_free_list(sge, &sge->freelQ[1]);
882
883         if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
884             sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
885                 irq_reg |= F_FL_EXHAUSTED;
886                 irqholdoff_reg = sge->fixed_intrtimer;
887         } else {
888                 /* Clear the F_FL_EXHAUSTED interrupts for now */
889                 irq_reg &= ~F_FL_EXHAUSTED;
890                 irqholdoff_reg = sge->intrtimer_nres;
891         }
892         writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
893         writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
894
895         /* We reenable the Qs to force a freelist GTS interrupt later */
896         doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
897 }
898
899 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
900 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
901 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
902                         F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
903
904 /*
905  * Disable SGE Interrupts
906  */
907 void t1_sge_intr_disable(struct sge *sge)
908 {
909         u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
910
911         writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
912         writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
913 }
914
915 /*
916  * Enable SGE interrupts.
917  */
918 void t1_sge_intr_enable(struct sge *sge)
919 {
920         u32 en = SGE_INT_ENABLE;
921         u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
922
923         if (sge->adapter->flags & TSO_CAPABLE)
924                 en &= ~F_PACKET_TOO_BIG;
925         writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
926         writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
927 }
928
929 /*
930  * Clear SGE interrupts.
931  */
932 void t1_sge_intr_clear(struct sge *sge)
933 {
934         writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
935         writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
936 }
937
938 /*
939  * SGE 'Error' interrupt handler
940  */
941 int t1_sge_intr_error_handler(struct sge *sge)
942 {
943         struct adapter *adapter = sge->adapter;
944         u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
945
946         if (adapter->flags & TSO_CAPABLE)
947                 cause &= ~F_PACKET_TOO_BIG;
948         if (cause & F_RESPQ_EXHAUSTED)
949                 sge->stats.respQ_empty++;
950         if (cause & F_RESPQ_OVERFLOW) {
951                 sge->stats.respQ_overflow++;
952                 CH_ALERT("%s: SGE response queue overflow\n",
953                          adapter->name);
954         }
955         if (cause & F_FL_EXHAUSTED) {
956                 sge->stats.freelistQ_empty++;
957                 freelQs_empty(sge);
958         }
959         if (cause & F_PACKET_TOO_BIG) {
960                 sge->stats.pkt_too_big++;
961                 CH_ALERT("%s: SGE max packet size exceeded\n",
962                          adapter->name);
963         }
964         if (cause & F_PACKET_MISMATCH) {
965                 sge->stats.pkt_mismatch++;
966                 CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
967         }
968         if (cause & SGE_INT_FATAL)
969                 t1_fatal_err(adapter);
970
971         writel(cause, adapter->regs + A_SG_INT_CAUSE);
972         return 0;
973 }
974
975 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
976 {
977         return &sge->stats;
978 }
979
980 void t1_sge_get_port_stats(const struct sge *sge, int port,
981                            struct sge_port_stats *ss)
982 {
983         int cpu;
984
985         memset(ss, 0, sizeof(*ss));
986         for_each_possible_cpu(cpu) {
987                 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
988
989                 ss->rx_packets += st->rx_packets;
990                 ss->rx_cso_good += st->rx_cso_good;
991                 ss->tx_packets += st->tx_packets;
992                 ss->tx_cso += st->tx_cso;
993                 ss->tx_tso += st->tx_tso;
994                 ss->tx_need_hdrroom += st->tx_need_hdrroom;
995                 ss->vlan_xtract += st->vlan_xtract;
996                 ss->vlan_insert += st->vlan_insert;
997         }
998 }
999
1000 /**
1001  *      recycle_fl_buf - recycle a free list buffer
1002  *      @fl: the free list
1003  *      @idx: index of buffer to recycle
1004  *
1005  *      Recycles the specified buffer on the given free list by adding it at
1006  *      the next available slot on the list.
1007  */
1008 static void recycle_fl_buf(struct freelQ *fl, int idx)
1009 {
1010         struct freelQ_e *from = &fl->entries[idx];
1011         struct freelQ_e *to = &fl->entries[fl->pidx];
1012
1013         fl->centries[fl->pidx] = fl->centries[idx];
1014         to->addr_lo = from->addr_lo;
1015         to->addr_hi = from->addr_hi;
1016         to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1017         wmb();
1018         to->gen2 = V_CMD_GEN2(fl->genbit);
1019         fl->credits++;
1020
1021         if (++fl->pidx == fl->size) {
1022                 fl->pidx = 0;
1023                 fl->genbit ^= 1;
1024         }
1025 }
1026
1027 static int copybreak __read_mostly = 256;
1028 module_param(copybreak, int, 0);
1029 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1030
1031 /**
1032  *      get_packet - return the next ingress packet buffer
1033  *      @pdev: the PCI device that received the packet
1034  *      @fl: the SGE free list holding the packet
1035  *      @len: the actual packet length, excluding any SGE padding
1036  *      @dma_pad: padding at beginning of buffer left by SGE DMA
1037  *      @skb_pad: padding to be used if the packet is copied
1038  *      @copy_thres: length threshold under which a packet should be copied
1039  *      @drop_thres: # of remaining buffers before we start dropping packets
1040  *
1041  *      Get the next packet from a free list and complete setup of the
1042  *      sk_buff.  If the packet is small we make a copy and recycle the
1043  *      original buffer, otherwise we use the original buffer itself.  If a
1044  *      positive drop threshold is supplied packets are dropped and their
1045  *      buffers recycled if (a) the number of remaining buffers is under the
1046  *      threshold and the packet is too big to copy, or (b) the packet should
1047  *      be copied but there is no memory for the copy.
1048  */
1049 static inline struct sk_buff *get_packet(struct pci_dev *pdev,
1050                                          struct freelQ *fl, unsigned int len)
1051 {
1052         struct sk_buff *skb;
1053         const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1054
1055         if (len < copybreak) {
1056                 skb = alloc_skb(len + 2, GFP_ATOMIC);
1057                 if (!skb)
1058                         goto use_orig_buf;
1059
1060                 skb_reserve(skb, 2);    /* align IP header */
1061                 skb_put(skb, len);
1062                 pci_dma_sync_single_for_cpu(pdev,
1063                                             pci_unmap_addr(ce, dma_addr),
1064                                             pci_unmap_len(ce, dma_len),
1065                                             PCI_DMA_FROMDEVICE);
1066                 skb_copy_from_linear_data(ce->skb, skb->data, len);
1067                 pci_dma_sync_single_for_device(pdev,
1068                                                pci_unmap_addr(ce, dma_addr),
1069                                                pci_unmap_len(ce, dma_len),
1070                                                PCI_DMA_FROMDEVICE);
1071                 recycle_fl_buf(fl, fl->cidx);
1072                 return skb;
1073         }
1074
1075 use_orig_buf:
1076         if (fl->credits < 2) {
1077                 recycle_fl_buf(fl, fl->cidx);
1078                 return NULL;
1079         }
1080
1081         pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
1082                          pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1083         skb = ce->skb;
1084         prefetch(skb->data);
1085
1086         skb_put(skb, len);
1087         return skb;
1088 }
1089
1090 /**
1091  *      unexpected_offload - handle an unexpected offload packet
1092  *      @adapter: the adapter
1093  *      @fl: the free list that received the packet
1094  *
1095  *      Called when we receive an unexpected offload packet (e.g., the TOE
1096  *      function is disabled or the card is a NIC).  Prints a message and
1097  *      recycles the buffer.
1098  */
1099 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1100 {
1101         struct freelQ_ce *ce = &fl->centries[fl->cidx];
1102         struct sk_buff *skb = ce->skb;
1103
1104         pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
1105                             pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1106         CH_ERR("%s: unexpected offload packet, cmd %u\n",
1107                adapter->name, *skb->data);
1108         recycle_fl_buf(fl, fl->cidx);
1109 }
1110
1111 /*
1112  * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1113  * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1114  * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1115  * Note that the *_large_page_tx_descs stuff will be optimized out when
1116  * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1117  *
1118  * compute_large_page_descs() computes how many additional descriptors are
1119  * required to break down the stack's request.
1120  */
1121 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1122 {
1123         unsigned int count = 0;
1124
1125         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1126                 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1127                 unsigned int i, len = skb->len - skb->data_len;
1128                 while (len > SGE_TX_DESC_MAX_PLEN) {
1129                         count++;
1130                         len -= SGE_TX_DESC_MAX_PLEN;
1131                 }
1132                 for (i = 0; nfrags--; i++) {
1133                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1134                         len = frag->size;
1135                         while (len > SGE_TX_DESC_MAX_PLEN) {
1136                                 count++;
1137                                 len -= SGE_TX_DESC_MAX_PLEN;
1138                         }
1139                 }
1140         }
1141         return count;
1142 }
1143
1144 /*
1145  * Write a cmdQ entry.
1146  *
1147  * Since this function writes the 'flags' field, it must not be used to
1148  * write the first cmdQ entry.
1149  */
1150 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1151                                  unsigned int len, unsigned int gen,
1152                                  unsigned int eop)
1153 {
1154         if (unlikely(len > SGE_TX_DESC_MAX_PLEN))
1155                 BUG();
1156         e->addr_lo = (u32)mapping;
1157         e->addr_hi = (u64)mapping >> 32;
1158         e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1159         e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1160 }
1161
1162 /*
1163  * See comment for previous function.
1164  *
1165  * write_tx_descs_large_page() writes additional SGE tx descriptors if
1166  * *desc_len exceeds HW's capability.
1167  */
1168 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1169                                                      struct cmdQ_e **e,
1170                                                      struct cmdQ_ce **ce,
1171                                                      unsigned int *gen,
1172                                                      dma_addr_t *desc_mapping,
1173                                                      unsigned int *desc_len,
1174                                                      unsigned int nfrags,
1175                                                      struct cmdQ *q)
1176 {
1177         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1178                 struct cmdQ_e *e1 = *e;
1179                 struct cmdQ_ce *ce1 = *ce;
1180
1181                 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1182                         *desc_len -= SGE_TX_DESC_MAX_PLEN;
1183                         write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1184                                       *gen, nfrags == 0 && *desc_len == 0);
1185                         ce1->skb = NULL;
1186                         pci_unmap_len_set(ce1, dma_len, 0);
1187                         *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1188                         if (*desc_len) {
1189                                 ce1++;
1190                                 e1++;
1191                                 if (++pidx == q->size) {
1192                                         pidx = 0;
1193                                         *gen ^= 1;
1194                                         ce1 = q->centries;
1195                                         e1 = q->entries;
1196                                 }
1197                         }
1198                 }
1199                 *e = e1;
1200                 *ce = ce1;
1201         }
1202         return pidx;
1203 }
1204
1205 /*
1206  * Write the command descriptors to transmit the given skb starting at
1207  * descriptor pidx with the given generation.
1208  */
1209 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1210                                   unsigned int pidx, unsigned int gen,
1211                                   struct cmdQ *q)
1212 {
1213         dma_addr_t mapping, desc_mapping;
1214         struct cmdQ_e *e, *e1;
1215         struct cmdQ_ce *ce;
1216         unsigned int i, flags, first_desc_len, desc_len,
1217             nfrags = skb_shinfo(skb)->nr_frags;
1218
1219         e = e1 = &q->entries[pidx];
1220         ce = &q->centries[pidx];
1221
1222         mapping = pci_map_single(adapter->pdev, skb->data,
1223                                 skb->len - skb->data_len, PCI_DMA_TODEVICE);
1224
1225         desc_mapping = mapping;
1226         desc_len = skb->len - skb->data_len;
1227
1228         flags = F_CMD_DATAVALID | F_CMD_SOP |
1229             V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1230             V_CMD_GEN2(gen);
1231         first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1232             desc_len : SGE_TX_DESC_MAX_PLEN;
1233         e->addr_lo = (u32)desc_mapping;
1234         e->addr_hi = (u64)desc_mapping >> 32;
1235         e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1236         ce->skb = NULL;
1237         pci_unmap_len_set(ce, dma_len, 0);
1238
1239         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1240             desc_len > SGE_TX_DESC_MAX_PLEN) {
1241                 desc_mapping += first_desc_len;
1242                 desc_len -= first_desc_len;
1243                 e1++;
1244                 ce++;
1245                 if (++pidx == q->size) {
1246                         pidx = 0;
1247                         gen ^= 1;
1248                         e1 = q->entries;
1249                         ce = q->centries;
1250                 }
1251                 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1252                                                  &desc_mapping, &desc_len,
1253                                                  nfrags, q);
1254
1255                 if (likely(desc_len))
1256                         write_tx_desc(e1, desc_mapping, desc_len, gen,
1257                                       nfrags == 0);
1258         }
1259
1260         ce->skb = NULL;
1261         pci_unmap_addr_set(ce, dma_addr, mapping);
1262         pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
1263
1264         for (i = 0; nfrags--; i++) {
1265                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1266                 e1++;
1267                 ce++;
1268                 if (++pidx == q->size) {
1269                         pidx = 0;
1270                         gen ^= 1;
1271                         e1 = q->entries;
1272                         ce = q->centries;
1273                 }
1274
1275                 mapping = pci_map_page(adapter->pdev, frag->page,
1276                                        frag->page_offset, frag->size,
1277                                        PCI_DMA_TODEVICE);
1278                 desc_mapping = mapping;
1279                 desc_len = frag->size;
1280
1281                 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1282                                                  &desc_mapping, &desc_len,
1283                                                  nfrags, q);
1284                 if (likely(desc_len))
1285                         write_tx_desc(e1, desc_mapping, desc_len, gen,
1286                                       nfrags == 0);
1287                 ce->skb = NULL;
1288                 pci_unmap_addr_set(ce, dma_addr, mapping);
1289                 pci_unmap_len_set(ce, dma_len, frag->size);
1290         }
1291         ce->skb = skb;
1292         wmb();
1293         e->flags = flags;
1294 }
1295
1296 /*
1297  * Clean up completed Tx buffers.
1298  */
1299 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1300 {
1301         unsigned int reclaim = q->processed - q->cleaned;
1302
1303         if (reclaim) {
1304                 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1305                          q->processed, q->cleaned);
1306                 free_cmdQ_buffers(sge, q, reclaim);
1307                 q->cleaned += reclaim;
1308         }
1309 }
1310
1311 /*
1312  * Called from tasklet. Checks the scheduler for any
1313  * pending skbs that can be sent.
1314  */
1315 static void restart_sched(unsigned long arg)
1316 {
1317         struct sge *sge = (struct sge *) arg;
1318         struct adapter *adapter = sge->adapter;
1319         struct cmdQ *q = &sge->cmdQ[0];
1320         struct sk_buff *skb;
1321         unsigned int credits, queued_skb = 0;
1322
1323         spin_lock(&q->lock);
1324         reclaim_completed_tx(sge, q);
1325
1326         credits = q->size - q->in_use;
1327         pr_debug("restart_sched credits=%d\n", credits);
1328         while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1329                 unsigned int genbit, pidx, count;
1330                 count = 1 + skb_shinfo(skb)->nr_frags;
1331                 count += compute_large_page_tx_descs(skb);
1332                 q->in_use += count;
1333                 genbit = q->genbit;
1334                 pidx = q->pidx;
1335                 q->pidx += count;
1336                 if (q->pidx >= q->size) {
1337                         q->pidx -= q->size;
1338                         q->genbit ^= 1;
1339                 }
1340                 write_tx_descs(adapter, skb, pidx, genbit, q);
1341                 credits = q->size - q->in_use;
1342                 queued_skb = 1;
1343         }
1344
1345         if (queued_skb) {
1346                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1347                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1348                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1349                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1350                 }
1351         }
1352         spin_unlock(&q->lock);
1353 }
1354
1355 /**
1356  *      sge_rx - process an ingress ethernet packet
1357  *      @sge: the sge structure
1358  *      @fl: the free list that contains the packet buffer
1359  *      @len: the packet length
1360  *
1361  *      Process an ingress ethernet pakcet and deliver it to the stack.
1362  */
1363 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1364 {
1365         struct sk_buff *skb;
1366         const struct cpl_rx_pkt *p;
1367         struct adapter *adapter = sge->adapter;
1368         struct sge_port_stats *st;
1369
1370         skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
1371         if (unlikely(!skb)) {
1372                 sge->stats.rx_drops++;
1373                 return;
1374         }
1375
1376         p = (const struct cpl_rx_pkt *) skb->data;
1377         if (p->iff >= adapter->params.nports) {
1378                 kfree_skb(skb);
1379                 return;
1380         }
1381         __skb_pull(skb, sizeof(*p));
1382
1383         st = per_cpu_ptr(sge->port_stats[p->iff], smp_processor_id());
1384         st->rx_packets++;
1385
1386         skb->protocol = eth_type_trans(skb, adapter->port[p->iff].dev);
1387         skb->dev->last_rx = jiffies;
1388         if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
1389             skb->protocol == htons(ETH_P_IP) &&
1390             (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1391                 ++st->rx_cso_good;
1392                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1393         } else
1394                 skb->ip_summed = CHECKSUM_NONE;
1395
1396         if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
1397                 st->vlan_xtract++;
1398 #ifdef CONFIG_CHELSIO_T1_NAPI
1399                         vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
1400                                                  ntohs(p->vlan));
1401 #else
1402                         vlan_hwaccel_rx(skb, adapter->vlan_grp,
1403                                         ntohs(p->vlan));
1404 #endif
1405         } else {
1406 #ifdef CONFIG_CHELSIO_T1_NAPI
1407                 netif_receive_skb(skb);
1408 #else
1409                 netif_rx(skb);
1410 #endif
1411         }
1412 }
1413
1414 /*
1415  * Returns true if a command queue has enough available descriptors that
1416  * we can resume Tx operation after temporarily disabling its packet queue.
1417  */
1418 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1419 {
1420         unsigned int r = q->processed - q->cleaned;
1421
1422         return q->in_use - r < (q->size >> 1);
1423 }
1424
1425 /*
1426  * Called when sufficient space has become available in the SGE command queues
1427  * after the Tx packet schedulers have been suspended to restart the Tx path.
1428  */
1429 static void restart_tx_queues(struct sge *sge)
1430 {
1431         struct adapter *adap = sge->adapter;
1432         int i;
1433
1434         if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1435                 return;
1436
1437         for_each_port(adap, i) {
1438                 struct net_device *nd = adap->port[i].dev;
1439
1440                 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1441                     netif_running(nd)) {
1442                         sge->stats.cmdQ_restarted[2]++;
1443                         netif_wake_queue(nd);
1444                 }
1445         }
1446 }
1447
1448 /*
1449  * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1450  * information.
1451  */
1452 static unsigned int update_tx_info(struct adapter *adapter,
1453                                           unsigned int flags,
1454                                           unsigned int pr0)
1455 {
1456         struct sge *sge = adapter->sge;
1457         struct cmdQ *cmdq = &sge->cmdQ[0];
1458
1459         cmdq->processed += pr0;
1460         if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1461                 freelQs_empty(sge);
1462                 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1463         }
1464         if (flags & F_CMDQ0_ENABLE) {
1465                 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1466
1467                 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1468                     !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1469                         set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1470                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1471                 }
1472                 if (sge->tx_sched)
1473                         tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1474
1475                 flags &= ~F_CMDQ0_ENABLE;
1476         }
1477
1478         if (unlikely(sge->stopped_tx_queues != 0))
1479                 restart_tx_queues(sge);
1480
1481         return flags;
1482 }
1483
1484 /*
1485  * Process SGE responses, up to the supplied budget.  Returns the number of
1486  * responses processed.  A negative budget is effectively unlimited.
1487  */
1488 static int process_responses(struct adapter *adapter, int budget)
1489 {
1490         struct sge *sge = adapter->sge;
1491         struct respQ *q = &sge->respQ;
1492         struct respQ_e *e = &q->entries[q->cidx];
1493         int done = 0;
1494         unsigned int flags = 0;
1495         unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1496
1497         while (done < budget && e->GenerationBit == q->genbit) {
1498                 flags |= e->Qsleeping;
1499
1500                 cmdq_processed[0] += e->Cmdq0CreditReturn;
1501                 cmdq_processed[1] += e->Cmdq1CreditReturn;
1502
1503                 /* We batch updates to the TX side to avoid cacheline
1504                  * ping-pong of TX state information on MP where the sender
1505                  * might run on a different CPU than this function...
1506                  */
1507                 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1508                         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1509                         cmdq_processed[0] = 0;
1510                 }
1511
1512                 if (unlikely(cmdq_processed[1] > 16)) {
1513                         sge->cmdQ[1].processed += cmdq_processed[1];
1514                         cmdq_processed[1] = 0;
1515                 }
1516
1517                 if (likely(e->DataValid)) {
1518                         struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1519
1520                         BUG_ON(!e->Sop || !e->Eop);
1521                         if (unlikely(e->Offload))
1522                                 unexpected_offload(adapter, fl);
1523                         else
1524                                 sge_rx(sge, fl, e->BufferLength);
1525
1526                         ++done;
1527
1528                         /*
1529                          * Note: this depends on each packet consuming a
1530                          * single free-list buffer; cf. the BUG above.
1531                          */
1532                         if (++fl->cidx == fl->size)
1533                                 fl->cidx = 0;
1534                         prefetch(fl->centries[fl->cidx].skb);
1535
1536                         if (unlikely(--fl->credits <
1537                                      fl->size - SGE_FREEL_REFILL_THRESH))
1538                                 refill_free_list(sge, fl);
1539                 } else
1540                         sge->stats.pure_rsps++;
1541
1542                 e++;
1543                 if (unlikely(++q->cidx == q->size)) {
1544                         q->cidx = 0;
1545                         q->genbit ^= 1;
1546                         e = q->entries;
1547                 }
1548                 prefetch(e);
1549
1550                 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1551                         writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1552                         q->credits = 0;
1553                 }
1554         }
1555
1556         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1557         sge->cmdQ[1].processed += cmdq_processed[1];
1558
1559         return done;
1560 }
1561
1562 static inline int responses_pending(const struct adapter *adapter)
1563 {
1564         const struct respQ *Q = &adapter->sge->respQ;
1565         const struct respQ_e *e = &Q->entries[Q->cidx];
1566
1567         return (e->GenerationBit == Q->genbit);
1568 }
1569
1570 #ifdef CONFIG_CHELSIO_T1_NAPI
1571 /*
1572  * A simpler version of process_responses() that handles only pure (i.e.,
1573  * non data-carrying) responses.  Such respones are too light-weight to justify
1574  * calling a softirq when using NAPI, so we handle them specially in hard
1575  * interrupt context.  The function is called with a pointer to a response,
1576  * which the caller must ensure is a valid pure response.  Returns 1 if it
1577  * encounters a valid data-carrying response, 0 otherwise.
1578  */
1579 static int process_pure_responses(struct adapter *adapter)
1580 {
1581         struct sge *sge = adapter->sge;
1582         struct respQ *q = &sge->respQ;
1583         struct respQ_e *e = &q->entries[q->cidx];
1584         const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1585         unsigned int flags = 0;
1586         unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1587
1588         prefetch(fl->centries[fl->cidx].skb);
1589         if (e->DataValid)
1590                 return 1;
1591
1592         do {
1593                 flags |= e->Qsleeping;
1594
1595                 cmdq_processed[0] += e->Cmdq0CreditReturn;
1596                 cmdq_processed[1] += e->Cmdq1CreditReturn;
1597
1598                 e++;
1599                 if (unlikely(++q->cidx == q->size)) {
1600                         q->cidx = 0;
1601                         q->genbit ^= 1;
1602                         e = q->entries;
1603                 }
1604                 prefetch(e);
1605
1606                 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1607                         writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1608                         q->credits = 0;
1609                 }
1610                 sge->stats.pure_rsps++;
1611         } while (e->GenerationBit == q->genbit && !e->DataValid);
1612
1613         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1614         sge->cmdQ[1].processed += cmdq_processed[1];
1615
1616         return e->GenerationBit == q->genbit;
1617 }
1618
1619 /*
1620  * Handler for new data events when using NAPI.  This does not need any locking
1621  * or protection from interrupts as data interrupts are off at this point and
1622  * other adapter interrupts do not interfere.
1623  */
1624 int t1_poll(struct napi_struct *napi, int budget)
1625 {
1626         struct adapter *adapter = container_of(napi, struct adapter, napi);
1627         struct net_device *dev = adapter->port[0].dev;
1628         int work_done;
1629
1630         work_done = process_responses(adapter, budget);
1631
1632         if (likely(!responses_pending(adapter))) {
1633                 netif_rx_complete(dev, napi);
1634                 writel(adapter->sge->respQ.cidx,
1635                        adapter->regs + A_SG_SLEEPING);
1636         }
1637         return work_done;
1638 }
1639
1640 /*
1641  * NAPI version of the main interrupt handler.
1642  */
1643 irqreturn_t t1_interrupt(int irq, void *data)
1644 {
1645         struct adapter *adapter = data;
1646         struct sge *sge = adapter->sge;
1647         int handled;
1648
1649         if (likely(responses_pending(adapter))) {
1650                 struct net_device *dev = sge->netdev;
1651
1652                 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1653
1654                 if (napi_schedule_prep(&adapter->napi)) {
1655                         if (process_pure_responses(adapter))
1656                                 __netif_rx_schedule(dev, &adapter->napi);
1657                         else {
1658                                 /* no data, no NAPI needed */
1659                                 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1660                                 napi_enable(&adapter->napi);    /* undo schedule_prep */
1661                         }
1662                 }
1663                 return IRQ_HANDLED;
1664         }
1665
1666         spin_lock(&adapter->async_lock);
1667         handled = t1_slow_intr_handler(adapter);
1668         spin_unlock(&adapter->async_lock);
1669
1670         if (!handled)
1671                 sge->stats.unhandled_irqs++;
1672
1673         return IRQ_RETVAL(handled != 0);
1674 }
1675
1676 #else
1677 /*
1678  * Main interrupt handler, optimized assuming that we took a 'DATA'
1679  * interrupt.
1680  *
1681  * 1. Clear the interrupt
1682  * 2. Loop while we find valid descriptors and process them; accumulate
1683  *      information that can be processed after the loop
1684  * 3. Tell the SGE at which index we stopped processing descriptors
1685  * 4. Bookkeeping; free TX buffers, ring doorbell if there are any
1686  *      outstanding TX buffers waiting, replenish RX buffers, potentially
1687  *      reenable upper layers if they were turned off due to lack of TX
1688  *      resources which are available again.
1689  * 5. If we took an interrupt, but no valid respQ descriptors was found we
1690  *      let the slow_intr_handler run and do error handling.
1691  */
1692 irqreturn_t t1_interrupt(int irq, void *cookie)
1693 {
1694         int work_done;
1695         struct adapter *adapter = cookie;
1696         struct respQ *Q = &adapter->sge->respQ;
1697
1698         spin_lock(&adapter->async_lock);
1699
1700         writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1701
1702         if (likely(responses_pending(adapter)))
1703                 work_done = process_responses(adapter, -1);
1704         else
1705                 work_done = t1_slow_intr_handler(adapter);
1706
1707         /*
1708          * The unconditional clearing of the PL_CAUSE above may have raced
1709          * with DMA completion and the corresponding generation of a response
1710          * to cause us to miss the resulting data interrupt.  The next write
1711          * is also unconditional to recover the missed interrupt and render
1712          * this race harmless.
1713          */
1714         writel(Q->cidx, adapter->regs + A_SG_SLEEPING);
1715
1716         if (!work_done)
1717                 adapter->sge->stats.unhandled_irqs++;
1718         spin_unlock(&adapter->async_lock);
1719         return IRQ_RETVAL(work_done != 0);
1720 }
1721 #endif
1722
1723 /*
1724  * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1725  *
1726  * The code figures out how many entries the sk_buff will require in the
1727  * cmdQ and updates the cmdQ data structure with the state once the enqueue
1728  * has complete. Then, it doesn't access the global structure anymore, but
1729  * uses the corresponding fields on the stack. In conjuction with a spinlock
1730  * around that code, we can make the function reentrant without holding the
1731  * lock when we actually enqueue (which might be expensive, especially on
1732  * architectures with IO MMUs).
1733  *
1734  * This runs with softirqs disabled.
1735  */
1736 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1737                      unsigned int qid, struct net_device *dev)
1738 {
1739         struct sge *sge = adapter->sge;
1740         struct cmdQ *q = &sge->cmdQ[qid];
1741         unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1742
1743         if (!spin_trylock(&q->lock))
1744                 return NETDEV_TX_LOCKED;
1745
1746         reclaim_completed_tx(sge, q);
1747
1748         pidx = q->pidx;
1749         credits = q->size - q->in_use;
1750         count = 1 + skb_shinfo(skb)->nr_frags;
1751         count += compute_large_page_tx_descs(skb);
1752
1753         /* Ethernet packet */
1754         if (unlikely(credits < count)) {
1755                 if (!netif_queue_stopped(dev)) {
1756                         netif_stop_queue(dev);
1757                         set_bit(dev->if_port, &sge->stopped_tx_queues);
1758                         sge->stats.cmdQ_full[2]++;
1759                         CH_ERR("%s: Tx ring full while queue awake!\n",
1760                                adapter->name);
1761                 }
1762                 spin_unlock(&q->lock);
1763                 return NETDEV_TX_BUSY;
1764         }
1765
1766         if (unlikely(credits - count < q->stop_thres)) {
1767                 netif_stop_queue(dev);
1768                 set_bit(dev->if_port, &sge->stopped_tx_queues);
1769                 sge->stats.cmdQ_full[2]++;
1770         }
1771
1772         /* T204 cmdQ0 skbs that are destined for a certain port have to go
1773          * through the scheduler.
1774          */
1775         if (sge->tx_sched && !qid && skb->dev) {
1776 use_sched:
1777                 use_sched_skb = 1;
1778                 /* Note that the scheduler might return a different skb than
1779                  * the one passed in.
1780                  */
1781                 skb = sched_skb(sge, skb, credits);
1782                 if (!skb) {
1783                         spin_unlock(&q->lock);
1784                         return NETDEV_TX_OK;
1785                 }
1786                 pidx = q->pidx;
1787                 count = 1 + skb_shinfo(skb)->nr_frags;
1788                 count += compute_large_page_tx_descs(skb);
1789         }
1790
1791         q->in_use += count;
1792         genbit = q->genbit;
1793         pidx = q->pidx;
1794         q->pidx += count;
1795         if (q->pidx >= q->size) {
1796                 q->pidx -= q->size;
1797                 q->genbit ^= 1;
1798         }
1799         spin_unlock(&q->lock);
1800
1801         write_tx_descs(adapter, skb, pidx, genbit, q);
1802
1803         /*
1804          * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring
1805          * the doorbell if the Q is asleep. There is a natural race, where
1806          * the hardware is going to sleep just after we checked, however,
1807          * then the interrupt handler will detect the outstanding TX packet
1808          * and ring the doorbell for us.
1809          */
1810         if (qid)
1811                 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1812         else {
1813                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1814                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1815                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1816                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1817                 }
1818         }
1819
1820         if (use_sched_skb) {
1821                 if (spin_trylock(&q->lock)) {
1822                         credits = q->size - q->in_use;
1823                         skb = NULL;
1824                         goto use_sched;
1825                 }
1826         }
1827         return NETDEV_TX_OK;
1828 }
1829
1830 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1831
1832 /*
1833  *      eth_hdr_len - return the length of an Ethernet header
1834  *      @data: pointer to the start of the Ethernet header
1835  *
1836  *      Returns the length of an Ethernet header, including optional VLAN tag.
1837  */
1838 static inline int eth_hdr_len(const void *data)
1839 {
1840         const struct ethhdr *e = data;
1841
1842         return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1843 }
1844
1845 /*
1846  * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1847  */
1848 int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1849 {
1850         struct adapter *adapter = dev->priv;
1851         struct sge *sge = adapter->sge;
1852         struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[dev->if_port],
1853                                                 smp_processor_id());
1854         struct cpl_tx_pkt *cpl;
1855         struct sk_buff *orig_skb = skb;
1856         int ret;
1857
1858         if (skb->protocol == htons(ETH_P_CPL5))
1859                 goto send;
1860
1861         /*
1862          * We are using a non-standard hard_header_len.
1863          * Allocate more header room in the rare cases it is not big enough.
1864          */
1865         if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1866                 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1867                 ++st->tx_need_hdrroom;
1868                 dev_kfree_skb_any(orig_skb);
1869                 if (!skb)
1870                         return NETDEV_TX_OK;
1871         }
1872
1873         if (skb_shinfo(skb)->gso_size) {
1874                 int eth_type;
1875                 struct cpl_tx_pkt_lso *hdr;
1876
1877                 ++st->tx_tso;
1878
1879                 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1880                         CPL_ETH_II : CPL_ETH_II_VLAN;
1881
1882                 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1883                 hdr->opcode = CPL_TX_PKT_LSO;
1884                 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1885                 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1886                 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1887                 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1888                                                           skb_shinfo(skb)->gso_size));
1889                 hdr->len = htonl(skb->len - sizeof(*hdr));
1890                 cpl = (struct cpl_tx_pkt *)hdr;
1891         } else {
1892                 /*
1893                  * Packets shorter than ETH_HLEN can break the MAC, drop them
1894                  * early.  Also, we may get oversized packets because some
1895                  * parts of the kernel don't handle our unusual hard_header_len
1896                  * right, drop those too.
1897                  */
1898                 if (unlikely(skb->len < ETH_HLEN ||
1899                              skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1900                         pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
1901                                  skb->len, eth_hdr_len(skb->data), dev->mtu);
1902                         dev_kfree_skb_any(skb);
1903                         return NETDEV_TX_OK;
1904                 }
1905
1906                 if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
1907                     skb->ip_summed == CHECKSUM_PARTIAL &&
1908                     ip_hdr(skb)->protocol == IPPROTO_UDP) {
1909                         if (unlikely(skb_checksum_help(skb))) {
1910                                 pr_debug("%s: unable to do udp checksum\n", dev->name);
1911                                 dev_kfree_skb_any(skb);
1912                                 return NETDEV_TX_OK;
1913                         }
1914                 }
1915
1916                 /* Hmmm, assuming to catch the gratious arp... and we'll use
1917                  * it to flush out stuck espi packets...
1918                  */
1919                 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1920                         if (skb->protocol == htons(ETH_P_ARP) &&
1921                             arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1922                                 adapter->sge->espibug_skb[dev->if_port] = skb;
1923                                 /* We want to re-use this skb later. We
1924                                  * simply bump the reference count and it
1925                                  * will not be freed...
1926                                  */
1927                                 skb = skb_get(skb);
1928                         }
1929                 }
1930
1931                 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
1932                 cpl->opcode = CPL_TX_PKT;
1933                 cpl->ip_csum_dis = 1;    /* SW calculates IP csum */
1934                 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1935                 /* the length field isn't used so don't bother setting it */
1936
1937                 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1938         }
1939         cpl->iff = dev->if_port;
1940
1941 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1942         if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
1943                 cpl->vlan_valid = 1;
1944                 cpl->vlan = htons(vlan_tx_tag_get(skb));
1945                 st->vlan_insert++;
1946         } else
1947 #endif
1948                 cpl->vlan_valid = 0;
1949
1950 send:
1951         st->tx_packets++;
1952         dev->trans_start = jiffies;
1953         ret = t1_sge_tx(skb, adapter, 0, dev);
1954
1955         /* If transmit busy, and we reallocated skb's due to headroom limit,
1956          * then silently discard to avoid leak.
1957          */
1958         if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1959                 dev_kfree_skb_any(skb);
1960                 ret = NETDEV_TX_OK;
1961         }
1962         return ret;
1963 }
1964
1965 /*
1966  * Callback for the Tx buffer reclaim timer.  Runs with softirqs disabled.
1967  */
1968 static void sge_tx_reclaim_cb(unsigned long data)
1969 {
1970         int i;
1971         struct sge *sge = (struct sge *)data;
1972
1973         for (i = 0; i < SGE_CMDQ_N; ++i) {
1974                 struct cmdQ *q = &sge->cmdQ[i];
1975
1976                 if (!spin_trylock(&q->lock))
1977                         continue;
1978
1979                 reclaim_completed_tx(sge, q);
1980                 if (i == 0 && q->in_use) {    /* flush pending credits */
1981                         writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1982                 }
1983                 spin_unlock(&q->lock);
1984         }
1985         mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1986 }
1987
1988 /*
1989  * Propagate changes of the SGE coalescing parameters to the HW.
1990  */
1991 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1992 {
1993         sge->fixed_intrtimer = p->rx_coalesce_usecs *
1994                 core_ticks_per_usec(sge->adapter);
1995         writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1996         return 0;
1997 }
1998
1999 /*
2000  * Allocates both RX and TX resources and configures the SGE. However,
2001  * the hardware is not enabled yet.
2002  */
2003 int t1_sge_configure(struct sge *sge, struct sge_params *p)
2004 {
2005         if (alloc_rx_resources(sge, p))
2006                 return -ENOMEM;
2007         if (alloc_tx_resources(sge, p)) {
2008                 free_rx_resources(sge);
2009                 return -ENOMEM;
2010         }
2011         configure_sge(sge, p);
2012
2013         /*
2014          * Now that we have sized the free lists calculate the payload
2015          * capacity of the large buffers.  Other parts of the driver use
2016          * this to set the max offload coalescing size so that RX packets
2017          * do not overflow our large buffers.
2018          */
2019         p->large_buf_capacity = jumbo_payload_capacity(sge);
2020         return 0;
2021 }
2022
2023 /*
2024  * Disables the DMA engine.
2025  */
2026 void t1_sge_stop(struct sge *sge)
2027 {
2028         int i;
2029         writel(0, sge->adapter->regs + A_SG_CONTROL);
2030         readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2031
2032         if (is_T2(sge->adapter))
2033                 del_timer_sync(&sge->espibug_timer);
2034
2035         del_timer_sync(&sge->tx_reclaim_timer);
2036         if (sge->tx_sched)
2037                 tx_sched_stop(sge);
2038
2039         for (i = 0; i < MAX_NPORTS; i++)
2040                 if (sge->espibug_skb[i])
2041                         kfree_skb(sge->espibug_skb[i]);
2042 }
2043
2044 /*
2045  * Enables the DMA engine.
2046  */
2047 void t1_sge_start(struct sge *sge)
2048 {
2049         refill_free_list(sge, &sge->freelQ[0]);
2050         refill_free_list(sge, &sge->freelQ[1]);
2051
2052         writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
2053         doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
2054         readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2055
2056         mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2057
2058         if (is_T2(sge->adapter))
2059                 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2060 }
2061
2062 /*
2063  * Callback for the T2 ESPI 'stuck packet feature' workaorund
2064  */
2065 static void espibug_workaround_t204(unsigned long data)
2066 {
2067         struct adapter *adapter = (struct adapter *)data;
2068         struct sge *sge = adapter->sge;
2069         unsigned int nports = adapter->params.nports;
2070         u32 seop[MAX_NPORTS];
2071
2072         if (adapter->open_device_map & PORT_MASK) {
2073                 int i;
2074
2075                 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
2076                         return;
2077
2078                 for (i = 0; i < nports; i++) {
2079                         struct sk_buff *skb = sge->espibug_skb[i];
2080
2081                         if (!netif_running(adapter->port[i].dev) ||
2082                             netif_queue_stopped(adapter->port[i].dev) ||
2083                             !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2084                                 continue;
2085
2086                         if (!skb->cb[0]) {
2087                                 u8 ch_mac_addr[ETH_ALEN] = {
2088                                         0x0, 0x7, 0x43, 0x0, 0x0, 0x0
2089                                 };
2090
2091                                 skb_copy_to_linear_data_offset(skb,
2092                                                     sizeof(struct cpl_tx_pkt),
2093                                                                ch_mac_addr,
2094                                                                ETH_ALEN);
2095                                 skb_copy_to_linear_data_offset(skb,
2096                                                                skb->len - 10,
2097                                                                ch_mac_addr,
2098                                                                ETH_ALEN);
2099                                 skb->cb[0] = 0xff;
2100                         }
2101
2102                         /* bump the reference count to avoid freeing of
2103                          * the skb once the DMA has completed.
2104                          */
2105                         skb = skb_get(skb);
2106                         t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2107                 }
2108         }
2109         mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2110 }
2111
2112 static void espibug_workaround(unsigned long data)
2113 {
2114         struct adapter *adapter = (struct adapter *)data;
2115         struct sge *sge = adapter->sge;
2116
2117         if (netif_running(adapter->port[0].dev)) {
2118                 struct sk_buff *skb = sge->espibug_skb[0];
2119                 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2120
2121                 if ((seop & 0xfff0fff) == 0xfff && skb) {
2122                         if (!skb->cb[0]) {
2123                                 u8 ch_mac_addr[ETH_ALEN] =
2124                                     {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
2125                                 skb_copy_to_linear_data_offset(skb,
2126                                                      sizeof(struct cpl_tx_pkt),
2127                                                                ch_mac_addr,
2128                                                                ETH_ALEN);
2129                                 skb_copy_to_linear_data_offset(skb,
2130                                                                skb->len - 10,
2131                                                                ch_mac_addr,
2132                                                                ETH_ALEN);
2133                                 skb->cb[0] = 0xff;
2134                         }
2135
2136                         /* bump the reference count to avoid freeing of the
2137                          * skb once the DMA has completed.
2138                          */
2139                         skb = skb_get(skb);
2140                         t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2141                 }
2142         }
2143         mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2144 }
2145
2146 /*
2147  * Creates a t1_sge structure and returns suggested resource parameters.
2148  */
2149 struct sge * __devinit t1_sge_create(struct adapter *adapter,
2150                                      struct sge_params *p)
2151 {
2152         struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2153         int i;
2154
2155         if (!sge)
2156                 return NULL;
2157
2158         sge->adapter = adapter;
2159         sge->netdev = adapter->port[0].dev;
2160         sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2161         sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2162
2163         for_each_port(adapter, i) {
2164                 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2165                 if (!sge->port_stats[i])
2166                         goto nomem_port;
2167         }
2168
2169         init_timer(&sge->tx_reclaim_timer);
2170         sge->tx_reclaim_timer.data = (unsigned long)sge;
2171         sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2172
2173         if (is_T2(sge->adapter)) {
2174                 init_timer(&sge->espibug_timer);
2175
2176                 if (adapter->params.nports > 1) {
2177                         tx_sched_init(sge);
2178                         sge->espibug_timer.function = espibug_workaround_t204;
2179                 } else
2180                         sge->espibug_timer.function = espibug_workaround;
2181                 sge->espibug_timer.data = (unsigned long)sge->adapter;
2182
2183                 sge->espibug_timeout = 1;
2184                 /* for T204, every 10ms */
2185                 if (adapter->params.nports > 1)
2186                         sge->espibug_timeout = HZ/100;
2187         }
2188
2189
2190         p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2191         p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2192         p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2193         p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2194         if (sge->tx_sched) {
2195                 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2196                         p->rx_coalesce_usecs = 15;
2197                 else
2198                         p->rx_coalesce_usecs = 50;
2199         } else
2200                 p->rx_coalesce_usecs = 50;
2201
2202         p->coalesce_enable = 0;
2203         p->sample_interval_usecs = 0;
2204
2205         return sge;
2206 nomem_port:
2207         while (i >= 0) {
2208                 free_percpu(sge->port_stats[i]);
2209                 --i;
2210         }
2211         kfree(sge);
2212         return NULL;
2213
2214 }