[MTD] OneNAND: Single bit error detection
[safe/jmp/linux-2.6] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2006 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/onenand.h>
20 #include <linux/mtd/partitions.h>
21
22 #include <asm/io.h>
23
24 /**
25  * onenand_oob_64 - oob info for large (2KB) page
26  */
27 static struct nand_ecclayout onenand_oob_64 = {
28         .eccbytes       = 20,
29         .eccpos         = {
30                 8, 9, 10, 11, 12,
31                 24, 25, 26, 27, 28,
32                 40, 41, 42, 43, 44,
33                 56, 57, 58, 59, 60,
34                 },
35         .oobfree        = {
36                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
37                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
38         }
39 };
40
41 /**
42  * onenand_oob_32 - oob info for middle (1KB) page
43  */
44 static struct nand_ecclayout onenand_oob_32 = {
45         .eccbytes       = 10,
46         .eccpos         = {
47                 8, 9, 10, 11, 12,
48                 24, 25, 26, 27, 28,
49                 },
50         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
51 };
52
53 static const unsigned char ffchars[] = {
54         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
55         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
56         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
57         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
58         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
59         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
60         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
61         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
62 };
63
64 /**
65  * onenand_readw - [OneNAND Interface] Read OneNAND register
66  * @param addr          address to read
67  *
68  * Read OneNAND register
69  */
70 static unsigned short onenand_readw(void __iomem *addr)
71 {
72         return readw(addr);
73 }
74
75 /**
76  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
77  * @param value         value to write
78  * @param addr          address to write
79  *
80  * Write OneNAND register with value
81  */
82 static void onenand_writew(unsigned short value, void __iomem *addr)
83 {
84         writew(value, addr);
85 }
86
87 /**
88  * onenand_block_address - [DEFAULT] Get block address
89  * @param this          onenand chip data structure
90  * @param block         the block
91  * @return              translated block address if DDP, otherwise same
92  *
93  * Setup Start Address 1 Register (F100h)
94  */
95 static int onenand_block_address(struct onenand_chip *this, int block)
96 {
97         if (this->device_id & ONENAND_DEVICE_IS_DDP) {
98                 /* Device Flash Core select, NAND Flash Block Address */
99                 int dfs = 0;
100
101                 if (block & this->density_mask)
102                         dfs = 1;
103
104                 return (dfs << ONENAND_DDP_SHIFT) |
105                         (block & (this->density_mask - 1));
106         }
107
108         return block;
109 }
110
111 /**
112  * onenand_bufferram_address - [DEFAULT] Get bufferram address
113  * @param this          onenand chip data structure
114  * @param block         the block
115  * @return              set DBS value if DDP, otherwise 0
116  *
117  * Setup Start Address 2 Register (F101h) for DDP
118  */
119 static int onenand_bufferram_address(struct onenand_chip *this, int block)
120 {
121         if (this->device_id & ONENAND_DEVICE_IS_DDP) {
122                 /* Device BufferRAM Select */
123                 int dbs = 0;
124
125                 if (block & this->density_mask)
126                         dbs = 1;
127
128                 return (dbs << ONENAND_DDP_SHIFT);
129         }
130
131         return 0;
132 }
133
134 /**
135  * onenand_page_address - [DEFAULT] Get page address
136  * @param page          the page address
137  * @param sector        the sector address
138  * @return              combined page and sector address
139  *
140  * Setup Start Address 8 Register (F107h)
141  */
142 static int onenand_page_address(int page, int sector)
143 {
144         /* Flash Page Address, Flash Sector Address */
145         int fpa, fsa;
146
147         fpa = page & ONENAND_FPA_MASK;
148         fsa = sector & ONENAND_FSA_MASK;
149
150         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
151 }
152
153 /**
154  * onenand_buffer_address - [DEFAULT] Get buffer address
155  * @param dataram1      DataRAM index
156  * @param sectors       the sector address
157  * @param count         the number of sectors
158  * @return              the start buffer value
159  *
160  * Setup Start Buffer Register (F200h)
161  */
162 static int onenand_buffer_address(int dataram1, int sectors, int count)
163 {
164         int bsa, bsc;
165
166         /* BufferRAM Sector Address */
167         bsa = sectors & ONENAND_BSA_MASK;
168
169         if (dataram1)
170                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
171         else
172                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
173
174         /* BufferRAM Sector Count */
175         bsc = count & ONENAND_BSC_MASK;
176
177         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
178 }
179
180 /**
181  * onenand_command - [DEFAULT] Send command to OneNAND device
182  * @param mtd           MTD device structure
183  * @param cmd           the command to be sent
184  * @param addr          offset to read from or write to
185  * @param len           number of bytes to read or write
186  *
187  * Send command to OneNAND device. This function is used for middle/large page
188  * devices (1KB/2KB Bytes per page)
189  */
190 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
191 {
192         struct onenand_chip *this = mtd->priv;
193         int value, readcmd = 0, block_cmd = 0;
194         int block, page;
195         /* Now we use page size operation */
196         int sectors = 4, count = 4;
197
198         /* Address translation */
199         switch (cmd) {
200         case ONENAND_CMD_UNLOCK:
201         case ONENAND_CMD_LOCK:
202         case ONENAND_CMD_LOCK_TIGHT:
203         case ONENAND_CMD_UNLOCK_ALL:
204                 block = -1;
205                 page = -1;
206                 break;
207
208         case ONENAND_CMD_ERASE:
209         case ONENAND_CMD_BUFFERRAM:
210         case ONENAND_CMD_OTP_ACCESS:
211                 block_cmd = 1;
212                 block = (int) (addr >> this->erase_shift);
213                 page = -1;
214                 break;
215
216         default:
217                 block = (int) (addr >> this->erase_shift);
218                 page = (int) (addr >> this->page_shift);
219                 page &= this->page_mask;
220                 break;
221         }
222
223         /* NOTE: The setting order of the registers is very important! */
224         if (cmd == ONENAND_CMD_BUFFERRAM) {
225                 /* Select DataRAM for DDP */
226                 value = onenand_bufferram_address(this, block);
227                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
228
229                 /* Switch to the next data buffer */
230                 ONENAND_SET_NEXT_BUFFERRAM(this);
231
232                 return 0;
233         }
234
235         if (block != -1) {
236                 /* Write 'DFS, FBA' of Flash */
237                 value = onenand_block_address(this, block);
238                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
239
240                 if (block_cmd) {
241                         /* Select DataRAM for DDP */
242                         value = onenand_bufferram_address(this, block);
243                         this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
244                 }
245         }
246
247         if (page != -1) {
248                 int dataram;
249
250                 switch (cmd) {
251                 case ONENAND_CMD_READ:
252                 case ONENAND_CMD_READOOB:
253                         dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
254                         readcmd = 1;
255                         break;
256
257                 default:
258                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
259                         break;
260                 }
261
262                 /* Write 'FPA, FSA' of Flash */
263                 value = onenand_page_address(page, sectors);
264                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
265
266                 /* Write 'BSA, BSC' of DataRAM */
267                 value = onenand_buffer_address(dataram, sectors, count);
268                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
269
270                 if (readcmd) {
271                         /* Select DataRAM for DDP */
272                         value = onenand_bufferram_address(this, block);
273                         this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
274                 }
275         }
276
277         /* Interrupt clear */
278         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
279
280         /* Write command */
281         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
282
283         return 0;
284 }
285
286 /**
287  * onenand_wait - [DEFAULT] wait until the command is done
288  * @param mtd           MTD device structure
289  * @param state         state to select the max. timeout value
290  *
291  * Wait for command done. This applies to all OneNAND command
292  * Read can take up to 30us, erase up to 2ms and program up to 350us
293  * according to general OneNAND specs
294  */
295 static int onenand_wait(struct mtd_info *mtd, int state)
296 {
297         struct onenand_chip * this = mtd->priv;
298         unsigned long timeout;
299         unsigned int flags = ONENAND_INT_MASTER;
300         unsigned int interrupt = 0;
301         unsigned int ctrl, ecc;
302
303         /* The 20 msec is enough */
304         timeout = jiffies + msecs_to_jiffies(20);
305         while (time_before(jiffies, timeout)) {
306                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
307
308                 if (interrupt & flags)
309                         break;
310
311                 if (state != FL_READING)
312                         cond_resched();
313                 touch_softlockup_watchdog();
314         }
315         /* To get correct interrupt status in timeout case */
316         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
317
318         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
319
320         if (ctrl & ONENAND_CTRL_ERROR) {
321                 /* It maybe occur at initial bad block */
322                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: controller error = 0x%04x\n", ctrl);
323                 /* Clear other interrupt bits for preventing ECC error */
324                 interrupt &= ONENAND_INT_MASTER;
325         }
326
327         if (ctrl & ONENAND_CTRL_LOCK) {
328                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: it's locked error = 0x%04x\n", ctrl);
329                 return -EACCES;
330         }
331
332         if (interrupt & ONENAND_INT_READ) {
333                 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
334                 if (ecc) {
335                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: ECC error = 0x%04x\n", ecc);
336                         if (ecc & ONENAND_ECC_2BIT_ALL)
337                                 mtd->ecc_stats.failed++;
338                         else if (ecc & ONENAND_ECC_1BIT_ALL)
339                                 mtd->ecc_stats.corrected++;
340                 }
341         }
342
343         return 0;
344 }
345
346 /*
347  * onenand_interrupt - [DEFAULT] onenand interrupt handler
348  * @param irq           onenand interrupt number
349  * @param dev_id        interrupt data
350  *
351  * complete the work
352  */
353 static irqreturn_t onenand_interrupt(int irq, void *data)
354 {
355         struct onenand_chip *this = (struct onenand_chip *) data;
356
357         /* To handle shared interrupt */
358         if (!this->complete.done)
359                 complete(&this->complete);
360
361         return IRQ_HANDLED;
362 }
363
364 /*
365  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
366  * @param mtd           MTD device structure
367  * @param state         state to select the max. timeout value
368  *
369  * Wait for command done.
370  */
371 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
372 {
373         struct onenand_chip *this = mtd->priv;
374
375         /* To prevent soft lockup */
376         touch_softlockup_watchdog();
377
378         wait_for_completion(&this->complete);
379
380         return onenand_wait(mtd, state);
381 }
382
383 /*
384  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
385  * @param mtd           MTD device structure
386  * @param state         state to select the max. timeout value
387  *
388  * Try interrupt based wait (It is used one-time)
389  */
390 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
391 {
392         struct onenand_chip *this = mtd->priv;
393         unsigned long remain, timeout;
394
395         /* We use interrupt wait first */
396         this->wait = onenand_interrupt_wait;
397
398         /* To prevent soft lockup */
399         touch_softlockup_watchdog();
400
401         timeout = msecs_to_jiffies(100);
402         remain = wait_for_completion_timeout(&this->complete, timeout);
403         if (!remain) {
404                 printk(KERN_INFO "OneNAND: There's no interrupt. "
405                                 "We use the normal wait\n");
406
407                 /* Release the irq */
408                 free_irq(this->irq, this);
409                 
410                 this->wait = onenand_wait;
411         }
412
413         return onenand_wait(mtd, state);
414 }
415
416 /*
417  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
418  * @param mtd           MTD device structure
419  *
420  * There's two method to wait onenand work
421  * 1. polling - read interrupt status register
422  * 2. interrupt - use the kernel interrupt method
423  */
424 static void onenand_setup_wait(struct mtd_info *mtd)
425 {
426         struct onenand_chip *this = mtd->priv;
427         int syscfg;
428
429         init_completion(&this->complete);
430
431         if (this->irq <= 0) {
432                 this->wait = onenand_wait;
433                 return;
434         }
435
436         if (request_irq(this->irq, &onenand_interrupt,
437                                 IRQF_SHARED, "onenand", this)) {
438                 /* If we can't get irq, use the normal wait */
439                 this->wait = onenand_wait;
440                 return;
441         }
442
443         /* Enable interrupt */
444         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
445         syscfg |= ONENAND_SYS_CFG1_IOBE;
446         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
447
448         this->wait = onenand_try_interrupt_wait;
449 }
450
451 /**
452  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
453  * @param mtd           MTD data structure
454  * @param area          BufferRAM area
455  * @return              offset given area
456  *
457  * Return BufferRAM offset given area
458  */
459 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
460 {
461         struct onenand_chip *this = mtd->priv;
462
463         if (ONENAND_CURRENT_BUFFERRAM(this)) {
464                 if (area == ONENAND_DATARAM)
465                         return mtd->writesize;
466                 if (area == ONENAND_SPARERAM)
467                         return mtd->oobsize;
468         }
469
470         return 0;
471 }
472
473 /**
474  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
475  * @param mtd           MTD data structure
476  * @param area          BufferRAM area
477  * @param buffer        the databuffer to put/get data
478  * @param offset        offset to read from or write to
479  * @param count         number of bytes to read/write
480  *
481  * Read the BufferRAM area
482  */
483 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
484                 unsigned char *buffer, int offset, size_t count)
485 {
486         struct onenand_chip *this = mtd->priv;
487         void __iomem *bufferram;
488
489         bufferram = this->base + area;
490
491         bufferram += onenand_bufferram_offset(mtd, area);
492
493         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
494                 unsigned short word;
495
496                 /* Align with word(16-bit) size */
497                 count--;
498
499                 /* Read word and save byte */
500                 word = this->read_word(bufferram + offset + count);
501                 buffer[count] = (word & 0xff);
502         }
503
504         memcpy(buffer, bufferram + offset, count);
505
506         return 0;
507 }
508
509 /**
510  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
511  * @param mtd           MTD data structure
512  * @param area          BufferRAM area
513  * @param buffer        the databuffer to put/get data
514  * @param offset        offset to read from or write to
515  * @param count         number of bytes to read/write
516  *
517  * Read the BufferRAM area with Sync. Burst Mode
518  */
519 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
520                 unsigned char *buffer, int offset, size_t count)
521 {
522         struct onenand_chip *this = mtd->priv;
523         void __iomem *bufferram;
524
525         bufferram = this->base + area;
526
527         bufferram += onenand_bufferram_offset(mtd, area);
528
529         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
530
531         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
532                 unsigned short word;
533
534                 /* Align with word(16-bit) size */
535                 count--;
536
537                 /* Read word and save byte */
538                 word = this->read_word(bufferram + offset + count);
539                 buffer[count] = (word & 0xff);
540         }
541
542         memcpy(buffer, bufferram + offset, count);
543
544         this->mmcontrol(mtd, 0);
545
546         return 0;
547 }
548
549 /**
550  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
551  * @param mtd           MTD data structure
552  * @param area          BufferRAM area
553  * @param buffer        the databuffer to put/get data
554  * @param offset        offset to read from or write to
555  * @param count         number of bytes to read/write
556  *
557  * Write the BufferRAM area
558  */
559 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
560                 const unsigned char *buffer, int offset, size_t count)
561 {
562         struct onenand_chip *this = mtd->priv;
563         void __iomem *bufferram;
564
565         bufferram = this->base + area;
566
567         bufferram += onenand_bufferram_offset(mtd, area);
568
569         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
570                 unsigned short word;
571                 int byte_offset;
572
573                 /* Align with word(16-bit) size */
574                 count--;
575
576                 /* Calculate byte access offset */
577                 byte_offset = offset + count;
578
579                 /* Read word and save byte */
580                 word = this->read_word(bufferram + byte_offset);
581                 word = (word & ~0xff) | buffer[count];
582                 this->write_word(word, bufferram + byte_offset);
583         }
584
585         memcpy(bufferram + offset, buffer, count);
586
587         return 0;
588 }
589
590 /**
591  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
592  * @param mtd           MTD data structure
593  * @param addr          address to check
594  * @return              1 if there are valid data, otherwise 0
595  *
596  * Check bufferram if there is data we required
597  */
598 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
599 {
600         struct onenand_chip *this = mtd->priv;
601         int block, page;
602         int i;
603
604         block = (int) (addr >> this->erase_shift);
605         page = (int) (addr >> this->page_shift);
606         page &= this->page_mask;
607
608         i = ONENAND_CURRENT_BUFFERRAM(this);
609
610         /* Is there valid data? */
611         if (this->bufferram[i].block == block &&
612             this->bufferram[i].page == page &&
613             this->bufferram[i].valid)
614                 return 1;
615
616         return 0;
617 }
618
619 /**
620  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
621  * @param mtd           MTD data structure
622  * @param addr          address to update
623  * @param valid         valid flag
624  *
625  * Update BufferRAM information
626  */
627 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
628                 int valid)
629 {
630         struct onenand_chip *this = mtd->priv;
631         int block, page;
632         int i;
633
634         block = (int) (addr >> this->erase_shift);
635         page = (int) (addr >> this->page_shift);
636         page &= this->page_mask;
637
638         /* Invalidate BufferRAM */
639         for (i = 0; i < MAX_BUFFERRAM; i++) {
640                 if (this->bufferram[i].block == block &&
641                     this->bufferram[i].page == page)
642                         this->bufferram[i].valid = 0;
643         }
644
645         /* Update BufferRAM */
646         i = ONENAND_CURRENT_BUFFERRAM(this);
647         this->bufferram[i].block = block;
648         this->bufferram[i].page = page;
649         this->bufferram[i].valid = valid;
650
651         return 0;
652 }
653
654 /**
655  * onenand_get_device - [GENERIC] Get chip for selected access
656  * @param mtd           MTD device structure
657  * @param new_state     the state which is requested
658  *
659  * Get the device and lock it for exclusive access
660  */
661 static int onenand_get_device(struct mtd_info *mtd, int new_state)
662 {
663         struct onenand_chip *this = mtd->priv;
664         DECLARE_WAITQUEUE(wait, current);
665
666         /*
667          * Grab the lock and see if the device is available
668          */
669         while (1) {
670                 spin_lock(&this->chip_lock);
671                 if (this->state == FL_READY) {
672                         this->state = new_state;
673                         spin_unlock(&this->chip_lock);
674                         break;
675                 }
676                 if (new_state == FL_PM_SUSPENDED) {
677                         spin_unlock(&this->chip_lock);
678                         return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
679                 }
680                 set_current_state(TASK_UNINTERRUPTIBLE);
681                 add_wait_queue(&this->wq, &wait);
682                 spin_unlock(&this->chip_lock);
683                 schedule();
684                 remove_wait_queue(&this->wq, &wait);
685         }
686
687         return 0;
688 }
689
690 /**
691  * onenand_release_device - [GENERIC] release chip
692  * @param mtd           MTD device structure
693  *
694  * Deselect, release chip lock and wake up anyone waiting on the device
695  */
696 static void onenand_release_device(struct mtd_info *mtd)
697 {
698         struct onenand_chip *this = mtd->priv;
699
700         /* Release the chip */
701         spin_lock(&this->chip_lock);
702         this->state = FL_READY;
703         wake_up(&this->wq);
704         spin_unlock(&this->chip_lock);
705 }
706
707 /**
708  * onenand_read - [MTD Interface] Read data from flash
709  * @param mtd           MTD device structure
710  * @param from          offset to read from
711  * @param len           number of bytes to read
712  * @param retlen        pointer to variable to store the number of read bytes
713  * @param buf           the databuffer to put data
714  *
715  * Read with ecc
716 */
717 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
718         size_t *retlen, u_char *buf)
719 {
720         struct onenand_chip *this = mtd->priv;
721         struct mtd_ecc_stats stats;
722         int read = 0, column;
723         int thislen;
724         int ret = 0;
725
726         DEBUG(MTD_DEBUG_LEVEL3, "onenand_read: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
727
728         /* Do not allow reads past end of device */
729         if ((from + len) > mtd->size) {
730                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_read: Attempt read beyond end of device\n");
731                 *retlen = 0;
732                 return -EINVAL;
733         }
734
735         /* Grab the lock and see if the device is available */
736         onenand_get_device(mtd, FL_READING);
737
738         /* TODO handling oob */
739
740         stats = mtd->ecc_stats;
741         while (read < len) {
742                 thislen = min_t(int, mtd->writesize, len - read);
743
744                 column = from & (mtd->writesize - 1);
745                 if (column + thislen > mtd->writesize)
746                         thislen = mtd->writesize - column;
747
748                 if (!onenand_check_bufferram(mtd, from)) {
749                         this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
750
751                         ret = this->wait(mtd, FL_READING);
752                         /* First copy data and check return value for ECC handling */
753                         onenand_update_bufferram(mtd, from, 1);
754                 }
755
756                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
757
758                 read += thislen;
759
760                 if (read == len)
761                         break;
762
763                 if (ret) {
764                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_read: read failed = %d\n", ret);
765                         goto out;
766                 }
767
768                 from += thislen;
769                 buf += thislen;
770         }
771
772 out:
773         /* Deselect and wake up anyone waiting on the device */
774         onenand_release_device(mtd);
775
776         /*
777          * Return success, if no ECC failures, else -EBADMSG
778          * fs driver will take care of that, because
779          * retlen == desired len and result == -EBADMSG
780          */
781         *retlen = read;
782
783         if (mtd->ecc_stats.failed - stats.failed)
784                 return -EBADMSG;
785
786         return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
787 }
788
789 /**
790  * onenand_do_read_oob - [MTD Interface] OneNAND read out-of-band
791  * @param mtd           MTD device structure
792  * @param from          offset to read from
793  * @param len           number of bytes to read
794  * @param retlen        pointer to variable to store the number of read bytes
795  * @param buf           the databuffer to put data
796  *
797  * OneNAND read out-of-band data from the spare area
798  */
799 int onenand_do_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
800                         size_t *retlen, u_char *buf)
801 {
802         struct onenand_chip *this = mtd->priv;
803         int read = 0, thislen, column;
804         int ret = 0;
805
806         DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
807
808         /* Initialize return length value */
809         *retlen = 0;
810
811         /* Do not allow reads past end of device */
812         if (unlikely((from + len) > mtd->size)) {
813                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: Attempt read beyond end of device\n");
814                 return -EINVAL;
815         }
816
817         /* Grab the lock and see if the device is available */
818         onenand_get_device(mtd, FL_READING);
819
820         column = from & (mtd->oobsize - 1);
821
822         while (read < len) {
823                 thislen = mtd->oobsize - column;
824                 thislen = min_t(int, thislen, len);
825
826                 this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
827
828                 onenand_update_bufferram(mtd, from, 0);
829
830                 ret = this->wait(mtd, FL_READING);
831                 /* First copy data and check return value for ECC handling */
832
833                 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
834
835                 read += thislen;
836
837                 if (read == len)
838                         break;
839
840                 if (ret) {
841                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: read failed = %d\n", ret);
842                         goto out;
843                 }
844
845                 buf += thislen;
846
847                 /* Read more? */
848                 if (read < len) {
849                         /* Page size */
850                         from += mtd->writesize;
851                         column = 0;
852                 }
853         }
854
855 out:
856         /* Deselect and wake up anyone waiting on the device */
857         onenand_release_device(mtd);
858
859         *retlen = read;
860         return ret;
861 }
862
863 /**
864  * onenand_read_oob - [MTD Interface] NAND write data and/or out-of-band
865  * @mtd:        MTD device structure
866  * @from:       offset to read from
867  * @ops:        oob operation description structure
868  */
869 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
870                             struct mtd_oob_ops *ops)
871 {
872         BUG_ON(ops->mode != MTD_OOB_PLACE);
873
874         return onenand_do_read_oob(mtd, from + ops->ooboffs, ops->len,
875                                    &ops->retlen, ops->oobbuf);
876 }
877
878 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
879 /**
880  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
881  * @param mtd           MTD device structure
882  * @param buf           the databuffer to verify
883  * @param to            offset to read from
884  * @param len           number of bytes to read and compare
885  *
886  */
887 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to, int len)
888 {
889         struct onenand_chip *this = mtd->priv;
890         char *readp = this->page_buf;
891         int column = to & (mtd->oobsize - 1);
892         int status, i;
893
894         this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
895         onenand_update_bufferram(mtd, to, 0);
896         status = this->wait(mtd, FL_READING);
897         if (status)
898                 return status;
899
900         this->read_bufferram(mtd, ONENAND_SPARERAM, readp, column, len);
901
902         for(i = 0; i < len; i++)
903                 if (buf[i] != 0xFF && buf[i] != readp[i])
904                         return -EBADMSG;
905
906         return 0;
907 }
908
909 /**
910  * onenand_verify_page - [GENERIC] verify the chip contents after a write
911  * @param mtd           MTD device structure
912  * @param buf           the databuffer to verify
913  *
914  * Check DataRAM area directly
915  */
916 static int onenand_verify_page(struct mtd_info *mtd, u_char *buf, loff_t addr)
917 {
918         struct onenand_chip *this = mtd->priv;
919         void __iomem *dataram0, *dataram1;
920         int ret = 0;
921
922         this->command(mtd, ONENAND_CMD_READ, addr, mtd->writesize);
923
924         ret = this->wait(mtd, FL_READING);
925         if (ret)
926                 return ret;
927
928         onenand_update_bufferram(mtd, addr, 1);
929
930         /* Check, if the two dataram areas are same */
931         dataram0 = this->base + ONENAND_DATARAM;
932         dataram1 = dataram0 + mtd->writesize;
933
934         if (memcmp(dataram0, dataram1, mtd->writesize))
935                 return -EBADMSG;
936
937         return 0;
938 }
939 #else
940 #define onenand_verify_page(...)        (0)
941 #define onenand_verify_oob(...)         (0)
942 #endif
943
944 #define NOTALIGNED(x)   ((x & (mtd->writesize - 1)) != 0)
945
946 /**
947  * onenand_write - [MTD Interface] write buffer to FLASH
948  * @param mtd           MTD device structure
949  * @param to            offset to write to
950  * @param len           number of bytes to write
951  * @param retlen        pointer to variable to store the number of written bytes
952  * @param buf           the data to write
953  *
954  * Write with ECC
955  */
956 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
957         size_t *retlen, const u_char *buf)
958 {
959         struct onenand_chip *this = mtd->priv;
960         int written = 0;
961         int ret = 0;
962
963         DEBUG(MTD_DEBUG_LEVEL3, "onenand_write: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
964
965         /* Initialize retlen, in case of early exit */
966         *retlen = 0;
967
968         /* Do not allow writes past end of device */
969         if (unlikely((to + len) > mtd->size)) {
970                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: Attempt write to past end of device\n");
971                 return -EINVAL;
972         }
973
974         /* Reject writes, which are not page aligned */
975         if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
976                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: Attempt to write not page aligned data\n");
977                 return -EINVAL;
978         }
979
980         /* Grab the lock and see if the device is available */
981         onenand_get_device(mtd, FL_WRITING);
982
983         /* Loop until all data write */
984         while (written < len) {
985                 int thislen = min_t(int, mtd->writesize, len - written);
986
987                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->writesize);
988
989                 this->write_bufferram(mtd, ONENAND_DATARAM, buf, 0, thislen);
990                 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
991
992                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
993
994                 onenand_update_bufferram(mtd, to, 1);
995
996                 ret = this->wait(mtd, FL_WRITING);
997                 if (ret) {
998                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: write filaed %d\n", ret);
999                         goto out;
1000                 }
1001
1002                 written += thislen;
1003
1004                 /* Only check verify write turn on */
1005                 ret = onenand_verify_page(mtd, (u_char *) buf, to);
1006                 if (ret) {
1007                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: verify failed %d\n", ret);
1008                         goto out;
1009                 }
1010
1011                 if (written == len)
1012                         break;
1013
1014                 to += thislen;
1015                 buf += thislen;
1016         }
1017
1018 out:
1019         /* Deselect and wake up anyone waiting on the device */
1020         onenand_release_device(mtd);
1021
1022         *retlen = written;
1023
1024         return ret;
1025 }
1026
1027 /**
1028  * onenand_do_write_oob - [Internal] OneNAND write out-of-band
1029  * @param mtd           MTD device structure
1030  * @param to            offset to write to
1031  * @param len           number of bytes to write
1032  * @param retlen        pointer to variable to store the number of written bytes
1033  * @param buf           the data to write
1034  *
1035  * OneNAND write out-of-band
1036  */
1037 static int onenand_do_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
1038                                 size_t *retlen, const u_char *buf)
1039 {
1040         struct onenand_chip *this = mtd->priv;
1041         int column, ret = 0;
1042         int written = 0;
1043
1044         DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1045
1046         /* Initialize retlen, in case of early exit */
1047         *retlen = 0;
1048
1049         /* Do not allow writes past end of device */
1050         if (unlikely((to + len) > mtd->size)) {
1051                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: Attempt write to past end of device\n");
1052                 return -EINVAL;
1053         }
1054
1055         /* Grab the lock and see if the device is available */
1056         onenand_get_device(mtd, FL_WRITING);
1057
1058         /* Loop until all data write */
1059         while (written < len) {
1060                 int thislen = min_t(int, mtd->oobsize, len - written);
1061
1062                 column = to & (mtd->oobsize - 1);
1063
1064                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1065
1066                 /* We send data to spare ram with oobsize
1067                  * to prevent byte access */
1068                 memset(this->page_buf, 0xff, mtd->oobsize);
1069                 memcpy(this->page_buf + column, buf, thislen);
1070                 this->write_bufferram(mtd, ONENAND_SPARERAM, this->page_buf, 0, mtd->oobsize);
1071
1072                 this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
1073
1074                 onenand_update_bufferram(mtd, to, 0);
1075
1076                 ret = this->wait(mtd, FL_WRITING);
1077                 if (ret) {
1078                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: write filaed %d\n", ret);
1079                         goto out;
1080                 }
1081
1082                 ret = onenand_verify_oob(mtd, buf, to, thislen);
1083                 if (ret) {
1084                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: verify failed %d\n", ret);
1085                         goto out;
1086                 }
1087
1088                 written += thislen;
1089
1090                 if (written == len)
1091                         break;
1092
1093                 to += thislen;
1094                 buf += thislen;
1095         }
1096
1097 out:
1098         /* Deselect and wake up anyone waiting on the device */
1099         onenand_release_device(mtd);
1100
1101         *retlen = written;
1102
1103         return ret;
1104 }
1105
1106 /**
1107  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1108  * @mtd:        MTD device structure
1109  * @from:       offset to read from
1110  * @ops:        oob operation description structure
1111  */
1112 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1113                              struct mtd_oob_ops *ops)
1114 {
1115         BUG_ON(ops->mode != MTD_OOB_PLACE);
1116
1117         return onenand_do_write_oob(mtd, to + ops->ooboffs, ops->len,
1118                                     &ops->retlen, ops->oobbuf);
1119 }
1120
1121 /**
1122  * onenand_block_checkbad - [GENERIC] Check if a block is marked bad
1123  * @param mtd           MTD device structure
1124  * @param ofs           offset from device start
1125  * @param getchip       0, if the chip is already selected
1126  * @param allowbbt      1, if its allowed to access the bbt area
1127  *
1128  * Check, if the block is bad. Either by reading the bad block table or
1129  * calling of the scan function.
1130  */
1131 static int onenand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
1132 {
1133         struct onenand_chip *this = mtd->priv;
1134         struct bbm_info *bbm = this->bbm;
1135
1136         /* Return info from the table */
1137         return bbm->isbad_bbt(mtd, ofs, allowbbt);
1138 }
1139
1140 /**
1141  * onenand_erase - [MTD Interface] erase block(s)
1142  * @param mtd           MTD device structure
1143  * @param instr         erase instruction
1144  *
1145  * Erase one ore more blocks
1146  */
1147 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1148 {
1149         struct onenand_chip *this = mtd->priv;
1150         unsigned int block_size;
1151         loff_t addr;
1152         int len;
1153         int ret = 0;
1154
1155         DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
1156
1157         block_size = (1 << this->erase_shift);
1158
1159         /* Start address must align on block boundary */
1160         if (unlikely(instr->addr & (block_size - 1))) {
1161                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Unaligned address\n");
1162                 return -EINVAL;
1163         }
1164
1165         /* Length must align on block boundary */
1166         if (unlikely(instr->len & (block_size - 1))) {
1167                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Length not block aligned\n");
1168                 return -EINVAL;
1169         }
1170
1171         /* Do not allow erase past end of device */
1172         if (unlikely((instr->len + instr->addr) > mtd->size)) {
1173                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Erase past end of device\n");
1174                 return -EINVAL;
1175         }
1176
1177         instr->fail_addr = 0xffffffff;
1178
1179         /* Grab the lock and see if the device is available */
1180         onenand_get_device(mtd, FL_ERASING);
1181
1182         /* Loop throught the pages */
1183         len = instr->len;
1184         addr = instr->addr;
1185
1186         instr->state = MTD_ERASING;
1187
1188         while (len) {
1189
1190                 /* Check if we have a bad block, we do not erase bad blocks */
1191                 if (onenand_block_checkbad(mtd, addr, 0, 0)) {
1192                         printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
1193                         instr->state = MTD_ERASE_FAILED;
1194                         goto erase_exit;
1195                 }
1196
1197                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1198
1199                 ret = this->wait(mtd, FL_ERASING);
1200                 /* Check, if it is write protected */
1201                 if (ret) {
1202                         if (ret == -EPERM)
1203                                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Device is write protected!!!\n");
1204                         else
1205                                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
1206                         instr->state = MTD_ERASE_FAILED;
1207                         instr->fail_addr = addr;
1208                         goto erase_exit;
1209                 }
1210
1211                 len -= block_size;
1212                 addr += block_size;
1213         }
1214
1215         instr->state = MTD_ERASE_DONE;
1216
1217 erase_exit:
1218
1219         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1220         /* Do call back function */
1221         if (!ret)
1222                 mtd_erase_callback(instr);
1223
1224         /* Deselect and wake up anyone waiting on the device */
1225         onenand_release_device(mtd);
1226
1227         return ret;
1228 }
1229
1230 /**
1231  * onenand_sync - [MTD Interface] sync
1232  * @param mtd           MTD device structure
1233  *
1234  * Sync is actually a wait for chip ready function
1235  */
1236 static void onenand_sync(struct mtd_info *mtd)
1237 {
1238         DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1239
1240         /* Grab the lock and see if the device is available */
1241         onenand_get_device(mtd, FL_SYNCING);
1242
1243         /* Release it and go back */
1244         onenand_release_device(mtd);
1245 }
1246
1247 /**
1248  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1249  * @param mtd           MTD device structure
1250  * @param ofs           offset relative to mtd start
1251  *
1252  * Check whether the block is bad
1253  */
1254 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1255 {
1256         /* Check for invalid offset */
1257         if (ofs > mtd->size)
1258                 return -EINVAL;
1259
1260         return onenand_block_checkbad(mtd, ofs, 1, 0);
1261 }
1262
1263 /**
1264  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1265  * @param mtd           MTD device structure
1266  * @param ofs           offset from device start
1267  *
1268  * This is the default implementation, which can be overridden by
1269  * a hardware specific driver.
1270  */
1271 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1272 {
1273         struct onenand_chip *this = mtd->priv;
1274         struct bbm_info *bbm = this->bbm;
1275         u_char buf[2] = {0, 0};
1276         size_t retlen;
1277         int block;
1278
1279         /* Get block number */
1280         block = ((int) ofs) >> bbm->bbt_erase_shift;
1281         if (bbm->bbt)
1282                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1283
1284         /* We write two bytes, so we dont have to mess with 16 bit access */
1285         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1286         return onenand_do_write_oob(mtd, ofs , 2, &retlen, buf);
1287 }
1288
1289 /**
1290  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1291  * @param mtd           MTD device structure
1292  * @param ofs           offset relative to mtd start
1293  *
1294  * Mark the block as bad
1295  */
1296 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1297 {
1298         struct onenand_chip *this = mtd->priv;
1299         int ret;
1300
1301         ret = onenand_block_isbad(mtd, ofs);
1302         if (ret) {
1303                 /* If it was bad already, return success and do nothing */
1304                 if (ret > 0)
1305                         return 0;
1306                 return ret;
1307         }
1308
1309         return this->block_markbad(mtd, ofs);
1310 }
1311
1312 /**
1313  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1314  * @param mtd           MTD device structure
1315  * @param ofs           offset relative to mtd start
1316  * @param len           number of bytes to lock or unlock
1317  *
1318  * Lock or unlock one or more blocks
1319  */
1320 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1321 {
1322         struct onenand_chip *this = mtd->priv;
1323         int start, end, block, value, status;
1324         int wp_status_mask;
1325
1326         start = ofs >> this->erase_shift;
1327         end = len >> this->erase_shift;
1328
1329         if (cmd == ONENAND_CMD_LOCK)
1330                 wp_status_mask = ONENAND_WP_LS;
1331         else
1332                 wp_status_mask = ONENAND_WP_US;
1333
1334         /* Continuous lock scheme */
1335         if (this->options & ONENAND_HAS_CONT_LOCK) {
1336                 /* Set start block address */
1337                 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1338                 /* Set end block address */
1339                 this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1340                 /* Write lock command */
1341                 this->command(mtd, cmd, 0, 0);
1342
1343                 /* There's no return value */
1344                 this->wait(mtd, FL_LOCKING);
1345
1346                 /* Sanity check */
1347                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1348                     & ONENAND_CTRL_ONGO)
1349                         continue;
1350
1351                 /* Check lock status */
1352                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1353                 if (!(status & wp_status_mask))
1354                         printk(KERN_ERR "wp status = 0x%x\n", status);
1355
1356                 return 0;
1357         }
1358
1359         /* Block lock scheme */
1360         for (block = start; block < start + end; block++) {
1361                 /* Set block address */
1362                 value = onenand_block_address(this, block);
1363                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1364                 /* Select DataRAM for DDP */
1365                 value = onenand_bufferram_address(this, block);
1366                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1367                 /* Set start block address */
1368                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1369                 /* Write lock command */
1370                 this->command(mtd, cmd, 0, 0);
1371
1372                 /* There's no return value */
1373                 this->wait(mtd, FL_LOCKING);
1374
1375                 /* Sanity check */
1376                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1377                     & ONENAND_CTRL_ONGO)
1378                         continue;
1379
1380                 /* Check lock status */
1381                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1382                 if (!(status & wp_status_mask))
1383                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1384         }
1385
1386         return 0;
1387 }
1388
1389 /**
1390  * onenand_lock - [MTD Interface] Lock block(s)
1391  * @param mtd           MTD device structure
1392  * @param ofs           offset relative to mtd start
1393  * @param len           number of bytes to unlock
1394  *
1395  * Lock one or more blocks
1396  */
1397 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1398 {
1399         return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
1400 }
1401
1402 /**
1403  * onenand_unlock - [MTD Interface] Unlock block(s)
1404  * @param mtd           MTD device structure
1405  * @param ofs           offset relative to mtd start
1406  * @param len           number of bytes to unlock
1407  *
1408  * Unlock one or more blocks
1409  */
1410 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1411 {
1412         return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
1413 }
1414
1415 /**
1416  * onenand_check_lock_status - [OneNAND Interface] Check lock status
1417  * @param this          onenand chip data structure
1418  *
1419  * Check lock status
1420  */
1421 static void onenand_check_lock_status(struct onenand_chip *this)
1422 {
1423         unsigned int value, block, status;
1424         unsigned int end;
1425
1426         end = this->chipsize >> this->erase_shift;
1427         for (block = 0; block < end; block++) {
1428                 /* Set block address */
1429                 value = onenand_block_address(this, block);
1430                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1431                 /* Select DataRAM for DDP */
1432                 value = onenand_bufferram_address(this, block);
1433                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1434                 /* Set start block address */
1435                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1436
1437                 /* Check lock status */
1438                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1439                 if (!(status & ONENAND_WP_US))
1440                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1441         }
1442 }
1443
1444 /**
1445  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
1446  * @param mtd           MTD device structure
1447  *
1448  * Unlock all blocks
1449  */
1450 static int onenand_unlock_all(struct mtd_info *mtd)
1451 {
1452         struct onenand_chip *this = mtd->priv;
1453
1454         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
1455                 /* Write unlock command */
1456                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
1457
1458                 /* There's no return value */
1459                 this->wait(mtd, FL_LOCKING);
1460
1461                 /* Sanity check */
1462                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1463                     & ONENAND_CTRL_ONGO)
1464                         continue;
1465
1466                 /* Workaround for all block unlock in DDP */
1467                 if (this->device_id & ONENAND_DEVICE_IS_DDP) {
1468                         loff_t ofs;
1469                         size_t len;
1470
1471                         /* 1st block on another chip */
1472                         ofs = this->chipsize >> 1;
1473                         len = 1 << this->erase_shift;
1474
1475                         onenand_unlock(mtd, ofs, len);
1476                 }
1477
1478                 onenand_check_lock_status(this);
1479
1480                 return 0;
1481         }
1482
1483         onenand_unlock(mtd, 0x0, this->chipsize);
1484
1485         return 0;
1486 }
1487
1488 #ifdef CONFIG_MTD_ONENAND_OTP
1489
1490 /* Interal OTP operation */
1491 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
1492                 size_t *retlen, u_char *buf);
1493
1494 /**
1495  * do_otp_read - [DEFAULT] Read OTP block area
1496  * @param mtd           MTD device structure
1497  * @param from          The offset to read
1498  * @param len           number of bytes to read
1499  * @param retlen        pointer to variable to store the number of readbytes
1500  * @param buf           the databuffer to put/get data
1501  *
1502  * Read OTP block area.
1503  */
1504 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
1505                 size_t *retlen, u_char *buf)
1506 {
1507         struct onenand_chip *this = mtd->priv;
1508         int ret;
1509
1510         /* Enter OTP access mode */
1511         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1512         this->wait(mtd, FL_OTPING);
1513
1514         ret = mtd->read(mtd, from, len, retlen, buf);
1515
1516         /* Exit OTP access mode */
1517         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1518         this->wait(mtd, FL_RESETING);
1519
1520         return ret;
1521 }
1522
1523 /**
1524  * do_otp_write - [DEFAULT] Write OTP block area
1525  * @param mtd           MTD device structure
1526  * @param from          The offset to write
1527  * @param len           number of bytes to write
1528  * @param retlen        pointer to variable to store the number of write bytes
1529  * @param buf           the databuffer to put/get data
1530  *
1531  * Write OTP block area.
1532  */
1533 static int do_otp_write(struct mtd_info *mtd, loff_t from, size_t len,
1534                 size_t *retlen, u_char *buf)
1535 {
1536         struct onenand_chip *this = mtd->priv;
1537         unsigned char *pbuf = buf;
1538         int ret;
1539
1540         /* Force buffer page aligned */
1541         if (len < mtd->writesize) {
1542                 memcpy(this->page_buf, buf, len);
1543                 memset(this->page_buf + len, 0xff, mtd->writesize - len);
1544                 pbuf = this->page_buf;
1545                 len = mtd->writesize;
1546         }
1547
1548         /* Enter OTP access mode */
1549         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1550         this->wait(mtd, FL_OTPING);
1551
1552         ret = mtd->write(mtd, from, len, retlen, pbuf);
1553
1554         /* Exit OTP access mode */
1555         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1556         this->wait(mtd, FL_RESETING);
1557
1558         return ret;
1559 }
1560
1561 /**
1562  * do_otp_lock - [DEFAULT] Lock OTP block area
1563  * @param mtd           MTD device structure
1564  * @param from          The offset to lock
1565  * @param len           number of bytes to lock
1566  * @param retlen        pointer to variable to store the number of lock bytes
1567  * @param buf           the databuffer to put/get data
1568  *
1569  * Lock OTP block area.
1570  */
1571 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
1572                 size_t *retlen, u_char *buf)
1573 {
1574         struct onenand_chip *this = mtd->priv;
1575         int ret;
1576
1577         /* Enter OTP access mode */
1578         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1579         this->wait(mtd, FL_OTPING);
1580
1581         ret = onenand_do_write_oob(mtd, from, len, retlen, buf);
1582
1583         /* Exit OTP access mode */
1584         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1585         this->wait(mtd, FL_RESETING);
1586
1587         return ret;
1588 }
1589
1590 /**
1591  * onenand_otp_walk - [DEFAULT] Handle OTP operation
1592  * @param mtd           MTD device structure
1593  * @param from          The offset to read/write
1594  * @param len           number of bytes to read/write
1595  * @param retlen        pointer to variable to store the number of read bytes
1596  * @param buf           the databuffer to put/get data
1597  * @param action        do given action
1598  * @param mode          specify user and factory
1599  *
1600  * Handle OTP operation.
1601  */
1602 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1603                         size_t *retlen, u_char *buf,
1604                         otp_op_t action, int mode)
1605 {
1606         struct onenand_chip *this = mtd->priv;
1607         int otp_pages;
1608         int density;
1609         int ret = 0;
1610
1611         *retlen = 0;
1612
1613         density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1614         if (density < ONENAND_DEVICE_DENSITY_512Mb)
1615                 otp_pages = 20;
1616         else
1617                 otp_pages = 10;
1618
1619         if (mode == MTD_OTP_FACTORY) {
1620                 from += mtd->writesize * otp_pages;
1621                 otp_pages = 64 - otp_pages;
1622         }
1623
1624         /* Check User/Factory boundary */
1625         if (((mtd->writesize * otp_pages) - (from + len)) < 0)
1626                 return 0;
1627
1628         while (len > 0 && otp_pages > 0) {
1629                 if (!action) {  /* OTP Info functions */
1630                         struct otp_info *otpinfo;
1631
1632                         len -= sizeof(struct otp_info);
1633                         if (len <= 0)
1634                                 return -ENOSPC;
1635
1636                         otpinfo = (struct otp_info *) buf;
1637                         otpinfo->start = from;
1638                         otpinfo->length = mtd->writesize;
1639                         otpinfo->locked = 0;
1640
1641                         from += mtd->writesize;
1642                         buf += sizeof(struct otp_info);
1643                         *retlen += sizeof(struct otp_info);
1644                 } else {
1645                         size_t tmp_retlen;
1646                         int size = len;
1647
1648                         ret = action(mtd, from, len, &tmp_retlen, buf);
1649
1650                         buf += size;
1651                         len -= size;
1652                         *retlen += size;
1653
1654                         if (ret < 0)
1655                                 return ret;
1656                 }
1657                 otp_pages--;
1658         }
1659
1660         return 0;
1661 }
1662
1663 /**
1664  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
1665  * @param mtd           MTD device structure
1666  * @param buf           the databuffer to put/get data
1667  * @param len           number of bytes to read
1668  *
1669  * Read factory OTP info.
1670  */
1671 static int onenand_get_fact_prot_info(struct mtd_info *mtd,
1672                         struct otp_info *buf, size_t len)
1673 {
1674         size_t retlen;
1675         int ret;
1676
1677         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
1678
1679         return ret ? : retlen;
1680 }
1681
1682 /**
1683  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
1684  * @param mtd           MTD device structure
1685  * @param from          The offset to read
1686  * @param len           number of bytes to read
1687  * @param retlen        pointer to variable to store the number of read bytes
1688  * @param buf           the databuffer to put/get data
1689  *
1690  * Read factory OTP area.
1691  */
1692 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1693                         size_t len, size_t *retlen, u_char *buf)
1694 {
1695         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
1696 }
1697
1698 /**
1699  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
1700  * @param mtd           MTD device structure
1701  * @param buf           the databuffer to put/get data
1702  * @param len           number of bytes to read
1703  *
1704  * Read user OTP info.
1705  */
1706 static int onenand_get_user_prot_info(struct mtd_info *mtd,
1707                         struct otp_info *buf, size_t len)
1708 {
1709         size_t retlen;
1710         int ret;
1711
1712         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
1713
1714         return ret ? : retlen;
1715 }
1716
1717 /**
1718  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
1719  * @param mtd           MTD device structure
1720  * @param from          The offset to read
1721  * @param len           number of bytes to read
1722  * @param retlen        pointer to variable to store the number of read bytes
1723  * @param buf           the databuffer to put/get data
1724  *
1725  * Read user OTP area.
1726  */
1727 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1728                         size_t len, size_t *retlen, u_char *buf)
1729 {
1730         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
1731 }
1732
1733 /**
1734  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
1735  * @param mtd           MTD device structure
1736  * @param from          The offset to write
1737  * @param len           number of bytes to write
1738  * @param retlen        pointer to variable to store the number of write bytes
1739  * @param buf           the databuffer to put/get data
1740  *
1741  * Write user OTP area.
1742  */
1743 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1744                         size_t len, size_t *retlen, u_char *buf)
1745 {
1746         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
1747 }
1748
1749 /**
1750  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
1751  * @param mtd           MTD device structure
1752  * @param from          The offset to lock
1753  * @param len           number of bytes to unlock
1754  *
1755  * Write lock mark on spare area in page 0 in OTP block
1756  */
1757 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1758                         size_t len)
1759 {
1760         unsigned char oob_buf[64];
1761         size_t retlen;
1762         int ret;
1763
1764         memset(oob_buf, 0xff, mtd->oobsize);
1765         /*
1766          * Note: OTP lock operation
1767          *       OTP block : 0xXXFC
1768          *       1st block : 0xXXF3 (If chip support)
1769          *       Both      : 0xXXF0 (If chip support)
1770          */
1771         oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
1772
1773         /*
1774          * Write lock mark to 8th word of sector0 of page0 of the spare0.
1775          * We write 16 bytes spare area instead of 2 bytes.
1776          */
1777         from = 0;
1778         len = 16;
1779
1780         ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);
1781
1782         return ret ? : retlen;
1783 }
1784 #endif  /* CONFIG_MTD_ONENAND_OTP */
1785
1786 /**
1787  * onenand_lock_scheme - Check and set OneNAND lock scheme
1788  * @param mtd           MTD data structure
1789  *
1790  * Check and set OneNAND lock scheme
1791  */
1792 static void onenand_lock_scheme(struct mtd_info *mtd)
1793 {
1794         struct onenand_chip *this = mtd->priv;
1795         unsigned int density, process;
1796
1797         /* Lock scheme depends on density and process */
1798         density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1799         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
1800
1801         /* Lock scheme */
1802         if (density >= ONENAND_DEVICE_DENSITY_1Gb) {
1803                 /* A-Die has all block unlock */
1804                 if (process) {
1805                         printk(KERN_DEBUG "Chip support all block unlock\n");
1806                         this->options |= ONENAND_HAS_UNLOCK_ALL;
1807                 }
1808         } else {
1809                 /* Some OneNAND has continues lock scheme */
1810                 if (!process) {
1811                         printk(KERN_DEBUG "Lock scheme is Continues Lock\n");
1812                         this->options |= ONENAND_HAS_CONT_LOCK;
1813                 }
1814         }
1815 }
1816
1817 /**
1818  * onenand_print_device_info - Print device ID
1819  * @param device        device ID
1820  *
1821  * Print device ID
1822  */
1823 static void onenand_print_device_info(int device, int version)
1824 {
1825         int vcc, demuxed, ddp, density;
1826
1827         vcc = device & ONENAND_DEVICE_VCC_MASK;
1828         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
1829         ddp = device & ONENAND_DEVICE_IS_DDP;
1830         density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
1831         printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
1832                 demuxed ? "" : "Muxed ",
1833                 ddp ? "(DDP)" : "",
1834                 (16 << density),
1835                 vcc ? "2.65/3.3" : "1.8",
1836                 device);
1837         printk(KERN_DEBUG "OneNAND version = 0x%04x\n", version);
1838 }
1839
1840 static const struct onenand_manufacturers onenand_manuf_ids[] = {
1841         {ONENAND_MFR_SAMSUNG, "Samsung"},
1842 };
1843
1844 /**
1845  * onenand_check_maf - Check manufacturer ID
1846  * @param manuf         manufacturer ID
1847  *
1848  * Check manufacturer ID
1849  */
1850 static int onenand_check_maf(int manuf)
1851 {
1852         int size = ARRAY_SIZE(onenand_manuf_ids);
1853         char *name;
1854         int i;
1855
1856         for (i = 0; i < size; i++)
1857                 if (manuf == onenand_manuf_ids[i].id)
1858                         break;
1859
1860         if (i < size)
1861                 name = onenand_manuf_ids[i].name;
1862         else
1863                 name = "Unknown";
1864
1865         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
1866
1867         return (i == size);
1868 }
1869
1870 /**
1871  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
1872  * @param mtd           MTD device structure
1873  *
1874  * OneNAND detection method:
1875  *   Compare the the values from command with ones from register
1876  */
1877 static int onenand_probe(struct mtd_info *mtd)
1878 {
1879         struct onenand_chip *this = mtd->priv;
1880         int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
1881         int density;
1882         int syscfg;
1883
1884         /* Save system configuration 1 */
1885         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
1886         /* Clear Sync. Burst Read mode to read BootRAM */
1887         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
1888
1889         /* Send the command for reading device ID from BootRAM */
1890         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
1891
1892         /* Read manufacturer and device IDs from BootRAM */
1893         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
1894         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
1895
1896         /* Reset OneNAND to read default register values */
1897         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
1898         /* Wait reset */
1899         this->wait(mtd, FL_RESETING);
1900
1901         /* Restore system configuration 1 */
1902         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
1903
1904         /* Check manufacturer ID */
1905         if (onenand_check_maf(bram_maf_id))
1906                 return -ENXIO;
1907
1908         /* Read manufacturer and device IDs from Register */
1909         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
1910         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
1911         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
1912
1913         /* Check OneNAND device */
1914         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
1915                 return -ENXIO;
1916
1917         /* Flash device information */
1918         onenand_print_device_info(dev_id, ver_id);
1919         this->device_id = dev_id;
1920         this->version_id = ver_id;
1921
1922         density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1923         this->chipsize = (16 << density) << 20;
1924         /* Set density mask. it is used for DDP */
1925         this->density_mask = (1 << (density + 6));
1926
1927         /* OneNAND page size & block size */
1928         /* The data buffer size is equal to page size */
1929         mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
1930         mtd->oobsize = mtd->writesize >> 5;
1931         /* Pagers per block is always 64 in OneNAND */
1932         mtd->erasesize = mtd->writesize << 6;
1933
1934         this->erase_shift = ffs(mtd->erasesize) - 1;
1935         this->page_shift = ffs(mtd->writesize) - 1;
1936         this->ppb_shift = (this->erase_shift - this->page_shift);
1937         this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
1938
1939         /* REVIST: Multichip handling */
1940
1941         mtd->size = this->chipsize;
1942
1943         /* Check OneNAND lock scheme */
1944         onenand_lock_scheme(mtd);
1945
1946         return 0;
1947 }
1948
1949 /**
1950  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
1951  * @param mtd           MTD device structure
1952  */
1953 static int onenand_suspend(struct mtd_info *mtd)
1954 {
1955         return onenand_get_device(mtd, FL_PM_SUSPENDED);
1956 }
1957
1958 /**
1959  * onenand_resume - [MTD Interface] Resume the OneNAND flash
1960  * @param mtd           MTD device structure
1961  */
1962 static void onenand_resume(struct mtd_info *mtd)
1963 {
1964         struct onenand_chip *this = mtd->priv;
1965
1966         if (this->state == FL_PM_SUSPENDED)
1967                 onenand_release_device(mtd);
1968         else
1969                 printk(KERN_ERR "resume() called for the chip which is not"
1970                                 "in suspended state\n");
1971 }
1972
1973 /**
1974  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
1975  * @param mtd           MTD device structure
1976  * @param maxchips      Number of chips to scan for
1977  *
1978  * This fills out all the not initialized function pointers
1979  * with the defaults.
1980  * The flash ID is read and the mtd/chip structures are
1981  * filled with the appropriate values.
1982  */
1983 int onenand_scan(struct mtd_info *mtd, int maxchips)
1984 {
1985         struct onenand_chip *this = mtd->priv;
1986
1987         if (!this->read_word)
1988                 this->read_word = onenand_readw;
1989         if (!this->write_word)
1990                 this->write_word = onenand_writew;
1991
1992         if (!this->command)
1993                 this->command = onenand_command;
1994         if (!this->wait)
1995                 onenand_setup_wait(mtd);
1996
1997         if (!this->read_bufferram)
1998                 this->read_bufferram = onenand_read_bufferram;
1999         if (!this->write_bufferram)
2000                 this->write_bufferram = onenand_write_bufferram;
2001
2002         if (!this->block_markbad)
2003                 this->block_markbad = onenand_default_block_markbad;
2004         if (!this->scan_bbt)
2005                 this->scan_bbt = onenand_default_bbt;
2006
2007         if (onenand_probe(mtd))
2008                 return -ENXIO;
2009
2010         /* Set Sync. Burst Read after probing */
2011         if (this->mmcontrol) {
2012                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2013                 this->read_bufferram = onenand_sync_read_bufferram;
2014         }
2015
2016         /* Allocate buffers, if necessary */
2017         if (!this->page_buf) {
2018                 size_t len;
2019                 len = mtd->writesize + mtd->oobsize;
2020                 this->page_buf = kmalloc(len, GFP_KERNEL);
2021                 if (!this->page_buf) {
2022                         printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2023                         return -ENOMEM;
2024                 }
2025                 this->options |= ONENAND_PAGEBUF_ALLOC;
2026         }
2027
2028         this->state = FL_READY;
2029         init_waitqueue_head(&this->wq);
2030         spin_lock_init(&this->chip_lock);
2031
2032         switch (mtd->oobsize) {
2033         case 64:
2034                 this->ecclayout = &onenand_oob_64;
2035                 break;
2036
2037         case 32:
2038                 this->ecclayout = &onenand_oob_32;
2039                 break;
2040
2041         default:
2042                 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2043                         mtd->oobsize);
2044                 /* To prevent kernel oops */
2045                 this->ecclayout = &onenand_oob_32;
2046                 break;
2047         }
2048
2049         mtd->ecclayout = this->ecclayout;
2050
2051         /* Fill in remaining MTD driver data */
2052         mtd->type = MTD_NANDFLASH;
2053         mtd->flags = MTD_CAP_NANDFLASH;
2054         mtd->ecctype = MTD_ECC_SW;
2055         mtd->erase = onenand_erase;
2056         mtd->point = NULL;
2057         mtd->unpoint = NULL;
2058         mtd->read = onenand_read;
2059         mtd->write = onenand_write;
2060         mtd->read_oob = onenand_read_oob;
2061         mtd->write_oob = onenand_write_oob;
2062 #ifdef CONFIG_MTD_ONENAND_OTP
2063         mtd->get_fact_prot_info = onenand_get_fact_prot_info;
2064         mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
2065         mtd->get_user_prot_info = onenand_get_user_prot_info;
2066         mtd->read_user_prot_reg = onenand_read_user_prot_reg;
2067         mtd->write_user_prot_reg = onenand_write_user_prot_reg;
2068         mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
2069 #endif
2070         mtd->sync = onenand_sync;
2071         mtd->lock = onenand_lock;
2072         mtd->unlock = onenand_unlock;
2073         mtd->suspend = onenand_suspend;
2074         mtd->resume = onenand_resume;
2075         mtd->block_isbad = onenand_block_isbad;
2076         mtd->block_markbad = onenand_block_markbad;
2077         mtd->owner = THIS_MODULE;
2078
2079         /* Unlock whole block */
2080         onenand_unlock_all(mtd);
2081
2082         return this->scan_bbt(mtd);
2083 }
2084
2085 /**
2086  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2087  * @param mtd           MTD device structure
2088  */
2089 void onenand_release(struct mtd_info *mtd)
2090 {
2091         struct onenand_chip *this = mtd->priv;
2092
2093 #ifdef CONFIG_MTD_PARTITIONS
2094         /* Deregister partitions */
2095         del_mtd_partitions (mtd);
2096 #endif
2097         /* Deregister the device */
2098         del_mtd_device (mtd);
2099
2100         /* Free bad block table memory, if allocated */
2101         if (this->bbm)
2102                 kfree(this->bbm);
2103         /* Buffer allocated by onenand_scan */
2104         if (this->options & ONENAND_PAGEBUF_ALLOC)
2105                 kfree(this->page_buf);
2106 }
2107
2108 EXPORT_SYMBOL_GPL(onenand_scan);
2109 EXPORT_SYMBOL_GPL(onenand_release);
2110
2111 MODULE_LICENSE("GPL");
2112 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
2113 MODULE_DESCRIPTION("Generic OneNAND flash driver code");