Linux-2.6.12-rc2
[safe/jmp/linux-2.6] / drivers / mtd / nand / s3c2410.c
1 /* linux/drivers/mtd/nand/s3c2410.c
2  *
3  * Copyright (c) 2004 Simtec Electronics
4  * Ben Dooks <ben@simtec.co.uk>
5  *
6  * Samsung S3C2410 NAND driver
7  *
8  * Changelog:
9  *      21-Sep-2004  BJD  Initial version
10  *      23-Sep-2004  BJD  Mulitple device support
11  *      28-Sep-2004  BJD  Fixed ECC placement for Hardware mode
12  *      12-Oct-2004  BJD  Fixed errors in use of platform data
13  *
14  * $Id: s3c2410.c,v 1.7 2005/01/05 18:05:14 dwmw2 Exp $
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License as published by
18  * the Free Software Foundation; either version 2 of the License, or
19  * (at your option) any later version.
20  *
21  * This program is distributed in the hope that it will be useful,
22  * but WITHOUT ANY WARRANTY; without even the implied warranty of
23  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
24  * GNU General Public License for more details.
25  *
26  * You should have received a copy of the GNU General Public License
27  * along with this program; if not, write to the Free Software
28  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
29 */
30
31 #include <config/mtd/nand/s3c2410/hwecc.h>
32 #include <config/mtd/nand/s3c2410/debug.h>
33
34 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
35 #define DEBUG
36 #endif
37
38 #include <linux/module.h>
39 #include <linux/types.h>
40 #include <linux/init.h>
41 #include <linux/kernel.h>
42 #include <linux/string.h>
43 #include <linux/ioport.h>
44 #include <linux/device.h>
45 #include <linux/delay.h>
46 #include <linux/err.h>
47
48 #include <linux/mtd/mtd.h>
49 #include <linux/mtd/nand.h>
50 #include <linux/mtd/nand_ecc.h>
51 #include <linux/mtd/partitions.h>
52
53 #include <asm/io.h>
54 #include <asm/mach-types.h>
55 #include <asm/hardware/clock.h>
56
57 #include <asm/arch/regs-nand.h>
58 #include <asm/arch/nand.h>
59
60 #define PFX "s3c2410-nand: "
61
62 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
63 static int hardware_ecc = 1;
64 #else
65 static int hardware_ecc = 0;
66 #endif
67
68 /* new oob placement block for use with hardware ecc generation
69  */
70
71 static struct nand_oobinfo nand_hw_eccoob = {
72         .useecc = MTD_NANDECC_AUTOPLACE,
73         .eccbytes = 3,
74         .eccpos = {0, 1, 2 },
75         .oobfree = { {8, 8} }
76 };
77
78 /* controller and mtd information */
79
80 struct s3c2410_nand_info;
81
82 struct s3c2410_nand_mtd {
83         struct mtd_info                 mtd;
84         struct nand_chip                chip;
85         struct s3c2410_nand_set         *set;
86         struct s3c2410_nand_info        *info;
87         int                             scan_res;
88 };
89
90 /* overview of the s3c2410 nand state */
91
92 struct s3c2410_nand_info {
93         /* mtd info */
94         struct nand_hw_control          controller;
95         struct s3c2410_nand_mtd         *mtds;
96         struct s3c2410_platform_nand    *platform;
97
98         /* device info */
99         struct device                   *device;
100         struct resource                 *area;
101         struct clk                      *clk;
102         void                            *regs;
103         int                             mtd_count;
104 };
105
106 /* conversion functions */
107
108 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
109 {
110         return container_of(mtd, struct s3c2410_nand_mtd, mtd);
111 }
112
113 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
114 {
115         return s3c2410_nand_mtd_toours(mtd)->info;
116 }
117
118 static struct s3c2410_nand_info *to_nand_info(struct device *dev)
119 {
120         return dev_get_drvdata(dev);
121 }
122
123 static struct s3c2410_platform_nand *to_nand_plat(struct device *dev)
124 {
125         return dev->platform_data;
126 }
127
128 /* timing calculations */
129
130 #define NS_IN_KHZ 10000000
131
132 static int s3c2410_nand_calc_rate(int wanted, unsigned long clk, int max)
133 {
134         int result;
135
136         result = (wanted * NS_IN_KHZ) / clk;
137         result++;
138
139         pr_debug("result %d from %ld, %d\n", result, clk, wanted);
140
141         if (result > max) {
142                 printk("%d ns is too big for current clock rate %ld\n",
143                        wanted, clk);
144                 return -1;
145         }
146
147         if (result < 1)
148                 result = 1;
149
150         return result;
151 }
152
153 #define to_ns(ticks,clk) (((clk) * (ticks)) / NS_IN_KHZ)
154
155 /* controller setup */
156
157 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info, 
158                                struct device *dev)
159 {
160         struct s3c2410_platform_nand *plat = to_nand_plat(dev);
161         unsigned int tacls, twrph0, twrph1;
162         unsigned long clkrate = clk_get_rate(info->clk);
163         unsigned long cfg;
164
165         /* calculate the timing information for the controller */
166
167         if (plat != NULL) {
168                 tacls = s3c2410_nand_calc_rate(plat->tacls, clkrate, 8);
169                 twrph0 = s3c2410_nand_calc_rate(plat->twrph0, clkrate, 8);
170                 twrph1 = s3c2410_nand_calc_rate(plat->twrph1, clkrate, 8);
171         } else {
172                 /* default timings */
173                 tacls = 8;
174                 twrph0 = 8;
175                 twrph1 = 8;
176         }
177         
178         if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
179                 printk(KERN_ERR PFX "cannot get timings suitable for board\n");
180                 return -EINVAL;
181         }
182
183         printk(KERN_INFO PFX "timing: Tacls %ldns, Twrph0 %ldns, Twrph1 %ldns\n",
184                to_ns(tacls, clkrate),
185                to_ns(twrph0, clkrate),
186                to_ns(twrph1, clkrate));
187
188         cfg  = S3C2410_NFCONF_EN;
189         cfg |= S3C2410_NFCONF_TACLS(tacls-1);
190         cfg |= S3C2410_NFCONF_TWRPH0(twrph0-1);
191         cfg |= S3C2410_NFCONF_TWRPH1(twrph1-1);
192
193         pr_debug(PFX "NF_CONF is 0x%lx\n", cfg);
194
195         writel(cfg, info->regs + S3C2410_NFCONF);
196         return 0;
197 }
198
199 /* select chip */
200
201 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
202 {
203         struct s3c2410_nand_info *info;
204         struct s3c2410_nand_mtd *nmtd; 
205         struct nand_chip *this = mtd->priv;
206         unsigned long cur;
207
208         nmtd = this->priv;
209         info = nmtd->info;
210
211         cur = readl(info->regs + S3C2410_NFCONF);
212
213         if (chip == -1) {
214                 cur |= S3C2410_NFCONF_nFCE;
215         } else {
216                 if (chip > nmtd->set->nr_chips) {
217                         printk(KERN_ERR PFX "chip %d out of range\n", chip);
218                         return;
219                 }
220
221                 if (info->platform != NULL) {
222                         if (info->platform->select_chip != NULL)
223                                 (info->platform->select_chip)(nmtd->set, chip);
224                 }
225
226                 cur &= ~S3C2410_NFCONF_nFCE;
227         }
228
229         writel(cur, info->regs + S3C2410_NFCONF);
230 }
231
232 /* command and control functions */
233
234 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd)
235 {
236         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
237         unsigned long cur;
238
239         switch (cmd) {
240         case NAND_CTL_SETNCE:
241                 cur = readl(info->regs + S3C2410_NFCONF);
242                 cur &= ~S3C2410_NFCONF_nFCE;
243                 writel(cur, info->regs + S3C2410_NFCONF);
244                 break;
245
246         case NAND_CTL_CLRNCE:
247                 cur = readl(info->regs + S3C2410_NFCONF);
248                 cur |= S3C2410_NFCONF_nFCE;
249                 writel(cur, info->regs + S3C2410_NFCONF);
250                 break;
251
252                 /* we don't need to implement these */
253         case NAND_CTL_SETCLE:
254         case NAND_CTL_CLRCLE:
255         case NAND_CTL_SETALE:
256         case NAND_CTL_CLRALE:
257                 pr_debug(PFX "s3c2410_nand_hwcontrol(%d) unusedn", cmd);
258                 break;
259         }
260 }
261
262 /* s3c2410_nand_command
263  *
264  * This function implements sending commands and the relevant address
265  * information to the chip, via the hardware controller. Since the
266  * S3C2410 generates the correct ALE/CLE signaling automatically, we
267  * do not need to use hwcontrol.
268 */
269
270 static void s3c2410_nand_command (struct mtd_info *mtd, unsigned command,
271                                   int column, int page_addr)
272 {
273         register struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
274         register struct nand_chip *this = mtd->priv;
275
276         /*
277          * Write out the command to the device.
278          */
279         if (command == NAND_CMD_SEQIN) {
280                 int readcmd;
281
282                 if (column >= mtd->oobblock) {
283                         /* OOB area */
284                         column -= mtd->oobblock;
285                         readcmd = NAND_CMD_READOOB;
286                 } else if (column < 256) {
287                         /* First 256 bytes --> READ0 */
288                         readcmd = NAND_CMD_READ0;
289                 } else {
290                         column -= 256;
291                         readcmd = NAND_CMD_READ1;
292                 }
293                 
294                 writeb(readcmd, info->regs + S3C2410_NFCMD);
295         }
296         writeb(command, info->regs + S3C2410_NFCMD);
297
298         /* Set ALE and clear CLE to start address cycle */
299
300         if (column != -1 || page_addr != -1) {
301
302                 /* Serially input address */
303                 if (column != -1) {
304                         /* Adjust columns for 16 bit buswidth */
305                         if (this->options & NAND_BUSWIDTH_16)
306                                 column >>= 1;
307                         writeb(column, info->regs + S3C2410_NFADDR);
308                 }
309                 if (page_addr != -1) {
310                         writeb((unsigned char) (page_addr), info->regs + S3C2410_NFADDR);
311                         writeb((unsigned char) (page_addr >> 8), info->regs + S3C2410_NFADDR);
312                         /* One more address cycle for higher density devices */
313                         if (this->chipsize & 0x0c000000) 
314                                 writeb((unsigned char) ((page_addr >> 16) & 0x0f),
315                                        info->regs + S3C2410_NFADDR);
316                 }
317                 /* Latch in address */
318         }
319         
320         /* 
321          * program and erase have their own busy handlers 
322          * status and sequential in needs no delay
323         */
324         switch (command) {
325                         
326         case NAND_CMD_PAGEPROG:
327         case NAND_CMD_ERASE1:
328         case NAND_CMD_ERASE2:
329         case NAND_CMD_SEQIN:
330         case NAND_CMD_STATUS:
331                 return;
332
333         case NAND_CMD_RESET:
334                 if (this->dev_ready)    
335                         break;
336
337                 udelay(this->chip_delay);
338                 writeb(NAND_CMD_STATUS, info->regs + S3C2410_NFCMD);
339
340                 while ( !(this->read_byte(mtd) & 0x40));
341                 return;
342
343         /* This applies to read commands */     
344         default:
345                 /* 
346                  * If we don't have access to the busy pin, we apply the given
347                  * command delay
348                 */
349                 if (!this->dev_ready) {
350                         udelay (this->chip_delay);
351                         return;
352                 }       
353         }
354         
355         /* Apply this short delay always to ensure that we do wait tWB in
356          * any case on any machine. */
357         ndelay (100);
358         /* wait until command is processed */
359         while (!this->dev_ready(mtd));
360 }
361
362
363 /* s3c2410_nand_devready()
364  *
365  * returns 0 if the nand is busy, 1 if it is ready
366 */
367
368 static int s3c2410_nand_devready(struct mtd_info *mtd)
369 {
370         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
371         
372         return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
373 }
374
375 /* ECC handling functions */
376
377 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
378                                      u_char *read_ecc, u_char *calc_ecc)
379 {
380         pr_debug("s3c2410_nand_correct_data(%p,%p,%p,%p)\n",
381                  mtd, dat, read_ecc, calc_ecc);
382
383         pr_debug("eccs: read %02x,%02x,%02x vs calc %02x,%02x,%02x\n",
384                  read_ecc[0], read_ecc[1], read_ecc[2],
385                  calc_ecc[0], calc_ecc[1], calc_ecc[2]);
386
387         if (read_ecc[0] == calc_ecc[0] &&
388             read_ecc[1] == calc_ecc[1] &&
389             read_ecc[2] == calc_ecc[2]) 
390                 return 0;
391
392         /* we curently have no method for correcting the error */
393
394         return -1;
395 }
396
397 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
398 {
399         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
400         unsigned long ctrl;
401
402         ctrl = readl(info->regs + S3C2410_NFCONF);
403         ctrl |= S3C2410_NFCONF_INITECC;
404         writel(ctrl, info->regs + S3C2410_NFCONF);
405 }
406
407 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd,
408                                       const u_char *dat, u_char *ecc_code)
409 {
410         struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
411
412         ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
413         ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
414         ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
415
416         pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n",
417                  ecc_code[0], ecc_code[1], ecc_code[2]);
418
419         return 0;
420 }
421
422
423 /* over-ride the standard functions for a little more speed? */
424
425 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
426 {
427         struct nand_chip *this = mtd->priv;
428         readsb(this->IO_ADDR_R, buf, len);
429 }
430
431 static void s3c2410_nand_write_buf(struct mtd_info *mtd,
432                                    const u_char *buf, int len)
433 {
434         struct nand_chip *this = mtd->priv;
435         writesb(this->IO_ADDR_W, buf, len);
436 }
437
438 /* device management functions */
439
440 static int s3c2410_nand_remove(struct device *dev)
441 {
442         struct s3c2410_nand_info *info = to_nand_info(dev);
443
444         dev_set_drvdata(dev, NULL);
445
446         if (info == NULL) 
447                 return 0;
448
449         /* first thing we need to do is release all our mtds
450          * and their partitions, then go through freeing the
451          * resources used 
452          */
453         
454         if (info->mtds != NULL) {
455                 struct s3c2410_nand_mtd *ptr = info->mtds;
456                 int mtdno;
457
458                 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
459                         pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
460                         nand_release(&ptr->mtd);
461                 }
462
463                 kfree(info->mtds);
464         }
465
466         /* free the common resources */
467
468         if (info->clk != NULL && !IS_ERR(info->clk)) {
469                 clk_disable(info->clk);
470                 clk_unuse(info->clk);
471                 clk_put(info->clk);
472         }
473
474         if (info->regs != NULL) {
475                 iounmap(info->regs);
476                 info->regs = NULL;
477         }
478
479         if (info->area != NULL) {
480                 release_resource(info->area);
481                 kfree(info->area);
482                 info->area = NULL;
483         }
484
485         kfree(info);
486
487         return 0;
488 }
489
490 #ifdef CONFIG_MTD_PARTITIONS
491 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
492                                       struct s3c2410_nand_mtd *mtd,
493                                       struct s3c2410_nand_set *set)
494 {
495         if (set == NULL)
496                 return add_mtd_device(&mtd->mtd);
497
498         if (set->nr_partitions > 0 && set->partitions != NULL) {
499                 return add_mtd_partitions(&mtd->mtd,
500                                           set->partitions,
501                                           set->nr_partitions);
502         }
503
504         return add_mtd_device(&mtd->mtd);
505 }
506 #else
507 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
508                                       struct s3c2410_nand_mtd *mtd,
509                                       struct s3c2410_nand_set *set)
510 {
511         return add_mtd_device(&mtd->mtd);
512 }
513 #endif
514
515 /* s3c2410_nand_init_chip
516  *
517  * init a single instance of an chip 
518 */
519
520 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
521                                    struct s3c2410_nand_mtd *nmtd,
522                                    struct s3c2410_nand_set *set)
523 {
524         struct nand_chip *chip = &nmtd->chip;
525
526         chip->IO_ADDR_R    = (char *)info->regs + S3C2410_NFDATA;
527         chip->IO_ADDR_W    = (char *)info->regs + S3C2410_NFDATA;
528         chip->hwcontrol    = s3c2410_nand_hwcontrol;
529         chip->dev_ready    = s3c2410_nand_devready;
530         chip->cmdfunc      = s3c2410_nand_command;
531         chip->write_buf    = s3c2410_nand_write_buf;
532         chip->read_buf     = s3c2410_nand_read_buf;
533         chip->select_chip  = s3c2410_nand_select_chip;
534         chip->chip_delay   = 50;
535         chip->priv         = nmtd;
536         chip->options      = 0;
537         chip->controller   = &info->controller;
538
539         nmtd->info         = info;
540         nmtd->mtd.priv     = chip;
541         nmtd->set          = set;
542
543         if (hardware_ecc) {
544                 chip->correct_data  = s3c2410_nand_correct_data;
545                 chip->enable_hwecc  = s3c2410_nand_enable_hwecc;
546                 chip->calculate_ecc = s3c2410_nand_calculate_ecc;
547                 chip->eccmode       = NAND_ECC_HW3_512;
548                 chip->autooob       = &nand_hw_eccoob;
549         } else {
550                 chip->eccmode       = NAND_ECC_SOFT;
551         }
552 }
553
554 /* s3c2410_nand_probe
555  *
556  * called by device layer when it finds a device matching
557  * one our driver can handled. This code checks to see if
558  * it can allocate all necessary resources then calls the
559  * nand layer to look for devices
560 */
561
562 static int s3c2410_nand_probe(struct device *dev)
563 {
564         struct platform_device *pdev = to_platform_device(dev);
565         struct s3c2410_platform_nand *plat = to_nand_plat(dev);
566         struct s3c2410_nand_info *info;
567         struct s3c2410_nand_mtd *nmtd;
568         struct s3c2410_nand_set *sets;
569         struct resource *res;
570         int err = 0;
571         int size;
572         int nr_sets;
573         int setno;
574
575         pr_debug("s3c2410_nand_probe(%p)\n", dev);
576
577         info = kmalloc(sizeof(*info), GFP_KERNEL);
578         if (info == NULL) {
579                 printk(KERN_ERR PFX "no memory for flash info\n");
580                 err = -ENOMEM;
581                 goto exit_error;
582         }
583
584         memzero(info, sizeof(*info));
585         dev_set_drvdata(dev, info);
586
587         spin_lock_init(&info->controller.lock);
588
589         /* get the clock source and enable it */
590
591         info->clk = clk_get(dev, "nand");
592         if (IS_ERR(info->clk)) {
593                 printk(KERN_ERR PFX "failed to get clock");
594                 err = -ENOENT;
595                 goto exit_error;
596         }
597
598         clk_use(info->clk);
599         clk_enable(info->clk);
600
601         /* allocate and map the resource */
602
603         res = pdev->resource;  /* assume that the flash has one resource */
604         size = res->end - res->start + 1;
605
606         info->area = request_mem_region(res->start, size, pdev->name);
607
608         if (info->area == NULL) {
609                 printk(KERN_ERR PFX "cannot reserve register region\n");
610                 err = -ENOENT;
611                 goto exit_error;
612         }
613
614         info->device = dev;
615         info->platform = plat;
616         info->regs = ioremap(res->start, size);
617
618         if (info->regs == NULL) {
619                 printk(KERN_ERR PFX "cannot reserve register region\n");
620                 err = -EIO;
621                 goto exit_error;
622         }               
623
624         printk(KERN_INFO PFX "mapped registers at %p\n", info->regs);
625
626         /* initialise the hardware */
627
628         err = s3c2410_nand_inithw(info, dev);
629         if (err != 0)
630                 goto exit_error;
631
632         sets = (plat != NULL) ? plat->sets : NULL;
633         nr_sets = (plat != NULL) ? plat->nr_sets : 1;
634
635         info->mtd_count = nr_sets;
636
637         /* allocate our information */
638
639         size = nr_sets * sizeof(*info->mtds);
640         info->mtds = kmalloc(size, GFP_KERNEL);
641         if (info->mtds == NULL) {
642                 printk(KERN_ERR PFX "failed to allocate mtd storage\n");
643                 err = -ENOMEM;
644                 goto exit_error;
645         }
646
647         memzero(info->mtds, size);
648
649         /* initialise all possible chips */
650
651         nmtd = info->mtds;
652
653         for (setno = 0; setno < nr_sets; setno++, nmtd++) {
654                 pr_debug("initialising set %d (%p, info %p)\n",
655                          setno, nmtd, info);
656                 
657                 s3c2410_nand_init_chip(info, nmtd, sets);
658
659                 nmtd->scan_res = nand_scan(&nmtd->mtd,
660                                            (sets) ? sets->nr_chips : 1);
661
662                 if (nmtd->scan_res == 0) {
663                         s3c2410_nand_add_partition(info, nmtd, sets);
664                 }
665
666                 if (sets != NULL)
667                         sets++;
668         }
669         
670         pr_debug("initialised ok\n");
671         return 0;
672
673  exit_error:
674         s3c2410_nand_remove(dev);
675
676         if (err == 0)
677                 err = -EINVAL;
678         return err;
679 }
680
681 static struct device_driver s3c2410_nand_driver = {
682         .name           = "s3c2410-nand",
683         .bus            = &platform_bus_type,
684         .probe          = s3c2410_nand_probe,
685         .remove         = s3c2410_nand_remove,
686 };
687
688 static int __init s3c2410_nand_init(void)
689 {
690         printk("S3C2410 NAND Driver, (c) 2004 Simtec Electronics\n");
691         return driver_register(&s3c2410_nand_driver);
692 }
693
694 static void __exit s3c2410_nand_exit(void)
695 {
696         driver_unregister(&s3c2410_nand_driver);
697 }
698
699 module_init(s3c2410_nand_init);
700 module_exit(s3c2410_nand_exit);
701
702 MODULE_LICENSE("GPL");
703 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
704 MODULE_DESCRIPTION("S3C2410 MTD NAND driver");