UBI: always start the background thread
[safe/jmp/linux-2.6] / drivers / mtd / chips / cfi_cmdset_0020.c
1 /*
2  * Common Flash Interface support:
3  *   ST Advanced Architecture Command Set (ID 0x0020)
4  *
5  * (C) 2000 Red Hat. GPL'd
6  *
7  * $Id: cfi_cmdset_0020.c,v 1.22 2005/11/07 11:14:22 gleixner Exp $
8  *
9  * 10/10/2000   Nicolas Pitre <nico@cam.org>
10  *      - completely revamped method functions so they are aware and
11  *        independent of the flash geometry (buswidth, interleave, etc.)
12  *      - scalability vs code size is completely set at compile-time
13  *        (see include/linux/mtd/cfi.h for selection)
14  *      - optimized write buffer method
15  * 06/21/2002   Joern Engel <joern@wh.fh-wedel.de> and others
16  *      - modified Intel Command Set 0x0001 to support ST Advanced Architecture
17  *        (command set 0x0020)
18  *      - added a writev function
19  * 07/13/2005   Joern Engel <joern@wh.fh-wedel.de>
20  *      - Plugged memory leak in cfi_staa_writev().
21  */
22
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
30
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/mtd/map.h>
36 #include <linux/mtd/cfi.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/compatmac.h>
39
40
41 static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *);
42 static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
43 static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
44                 unsigned long count, loff_t to, size_t *retlen);
45 static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *);
46 static void cfi_staa_sync (struct mtd_info *);
47 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
48 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
49 static int cfi_staa_suspend (struct mtd_info *);
50 static void cfi_staa_resume (struct mtd_info *);
51
52 static void cfi_staa_destroy(struct mtd_info *);
53
54 struct mtd_info *cfi_cmdset_0020(struct map_info *, int);
55
56 static struct mtd_info *cfi_staa_setup (struct map_info *);
57
58 static struct mtd_chip_driver cfi_staa_chipdrv = {
59         .probe          = NULL, /* Not usable directly */
60         .destroy        = cfi_staa_destroy,
61         .name           = "cfi_cmdset_0020",
62         .module         = THIS_MODULE
63 };
64
65 /* #define DEBUG_LOCK_BITS */
66 //#define DEBUG_CFI_FEATURES
67
68 #ifdef DEBUG_CFI_FEATURES
69 static void cfi_tell_features(struct cfi_pri_intelext *extp)
70 {
71         int i;
72         printk("  Feature/Command Support: %4.4X\n", extp->FeatureSupport);
73         printk("     - Chip Erase:         %s\n", extp->FeatureSupport&1?"supported":"unsupported");
74         printk("     - Suspend Erase:      %s\n", extp->FeatureSupport&2?"supported":"unsupported");
75         printk("     - Suspend Program:    %s\n", extp->FeatureSupport&4?"supported":"unsupported");
76         printk("     - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
77         printk("     - Queued Erase:       %s\n", extp->FeatureSupport&16?"supported":"unsupported");
78         printk("     - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
79         printk("     - Protection Bits:    %s\n", extp->FeatureSupport&64?"supported":"unsupported");
80         printk("     - Page-mode read:     %s\n", extp->FeatureSupport&128?"supported":"unsupported");
81         printk("     - Synchronous read:   %s\n", extp->FeatureSupport&256?"supported":"unsupported");
82         for (i=9; i<32; i++) {
83                 if (extp->FeatureSupport & (1<<i))
84                         printk("     - Unknown Bit %X:      supported\n", i);
85         }
86
87         printk("  Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
88         printk("     - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
89         for (i=1; i<8; i++) {
90                 if (extp->SuspendCmdSupport & (1<<i))
91                         printk("     - Unknown Bit %X:               supported\n", i);
92         }
93
94         printk("  Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
95         printk("     - Lock Bit Active:      %s\n", extp->BlkStatusRegMask&1?"yes":"no");
96         printk("     - Valid Bit Active:     %s\n", extp->BlkStatusRegMask&2?"yes":"no");
97         for (i=2; i<16; i++) {
98                 if (extp->BlkStatusRegMask & (1<<i))
99                         printk("     - Unknown Bit %X Active: yes\n",i);
100         }
101
102         printk("  Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
103                extp->VccOptimal >> 8, extp->VccOptimal & 0xf);
104         if (extp->VppOptimal)
105                 printk("  Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
106                        extp->VppOptimal >> 8, extp->VppOptimal & 0xf);
107 }
108 #endif
109
110 /* This routine is made available to other mtd code via
111  * inter_module_register.  It must only be accessed through
112  * inter_module_get which will bump the use count of this module.  The
113  * addresses passed back in cfi are valid as long as the use count of
114  * this module is non-zero, i.e. between inter_module_get and
115  * inter_module_put.  Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
116  */
117 struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary)
118 {
119         struct cfi_private *cfi = map->fldrv_priv;
120         int i;
121
122         if (cfi->cfi_mode) {
123                 /*
124                  * It's a real CFI chip, not one for which the probe
125                  * routine faked a CFI structure. So we read the feature
126                  * table from it.
127                  */
128                 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
129                 struct cfi_pri_intelext *extp;
130
131                 extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics");
132                 if (!extp)
133                         return NULL;
134
135                 if (extp->MajorVersion != '1' ||
136                     (extp->MinorVersion < '0' || extp->MinorVersion > '3')) {
137                         printk(KERN_ERR "  Unknown ST Microelectronics"
138                                " Extended Query version %c.%c.\n",
139                                extp->MajorVersion, extp->MinorVersion);
140                         kfree(extp);
141                         return NULL;
142                 }
143
144                 /* Do some byteswapping if necessary */
145                 extp->FeatureSupport = cfi32_to_cpu(extp->FeatureSupport);
146                 extp->BlkStatusRegMask = cfi32_to_cpu(extp->BlkStatusRegMask);
147
148 #ifdef DEBUG_CFI_FEATURES
149                 /* Tell the user about it in lots of lovely detail */
150                 cfi_tell_features(extp);
151 #endif
152
153                 /* Install our own private info structure */
154                 cfi->cmdset_priv = extp;
155         }
156
157         for (i=0; i< cfi->numchips; i++) {
158                 cfi->chips[i].word_write_time = 128;
159                 cfi->chips[i].buffer_write_time = 128;
160                 cfi->chips[i].erase_time = 1024;
161                 cfi->chips[i].ref_point_counter = 0;
162                 init_waitqueue_head(&(cfi->chips[i].wq));
163         }
164
165         return cfi_staa_setup(map);
166 }
167 EXPORT_SYMBOL_GPL(cfi_cmdset_0020);
168
169 static struct mtd_info *cfi_staa_setup(struct map_info *map)
170 {
171         struct cfi_private *cfi = map->fldrv_priv;
172         struct mtd_info *mtd;
173         unsigned long offset = 0;
174         int i,j;
175         unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
176
177         mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
178         //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
179
180         if (!mtd) {
181                 printk(KERN_ERR "Failed to allocate memory for MTD device\n");
182                 kfree(cfi->cmdset_priv);
183                 return NULL;
184         }
185
186         mtd->priv = map;
187         mtd->type = MTD_NORFLASH;
188         mtd->size = devsize * cfi->numchips;
189
190         mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
191         mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
192                         * mtd->numeraseregions, GFP_KERNEL);
193         if (!mtd->eraseregions) {
194                 printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
195                 kfree(cfi->cmdset_priv);
196                 kfree(mtd);
197                 return NULL;
198         }
199
200         for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
201                 unsigned long ernum, ersize;
202                 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
203                 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
204
205                 if (mtd->erasesize < ersize) {
206                         mtd->erasesize = ersize;
207                 }
208                 for (j=0; j<cfi->numchips; j++) {
209                         mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
210                         mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
211                         mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
212                 }
213                 offset += (ersize * ernum);
214                 }
215
216                 if (offset != devsize) {
217                         /* Argh */
218                         printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
219                         kfree(mtd->eraseregions);
220                         kfree(cfi->cmdset_priv);
221                         kfree(mtd);
222                         return NULL;
223                 }
224
225                 for (i=0; i<mtd->numeraseregions;i++){
226                         printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n",
227                                i,mtd->eraseregions[i].offset,
228                                mtd->eraseregions[i].erasesize,
229                                mtd->eraseregions[i].numblocks);
230                 }
231
232         /* Also select the correct geometry setup too */
233         mtd->erase = cfi_staa_erase_varsize;
234         mtd->read = cfi_staa_read;
235         mtd->write = cfi_staa_write_buffers;
236         mtd->writev = cfi_staa_writev;
237         mtd->sync = cfi_staa_sync;
238         mtd->lock = cfi_staa_lock;
239         mtd->unlock = cfi_staa_unlock;
240         mtd->suspend = cfi_staa_suspend;
241         mtd->resume = cfi_staa_resume;
242         mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE;
243         mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
244         map->fldrv = &cfi_staa_chipdrv;
245         __module_get(THIS_MODULE);
246         mtd->name = map->name;
247         return mtd;
248 }
249
250
251 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
252 {
253         map_word status, status_OK;
254         unsigned long timeo;
255         DECLARE_WAITQUEUE(wait, current);
256         int suspended = 0;
257         unsigned long cmd_addr;
258         struct cfi_private *cfi = map->fldrv_priv;
259
260         adr += chip->start;
261
262         /* Ensure cmd read/writes are aligned. */
263         cmd_addr = adr & ~(map_bankwidth(map)-1);
264
265         /* Let's determine this according to the interleave only once */
266         status_OK = CMD(0x80);
267
268         timeo = jiffies + HZ;
269  retry:
270         spin_lock_bh(chip->mutex);
271
272         /* Check that the chip's ready to talk to us.
273          * If it's in FL_ERASING state, suspend it and make it talk now.
274          */
275         switch (chip->state) {
276         case FL_ERASING:
277                 if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2))
278                         goto sleep; /* We don't support erase suspend */
279
280                 map_write (map, CMD(0xb0), cmd_addr);
281                 /* If the flash has finished erasing, then 'erase suspend'
282                  * appears to make some (28F320) flash devices switch to
283                  * 'read' mode.  Make sure that we switch to 'read status'
284                  * mode so we get the right data. --rmk
285                  */
286                 map_write(map, CMD(0x70), cmd_addr);
287                 chip->oldstate = FL_ERASING;
288                 chip->state = FL_ERASE_SUSPENDING;
289                 //              printk("Erase suspending at 0x%lx\n", cmd_addr);
290                 for (;;) {
291                         status = map_read(map, cmd_addr);
292                         if (map_word_andequal(map, status, status_OK, status_OK))
293                                 break;
294
295                         if (time_after(jiffies, timeo)) {
296                                 /* Urgh */
297                                 map_write(map, CMD(0xd0), cmd_addr);
298                                 /* make sure we're in 'read status' mode */
299                                 map_write(map, CMD(0x70), cmd_addr);
300                                 chip->state = FL_ERASING;
301                                 spin_unlock_bh(chip->mutex);
302                                 printk(KERN_ERR "Chip not ready after erase "
303                                        "suspended: status = 0x%lx\n", status.x[0]);
304                                 return -EIO;
305                         }
306
307                         spin_unlock_bh(chip->mutex);
308                         cfi_udelay(1);
309                         spin_lock_bh(chip->mutex);
310                 }
311
312                 suspended = 1;
313                 map_write(map, CMD(0xff), cmd_addr);
314                 chip->state = FL_READY;
315                 break;
316
317 #if 0
318         case FL_WRITING:
319                 /* Not quite yet */
320 #endif
321
322         case FL_READY:
323                 break;
324
325         case FL_CFI_QUERY:
326         case FL_JEDEC_QUERY:
327                 map_write(map, CMD(0x70), cmd_addr);
328                 chip->state = FL_STATUS;
329
330         case FL_STATUS:
331                 status = map_read(map, cmd_addr);
332                 if (map_word_andequal(map, status, status_OK, status_OK)) {
333                         map_write(map, CMD(0xff), cmd_addr);
334                         chip->state = FL_READY;
335                         break;
336                 }
337
338                 /* Urgh. Chip not yet ready to talk to us. */
339                 if (time_after(jiffies, timeo)) {
340                         spin_unlock_bh(chip->mutex);
341                         printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]);
342                         return -EIO;
343                 }
344
345                 /* Latency issues. Drop the lock, wait a while and retry */
346                 spin_unlock_bh(chip->mutex);
347                 cfi_udelay(1);
348                 goto retry;
349
350         default:
351         sleep:
352                 /* Stick ourselves on a wait queue to be woken when
353                    someone changes the status */
354                 set_current_state(TASK_UNINTERRUPTIBLE);
355                 add_wait_queue(&chip->wq, &wait);
356                 spin_unlock_bh(chip->mutex);
357                 schedule();
358                 remove_wait_queue(&chip->wq, &wait);
359                 timeo = jiffies + HZ;
360                 goto retry;
361         }
362
363         map_copy_from(map, buf, adr, len);
364
365         if (suspended) {
366                 chip->state = chip->oldstate;
367                 /* What if one interleaved chip has finished and the
368                    other hasn't? The old code would leave the finished
369                    one in READY mode. That's bad, and caused -EROFS
370                    errors to be returned from do_erase_oneblock because
371                    that's the only bit it checked for at the time.
372                    As the state machine appears to explicitly allow
373                    sending the 0x70 (Read Status) command to an erasing
374                    chip and expecting it to be ignored, that's what we
375                    do. */
376                 map_write(map, CMD(0xd0), cmd_addr);
377                 map_write(map, CMD(0x70), cmd_addr);
378         }
379
380         wake_up(&chip->wq);
381         spin_unlock_bh(chip->mutex);
382         return 0;
383 }
384
385 static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
386 {
387         struct map_info *map = mtd->priv;
388         struct cfi_private *cfi = map->fldrv_priv;
389         unsigned long ofs;
390         int chipnum;
391         int ret = 0;
392
393         /* ofs: offset within the first chip that the first read should start */
394         chipnum = (from >> cfi->chipshift);
395         ofs = from - (chipnum <<  cfi->chipshift);
396
397         *retlen = 0;
398
399         while (len) {
400                 unsigned long thislen;
401
402                 if (chipnum >= cfi->numchips)
403                         break;
404
405                 if ((len + ofs -1) >> cfi->chipshift)
406                         thislen = (1<<cfi->chipshift) - ofs;
407                 else
408                         thislen = len;
409
410                 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
411                 if (ret)
412                         break;
413
414                 *retlen += thislen;
415                 len -= thislen;
416                 buf += thislen;
417
418                 ofs = 0;
419                 chipnum++;
420         }
421         return ret;
422 }
423
424 static inline int do_write_buffer(struct map_info *map, struct flchip *chip,
425                                   unsigned long adr, const u_char *buf, int len)
426 {
427         struct cfi_private *cfi = map->fldrv_priv;
428         map_word status, status_OK;
429         unsigned long cmd_adr, timeo;
430         DECLARE_WAITQUEUE(wait, current);
431         int wbufsize, z;
432
433         /* M58LW064A requires bus alignment for buffer wriets -- saw */
434         if (adr & (map_bankwidth(map)-1))
435             return -EINVAL;
436
437         wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
438         adr += chip->start;
439         cmd_adr = adr & ~(wbufsize-1);
440
441         /* Let's determine this according to the interleave only once */
442         status_OK = CMD(0x80);
443
444         timeo = jiffies + HZ;
445  retry:
446
447 #ifdef DEBUG_CFI_FEATURES
448        printk("%s: chip->state[%d]\n", __func__, chip->state);
449 #endif
450         spin_lock_bh(chip->mutex);
451
452         /* Check that the chip's ready to talk to us.
453          * Later, we can actually think about interrupting it
454          * if it's in FL_ERASING state.
455          * Not just yet, though.
456          */
457         switch (chip->state) {
458         case FL_READY:
459                 break;
460
461         case FL_CFI_QUERY:
462         case FL_JEDEC_QUERY:
463                 map_write(map, CMD(0x70), cmd_adr);
464                 chip->state = FL_STATUS;
465 #ifdef DEBUG_CFI_FEATURES
466         printk("%s: 1 status[%x]\n", __func__, map_read(map, cmd_adr));
467 #endif
468
469         case FL_STATUS:
470                 status = map_read(map, cmd_adr);
471                 if (map_word_andequal(map, status, status_OK, status_OK))
472                         break;
473                 /* Urgh. Chip not yet ready to talk to us. */
474                 if (time_after(jiffies, timeo)) {
475                         spin_unlock_bh(chip->mutex);
476                         printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
477                                status.x[0], map_read(map, cmd_adr).x[0]);
478                         return -EIO;
479                 }
480
481                 /* Latency issues. Drop the lock, wait a while and retry */
482                 spin_unlock_bh(chip->mutex);
483                 cfi_udelay(1);
484                 goto retry;
485
486         default:
487                 /* Stick ourselves on a wait queue to be woken when
488                    someone changes the status */
489                 set_current_state(TASK_UNINTERRUPTIBLE);
490                 add_wait_queue(&chip->wq, &wait);
491                 spin_unlock_bh(chip->mutex);
492                 schedule();
493                 remove_wait_queue(&chip->wq, &wait);
494                 timeo = jiffies + HZ;
495                 goto retry;
496         }
497
498         ENABLE_VPP(map);
499         map_write(map, CMD(0xe8), cmd_adr);
500         chip->state = FL_WRITING_TO_BUFFER;
501
502         z = 0;
503         for (;;) {
504                 status = map_read(map, cmd_adr);
505                 if (map_word_andequal(map, status, status_OK, status_OK))
506                         break;
507
508                 spin_unlock_bh(chip->mutex);
509                 cfi_udelay(1);
510                 spin_lock_bh(chip->mutex);
511
512                 if (++z > 100) {
513                         /* Argh. Not ready for write to buffer */
514                         DISABLE_VPP(map);
515                         map_write(map, CMD(0x70), cmd_adr);
516                         chip->state = FL_STATUS;
517                         spin_unlock_bh(chip->mutex);
518                         printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]);
519                         return -EIO;
520                 }
521         }
522
523         /* Write length of data to come */
524         map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr );
525
526         /* Write data */
527         for (z = 0; z < len;
528              z += map_bankwidth(map), buf += map_bankwidth(map)) {
529                 map_word d;
530                 d = map_word_load(map, buf);
531                 map_write(map, d, adr+z);
532         }
533         /* GO GO GO */
534         map_write(map, CMD(0xd0), cmd_adr);
535         chip->state = FL_WRITING;
536
537         spin_unlock_bh(chip->mutex);
538         cfi_udelay(chip->buffer_write_time);
539         spin_lock_bh(chip->mutex);
540
541         timeo = jiffies + (HZ/2);
542         z = 0;
543         for (;;) {
544                 if (chip->state != FL_WRITING) {
545                         /* Someone's suspended the write. Sleep */
546                         set_current_state(TASK_UNINTERRUPTIBLE);
547                         add_wait_queue(&chip->wq, &wait);
548                         spin_unlock_bh(chip->mutex);
549                         schedule();
550                         remove_wait_queue(&chip->wq, &wait);
551                         timeo = jiffies + (HZ / 2); /* FIXME */
552                         spin_lock_bh(chip->mutex);
553                         continue;
554                 }
555
556                 status = map_read(map, cmd_adr);
557                 if (map_word_andequal(map, status, status_OK, status_OK))
558                         break;
559
560                 /* OK Still waiting */
561                 if (time_after(jiffies, timeo)) {
562                         /* clear status */
563                         map_write(map, CMD(0x50), cmd_adr);
564                         /* put back into read status register mode */
565                         map_write(map, CMD(0x70), adr);
566                         chip->state = FL_STATUS;
567                         DISABLE_VPP(map);
568                         spin_unlock_bh(chip->mutex);
569                         printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
570                         return -EIO;
571                 }
572
573                 /* Latency issues. Drop the lock, wait a while and retry */
574                 spin_unlock_bh(chip->mutex);
575                 cfi_udelay(1);
576                 z++;
577                 spin_lock_bh(chip->mutex);
578         }
579         if (!z) {
580                 chip->buffer_write_time--;
581                 if (!chip->buffer_write_time)
582                         chip->buffer_write_time++;
583         }
584         if (z > 1)
585                 chip->buffer_write_time++;
586
587         /* Done and happy. */
588         DISABLE_VPP(map);
589         chip->state = FL_STATUS;
590
591         /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
592         if (map_word_bitsset(map, status, CMD(0x3a))) {
593 #ifdef DEBUG_CFI_FEATURES
594                 printk("%s: 2 status[%lx]\n", __func__, status.x[0]);
595 #endif
596                 /* clear status */
597                 map_write(map, CMD(0x50), cmd_adr);
598                 /* put back into read status register mode */
599                 map_write(map, CMD(0x70), adr);
600                 wake_up(&chip->wq);
601                 spin_unlock_bh(chip->mutex);
602                 return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO;
603         }
604         wake_up(&chip->wq);
605         spin_unlock_bh(chip->mutex);
606
607         return 0;
608 }
609
610 static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to,
611                                        size_t len, size_t *retlen, const u_char *buf)
612 {
613         struct map_info *map = mtd->priv;
614         struct cfi_private *cfi = map->fldrv_priv;
615         int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
616         int ret = 0;
617         int chipnum;
618         unsigned long ofs;
619
620         *retlen = 0;
621         if (!len)
622                 return 0;
623
624         chipnum = to >> cfi->chipshift;
625         ofs = to  - (chipnum << cfi->chipshift);
626
627 #ifdef DEBUG_CFI_FEATURES
628         printk("%s: map_bankwidth(map)[%x]\n", __func__, map_bankwidth(map));
629         printk("%s: chipnum[%x] wbufsize[%x]\n", __func__, chipnum, wbufsize);
630         printk("%s: ofs[%x] len[%x]\n", __func__, ofs, len);
631 #endif
632
633         /* Write buffer is worth it only if more than one word to write... */
634         while (len > 0) {
635                 /* We must not cross write block boundaries */
636                 int size = wbufsize - (ofs & (wbufsize-1));
637
638                 if (size > len)
639                     size = len;
640
641                 ret = do_write_buffer(map, &cfi->chips[chipnum],
642                                       ofs, buf, size);
643                 if (ret)
644                         return ret;
645
646                 ofs += size;
647                 buf += size;
648                 (*retlen) += size;
649                 len -= size;
650
651                 if (ofs >> cfi->chipshift) {
652                         chipnum ++;
653                         ofs = 0;
654                         if (chipnum == cfi->numchips)
655                                 return 0;
656                 }
657         }
658
659         return 0;
660 }
661
662 /*
663  * Writev for ECC-Flashes is a little more complicated. We need to maintain
664  * a small buffer for this.
665  * XXX: If the buffer size is not a multiple of 2, this will break
666  */
667 #define ECCBUF_SIZE (mtd->writesize)
668 #define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
669 #define ECCBUF_MOD(x) ((x) &  (ECCBUF_SIZE - 1))
670 static int
671 cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
672                 unsigned long count, loff_t to, size_t *retlen)
673 {
674         unsigned long i;
675         size_t   totlen = 0, thislen;
676         int      ret = 0;
677         size_t   buflen = 0;
678         static char *buffer;
679
680         if (!ECCBUF_SIZE) {
681                 /* We should fall back to a general writev implementation.
682                  * Until that is written, just break.
683                  */
684                 return -EIO;
685         }
686         buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL);
687         if (!buffer)
688                 return -ENOMEM;
689
690         for (i=0; i<count; i++) {
691                 size_t elem_len = vecs[i].iov_len;
692                 void *elem_base = vecs[i].iov_base;
693                 if (!elem_len) /* FIXME: Might be unnecessary. Check that */
694                         continue;
695                 if (buflen) { /* cut off head */
696                         if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */
697                                 memcpy(buffer+buflen, elem_base, elem_len);
698                                 buflen += elem_len;
699                                 continue;
700                         }
701                         memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen);
702                         ret = mtd->write(mtd, to, ECCBUF_SIZE, &thislen, buffer);
703                         totlen += thislen;
704                         if (ret || thislen != ECCBUF_SIZE)
705                                 goto write_error;
706                         elem_len -= thislen-buflen;
707                         elem_base += thislen-buflen;
708                         to += ECCBUF_SIZE;
709                 }
710                 if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */
711                         ret = mtd->write(mtd, to, ECCBUF_DIV(elem_len), &thislen, elem_base);
712                         totlen += thislen;
713                         if (ret || thislen != ECCBUF_DIV(elem_len))
714                                 goto write_error;
715                         to += thislen;
716                 }
717                 buflen = ECCBUF_MOD(elem_len); /* cut off tail */
718                 if (buflen) {
719                         memset(buffer, 0xff, ECCBUF_SIZE);
720                         memcpy(buffer, elem_base + thislen, buflen);
721                 }
722         }
723         if (buflen) { /* flush last page, even if not full */
724                 /* This is sometimes intended behaviour, really */
725                 ret = mtd->write(mtd, to, buflen, &thislen, buffer);
726                 totlen += thislen;
727                 if (ret || thislen != ECCBUF_SIZE)
728                         goto write_error;
729         }
730 write_error:
731         if (retlen)
732                 *retlen = totlen;
733         kfree(buffer);
734         return ret;
735 }
736
737
738 static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
739 {
740         struct cfi_private *cfi = map->fldrv_priv;
741         map_word status, status_OK;
742         unsigned long timeo;
743         int retries = 3;
744         DECLARE_WAITQUEUE(wait, current);
745         int ret = 0;
746
747         adr += chip->start;
748
749         /* Let's determine this according to the interleave only once */
750         status_OK = CMD(0x80);
751
752         timeo = jiffies + HZ;
753 retry:
754         spin_lock_bh(chip->mutex);
755
756         /* Check that the chip's ready to talk to us. */
757         switch (chip->state) {
758         case FL_CFI_QUERY:
759         case FL_JEDEC_QUERY:
760         case FL_READY:
761                 map_write(map, CMD(0x70), adr);
762                 chip->state = FL_STATUS;
763
764         case FL_STATUS:
765                 status = map_read(map, adr);
766                 if (map_word_andequal(map, status, status_OK, status_OK))
767                         break;
768
769                 /* Urgh. Chip not yet ready to talk to us. */
770                 if (time_after(jiffies, timeo)) {
771                         spin_unlock_bh(chip->mutex);
772                         printk(KERN_ERR "waiting for chip to be ready timed out in erase\n");
773                         return -EIO;
774                 }
775
776                 /* Latency issues. Drop the lock, wait a while and retry */
777                 spin_unlock_bh(chip->mutex);
778                 cfi_udelay(1);
779                 goto retry;
780
781         default:
782                 /* Stick ourselves on a wait queue to be woken when
783                    someone changes the status */
784                 set_current_state(TASK_UNINTERRUPTIBLE);
785                 add_wait_queue(&chip->wq, &wait);
786                 spin_unlock_bh(chip->mutex);
787                 schedule();
788                 remove_wait_queue(&chip->wq, &wait);
789                 timeo = jiffies + HZ;
790                 goto retry;
791         }
792
793         ENABLE_VPP(map);
794         /* Clear the status register first */
795         map_write(map, CMD(0x50), adr);
796
797         /* Now erase */
798         map_write(map, CMD(0x20), adr);
799         map_write(map, CMD(0xD0), adr);
800         chip->state = FL_ERASING;
801
802         spin_unlock_bh(chip->mutex);
803         msleep(1000);
804         spin_lock_bh(chip->mutex);
805
806         /* FIXME. Use a timer to check this, and return immediately. */
807         /* Once the state machine's known to be working I'll do that */
808
809         timeo = jiffies + (HZ*20);
810         for (;;) {
811                 if (chip->state != FL_ERASING) {
812                         /* Someone's suspended the erase. Sleep */
813                         set_current_state(TASK_UNINTERRUPTIBLE);
814                         add_wait_queue(&chip->wq, &wait);
815                         spin_unlock_bh(chip->mutex);
816                         schedule();
817                         remove_wait_queue(&chip->wq, &wait);
818                         timeo = jiffies + (HZ*20); /* FIXME */
819                         spin_lock_bh(chip->mutex);
820                         continue;
821                 }
822
823                 status = map_read(map, adr);
824                 if (map_word_andequal(map, status, status_OK, status_OK))
825                         break;
826
827                 /* OK Still waiting */
828                 if (time_after(jiffies, timeo)) {
829                         map_write(map, CMD(0x70), adr);
830                         chip->state = FL_STATUS;
831                         printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
832                         DISABLE_VPP(map);
833                         spin_unlock_bh(chip->mutex);
834                         return -EIO;
835                 }
836
837                 /* Latency issues. Drop the lock, wait a while and retry */
838                 spin_unlock_bh(chip->mutex);
839                 cfi_udelay(1);
840                 spin_lock_bh(chip->mutex);
841         }
842
843         DISABLE_VPP(map);
844         ret = 0;
845
846         /* We've broken this before. It doesn't hurt to be safe */
847         map_write(map, CMD(0x70), adr);
848         chip->state = FL_STATUS;
849         status = map_read(map, adr);
850
851         /* check for lock bit */
852         if (map_word_bitsset(map, status, CMD(0x3a))) {
853                 unsigned char chipstatus = status.x[0];
854                 if (!map_word_equal(map, status, CMD(chipstatus))) {
855                         int i, w;
856                         for (w=0; w<map_words(map); w++) {
857                                 for (i = 0; i<cfi_interleave(cfi); i++) {
858                                         chipstatus |= status.x[w] >> (cfi->device_type * 8);
859                                 }
860                         }
861                         printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
862                                status.x[0], chipstatus);
863                 }
864                 /* Reset the error bits */
865                 map_write(map, CMD(0x50), adr);
866                 map_write(map, CMD(0x70), adr);
867
868                 if ((chipstatus & 0x30) == 0x30) {
869                         printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus);
870                         ret = -EIO;
871                 } else if (chipstatus & 0x02) {
872                         /* Protection bit set */
873                         ret = -EROFS;
874                 } else if (chipstatus & 0x8) {
875                         /* Voltage */
876                         printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus);
877                         ret = -EIO;
878                 } else if (chipstatus & 0x20) {
879                         if (retries--) {
880                                 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus);
881                                 timeo = jiffies + HZ;
882                                 chip->state = FL_STATUS;
883                                 spin_unlock_bh(chip->mutex);
884                                 goto retry;
885                         }
886                         printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus);
887                         ret = -EIO;
888                 }
889         }
890
891         wake_up(&chip->wq);
892         spin_unlock_bh(chip->mutex);
893         return ret;
894 }
895
896 static int cfi_staa_erase_varsize(struct mtd_info *mtd,
897                                   struct erase_info *instr)
898 {       struct map_info *map = mtd->priv;
899         struct cfi_private *cfi = map->fldrv_priv;
900         unsigned long adr, len;
901         int chipnum, ret = 0;
902         int i, first;
903         struct mtd_erase_region_info *regions = mtd->eraseregions;
904
905         if (instr->addr > mtd->size)
906                 return -EINVAL;
907
908         if ((instr->len + instr->addr) > mtd->size)
909                 return -EINVAL;
910
911         /* Check that both start and end of the requested erase are
912          * aligned with the erasesize at the appropriate addresses.
913          */
914
915         i = 0;
916
917         /* Skip all erase regions which are ended before the start of
918            the requested erase. Actually, to save on the calculations,
919            we skip to the first erase region which starts after the
920            start of the requested erase, and then go back one.
921         */
922
923         while (i < mtd->numeraseregions && instr->addr >= regions[i].offset)
924                i++;
925         i--;
926
927         /* OK, now i is pointing at the erase region in which this
928            erase request starts. Check the start of the requested
929            erase range is aligned with the erase size which is in
930            effect here.
931         */
932
933         if (instr->addr & (regions[i].erasesize-1))
934                 return -EINVAL;
935
936         /* Remember the erase region we start on */
937         first = i;
938
939         /* Next, check that the end of the requested erase is aligned
940          * with the erase region at that address.
941          */
942
943         while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset)
944                 i++;
945
946         /* As before, drop back one to point at the region in which
947            the address actually falls
948         */
949         i--;
950
951         if ((instr->addr + instr->len) & (regions[i].erasesize-1))
952                 return -EINVAL;
953
954         chipnum = instr->addr >> cfi->chipshift;
955         adr = instr->addr - (chipnum << cfi->chipshift);
956         len = instr->len;
957
958         i=first;
959
960         while(len) {
961                 ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr);
962
963                 if (ret)
964                         return ret;
965
966                 adr += regions[i].erasesize;
967                 len -= regions[i].erasesize;
968
969                 if (adr % (1<< cfi->chipshift) == ((regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift)))
970                         i++;
971
972                 if (adr >> cfi->chipshift) {
973                         adr = 0;
974                         chipnum++;
975
976                         if (chipnum >= cfi->numchips)
977                         break;
978                 }
979         }
980
981         instr->state = MTD_ERASE_DONE;
982         mtd_erase_callback(instr);
983
984         return 0;
985 }
986
987 static void cfi_staa_sync (struct mtd_info *mtd)
988 {
989         struct map_info *map = mtd->priv;
990         struct cfi_private *cfi = map->fldrv_priv;
991         int i;
992         struct flchip *chip;
993         int ret = 0;
994         DECLARE_WAITQUEUE(wait, current);
995
996         for (i=0; !ret && i<cfi->numchips; i++) {
997                 chip = &cfi->chips[i];
998
999         retry:
1000                 spin_lock_bh(chip->mutex);
1001
1002                 switch(chip->state) {
1003                 case FL_READY:
1004                 case FL_STATUS:
1005                 case FL_CFI_QUERY:
1006                 case FL_JEDEC_QUERY:
1007                         chip->oldstate = chip->state;
1008                         chip->state = FL_SYNCING;
1009                         /* No need to wake_up() on this state change -
1010                          * as the whole point is that nobody can do anything
1011                          * with the chip now anyway.
1012                          */
1013                 case FL_SYNCING:
1014                         spin_unlock_bh(chip->mutex);
1015                         break;
1016
1017                 default:
1018                         /* Not an idle state */
1019                         set_current_state(TASK_UNINTERRUPTIBLE);
1020                         add_wait_queue(&chip->wq, &wait);
1021
1022                         spin_unlock_bh(chip->mutex);
1023                         schedule();
1024                         remove_wait_queue(&chip->wq, &wait);
1025
1026                         goto retry;
1027                 }
1028         }
1029
1030         /* Unlock the chips again */
1031
1032         for (i--; i >=0; i--) {
1033                 chip = &cfi->chips[i];
1034
1035                 spin_lock_bh(chip->mutex);
1036
1037                 if (chip->state == FL_SYNCING) {
1038                         chip->state = chip->oldstate;
1039                         wake_up(&chip->wq);
1040                 }
1041                 spin_unlock_bh(chip->mutex);
1042         }
1043 }
1044
1045 static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
1046 {
1047         struct cfi_private *cfi = map->fldrv_priv;
1048         map_word status, status_OK;
1049         unsigned long timeo = jiffies + HZ;
1050         DECLARE_WAITQUEUE(wait, current);
1051
1052         adr += chip->start;
1053
1054         /* Let's determine this according to the interleave only once */
1055         status_OK = CMD(0x80);
1056
1057         timeo = jiffies + HZ;
1058 retry:
1059         spin_lock_bh(chip->mutex);
1060
1061         /* Check that the chip's ready to talk to us. */
1062         switch (chip->state) {
1063         case FL_CFI_QUERY:
1064         case FL_JEDEC_QUERY:
1065         case FL_READY:
1066                 map_write(map, CMD(0x70), adr);
1067                 chip->state = FL_STATUS;
1068
1069         case FL_STATUS:
1070                 status = map_read(map, adr);
1071                 if (map_word_andequal(map, status, status_OK, status_OK))
1072                         break;
1073
1074                 /* Urgh. Chip not yet ready to talk to us. */
1075                 if (time_after(jiffies, timeo)) {
1076                         spin_unlock_bh(chip->mutex);
1077                         printk(KERN_ERR "waiting for chip to be ready timed out in lock\n");
1078                         return -EIO;
1079                 }
1080
1081                 /* Latency issues. Drop the lock, wait a while and retry */
1082                 spin_unlock_bh(chip->mutex);
1083                 cfi_udelay(1);
1084                 goto retry;
1085
1086         default:
1087                 /* Stick ourselves on a wait queue to be woken when
1088                    someone changes the status */
1089                 set_current_state(TASK_UNINTERRUPTIBLE);
1090                 add_wait_queue(&chip->wq, &wait);
1091                 spin_unlock_bh(chip->mutex);
1092                 schedule();
1093                 remove_wait_queue(&chip->wq, &wait);
1094                 timeo = jiffies + HZ;
1095                 goto retry;
1096         }
1097
1098         ENABLE_VPP(map);
1099         map_write(map, CMD(0x60), adr);
1100         map_write(map, CMD(0x01), adr);
1101         chip->state = FL_LOCKING;
1102
1103         spin_unlock_bh(chip->mutex);
1104         msleep(1000);
1105         spin_lock_bh(chip->mutex);
1106
1107         /* FIXME. Use a timer to check this, and return immediately. */
1108         /* Once the state machine's known to be working I'll do that */
1109
1110         timeo = jiffies + (HZ*2);
1111         for (;;) {
1112
1113                 status = map_read(map, adr);
1114                 if (map_word_andequal(map, status, status_OK, status_OK))
1115                         break;
1116
1117                 /* OK Still waiting */
1118                 if (time_after(jiffies, timeo)) {
1119                         map_write(map, CMD(0x70), adr);
1120                         chip->state = FL_STATUS;
1121                         printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
1122                         DISABLE_VPP(map);
1123                         spin_unlock_bh(chip->mutex);
1124                         return -EIO;
1125                 }
1126
1127                 /* Latency issues. Drop the lock, wait a while and retry */
1128                 spin_unlock_bh(chip->mutex);
1129                 cfi_udelay(1);
1130                 spin_lock_bh(chip->mutex);
1131         }
1132
1133         /* Done and happy. */
1134         chip->state = FL_STATUS;
1135         DISABLE_VPP(map);
1136         wake_up(&chip->wq);
1137         spin_unlock_bh(chip->mutex);
1138         return 0;
1139 }
1140 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1141 {
1142         struct map_info *map = mtd->priv;
1143         struct cfi_private *cfi = map->fldrv_priv;
1144         unsigned long adr;
1145         int chipnum, ret = 0;
1146 #ifdef DEBUG_LOCK_BITS
1147         int ofs_factor = cfi->interleave * cfi->device_type;
1148 #endif
1149
1150         if (ofs & (mtd->erasesize - 1))
1151                 return -EINVAL;
1152
1153         if (len & (mtd->erasesize -1))
1154                 return -EINVAL;
1155
1156         if ((len + ofs) > mtd->size)
1157                 return -EINVAL;
1158
1159         chipnum = ofs >> cfi->chipshift;
1160         adr = ofs - (chipnum << cfi->chipshift);
1161
1162         while(len) {
1163
1164 #ifdef DEBUG_LOCK_BITS
1165                 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1166                 printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1167                 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1168 #endif
1169
1170                 ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr);
1171
1172 #ifdef DEBUG_LOCK_BITS
1173                 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1174                 printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1175                 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1176 #endif
1177
1178                 if (ret)
1179                         return ret;
1180
1181                 adr += mtd->erasesize;
1182                 len -= mtd->erasesize;
1183
1184                 if (adr >> cfi->chipshift) {
1185                         adr = 0;
1186                         chipnum++;
1187
1188                         if (chipnum >= cfi->numchips)
1189                         break;
1190                 }
1191         }
1192         return 0;
1193 }
1194 static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
1195 {
1196         struct cfi_private *cfi = map->fldrv_priv;
1197         map_word status, status_OK;
1198         unsigned long timeo = jiffies + HZ;
1199         DECLARE_WAITQUEUE(wait, current);
1200
1201         adr += chip->start;
1202
1203         /* Let's determine this according to the interleave only once */
1204         status_OK = CMD(0x80);
1205
1206         timeo = jiffies + HZ;
1207 retry:
1208         spin_lock_bh(chip->mutex);
1209
1210         /* Check that the chip's ready to talk to us. */
1211         switch (chip->state) {
1212         case FL_CFI_QUERY:
1213         case FL_JEDEC_QUERY:
1214         case FL_READY:
1215                 map_write(map, CMD(0x70), adr);
1216                 chip->state = FL_STATUS;
1217
1218         case FL_STATUS:
1219                 status = map_read(map, adr);
1220                 if (map_word_andequal(map, status, status_OK, status_OK))
1221                         break;
1222
1223                 /* Urgh. Chip not yet ready to talk to us. */
1224                 if (time_after(jiffies, timeo)) {
1225                         spin_unlock_bh(chip->mutex);
1226                         printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n");
1227                         return -EIO;
1228                 }
1229
1230                 /* Latency issues. Drop the lock, wait a while and retry */
1231                 spin_unlock_bh(chip->mutex);
1232                 cfi_udelay(1);
1233                 goto retry;
1234
1235         default:
1236                 /* Stick ourselves on a wait queue to be woken when
1237                    someone changes the status */
1238                 set_current_state(TASK_UNINTERRUPTIBLE);
1239                 add_wait_queue(&chip->wq, &wait);
1240                 spin_unlock_bh(chip->mutex);
1241                 schedule();
1242                 remove_wait_queue(&chip->wq, &wait);
1243                 timeo = jiffies + HZ;
1244                 goto retry;
1245         }
1246
1247         ENABLE_VPP(map);
1248         map_write(map, CMD(0x60), adr);
1249         map_write(map, CMD(0xD0), adr);
1250         chip->state = FL_UNLOCKING;
1251
1252         spin_unlock_bh(chip->mutex);
1253         msleep(1000);
1254         spin_lock_bh(chip->mutex);
1255
1256         /* FIXME. Use a timer to check this, and return immediately. */
1257         /* Once the state machine's known to be working I'll do that */
1258
1259         timeo = jiffies + (HZ*2);
1260         for (;;) {
1261
1262                 status = map_read(map, adr);
1263                 if (map_word_andequal(map, status, status_OK, status_OK))
1264                         break;
1265
1266                 /* OK Still waiting */
1267                 if (time_after(jiffies, timeo)) {
1268                         map_write(map, CMD(0x70), adr);
1269                         chip->state = FL_STATUS;
1270                         printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
1271                         DISABLE_VPP(map);
1272                         spin_unlock_bh(chip->mutex);
1273                         return -EIO;
1274                 }
1275
1276                 /* Latency issues. Drop the unlock, wait a while and retry */
1277                 spin_unlock_bh(chip->mutex);
1278                 cfi_udelay(1);
1279                 spin_lock_bh(chip->mutex);
1280         }
1281
1282         /* Done and happy. */
1283         chip->state = FL_STATUS;
1284         DISABLE_VPP(map);
1285         wake_up(&chip->wq);
1286         spin_unlock_bh(chip->mutex);
1287         return 0;
1288 }
1289 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1290 {
1291         struct map_info *map = mtd->priv;
1292         struct cfi_private *cfi = map->fldrv_priv;
1293         unsigned long adr;
1294         int chipnum, ret = 0;
1295 #ifdef DEBUG_LOCK_BITS
1296         int ofs_factor = cfi->interleave * cfi->device_type;
1297 #endif
1298
1299         chipnum = ofs >> cfi->chipshift;
1300         adr = ofs - (chipnum << cfi->chipshift);
1301
1302 #ifdef DEBUG_LOCK_BITS
1303         {
1304                 unsigned long temp_adr = adr;
1305                 unsigned long temp_len = len;
1306
1307                 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1308                 while (temp_len) {
1309                         printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor)));
1310                         temp_adr += mtd->erasesize;
1311                         temp_len -= mtd->erasesize;
1312                 }
1313                 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1314         }
1315 #endif
1316
1317         ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr);
1318
1319 #ifdef DEBUG_LOCK_BITS
1320         cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1321         printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1322         cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1323 #endif
1324
1325         return ret;
1326 }
1327
1328 static int cfi_staa_suspend(struct mtd_info *mtd)
1329 {
1330         struct map_info *map = mtd->priv;
1331         struct cfi_private *cfi = map->fldrv_priv;
1332         int i;
1333         struct flchip *chip;
1334         int ret = 0;
1335
1336         for (i=0; !ret && i<cfi->numchips; i++) {
1337                 chip = &cfi->chips[i];
1338
1339                 spin_lock_bh(chip->mutex);
1340
1341                 switch(chip->state) {
1342                 case FL_READY:
1343                 case FL_STATUS:
1344                 case FL_CFI_QUERY:
1345                 case FL_JEDEC_QUERY:
1346                         chip->oldstate = chip->state;
1347                         chip->state = FL_PM_SUSPENDED;
1348                         /* No need to wake_up() on this state change -
1349                          * as the whole point is that nobody can do anything
1350                          * with the chip now anyway.
1351                          */
1352                 case FL_PM_SUSPENDED:
1353                         break;
1354
1355                 default:
1356                         ret = -EAGAIN;
1357                         break;
1358                 }
1359                 spin_unlock_bh(chip->mutex);
1360         }
1361
1362         /* Unlock the chips again */
1363
1364         if (ret) {
1365                 for (i--; i >=0; i--) {
1366                         chip = &cfi->chips[i];
1367
1368                         spin_lock_bh(chip->mutex);
1369
1370                         if (chip->state == FL_PM_SUSPENDED) {
1371                                 /* No need to force it into a known state here,
1372                                    because we're returning failure, and it didn't
1373                                    get power cycled */
1374                                 chip->state = chip->oldstate;
1375                                 wake_up(&chip->wq);
1376                         }
1377                         spin_unlock_bh(chip->mutex);
1378                 }
1379         }
1380
1381         return ret;
1382 }
1383
1384 static void cfi_staa_resume(struct mtd_info *mtd)
1385 {
1386         struct map_info *map = mtd->priv;
1387         struct cfi_private *cfi = map->fldrv_priv;
1388         int i;
1389         struct flchip *chip;
1390
1391         for (i=0; i<cfi->numchips; i++) {
1392
1393                 chip = &cfi->chips[i];
1394
1395                 spin_lock_bh(chip->mutex);
1396
1397                 /* Go to known state. Chip may have been power cycled */
1398                 if (chip->state == FL_PM_SUSPENDED) {
1399                         map_write(map, CMD(0xFF), 0);
1400                         chip->state = FL_READY;
1401                         wake_up(&chip->wq);
1402                 }
1403
1404                 spin_unlock_bh(chip->mutex);
1405         }
1406 }
1407
1408 static void cfi_staa_destroy(struct mtd_info *mtd)
1409 {
1410         struct map_info *map = mtd->priv;
1411         struct cfi_private *cfi = map->fldrv_priv;
1412         kfree(cfi->cmdset_priv);
1413         kfree(cfi);
1414 }
1415
1416 MODULE_LICENSE("GPL");