md/raid5: be more careful about write ordering when reshaping.
[safe/jmp/linux-2.6] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/seq_file.h>
51 #include "md.h"
52 #include "raid5.h"
53 #include "bitmap.h"
54
55 /*
56  * Stripe cache
57  */
58
59 #define NR_STRIPES              256
60 #define STRIPE_SIZE             PAGE_SIZE
61 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
62 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
63 #define IO_THRESHOLD            1
64 #define BYPASS_THRESHOLD        1
65 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK               (NR_HASH - 1)
67
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71  * order without overlap.  There may be several bio's per stripe+device, and
72  * a bio could span several devices.
73  * When walking this list for a particular stripe+device, we must never proceed
74  * beyond a bio that extends past this device, as the next bio might no longer
75  * be valid.
76  * This macro is used to determine the 'next' bio in the list, given the sector
77  * of the current stripe+device
78  */
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80 /*
81  * The following can be used to debug the driver
82  */
83 #define RAID5_PARANOIA  1
84 #if RAID5_PARANOIA && defined(CONFIG_SMP)
85 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86 #else
87 # define CHECK_DEVLOCK()
88 #endif
89
90 #ifdef DEBUG
91 #define inline
92 #define __inline__
93 #endif
94
95 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
97 /*
98  * We maintain a biased count of active stripes in the bottom 16 bits of
99  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
100  */
101 static inline int raid5_bi_phys_segments(struct bio *bio)
102 {
103         return bio->bi_phys_segments & 0xffff;
104 }
105
106 static inline int raid5_bi_hw_segments(struct bio *bio)
107 {
108         return (bio->bi_phys_segments >> 16) & 0xffff;
109 }
110
111 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
112 {
113         --bio->bi_phys_segments;
114         return raid5_bi_phys_segments(bio);
115 }
116
117 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
118 {
119         unsigned short val = raid5_bi_hw_segments(bio);
120
121         --val;
122         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
123         return val;
124 }
125
126 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
127 {
128         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
129 }
130
131 /* Find first data disk in a raid6 stripe */
132 static inline int raid6_d0(struct stripe_head *sh)
133 {
134         if (sh->ddf_layout)
135                 /* ddf always start from first device */
136                 return 0;
137         /* md starts just after Q block */
138         if (sh->qd_idx == sh->disks - 1)
139                 return 0;
140         else
141                 return sh->qd_idx + 1;
142 }
143 static inline int raid6_next_disk(int disk, int raid_disks)
144 {
145         disk++;
146         return (disk < raid_disks) ? disk : 0;
147 }
148
149 /* When walking through the disks in a raid5, starting at raid6_d0,
150  * We need to map each disk to a 'slot', where the data disks are slot
151  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152  * is raid_disks-1.  This help does that mapping.
153  */
154 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
155                              int *count, int syndrome_disks)
156 {
157         int slot;
158
159         if (idx == sh->pd_idx)
160                 return syndrome_disks;
161         if (idx == sh->qd_idx)
162                 return syndrome_disks + 1;
163         slot = (*count)++;
164         return slot;
165 }
166
167 static void return_io(struct bio *return_bi)
168 {
169         struct bio *bi = return_bi;
170         while (bi) {
171
172                 return_bi = bi->bi_next;
173                 bi->bi_next = NULL;
174                 bi->bi_size = 0;
175                 bio_endio(bi, 0);
176                 bi = return_bi;
177         }
178 }
179
180 static void print_raid5_conf (raid5_conf_t *conf);
181
182 static int stripe_operations_active(struct stripe_head *sh)
183 {
184         return sh->check_state || sh->reconstruct_state ||
185                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
186                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
187 }
188
189 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
190 {
191         if (atomic_dec_and_test(&sh->count)) {
192                 BUG_ON(!list_empty(&sh->lru));
193                 BUG_ON(atomic_read(&conf->active_stripes)==0);
194                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
195                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
196                                 list_add_tail(&sh->lru, &conf->delayed_list);
197                                 blk_plug_device(conf->mddev->queue);
198                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
199                                    sh->bm_seq - conf->seq_write > 0) {
200                                 list_add_tail(&sh->lru, &conf->bitmap_list);
201                                 blk_plug_device(conf->mddev->queue);
202                         } else {
203                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
204                                 list_add_tail(&sh->lru, &conf->handle_list);
205                         }
206                         md_wakeup_thread(conf->mddev->thread);
207                 } else {
208                         BUG_ON(stripe_operations_active(sh));
209                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
210                                 atomic_dec(&conf->preread_active_stripes);
211                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
212                                         md_wakeup_thread(conf->mddev->thread);
213                         }
214                         atomic_dec(&conf->active_stripes);
215                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
216                                 list_add_tail(&sh->lru, &conf->inactive_list);
217                                 wake_up(&conf->wait_for_stripe);
218                                 if (conf->retry_read_aligned)
219                                         md_wakeup_thread(conf->mddev->thread);
220                         }
221                 }
222         }
223 }
224
225 static void release_stripe(struct stripe_head *sh)
226 {
227         raid5_conf_t *conf = sh->raid_conf;
228         unsigned long flags;
229
230         spin_lock_irqsave(&conf->device_lock, flags);
231         __release_stripe(conf, sh);
232         spin_unlock_irqrestore(&conf->device_lock, flags);
233 }
234
235 static inline void remove_hash(struct stripe_head *sh)
236 {
237         pr_debug("remove_hash(), stripe %llu\n",
238                 (unsigned long long)sh->sector);
239
240         hlist_del_init(&sh->hash);
241 }
242
243 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
244 {
245         struct hlist_head *hp = stripe_hash(conf, sh->sector);
246
247         pr_debug("insert_hash(), stripe %llu\n",
248                 (unsigned long long)sh->sector);
249
250         CHECK_DEVLOCK();
251         hlist_add_head(&sh->hash, hp);
252 }
253
254
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
257 {
258         struct stripe_head *sh = NULL;
259         struct list_head *first;
260
261         CHECK_DEVLOCK();
262         if (list_empty(&conf->inactive_list))
263                 goto out;
264         first = conf->inactive_list.next;
265         sh = list_entry(first, struct stripe_head, lru);
266         list_del_init(first);
267         remove_hash(sh);
268         atomic_inc(&conf->active_stripes);
269 out:
270         return sh;
271 }
272
273 static void shrink_buffers(struct stripe_head *sh, int num)
274 {
275         struct page *p;
276         int i;
277
278         for (i=0; i<num ; i++) {
279                 p = sh->dev[i].page;
280                 if (!p)
281                         continue;
282                 sh->dev[i].page = NULL;
283                 put_page(p);
284         }
285 }
286
287 static int grow_buffers(struct stripe_head *sh, int num)
288 {
289         int i;
290
291         for (i=0; i<num; i++) {
292                 struct page *page;
293
294                 if (!(page = alloc_page(GFP_KERNEL))) {
295                         return 1;
296                 }
297                 sh->dev[i].page = page;
298         }
299         return 0;
300 }
301
302 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
303 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
304                             struct stripe_head *sh);
305
306 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
307 {
308         raid5_conf_t *conf = sh->raid_conf;
309         int i;
310
311         BUG_ON(atomic_read(&sh->count) != 0);
312         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
313         BUG_ON(stripe_operations_active(sh));
314
315         CHECK_DEVLOCK();
316         pr_debug("init_stripe called, stripe %llu\n",
317                 (unsigned long long)sh->sector);
318
319         remove_hash(sh);
320
321         sh->generation = conf->generation - previous;
322         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
323         sh->sector = sector;
324         stripe_set_idx(sector, conf, previous, sh);
325         sh->state = 0;
326
327
328         for (i = sh->disks; i--; ) {
329                 struct r5dev *dev = &sh->dev[i];
330
331                 if (dev->toread || dev->read || dev->towrite || dev->written ||
332                     test_bit(R5_LOCKED, &dev->flags)) {
333                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
334                                (unsigned long long)sh->sector, i, dev->toread,
335                                dev->read, dev->towrite, dev->written,
336                                test_bit(R5_LOCKED, &dev->flags));
337                         BUG();
338                 }
339                 dev->flags = 0;
340                 raid5_build_block(sh, i, previous);
341         }
342         insert_hash(conf, sh);
343 }
344
345 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
346                                          short generation)
347 {
348         struct stripe_head *sh;
349         struct hlist_node *hn;
350
351         CHECK_DEVLOCK();
352         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
353         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
354                 if (sh->sector == sector && sh->generation == generation)
355                         return sh;
356         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
357         return NULL;
358 }
359
360 static void unplug_slaves(mddev_t *mddev);
361 static void raid5_unplug_device(struct request_queue *q);
362
363 static struct stripe_head *
364 get_active_stripe(raid5_conf_t *conf, sector_t sector,
365                   int previous, int noblock)
366 {
367         struct stripe_head *sh;
368
369         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
370
371         spin_lock_irq(&conf->device_lock);
372
373         do {
374                 wait_event_lock_irq(conf->wait_for_stripe,
375                                     conf->quiesce == 0,
376                                     conf->device_lock, /* nothing */);
377                 sh = __find_stripe(conf, sector, conf->generation - previous);
378                 if (!sh) {
379                         if (!conf->inactive_blocked)
380                                 sh = get_free_stripe(conf);
381                         if (noblock && sh == NULL)
382                                 break;
383                         if (!sh) {
384                                 conf->inactive_blocked = 1;
385                                 wait_event_lock_irq(conf->wait_for_stripe,
386                                                     !list_empty(&conf->inactive_list) &&
387                                                     (atomic_read(&conf->active_stripes)
388                                                      < (conf->max_nr_stripes *3/4)
389                                                      || !conf->inactive_blocked),
390                                                     conf->device_lock,
391                                                     raid5_unplug_device(conf->mddev->queue)
392                                         );
393                                 conf->inactive_blocked = 0;
394                         } else
395                                 init_stripe(sh, sector, previous);
396                 } else {
397                         if (atomic_read(&sh->count)) {
398                                 BUG_ON(!list_empty(&sh->lru)
399                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
400                         } else {
401                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
402                                         atomic_inc(&conf->active_stripes);
403                                 if (list_empty(&sh->lru) &&
404                                     !test_bit(STRIPE_EXPANDING, &sh->state))
405                                         BUG();
406                                 list_del_init(&sh->lru);
407                         }
408                 }
409         } while (sh == NULL);
410
411         if (sh)
412                 atomic_inc(&sh->count);
413
414         spin_unlock_irq(&conf->device_lock);
415         return sh;
416 }
417
418 static void
419 raid5_end_read_request(struct bio *bi, int error);
420 static void
421 raid5_end_write_request(struct bio *bi, int error);
422
423 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
424 {
425         raid5_conf_t *conf = sh->raid_conf;
426         int i, disks = sh->disks;
427
428         might_sleep();
429
430         for (i = disks; i--; ) {
431                 int rw;
432                 struct bio *bi;
433                 mdk_rdev_t *rdev;
434                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
435                         rw = WRITE;
436                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
437                         rw = READ;
438                 else
439                         continue;
440
441                 bi = &sh->dev[i].req;
442
443                 bi->bi_rw = rw;
444                 if (rw == WRITE)
445                         bi->bi_end_io = raid5_end_write_request;
446                 else
447                         bi->bi_end_io = raid5_end_read_request;
448
449                 rcu_read_lock();
450                 rdev = rcu_dereference(conf->disks[i].rdev);
451                 if (rdev && test_bit(Faulty, &rdev->flags))
452                         rdev = NULL;
453                 if (rdev)
454                         atomic_inc(&rdev->nr_pending);
455                 rcu_read_unlock();
456
457                 if (rdev) {
458                         if (s->syncing || s->expanding || s->expanded)
459                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
460
461                         set_bit(STRIPE_IO_STARTED, &sh->state);
462
463                         bi->bi_bdev = rdev->bdev;
464                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
465                                 __func__, (unsigned long long)sh->sector,
466                                 bi->bi_rw, i);
467                         atomic_inc(&sh->count);
468                         bi->bi_sector = sh->sector + rdev->data_offset;
469                         bi->bi_flags = 1 << BIO_UPTODATE;
470                         bi->bi_vcnt = 1;
471                         bi->bi_max_vecs = 1;
472                         bi->bi_idx = 0;
473                         bi->bi_io_vec = &sh->dev[i].vec;
474                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
475                         bi->bi_io_vec[0].bv_offset = 0;
476                         bi->bi_size = STRIPE_SIZE;
477                         bi->bi_next = NULL;
478                         if (rw == WRITE &&
479                             test_bit(R5_ReWrite, &sh->dev[i].flags))
480                                 atomic_add(STRIPE_SECTORS,
481                                         &rdev->corrected_errors);
482                         generic_make_request(bi);
483                 } else {
484                         if (rw == WRITE)
485                                 set_bit(STRIPE_DEGRADED, &sh->state);
486                         pr_debug("skip op %ld on disc %d for sector %llu\n",
487                                 bi->bi_rw, i, (unsigned long long)sh->sector);
488                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
489                         set_bit(STRIPE_HANDLE, &sh->state);
490                 }
491         }
492 }
493
494 static struct dma_async_tx_descriptor *
495 async_copy_data(int frombio, struct bio *bio, struct page *page,
496         sector_t sector, struct dma_async_tx_descriptor *tx)
497 {
498         struct bio_vec *bvl;
499         struct page *bio_page;
500         int i;
501         int page_offset;
502
503         if (bio->bi_sector >= sector)
504                 page_offset = (signed)(bio->bi_sector - sector) * 512;
505         else
506                 page_offset = (signed)(sector - bio->bi_sector) * -512;
507         bio_for_each_segment(bvl, bio, i) {
508                 int len = bio_iovec_idx(bio, i)->bv_len;
509                 int clen;
510                 int b_offset = 0;
511
512                 if (page_offset < 0) {
513                         b_offset = -page_offset;
514                         page_offset += b_offset;
515                         len -= b_offset;
516                 }
517
518                 if (len > 0 && page_offset + len > STRIPE_SIZE)
519                         clen = STRIPE_SIZE - page_offset;
520                 else
521                         clen = len;
522
523                 if (clen > 0) {
524                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
525                         bio_page = bio_iovec_idx(bio, i)->bv_page;
526                         if (frombio)
527                                 tx = async_memcpy(page, bio_page, page_offset,
528                                         b_offset, clen,
529                                         ASYNC_TX_DEP_ACK,
530                                         tx, NULL, NULL);
531                         else
532                                 tx = async_memcpy(bio_page, page, b_offset,
533                                         page_offset, clen,
534                                         ASYNC_TX_DEP_ACK,
535                                         tx, NULL, NULL);
536                 }
537                 if (clen < len) /* hit end of page */
538                         break;
539                 page_offset +=  len;
540         }
541
542         return tx;
543 }
544
545 static void ops_complete_biofill(void *stripe_head_ref)
546 {
547         struct stripe_head *sh = stripe_head_ref;
548         struct bio *return_bi = NULL;
549         raid5_conf_t *conf = sh->raid_conf;
550         int i;
551
552         pr_debug("%s: stripe %llu\n", __func__,
553                 (unsigned long long)sh->sector);
554
555         /* clear completed biofills */
556         spin_lock_irq(&conf->device_lock);
557         for (i = sh->disks; i--; ) {
558                 struct r5dev *dev = &sh->dev[i];
559
560                 /* acknowledge completion of a biofill operation */
561                 /* and check if we need to reply to a read request,
562                  * new R5_Wantfill requests are held off until
563                  * !STRIPE_BIOFILL_RUN
564                  */
565                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
566                         struct bio *rbi, *rbi2;
567
568                         BUG_ON(!dev->read);
569                         rbi = dev->read;
570                         dev->read = NULL;
571                         while (rbi && rbi->bi_sector <
572                                 dev->sector + STRIPE_SECTORS) {
573                                 rbi2 = r5_next_bio(rbi, dev->sector);
574                                 if (!raid5_dec_bi_phys_segments(rbi)) {
575                                         rbi->bi_next = return_bi;
576                                         return_bi = rbi;
577                                 }
578                                 rbi = rbi2;
579                         }
580                 }
581         }
582         spin_unlock_irq(&conf->device_lock);
583         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
584
585         return_io(return_bi);
586
587         set_bit(STRIPE_HANDLE, &sh->state);
588         release_stripe(sh);
589 }
590
591 static void ops_run_biofill(struct stripe_head *sh)
592 {
593         struct dma_async_tx_descriptor *tx = NULL;
594         raid5_conf_t *conf = sh->raid_conf;
595         int i;
596
597         pr_debug("%s: stripe %llu\n", __func__,
598                 (unsigned long long)sh->sector);
599
600         for (i = sh->disks; i--; ) {
601                 struct r5dev *dev = &sh->dev[i];
602                 if (test_bit(R5_Wantfill, &dev->flags)) {
603                         struct bio *rbi;
604                         spin_lock_irq(&conf->device_lock);
605                         dev->read = rbi = dev->toread;
606                         dev->toread = NULL;
607                         spin_unlock_irq(&conf->device_lock);
608                         while (rbi && rbi->bi_sector <
609                                 dev->sector + STRIPE_SECTORS) {
610                                 tx = async_copy_data(0, rbi, dev->page,
611                                         dev->sector, tx);
612                                 rbi = r5_next_bio(rbi, dev->sector);
613                         }
614                 }
615         }
616
617         atomic_inc(&sh->count);
618         async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
619                 ops_complete_biofill, sh);
620 }
621
622 static void ops_complete_compute5(void *stripe_head_ref)
623 {
624         struct stripe_head *sh = stripe_head_ref;
625         int target = sh->ops.target;
626         struct r5dev *tgt = &sh->dev[target];
627
628         pr_debug("%s: stripe %llu\n", __func__,
629                 (unsigned long long)sh->sector);
630
631         set_bit(R5_UPTODATE, &tgt->flags);
632         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
633         clear_bit(R5_Wantcompute, &tgt->flags);
634         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
635         if (sh->check_state == check_state_compute_run)
636                 sh->check_state = check_state_compute_result;
637         set_bit(STRIPE_HANDLE, &sh->state);
638         release_stripe(sh);
639 }
640
641 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
642 {
643         /* kernel stack size limits the total number of disks */
644         int disks = sh->disks;
645         struct page *xor_srcs[disks];
646         int target = sh->ops.target;
647         struct r5dev *tgt = &sh->dev[target];
648         struct page *xor_dest = tgt->page;
649         int count = 0;
650         struct dma_async_tx_descriptor *tx;
651         int i;
652
653         pr_debug("%s: stripe %llu block: %d\n",
654                 __func__, (unsigned long long)sh->sector, target);
655         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
656
657         for (i = disks; i--; )
658                 if (i != target)
659                         xor_srcs[count++] = sh->dev[i].page;
660
661         atomic_inc(&sh->count);
662
663         if (unlikely(count == 1))
664                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
665                         0, NULL, ops_complete_compute5, sh);
666         else
667                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
668                         ASYNC_TX_XOR_ZERO_DST, NULL,
669                         ops_complete_compute5, sh);
670
671         return tx;
672 }
673
674 static void ops_complete_prexor(void *stripe_head_ref)
675 {
676         struct stripe_head *sh = stripe_head_ref;
677
678         pr_debug("%s: stripe %llu\n", __func__,
679                 (unsigned long long)sh->sector);
680 }
681
682 static struct dma_async_tx_descriptor *
683 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
684 {
685         /* kernel stack size limits the total number of disks */
686         int disks = sh->disks;
687         struct page *xor_srcs[disks];
688         int count = 0, pd_idx = sh->pd_idx, i;
689
690         /* existing parity data subtracted */
691         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
692
693         pr_debug("%s: stripe %llu\n", __func__,
694                 (unsigned long long)sh->sector);
695
696         for (i = disks; i--; ) {
697                 struct r5dev *dev = &sh->dev[i];
698                 /* Only process blocks that are known to be uptodate */
699                 if (test_bit(R5_Wantdrain, &dev->flags))
700                         xor_srcs[count++] = dev->page;
701         }
702
703         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
704                 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
705                 ops_complete_prexor, sh);
706
707         return tx;
708 }
709
710 static struct dma_async_tx_descriptor *
711 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
712 {
713         int disks = sh->disks;
714         int i;
715
716         pr_debug("%s: stripe %llu\n", __func__,
717                 (unsigned long long)sh->sector);
718
719         for (i = disks; i--; ) {
720                 struct r5dev *dev = &sh->dev[i];
721                 struct bio *chosen;
722
723                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
724                         struct bio *wbi;
725
726                         spin_lock(&sh->lock);
727                         chosen = dev->towrite;
728                         dev->towrite = NULL;
729                         BUG_ON(dev->written);
730                         wbi = dev->written = chosen;
731                         spin_unlock(&sh->lock);
732
733                         while (wbi && wbi->bi_sector <
734                                 dev->sector + STRIPE_SECTORS) {
735                                 tx = async_copy_data(1, wbi, dev->page,
736                                         dev->sector, tx);
737                                 wbi = r5_next_bio(wbi, dev->sector);
738                         }
739                 }
740         }
741
742         return tx;
743 }
744
745 static void ops_complete_postxor(void *stripe_head_ref)
746 {
747         struct stripe_head *sh = stripe_head_ref;
748         int disks = sh->disks, i, pd_idx = sh->pd_idx;
749
750         pr_debug("%s: stripe %llu\n", __func__,
751                 (unsigned long long)sh->sector);
752
753         for (i = disks; i--; ) {
754                 struct r5dev *dev = &sh->dev[i];
755                 if (dev->written || i == pd_idx)
756                         set_bit(R5_UPTODATE, &dev->flags);
757         }
758
759         if (sh->reconstruct_state == reconstruct_state_drain_run)
760                 sh->reconstruct_state = reconstruct_state_drain_result;
761         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
762                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
763         else {
764                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
765                 sh->reconstruct_state = reconstruct_state_result;
766         }
767
768         set_bit(STRIPE_HANDLE, &sh->state);
769         release_stripe(sh);
770 }
771
772 static void
773 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
774 {
775         /* kernel stack size limits the total number of disks */
776         int disks = sh->disks;
777         struct page *xor_srcs[disks];
778
779         int count = 0, pd_idx = sh->pd_idx, i;
780         struct page *xor_dest;
781         int prexor = 0;
782         unsigned long flags;
783
784         pr_debug("%s: stripe %llu\n", __func__,
785                 (unsigned long long)sh->sector);
786
787         /* check if prexor is active which means only process blocks
788          * that are part of a read-modify-write (written)
789          */
790         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
791                 prexor = 1;
792                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
793                 for (i = disks; i--; ) {
794                         struct r5dev *dev = &sh->dev[i];
795                         if (dev->written)
796                                 xor_srcs[count++] = dev->page;
797                 }
798         } else {
799                 xor_dest = sh->dev[pd_idx].page;
800                 for (i = disks; i--; ) {
801                         struct r5dev *dev = &sh->dev[i];
802                         if (i != pd_idx)
803                                 xor_srcs[count++] = dev->page;
804                 }
805         }
806
807         /* 1/ if we prexor'd then the dest is reused as a source
808          * 2/ if we did not prexor then we are redoing the parity
809          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
810          * for the synchronous xor case
811          */
812         flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
813                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
814
815         atomic_inc(&sh->count);
816
817         if (unlikely(count == 1)) {
818                 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
819                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
820                         flags, tx, ops_complete_postxor, sh);
821         } else
822                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
823                         flags, tx, ops_complete_postxor, sh);
824 }
825
826 static void ops_complete_check(void *stripe_head_ref)
827 {
828         struct stripe_head *sh = stripe_head_ref;
829
830         pr_debug("%s: stripe %llu\n", __func__,
831                 (unsigned long long)sh->sector);
832
833         sh->check_state = check_state_check_result;
834         set_bit(STRIPE_HANDLE, &sh->state);
835         release_stripe(sh);
836 }
837
838 static void ops_run_check(struct stripe_head *sh)
839 {
840         /* kernel stack size limits the total number of disks */
841         int disks = sh->disks;
842         struct page *xor_srcs[disks];
843         struct dma_async_tx_descriptor *tx;
844
845         int count = 0, pd_idx = sh->pd_idx, i;
846         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
847
848         pr_debug("%s: stripe %llu\n", __func__,
849                 (unsigned long long)sh->sector);
850
851         for (i = disks; i--; ) {
852                 struct r5dev *dev = &sh->dev[i];
853                 if (i != pd_idx)
854                         xor_srcs[count++] = dev->page;
855         }
856
857         tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
858                 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
859
860         atomic_inc(&sh->count);
861         tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
862                 ops_complete_check, sh);
863 }
864
865 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
866 {
867         int overlap_clear = 0, i, disks = sh->disks;
868         struct dma_async_tx_descriptor *tx = NULL;
869
870         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
871                 ops_run_biofill(sh);
872                 overlap_clear++;
873         }
874
875         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
876                 tx = ops_run_compute5(sh);
877                 /* terminate the chain if postxor is not set to be run */
878                 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
879                         async_tx_ack(tx);
880         }
881
882         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
883                 tx = ops_run_prexor(sh, tx);
884
885         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
886                 tx = ops_run_biodrain(sh, tx);
887                 overlap_clear++;
888         }
889
890         if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
891                 ops_run_postxor(sh, tx);
892
893         if (test_bit(STRIPE_OP_CHECK, &ops_request))
894                 ops_run_check(sh);
895
896         if (overlap_clear)
897                 for (i = disks; i--; ) {
898                         struct r5dev *dev = &sh->dev[i];
899                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
900                                 wake_up(&sh->raid_conf->wait_for_overlap);
901                 }
902 }
903
904 static int grow_one_stripe(raid5_conf_t *conf)
905 {
906         struct stripe_head *sh;
907         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
908         if (!sh)
909                 return 0;
910         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
911         sh->raid_conf = conf;
912         spin_lock_init(&sh->lock);
913
914         if (grow_buffers(sh, conf->raid_disks)) {
915                 shrink_buffers(sh, conf->raid_disks);
916                 kmem_cache_free(conf->slab_cache, sh);
917                 return 0;
918         }
919         sh->disks = conf->raid_disks;
920         /* we just created an active stripe so... */
921         atomic_set(&sh->count, 1);
922         atomic_inc(&conf->active_stripes);
923         INIT_LIST_HEAD(&sh->lru);
924         release_stripe(sh);
925         return 1;
926 }
927
928 static int grow_stripes(raid5_conf_t *conf, int num)
929 {
930         struct kmem_cache *sc;
931         int devs = conf->raid_disks;
932
933         sprintf(conf->cache_name[0],
934                 "raid%d-%s", conf->level, mdname(conf->mddev));
935         sprintf(conf->cache_name[1],
936                 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
937         conf->active_name = 0;
938         sc = kmem_cache_create(conf->cache_name[conf->active_name],
939                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
940                                0, 0, NULL);
941         if (!sc)
942                 return 1;
943         conf->slab_cache = sc;
944         conf->pool_size = devs;
945         while (num--)
946                 if (!grow_one_stripe(conf))
947                         return 1;
948         return 0;
949 }
950
951 #ifdef CONFIG_MD_RAID5_RESHAPE
952 static int resize_stripes(raid5_conf_t *conf, int newsize)
953 {
954         /* Make all the stripes able to hold 'newsize' devices.
955          * New slots in each stripe get 'page' set to a new page.
956          *
957          * This happens in stages:
958          * 1/ create a new kmem_cache and allocate the required number of
959          *    stripe_heads.
960          * 2/ gather all the old stripe_heads and tranfer the pages across
961          *    to the new stripe_heads.  This will have the side effect of
962          *    freezing the array as once all stripe_heads have been collected,
963          *    no IO will be possible.  Old stripe heads are freed once their
964          *    pages have been transferred over, and the old kmem_cache is
965          *    freed when all stripes are done.
966          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
967          *    we simple return a failre status - no need to clean anything up.
968          * 4/ allocate new pages for the new slots in the new stripe_heads.
969          *    If this fails, we don't bother trying the shrink the
970          *    stripe_heads down again, we just leave them as they are.
971          *    As each stripe_head is processed the new one is released into
972          *    active service.
973          *
974          * Once step2 is started, we cannot afford to wait for a write,
975          * so we use GFP_NOIO allocations.
976          */
977         struct stripe_head *osh, *nsh;
978         LIST_HEAD(newstripes);
979         struct disk_info *ndisks;
980         int err;
981         struct kmem_cache *sc;
982         int i;
983
984         if (newsize <= conf->pool_size)
985                 return 0; /* never bother to shrink */
986
987         err = md_allow_write(conf->mddev);
988         if (err)
989                 return err;
990
991         /* Step 1 */
992         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
993                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
994                                0, 0, NULL);
995         if (!sc)
996                 return -ENOMEM;
997
998         for (i = conf->max_nr_stripes; i; i--) {
999                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1000                 if (!nsh)
1001                         break;
1002
1003                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1004
1005                 nsh->raid_conf = conf;
1006                 spin_lock_init(&nsh->lock);
1007
1008                 list_add(&nsh->lru, &newstripes);
1009         }
1010         if (i) {
1011                 /* didn't get enough, give up */
1012                 while (!list_empty(&newstripes)) {
1013                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1014                         list_del(&nsh->lru);
1015                         kmem_cache_free(sc, nsh);
1016                 }
1017                 kmem_cache_destroy(sc);
1018                 return -ENOMEM;
1019         }
1020         /* Step 2 - Must use GFP_NOIO now.
1021          * OK, we have enough stripes, start collecting inactive
1022          * stripes and copying them over
1023          */
1024         list_for_each_entry(nsh, &newstripes, lru) {
1025                 spin_lock_irq(&conf->device_lock);
1026                 wait_event_lock_irq(conf->wait_for_stripe,
1027                                     !list_empty(&conf->inactive_list),
1028                                     conf->device_lock,
1029                                     unplug_slaves(conf->mddev)
1030                         );
1031                 osh = get_free_stripe(conf);
1032                 spin_unlock_irq(&conf->device_lock);
1033                 atomic_set(&nsh->count, 1);
1034                 for(i=0; i<conf->pool_size; i++)
1035                         nsh->dev[i].page = osh->dev[i].page;
1036                 for( ; i<newsize; i++)
1037                         nsh->dev[i].page = NULL;
1038                 kmem_cache_free(conf->slab_cache, osh);
1039         }
1040         kmem_cache_destroy(conf->slab_cache);
1041
1042         /* Step 3.
1043          * At this point, we are holding all the stripes so the array
1044          * is completely stalled, so now is a good time to resize
1045          * conf->disks.
1046          */
1047         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1048         if (ndisks) {
1049                 for (i=0; i<conf->raid_disks; i++)
1050                         ndisks[i] = conf->disks[i];
1051                 kfree(conf->disks);
1052                 conf->disks = ndisks;
1053         } else
1054                 err = -ENOMEM;
1055
1056         /* Step 4, return new stripes to service */
1057         while(!list_empty(&newstripes)) {
1058                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1059                 list_del_init(&nsh->lru);
1060                 for (i=conf->raid_disks; i < newsize; i++)
1061                         if (nsh->dev[i].page == NULL) {
1062                                 struct page *p = alloc_page(GFP_NOIO);
1063                                 nsh->dev[i].page = p;
1064                                 if (!p)
1065                                         err = -ENOMEM;
1066                         }
1067                 release_stripe(nsh);
1068         }
1069         /* critical section pass, GFP_NOIO no longer needed */
1070
1071         conf->slab_cache = sc;
1072         conf->active_name = 1-conf->active_name;
1073         conf->pool_size = newsize;
1074         return err;
1075 }
1076 #endif
1077
1078 static int drop_one_stripe(raid5_conf_t *conf)
1079 {
1080         struct stripe_head *sh;
1081
1082         spin_lock_irq(&conf->device_lock);
1083         sh = get_free_stripe(conf);
1084         spin_unlock_irq(&conf->device_lock);
1085         if (!sh)
1086                 return 0;
1087         BUG_ON(atomic_read(&sh->count));
1088         shrink_buffers(sh, conf->pool_size);
1089         kmem_cache_free(conf->slab_cache, sh);
1090         atomic_dec(&conf->active_stripes);
1091         return 1;
1092 }
1093
1094 static void shrink_stripes(raid5_conf_t *conf)
1095 {
1096         while (drop_one_stripe(conf))
1097                 ;
1098
1099         if (conf->slab_cache)
1100                 kmem_cache_destroy(conf->slab_cache);
1101         conf->slab_cache = NULL;
1102 }
1103
1104 static void raid5_end_read_request(struct bio * bi, int error)
1105 {
1106         struct stripe_head *sh = bi->bi_private;
1107         raid5_conf_t *conf = sh->raid_conf;
1108         int disks = sh->disks, i;
1109         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1110         char b[BDEVNAME_SIZE];
1111         mdk_rdev_t *rdev;
1112
1113
1114         for (i=0 ; i<disks; i++)
1115                 if (bi == &sh->dev[i].req)
1116                         break;
1117
1118         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1119                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1120                 uptodate);
1121         if (i == disks) {
1122                 BUG();
1123                 return;
1124         }
1125
1126         if (uptodate) {
1127                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1128                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1129                         rdev = conf->disks[i].rdev;
1130                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1131                                   " (%lu sectors at %llu on %s)\n",
1132                                   mdname(conf->mddev), STRIPE_SECTORS,
1133                                   (unsigned long long)(sh->sector
1134                                                        + rdev->data_offset),
1135                                   bdevname(rdev->bdev, b));
1136                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1137                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1138                 }
1139                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1140                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1141         } else {
1142                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1143                 int retry = 0;
1144                 rdev = conf->disks[i].rdev;
1145
1146                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1147                 atomic_inc(&rdev->read_errors);
1148                 if (conf->mddev->degraded)
1149                         printk_rl(KERN_WARNING
1150                                   "raid5:%s: read error not correctable "
1151                                   "(sector %llu on %s).\n",
1152                                   mdname(conf->mddev),
1153                                   (unsigned long long)(sh->sector
1154                                                        + rdev->data_offset),
1155                                   bdn);
1156                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1157                         /* Oh, no!!! */
1158                         printk_rl(KERN_WARNING
1159                                   "raid5:%s: read error NOT corrected!! "
1160                                   "(sector %llu on %s).\n",
1161                                   mdname(conf->mddev),
1162                                   (unsigned long long)(sh->sector
1163                                                        + rdev->data_offset),
1164                                   bdn);
1165                 else if (atomic_read(&rdev->read_errors)
1166                          > conf->max_nr_stripes)
1167                         printk(KERN_WARNING
1168                                "raid5:%s: Too many read errors, failing device %s.\n",
1169                                mdname(conf->mddev), bdn);
1170                 else
1171                         retry = 1;
1172                 if (retry)
1173                         set_bit(R5_ReadError, &sh->dev[i].flags);
1174                 else {
1175                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1176                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1177                         md_error(conf->mddev, rdev);
1178                 }
1179         }
1180         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1181         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1182         set_bit(STRIPE_HANDLE, &sh->state);
1183         release_stripe(sh);
1184 }
1185
1186 static void raid5_end_write_request(struct bio *bi, int error)
1187 {
1188         struct stripe_head *sh = bi->bi_private;
1189         raid5_conf_t *conf = sh->raid_conf;
1190         int disks = sh->disks, i;
1191         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1192
1193         for (i=0 ; i<disks; i++)
1194                 if (bi == &sh->dev[i].req)
1195                         break;
1196
1197         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1198                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1199                 uptodate);
1200         if (i == disks) {
1201                 BUG();
1202                 return;
1203         }
1204
1205         if (!uptodate)
1206                 md_error(conf->mddev, conf->disks[i].rdev);
1207
1208         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1209         
1210         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1211         set_bit(STRIPE_HANDLE, &sh->state);
1212         release_stripe(sh);
1213 }
1214
1215
1216 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1217         
1218 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1219 {
1220         struct r5dev *dev = &sh->dev[i];
1221
1222         bio_init(&dev->req);
1223         dev->req.bi_io_vec = &dev->vec;
1224         dev->req.bi_vcnt++;
1225         dev->req.bi_max_vecs++;
1226         dev->vec.bv_page = dev->page;
1227         dev->vec.bv_len = STRIPE_SIZE;
1228         dev->vec.bv_offset = 0;
1229
1230         dev->req.bi_sector = sh->sector;
1231         dev->req.bi_private = sh;
1232
1233         dev->flags = 0;
1234         dev->sector = compute_blocknr(sh, i, previous);
1235 }
1236
1237 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1238 {
1239         char b[BDEVNAME_SIZE];
1240         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1241         pr_debug("raid5: error called\n");
1242
1243         if (!test_bit(Faulty, &rdev->flags)) {
1244                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1245                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1246                         unsigned long flags;
1247                         spin_lock_irqsave(&conf->device_lock, flags);
1248                         mddev->degraded++;
1249                         spin_unlock_irqrestore(&conf->device_lock, flags);
1250                         /*
1251                          * if recovery was running, make sure it aborts.
1252                          */
1253                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1254                 }
1255                 set_bit(Faulty, &rdev->flags);
1256                 printk(KERN_ALERT
1257                        "raid5: Disk failure on %s, disabling device.\n"
1258                        "raid5: Operation continuing on %d devices.\n",
1259                        bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1260         }
1261 }
1262
1263 /*
1264  * Input: a 'big' sector number,
1265  * Output: index of the data and parity disk, and the sector # in them.
1266  */
1267 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1268                                      int previous, int *dd_idx,
1269                                      struct stripe_head *sh)
1270 {
1271         long stripe;
1272         unsigned long chunk_number;
1273         unsigned int chunk_offset;
1274         int pd_idx, qd_idx;
1275         int ddf_layout = 0;
1276         sector_t new_sector;
1277         int algorithm = previous ? conf->prev_algo
1278                                  : conf->algorithm;
1279         int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1280                                          : (conf->chunk_size >> 9);
1281         int raid_disks = previous ? conf->previous_raid_disks
1282                                   : conf->raid_disks;
1283         int data_disks = raid_disks - conf->max_degraded;
1284
1285         /* First compute the information on this sector */
1286
1287         /*
1288          * Compute the chunk number and the sector offset inside the chunk
1289          */
1290         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1291         chunk_number = r_sector;
1292         BUG_ON(r_sector != chunk_number);
1293
1294         /*
1295          * Compute the stripe number
1296          */
1297         stripe = chunk_number / data_disks;
1298
1299         /*
1300          * Compute the data disk and parity disk indexes inside the stripe
1301          */
1302         *dd_idx = chunk_number % data_disks;
1303
1304         /*
1305          * Select the parity disk based on the user selected algorithm.
1306          */
1307         pd_idx = qd_idx = ~0;
1308         switch(conf->level) {
1309         case 4:
1310                 pd_idx = data_disks;
1311                 break;
1312         case 5:
1313                 switch (algorithm) {
1314                 case ALGORITHM_LEFT_ASYMMETRIC:
1315                         pd_idx = data_disks - stripe % raid_disks;
1316                         if (*dd_idx >= pd_idx)
1317                                 (*dd_idx)++;
1318                         break;
1319                 case ALGORITHM_RIGHT_ASYMMETRIC:
1320                         pd_idx = stripe % raid_disks;
1321                         if (*dd_idx >= pd_idx)
1322                                 (*dd_idx)++;
1323                         break;
1324                 case ALGORITHM_LEFT_SYMMETRIC:
1325                         pd_idx = data_disks - stripe % raid_disks;
1326                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1327                         break;
1328                 case ALGORITHM_RIGHT_SYMMETRIC:
1329                         pd_idx = stripe % raid_disks;
1330                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1331                         break;
1332                 case ALGORITHM_PARITY_0:
1333                         pd_idx = 0;
1334                         (*dd_idx)++;
1335                         break;
1336                 case ALGORITHM_PARITY_N:
1337                         pd_idx = data_disks;
1338                         break;
1339                 default:
1340                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1341                                 algorithm);
1342                         BUG();
1343                 }
1344                 break;
1345         case 6:
1346
1347                 switch (algorithm) {
1348                 case ALGORITHM_LEFT_ASYMMETRIC:
1349                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1350                         qd_idx = pd_idx + 1;
1351                         if (pd_idx == raid_disks-1) {
1352                                 (*dd_idx)++;    /* Q D D D P */
1353                                 qd_idx = 0;
1354                         } else if (*dd_idx >= pd_idx)
1355                                 (*dd_idx) += 2; /* D D P Q D */
1356                         break;
1357                 case ALGORITHM_RIGHT_ASYMMETRIC:
1358                         pd_idx = stripe % raid_disks;
1359                         qd_idx = pd_idx + 1;
1360                         if (pd_idx == raid_disks-1) {
1361                                 (*dd_idx)++;    /* Q D D D P */
1362                                 qd_idx = 0;
1363                         } else if (*dd_idx >= pd_idx)
1364                                 (*dd_idx) += 2; /* D D P Q D */
1365                         break;
1366                 case ALGORITHM_LEFT_SYMMETRIC:
1367                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1368                         qd_idx = (pd_idx + 1) % raid_disks;
1369                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1370                         break;
1371                 case ALGORITHM_RIGHT_SYMMETRIC:
1372                         pd_idx = stripe % raid_disks;
1373                         qd_idx = (pd_idx + 1) % raid_disks;
1374                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1375                         break;
1376
1377                 case ALGORITHM_PARITY_0:
1378                         pd_idx = 0;
1379                         qd_idx = 1;
1380                         (*dd_idx) += 2;
1381                         break;
1382                 case ALGORITHM_PARITY_N:
1383                         pd_idx = data_disks;
1384                         qd_idx = data_disks + 1;
1385                         break;
1386
1387                 case ALGORITHM_ROTATING_ZERO_RESTART:
1388                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1389                          * of blocks for computing Q is different.
1390                          */
1391                         pd_idx = stripe % raid_disks;
1392                         qd_idx = pd_idx + 1;
1393                         if (pd_idx == raid_disks-1) {
1394                                 (*dd_idx)++;    /* Q D D D P */
1395                                 qd_idx = 0;
1396                         } else if (*dd_idx >= pd_idx)
1397                                 (*dd_idx) += 2; /* D D P Q D */
1398                         ddf_layout = 1;
1399                         break;
1400
1401                 case ALGORITHM_ROTATING_N_RESTART:
1402                         /* Same a left_asymmetric, by first stripe is
1403                          * D D D P Q  rather than
1404                          * Q D D D P
1405                          */
1406                         pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1407                         qd_idx = pd_idx + 1;
1408                         if (pd_idx == raid_disks-1) {
1409                                 (*dd_idx)++;    /* Q D D D P */
1410                                 qd_idx = 0;
1411                         } else if (*dd_idx >= pd_idx)
1412                                 (*dd_idx) += 2; /* D D P Q D */
1413                         ddf_layout = 1;
1414                         break;
1415
1416                 case ALGORITHM_ROTATING_N_CONTINUE:
1417                         /* Same as left_symmetric but Q is before P */
1418                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1419                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1420                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1421                         ddf_layout = 1;
1422                         break;
1423
1424                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1425                         /* RAID5 left_asymmetric, with Q on last device */
1426                         pd_idx = data_disks - stripe % (raid_disks-1);
1427                         if (*dd_idx >= pd_idx)
1428                                 (*dd_idx)++;
1429                         qd_idx = raid_disks - 1;
1430                         break;
1431
1432                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1433                         pd_idx = stripe % (raid_disks-1);
1434                         if (*dd_idx >= pd_idx)
1435                                 (*dd_idx)++;
1436                         qd_idx = raid_disks - 1;
1437                         break;
1438
1439                 case ALGORITHM_LEFT_SYMMETRIC_6:
1440                         pd_idx = data_disks - stripe % (raid_disks-1);
1441                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1442                         qd_idx = raid_disks - 1;
1443                         break;
1444
1445                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1446                         pd_idx = stripe % (raid_disks-1);
1447                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1448                         qd_idx = raid_disks - 1;
1449                         break;
1450
1451                 case ALGORITHM_PARITY_0_6:
1452                         pd_idx = 0;
1453                         (*dd_idx)++;
1454                         qd_idx = raid_disks - 1;
1455                         break;
1456
1457
1458                 default:
1459                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1460                                algorithm);
1461                         BUG();
1462                 }
1463                 break;
1464         }
1465
1466         if (sh) {
1467                 sh->pd_idx = pd_idx;
1468                 sh->qd_idx = qd_idx;
1469                 sh->ddf_layout = ddf_layout;
1470         }
1471         /*
1472          * Finally, compute the new sector number
1473          */
1474         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1475         return new_sector;
1476 }
1477
1478
1479 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1480 {
1481         raid5_conf_t *conf = sh->raid_conf;
1482         int raid_disks = sh->disks;
1483         int data_disks = raid_disks - conf->max_degraded;
1484         sector_t new_sector = sh->sector, check;
1485         int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1486                                          : (conf->chunk_size >> 9);
1487         int algorithm = previous ? conf->prev_algo
1488                                  : conf->algorithm;
1489         sector_t stripe;
1490         int chunk_offset;
1491         int chunk_number, dummy1, dd_idx = i;
1492         sector_t r_sector;
1493         struct stripe_head sh2;
1494
1495
1496         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1497         stripe = new_sector;
1498         BUG_ON(new_sector != stripe);
1499
1500         if (i == sh->pd_idx)
1501                 return 0;
1502         switch(conf->level) {
1503         case 4: break;
1504         case 5:
1505                 switch (algorithm) {
1506                 case ALGORITHM_LEFT_ASYMMETRIC:
1507                 case ALGORITHM_RIGHT_ASYMMETRIC:
1508                         if (i > sh->pd_idx)
1509                                 i--;
1510                         break;
1511                 case ALGORITHM_LEFT_SYMMETRIC:
1512                 case ALGORITHM_RIGHT_SYMMETRIC:
1513                         if (i < sh->pd_idx)
1514                                 i += raid_disks;
1515                         i -= (sh->pd_idx + 1);
1516                         break;
1517                 case ALGORITHM_PARITY_0:
1518                         i -= 1;
1519                         break;
1520                 case ALGORITHM_PARITY_N:
1521                         break;
1522                 default:
1523                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1524                                algorithm);
1525                         BUG();
1526                 }
1527                 break;
1528         case 6:
1529                 if (i == sh->qd_idx)
1530                         return 0; /* It is the Q disk */
1531                 switch (algorithm) {
1532                 case ALGORITHM_LEFT_ASYMMETRIC:
1533                 case ALGORITHM_RIGHT_ASYMMETRIC:
1534                 case ALGORITHM_ROTATING_ZERO_RESTART:
1535                 case ALGORITHM_ROTATING_N_RESTART:
1536                         if (sh->pd_idx == raid_disks-1)
1537                                 i--;    /* Q D D D P */
1538                         else if (i > sh->pd_idx)
1539                                 i -= 2; /* D D P Q D */
1540                         break;
1541                 case ALGORITHM_LEFT_SYMMETRIC:
1542                 case ALGORITHM_RIGHT_SYMMETRIC:
1543                         if (sh->pd_idx == raid_disks-1)
1544                                 i--; /* Q D D D P */
1545                         else {
1546                                 /* D D P Q D */
1547                                 if (i < sh->pd_idx)
1548                                         i += raid_disks;
1549                                 i -= (sh->pd_idx + 2);
1550                         }
1551                         break;
1552                 case ALGORITHM_PARITY_0:
1553                         i -= 2;
1554                         break;
1555                 case ALGORITHM_PARITY_N:
1556                         break;
1557                 case ALGORITHM_ROTATING_N_CONTINUE:
1558                         if (sh->pd_idx == 0)
1559                                 i--;    /* P D D D Q */
1560                         else if (i > sh->pd_idx)
1561                                 i -= 2; /* D D Q P D */
1562                         break;
1563                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1564                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1565                         if (i > sh->pd_idx)
1566                                 i--;
1567                         break;
1568                 case ALGORITHM_LEFT_SYMMETRIC_6:
1569                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1570                         if (i < sh->pd_idx)
1571                                 i += data_disks + 1;
1572                         i -= (sh->pd_idx + 1);
1573                         break;
1574                 case ALGORITHM_PARITY_0_6:
1575                         i -= 1;
1576                         break;
1577                 default:
1578                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1579                                algorithm);
1580                         BUG();
1581                 }
1582                 break;
1583         }
1584
1585         chunk_number = stripe * data_disks + i;
1586         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1587
1588         check = raid5_compute_sector(conf, r_sector,
1589                                      previous, &dummy1, &sh2);
1590         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1591                 || sh2.qd_idx != sh->qd_idx) {
1592                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1593                 return 0;
1594         }
1595         return r_sector;
1596 }
1597
1598
1599
1600 /*
1601  * Copy data between a page in the stripe cache, and one or more bion
1602  * The page could align with the middle of the bio, or there could be
1603  * several bion, each with several bio_vecs, which cover part of the page
1604  * Multiple bion are linked together on bi_next.  There may be extras
1605  * at the end of this list.  We ignore them.
1606  */
1607 static void copy_data(int frombio, struct bio *bio,
1608                      struct page *page,
1609                      sector_t sector)
1610 {
1611         char *pa = page_address(page);
1612         struct bio_vec *bvl;
1613         int i;
1614         int page_offset;
1615
1616         if (bio->bi_sector >= sector)
1617                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1618         else
1619                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1620         bio_for_each_segment(bvl, bio, i) {
1621                 int len = bio_iovec_idx(bio,i)->bv_len;
1622                 int clen;
1623                 int b_offset = 0;
1624
1625                 if (page_offset < 0) {
1626                         b_offset = -page_offset;
1627                         page_offset += b_offset;
1628                         len -= b_offset;
1629                 }
1630
1631                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1632                         clen = STRIPE_SIZE - page_offset;
1633                 else clen = len;
1634
1635                 if (clen > 0) {
1636                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1637                         if (frombio)
1638                                 memcpy(pa+page_offset, ba+b_offset, clen);
1639                         else
1640                                 memcpy(ba+b_offset, pa+page_offset, clen);
1641                         __bio_kunmap_atomic(ba, KM_USER0);
1642                 }
1643                 if (clen < len) /* hit end of page */
1644                         break;
1645                 page_offset +=  len;
1646         }
1647 }
1648
1649 #define check_xor()     do {                                              \
1650                                 if (count == MAX_XOR_BLOCKS) {            \
1651                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1652                                 count = 0;                                \
1653                            }                                              \
1654                         } while(0)
1655
1656 static void compute_parity6(struct stripe_head *sh, int method)
1657 {
1658         raid5_conf_t *conf = sh->raid_conf;
1659         int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1660         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1661         struct bio *chosen;
1662         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1663         void *ptrs[syndrome_disks+2];
1664
1665         pd_idx = sh->pd_idx;
1666         qd_idx = sh->qd_idx;
1667         d0_idx = raid6_d0(sh);
1668
1669         pr_debug("compute_parity, stripe %llu, method %d\n",
1670                 (unsigned long long)sh->sector, method);
1671
1672         switch(method) {
1673         case READ_MODIFY_WRITE:
1674                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1675         case RECONSTRUCT_WRITE:
1676                 for (i= disks; i-- ;)
1677                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1678                                 chosen = sh->dev[i].towrite;
1679                                 sh->dev[i].towrite = NULL;
1680
1681                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1682                                         wake_up(&conf->wait_for_overlap);
1683
1684                                 BUG_ON(sh->dev[i].written);
1685                                 sh->dev[i].written = chosen;
1686                         }
1687                 break;
1688         case CHECK_PARITY:
1689                 BUG();          /* Not implemented yet */
1690         }
1691
1692         for (i = disks; i--;)
1693                 if (sh->dev[i].written) {
1694                         sector_t sector = sh->dev[i].sector;
1695                         struct bio *wbi = sh->dev[i].written;
1696                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1697                                 copy_data(1, wbi, sh->dev[i].page, sector);
1698                                 wbi = r5_next_bio(wbi, sector);
1699                         }
1700
1701                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1702                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1703                 }
1704
1705         /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1706
1707         for (i = 0; i < disks; i++)
1708                 ptrs[i] = (void *)raid6_empty_zero_page;
1709
1710         count = 0;
1711         i = d0_idx;
1712         do {
1713                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1714
1715                 ptrs[slot] = page_address(sh->dev[i].page);
1716                 if (slot < syndrome_disks &&
1717                     !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1718                         printk(KERN_ERR "block %d/%d not uptodate "
1719                                "on parity calc\n", i, count);
1720                         BUG();
1721                 }
1722
1723                 i = raid6_next_disk(i, disks);
1724         } while (i != d0_idx);
1725         BUG_ON(count != syndrome_disks);
1726
1727         raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1728
1729         switch(method) {
1730         case RECONSTRUCT_WRITE:
1731                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1732                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1733                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1734                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1735                 break;
1736         case UPDATE_PARITY:
1737                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1738                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1739                 break;
1740         }
1741 }
1742
1743
1744 /* Compute one missing block */
1745 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1746 {
1747         int i, count, disks = sh->disks;
1748         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1749         int qd_idx = sh->qd_idx;
1750
1751         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1752                 (unsigned long long)sh->sector, dd_idx);
1753
1754         if ( dd_idx == qd_idx ) {
1755                 /* We're actually computing the Q drive */
1756                 compute_parity6(sh, UPDATE_PARITY);
1757         } else {
1758                 dest = page_address(sh->dev[dd_idx].page);
1759                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1760                 count = 0;
1761                 for (i = disks ; i--; ) {
1762                         if (i == dd_idx || i == qd_idx)
1763                                 continue;
1764                         p = page_address(sh->dev[i].page);
1765                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1766                                 ptr[count++] = p;
1767                         else
1768                                 printk("compute_block() %d, stripe %llu, %d"
1769                                        " not present\n", dd_idx,
1770                                        (unsigned long long)sh->sector, i);
1771
1772                         check_xor();
1773                 }
1774                 if (count)
1775                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1776                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1777                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1778         }
1779 }
1780
1781 /* Compute two missing blocks */
1782 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1783 {
1784         int i, count, disks = sh->disks;
1785         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1786         int d0_idx = raid6_d0(sh);
1787         int faila = -1, failb = -1;
1788         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1789         void *ptrs[syndrome_disks+2];
1790
1791         for (i = 0; i < disks ; i++)
1792                 ptrs[i] = (void *)raid6_empty_zero_page;
1793         count = 0;
1794         i = d0_idx;
1795         do {
1796                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1797
1798                 ptrs[slot] = page_address(sh->dev[i].page);
1799
1800                 if (i == dd_idx1)
1801                         faila = slot;
1802                 if (i == dd_idx2)
1803                         failb = slot;
1804                 i = raid6_next_disk(i, disks);
1805         } while (i != d0_idx);
1806         BUG_ON(count != syndrome_disks);
1807
1808         BUG_ON(faila == failb);
1809         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1810
1811         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1812                  (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1813                  faila, failb);
1814
1815         if (failb == syndrome_disks+1) {
1816                 /* Q disk is one of the missing disks */
1817                 if (faila == syndrome_disks) {
1818                         /* Missing P+Q, just recompute */
1819                         compute_parity6(sh, UPDATE_PARITY);
1820                         return;
1821                 } else {
1822                         /* We're missing D+Q; recompute D from P */
1823                         compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1824                                              dd_idx2 : dd_idx1),
1825                                         0);
1826                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1827                         return;
1828                 }
1829         }
1830
1831         /* We're missing D+P or D+D; */
1832         if (failb == syndrome_disks) {
1833                 /* We're missing D+P. */
1834                 raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1835         } else {
1836                 /* We're missing D+D. */
1837                 raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1838                                   ptrs);
1839         }
1840
1841         /* Both the above update both missing blocks */
1842         set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1843         set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1844 }
1845
1846 static void
1847 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1848                          int rcw, int expand)
1849 {
1850         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1851
1852         if (rcw) {
1853                 /* if we are not expanding this is a proper write request, and
1854                  * there will be bios with new data to be drained into the
1855                  * stripe cache
1856                  */
1857                 if (!expand) {
1858                         sh->reconstruct_state = reconstruct_state_drain_run;
1859                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1860                 } else
1861                         sh->reconstruct_state = reconstruct_state_run;
1862
1863                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1864
1865                 for (i = disks; i--; ) {
1866                         struct r5dev *dev = &sh->dev[i];
1867
1868                         if (dev->towrite) {
1869                                 set_bit(R5_LOCKED, &dev->flags);
1870                                 set_bit(R5_Wantdrain, &dev->flags);
1871                                 if (!expand)
1872                                         clear_bit(R5_UPTODATE, &dev->flags);
1873                                 s->locked++;
1874                         }
1875                 }
1876                 if (s->locked + 1 == disks)
1877                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1878                                 atomic_inc(&sh->raid_conf->pending_full_writes);
1879         } else {
1880                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1881                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1882
1883                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1884                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1885                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1886                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1887
1888                 for (i = disks; i--; ) {
1889                         struct r5dev *dev = &sh->dev[i];
1890                         if (i == pd_idx)
1891                                 continue;
1892
1893                         if (dev->towrite &&
1894                             (test_bit(R5_UPTODATE, &dev->flags) ||
1895                              test_bit(R5_Wantcompute, &dev->flags))) {
1896                                 set_bit(R5_Wantdrain, &dev->flags);
1897                                 set_bit(R5_LOCKED, &dev->flags);
1898                                 clear_bit(R5_UPTODATE, &dev->flags);
1899                                 s->locked++;
1900                         }
1901                 }
1902         }
1903
1904         /* keep the parity disk locked while asynchronous operations
1905          * are in flight
1906          */
1907         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1908         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1909         s->locked++;
1910
1911         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1912                 __func__, (unsigned long long)sh->sector,
1913                 s->locked, s->ops_request);
1914 }
1915
1916 /*
1917  * Each stripe/dev can have one or more bion attached.
1918  * toread/towrite point to the first in a chain.
1919  * The bi_next chain must be in order.
1920  */
1921 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1922 {
1923         struct bio **bip;
1924         raid5_conf_t *conf = sh->raid_conf;
1925         int firstwrite=0;
1926
1927         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1928                 (unsigned long long)bi->bi_sector,
1929                 (unsigned long long)sh->sector);
1930
1931
1932         spin_lock(&sh->lock);
1933         spin_lock_irq(&conf->device_lock);
1934         if (forwrite) {
1935                 bip = &sh->dev[dd_idx].towrite;
1936                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1937                         firstwrite = 1;
1938         } else
1939                 bip = &sh->dev[dd_idx].toread;
1940         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1941                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1942                         goto overlap;
1943                 bip = & (*bip)->bi_next;
1944         }
1945         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1946                 goto overlap;
1947
1948         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1949         if (*bip)
1950                 bi->bi_next = *bip;
1951         *bip = bi;
1952         bi->bi_phys_segments++;
1953         spin_unlock_irq(&conf->device_lock);
1954         spin_unlock(&sh->lock);
1955
1956         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1957                 (unsigned long long)bi->bi_sector,
1958                 (unsigned long long)sh->sector, dd_idx);
1959
1960         if (conf->mddev->bitmap && firstwrite) {
1961                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1962                                   STRIPE_SECTORS, 0);
1963                 sh->bm_seq = conf->seq_flush+1;
1964                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1965         }
1966
1967         if (forwrite) {
1968                 /* check if page is covered */
1969                 sector_t sector = sh->dev[dd_idx].sector;
1970                 for (bi=sh->dev[dd_idx].towrite;
1971                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1972                              bi && bi->bi_sector <= sector;
1973                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1974                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1975                                 sector = bi->bi_sector + (bi->bi_size>>9);
1976                 }
1977                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1978                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1979         }
1980         return 1;
1981
1982  overlap:
1983         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1984         spin_unlock_irq(&conf->device_lock);
1985         spin_unlock(&sh->lock);
1986         return 0;
1987 }
1988
1989 static void end_reshape(raid5_conf_t *conf);
1990
1991 static int page_is_zero(struct page *p)
1992 {
1993         char *a = page_address(p);
1994         return ((*(u32*)a) == 0 &&
1995                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1996 }
1997
1998 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
1999                             struct stripe_head *sh)
2000 {
2001         int sectors_per_chunk =
2002                 previous ? (conf->prev_chunk >> 9)
2003                          : (conf->chunk_size >> 9);
2004         int dd_idx;
2005         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2006         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2007
2008         raid5_compute_sector(conf,
2009                              stripe * (disks - conf->max_degraded)
2010                              *sectors_per_chunk + chunk_offset,
2011                              previous,
2012                              &dd_idx, sh);
2013 }
2014
2015 static void
2016 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2017                                 struct stripe_head_state *s, int disks,
2018                                 struct bio **return_bi)
2019 {
2020         int i;
2021         for (i = disks; i--; ) {
2022                 struct bio *bi;
2023                 int bitmap_end = 0;
2024
2025                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2026                         mdk_rdev_t *rdev;
2027                         rcu_read_lock();
2028                         rdev = rcu_dereference(conf->disks[i].rdev);
2029                         if (rdev && test_bit(In_sync, &rdev->flags))
2030                                 /* multiple read failures in one stripe */
2031                                 md_error(conf->mddev, rdev);
2032                         rcu_read_unlock();
2033                 }
2034                 spin_lock_irq(&conf->device_lock);
2035                 /* fail all writes first */
2036                 bi = sh->dev[i].towrite;
2037                 sh->dev[i].towrite = NULL;
2038                 if (bi) {
2039                         s->to_write--;
2040                         bitmap_end = 1;
2041                 }
2042
2043                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2044                         wake_up(&conf->wait_for_overlap);
2045
2046                 while (bi && bi->bi_sector <
2047                         sh->dev[i].sector + STRIPE_SECTORS) {
2048                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2049                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2050                         if (!raid5_dec_bi_phys_segments(bi)) {
2051                                 md_write_end(conf->mddev);
2052                                 bi->bi_next = *return_bi;
2053                                 *return_bi = bi;
2054                         }
2055                         bi = nextbi;
2056                 }
2057                 /* and fail all 'written' */
2058                 bi = sh->dev[i].written;
2059                 sh->dev[i].written = NULL;
2060                 if (bi) bitmap_end = 1;
2061                 while (bi && bi->bi_sector <
2062                        sh->dev[i].sector + STRIPE_SECTORS) {
2063                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2064                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2065                         if (!raid5_dec_bi_phys_segments(bi)) {
2066                                 md_write_end(conf->mddev);
2067                                 bi->bi_next = *return_bi;
2068                                 *return_bi = bi;
2069                         }
2070                         bi = bi2;
2071                 }
2072
2073                 /* fail any reads if this device is non-operational and
2074                  * the data has not reached the cache yet.
2075                  */
2076                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2077                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2078                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2079                         bi = sh->dev[i].toread;
2080                         sh->dev[i].toread = NULL;
2081                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2082                                 wake_up(&conf->wait_for_overlap);
2083                         if (bi) s->to_read--;
2084                         while (bi && bi->bi_sector <
2085                                sh->dev[i].sector + STRIPE_SECTORS) {
2086                                 struct bio *nextbi =
2087                                         r5_next_bio(bi, sh->dev[i].sector);
2088                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2089                                 if (!raid5_dec_bi_phys_segments(bi)) {
2090                                         bi->bi_next = *return_bi;
2091                                         *return_bi = bi;
2092                                 }
2093                                 bi = nextbi;
2094                         }
2095                 }
2096                 spin_unlock_irq(&conf->device_lock);
2097                 if (bitmap_end)
2098                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2099                                         STRIPE_SECTORS, 0, 0);
2100         }
2101
2102         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2103                 if (atomic_dec_and_test(&conf->pending_full_writes))
2104                         md_wakeup_thread(conf->mddev->thread);
2105 }
2106
2107 /* fetch_block5 - checks the given member device to see if its data needs
2108  * to be read or computed to satisfy a request.
2109  *
2110  * Returns 1 when no more member devices need to be checked, otherwise returns
2111  * 0 to tell the loop in handle_stripe_fill5 to continue
2112  */
2113 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2114                         int disk_idx, int disks)
2115 {
2116         struct r5dev *dev = &sh->dev[disk_idx];
2117         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2118
2119         /* is the data in this block needed, and can we get it? */
2120         if (!test_bit(R5_LOCKED, &dev->flags) &&
2121             !test_bit(R5_UPTODATE, &dev->flags) &&
2122             (dev->toread ||
2123              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2124              s->syncing || s->expanding ||
2125              (s->failed &&
2126               (failed_dev->toread ||
2127                (failed_dev->towrite &&
2128                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2129                 /* We would like to get this block, possibly by computing it,
2130                  * otherwise read it if the backing disk is insync
2131                  */
2132                 if ((s->uptodate == disks - 1) &&
2133                     (s->failed && disk_idx == s->failed_num)) {
2134                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2135                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2136                         set_bit(R5_Wantcompute, &dev->flags);
2137                         sh->ops.target = disk_idx;
2138                         s->req_compute = 1;
2139                         /* Careful: from this point on 'uptodate' is in the eye
2140                          * of raid5_run_ops which services 'compute' operations
2141                          * before writes. R5_Wantcompute flags a block that will
2142                          * be R5_UPTODATE by the time it is needed for a
2143                          * subsequent operation.
2144                          */
2145                         s->uptodate++;
2146                         return 1; /* uptodate + compute == disks */
2147                 } else if (test_bit(R5_Insync, &dev->flags)) {
2148                         set_bit(R5_LOCKED, &dev->flags);
2149                         set_bit(R5_Wantread, &dev->flags);
2150                         s->locked++;
2151                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2152                                 s->syncing);
2153                 }
2154         }
2155
2156         return 0;
2157 }
2158
2159 /**
2160  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2161  */
2162 static void handle_stripe_fill5(struct stripe_head *sh,
2163                         struct stripe_head_state *s, int disks)
2164 {
2165         int i;
2166
2167         /* look for blocks to read/compute, skip this if a compute
2168          * is already in flight, or if the stripe contents are in the
2169          * midst of changing due to a write
2170          */
2171         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2172             !sh->reconstruct_state)
2173                 for (i = disks; i--; )
2174                         if (fetch_block5(sh, s, i, disks))
2175                                 break;
2176         set_bit(STRIPE_HANDLE, &sh->state);
2177 }
2178
2179 static void handle_stripe_fill6(struct stripe_head *sh,
2180                         struct stripe_head_state *s, struct r6_state *r6s,
2181                         int disks)
2182 {
2183         int i;
2184         for (i = disks; i--; ) {
2185                 struct r5dev *dev = &sh->dev[i];
2186                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2187                     !test_bit(R5_UPTODATE, &dev->flags) &&
2188                     (dev->toread || (dev->towrite &&
2189                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
2190                      s->syncing || s->expanding ||
2191                      (s->failed >= 1 &&
2192                       (sh->dev[r6s->failed_num[0]].toread ||
2193                        s->to_write)) ||
2194                      (s->failed >= 2 &&
2195                       (sh->dev[r6s->failed_num[1]].toread ||
2196                        s->to_write)))) {
2197                         /* we would like to get this block, possibly
2198                          * by computing it, but we might not be able to
2199                          */
2200                         if ((s->uptodate == disks - 1) &&
2201                             (s->failed && (i == r6s->failed_num[0] ||
2202                                            i == r6s->failed_num[1]))) {
2203                                 pr_debug("Computing stripe %llu block %d\n",
2204                                        (unsigned long long)sh->sector, i);
2205                                 compute_block_1(sh, i, 0);
2206                                 s->uptodate++;
2207                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2208                                 /* Computing 2-failure is *very* expensive; only
2209                                  * do it if failed >= 2
2210                                  */
2211                                 int other;
2212                                 for (other = disks; other--; ) {
2213                                         if (other == i)
2214                                                 continue;
2215                                         if (!test_bit(R5_UPTODATE,
2216                                               &sh->dev[other].flags))
2217                                                 break;
2218                                 }
2219                                 BUG_ON(other < 0);
2220                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2221                                        (unsigned long long)sh->sector,
2222                                        i, other);
2223                                 compute_block_2(sh, i, other);
2224                                 s->uptodate += 2;
2225                         } else if (test_bit(R5_Insync, &dev->flags)) {
2226                                 set_bit(R5_LOCKED, &dev->flags);
2227                                 set_bit(R5_Wantread, &dev->flags);
2228                                 s->locked++;
2229                                 pr_debug("Reading block %d (sync=%d)\n",
2230                                         i, s->syncing);
2231                         }
2232                 }
2233         }
2234         set_bit(STRIPE_HANDLE, &sh->state);
2235 }
2236
2237
2238 /* handle_stripe_clean_event
2239  * any written block on an uptodate or failed drive can be returned.
2240  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2241  * never LOCKED, so we don't need to test 'failed' directly.
2242  */
2243 static void handle_stripe_clean_event(raid5_conf_t *conf,
2244         struct stripe_head *sh, int disks, struct bio **return_bi)
2245 {
2246         int i;
2247         struct r5dev *dev;
2248
2249         for (i = disks; i--; )
2250                 if (sh->dev[i].written) {
2251                         dev = &sh->dev[i];
2252                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2253                                 test_bit(R5_UPTODATE, &dev->flags)) {
2254                                 /* We can return any write requests */
2255                                 struct bio *wbi, *wbi2;
2256                                 int bitmap_end = 0;
2257                                 pr_debug("Return write for disc %d\n", i);
2258                                 spin_lock_irq(&conf->device_lock);
2259                                 wbi = dev->written;
2260                                 dev->written = NULL;
2261                                 while (wbi && wbi->bi_sector <
2262                                         dev->sector + STRIPE_SECTORS) {
2263                                         wbi2 = r5_next_bio(wbi, dev->sector);
2264                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2265                                                 md_write_end(conf->mddev);
2266                                                 wbi->bi_next = *return_bi;
2267                                                 *return_bi = wbi;
2268                                         }
2269                                         wbi = wbi2;
2270                                 }
2271                                 if (dev->towrite == NULL)
2272                                         bitmap_end = 1;
2273                                 spin_unlock_irq(&conf->device_lock);
2274                                 if (bitmap_end)
2275                                         bitmap_endwrite(conf->mddev->bitmap,
2276                                                         sh->sector,
2277                                                         STRIPE_SECTORS,
2278                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2279                                                         0);
2280                         }
2281                 }
2282
2283         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2284                 if (atomic_dec_and_test(&conf->pending_full_writes))
2285                         md_wakeup_thread(conf->mddev->thread);
2286 }
2287
2288 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2289                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2290 {
2291         int rmw = 0, rcw = 0, i;
2292         for (i = disks; i--; ) {
2293                 /* would I have to read this buffer for read_modify_write */
2294                 struct r5dev *dev = &sh->dev[i];
2295                 if ((dev->towrite || i == sh->pd_idx) &&
2296                     !test_bit(R5_LOCKED, &dev->flags) &&
2297                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2298                       test_bit(R5_Wantcompute, &dev->flags))) {
2299                         if (test_bit(R5_Insync, &dev->flags))
2300                                 rmw++;
2301                         else
2302                                 rmw += 2*disks;  /* cannot read it */
2303                 }
2304                 /* Would I have to read this buffer for reconstruct_write */
2305                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2306                     !test_bit(R5_LOCKED, &dev->flags) &&
2307                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2308                     test_bit(R5_Wantcompute, &dev->flags))) {
2309                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2310                         else
2311                                 rcw += 2*disks;
2312                 }
2313         }
2314         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2315                 (unsigned long long)sh->sector, rmw, rcw);
2316         set_bit(STRIPE_HANDLE, &sh->state);
2317         if (rmw < rcw && rmw > 0)
2318                 /* prefer read-modify-write, but need to get some data */
2319                 for (i = disks; i--; ) {
2320                         struct r5dev *dev = &sh->dev[i];
2321                         if ((dev->towrite || i == sh->pd_idx) &&
2322                             !test_bit(R5_LOCKED, &dev->flags) &&
2323                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2324                             test_bit(R5_Wantcompute, &dev->flags)) &&
2325                             test_bit(R5_Insync, &dev->flags)) {
2326                                 if (
2327                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2328                                         pr_debug("Read_old block "
2329                                                 "%d for r-m-w\n", i);
2330                                         set_bit(R5_LOCKED, &dev->flags);
2331                                         set_bit(R5_Wantread, &dev->flags);
2332                                         s->locked++;
2333                                 } else {
2334                                         set_bit(STRIPE_DELAYED, &sh->state);
2335                                         set_bit(STRIPE_HANDLE, &sh->state);
2336                                 }
2337                         }
2338                 }
2339         if (rcw <= rmw && rcw > 0)
2340                 /* want reconstruct write, but need to get some data */
2341                 for (i = disks; i--; ) {
2342                         struct r5dev *dev = &sh->dev[i];
2343                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2344                             i != sh->pd_idx &&
2345                             !test_bit(R5_LOCKED, &dev->flags) &&
2346                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2347                             test_bit(R5_Wantcompute, &dev->flags)) &&
2348                             test_bit(R5_Insync, &dev->flags)) {
2349                                 if (
2350                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2351                                         pr_debug("Read_old block "
2352                                                 "%d for Reconstruct\n", i);
2353                                         set_bit(R5_LOCKED, &dev->flags);
2354                                         set_bit(R5_Wantread, &dev->flags);
2355                                         s->locked++;
2356                                 } else {
2357                                         set_bit(STRIPE_DELAYED, &sh->state);
2358                                         set_bit(STRIPE_HANDLE, &sh->state);
2359                                 }
2360                         }
2361                 }
2362         /* now if nothing is locked, and if we have enough data,
2363          * we can start a write request
2364          */
2365         /* since handle_stripe can be called at any time we need to handle the
2366          * case where a compute block operation has been submitted and then a
2367          * subsequent call wants to start a write request.  raid5_run_ops only
2368          * handles the case where compute block and postxor are requested
2369          * simultaneously.  If this is not the case then new writes need to be
2370          * held off until the compute completes.
2371          */
2372         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2373             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2374             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2375                 schedule_reconstruction5(sh, s, rcw == 0, 0);
2376 }
2377
2378 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2379                 struct stripe_head *sh, struct stripe_head_state *s,
2380                 struct r6_state *r6s, int disks)
2381 {
2382         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2383         int qd_idx = sh->qd_idx;
2384         for (i = disks; i--; ) {
2385                 struct r5dev *dev = &sh->dev[i];
2386                 /* Would I have to read this buffer for reconstruct_write */
2387                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2388                     && i != pd_idx && i != qd_idx
2389                     && (!test_bit(R5_LOCKED, &dev->flags)
2390                             ) &&
2391                     !test_bit(R5_UPTODATE, &dev->flags)) {
2392                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2393                         else {
2394                                 pr_debug("raid6: must_compute: "
2395                                         "disk %d flags=%#lx\n", i, dev->flags);
2396                                 must_compute++;
2397                         }
2398                 }
2399         }
2400         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2401                (unsigned long long)sh->sector, rcw, must_compute);
2402         set_bit(STRIPE_HANDLE, &sh->state);
2403
2404         if (rcw > 0)
2405                 /* want reconstruct write, but need to get some data */
2406                 for (i = disks; i--; ) {
2407                         struct r5dev *dev = &sh->dev[i];
2408                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2409                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2410                             && !test_bit(R5_LOCKED, &dev->flags) &&
2411                             !test_bit(R5_UPTODATE, &dev->flags) &&
2412                             test_bit(R5_Insync, &dev->flags)) {
2413                                 if (
2414                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2415                                         pr_debug("Read_old stripe %llu "
2416                                                 "block %d for Reconstruct\n",
2417                                              (unsigned long long)sh->sector, i);
2418                                         set_bit(R5_LOCKED, &dev->flags);
2419                                         set_bit(R5_Wantread, &dev->flags);
2420                                         s->locked++;
2421                                 } else {
2422                                         pr_debug("Request delayed stripe %llu "
2423                                                 "block %d for Reconstruct\n",
2424                                              (unsigned long long)sh->sector, i);
2425                                         set_bit(STRIPE_DELAYED, &sh->state);
2426                                         set_bit(STRIPE_HANDLE, &sh->state);
2427                                 }
2428                         }
2429                 }
2430         /* now if nothing is locked, and if we have enough data, we can start a
2431          * write request
2432          */
2433         if (s->locked == 0 && rcw == 0 &&
2434             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2435                 if (must_compute > 0) {
2436                         /* We have failed blocks and need to compute them */
2437                         switch (s->failed) {
2438                         case 0:
2439                                 BUG();
2440                         case 1:
2441                                 compute_block_1(sh, r6s->failed_num[0], 0);
2442                                 break;
2443                         case 2:
2444                                 compute_block_2(sh, r6s->failed_num[0],
2445                                                 r6s->failed_num[1]);
2446                                 break;
2447                         default: /* This request should have been failed? */
2448                                 BUG();
2449                         }
2450                 }
2451
2452                 pr_debug("Computing parity for stripe %llu\n",
2453                         (unsigned long long)sh->sector);
2454                 compute_parity6(sh, RECONSTRUCT_WRITE);
2455                 /* now every locked buffer is ready to be written */
2456                 for (i = disks; i--; )
2457                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2458                                 pr_debug("Writing stripe %llu block %d\n",
2459                                        (unsigned long long)sh->sector, i);
2460                                 s->locked++;
2461                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2462                         }
2463                 if (s->locked == disks)
2464                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2465                                 atomic_inc(&conf->pending_full_writes);
2466                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2467                 set_bit(STRIPE_INSYNC, &sh->state);
2468
2469                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2470                         atomic_dec(&conf->preread_active_stripes);
2471                         if (atomic_read(&conf->preread_active_stripes) <
2472                             IO_THRESHOLD)
2473                                 md_wakeup_thread(conf->mddev->thread);
2474                 }
2475         }
2476 }
2477
2478 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2479                                 struct stripe_head_state *s, int disks)
2480 {
2481         struct r5dev *dev = NULL;
2482
2483         set_bit(STRIPE_HANDLE, &sh->state);
2484
2485         switch (sh->check_state) {
2486         case check_state_idle:
2487                 /* start a new check operation if there are no failures */
2488                 if (s->failed == 0) {
2489                         BUG_ON(s->uptodate != disks);
2490                         sh->check_state = check_state_run;
2491                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2492                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2493                         s->uptodate--;
2494                         break;
2495                 }
2496                 dev = &sh->dev[s->failed_num];
2497                 /* fall through */
2498         case check_state_compute_result:
2499                 sh->check_state = check_state_idle;
2500                 if (!dev)
2501                         dev = &sh->dev[sh->pd_idx];
2502
2503                 /* check that a write has not made the stripe insync */
2504                 if (test_bit(STRIPE_INSYNC, &sh->state))
2505                         break;
2506
2507                 /* either failed parity check, or recovery is happening */
2508                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2509                 BUG_ON(s->uptodate != disks);
2510
2511                 set_bit(R5_LOCKED, &dev->flags);
2512                 s->locked++;
2513                 set_bit(R5_Wantwrite, &dev->flags);
2514
2515                 clear_bit(STRIPE_DEGRADED, &sh->state);
2516                 set_bit(STRIPE_INSYNC, &sh->state);
2517                 break;
2518         case check_state_run:
2519                 break; /* we will be called again upon completion */
2520         case check_state_check_result:
2521                 sh->check_state = check_state_idle;
2522
2523                 /* if a failure occurred during the check operation, leave
2524                  * STRIPE_INSYNC not set and let the stripe be handled again
2525                  */
2526                 if (s->failed)
2527                         break;
2528
2529                 /* handle a successful check operation, if parity is correct
2530                  * we are done.  Otherwise update the mismatch count and repair
2531                  * parity if !MD_RECOVERY_CHECK
2532                  */
2533                 if (sh->ops.zero_sum_result == 0)
2534                         /* parity is correct (on disc,
2535                          * not in buffer any more)
2536                          */
2537                         set_bit(STRIPE_INSYNC, &sh->state);
2538                 else {
2539                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2540                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2541                                 /* don't try to repair!! */
2542                                 set_bit(STRIPE_INSYNC, &sh->state);
2543                         else {
2544                                 sh->check_state = check_state_compute_run;
2545                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2546                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2547                                 set_bit(R5_Wantcompute,
2548                                         &sh->dev[sh->pd_idx].flags);
2549                                 sh->ops.target = sh->pd_idx;
2550                                 s->uptodate++;
2551                         }
2552                 }
2553                 break;
2554         case check_state_compute_run:
2555                 break;
2556         default:
2557                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2558                        __func__, sh->check_state,
2559                        (unsigned long long) sh->sector);
2560                 BUG();
2561         }
2562 }
2563
2564
2565 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2566                                 struct stripe_head_state *s,
2567                                 struct r6_state *r6s, struct page *tmp_page,
2568                                 int disks)
2569 {
2570         int update_p = 0, update_q = 0;
2571         struct r5dev *dev;
2572         int pd_idx = sh->pd_idx;
2573         int qd_idx = sh->qd_idx;
2574
2575         set_bit(STRIPE_HANDLE, &sh->state);
2576
2577         BUG_ON(s->failed > 2);
2578         BUG_ON(s->uptodate < disks);
2579         /* Want to check and possibly repair P and Q.
2580          * However there could be one 'failed' device, in which
2581          * case we can only check one of them, possibly using the
2582          * other to generate missing data
2583          */
2584
2585         /* If !tmp_page, we cannot do the calculations,
2586          * but as we have set STRIPE_HANDLE, we will soon be called
2587          * by stripe_handle with a tmp_page - just wait until then.
2588          */
2589         if (tmp_page) {
2590                 if (s->failed == r6s->q_failed) {
2591                         /* The only possible failed device holds 'Q', so it
2592                          * makes sense to check P (If anything else were failed,
2593                          * we would have used P to recreate it).
2594                          */
2595                         compute_block_1(sh, pd_idx, 1);
2596                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2597                                 compute_block_1(sh, pd_idx, 0);
2598                                 update_p = 1;
2599                         }
2600                 }
2601                 if (!r6s->q_failed && s->failed < 2) {
2602                         /* q is not failed, and we didn't use it to generate
2603                          * anything, so it makes sense to check it
2604                          */
2605                         memcpy(page_address(tmp_page),
2606                                page_address(sh->dev[qd_idx].page),
2607                                STRIPE_SIZE);
2608                         compute_parity6(sh, UPDATE_PARITY);
2609                         if (memcmp(page_address(tmp_page),
2610                                    page_address(sh->dev[qd_idx].page),
2611                                    STRIPE_SIZE) != 0) {
2612                                 clear_bit(STRIPE_INSYNC, &sh->state);
2613                                 update_q = 1;
2614                         }
2615                 }
2616                 if (update_p || update_q) {
2617                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2618                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2619                                 /* don't try to repair!! */
2620                                 update_p = update_q = 0;
2621                 }
2622
2623                 /* now write out any block on a failed drive,
2624                  * or P or Q if they need it
2625                  */
2626
2627                 if (s->failed == 2) {
2628                         dev = &sh->dev[r6s->failed_num[1]];
2629                         s->locked++;
2630                         set_bit(R5_LOCKED, &dev->flags);
2631                         set_bit(R5_Wantwrite, &dev->flags);
2632                 }
2633                 if (s->failed >= 1) {
2634                         dev = &sh->dev[r6s->failed_num[0]];
2635                         s->locked++;
2636                         set_bit(R5_LOCKED, &dev->flags);
2637                         set_bit(R5_Wantwrite, &dev->flags);
2638                 }
2639
2640                 if (update_p) {
2641                         dev = &sh->dev[pd_idx];
2642                         s->locked++;
2643                         set_bit(R5_LOCKED, &dev->flags);
2644                         set_bit(R5_Wantwrite, &dev->flags);
2645                 }
2646                 if (update_q) {
2647                         dev = &sh->dev[qd_idx];
2648                         s->locked++;
2649                         set_bit(R5_LOCKED, &dev->flags);
2650                         set_bit(R5_Wantwrite, &dev->flags);
2651                 }
2652                 clear_bit(STRIPE_DEGRADED, &sh->state);
2653
2654                 set_bit(STRIPE_INSYNC, &sh->state);
2655         }
2656 }
2657
2658 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2659                                 struct r6_state *r6s)
2660 {
2661         int i;
2662
2663         /* We have read all the blocks in this stripe and now we need to
2664          * copy some of them into a target stripe for expand.
2665          */
2666         struct dma_async_tx_descriptor *tx = NULL;
2667         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2668         for (i = 0; i < sh->disks; i++)
2669                 if (i != sh->pd_idx && i != sh->qd_idx) {
2670                         int dd_idx, j;
2671                         struct stripe_head *sh2;
2672
2673                         sector_t bn = compute_blocknr(sh, i, 1);
2674                         sector_t s = raid5_compute_sector(conf, bn, 0,
2675                                                           &dd_idx, NULL);
2676                         sh2 = get_active_stripe(conf, s, 0, 1);
2677                         if (sh2 == NULL)
2678                                 /* so far only the early blocks of this stripe
2679                                  * have been requested.  When later blocks
2680                                  * get requested, we will try again
2681                                  */
2682                                 continue;
2683                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2684                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2685                                 /* must have already done this block */
2686                                 release_stripe(sh2);
2687                                 continue;
2688                         }
2689
2690                         /* place all the copies on one channel */
2691                         tx = async_memcpy(sh2->dev[dd_idx].page,
2692                                 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2693                                 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2694
2695                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2696                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2697                         for (j = 0; j < conf->raid_disks; j++)
2698                                 if (j != sh2->pd_idx &&
2699                                     (!r6s || j != sh2->qd_idx) &&
2700                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2701                                         break;
2702                         if (j == conf->raid_disks) {
2703                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2704                                 set_bit(STRIPE_HANDLE, &sh2->state);
2705                         }
2706                         release_stripe(sh2);
2707
2708                 }
2709         /* done submitting copies, wait for them to complete */
2710         if (tx) {
2711                 async_tx_ack(tx);
2712                 dma_wait_for_async_tx(tx);
2713         }
2714 }
2715
2716
2717 /*
2718  * handle_stripe - do things to a stripe.
2719  *
2720  * We lock the stripe and then examine the state of various bits
2721  * to see what needs to be done.
2722  * Possible results:
2723  *    return some read request which now have data
2724  *    return some write requests which are safely on disc
2725  *    schedule a read on some buffers
2726  *    schedule a write of some buffers
2727  *    return confirmation of parity correctness
2728  *
2729  * buffers are taken off read_list or write_list, and bh_cache buffers
2730  * get BH_Lock set before the stripe lock is released.
2731  *
2732  */
2733
2734 static bool handle_stripe5(struct stripe_head *sh)
2735 {
2736         raid5_conf_t *conf = sh->raid_conf;
2737         int disks = sh->disks, i;
2738         struct bio *return_bi = NULL;
2739         struct stripe_head_state s;
2740         struct r5dev *dev;
2741         mdk_rdev_t *blocked_rdev = NULL;
2742         int prexor;
2743
2744         memset(&s, 0, sizeof(s));
2745         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2746                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2747                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2748                  sh->reconstruct_state);
2749
2750         spin_lock(&sh->lock);
2751         clear_bit(STRIPE_HANDLE, &sh->state);
2752         clear_bit(STRIPE_DELAYED, &sh->state);
2753
2754         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2755         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2756         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2757
2758         /* Now to look around and see what can be done */
2759         rcu_read_lock();
2760         for (i=disks; i--; ) {
2761                 mdk_rdev_t *rdev;
2762                 struct r5dev *dev = &sh->dev[i];
2763                 clear_bit(R5_Insync, &dev->flags);
2764
2765                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2766                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2767                         dev->towrite, dev->written);
2768
2769                 /* maybe we can request a biofill operation
2770                  *
2771                  * new wantfill requests are only permitted while
2772                  * ops_complete_biofill is guaranteed to be inactive
2773                  */
2774                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2775                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2776                         set_bit(R5_Wantfill, &dev->flags);
2777
2778                 /* now count some things */
2779                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2780                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2781                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2782
2783                 if (test_bit(R5_Wantfill, &dev->flags))
2784                         s.to_fill++;
2785                 else if (dev->toread)
2786                         s.to_read++;
2787                 if (dev->towrite) {
2788                         s.to_write++;
2789                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2790                                 s.non_overwrite++;
2791                 }
2792                 if (dev->written)
2793                         s.written++;
2794                 rdev = rcu_dereference(conf->disks[i].rdev);
2795                 if (blocked_rdev == NULL &&
2796                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2797                         blocked_rdev = rdev;
2798                         atomic_inc(&rdev->nr_pending);
2799                 }
2800                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2801                         /* The ReadError flag will just be confusing now */
2802                         clear_bit(R5_ReadError, &dev->flags);
2803                         clear_bit(R5_ReWrite, &dev->flags);
2804                 }
2805                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2806                     || test_bit(R5_ReadError, &dev->flags)) {
2807                         s.failed++;
2808                         s.failed_num = i;
2809                 } else
2810                         set_bit(R5_Insync, &dev->flags);
2811         }
2812         rcu_read_unlock();
2813
2814         if (unlikely(blocked_rdev)) {
2815                 if (s.syncing || s.expanding || s.expanded ||
2816                     s.to_write || s.written) {
2817                         set_bit(STRIPE_HANDLE, &sh->state);
2818                         goto unlock;
2819                 }
2820                 /* There is nothing for the blocked_rdev to block */
2821                 rdev_dec_pending(blocked_rdev, conf->mddev);
2822                 blocked_rdev = NULL;
2823         }
2824
2825         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2826                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2827                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2828         }
2829
2830         pr_debug("locked=%d uptodate=%d to_read=%d"
2831                 " to_write=%d failed=%d failed_num=%d\n",
2832                 s.locked, s.uptodate, s.to_read, s.to_write,
2833                 s.failed, s.failed_num);
2834         /* check if the array has lost two devices and, if so, some requests might
2835          * need to be failed
2836          */
2837         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2838                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2839         if (s.failed > 1 && s.syncing) {
2840                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2841                 clear_bit(STRIPE_SYNCING, &sh->state);
2842                 s.syncing = 0;
2843         }
2844
2845         /* might be able to return some write requests if the parity block
2846          * is safe, or on a failed drive
2847          */
2848         dev = &sh->dev[sh->pd_idx];
2849         if ( s.written &&
2850              ((test_bit(R5_Insync, &dev->flags) &&
2851                !test_bit(R5_LOCKED, &dev->flags) &&
2852                test_bit(R5_UPTODATE, &dev->flags)) ||
2853                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2854                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2855
2856         /* Now we might consider reading some blocks, either to check/generate
2857          * parity, or to satisfy requests
2858          * or to load a block that is being partially written.
2859          */
2860         if (s.to_read || s.non_overwrite ||
2861             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2862                 handle_stripe_fill5(sh, &s, disks);
2863
2864         /* Now we check to see if any write operations have recently
2865          * completed
2866          */
2867         prexor = 0;
2868         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2869                 prexor = 1;
2870         if (sh->reconstruct_state == reconstruct_state_drain_result ||
2871             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2872                 sh->reconstruct_state = reconstruct_state_idle;
2873
2874                 /* All the 'written' buffers and the parity block are ready to
2875                  * be written back to disk
2876                  */
2877                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2878                 for (i = disks; i--; ) {
2879                         dev = &sh->dev[i];
2880                         if (test_bit(R5_LOCKED, &dev->flags) &&
2881                                 (i == sh->pd_idx || dev->written)) {
2882                                 pr_debug("Writing block %d\n", i);
2883                                 set_bit(R5_Wantwrite, &dev->flags);
2884                                 if (prexor)
2885                                         continue;
2886                                 if (!test_bit(R5_Insync, &dev->flags) ||
2887                                     (i == sh->pd_idx && s.failed == 0))
2888                                         set_bit(STRIPE_INSYNC, &sh->state);
2889                         }
2890                 }
2891                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2892                         atomic_dec(&conf->preread_active_stripes);
2893                         if (atomic_read(&conf->preread_active_stripes) <
2894                                 IO_THRESHOLD)
2895                                 md_wakeup_thread(conf->mddev->thread);
2896                 }
2897         }
2898
2899         /* Now to consider new write requests and what else, if anything
2900          * should be read.  We do not handle new writes when:
2901          * 1/ A 'write' operation (copy+xor) is already in flight.
2902          * 2/ A 'check' operation is in flight, as it may clobber the parity
2903          *    block.
2904          */
2905         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2906                 handle_stripe_dirtying5(conf, sh, &s, disks);
2907
2908         /* maybe we need to check and possibly fix the parity for this stripe
2909          * Any reads will already have been scheduled, so we just see if enough
2910          * data is available.  The parity check is held off while parity
2911          * dependent operations are in flight.
2912          */
2913         if (sh->check_state ||
2914             (s.syncing && s.locked == 0 &&
2915              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2916              !test_bit(STRIPE_INSYNC, &sh->state)))
2917                 handle_parity_checks5(conf, sh, &s, disks);
2918
2919         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2920                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2921                 clear_bit(STRIPE_SYNCING, &sh->state);
2922         }
2923
2924         /* If the failed drive is just a ReadError, then we might need to progress
2925          * the repair/check process
2926          */
2927         if (s.failed == 1 && !conf->mddev->ro &&
2928             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2929             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2930             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2931                 ) {
2932                 dev = &sh->dev[s.failed_num];
2933                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2934                         set_bit(R5_Wantwrite, &dev->flags);
2935                         set_bit(R5_ReWrite, &dev->flags);
2936                         set_bit(R5_LOCKED, &dev->flags);
2937                         s.locked++;
2938                 } else {
2939                         /* let's read it back */
2940                         set_bit(R5_Wantread, &dev->flags);
2941                         set_bit(R5_LOCKED, &dev->flags);
2942                         s.locked++;
2943                 }
2944         }
2945
2946         /* Finish reconstruct operations initiated by the expansion process */
2947         if (sh->reconstruct_state == reconstruct_state_result) {
2948                 struct stripe_head *sh2
2949                         = get_active_stripe(conf, sh->sector, 1, 1);
2950                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
2951                         /* sh cannot be written until sh2 has been read.
2952                          * so arrange for sh to be delayed a little
2953                          */
2954                         set_bit(STRIPE_DELAYED, &sh->state);
2955                         set_bit(STRIPE_HANDLE, &sh->state);
2956                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
2957                                               &sh2->state))
2958                                 atomic_inc(&conf->preread_active_stripes);
2959                         release_stripe(sh2);
2960                         goto unlock;
2961                 }
2962                 if (sh2)
2963                         release_stripe(sh2);
2964
2965                 sh->reconstruct_state = reconstruct_state_idle;
2966                 clear_bit(STRIPE_EXPANDING, &sh->state);
2967                 for (i = conf->raid_disks; i--; ) {
2968                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2969                         set_bit(R5_LOCKED, &sh->dev[i].flags);
2970                         s.locked++;
2971                 }
2972         }
2973
2974         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2975             !sh->reconstruct_state) {
2976                 /* Need to write out all blocks after computing parity */
2977                 sh->disks = conf->raid_disks;
2978                 stripe_set_idx(sh->sector, conf, 0, sh);
2979                 schedule_reconstruction5(sh, &s, 1, 1);
2980         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2981                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2982                 atomic_dec(&conf->reshape_stripes);
2983                 wake_up(&conf->wait_for_overlap);
2984                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2985         }
2986
2987         if (s.expanding && s.locked == 0 &&
2988             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2989                 handle_stripe_expansion(conf, sh, NULL);
2990
2991  unlock:
2992         spin_unlock(&sh->lock);
2993
2994         /* wait for this device to become unblocked */
2995         if (unlikely(blocked_rdev))
2996                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2997
2998         if (s.ops_request)
2999                 raid5_run_ops(sh, s.ops_request);
3000
3001         ops_run_io(sh, &s);
3002
3003         return_io(return_bi);
3004
3005         return blocked_rdev == NULL;
3006 }
3007
3008 static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
3009 {
3010         raid5_conf_t *conf = sh->raid_conf;
3011         int disks = sh->disks;
3012         struct bio *return_bi = NULL;
3013         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3014         struct stripe_head_state s;
3015         struct r6_state r6s;
3016         struct r5dev *dev, *pdev, *qdev;
3017         mdk_rdev_t *blocked_rdev = NULL;
3018
3019         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3020                 "pd_idx=%d, qd_idx=%d\n",
3021                (unsigned long long)sh->sector, sh->state,
3022                atomic_read(&sh->count), pd_idx, qd_idx);
3023         memset(&s, 0, sizeof(s));
3024
3025         spin_lock(&sh->lock);
3026         clear_bit(STRIPE_HANDLE, &sh->state);
3027         clear_bit(STRIPE_DELAYED, &sh->state);
3028
3029         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3030         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3031         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3032         /* Now to look around and see what can be done */
3033
3034         rcu_read_lock();
3035         for (i=disks; i--; ) {
3036                 mdk_rdev_t *rdev;
3037                 dev = &sh->dev[i];
3038                 clear_bit(R5_Insync, &dev->flags);
3039
3040                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3041                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3042                 /* maybe we can reply to a read */
3043                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3044                         struct bio *rbi, *rbi2;
3045                         pr_debug("Return read for disc %d\n", i);
3046                         spin_lock_irq(&conf->device_lock);
3047                         rbi = dev->toread;
3048                         dev->toread = NULL;
3049                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
3050                                 wake_up(&conf->wait_for_overlap);
3051                         spin_unlock_irq(&conf->device_lock);
3052                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3053                                 copy_data(0, rbi, dev->page, dev->sector);
3054                                 rbi2 = r5_next_bio(rbi, dev->sector);
3055                                 spin_lock_irq(&conf->device_lock);
3056                                 if (!raid5_dec_bi_phys_segments(rbi)) {
3057                                         rbi->bi_next = return_bi;
3058                                         return_bi = rbi;
3059                                 }
3060                                 spin_unlock_irq(&conf->device_lock);
3061                                 rbi = rbi2;
3062                         }
3063                 }
3064
3065                 /* now count some things */
3066                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3067                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3068
3069
3070                 if (dev->toread)
3071                         s.to_read++;
3072                 if (dev->towrite) {
3073                         s.to_write++;
3074                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3075                                 s.non_overwrite++;
3076                 }
3077                 if (dev->written)
3078                         s.written++;
3079                 rdev = rcu_dereference(conf->disks[i].rdev);
3080                 if (blocked_rdev == NULL &&
3081                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3082                         blocked_rdev = rdev;
3083                         atomic_inc(&rdev->nr_pending);
3084                 }
3085                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3086                         /* The ReadError flag will just be confusing now */
3087                         clear_bit(R5_ReadError, &dev->flags);
3088                         clear_bit(R5_ReWrite, &dev->flags);
3089                 }
3090                 if (!rdev || !test_bit(In_sync, &rdev->flags)
3091                     || test_bit(R5_ReadError, &dev->flags)) {
3092                         if (s.failed < 2)
3093                                 r6s.failed_num[s.failed] = i;
3094                         s.failed++;
3095                 } else
3096                         set_bit(R5_Insync, &dev->flags);
3097         }
3098         rcu_read_unlock();
3099
3100         if (unlikely(blocked_rdev)) {
3101                 if (s.syncing || s.expanding || s.expanded ||
3102                     s.to_write || s.written) {
3103                         set_bit(STRIPE_HANDLE, &sh->state);
3104                         goto unlock;
3105                 }
3106                 /* There is nothing for the blocked_rdev to block */
3107                 rdev_dec_pending(blocked_rdev, conf->mddev);
3108                 blocked_rdev = NULL;
3109         }
3110
3111         pr_debug("locked=%d uptodate=%d to_read=%d"
3112                " to_write=%d failed=%d failed_num=%d,%d\n",
3113                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3114                r6s.failed_num[0], r6s.failed_num[1]);
3115         /* check if the array has lost >2 devices and, if so, some requests
3116          * might need to be failed
3117          */
3118         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3119                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3120         if (s.failed > 2 && s.syncing) {
3121                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3122                 clear_bit(STRIPE_SYNCING, &sh->state);
3123                 s.syncing = 0;
3124         }
3125
3126         /*
3127          * might be able to return some write requests if the parity blocks
3128          * are safe, or on a failed drive
3129          */
3130         pdev = &sh->dev[pd_idx];
3131         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3132                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3133         qdev = &sh->dev[qd_idx];
3134         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3135                 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3136
3137         if ( s.written &&
3138              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3139                              && !test_bit(R5_LOCKED, &pdev->flags)
3140                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3141              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3142                              && !test_bit(R5_LOCKED, &qdev->flags)
3143                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3144                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3145
3146         /* Now we might consider reading some blocks, either to check/generate
3147          * parity, or to satisfy requests
3148          * or to load a block that is being partially written.
3149          */
3150         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3151             (s.syncing && (s.uptodate < disks)) || s.expanding)
3152                 handle_stripe_fill6(sh, &s, &r6s, disks);
3153
3154         /* now to consider writing and what else, if anything should be read */
3155         if (s.to_write)
3156                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3157
3158         /* maybe we need to check and possibly fix the parity for this stripe
3159          * Any reads will already have been scheduled, so we just see if enough
3160          * data is available
3161          */
3162         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3163                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3164
3165         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3166                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3167                 clear_bit(STRIPE_SYNCING, &sh->state);
3168         }
3169
3170         /* If the failed drives are just a ReadError, then we might need
3171          * to progress the repair/check process
3172          */
3173         if (s.failed <= 2 && !conf->mddev->ro)
3174                 for (i = 0; i < s.failed; i++) {
3175                         dev = &sh->dev[r6s.failed_num[i]];
3176                         if (test_bit(R5_ReadError, &dev->flags)
3177                             && !test_bit(R5_LOCKED, &dev->flags)
3178                             && test_bit(R5_UPTODATE, &dev->flags)
3179                                 ) {
3180                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3181                                         set_bit(R5_Wantwrite, &dev->flags);
3182                                         set_bit(R5_ReWrite, &dev->flags);
3183                                         set_bit(R5_LOCKED, &dev->flags);
3184                                 } else {
3185                                         /* let's read it back */
3186                                         set_bit(R5_Wantread, &dev->flags);
3187                                         set_bit(R5_LOCKED, &dev->flags);
3188                                 }
3189                         }
3190                 }
3191
3192         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3193                 struct stripe_head *sh2
3194                         = get_active_stripe(conf, sh->sector, 1, 1);
3195                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3196                         /* sh cannot be written until sh2 has been read.
3197                          * so arrange for sh to be delayed a little
3198                          */
3199                         set_bit(STRIPE_DELAYED, &sh->state);
3200                         set_bit(STRIPE_HANDLE, &sh->state);
3201                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3202                                               &sh2->state))
3203                                 atomic_inc(&conf->preread_active_stripes);
3204                         release_stripe(sh2);
3205                         goto unlock;
3206                 }
3207                 if (sh2)
3208                         release_stripe(sh2);
3209
3210                 /* Need to write out all blocks after computing P&Q */
3211                 sh->disks = conf->raid_disks;
3212                 stripe_set_idx(sh->sector, conf, 0, sh);
3213                 compute_parity6(sh, RECONSTRUCT_WRITE);
3214                 for (i = conf->raid_disks ; i-- ;  ) {
3215                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3216                         s.locked++;
3217                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3218                 }
3219                 clear_bit(STRIPE_EXPANDING, &sh->state);
3220         } else if (s.expanded) {
3221                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3222                 atomic_dec(&conf->reshape_stripes);
3223                 wake_up(&conf->wait_for_overlap);
3224                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3225         }
3226
3227         if (s.expanding && s.locked == 0 &&
3228             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3229                 handle_stripe_expansion(conf, sh, &r6s);
3230
3231  unlock:
3232         spin_unlock(&sh->lock);
3233
3234         /* wait for this device to become unblocked */
3235         if (unlikely(blocked_rdev))
3236                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3237
3238         ops_run_io(sh, &s);
3239
3240         return_io(return_bi);
3241
3242         return blocked_rdev == NULL;
3243 }
3244
3245 /* returns true if the stripe was handled */
3246 static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3247 {
3248         if (sh->raid_conf->level == 6)
3249                 return handle_stripe6(sh, tmp_page);
3250         else
3251                 return handle_stripe5(sh);
3252 }
3253
3254
3255
3256 static void raid5_activate_delayed(raid5_conf_t *conf)
3257 {
3258         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3259                 while (!list_empty(&conf->delayed_list)) {
3260                         struct list_head *l = conf->delayed_list.next;
3261                         struct stripe_head *sh;
3262                         sh = list_entry(l, struct stripe_head, lru);
3263                         list_del_init(l);
3264                         clear_bit(STRIPE_DELAYED, &sh->state);
3265                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3266                                 atomic_inc(&conf->preread_active_stripes);
3267                         list_add_tail(&sh->lru, &conf->hold_list);
3268                 }
3269         } else
3270                 blk_plug_device(conf->mddev->queue);
3271 }
3272
3273 static void activate_bit_delay(raid5_conf_t *conf)
3274 {
3275         /* device_lock is held */
3276         struct list_head head;
3277         list_add(&head, &conf->bitmap_list);
3278         list_del_init(&conf->bitmap_list);
3279         while (!list_empty(&head)) {
3280                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3281                 list_del_init(&sh->lru);
3282                 atomic_inc(&sh->count);
3283                 __release_stripe(conf, sh);
3284         }
3285 }
3286
3287 static void unplug_slaves(mddev_t *mddev)
3288 {
3289         raid5_conf_t *conf = mddev_to_conf(mddev);
3290         int i;
3291
3292         rcu_read_lock();
3293         for (i=0; i<mddev->raid_disks; i++) {
3294                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3295                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3296                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3297
3298                         atomic_inc(&rdev->nr_pending);
3299                         rcu_read_unlock();
3300
3301                         blk_unplug(r_queue);
3302
3303                         rdev_dec_pending(rdev, mddev);
3304                         rcu_read_lock();
3305                 }
3306         }
3307         rcu_read_unlock();
3308 }
3309
3310 static void raid5_unplug_device(struct request_queue *q)
3311 {
3312         mddev_t *mddev = q->queuedata;
3313         raid5_conf_t *conf = mddev_to_conf(mddev);
3314         unsigned long flags;
3315
3316         spin_lock_irqsave(&conf->device_lock, flags);
3317
3318         if (blk_remove_plug(q)) {
3319                 conf->seq_flush++;
3320                 raid5_activate_delayed(conf);
3321         }
3322         md_wakeup_thread(mddev->thread);
3323
3324         spin_unlock_irqrestore(&conf->device_lock, flags);
3325
3326         unplug_slaves(mddev);
3327 }
3328
3329 static int raid5_congested(void *data, int bits)
3330 {
3331         mddev_t *mddev = data;
3332         raid5_conf_t *conf = mddev_to_conf(mddev);
3333
3334         /* No difference between reads and writes.  Just check
3335          * how busy the stripe_cache is
3336          */
3337         if (conf->inactive_blocked)
3338                 return 1;
3339         if (conf->quiesce)
3340                 return 1;
3341         if (list_empty_careful(&conf->inactive_list))
3342                 return 1;
3343
3344         return 0;
3345 }
3346
3347 /* We want read requests to align with chunks where possible,
3348  * but write requests don't need to.
3349  */
3350 static int raid5_mergeable_bvec(struct request_queue *q,
3351                                 struct bvec_merge_data *bvm,
3352                                 struct bio_vec *biovec)
3353 {
3354         mddev_t *mddev = q->queuedata;
3355         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3356         int max;
3357         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3358         unsigned int bio_sectors = bvm->bi_size >> 9;
3359
3360         if ((bvm->bi_rw & 1) == WRITE)
3361                 return biovec->bv_len; /* always allow writes to be mergeable */
3362
3363         if (mddev->new_chunk < mddev->chunk_size)
3364                 chunk_sectors = mddev->new_chunk >> 9;
3365         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3366         if (max < 0) max = 0;
3367         if (max <= biovec->bv_len && bio_sectors == 0)
3368                 return biovec->bv_len;
3369         else
3370                 return max;
3371 }
3372
3373
3374 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3375 {
3376         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3377         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3378         unsigned int bio_sectors = bio->bi_size >> 9;
3379
3380         if (mddev->new_chunk < mddev->chunk_size)
3381                 chunk_sectors = mddev->new_chunk >> 9;
3382         return  chunk_sectors >=
3383                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3384 }
3385
3386 /*
3387  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3388  *  later sampled by raid5d.
3389  */
3390 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3391 {
3392         unsigned long flags;
3393
3394         spin_lock_irqsave(&conf->device_lock, flags);
3395
3396         bi->bi_next = conf->retry_read_aligned_list;
3397         conf->retry_read_aligned_list = bi;
3398
3399         spin_unlock_irqrestore(&conf->device_lock, flags);
3400         md_wakeup_thread(conf->mddev->thread);
3401 }
3402
3403
3404 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3405 {
3406         struct bio *bi;
3407
3408         bi = conf->retry_read_aligned;
3409         if (bi) {
3410                 conf->retry_read_aligned = NULL;
3411                 return bi;
3412         }
3413         bi = conf->retry_read_aligned_list;
3414         if(bi) {
3415                 conf->retry_read_aligned_list = bi->bi_next;
3416                 bi->bi_next = NULL;
3417                 /*
3418                  * this sets the active strip count to 1 and the processed
3419                  * strip count to zero (upper 8 bits)
3420                  */
3421                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3422         }
3423
3424         return bi;
3425 }
3426
3427
3428 /*
3429  *  The "raid5_align_endio" should check if the read succeeded and if it
3430  *  did, call bio_endio on the original bio (having bio_put the new bio
3431  *  first).
3432  *  If the read failed..
3433  */
3434 static void raid5_align_endio(struct bio *bi, int error)
3435 {
3436         struct bio* raid_bi  = bi->bi_private;
3437         mddev_t *mddev;
3438         raid5_conf_t *conf;
3439         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3440         mdk_rdev_t *rdev;
3441
3442         bio_put(bi);
3443
3444         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3445         conf = mddev_to_conf(mddev);
3446         rdev = (void*)raid_bi->bi_next;
3447         raid_bi->bi_next = NULL;
3448
3449         rdev_dec_pending(rdev, conf->mddev);
3450
3451         if (!error && uptodate) {
3452                 bio_endio(raid_bi, 0);
3453                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3454                         wake_up(&conf->wait_for_stripe);
3455                 return;
3456         }
3457
3458
3459         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3460
3461         add_bio_to_retry(raid_bi, conf);
3462 }
3463
3464 static int bio_fits_rdev(struct bio *bi)
3465 {
3466         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3467
3468         if ((bi->bi_size>>9) > q->max_sectors)
3469                 return 0;
3470         blk_recount_segments(q, bi);
3471         if (bi->bi_phys_segments > q->max_phys_segments)
3472                 return 0;
3473
3474         if (q->merge_bvec_fn)
3475                 /* it's too hard to apply the merge_bvec_fn at this stage,
3476                  * just just give up
3477                  */
3478                 return 0;
3479
3480         return 1;
3481 }
3482
3483
3484 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3485 {
3486         mddev_t *mddev = q->queuedata;
3487         raid5_conf_t *conf = mddev_to_conf(mddev);
3488         unsigned int dd_idx;
3489         struct bio* align_bi;
3490         mdk_rdev_t *rdev;
3491
3492         if (!in_chunk_boundary(mddev, raid_bio)) {
3493                 pr_debug("chunk_aligned_read : non aligned\n");
3494                 return 0;
3495         }
3496         /*
3497          * use bio_clone to make a copy of the bio
3498          */
3499         align_bi = bio_clone(raid_bio, GFP_NOIO);
3500         if (!align_bi)
3501                 return 0;
3502         /*
3503          *   set bi_end_io to a new function, and set bi_private to the
3504          *     original bio.
3505          */
3506         align_bi->bi_end_io  = raid5_align_endio;
3507         align_bi->bi_private = raid_bio;
3508         /*
3509          *      compute position
3510          */
3511         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3512                                                     0,
3513                                                     &dd_idx, NULL);
3514
3515         rcu_read_lock();
3516         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3517         if (rdev && test_bit(In_sync, &rdev->flags)) {
3518                 atomic_inc(&rdev->nr_pending);
3519                 rcu_read_unlock();
3520                 raid_bio->bi_next = (void*)rdev;
3521                 align_bi->bi_bdev =  rdev->bdev;
3522                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3523                 align_bi->bi_sector += rdev->data_offset;
3524
3525                 if (!bio_fits_rdev(align_bi)) {
3526                         /* too big in some way */
3527                         bio_put(align_bi);
3528                         rdev_dec_pending(rdev, mddev);
3529                         return 0;
3530                 }
3531
3532                 spin_lock_irq(&conf->device_lock);
3533                 wait_event_lock_irq(conf->wait_for_stripe,
3534                                     conf->quiesce == 0,
3535                                     conf->device_lock, /* nothing */);
3536                 atomic_inc(&conf->active_aligned_reads);
3537                 spin_unlock_irq(&conf->device_lock);
3538
3539                 generic_make_request(align_bi);
3540                 return 1;
3541         } else {
3542                 rcu_read_unlock();
3543                 bio_put(align_bi);
3544                 return 0;
3545         }
3546 }
3547
3548 /* __get_priority_stripe - get the next stripe to process
3549  *
3550  * Full stripe writes are allowed to pass preread active stripes up until
3551  * the bypass_threshold is exceeded.  In general the bypass_count
3552  * increments when the handle_list is handled before the hold_list; however, it
3553  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3554  * stripe with in flight i/o.  The bypass_count will be reset when the
3555  * head of the hold_list has changed, i.e. the head was promoted to the
3556  * handle_list.
3557  */
3558 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3559 {
3560         struct stripe_head *sh;
3561
3562         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3563                   __func__,
3564                   list_empty(&conf->handle_list) ? "empty" : "busy",
3565                   list_empty(&conf->hold_list) ? "empty" : "busy",
3566                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3567
3568         if (!list_empty(&conf->handle_list)) {
3569                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3570
3571                 if (list_empty(&conf->hold_list))
3572                         conf->bypass_count = 0;
3573                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3574                         if (conf->hold_list.next == conf->last_hold)
3575                                 conf->bypass_count++;
3576                         else {
3577                                 conf->last_hold = conf->hold_list.next;
3578                                 conf->bypass_count -= conf->bypass_threshold;
3579                                 if (conf->bypass_count < 0)
3580                                         conf->bypass_count = 0;
3581                         }
3582                 }
3583         } else if (!list_empty(&conf->hold_list) &&
3584                    ((conf->bypass_threshold &&
3585                      conf->bypass_count > conf->bypass_threshold) ||
3586                     atomic_read(&conf->pending_full_writes) == 0)) {
3587                 sh = list_entry(conf->hold_list.next,
3588                                 typeof(*sh), lru);
3589                 conf->bypass_count -= conf->bypass_threshold;
3590                 if (conf->bypass_count < 0)
3591                         conf->bypass_count = 0;
3592         } else
3593                 return NULL;
3594
3595         list_del_init(&sh->lru);
3596         atomic_inc(&sh->count);
3597         BUG_ON(atomic_read(&sh->count) != 1);
3598         return sh;
3599 }
3600
3601 static int make_request(struct request_queue *q, struct bio * bi)
3602 {
3603         mddev_t *mddev = q->queuedata;
3604         raid5_conf_t *conf = mddev_to_conf(mddev);
3605         int dd_idx;
3606         sector_t new_sector;
3607         sector_t logical_sector, last_sector;
3608         struct stripe_head *sh;
3609         const int rw = bio_data_dir(bi);
3610         int cpu, remaining;
3611
3612         if (unlikely(bio_barrier(bi))) {
3613                 bio_endio(bi, -EOPNOTSUPP);
3614                 return 0;
3615         }
3616
3617         md_write_start(mddev, bi);
3618
3619         cpu = part_stat_lock();
3620         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3621         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3622                       bio_sectors(bi));
3623         part_stat_unlock();
3624
3625         if (rw == READ &&
3626              mddev->reshape_position == MaxSector &&
3627              chunk_aligned_read(q,bi))
3628                 return 0;
3629
3630         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3631         last_sector = bi->bi_sector + (bi->bi_size>>9);
3632         bi->bi_next = NULL;
3633         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3634
3635         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3636                 DEFINE_WAIT(w);
3637                 int disks, data_disks;
3638                 int previous;
3639
3640         retry:
3641                 previous = 0;
3642                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3643                 if (likely(conf->reshape_progress == MaxSector))
3644                         disks = conf->raid_disks;
3645                 else {
3646                         /* spinlock is needed as reshape_progress may be
3647                          * 64bit on a 32bit platform, and so it might be
3648                          * possible to see a half-updated value
3649                          * Ofcourse reshape_progress could change after
3650                          * the lock is dropped, so once we get a reference
3651                          * to the stripe that we think it is, we will have
3652                          * to check again.
3653                          */
3654                         spin_lock_irq(&conf->device_lock);
3655                         disks = conf->raid_disks;
3656                         if (mddev->delta_disks < 0
3657                             ? logical_sector < conf->reshape_progress
3658                             : logical_sector >= conf->reshape_progress) {
3659                                 disks = conf->previous_raid_disks;
3660                                 previous = 1;
3661                         } else {
3662                                 if (mddev->delta_disks < 0
3663                                     ? logical_sector < conf->reshape_safe
3664                                     : logical_sector >= conf->reshape_safe) {
3665                                         spin_unlock_irq(&conf->device_lock);
3666                                         schedule();
3667                                         goto retry;
3668                                 }
3669                         }
3670                         spin_unlock_irq(&conf->device_lock);
3671                 }
3672                 data_disks = disks - conf->max_degraded;
3673
3674                 new_sector = raid5_compute_sector(conf, logical_sector,
3675                                                   previous,
3676                                                   &dd_idx, NULL);
3677                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3678                         (unsigned long long)new_sector, 
3679                         (unsigned long long)logical_sector);
3680
3681                 sh = get_active_stripe(conf, new_sector, previous,
3682                                        (bi->bi_rw&RWA_MASK));
3683                 if (sh) {
3684                         if (unlikely(conf->reshape_progress != MaxSector)) {
3685                                 /* expansion might have moved on while waiting for a
3686                                  * stripe, so we must do the range check again.
3687                                  * Expansion could still move past after this
3688                                  * test, but as we are holding a reference to
3689                                  * 'sh', we know that if that happens,
3690                                  *  STRIPE_EXPANDING will get set and the expansion
3691                                  * won't proceed until we finish with the stripe.
3692                                  */
3693                                 int must_retry = 0;
3694                                 spin_lock_irq(&conf->device_lock);
3695                                 if ((mddev->delta_disks < 0
3696                                      ? logical_sector >= conf->reshape_progress
3697                                      : logical_sector < conf->reshape_progress)
3698                                     && previous)
3699                                         /* mismatch, need to try again */
3700                                         must_retry = 1;
3701                                 spin_unlock_irq(&conf->device_lock);
3702                                 if (must_retry) {
3703                                         release_stripe(sh);
3704                                         goto retry;
3705                                 }
3706                         }
3707                         /* FIXME what if we get a false positive because these
3708                          * are being updated.
3709                          */
3710                         if (logical_sector >= mddev->suspend_lo &&
3711                             logical_sector < mddev->suspend_hi) {
3712                                 release_stripe(sh);
3713                                 schedule();
3714                                 goto retry;
3715                         }
3716
3717                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3718                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3719                                 /* Stripe is busy expanding or
3720                                  * add failed due to overlap.  Flush everything
3721                                  * and wait a while
3722                                  */
3723                                 raid5_unplug_device(mddev->queue);
3724                                 release_stripe(sh);
3725                                 schedule();
3726                                 goto retry;
3727                         }
3728                         finish_wait(&conf->wait_for_overlap, &w);
3729                         set_bit(STRIPE_HANDLE, &sh->state);
3730                         clear_bit(STRIPE_DELAYED, &sh->state);
3731                         release_stripe(sh);
3732                 } else {
3733                         /* cannot get stripe for read-ahead, just give-up */
3734                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3735                         finish_wait(&conf->wait_for_overlap, &w);
3736                         break;
3737                 }
3738                         
3739         }
3740         spin_lock_irq(&conf->device_lock);
3741         remaining = raid5_dec_bi_phys_segments(bi);
3742         spin_unlock_irq(&conf->device_lock);
3743         if (remaining == 0) {
3744
3745                 if ( rw == WRITE )
3746                         md_write_end(mddev);
3747
3748                 bio_endio(bi, 0);
3749         }
3750         return 0;
3751 }
3752
3753 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3754
3755 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3756 {
3757         /* reshaping is quite different to recovery/resync so it is
3758          * handled quite separately ... here.
3759          *
3760          * On each call to sync_request, we gather one chunk worth of
3761          * destination stripes and flag them as expanding.
3762          * Then we find all the source stripes and request reads.
3763          * As the reads complete, handle_stripe will copy the data
3764          * into the destination stripe and release that stripe.
3765          */
3766         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3767         struct stripe_head *sh;
3768         sector_t first_sector, last_sector;
3769         int raid_disks = conf->previous_raid_disks;
3770         int data_disks = raid_disks - conf->max_degraded;
3771         int new_data_disks = conf->raid_disks - conf->max_degraded;
3772         int i;
3773         int dd_idx;
3774         sector_t writepos, safepos, gap;
3775         sector_t stripe_addr;
3776         int reshape_sectors;
3777         struct list_head stripes;
3778
3779         if (sector_nr == 0) {
3780                 /* If restarting in the middle, skip the initial sectors */
3781                 if (mddev->delta_disks < 0 &&
3782                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3783                         sector_nr = raid5_size(mddev, 0, 0)
3784                                 - conf->reshape_progress;
3785                 } else if (mddev->delta_disks > 0 &&
3786                            conf->reshape_progress > 0)
3787                         sector_nr = conf->reshape_progress;
3788                 sector_div(sector_nr, new_data_disks);
3789                 if (sector_nr) {
3790                         *skipped = 1;
3791                         return sector_nr;
3792                 }
3793         }
3794
3795         /* We need to process a full chunk at a time.
3796          * If old and new chunk sizes differ, we need to process the
3797          * largest of these
3798          */
3799         if (mddev->new_chunk > mddev->chunk_size)
3800                 reshape_sectors = mddev->new_chunk / 512;
3801         else
3802                 reshape_sectors = mddev->chunk_size / 512;
3803
3804         /* we update the metadata when there is more than 3Meg
3805          * in the block range (that is rather arbitrary, should
3806          * probably be time based) or when the data about to be
3807          * copied would over-write the source of the data at
3808          * the front of the range.
3809          * i.e. one new_stripe along from reshape_progress new_maps
3810          * to after where reshape_safe old_maps to
3811          */
3812         writepos = conf->reshape_progress;
3813         sector_div(writepos, new_data_disks);
3814         safepos = conf->reshape_safe;
3815         sector_div(safepos, data_disks);
3816         if (mddev->delta_disks < 0) {
3817                 writepos -= reshape_sectors;
3818                 safepos += reshape_sectors;
3819                 gap = conf->reshape_safe - conf->reshape_progress;
3820         } else {
3821                 writepos += reshape_sectors;
3822                 safepos -= reshape_sectors;
3823                 gap = conf->reshape_progress - conf->reshape_safe;
3824         }
3825
3826         if ((mddev->delta_disks < 0
3827              ? writepos < safepos
3828              : writepos > safepos) ||
3829             gap > (new_data_disks)*3000*2 /*3Meg*/) {
3830                 /* Cannot proceed until we've updated the superblock... */
3831                 wait_event(conf->wait_for_overlap,
3832                            atomic_read(&conf->reshape_stripes)==0);
3833                 mddev->reshape_position = conf->reshape_progress;
3834                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3835                 md_wakeup_thread(mddev->thread);
3836                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3837                            kthread_should_stop());
3838                 spin_lock_irq(&conf->device_lock);
3839                 conf->reshape_safe = mddev->reshape_position;
3840                 spin_unlock_irq(&conf->device_lock);
3841                 wake_up(&conf->wait_for_overlap);
3842         }
3843
3844         if (mddev->delta_disks < 0) {
3845                 BUG_ON(conf->reshape_progress == 0);
3846                 stripe_addr = writepos;
3847                 BUG_ON((mddev->dev_sectors &
3848                         ~((sector_t)reshape_sectors - 1))
3849                        - reshape_sectors - stripe_addr
3850                        != sector_nr);
3851         } else {
3852                 BUG_ON(writepos != sector_nr + reshape_sectors);
3853                 stripe_addr = sector_nr;
3854         }
3855         INIT_LIST_HEAD(&stripes);
3856         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3857                 int j;
3858                 int skipped = 0;
3859                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
3860                 set_bit(STRIPE_EXPANDING, &sh->state);
3861                 atomic_inc(&conf->reshape_stripes);
3862                 /* If any of this stripe is beyond the end of the old
3863                  * array, then we need to zero those blocks
3864                  */
3865                 for (j=sh->disks; j--;) {
3866                         sector_t s;
3867                         if (j == sh->pd_idx)
3868                                 continue;
3869                         if (conf->level == 6 &&
3870                             j == sh->qd_idx)
3871                                 continue;
3872                         s = compute_blocknr(sh, j, 0);
3873                         if (s < raid5_size(mddev, 0, 0)) {
3874                                 skipped = 1;
3875                                 continue;
3876                         }
3877                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3878                         set_bit(R5_Expanded, &sh->dev[j].flags);
3879                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3880                 }
3881                 if (!skipped) {
3882                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3883                         set_bit(STRIPE_HANDLE, &sh->state);
3884                 }
3885                 list_add(&sh->lru, &stripes);
3886         }
3887         spin_lock_irq(&conf->device_lock);
3888         if (mddev->delta_disks < 0)
3889                 conf->reshape_progress -= reshape_sectors * new_data_disks;
3890         else
3891                 conf->reshape_progress += reshape_sectors * new_data_disks;
3892         spin_unlock_irq(&conf->device_lock);
3893         /* Ok, those stripe are ready. We can start scheduling
3894          * reads on the source stripes.
3895          * The source stripes are determined by mapping the first and last
3896          * block on the destination stripes.
3897          */
3898         first_sector =
3899                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3900                                      1, &dd_idx, NULL);
3901         last_sector =
3902                 raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
3903                                             *(new_data_disks) - 1),
3904                                      1, &dd_idx, NULL);
3905         if (last_sector >= mddev->dev_sectors)
3906                 last_sector = mddev->dev_sectors - 1;
3907         while (first_sector <= last_sector) {
3908                 sh = get_active_stripe(conf, first_sector, 1, 0);
3909                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3910                 set_bit(STRIPE_HANDLE, &sh->state);
3911                 release_stripe(sh);
3912                 first_sector += STRIPE_SECTORS;
3913         }
3914         /* Now that the sources are clearly marked, we can release
3915          * the destination stripes
3916          */
3917         while (!list_empty(&stripes)) {
3918                 sh = list_entry(stripes.next, struct stripe_head, lru);
3919                 list_del_init(&sh->lru);
3920                 release_stripe(sh);
3921         }
3922         /* If this takes us to the resync_max point where we have to pause,
3923          * then we need to write out the superblock.
3924          */
3925         sector_nr += reshape_sectors;
3926         if (sector_nr >= mddev->resync_max) {
3927                 /* Cannot proceed until we've updated the superblock... */
3928                 wait_event(conf->wait_for_overlap,
3929                            atomic_read(&conf->reshape_stripes) == 0);
3930                 mddev->reshape_position = conf->reshape_progress;
3931                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3932                 md_wakeup_thread(mddev->thread);
3933                 wait_event(mddev->sb_wait,
3934                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3935                            || kthread_should_stop());
3936                 spin_lock_irq(&conf->device_lock);
3937                 conf->reshape_safe = mddev->reshape_position;
3938                 spin_unlock_irq(&conf->device_lock);
3939                 wake_up(&conf->wait_for_overlap);
3940         }
3941         return reshape_sectors;
3942 }
3943
3944 /* FIXME go_faster isn't used */
3945 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3946 {
3947         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3948         struct stripe_head *sh;
3949         sector_t max_sector = mddev->dev_sectors;
3950         int sync_blocks;
3951         int still_degraded = 0;
3952         int i;
3953
3954         if (sector_nr >= max_sector) {
3955                 /* just being told to finish up .. nothing much to do */
3956                 unplug_slaves(mddev);
3957
3958                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3959                         end_reshape(conf);
3960                         return 0;
3961                 }
3962
3963                 if (mddev->curr_resync < max_sector) /* aborted */
3964                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3965                                         &sync_blocks, 1);
3966                 else /* completed sync */
3967                         conf->fullsync = 0;
3968                 bitmap_close_sync(mddev->bitmap);
3969
3970                 return 0;
3971         }
3972
3973         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3974                 return reshape_request(mddev, sector_nr, skipped);
3975
3976         /* No need to check resync_max as we never do more than one
3977          * stripe, and as resync_max will always be on a chunk boundary,
3978          * if the check in md_do_sync didn't fire, there is no chance
3979          * of overstepping resync_max here
3980          */
3981
3982         /* if there is too many failed drives and we are trying
3983          * to resync, then assert that we are finished, because there is
3984          * nothing we can do.
3985          */
3986         if (mddev->degraded >= conf->max_degraded &&
3987             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3988                 sector_t rv = mddev->dev_sectors - sector_nr;
3989                 *skipped = 1;
3990                 return rv;
3991         }
3992         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3993             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3994             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3995                 /* we can skip this block, and probably more */
3996                 sync_blocks /= STRIPE_SECTORS;
3997                 *skipped = 1;
3998                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3999         }
4000
4001
4002         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4003
4004         sh = get_active_stripe(conf, sector_nr, 0, 1);
4005         if (sh == NULL) {
4006                 sh = get_active_stripe(conf, sector_nr, 0, 0);
4007                 /* make sure we don't swamp the stripe cache if someone else
4008                  * is trying to get access
4009                  */
4010                 schedule_timeout_uninterruptible(1);
4011         }
4012         /* Need to check if array will still be degraded after recovery/resync
4013          * We don't need to check the 'failed' flag as when that gets set,
4014          * recovery aborts.
4015          */
4016         for (i=0; i<mddev->raid_disks; i++)
4017                 if (conf->disks[i].rdev == NULL)
4018                         still_degraded = 1;
4019
4020         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4021
4022         spin_lock(&sh->lock);
4023         set_bit(STRIPE_SYNCING, &sh->state);
4024         clear_bit(STRIPE_INSYNC, &sh->state);
4025         spin_unlock(&sh->lock);
4026
4027         /* wait for any blocked device to be handled */
4028         while(unlikely(!handle_stripe(sh, NULL)))
4029                 ;
4030         release_stripe(sh);
4031
4032         return STRIPE_SECTORS;
4033 }
4034
4035 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4036 {
4037         /* We may not be able to submit a whole bio at once as there
4038          * may not be enough stripe_heads available.
4039          * We cannot pre-allocate enough stripe_heads as we may need
4040          * more than exist in the cache (if we allow ever large chunks).
4041          * So we do one stripe head at a time and record in
4042          * ->bi_hw_segments how many have been done.
4043          *
4044          * We *know* that this entire raid_bio is in one chunk, so
4045          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4046          */
4047         struct stripe_head *sh;
4048         int dd_idx;
4049         sector_t sector, logical_sector, last_sector;
4050         int scnt = 0;
4051         int remaining;
4052         int handled = 0;
4053
4054         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4055         sector = raid5_compute_sector(conf, logical_sector,
4056                                       0, &dd_idx, NULL);
4057         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4058
4059         for (; logical_sector < last_sector;
4060              logical_sector += STRIPE_SECTORS,
4061                      sector += STRIPE_SECTORS,
4062                      scnt++) {
4063
4064                 if (scnt < raid5_bi_hw_segments(raid_bio))
4065                         /* already done this stripe */
4066                         continue;
4067
4068                 sh = get_active_stripe(conf, sector, 0, 1);
4069
4070                 if (!sh) {
4071                         /* failed to get a stripe - must wait */
4072                         raid5_set_bi_hw_segments(raid_bio, scnt);
4073                         conf->retry_read_aligned = raid_bio;
4074                         return handled;
4075                 }
4076
4077                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4078                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4079                         release_stripe(sh);
4080                         raid5_set_bi_hw_segments(raid_bio, scnt);
4081                         conf->retry_read_aligned = raid_bio;
4082                         return handled;
4083                 }
4084
4085                 handle_stripe(sh, NULL);
4086                 release_stripe(sh);
4087                 handled++;
4088         }
4089         spin_lock_irq(&conf->device_lock);
4090         remaining = raid5_dec_bi_phys_segments(raid_bio);
4091         spin_unlock_irq(&conf->device_lock);
4092         if (remaining == 0)
4093                 bio_endio(raid_bio, 0);
4094         if (atomic_dec_and_test(&conf->active_aligned_reads))
4095                 wake_up(&conf->wait_for_stripe);
4096         return handled;
4097 }
4098
4099
4100
4101 /*
4102  * This is our raid5 kernel thread.
4103  *
4104  * We scan the hash table for stripes which can be handled now.
4105  * During the scan, completed stripes are saved for us by the interrupt
4106  * handler, so that they will not have to wait for our next wakeup.
4107  */
4108 static void raid5d(mddev_t *mddev)
4109 {
4110         struct stripe_head *sh;
4111         raid5_conf_t *conf = mddev_to_conf(mddev);
4112         int handled;
4113
4114         pr_debug("+++ raid5d active\n");
4115
4116         md_check_recovery(mddev);
4117
4118         handled = 0;
4119         spin_lock_irq(&conf->device_lock);
4120         while (1) {
4121                 struct bio *bio;
4122
4123                 if (conf->seq_flush != conf->seq_write) {
4124                         int seq = conf->seq_flush;
4125                         spin_unlock_irq(&conf->device_lock);
4126                         bitmap_unplug(mddev->bitmap);
4127                         spin_lock_irq(&conf->device_lock);
4128                         conf->seq_write = seq;
4129                         activate_bit_delay(conf);
4130                 }
4131
4132                 while ((bio = remove_bio_from_retry(conf))) {
4133                         int ok;
4134                         spin_unlock_irq(&conf->device_lock);
4135                         ok = retry_aligned_read(conf, bio);
4136                         spin_lock_irq(&conf->device_lock);
4137                         if (!ok)
4138                                 break;
4139                         handled++;
4140                 }
4141
4142                 sh = __get_priority_stripe(conf);
4143
4144                 if (!sh)
4145                         break;
4146                 spin_unlock_irq(&conf->device_lock);
4147                 
4148                 handled++;
4149                 handle_stripe(sh, conf->spare_page);
4150                 release_stripe(sh);
4151
4152                 spin_lock_irq(&conf->device_lock);
4153         }
4154         pr_debug("%d stripes handled\n", handled);
4155
4156         spin_unlock_irq(&conf->device_lock);
4157
4158         async_tx_issue_pending_all();
4159         unplug_slaves(mddev);
4160
4161         pr_debug("--- raid5d inactive\n");
4162 }
4163
4164 static ssize_t
4165 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4166 {
4167         raid5_conf_t *conf = mddev_to_conf(mddev);
4168         if (conf)
4169                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4170         else
4171                 return 0;
4172 }
4173
4174 static ssize_t
4175 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4176 {
4177         raid5_conf_t *conf = mddev_to_conf(mddev);
4178         unsigned long new;
4179         int err;
4180
4181         if (len >= PAGE_SIZE)
4182                 return -EINVAL;
4183         if (!conf)
4184                 return -ENODEV;
4185
4186         if (strict_strtoul(page, 10, &new))
4187                 return -EINVAL;
4188         if (new <= 16 || new > 32768)
4189                 return -EINVAL;
4190         while (new < conf->max_nr_stripes) {
4191                 if (drop_one_stripe(conf))
4192                         conf->max_nr_stripes--;
4193                 else
4194                         break;
4195         }
4196         err = md_allow_write(mddev);
4197         if (err)
4198                 return err;
4199         while (new > conf->max_nr_stripes) {
4200                 if (grow_one_stripe(conf))
4201                         conf->max_nr_stripes++;
4202                 else break;
4203         }
4204         return len;
4205 }
4206
4207 static struct md_sysfs_entry
4208 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4209                                 raid5_show_stripe_cache_size,
4210                                 raid5_store_stripe_cache_size);
4211
4212 static ssize_t
4213 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4214 {
4215         raid5_conf_t *conf = mddev_to_conf(mddev);
4216         if (conf)
4217                 return sprintf(page, "%d\n", conf->bypass_threshold);
4218         else
4219                 return 0;
4220 }
4221
4222 static ssize_t
4223 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4224 {
4225         raid5_conf_t *conf = mddev_to_conf(mddev);
4226         unsigned long new;
4227         if (len >= PAGE_SIZE)
4228                 return -EINVAL;
4229         if (!conf)
4230                 return -ENODEV;
4231
4232         if (strict_strtoul(page, 10, &new))
4233                 return -EINVAL;
4234         if (new > conf->max_nr_stripes)
4235                 return -EINVAL;
4236         conf->bypass_threshold = new;
4237         return len;
4238 }
4239
4240 static struct md_sysfs_entry
4241 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4242                                         S_IRUGO | S_IWUSR,
4243                                         raid5_show_preread_threshold,
4244                                         raid5_store_preread_threshold);
4245
4246 static ssize_t
4247 stripe_cache_active_show(mddev_t *mddev, char *page)
4248 {
4249         raid5_conf_t *conf = mddev_to_conf(mddev);
4250         if (conf)
4251                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4252         else
4253                 return 0;
4254 }
4255
4256 static struct md_sysfs_entry
4257 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4258
4259 static struct attribute *raid5_attrs[] =  {
4260         &raid5_stripecache_size.attr,
4261         &raid5_stripecache_active.attr,
4262         &raid5_preread_bypass_threshold.attr,
4263         NULL,
4264 };
4265 static struct attribute_group raid5_attrs_group = {
4266         .name = NULL,
4267         .attrs = raid5_attrs,
4268 };
4269
4270 static sector_t
4271 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4272 {
4273         raid5_conf_t *conf = mddev_to_conf(mddev);
4274
4275         if (!sectors)
4276                 sectors = mddev->dev_sectors;
4277         if (!raid_disks) {
4278                 /* size is defined by the smallest of previous and new size */
4279                 if (conf->raid_disks < conf->previous_raid_disks)
4280                         raid_disks = conf->raid_disks;
4281                 else
4282                         raid_disks = conf->previous_raid_disks;
4283         }
4284
4285         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4286         sectors &= ~((sector_t)mddev->new_chunk/512 - 1);
4287         return sectors * (raid_disks - conf->max_degraded);
4288 }
4289
4290 static raid5_conf_t *setup_conf(mddev_t *mddev)
4291 {
4292         raid5_conf_t *conf;
4293         int raid_disk, memory;
4294         mdk_rdev_t *rdev;
4295         struct disk_info *disk;
4296
4297         if (mddev->new_level != 5
4298             && mddev->new_level != 4
4299             && mddev->new_level != 6) {
4300                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4301                        mdname(mddev), mddev->new_level);
4302                 return ERR_PTR(-EIO);
4303         }
4304         if ((mddev->new_level == 5
4305              && !algorithm_valid_raid5(mddev->new_layout)) ||
4306             (mddev->new_level == 6
4307              && !algorithm_valid_raid6(mddev->new_layout))) {
4308                 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4309                        mdname(mddev), mddev->new_layout);
4310                 return ERR_PTR(-EIO);
4311         }
4312         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4313                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4314                        mdname(mddev), mddev->raid_disks);
4315                 return ERR_PTR(-EINVAL);
4316         }
4317
4318         if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
4319                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4320                         mddev->new_chunk, mdname(mddev));
4321                 return ERR_PTR(-EINVAL);
4322         }
4323
4324         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4325         if (conf == NULL)
4326                 goto abort;
4327
4328         conf->raid_disks = mddev->raid_disks;
4329         if (mddev->reshape_position == MaxSector)
4330                 conf->previous_raid_disks = mddev->raid_disks;
4331         else
4332                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4333
4334         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4335                               GFP_KERNEL);
4336         if (!conf->disks)
4337                 goto abort;
4338
4339         conf->mddev = mddev;
4340
4341         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4342                 goto abort;
4343
4344         if (mddev->new_level == 6) {
4345                 conf->spare_page = alloc_page(GFP_KERNEL);
4346                 if (!conf->spare_page)
4347                         goto abort;
4348         }
4349         spin_lock_init(&conf->device_lock);
4350         init_waitqueue_head(&conf->wait_for_stripe);
4351         init_waitqueue_head(&conf->wait_for_overlap);
4352         INIT_LIST_HEAD(&conf->handle_list);
4353         INIT_LIST_HEAD(&conf->hold_list);
4354         INIT_LIST_HEAD(&conf->delayed_list);
4355         INIT_LIST_HEAD(&conf->bitmap_list);
4356         INIT_LIST_HEAD(&conf->inactive_list);
4357         atomic_set(&conf->active_stripes, 0);
4358         atomic_set(&conf->preread_active_stripes, 0);
4359         atomic_set(&conf->active_aligned_reads, 0);
4360         conf->bypass_threshold = BYPASS_THRESHOLD;
4361
4362         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4363
4364         list_for_each_entry(rdev, &mddev->disks, same_set) {
4365                 raid_disk = rdev->raid_disk;
4366                 if (raid_disk >= conf->raid_disks
4367                     || raid_disk < 0)
4368                         continue;
4369                 disk = conf->disks + raid_disk;
4370
4371                 disk->rdev = rdev;
4372
4373                 if (test_bit(In_sync, &rdev->flags)) {
4374                         char b[BDEVNAME_SIZE];
4375                         printk(KERN_INFO "raid5: device %s operational as raid"
4376                                 " disk %d\n", bdevname(rdev->bdev,b),
4377                                 raid_disk);
4378                 } else
4379                         /* Cannot rely on bitmap to complete recovery */
4380                         conf->fullsync = 1;
4381         }
4382
4383         conf->chunk_size = mddev->new_chunk;
4384         conf->level = mddev->new_level;
4385         if (conf->level == 6)
4386                 conf->max_degraded = 2;
4387         else
4388                 conf->max_degraded = 1;
4389         conf->algorithm = mddev->new_layout;
4390         conf->max_nr_stripes = NR_STRIPES;
4391         conf->reshape_progress = mddev->reshape_position;
4392         if (conf->reshape_progress != MaxSector) {
4393                 conf->prev_chunk = mddev->chunk_size;
4394                 conf->prev_algo = mddev->layout;
4395         }
4396
4397         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4398                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4399         if (grow_stripes(conf, conf->max_nr_stripes)) {
4400                 printk(KERN_ERR
4401                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4402                 goto abort;
4403         } else
4404                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4405                         memory, mdname(mddev));
4406
4407         conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4408         if (!conf->thread) {
4409                 printk(KERN_ERR
4410                        "raid5: couldn't allocate thread for %s\n",
4411                        mdname(mddev));
4412                 goto abort;
4413         }
4414
4415         return conf;
4416
4417  abort:
4418         if (conf) {
4419                 shrink_stripes(conf);
4420                 safe_put_page(conf->spare_page);
4421                 kfree(conf->disks);
4422                 kfree(conf->stripe_hashtbl);
4423                 kfree(conf);
4424                 return ERR_PTR(-EIO);
4425         } else
4426                 return ERR_PTR(-ENOMEM);
4427 }
4428
4429 static int run(mddev_t *mddev)
4430 {
4431         raid5_conf_t *conf;
4432         int working_disks = 0;
4433         mdk_rdev_t *rdev;
4434
4435         if (mddev->reshape_position != MaxSector) {
4436                 /* Check that we can continue the reshape.
4437                  * Currently only disks can change, it must
4438                  * increase, and we must be past the point where
4439                  * a stripe over-writes itself
4440                  */
4441                 sector_t here_new, here_old;
4442                 int old_disks;
4443                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4444
4445                 if (mddev->new_level != mddev->level) {
4446                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4447                                "required - aborting.\n",
4448                                mdname(mddev));
4449                         return -EINVAL;
4450                 }
4451                 old_disks = mddev->raid_disks - mddev->delta_disks;
4452                 /* reshape_position must be on a new-stripe boundary, and one
4453                  * further up in new geometry must map after here in old
4454                  * geometry.
4455                  */
4456                 here_new = mddev->reshape_position;
4457                 if (sector_div(here_new, (mddev->new_chunk>>9)*
4458                                (mddev->raid_disks - max_degraded))) {
4459                         printk(KERN_ERR "raid5: reshape_position not "
4460                                "on a stripe boundary\n");
4461                         return -EINVAL;
4462                 }
4463                 /* here_new is the stripe we will write to */
4464                 here_old = mddev->reshape_position;
4465                 sector_div(here_old, (mddev->chunk_size>>9)*
4466                            (old_disks-max_degraded));
4467                 /* here_old is the first stripe that we might need to read
4468                  * from */
4469                 if (here_new >= here_old) {
4470                         /* Reading from the same stripe as writing to - bad */
4471                         printk(KERN_ERR "raid5: reshape_position too early for "
4472                                "auto-recovery - aborting.\n");
4473                         return -EINVAL;
4474                 }
4475                 printk(KERN_INFO "raid5: reshape will continue\n");
4476                 /* OK, we should be able to continue; */
4477         } else {
4478                 BUG_ON(mddev->level != mddev->new_level);
4479                 BUG_ON(mddev->layout != mddev->new_layout);
4480                 BUG_ON(mddev->chunk_size != mddev->new_chunk);
4481                 BUG_ON(mddev->delta_disks != 0);
4482         }
4483
4484         if (mddev->private == NULL)
4485                 conf = setup_conf(mddev);
4486         else
4487                 conf = mddev->private;
4488
4489         if (IS_ERR(conf))
4490                 return PTR_ERR(conf);
4491
4492         mddev->thread = conf->thread;
4493         conf->thread = NULL;
4494         mddev->private = conf;
4495
4496         /*
4497          * 0 for a fully functional array, 1 or 2 for a degraded array.
4498          */
4499         list_for_each_entry(rdev, &mddev->disks, same_set)
4500                 if (rdev->raid_disk >= 0 &&
4501                     test_bit(In_sync, &rdev->flags))
4502                         working_disks++;
4503
4504         mddev->degraded = conf->raid_disks - working_disks;
4505
4506         if (mddev->degraded > conf->max_degraded) {
4507                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4508                         " (%d/%d failed)\n",
4509                         mdname(mddev), mddev->degraded, conf->raid_disks);
4510                 goto abort;
4511         }
4512
4513         /* device size must be a multiple of chunk size */
4514         mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4515         mddev->resync_max_sectors = mddev->dev_sectors;
4516
4517         if (mddev->degraded > 0 &&
4518             mddev->recovery_cp != MaxSector) {
4519                 if (mddev->ok_start_degraded)
4520                         printk(KERN_WARNING
4521                                "raid5: starting dirty degraded array: %s"
4522                                "- data corruption possible.\n",
4523                                mdname(mddev));
4524                 else {
4525                         printk(KERN_ERR
4526                                "raid5: cannot start dirty degraded array for %s\n",
4527                                mdname(mddev));
4528                         goto abort;
4529                 }
4530         }
4531
4532         if (mddev->degraded == 0)
4533                 printk("raid5: raid level %d set %s active with %d out of %d"
4534                        " devices, algorithm %d\n", conf->level, mdname(mddev),
4535                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4536                        mddev->new_layout);
4537         else
4538                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4539                         " out of %d devices, algorithm %d\n", conf->level,
4540                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4541                         mddev->raid_disks, mddev->new_layout);
4542
4543         print_raid5_conf(conf);
4544
4545         if (conf->reshape_progress != MaxSector) {
4546                 printk("...ok start reshape thread\n");
4547                 conf->reshape_safe = conf->reshape_progress;
4548                 atomic_set(&conf->reshape_stripes, 0);
4549                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4550                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4551                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4552                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4553                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4554                                                         "%s_reshape");
4555         }
4556
4557         /* read-ahead size must cover two whole stripes, which is
4558          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4559          */
4560         {
4561                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4562                 int stripe = data_disks *
4563                         (mddev->chunk_size / PAGE_SIZE);
4564                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4565                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4566         }
4567
4568         /* Ok, everything is just fine now */
4569         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4570                 printk(KERN_WARNING
4571                        "raid5: failed to create sysfs attributes for %s\n",
4572                        mdname(mddev));
4573
4574         mddev->queue->queue_lock = &conf->device_lock;
4575
4576         mddev->queue->unplug_fn = raid5_unplug_device;
4577         mddev->queue->backing_dev_info.congested_data = mddev;
4578         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4579
4580         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4581
4582         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4583
4584         return 0;
4585 abort:
4586         md_unregister_thread(mddev->thread);
4587         mddev->thread = NULL;
4588         if (conf) {
4589                 shrink_stripes(conf);
4590                 print_raid5_conf(conf);
4591                 safe_put_page(conf->spare_page);
4592                 kfree(conf->disks);
4593                 kfree(conf->stripe_hashtbl);
4594                 kfree(conf);
4595         }
4596         mddev->private = NULL;
4597         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4598         return -EIO;
4599 }
4600
4601
4602
4603 static int stop(mddev_t *mddev)
4604 {
4605         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4606
4607         md_unregister_thread(mddev->thread);
4608         mddev->thread = NULL;
4609         shrink_stripes(conf);
4610         kfree(conf->stripe_hashtbl);
4611         mddev->queue->backing_dev_info.congested_fn = NULL;
4612         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4613         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4614         kfree(conf->disks);
4615         kfree(conf);
4616         mddev->private = NULL;
4617         return 0;
4618 }
4619
4620 #ifdef DEBUG
4621 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4622 {
4623         int i;
4624
4625         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4626                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4627         seq_printf(seq, "sh %llu,  count %d.\n",
4628                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4629         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4630         for (i = 0; i < sh->disks; i++) {
4631                 seq_printf(seq, "(cache%d: %p %ld) ",
4632                            i, sh->dev[i].page, sh->dev[i].flags);
4633         }
4634         seq_printf(seq, "\n");
4635 }
4636
4637 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4638 {
4639         struct stripe_head *sh;
4640         struct hlist_node *hn;
4641         int i;
4642
4643         spin_lock_irq(&conf->device_lock);
4644         for (i = 0; i < NR_HASH; i++) {
4645                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4646                         if (sh->raid_conf != conf)
4647                                 continue;
4648                         print_sh(seq, sh);
4649                 }
4650         }
4651         spin_unlock_irq(&conf->device_lock);
4652 }
4653 #endif
4654
4655 static void status(struct seq_file *seq, mddev_t *mddev)
4656 {
4657         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4658         int i;
4659
4660         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4661         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4662         for (i = 0; i < conf->raid_disks; i++)
4663                 seq_printf (seq, "%s",
4664                                conf->disks[i].rdev &&
4665                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4666         seq_printf (seq, "]");
4667 #ifdef DEBUG
4668         seq_printf (seq, "\n");
4669         printall(seq, conf);
4670 #endif
4671 }
4672
4673 static void print_raid5_conf (raid5_conf_t *conf)
4674 {
4675         int i;
4676         struct disk_info *tmp;
4677
4678         printk("RAID5 conf printout:\n");
4679         if (!conf) {
4680                 printk("(conf==NULL)\n");
4681                 return;
4682         }
4683         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4684                  conf->raid_disks - conf->mddev->degraded);
4685
4686         for (i = 0; i < conf->raid_disks; i++) {
4687                 char b[BDEVNAME_SIZE];
4688                 tmp = conf->disks + i;
4689                 if (tmp->rdev)
4690                 printk(" disk %d, o:%d, dev:%s\n",
4691                         i, !test_bit(Faulty, &tmp->rdev->flags),
4692                         bdevname(tmp->rdev->bdev,b));
4693         }
4694 }
4695
4696 static int raid5_spare_active(mddev_t *mddev)
4697 {
4698         int i;
4699         raid5_conf_t *conf = mddev->private;
4700         struct disk_info *tmp;
4701
4702         for (i = 0; i < conf->raid_disks; i++) {
4703                 tmp = conf->disks + i;
4704                 if (tmp->rdev
4705                     && !test_bit(Faulty, &tmp->rdev->flags)
4706                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4707                         unsigned long flags;
4708                         spin_lock_irqsave(&conf->device_lock, flags);
4709                         mddev->degraded--;
4710                         spin_unlock_irqrestore(&conf->device_lock, flags);
4711                 }
4712         }
4713         print_raid5_conf(conf);
4714         return 0;
4715 }
4716
4717 static int raid5_remove_disk(mddev_t *mddev, int number)
4718 {
4719         raid5_conf_t *conf = mddev->private;
4720         int err = 0;
4721         mdk_rdev_t *rdev;
4722         struct disk_info *p = conf->disks + number;
4723
4724         print_raid5_conf(conf);
4725         rdev = p->rdev;
4726         if (rdev) {
4727                 if (number >= conf->raid_disks &&
4728                     conf->reshape_progress == MaxSector)
4729                         clear_bit(In_sync, &rdev->flags);
4730
4731                 if (test_bit(In_sync, &rdev->flags) ||
4732                     atomic_read(&rdev->nr_pending)) {
4733                         err = -EBUSY;
4734                         goto abort;
4735                 }
4736                 /* Only remove non-faulty devices if recovery
4737                  * isn't possible.
4738                  */
4739                 if (!test_bit(Faulty, &rdev->flags) &&
4740                     mddev->degraded <= conf->max_degraded &&
4741                     number < conf->raid_disks) {
4742                         err = -EBUSY;
4743                         goto abort;
4744                 }
4745                 p->rdev = NULL;
4746                 synchronize_rcu();
4747                 if (atomic_read(&rdev->nr_pending)) {
4748                         /* lost the race, try later */
4749                         err = -EBUSY;
4750                         p->rdev = rdev;
4751                 }
4752         }
4753 abort:
4754
4755         print_raid5_conf(conf);
4756         return err;
4757 }
4758
4759 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4760 {
4761         raid5_conf_t *conf = mddev->private;
4762         int err = -EEXIST;
4763         int disk;
4764         struct disk_info *p;
4765         int first = 0;
4766         int last = conf->raid_disks - 1;
4767
4768         if (mddev->degraded > conf->max_degraded)
4769                 /* no point adding a device */
4770                 return -EINVAL;
4771
4772         if (rdev->raid_disk >= 0)
4773                 first = last = rdev->raid_disk;
4774
4775         /*
4776          * find the disk ... but prefer rdev->saved_raid_disk
4777          * if possible.
4778          */
4779         if (rdev->saved_raid_disk >= 0 &&
4780             rdev->saved_raid_disk >= first &&
4781             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4782                 disk = rdev->saved_raid_disk;
4783         else
4784                 disk = first;
4785         for ( ; disk <= last ; disk++)
4786                 if ((p=conf->disks + disk)->rdev == NULL) {
4787                         clear_bit(In_sync, &rdev->flags);
4788                         rdev->raid_disk = disk;
4789                         err = 0;
4790                         if (rdev->saved_raid_disk != disk)
4791                                 conf->fullsync = 1;
4792                         rcu_assign_pointer(p->rdev, rdev);
4793                         break;
4794                 }
4795         print_raid5_conf(conf);
4796         return err;
4797 }
4798
4799 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4800 {
4801         /* no resync is happening, and there is enough space
4802          * on all devices, so we can resize.
4803          * We need to make sure resync covers any new space.
4804          * If the array is shrinking we should possibly wait until
4805          * any io in the removed space completes, but it hardly seems
4806          * worth it.
4807          */
4808         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4809         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
4810                                                mddev->raid_disks));
4811         if (mddev->array_sectors >
4812             raid5_size(mddev, sectors, mddev->raid_disks))
4813                 return -EINVAL;
4814         set_capacity(mddev->gendisk, mddev->array_sectors);
4815         mddev->changed = 1;
4816         if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4817                 mddev->recovery_cp = mddev->dev_sectors;
4818                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4819         }
4820         mddev->dev_sectors = sectors;
4821         mddev->resync_max_sectors = sectors;
4822         return 0;
4823 }
4824
4825 #ifdef CONFIG_MD_RAID5_RESHAPE
4826 static int raid5_check_reshape(mddev_t *mddev)
4827 {
4828         raid5_conf_t *conf = mddev_to_conf(mddev);
4829
4830         if (mddev->delta_disks == 0 &&
4831             mddev->new_layout == mddev->layout &&
4832             mddev->new_chunk == mddev->chunk_size)
4833                 return -EINVAL; /* nothing to do */
4834         if (mddev->bitmap)
4835                 /* Cannot grow a bitmap yet */
4836                 return -EBUSY;
4837         if (mddev->degraded > conf->max_degraded)
4838                 return -EINVAL;
4839         if (mddev->delta_disks < 0) {
4840                 /* We might be able to shrink, but the devices must
4841                  * be made bigger first.
4842                  * For raid6, 4 is the minimum size.
4843                  * Otherwise 2 is the minimum
4844                  */
4845                 int min = 2;
4846                 if (mddev->level == 6)
4847                         min = 4;
4848                 if (mddev->raid_disks + mddev->delta_disks < min)
4849                         return -EINVAL;
4850         }
4851
4852         /* Can only proceed if there are plenty of stripe_heads.
4853          * We need a minimum of one full stripe,, and for sensible progress
4854          * it is best to have about 4 times that.
4855          * If we require 4 times, then the default 256 4K stripe_heads will
4856          * allow for chunk sizes up to 256K, which is probably OK.
4857          * If the chunk size is greater, user-space should request more
4858          * stripe_heads first.
4859          */
4860         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4861             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4862                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4863                        (max(mddev->chunk_size, mddev->new_chunk)
4864                         / STRIPE_SIZE)*4);
4865                 return -ENOSPC;
4866         }
4867
4868         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4869 }
4870
4871 static int raid5_start_reshape(mddev_t *mddev)
4872 {
4873         raid5_conf_t *conf = mddev_to_conf(mddev);
4874         mdk_rdev_t *rdev;
4875         int spares = 0;
4876         int added_devices = 0;
4877         unsigned long flags;
4878
4879         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4880                 return -EBUSY;
4881
4882         list_for_each_entry(rdev, &mddev->disks, same_set)
4883                 if (rdev->raid_disk < 0 &&
4884                     !test_bit(Faulty, &rdev->flags))
4885                         spares++;
4886
4887         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4888                 /* Not enough devices even to make a degraded array
4889                  * of that size
4890                  */
4891                 return -EINVAL;
4892
4893         /* Refuse to reduce size of the array.  Any reductions in
4894          * array size must be through explicit setting of array_size
4895          * attribute.
4896          */
4897         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
4898             < mddev->array_sectors) {
4899                 printk(KERN_ERR "md: %s: array size must be reduced "
4900                        "before number of disks\n", mdname(mddev));
4901                 return -EINVAL;
4902         }
4903
4904         atomic_set(&conf->reshape_stripes, 0);
4905         spin_lock_irq(&conf->device_lock);
4906         conf->previous_raid_disks = conf->raid_disks;
4907         conf->raid_disks += mddev->delta_disks;
4908         conf->prev_chunk = conf->chunk_size;
4909         conf->chunk_size = mddev->new_chunk;
4910         conf->prev_algo = conf->algorithm;
4911         conf->algorithm = mddev->new_layout;
4912         if (mddev->delta_disks < 0)
4913                 conf->reshape_progress = raid5_size(mddev, 0, 0);
4914         else
4915                 conf->reshape_progress = 0;
4916         conf->reshape_safe = conf->reshape_progress;
4917         conf->generation++;
4918         spin_unlock_irq(&conf->device_lock);
4919
4920         /* Add some new drives, as many as will fit.
4921          * We know there are enough to make the newly sized array work.
4922          */
4923         list_for_each_entry(rdev, &mddev->disks, same_set)
4924                 if (rdev->raid_disk < 0 &&
4925                     !test_bit(Faulty, &rdev->flags)) {
4926                         if (raid5_add_disk(mddev, rdev) == 0) {
4927                                 char nm[20];
4928                                 set_bit(In_sync, &rdev->flags);
4929                                 added_devices++;
4930                                 rdev->recovery_offset = 0;
4931                                 sprintf(nm, "rd%d", rdev->raid_disk);
4932                                 if (sysfs_create_link(&mddev->kobj,
4933                                                       &rdev->kobj, nm))
4934                                         printk(KERN_WARNING
4935                                                "raid5: failed to create "
4936                                                " link %s for %s\n",
4937                                                nm, mdname(mddev));
4938                         } else
4939                                 break;
4940                 }
4941
4942         if (mddev->delta_disks > 0) {
4943                 spin_lock_irqsave(&conf->device_lock, flags);
4944                 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
4945                         - added_devices;
4946                 spin_unlock_irqrestore(&conf->device_lock, flags);
4947         }
4948         mddev->raid_disks = conf->raid_disks;
4949         mddev->reshape_position = 0;
4950         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4951
4952         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4953         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4954         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4955         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4956         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4957                                                 "%s_reshape");
4958         if (!mddev->sync_thread) {
4959                 mddev->recovery = 0;
4960                 spin_lock_irq(&conf->device_lock);
4961                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4962                 conf->reshape_progress = MaxSector;
4963                 spin_unlock_irq(&conf->device_lock);
4964                 return -EAGAIN;
4965         }
4966         md_wakeup_thread(mddev->sync_thread);
4967         md_new_event(mddev);
4968         return 0;
4969 }
4970 #endif
4971
4972 /* This is called from the reshape thread and should make any
4973  * changes needed in 'conf'
4974  */
4975 static void end_reshape(raid5_conf_t *conf)
4976 {
4977
4978         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4979
4980                 spin_lock_irq(&conf->device_lock);
4981                 conf->previous_raid_disks = conf->raid_disks;
4982                 conf->reshape_progress = MaxSector;
4983                 spin_unlock_irq(&conf->device_lock);
4984
4985                 /* read-ahead size must cover two whole stripes, which is
4986                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4987                  */
4988                 {
4989                         int data_disks = conf->raid_disks - conf->max_degraded;
4990                         int stripe = data_disks * (conf->chunk_size
4991                                                    / PAGE_SIZE);
4992                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4993                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4994                 }
4995         }
4996 }
4997
4998 /* This is called from the raid5d thread with mddev_lock held.
4999  * It makes config changes to the device.
5000  */
5001 static void raid5_finish_reshape(mddev_t *mddev)
5002 {
5003         struct block_device *bdev;
5004         raid5_conf_t *conf = mddev_to_conf(mddev);
5005
5006         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5007
5008                 if (mddev->delta_disks > 0) {
5009                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5010                         set_capacity(mddev->gendisk, mddev->array_sectors);
5011                         mddev->changed = 1;
5012
5013                         bdev = bdget_disk(mddev->gendisk, 0);
5014                         if (bdev) {
5015                                 mutex_lock(&bdev->bd_inode->i_mutex);
5016                                 i_size_write(bdev->bd_inode,
5017                                              (loff_t)mddev->array_sectors << 9);
5018                                 mutex_unlock(&bdev->bd_inode->i_mutex);
5019                                 bdput(bdev);
5020                         }
5021                 } else {
5022                         int d;
5023                         mddev->degraded = conf->raid_disks;
5024                         for (d = 0; d < conf->raid_disks ; d++)
5025                                 if (conf->disks[d].rdev &&
5026                                     test_bit(In_sync,
5027                                              &conf->disks[d].rdev->flags))
5028                                         mddev->degraded--;
5029                         for (d = conf->raid_disks ;
5030                              d < conf->raid_disks - mddev->delta_disks;
5031                              d++)
5032                                 raid5_remove_disk(mddev, d);
5033                 }
5034                 mddev->layout = conf->algorithm;
5035                 mddev->chunk_size = conf->chunk_size;
5036                 mddev->reshape_position = MaxSector;
5037                 mddev->delta_disks = 0;
5038         }
5039 }
5040
5041 static void raid5_quiesce(mddev_t *mddev, int state)
5042 {
5043         raid5_conf_t *conf = mddev_to_conf(mddev);
5044
5045         switch(state) {
5046         case 2: /* resume for a suspend */
5047                 wake_up(&conf->wait_for_overlap);
5048                 break;
5049
5050         case 1: /* stop all writes */
5051                 spin_lock_irq(&conf->device_lock);
5052                 conf->quiesce = 1;
5053                 wait_event_lock_irq(conf->wait_for_stripe,
5054                                     atomic_read(&conf->active_stripes) == 0 &&
5055                                     atomic_read(&conf->active_aligned_reads) == 0,
5056                                     conf->device_lock, /* nothing */);
5057                 spin_unlock_irq(&conf->device_lock);
5058                 break;
5059
5060         case 0: /* re-enable writes */
5061                 spin_lock_irq(&conf->device_lock);
5062                 conf->quiesce = 0;
5063                 wake_up(&conf->wait_for_stripe);
5064                 wake_up(&conf->wait_for_overlap);
5065                 spin_unlock_irq(&conf->device_lock);
5066                 break;
5067         }
5068 }
5069
5070
5071 static void *raid5_takeover_raid1(mddev_t *mddev)
5072 {
5073         int chunksect;
5074
5075         if (mddev->raid_disks != 2 ||
5076             mddev->degraded > 1)
5077                 return ERR_PTR(-EINVAL);
5078
5079         /* Should check if there are write-behind devices? */
5080
5081         chunksect = 64*2; /* 64K by default */
5082
5083         /* The array must be an exact multiple of chunksize */
5084         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5085                 chunksect >>= 1;
5086
5087         if ((chunksect<<9) < STRIPE_SIZE)
5088                 /* array size does not allow a suitable chunk size */
5089                 return ERR_PTR(-EINVAL);
5090
5091         mddev->new_level = 5;
5092         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5093         mddev->new_chunk = chunksect << 9;
5094
5095         return setup_conf(mddev);
5096 }
5097
5098 static void *raid5_takeover_raid6(mddev_t *mddev)
5099 {
5100         int new_layout;
5101
5102         switch (mddev->layout) {
5103         case ALGORITHM_LEFT_ASYMMETRIC_6:
5104                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5105                 break;
5106         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5107                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5108                 break;
5109         case ALGORITHM_LEFT_SYMMETRIC_6:
5110                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5111                 break;
5112         case ALGORITHM_RIGHT_SYMMETRIC_6:
5113                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5114                 break;
5115         case ALGORITHM_PARITY_0_6:
5116                 new_layout = ALGORITHM_PARITY_0;
5117                 break;
5118         case ALGORITHM_PARITY_N:
5119                 new_layout = ALGORITHM_PARITY_N;
5120                 break;
5121         default:
5122                 return ERR_PTR(-EINVAL);
5123         }
5124         mddev->new_level = 5;
5125         mddev->new_layout = new_layout;
5126         mddev->delta_disks = -1;
5127         mddev->raid_disks -= 1;
5128         return setup_conf(mddev);
5129 }
5130
5131
5132 static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5133 {
5134         /* For a 2-drive array, the layout and chunk size can be changed
5135          * immediately as not restriping is needed.
5136          * For larger arrays we record the new value - after validation
5137          * to be used by a reshape pass.
5138          */
5139         raid5_conf_t *conf = mddev_to_conf(mddev);
5140
5141         if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
5142                 return -EINVAL;
5143         if (new_chunk > 0) {
5144                 if (new_chunk & (new_chunk-1))
5145                         /* not a power of 2 */
5146                         return -EINVAL;
5147                 if (new_chunk < PAGE_SIZE)
5148                         return -EINVAL;
5149                 if (mddev->array_sectors & ((new_chunk>>9)-1))
5150                         /* not factor of array size */
5151                         return -EINVAL;
5152         }
5153
5154         /* They look valid */
5155
5156         if (mddev->raid_disks == 2) {
5157
5158                 if (new_layout >= 0) {
5159                         conf->algorithm = new_layout;
5160                         mddev->layout = mddev->new_layout = new_layout;
5161                 }
5162                 if (new_chunk > 0) {
5163                         conf->chunk_size = new_chunk;
5164                         mddev->chunk_size = mddev->new_chunk = new_chunk;
5165                 }
5166                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5167                 md_wakeup_thread(mddev->thread);
5168         } else {
5169                 if (new_layout >= 0)
5170                         mddev->new_layout = new_layout;
5171                 if (new_chunk > 0)
5172                         mddev->new_chunk = new_chunk;
5173         }
5174         return 0;
5175 }
5176
5177 static int raid6_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5178 {
5179         if (new_layout >= 0 && !algorithm_valid_raid6(new_layout))
5180                 return -EINVAL;
5181         if (new_chunk > 0) {
5182                 if (new_chunk & (new_chunk-1))
5183                         /* not a power of 2 */
5184                         return -EINVAL;
5185                 if (new_chunk < PAGE_SIZE)
5186                         return -EINVAL;
5187                 if (mddev->array_sectors & ((new_chunk>>9)-1))
5188                         /* not factor of array size */
5189                         return -EINVAL;
5190         }
5191
5192         /* They look valid */
5193
5194         if (new_layout >= 0)
5195                 mddev->new_layout = new_layout;
5196         if (new_chunk > 0)
5197                 mddev->new_chunk = new_chunk;
5198
5199         return 0;
5200 }
5201
5202 static void *raid5_takeover(mddev_t *mddev)
5203 {
5204         /* raid5 can take over:
5205          *  raid0 - if all devices are the same - make it a raid4 layout
5206          *  raid1 - if there are two drives.  We need to know the chunk size
5207          *  raid4 - trivial - just use a raid4 layout.
5208          *  raid6 - Providing it is a *_6 layout
5209          *
5210          * For now, just do raid1
5211          */
5212
5213         if (mddev->level == 1)
5214                 return raid5_takeover_raid1(mddev);
5215         if (mddev->level == 4) {
5216                 mddev->new_layout = ALGORITHM_PARITY_N;
5217                 mddev->new_level = 5;
5218                 return setup_conf(mddev);
5219         }
5220         if (mddev->level == 6)
5221                 return raid5_takeover_raid6(mddev);
5222
5223         return ERR_PTR(-EINVAL);
5224 }
5225
5226
5227 static struct mdk_personality raid5_personality;
5228
5229 static void *raid6_takeover(mddev_t *mddev)
5230 {
5231         /* Currently can only take over a raid5.  We map the
5232          * personality to an equivalent raid6 personality
5233          * with the Q block at the end.
5234          */
5235         int new_layout;
5236
5237         if (mddev->pers != &raid5_personality)
5238                 return ERR_PTR(-EINVAL);
5239         if (mddev->degraded > 1)
5240                 return ERR_PTR(-EINVAL);
5241         if (mddev->raid_disks > 253)
5242                 return ERR_PTR(-EINVAL);
5243         if (mddev->raid_disks < 3)
5244                 return ERR_PTR(-EINVAL);
5245
5246         switch (mddev->layout) {
5247         case ALGORITHM_LEFT_ASYMMETRIC:
5248                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5249                 break;
5250         case ALGORITHM_RIGHT_ASYMMETRIC:
5251                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5252                 break;
5253         case ALGORITHM_LEFT_SYMMETRIC:
5254                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5255                 break;
5256         case ALGORITHM_RIGHT_SYMMETRIC:
5257                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5258                 break;
5259         case ALGORITHM_PARITY_0:
5260                 new_layout = ALGORITHM_PARITY_0_6;
5261                 break;
5262         case ALGORITHM_PARITY_N:
5263                 new_layout = ALGORITHM_PARITY_N;
5264                 break;
5265         default:
5266                 return ERR_PTR(-EINVAL);
5267         }
5268         mddev->new_level = 6;
5269         mddev->new_layout = new_layout;
5270         mddev->delta_disks = 1;
5271         mddev->raid_disks += 1;
5272         return setup_conf(mddev);
5273 }
5274
5275
5276 static struct mdk_personality raid6_personality =
5277 {
5278         .name           = "raid6",
5279         .level          = 6,
5280         .owner          = THIS_MODULE,
5281         .make_request   = make_request,
5282         .run            = run,
5283         .stop           = stop,
5284         .status         = status,
5285         .error_handler  = error,
5286         .hot_add_disk   = raid5_add_disk,
5287         .hot_remove_disk= raid5_remove_disk,
5288         .spare_active   = raid5_spare_active,
5289         .sync_request   = sync_request,
5290         .resize         = raid5_resize,
5291         .size           = raid5_size,
5292 #ifdef CONFIG_MD_RAID5_RESHAPE
5293         .check_reshape  = raid5_check_reshape,
5294         .start_reshape  = raid5_start_reshape,
5295         .finish_reshape = raid5_finish_reshape,
5296 #endif
5297         .quiesce        = raid5_quiesce,
5298         .takeover       = raid6_takeover,
5299         .reconfig       = raid6_reconfig,
5300 };
5301 static struct mdk_personality raid5_personality =
5302 {
5303         .name           = "raid5",
5304         .level          = 5,
5305         .owner          = THIS_MODULE,
5306         .make_request   = make_request,
5307         .run            = run,
5308         .stop           = stop,
5309         .status         = status,
5310         .error_handler  = error,
5311         .hot_add_disk   = raid5_add_disk,
5312         .hot_remove_disk= raid5_remove_disk,
5313         .spare_active   = raid5_spare_active,
5314         .sync_request   = sync_request,
5315         .resize         = raid5_resize,
5316         .size           = raid5_size,
5317 #ifdef CONFIG_MD_RAID5_RESHAPE
5318         .check_reshape  = raid5_check_reshape,
5319         .start_reshape  = raid5_start_reshape,
5320         .finish_reshape = raid5_finish_reshape,
5321 #endif
5322         .quiesce        = raid5_quiesce,
5323         .takeover       = raid5_takeover,
5324         .reconfig       = raid5_reconfig,
5325 };
5326
5327 static struct mdk_personality raid4_personality =
5328 {
5329         .name           = "raid4",
5330         .level          = 4,
5331         .owner          = THIS_MODULE,
5332         .make_request   = make_request,
5333         .run            = run,
5334         .stop           = stop,
5335         .status         = status,
5336         .error_handler  = error,
5337         .hot_add_disk   = raid5_add_disk,
5338         .hot_remove_disk= raid5_remove_disk,
5339         .spare_active   = raid5_spare_active,
5340         .sync_request   = sync_request,
5341         .resize         = raid5_resize,
5342         .size           = raid5_size,
5343 #ifdef CONFIG_MD_RAID5_RESHAPE
5344         .check_reshape  = raid5_check_reshape,
5345         .start_reshape  = raid5_start_reshape,
5346         .finish_reshape = raid5_finish_reshape,
5347 #endif
5348         .quiesce        = raid5_quiesce,
5349 };
5350
5351 static int __init raid5_init(void)
5352 {
5353         register_md_personality(&raid6_personality);
5354         register_md_personality(&raid5_personality);
5355         register_md_personality(&raid4_personality);
5356         return 0;
5357 }
5358
5359 static void raid5_exit(void)
5360 {
5361         unregister_md_personality(&raid6_personality);
5362         unregister_md_personality(&raid5_personality);
5363         unregister_md_personality(&raid4_personality);
5364 }
5365
5366 module_init(raid5_init);
5367 module_exit(raid5_exit);
5368 MODULE_LICENSE("GPL");
5369 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5370 MODULE_ALIAS("md-raid5");
5371 MODULE_ALIAS("md-raid4");
5372 MODULE_ALIAS("md-level-5");
5373 MODULE_ALIAS("md-level-4");
5374 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5375 MODULE_ALIAS("md-raid6");
5376 MODULE_ALIAS("md-level-6");
5377
5378 /* This used to be two separate modules, they were: */
5379 MODULE_ALIAS("raid5");
5380 MODULE_ALIAS("raid6");