md: kill STRIPE_OP_IO flag
[safe/jmp/linux-2.6] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56
57 /*
58  * Stripe cache
59  */
60
61 #define NR_STRIPES              256
62 #define STRIPE_SIZE             PAGE_SIZE
63 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD            1
66 #define BYPASS_THRESHOLD        1
67 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK               (NR_HASH - 1)
69
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73  * order without overlap.  There may be several bio's per stripe+device, and
74  * a bio could span several devices.
75  * When walking this list for a particular stripe+device, we must never proceed
76  * beyond a bio that extends past this device, as the next bio might no longer
77  * be valid.
78  * This macro is used to determine the 'next' bio in the list, given the sector
79  * of the current stripe+device
80  */
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 /*
83  * The following can be used to debug the driver
84  */
85 #define RAID5_PARANOIA  1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
91
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
96
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98
99 #if !RAID6_USE_EMPTY_ZERO_PAGE
100 /* In .bss so it's zeroed */
101 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
102 #endif
103
104 static inline int raid6_next_disk(int disk, int raid_disks)
105 {
106         disk++;
107         return (disk < raid_disks) ? disk : 0;
108 }
109
110 static void return_io(struct bio *return_bi)
111 {
112         struct bio *bi = return_bi;
113         while (bi) {
114
115                 return_bi = bi->bi_next;
116                 bi->bi_next = NULL;
117                 bi->bi_size = 0;
118                 bio_endio(bi, 0);
119                 bi = return_bi;
120         }
121 }
122
123 static void print_raid5_conf (raid5_conf_t *conf);
124
125 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
126 {
127         if (atomic_dec_and_test(&sh->count)) {
128                 BUG_ON(!list_empty(&sh->lru));
129                 BUG_ON(atomic_read(&conf->active_stripes)==0);
130                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
131                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
132                                 list_add_tail(&sh->lru, &conf->delayed_list);
133                                 blk_plug_device(conf->mddev->queue);
134                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
135                                    sh->bm_seq - conf->seq_write > 0) {
136                                 list_add_tail(&sh->lru, &conf->bitmap_list);
137                                 blk_plug_device(conf->mddev->queue);
138                         } else {
139                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
140                                 list_add_tail(&sh->lru, &conf->handle_list);
141                         }
142                         md_wakeup_thread(conf->mddev->thread);
143                 } else {
144                         BUG_ON(sh->ops.pending);
145                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146                                 atomic_dec(&conf->preread_active_stripes);
147                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148                                         md_wakeup_thread(conf->mddev->thread);
149                         }
150                         atomic_dec(&conf->active_stripes);
151                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152                                 list_add_tail(&sh->lru, &conf->inactive_list);
153                                 wake_up(&conf->wait_for_stripe);
154                                 if (conf->retry_read_aligned)
155                                         md_wakeup_thread(conf->mddev->thread);
156                         }
157                 }
158         }
159 }
160 static void release_stripe(struct stripe_head *sh)
161 {
162         raid5_conf_t *conf = sh->raid_conf;
163         unsigned long flags;
164
165         spin_lock_irqsave(&conf->device_lock, flags);
166         __release_stripe(conf, sh);
167         spin_unlock_irqrestore(&conf->device_lock, flags);
168 }
169
170 static inline void remove_hash(struct stripe_head *sh)
171 {
172         pr_debug("remove_hash(), stripe %llu\n",
173                 (unsigned long long)sh->sector);
174
175         hlist_del_init(&sh->hash);
176 }
177
178 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
179 {
180         struct hlist_head *hp = stripe_hash(conf, sh->sector);
181
182         pr_debug("insert_hash(), stripe %llu\n",
183                 (unsigned long long)sh->sector);
184
185         CHECK_DEVLOCK();
186         hlist_add_head(&sh->hash, hp);
187 }
188
189
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192 {
193         struct stripe_head *sh = NULL;
194         struct list_head *first;
195
196         CHECK_DEVLOCK();
197         if (list_empty(&conf->inactive_list))
198                 goto out;
199         first = conf->inactive_list.next;
200         sh = list_entry(first, struct stripe_head, lru);
201         list_del_init(first);
202         remove_hash(sh);
203         atomic_inc(&conf->active_stripes);
204 out:
205         return sh;
206 }
207
208 static void shrink_buffers(struct stripe_head *sh, int num)
209 {
210         struct page *p;
211         int i;
212
213         for (i=0; i<num ; i++) {
214                 p = sh->dev[i].page;
215                 if (!p)
216                         continue;
217                 sh->dev[i].page = NULL;
218                 put_page(p);
219         }
220 }
221
222 static int grow_buffers(struct stripe_head *sh, int num)
223 {
224         int i;
225
226         for (i=0; i<num; i++) {
227                 struct page *page;
228
229                 if (!(page = alloc_page(GFP_KERNEL))) {
230                         return 1;
231                 }
232                 sh->dev[i].page = page;
233         }
234         return 0;
235 }
236
237 static void raid5_build_block (struct stripe_head *sh, int i);
238
239 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
240 {
241         raid5_conf_t *conf = sh->raid_conf;
242         int i;
243
244         BUG_ON(atomic_read(&sh->count) != 0);
245         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
246         BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247
248         CHECK_DEVLOCK();
249         pr_debug("init_stripe called, stripe %llu\n",
250                 (unsigned long long)sh->sector);
251
252         remove_hash(sh);
253
254         sh->sector = sector;
255         sh->pd_idx = pd_idx;
256         sh->state = 0;
257
258         sh->disks = disks;
259
260         for (i = sh->disks; i--; ) {
261                 struct r5dev *dev = &sh->dev[i];
262
263                 if (dev->toread || dev->read || dev->towrite || dev->written ||
264                     test_bit(R5_LOCKED, &dev->flags)) {
265                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
266                                (unsigned long long)sh->sector, i, dev->toread,
267                                dev->read, dev->towrite, dev->written,
268                                test_bit(R5_LOCKED, &dev->flags));
269                         BUG();
270                 }
271                 dev->flags = 0;
272                 raid5_build_block(sh, i);
273         }
274         insert_hash(conf, sh);
275 }
276
277 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
278 {
279         struct stripe_head *sh;
280         struct hlist_node *hn;
281
282         CHECK_DEVLOCK();
283         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
284         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
285                 if (sh->sector == sector && sh->disks == disks)
286                         return sh;
287         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
288         return NULL;
289 }
290
291 static void unplug_slaves(mddev_t *mddev);
292 static void raid5_unplug_device(struct request_queue *q);
293
294 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295                                              int pd_idx, int noblock)
296 {
297         struct stripe_head *sh;
298
299         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
300
301         spin_lock_irq(&conf->device_lock);
302
303         do {
304                 wait_event_lock_irq(conf->wait_for_stripe,
305                                     conf->quiesce == 0,
306                                     conf->device_lock, /* nothing */);
307                 sh = __find_stripe(conf, sector, disks);
308                 if (!sh) {
309                         if (!conf->inactive_blocked)
310                                 sh = get_free_stripe(conf);
311                         if (noblock && sh == NULL)
312                                 break;
313                         if (!sh) {
314                                 conf->inactive_blocked = 1;
315                                 wait_event_lock_irq(conf->wait_for_stripe,
316                                                     !list_empty(&conf->inactive_list) &&
317                                                     (atomic_read(&conf->active_stripes)
318                                                      < (conf->max_nr_stripes *3/4)
319                                                      || !conf->inactive_blocked),
320                                                     conf->device_lock,
321                                                     raid5_unplug_device(conf->mddev->queue)
322                                         );
323                                 conf->inactive_blocked = 0;
324                         } else
325                                 init_stripe(sh, sector, pd_idx, disks);
326                 } else {
327                         if (atomic_read(&sh->count)) {
328                           BUG_ON(!list_empty(&sh->lru));
329                         } else {
330                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
331                                         atomic_inc(&conf->active_stripes);
332                                 if (list_empty(&sh->lru) &&
333                                     !test_bit(STRIPE_EXPANDING, &sh->state))
334                                         BUG();
335                                 list_del_init(&sh->lru);
336                         }
337                 }
338         } while (sh == NULL);
339
340         if (sh)
341                 atomic_inc(&sh->count);
342
343         spin_unlock_irq(&conf->device_lock);
344         return sh;
345 }
346
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
349 do {                                                    \
350         if (test_bit(op, &sh->ops.pending) &&           \
351                 !test_bit(op, &sh->ops.complete)) {     \
352                 if (test_and_set_bit(op, &sh->ops.ack)) \
353                         clear_bit(op, &pend);           \
354                 else                                    \
355                         ack++;                          \
356         } else                                          \
357                 clear_bit(op, &pend);                   \
358 } while (0)
359
360 /* find new work to run, do not resubmit work that is already
361  * in flight
362  */
363 static unsigned long get_stripe_work(struct stripe_head *sh)
364 {
365         unsigned long pending;
366         int ack = 0;
367
368         pending = sh->ops.pending;
369
370         test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371         test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372         test_and_ack_op(STRIPE_OP_PREXOR, pending);
373         test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374         test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375         test_and_ack_op(STRIPE_OP_CHECK, pending);
376
377         sh->ops.count -= ack;
378         if (unlikely(sh->ops.count < 0)) {
379                 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
380                         "ops.complete: %#lx\n", pending, sh->ops.pending,
381                         sh->ops.ack, sh->ops.complete);
382                 BUG();
383         }
384
385         return pending;
386 }
387
388 static void
389 raid5_end_read_request(struct bio *bi, int error);
390 static void
391 raid5_end_write_request(struct bio *bi, int error);
392
393 static void ops_run_io(struct stripe_head *sh)
394 {
395         raid5_conf_t *conf = sh->raid_conf;
396         int i, disks = sh->disks;
397
398         might_sleep();
399
400         for (i = disks; i--; ) {
401                 int rw;
402                 struct bio *bi;
403                 mdk_rdev_t *rdev;
404                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
405                         rw = WRITE;
406                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
407                         rw = READ;
408                 else
409                         continue;
410
411                 bi = &sh->dev[i].req;
412
413                 bi->bi_rw = rw;
414                 if (rw == WRITE)
415                         bi->bi_end_io = raid5_end_write_request;
416                 else
417                         bi->bi_end_io = raid5_end_read_request;
418
419                 rcu_read_lock();
420                 rdev = rcu_dereference(conf->disks[i].rdev);
421                 if (rdev && test_bit(Faulty, &rdev->flags))
422                         rdev = NULL;
423                 if (rdev)
424                         atomic_inc(&rdev->nr_pending);
425                 rcu_read_unlock();
426
427                 if (rdev) {
428                         if (test_bit(STRIPE_SYNCING, &sh->state) ||
429                                 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
430                                 test_bit(STRIPE_EXPAND_READY, &sh->state))
431                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
432
433                         set_bit(STRIPE_IO_STARTED, &sh->state);
434
435                         bi->bi_bdev = rdev->bdev;
436                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
437                                 __func__, (unsigned long long)sh->sector,
438                                 bi->bi_rw, i);
439                         atomic_inc(&sh->count);
440                         bi->bi_sector = sh->sector + rdev->data_offset;
441                         bi->bi_flags = 1 << BIO_UPTODATE;
442                         bi->bi_vcnt = 1;
443                         bi->bi_max_vecs = 1;
444                         bi->bi_idx = 0;
445                         bi->bi_io_vec = &sh->dev[i].vec;
446                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
447                         bi->bi_io_vec[0].bv_offset = 0;
448                         bi->bi_size = STRIPE_SIZE;
449                         bi->bi_next = NULL;
450                         if (rw == WRITE &&
451                             test_bit(R5_ReWrite, &sh->dev[i].flags))
452                                 atomic_add(STRIPE_SECTORS,
453                                         &rdev->corrected_errors);
454                         generic_make_request(bi);
455                 } else {
456                         if (rw == WRITE)
457                                 set_bit(STRIPE_DEGRADED, &sh->state);
458                         pr_debug("skip op %ld on disc %d for sector %llu\n",
459                                 bi->bi_rw, i, (unsigned long long)sh->sector);
460                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
461                         set_bit(STRIPE_HANDLE, &sh->state);
462                 }
463         }
464 }
465
466 static struct dma_async_tx_descriptor *
467 async_copy_data(int frombio, struct bio *bio, struct page *page,
468         sector_t sector, struct dma_async_tx_descriptor *tx)
469 {
470         struct bio_vec *bvl;
471         struct page *bio_page;
472         int i;
473         int page_offset;
474
475         if (bio->bi_sector >= sector)
476                 page_offset = (signed)(bio->bi_sector - sector) * 512;
477         else
478                 page_offset = (signed)(sector - bio->bi_sector) * -512;
479         bio_for_each_segment(bvl, bio, i) {
480                 int len = bio_iovec_idx(bio, i)->bv_len;
481                 int clen;
482                 int b_offset = 0;
483
484                 if (page_offset < 0) {
485                         b_offset = -page_offset;
486                         page_offset += b_offset;
487                         len -= b_offset;
488                 }
489
490                 if (len > 0 && page_offset + len > STRIPE_SIZE)
491                         clen = STRIPE_SIZE - page_offset;
492                 else
493                         clen = len;
494
495                 if (clen > 0) {
496                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
497                         bio_page = bio_iovec_idx(bio, i)->bv_page;
498                         if (frombio)
499                                 tx = async_memcpy(page, bio_page, page_offset,
500                                         b_offset, clen,
501                                         ASYNC_TX_DEP_ACK,
502                                         tx, NULL, NULL);
503                         else
504                                 tx = async_memcpy(bio_page, page, b_offset,
505                                         page_offset, clen,
506                                         ASYNC_TX_DEP_ACK,
507                                         tx, NULL, NULL);
508                 }
509                 if (clen < len) /* hit end of page */
510                         break;
511                 page_offset +=  len;
512         }
513
514         return tx;
515 }
516
517 static void ops_complete_biofill(void *stripe_head_ref)
518 {
519         struct stripe_head *sh = stripe_head_ref;
520         struct bio *return_bi = NULL;
521         raid5_conf_t *conf = sh->raid_conf;
522         int i;
523
524         pr_debug("%s: stripe %llu\n", __func__,
525                 (unsigned long long)sh->sector);
526
527         /* clear completed biofills */
528         for (i = sh->disks; i--; ) {
529                 struct r5dev *dev = &sh->dev[i];
530
531                 /* acknowledge completion of a biofill operation */
532                 /* and check if we need to reply to a read request,
533                  * new R5_Wantfill requests are held off until
534                  * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
535                  */
536                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
537                         struct bio *rbi, *rbi2;
538
539                         /* The access to dev->read is outside of the
540                          * spin_lock_irq(&conf->device_lock), but is protected
541                          * by the STRIPE_OP_BIOFILL pending bit
542                          */
543                         BUG_ON(!dev->read);
544                         rbi = dev->read;
545                         dev->read = NULL;
546                         while (rbi && rbi->bi_sector <
547                                 dev->sector + STRIPE_SECTORS) {
548                                 rbi2 = r5_next_bio(rbi, dev->sector);
549                                 spin_lock_irq(&conf->device_lock);
550                                 if (--rbi->bi_phys_segments == 0) {
551                                         rbi->bi_next = return_bi;
552                                         return_bi = rbi;
553                                 }
554                                 spin_unlock_irq(&conf->device_lock);
555                                 rbi = rbi2;
556                         }
557                 }
558         }
559         set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
560
561         return_io(return_bi);
562
563         set_bit(STRIPE_HANDLE, &sh->state);
564         release_stripe(sh);
565 }
566
567 static void ops_run_biofill(struct stripe_head *sh)
568 {
569         struct dma_async_tx_descriptor *tx = NULL;
570         raid5_conf_t *conf = sh->raid_conf;
571         int i;
572
573         pr_debug("%s: stripe %llu\n", __func__,
574                 (unsigned long long)sh->sector);
575
576         for (i = sh->disks; i--; ) {
577                 struct r5dev *dev = &sh->dev[i];
578                 if (test_bit(R5_Wantfill, &dev->flags)) {
579                         struct bio *rbi;
580                         spin_lock_irq(&conf->device_lock);
581                         dev->read = rbi = dev->toread;
582                         dev->toread = NULL;
583                         spin_unlock_irq(&conf->device_lock);
584                         while (rbi && rbi->bi_sector <
585                                 dev->sector + STRIPE_SECTORS) {
586                                 tx = async_copy_data(0, rbi, dev->page,
587                                         dev->sector, tx);
588                                 rbi = r5_next_bio(rbi, dev->sector);
589                         }
590                 }
591         }
592
593         atomic_inc(&sh->count);
594         async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
595                 ops_complete_biofill, sh);
596 }
597
598 static void ops_complete_compute5(void *stripe_head_ref)
599 {
600         struct stripe_head *sh = stripe_head_ref;
601         int target = sh->ops.target;
602         struct r5dev *tgt = &sh->dev[target];
603
604         pr_debug("%s: stripe %llu\n", __func__,
605                 (unsigned long long)sh->sector);
606
607         set_bit(R5_UPTODATE, &tgt->flags);
608         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
609         clear_bit(R5_Wantcompute, &tgt->flags);
610         set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
611         set_bit(STRIPE_HANDLE, &sh->state);
612         release_stripe(sh);
613 }
614
615 static struct dma_async_tx_descriptor *
616 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
617 {
618         /* kernel stack size limits the total number of disks */
619         int disks = sh->disks;
620         struct page *xor_srcs[disks];
621         int target = sh->ops.target;
622         struct r5dev *tgt = &sh->dev[target];
623         struct page *xor_dest = tgt->page;
624         int count = 0;
625         struct dma_async_tx_descriptor *tx;
626         int i;
627
628         pr_debug("%s: stripe %llu block: %d\n",
629                 __func__, (unsigned long long)sh->sector, target);
630         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
631
632         for (i = disks; i--; )
633                 if (i != target)
634                         xor_srcs[count++] = sh->dev[i].page;
635
636         atomic_inc(&sh->count);
637
638         if (unlikely(count == 1))
639                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
640                         0, NULL, ops_complete_compute5, sh);
641         else
642                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
643                         ASYNC_TX_XOR_ZERO_DST, NULL,
644                         ops_complete_compute5, sh);
645
646         /* ack now if postxor is not set to be run */
647         if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
648                 async_tx_ack(tx);
649
650         return tx;
651 }
652
653 static void ops_complete_prexor(void *stripe_head_ref)
654 {
655         struct stripe_head *sh = stripe_head_ref;
656
657         pr_debug("%s: stripe %llu\n", __func__,
658                 (unsigned long long)sh->sector);
659
660         set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
661 }
662
663 static struct dma_async_tx_descriptor *
664 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
665 {
666         /* kernel stack size limits the total number of disks */
667         int disks = sh->disks;
668         struct page *xor_srcs[disks];
669         int count = 0, pd_idx = sh->pd_idx, i;
670
671         /* existing parity data subtracted */
672         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
673
674         pr_debug("%s: stripe %llu\n", __func__,
675                 (unsigned long long)sh->sector);
676
677         for (i = disks; i--; ) {
678                 struct r5dev *dev = &sh->dev[i];
679                 /* Only process blocks that are known to be uptodate */
680                 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
681                         xor_srcs[count++] = dev->page;
682         }
683
684         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
685                 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
686                 ops_complete_prexor, sh);
687
688         return tx;
689 }
690
691 static struct dma_async_tx_descriptor *
692 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
693                  unsigned long pending)
694 {
695         int disks = sh->disks;
696         int pd_idx = sh->pd_idx, i;
697
698         /* check if prexor is active which means only process blocks
699          * that are part of a read-modify-write (Wantprexor)
700          */
701         int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
702
703         pr_debug("%s: stripe %llu\n", __func__,
704                 (unsigned long long)sh->sector);
705
706         for (i = disks; i--; ) {
707                 struct r5dev *dev = &sh->dev[i];
708                 struct bio *chosen;
709                 int towrite;
710
711                 towrite = 0;
712                 if (prexor) { /* rmw */
713                         if (dev->towrite &&
714                             test_bit(R5_Wantprexor, &dev->flags))
715                                 towrite = 1;
716                 } else { /* rcw */
717                         if (i != pd_idx && dev->towrite &&
718                                 test_bit(R5_LOCKED, &dev->flags))
719                                 towrite = 1;
720                 }
721
722                 if (towrite) {
723                         struct bio *wbi;
724
725                         spin_lock(&sh->lock);
726                         chosen = dev->towrite;
727                         dev->towrite = NULL;
728                         BUG_ON(dev->written);
729                         wbi = dev->written = chosen;
730                         spin_unlock(&sh->lock);
731
732                         while (wbi && wbi->bi_sector <
733                                 dev->sector + STRIPE_SECTORS) {
734                                 tx = async_copy_data(1, wbi, dev->page,
735                                         dev->sector, tx);
736                                 wbi = r5_next_bio(wbi, dev->sector);
737                         }
738                 }
739         }
740
741         return tx;
742 }
743
744 static void ops_complete_postxor(void *stripe_head_ref)
745 {
746         struct stripe_head *sh = stripe_head_ref;
747
748         pr_debug("%s: stripe %llu\n", __func__,
749                 (unsigned long long)sh->sector);
750
751         set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
752         set_bit(STRIPE_HANDLE, &sh->state);
753         release_stripe(sh);
754 }
755
756 static void ops_complete_write(void *stripe_head_ref)
757 {
758         struct stripe_head *sh = stripe_head_ref;
759         int disks = sh->disks, i, pd_idx = sh->pd_idx;
760
761         pr_debug("%s: stripe %llu\n", __func__,
762                 (unsigned long long)sh->sector);
763
764         for (i = disks; i--; ) {
765                 struct r5dev *dev = &sh->dev[i];
766                 if (dev->written || i == pd_idx)
767                         set_bit(R5_UPTODATE, &dev->flags);
768         }
769
770         set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
771         set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
772
773         set_bit(STRIPE_HANDLE, &sh->state);
774         release_stripe(sh);
775 }
776
777 static void
778 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
779                 unsigned long pending)
780 {
781         /* kernel stack size limits the total number of disks */
782         int disks = sh->disks;
783         struct page *xor_srcs[disks];
784
785         int count = 0, pd_idx = sh->pd_idx, i;
786         struct page *xor_dest;
787         int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
788         unsigned long flags;
789         dma_async_tx_callback callback;
790
791         pr_debug("%s: stripe %llu\n", __func__,
792                 (unsigned long long)sh->sector);
793
794         /* check if prexor is active which means only process blocks
795          * that are part of a read-modify-write (written)
796          */
797         if (prexor) {
798                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
799                 for (i = disks; i--; ) {
800                         struct r5dev *dev = &sh->dev[i];
801                         if (dev->written)
802                                 xor_srcs[count++] = dev->page;
803                 }
804         } else {
805                 xor_dest = sh->dev[pd_idx].page;
806                 for (i = disks; i--; ) {
807                         struct r5dev *dev = &sh->dev[i];
808                         if (i != pd_idx)
809                                 xor_srcs[count++] = dev->page;
810                 }
811         }
812
813         /* check whether this postxor is part of a write */
814         callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
815                 ops_complete_write : ops_complete_postxor;
816
817         /* 1/ if we prexor'd then the dest is reused as a source
818          * 2/ if we did not prexor then we are redoing the parity
819          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
820          * for the synchronous xor case
821          */
822         flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
823                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
824
825         atomic_inc(&sh->count);
826
827         if (unlikely(count == 1)) {
828                 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
829                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
830                         flags, tx, callback, sh);
831         } else
832                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
833                         flags, tx, callback, sh);
834 }
835
836 static void ops_complete_check(void *stripe_head_ref)
837 {
838         struct stripe_head *sh = stripe_head_ref;
839
840         pr_debug("%s: stripe %llu\n", __func__,
841                 (unsigned long long)sh->sector);
842
843         set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
844         set_bit(STRIPE_HANDLE, &sh->state);
845         release_stripe(sh);
846 }
847
848 static void ops_run_check(struct stripe_head *sh)
849 {
850         /* kernel stack size limits the total number of disks */
851         int disks = sh->disks;
852         struct page *xor_srcs[disks];
853         struct dma_async_tx_descriptor *tx;
854
855         int count = 0, pd_idx = sh->pd_idx, i;
856         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
857
858         pr_debug("%s: stripe %llu\n", __func__,
859                 (unsigned long long)sh->sector);
860
861         for (i = disks; i--; ) {
862                 struct r5dev *dev = &sh->dev[i];
863                 if (i != pd_idx)
864                         xor_srcs[count++] = dev->page;
865         }
866
867         tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
868                 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
869
870         atomic_inc(&sh->count);
871         tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
872                 ops_complete_check, sh);
873 }
874
875 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
876 {
877         int overlap_clear = 0, i, disks = sh->disks;
878         struct dma_async_tx_descriptor *tx = NULL;
879
880         if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
881                 ops_run_biofill(sh);
882                 overlap_clear++;
883         }
884
885         if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
886                 tx = ops_run_compute5(sh, pending);
887
888         if (test_bit(STRIPE_OP_PREXOR, &pending))
889                 tx = ops_run_prexor(sh, tx);
890
891         if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
892                 tx = ops_run_biodrain(sh, tx, pending);
893                 overlap_clear++;
894         }
895
896         if (test_bit(STRIPE_OP_POSTXOR, &pending))
897                 ops_run_postxor(sh, tx, pending);
898
899         if (test_bit(STRIPE_OP_CHECK, &pending))
900                 ops_run_check(sh);
901
902         if (overlap_clear)
903                 for (i = disks; i--; ) {
904                         struct r5dev *dev = &sh->dev[i];
905                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
906                                 wake_up(&sh->raid_conf->wait_for_overlap);
907                 }
908 }
909
910 static int grow_one_stripe(raid5_conf_t *conf)
911 {
912         struct stripe_head *sh;
913         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
914         if (!sh)
915                 return 0;
916         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
917         sh->raid_conf = conf;
918         spin_lock_init(&sh->lock);
919
920         if (grow_buffers(sh, conf->raid_disks)) {
921                 shrink_buffers(sh, conf->raid_disks);
922                 kmem_cache_free(conf->slab_cache, sh);
923                 return 0;
924         }
925         sh->disks = conf->raid_disks;
926         /* we just created an active stripe so... */
927         atomic_set(&sh->count, 1);
928         atomic_inc(&conf->active_stripes);
929         INIT_LIST_HEAD(&sh->lru);
930         release_stripe(sh);
931         return 1;
932 }
933
934 static int grow_stripes(raid5_conf_t *conf, int num)
935 {
936         struct kmem_cache *sc;
937         int devs = conf->raid_disks;
938
939         sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
940         sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
941         conf->active_name = 0;
942         sc = kmem_cache_create(conf->cache_name[conf->active_name],
943                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
944                                0, 0, NULL);
945         if (!sc)
946                 return 1;
947         conf->slab_cache = sc;
948         conf->pool_size = devs;
949         while (num--)
950                 if (!grow_one_stripe(conf))
951                         return 1;
952         return 0;
953 }
954
955 #ifdef CONFIG_MD_RAID5_RESHAPE
956 static int resize_stripes(raid5_conf_t *conf, int newsize)
957 {
958         /* Make all the stripes able to hold 'newsize' devices.
959          * New slots in each stripe get 'page' set to a new page.
960          *
961          * This happens in stages:
962          * 1/ create a new kmem_cache and allocate the required number of
963          *    stripe_heads.
964          * 2/ gather all the old stripe_heads and tranfer the pages across
965          *    to the new stripe_heads.  This will have the side effect of
966          *    freezing the array as once all stripe_heads have been collected,
967          *    no IO will be possible.  Old stripe heads are freed once their
968          *    pages have been transferred over, and the old kmem_cache is
969          *    freed when all stripes are done.
970          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
971          *    we simple return a failre status - no need to clean anything up.
972          * 4/ allocate new pages for the new slots in the new stripe_heads.
973          *    If this fails, we don't bother trying the shrink the
974          *    stripe_heads down again, we just leave them as they are.
975          *    As each stripe_head is processed the new one is released into
976          *    active service.
977          *
978          * Once step2 is started, we cannot afford to wait for a write,
979          * so we use GFP_NOIO allocations.
980          */
981         struct stripe_head *osh, *nsh;
982         LIST_HEAD(newstripes);
983         struct disk_info *ndisks;
984         int err = 0;
985         struct kmem_cache *sc;
986         int i;
987
988         if (newsize <= conf->pool_size)
989                 return 0; /* never bother to shrink */
990
991         md_allow_write(conf->mddev);
992
993         /* Step 1 */
994         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
995                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
996                                0, 0, NULL);
997         if (!sc)
998                 return -ENOMEM;
999
1000         for (i = conf->max_nr_stripes; i; i--) {
1001                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1002                 if (!nsh)
1003                         break;
1004
1005                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1006
1007                 nsh->raid_conf = conf;
1008                 spin_lock_init(&nsh->lock);
1009
1010                 list_add(&nsh->lru, &newstripes);
1011         }
1012         if (i) {
1013                 /* didn't get enough, give up */
1014                 while (!list_empty(&newstripes)) {
1015                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1016                         list_del(&nsh->lru);
1017                         kmem_cache_free(sc, nsh);
1018                 }
1019                 kmem_cache_destroy(sc);
1020                 return -ENOMEM;
1021         }
1022         /* Step 2 - Must use GFP_NOIO now.
1023          * OK, we have enough stripes, start collecting inactive
1024          * stripes and copying them over
1025          */
1026         list_for_each_entry(nsh, &newstripes, lru) {
1027                 spin_lock_irq(&conf->device_lock);
1028                 wait_event_lock_irq(conf->wait_for_stripe,
1029                                     !list_empty(&conf->inactive_list),
1030                                     conf->device_lock,
1031                                     unplug_slaves(conf->mddev)
1032                         );
1033                 osh = get_free_stripe(conf);
1034                 spin_unlock_irq(&conf->device_lock);
1035                 atomic_set(&nsh->count, 1);
1036                 for(i=0; i<conf->pool_size; i++)
1037                         nsh->dev[i].page = osh->dev[i].page;
1038                 for( ; i<newsize; i++)
1039                         nsh->dev[i].page = NULL;
1040                 kmem_cache_free(conf->slab_cache, osh);
1041         }
1042         kmem_cache_destroy(conf->slab_cache);
1043
1044         /* Step 3.
1045          * At this point, we are holding all the stripes so the array
1046          * is completely stalled, so now is a good time to resize
1047          * conf->disks.
1048          */
1049         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1050         if (ndisks) {
1051                 for (i=0; i<conf->raid_disks; i++)
1052                         ndisks[i] = conf->disks[i];
1053                 kfree(conf->disks);
1054                 conf->disks = ndisks;
1055         } else
1056                 err = -ENOMEM;
1057
1058         /* Step 4, return new stripes to service */
1059         while(!list_empty(&newstripes)) {
1060                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1061                 list_del_init(&nsh->lru);
1062                 for (i=conf->raid_disks; i < newsize; i++)
1063                         if (nsh->dev[i].page == NULL) {
1064                                 struct page *p = alloc_page(GFP_NOIO);
1065                                 nsh->dev[i].page = p;
1066                                 if (!p)
1067                                         err = -ENOMEM;
1068                         }
1069                 release_stripe(nsh);
1070         }
1071         /* critical section pass, GFP_NOIO no longer needed */
1072
1073         conf->slab_cache = sc;
1074         conf->active_name = 1-conf->active_name;
1075         conf->pool_size = newsize;
1076         return err;
1077 }
1078 #endif
1079
1080 static int drop_one_stripe(raid5_conf_t *conf)
1081 {
1082         struct stripe_head *sh;
1083
1084         spin_lock_irq(&conf->device_lock);
1085         sh = get_free_stripe(conf);
1086         spin_unlock_irq(&conf->device_lock);
1087         if (!sh)
1088                 return 0;
1089         BUG_ON(atomic_read(&sh->count));
1090         shrink_buffers(sh, conf->pool_size);
1091         kmem_cache_free(conf->slab_cache, sh);
1092         atomic_dec(&conf->active_stripes);
1093         return 1;
1094 }
1095
1096 static void shrink_stripes(raid5_conf_t *conf)
1097 {
1098         while (drop_one_stripe(conf))
1099                 ;
1100
1101         if (conf->slab_cache)
1102                 kmem_cache_destroy(conf->slab_cache);
1103         conf->slab_cache = NULL;
1104 }
1105
1106 static void raid5_end_read_request(struct bio * bi, int error)
1107 {
1108         struct stripe_head *sh = bi->bi_private;
1109         raid5_conf_t *conf = sh->raid_conf;
1110         int disks = sh->disks, i;
1111         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1112         char b[BDEVNAME_SIZE];
1113         mdk_rdev_t *rdev;
1114
1115
1116         for (i=0 ; i<disks; i++)
1117                 if (bi == &sh->dev[i].req)
1118                         break;
1119
1120         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1121                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1122                 uptodate);
1123         if (i == disks) {
1124                 BUG();
1125                 return;
1126         }
1127
1128         if (uptodate) {
1129                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1130                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1131                         rdev = conf->disks[i].rdev;
1132                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1133                                   " (%lu sectors at %llu on %s)\n",
1134                                   mdname(conf->mddev), STRIPE_SECTORS,
1135                                   (unsigned long long)(sh->sector
1136                                                        + rdev->data_offset),
1137                                   bdevname(rdev->bdev, b));
1138                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1139                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1140                 }
1141                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1142                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1143         } else {
1144                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1145                 int retry = 0;
1146                 rdev = conf->disks[i].rdev;
1147
1148                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1149                 atomic_inc(&rdev->read_errors);
1150                 if (conf->mddev->degraded)
1151                         printk_rl(KERN_WARNING
1152                                   "raid5:%s: read error not correctable "
1153                                   "(sector %llu on %s).\n",
1154                                   mdname(conf->mddev),
1155                                   (unsigned long long)(sh->sector
1156                                                        + rdev->data_offset),
1157                                   bdn);
1158                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1159                         /* Oh, no!!! */
1160                         printk_rl(KERN_WARNING
1161                                   "raid5:%s: read error NOT corrected!! "
1162                                   "(sector %llu on %s).\n",
1163                                   mdname(conf->mddev),
1164                                   (unsigned long long)(sh->sector
1165                                                        + rdev->data_offset),
1166                                   bdn);
1167                 else if (atomic_read(&rdev->read_errors)
1168                          > conf->max_nr_stripes)
1169                         printk(KERN_WARNING
1170                                "raid5:%s: Too many read errors, failing device %s.\n",
1171                                mdname(conf->mddev), bdn);
1172                 else
1173                         retry = 1;
1174                 if (retry)
1175                         set_bit(R5_ReadError, &sh->dev[i].flags);
1176                 else {
1177                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1178                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1179                         md_error(conf->mddev, rdev);
1180                 }
1181         }
1182         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1183         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1184         set_bit(STRIPE_HANDLE, &sh->state);
1185         release_stripe(sh);
1186 }
1187
1188 static void raid5_end_write_request (struct bio *bi, int error)
1189 {
1190         struct stripe_head *sh = bi->bi_private;
1191         raid5_conf_t *conf = sh->raid_conf;
1192         int disks = sh->disks, i;
1193         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1194
1195         for (i=0 ; i<disks; i++)
1196                 if (bi == &sh->dev[i].req)
1197                         break;
1198
1199         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1200                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1201                 uptodate);
1202         if (i == disks) {
1203                 BUG();
1204                 return;
1205         }
1206
1207         if (!uptodate)
1208                 md_error(conf->mddev, conf->disks[i].rdev);
1209
1210         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1211         
1212         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1213         set_bit(STRIPE_HANDLE, &sh->state);
1214         release_stripe(sh);
1215 }
1216
1217
1218 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1219         
1220 static void raid5_build_block (struct stripe_head *sh, int i)
1221 {
1222         struct r5dev *dev = &sh->dev[i];
1223
1224         bio_init(&dev->req);
1225         dev->req.bi_io_vec = &dev->vec;
1226         dev->req.bi_vcnt++;
1227         dev->req.bi_max_vecs++;
1228         dev->vec.bv_page = dev->page;
1229         dev->vec.bv_len = STRIPE_SIZE;
1230         dev->vec.bv_offset = 0;
1231
1232         dev->req.bi_sector = sh->sector;
1233         dev->req.bi_private = sh;
1234
1235         dev->flags = 0;
1236         dev->sector = compute_blocknr(sh, i);
1237 }
1238
1239 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1240 {
1241         char b[BDEVNAME_SIZE];
1242         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1243         pr_debug("raid5: error called\n");
1244
1245         if (!test_bit(Faulty, &rdev->flags)) {
1246                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1247                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1248                         unsigned long flags;
1249                         spin_lock_irqsave(&conf->device_lock, flags);
1250                         mddev->degraded++;
1251                         spin_unlock_irqrestore(&conf->device_lock, flags);
1252                         /*
1253                          * if recovery was running, make sure it aborts.
1254                          */
1255                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1256                 }
1257                 set_bit(Faulty, &rdev->flags);
1258                 printk (KERN_ALERT
1259                         "raid5: Disk failure on %s, disabling device.\n"
1260                         "raid5: Operation continuing on %d devices.\n",
1261                         bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1262         }
1263 }
1264
1265 /*
1266  * Input: a 'big' sector number,
1267  * Output: index of the data and parity disk, and the sector # in them.
1268  */
1269 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1270                         unsigned int data_disks, unsigned int * dd_idx,
1271                         unsigned int * pd_idx, raid5_conf_t *conf)
1272 {
1273         long stripe;
1274         unsigned long chunk_number;
1275         unsigned int chunk_offset;
1276         sector_t new_sector;
1277         int sectors_per_chunk = conf->chunk_size >> 9;
1278
1279         /* First compute the information on this sector */
1280
1281         /*
1282          * Compute the chunk number and the sector offset inside the chunk
1283          */
1284         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1285         chunk_number = r_sector;
1286         BUG_ON(r_sector != chunk_number);
1287
1288         /*
1289          * Compute the stripe number
1290          */
1291         stripe = chunk_number / data_disks;
1292
1293         /*
1294          * Compute the data disk and parity disk indexes inside the stripe
1295          */
1296         *dd_idx = chunk_number % data_disks;
1297
1298         /*
1299          * Select the parity disk based on the user selected algorithm.
1300          */
1301         switch(conf->level) {
1302         case 4:
1303                 *pd_idx = data_disks;
1304                 break;
1305         case 5:
1306                 switch (conf->algorithm) {
1307                 case ALGORITHM_LEFT_ASYMMETRIC:
1308                         *pd_idx = data_disks - stripe % raid_disks;
1309                         if (*dd_idx >= *pd_idx)
1310                                 (*dd_idx)++;
1311                         break;
1312                 case ALGORITHM_RIGHT_ASYMMETRIC:
1313                         *pd_idx = stripe % raid_disks;
1314                         if (*dd_idx >= *pd_idx)
1315                                 (*dd_idx)++;
1316                         break;
1317                 case ALGORITHM_LEFT_SYMMETRIC:
1318                         *pd_idx = data_disks - stripe % raid_disks;
1319                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1320                         break;
1321                 case ALGORITHM_RIGHT_SYMMETRIC:
1322                         *pd_idx = stripe % raid_disks;
1323                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1324                         break;
1325                 default:
1326                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1327                                 conf->algorithm);
1328                 }
1329                 break;
1330         case 6:
1331
1332                 /**** FIX THIS ****/
1333                 switch (conf->algorithm) {
1334                 case ALGORITHM_LEFT_ASYMMETRIC:
1335                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1336                         if (*pd_idx == raid_disks-1)
1337                                 (*dd_idx)++;    /* Q D D D P */
1338                         else if (*dd_idx >= *pd_idx)
1339                                 (*dd_idx) += 2; /* D D P Q D */
1340                         break;
1341                 case ALGORITHM_RIGHT_ASYMMETRIC:
1342                         *pd_idx = stripe % raid_disks;
1343                         if (*pd_idx == raid_disks-1)
1344                                 (*dd_idx)++;    /* Q D D D P */
1345                         else if (*dd_idx >= *pd_idx)
1346                                 (*dd_idx) += 2; /* D D P Q D */
1347                         break;
1348                 case ALGORITHM_LEFT_SYMMETRIC:
1349                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1350                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1351                         break;
1352                 case ALGORITHM_RIGHT_SYMMETRIC:
1353                         *pd_idx = stripe % raid_disks;
1354                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1355                         break;
1356                 default:
1357                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1358                                 conf->algorithm);
1359                 }
1360                 break;
1361         }
1362
1363         /*
1364          * Finally, compute the new sector number
1365          */
1366         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1367         return new_sector;
1368 }
1369
1370
1371 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1372 {
1373         raid5_conf_t *conf = sh->raid_conf;
1374         int raid_disks = sh->disks;
1375         int data_disks = raid_disks - conf->max_degraded;
1376         sector_t new_sector = sh->sector, check;
1377         int sectors_per_chunk = conf->chunk_size >> 9;
1378         sector_t stripe;
1379         int chunk_offset;
1380         int chunk_number, dummy1, dummy2, dd_idx = i;
1381         sector_t r_sector;
1382
1383
1384         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1385         stripe = new_sector;
1386         BUG_ON(new_sector != stripe);
1387
1388         if (i == sh->pd_idx)
1389                 return 0;
1390         switch(conf->level) {
1391         case 4: break;
1392         case 5:
1393                 switch (conf->algorithm) {
1394                 case ALGORITHM_LEFT_ASYMMETRIC:
1395                 case ALGORITHM_RIGHT_ASYMMETRIC:
1396                         if (i > sh->pd_idx)
1397                                 i--;
1398                         break;
1399                 case ALGORITHM_LEFT_SYMMETRIC:
1400                 case ALGORITHM_RIGHT_SYMMETRIC:
1401                         if (i < sh->pd_idx)
1402                                 i += raid_disks;
1403                         i -= (sh->pd_idx + 1);
1404                         break;
1405                 default:
1406                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1407                                conf->algorithm);
1408                 }
1409                 break;
1410         case 6:
1411                 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1412                         return 0; /* It is the Q disk */
1413                 switch (conf->algorithm) {
1414                 case ALGORITHM_LEFT_ASYMMETRIC:
1415                 case ALGORITHM_RIGHT_ASYMMETRIC:
1416                         if (sh->pd_idx == raid_disks-1)
1417                                 i--;    /* Q D D D P */
1418                         else if (i > sh->pd_idx)
1419                                 i -= 2; /* D D P Q D */
1420                         break;
1421                 case ALGORITHM_LEFT_SYMMETRIC:
1422                 case ALGORITHM_RIGHT_SYMMETRIC:
1423                         if (sh->pd_idx == raid_disks-1)
1424                                 i--; /* Q D D D P */
1425                         else {
1426                                 /* D D P Q D */
1427                                 if (i < sh->pd_idx)
1428                                         i += raid_disks;
1429                                 i -= (sh->pd_idx + 2);
1430                         }
1431                         break;
1432                 default:
1433                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1434                                 conf->algorithm);
1435                 }
1436                 break;
1437         }
1438
1439         chunk_number = stripe * data_disks + i;
1440         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1441
1442         check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1443         if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1444                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1445                 return 0;
1446         }
1447         return r_sector;
1448 }
1449
1450
1451
1452 /*
1453  * Copy data between a page in the stripe cache, and one or more bion
1454  * The page could align with the middle of the bio, or there could be
1455  * several bion, each with several bio_vecs, which cover part of the page
1456  * Multiple bion are linked together on bi_next.  There may be extras
1457  * at the end of this list.  We ignore them.
1458  */
1459 static void copy_data(int frombio, struct bio *bio,
1460                      struct page *page,
1461                      sector_t sector)
1462 {
1463         char *pa = page_address(page);
1464         struct bio_vec *bvl;
1465         int i;
1466         int page_offset;
1467
1468         if (bio->bi_sector >= sector)
1469                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1470         else
1471                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1472         bio_for_each_segment(bvl, bio, i) {
1473                 int len = bio_iovec_idx(bio,i)->bv_len;
1474                 int clen;
1475                 int b_offset = 0;
1476
1477                 if (page_offset < 0) {
1478                         b_offset = -page_offset;
1479                         page_offset += b_offset;
1480                         len -= b_offset;
1481                 }
1482
1483                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1484                         clen = STRIPE_SIZE - page_offset;
1485                 else clen = len;
1486
1487                 if (clen > 0) {
1488                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1489                         if (frombio)
1490                                 memcpy(pa+page_offset, ba+b_offset, clen);
1491                         else
1492                                 memcpy(ba+b_offset, pa+page_offset, clen);
1493                         __bio_kunmap_atomic(ba, KM_USER0);
1494                 }
1495                 if (clen < len) /* hit end of page */
1496                         break;
1497                 page_offset +=  len;
1498         }
1499 }
1500
1501 #define check_xor()     do {                                              \
1502                                 if (count == MAX_XOR_BLOCKS) {            \
1503                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1504                                 count = 0;                                \
1505                            }                                              \
1506                         } while(0)
1507
1508 static void compute_parity6(struct stripe_head *sh, int method)
1509 {
1510         raid6_conf_t *conf = sh->raid_conf;
1511         int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1512         struct bio *chosen;
1513         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1514         void *ptrs[disks];
1515
1516         qd_idx = raid6_next_disk(pd_idx, disks);
1517         d0_idx = raid6_next_disk(qd_idx, disks);
1518
1519         pr_debug("compute_parity, stripe %llu, method %d\n",
1520                 (unsigned long long)sh->sector, method);
1521
1522         switch(method) {
1523         case READ_MODIFY_WRITE:
1524                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1525         case RECONSTRUCT_WRITE:
1526                 for (i= disks; i-- ;)
1527                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1528                                 chosen = sh->dev[i].towrite;
1529                                 sh->dev[i].towrite = NULL;
1530
1531                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1532                                         wake_up(&conf->wait_for_overlap);
1533
1534                                 BUG_ON(sh->dev[i].written);
1535                                 sh->dev[i].written = chosen;
1536                         }
1537                 break;
1538         case CHECK_PARITY:
1539                 BUG();          /* Not implemented yet */
1540         }
1541
1542         for (i = disks; i--;)
1543                 if (sh->dev[i].written) {
1544                         sector_t sector = sh->dev[i].sector;
1545                         struct bio *wbi = sh->dev[i].written;
1546                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1547                                 copy_data(1, wbi, sh->dev[i].page, sector);
1548                                 wbi = r5_next_bio(wbi, sector);
1549                         }
1550
1551                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1552                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1553                 }
1554
1555 //      switch(method) {
1556 //      case RECONSTRUCT_WRITE:
1557 //      case CHECK_PARITY:
1558 //      case UPDATE_PARITY:
1559                 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1560                 /* FIX: Is this ordering of drives even remotely optimal? */
1561                 count = 0;
1562                 i = d0_idx;
1563                 do {
1564                         ptrs[count++] = page_address(sh->dev[i].page);
1565                         if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1566                                 printk("block %d/%d not uptodate on parity calc\n", i,count);
1567                         i = raid6_next_disk(i, disks);
1568                 } while ( i != d0_idx );
1569 //              break;
1570 //      }
1571
1572         raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1573
1574         switch(method) {
1575         case RECONSTRUCT_WRITE:
1576                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1577                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1578                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1579                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1580                 break;
1581         case UPDATE_PARITY:
1582                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1583                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1584                 break;
1585         }
1586 }
1587
1588
1589 /* Compute one missing block */
1590 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1591 {
1592         int i, count, disks = sh->disks;
1593         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1594         int pd_idx = sh->pd_idx;
1595         int qd_idx = raid6_next_disk(pd_idx, disks);
1596
1597         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1598                 (unsigned long long)sh->sector, dd_idx);
1599
1600         if ( dd_idx == qd_idx ) {
1601                 /* We're actually computing the Q drive */
1602                 compute_parity6(sh, UPDATE_PARITY);
1603         } else {
1604                 dest = page_address(sh->dev[dd_idx].page);
1605                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1606                 count = 0;
1607                 for (i = disks ; i--; ) {
1608                         if (i == dd_idx || i == qd_idx)
1609                                 continue;
1610                         p = page_address(sh->dev[i].page);
1611                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1612                                 ptr[count++] = p;
1613                         else
1614                                 printk("compute_block() %d, stripe %llu, %d"
1615                                        " not present\n", dd_idx,
1616                                        (unsigned long long)sh->sector, i);
1617
1618                         check_xor();
1619                 }
1620                 if (count)
1621                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1622                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1623                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1624         }
1625 }
1626
1627 /* Compute two missing blocks */
1628 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1629 {
1630         int i, count, disks = sh->disks;
1631         int pd_idx = sh->pd_idx;
1632         int qd_idx = raid6_next_disk(pd_idx, disks);
1633         int d0_idx = raid6_next_disk(qd_idx, disks);
1634         int faila, failb;
1635
1636         /* faila and failb are disk numbers relative to d0_idx */
1637         /* pd_idx become disks-2 and qd_idx become disks-1 */
1638         faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1639         failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1640
1641         BUG_ON(faila == failb);
1642         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1643
1644         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1645                (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1646
1647         if ( failb == disks-1 ) {
1648                 /* Q disk is one of the missing disks */
1649                 if ( faila == disks-2 ) {
1650                         /* Missing P+Q, just recompute */
1651                         compute_parity6(sh, UPDATE_PARITY);
1652                         return;
1653                 } else {
1654                         /* We're missing D+Q; recompute D from P */
1655                         compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1656                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1657                         return;
1658                 }
1659         }
1660
1661         /* We're missing D+P or D+D; build pointer table */
1662         {
1663                 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1664                 void *ptrs[disks];
1665
1666                 count = 0;
1667                 i = d0_idx;
1668                 do {
1669                         ptrs[count++] = page_address(sh->dev[i].page);
1670                         i = raid6_next_disk(i, disks);
1671                         if (i != dd_idx1 && i != dd_idx2 &&
1672                             !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1673                                 printk("compute_2 with missing block %d/%d\n", count, i);
1674                 } while ( i != d0_idx );
1675
1676                 if ( failb == disks-2 ) {
1677                         /* We're missing D+P. */
1678                         raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1679                 } else {
1680                         /* We're missing D+D. */
1681                         raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1682                 }
1683
1684                 /* Both the above update both missing blocks */
1685                 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1686                 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1687         }
1688 }
1689
1690 static int
1691 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1692 {
1693         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1694         int locked = 0;
1695
1696         if (rcw) {
1697                 /* if we are not expanding this is a proper write request, and
1698                  * there will be bios with new data to be drained into the
1699                  * stripe cache
1700                  */
1701                 if (!expand) {
1702                         set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1703                         sh->ops.count++;
1704                 }
1705
1706                 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1707                 sh->ops.count++;
1708
1709                 for (i = disks; i--; ) {
1710                         struct r5dev *dev = &sh->dev[i];
1711
1712                         if (dev->towrite) {
1713                                 set_bit(R5_LOCKED, &dev->flags);
1714                                 if (!expand)
1715                                         clear_bit(R5_UPTODATE, &dev->flags);
1716                                 locked++;
1717                         }
1718                 }
1719                 if (locked + 1 == disks)
1720                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1721                                 atomic_inc(&sh->raid_conf->pending_full_writes);
1722         } else {
1723                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1724                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1725
1726                 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1727                 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1728                 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1729
1730                 sh->ops.count += 3;
1731
1732                 for (i = disks; i--; ) {
1733                         struct r5dev *dev = &sh->dev[i];
1734                         if (i == pd_idx)
1735                                 continue;
1736
1737                         /* For a read-modify write there may be blocks that are
1738                          * locked for reading while others are ready to be
1739                          * written so we distinguish these blocks by the
1740                          * R5_Wantprexor bit
1741                          */
1742                         if (dev->towrite &&
1743                             (test_bit(R5_UPTODATE, &dev->flags) ||
1744                             test_bit(R5_Wantcompute, &dev->flags))) {
1745                                 set_bit(R5_Wantprexor, &dev->flags);
1746                                 set_bit(R5_LOCKED, &dev->flags);
1747                                 clear_bit(R5_UPTODATE, &dev->flags);
1748                                 locked++;
1749                         }
1750                 }
1751         }
1752
1753         /* keep the parity disk locked while asynchronous operations
1754          * are in flight
1755          */
1756         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1757         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1758         locked++;
1759
1760         pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1761                 __func__, (unsigned long long)sh->sector,
1762                 locked, sh->ops.pending);
1763
1764         return locked;
1765 }
1766
1767 /*
1768  * Each stripe/dev can have one or more bion attached.
1769  * toread/towrite point to the first in a chain.
1770  * The bi_next chain must be in order.
1771  */
1772 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1773 {
1774         struct bio **bip;
1775         raid5_conf_t *conf = sh->raid_conf;
1776         int firstwrite=0;
1777
1778         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1779                 (unsigned long long)bi->bi_sector,
1780                 (unsigned long long)sh->sector);
1781
1782
1783         spin_lock(&sh->lock);
1784         spin_lock_irq(&conf->device_lock);
1785         if (forwrite) {
1786                 bip = &sh->dev[dd_idx].towrite;
1787                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1788                         firstwrite = 1;
1789         } else
1790                 bip = &sh->dev[dd_idx].toread;
1791         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1792                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1793                         goto overlap;
1794                 bip = & (*bip)->bi_next;
1795         }
1796         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1797                 goto overlap;
1798
1799         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1800         if (*bip)
1801                 bi->bi_next = *bip;
1802         *bip = bi;
1803         bi->bi_phys_segments ++;
1804         spin_unlock_irq(&conf->device_lock);
1805         spin_unlock(&sh->lock);
1806
1807         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1808                 (unsigned long long)bi->bi_sector,
1809                 (unsigned long long)sh->sector, dd_idx);
1810
1811         if (conf->mddev->bitmap && firstwrite) {
1812                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1813                                   STRIPE_SECTORS, 0);
1814                 sh->bm_seq = conf->seq_flush+1;
1815                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1816         }
1817
1818         if (forwrite) {
1819                 /* check if page is covered */
1820                 sector_t sector = sh->dev[dd_idx].sector;
1821                 for (bi=sh->dev[dd_idx].towrite;
1822                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1823                              bi && bi->bi_sector <= sector;
1824                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1825                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1826                                 sector = bi->bi_sector + (bi->bi_size>>9);
1827                 }
1828                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1829                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1830         }
1831         return 1;
1832
1833  overlap:
1834         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1835         spin_unlock_irq(&conf->device_lock);
1836         spin_unlock(&sh->lock);
1837         return 0;
1838 }
1839
1840 static void end_reshape(raid5_conf_t *conf);
1841
1842 static int page_is_zero(struct page *p)
1843 {
1844         char *a = page_address(p);
1845         return ((*(u32*)a) == 0 &&
1846                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1847 }
1848
1849 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1850 {
1851         int sectors_per_chunk = conf->chunk_size >> 9;
1852         int pd_idx, dd_idx;
1853         int chunk_offset = sector_div(stripe, sectors_per_chunk);
1854
1855         raid5_compute_sector(stripe * (disks - conf->max_degraded)
1856                              *sectors_per_chunk + chunk_offset,
1857                              disks, disks - conf->max_degraded,
1858                              &dd_idx, &pd_idx, conf);
1859         return pd_idx;
1860 }
1861
1862 static void
1863 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1864                                 struct stripe_head_state *s, int disks,
1865                                 struct bio **return_bi)
1866 {
1867         int i;
1868         for (i = disks; i--; ) {
1869                 struct bio *bi;
1870                 int bitmap_end = 0;
1871
1872                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1873                         mdk_rdev_t *rdev;
1874                         rcu_read_lock();
1875                         rdev = rcu_dereference(conf->disks[i].rdev);
1876                         if (rdev && test_bit(In_sync, &rdev->flags))
1877                                 /* multiple read failures in one stripe */
1878                                 md_error(conf->mddev, rdev);
1879                         rcu_read_unlock();
1880                 }
1881                 spin_lock_irq(&conf->device_lock);
1882                 /* fail all writes first */
1883                 bi = sh->dev[i].towrite;
1884                 sh->dev[i].towrite = NULL;
1885                 if (bi) {
1886                         s->to_write--;
1887                         bitmap_end = 1;
1888                 }
1889
1890                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1891                         wake_up(&conf->wait_for_overlap);
1892
1893                 while (bi && bi->bi_sector <
1894                         sh->dev[i].sector + STRIPE_SECTORS) {
1895                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1896                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1897                         if (--bi->bi_phys_segments == 0) {
1898                                 md_write_end(conf->mddev);
1899                                 bi->bi_next = *return_bi;
1900                                 *return_bi = bi;
1901                         }
1902                         bi = nextbi;
1903                 }
1904                 /* and fail all 'written' */
1905                 bi = sh->dev[i].written;
1906                 sh->dev[i].written = NULL;
1907                 if (bi) bitmap_end = 1;
1908                 while (bi && bi->bi_sector <
1909                        sh->dev[i].sector + STRIPE_SECTORS) {
1910                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1911                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1912                         if (--bi->bi_phys_segments == 0) {
1913                                 md_write_end(conf->mddev);
1914                                 bi->bi_next = *return_bi;
1915                                 *return_bi = bi;
1916                         }
1917                         bi = bi2;
1918                 }
1919
1920                 /* fail any reads if this device is non-operational and
1921                  * the data has not reached the cache yet.
1922                  */
1923                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1924                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1925                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
1926                         bi = sh->dev[i].toread;
1927                         sh->dev[i].toread = NULL;
1928                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1929                                 wake_up(&conf->wait_for_overlap);
1930                         if (bi) s->to_read--;
1931                         while (bi && bi->bi_sector <
1932                                sh->dev[i].sector + STRIPE_SECTORS) {
1933                                 struct bio *nextbi =
1934                                         r5_next_bio(bi, sh->dev[i].sector);
1935                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1936                                 if (--bi->bi_phys_segments == 0) {
1937                                         bi->bi_next = *return_bi;
1938                                         *return_bi = bi;
1939                                 }
1940                                 bi = nextbi;
1941                         }
1942                 }
1943                 spin_unlock_irq(&conf->device_lock);
1944                 if (bitmap_end)
1945                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1946                                         STRIPE_SECTORS, 0, 0);
1947         }
1948
1949         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1950                 if (atomic_dec_and_test(&conf->pending_full_writes))
1951                         md_wakeup_thread(conf->mddev->thread);
1952 }
1953
1954 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1955  * to process
1956  */
1957 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1958                         struct stripe_head_state *s, int disk_idx, int disks)
1959 {
1960         struct r5dev *dev = &sh->dev[disk_idx];
1961         struct r5dev *failed_dev = &sh->dev[s->failed_num];
1962
1963         /* don't schedule compute operations or reads on the parity block while
1964          * a check is in flight
1965          */
1966         if ((disk_idx == sh->pd_idx) &&
1967              test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1968                 return ~0;
1969
1970         /* is the data in this block needed, and can we get it? */
1971         if (!test_bit(R5_LOCKED, &dev->flags) &&
1972             !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1973             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1974              s->syncing || s->expanding || (s->failed &&
1975              (failed_dev->toread || (failed_dev->towrite &&
1976              !test_bit(R5_OVERWRITE, &failed_dev->flags)
1977              ))))) {
1978                 /* 1/ We would like to get this block, possibly by computing it,
1979                  * but we might not be able to.
1980                  *
1981                  * 2/ Since parity check operations potentially make the parity
1982                  * block !uptodate it will need to be refreshed before any
1983                  * compute operations on data disks are scheduled.
1984                  *
1985                  * 3/ We hold off parity block re-reads until check operations
1986                  * have quiesced.
1987                  */
1988                 if ((s->uptodate == disks - 1) &&
1989                     (s->failed && disk_idx == s->failed_num) &&
1990                     !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1991                         set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1992                         set_bit(R5_Wantcompute, &dev->flags);
1993                         sh->ops.target = disk_idx;
1994                         s->req_compute = 1;
1995                         sh->ops.count++;
1996                         /* Careful: from this point on 'uptodate' is in the eye
1997                          * of raid5_run_ops which services 'compute' operations
1998                          * before writes. R5_Wantcompute flags a block that will
1999                          * be R5_UPTODATE by the time it is needed for a
2000                          * subsequent operation.
2001                          */
2002                         s->uptodate++;
2003                         return 0; /* uptodate + compute == disks */
2004                 } else if ((s->uptodate < disks - 1) &&
2005                         test_bit(R5_Insync, &dev->flags)) {
2006                         /* Note: we hold off compute operations while checks are
2007                          * in flight, but we still prefer 'compute' over 'read'
2008                          * hence we only read if (uptodate < * disks-1)
2009                          */
2010                         set_bit(R5_LOCKED, &dev->flags);
2011                         set_bit(R5_Wantread, &dev->flags);
2012                         s->locked++;
2013                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2014                                 s->syncing);
2015                 }
2016         }
2017
2018         return ~0;
2019 }
2020
2021 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2022                         struct stripe_head_state *s, int disks)
2023 {
2024         int i;
2025
2026         /* Clear completed compute operations.  Parity recovery
2027          * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2028          * later on in this routine
2029          */
2030         if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2031                 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2032                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2033                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2034                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2035         }
2036
2037         /* look for blocks to read/compute, skip this if a compute
2038          * is already in flight, or if the stripe contents are in the
2039          * midst of changing due to a write
2040          */
2041         if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2042                 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2043                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2044                 for (i = disks; i--; )
2045                         if (__handle_issuing_new_read_requests5(
2046                                 sh, s, i, disks) == 0)
2047                                 break;
2048         }
2049         set_bit(STRIPE_HANDLE, &sh->state);
2050 }
2051
2052 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2053                         struct stripe_head_state *s, struct r6_state *r6s,
2054                         int disks)
2055 {
2056         int i;
2057         for (i = disks; i--; ) {
2058                 struct r5dev *dev = &sh->dev[i];
2059                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2060                     !test_bit(R5_UPTODATE, &dev->flags) &&
2061                     (dev->toread || (dev->towrite &&
2062                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
2063                      s->syncing || s->expanding ||
2064                      (s->failed >= 1 &&
2065                       (sh->dev[r6s->failed_num[0]].toread ||
2066                        s->to_write)) ||
2067                      (s->failed >= 2 &&
2068                       (sh->dev[r6s->failed_num[1]].toread ||
2069                        s->to_write)))) {
2070                         /* we would like to get this block, possibly
2071                          * by computing it, but we might not be able to
2072                          */
2073                         if ((s->uptodate == disks - 1) &&
2074                             (s->failed && (i == r6s->failed_num[0] ||
2075                                            i == r6s->failed_num[1]))) {
2076                                 pr_debug("Computing stripe %llu block %d\n",
2077                                        (unsigned long long)sh->sector, i);
2078                                 compute_block_1(sh, i, 0);
2079                                 s->uptodate++;
2080                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2081                                 /* Computing 2-failure is *very* expensive; only
2082                                  * do it if failed >= 2
2083                                  */
2084                                 int other;
2085                                 for (other = disks; other--; ) {
2086                                         if (other == i)
2087                                                 continue;
2088                                         if (!test_bit(R5_UPTODATE,
2089                                               &sh->dev[other].flags))
2090                                                 break;
2091                                 }
2092                                 BUG_ON(other < 0);
2093                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2094                                        (unsigned long long)sh->sector,
2095                                        i, other);
2096                                 compute_block_2(sh, i, other);
2097                                 s->uptodate += 2;
2098                         } else if (test_bit(R5_Insync, &dev->flags)) {
2099                                 set_bit(R5_LOCKED, &dev->flags);
2100                                 set_bit(R5_Wantread, &dev->flags);
2101                                 s->locked++;
2102                                 pr_debug("Reading block %d (sync=%d)\n",
2103                                         i, s->syncing);
2104                         }
2105                 }
2106         }
2107         set_bit(STRIPE_HANDLE, &sh->state);
2108 }
2109
2110
2111 /* handle_completed_write_requests
2112  * any written block on an uptodate or failed drive can be returned.
2113  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2114  * never LOCKED, so we don't need to test 'failed' directly.
2115  */
2116 static void handle_completed_write_requests(raid5_conf_t *conf,
2117         struct stripe_head *sh, int disks, struct bio **return_bi)
2118 {
2119         int i;
2120         struct r5dev *dev;
2121
2122         for (i = disks; i--; )
2123                 if (sh->dev[i].written) {
2124                         dev = &sh->dev[i];
2125                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2126                                 test_bit(R5_UPTODATE, &dev->flags)) {
2127                                 /* We can return any write requests */
2128                                 struct bio *wbi, *wbi2;
2129                                 int bitmap_end = 0;
2130                                 pr_debug("Return write for disc %d\n", i);
2131                                 spin_lock_irq(&conf->device_lock);
2132                                 wbi = dev->written;
2133                                 dev->written = NULL;
2134                                 while (wbi && wbi->bi_sector <
2135                                         dev->sector + STRIPE_SECTORS) {
2136                                         wbi2 = r5_next_bio(wbi, dev->sector);
2137                                         if (--wbi->bi_phys_segments == 0) {
2138                                                 md_write_end(conf->mddev);
2139                                                 wbi->bi_next = *return_bi;
2140                                                 *return_bi = wbi;
2141                                         }
2142                                         wbi = wbi2;
2143                                 }
2144                                 if (dev->towrite == NULL)
2145                                         bitmap_end = 1;
2146                                 spin_unlock_irq(&conf->device_lock);
2147                                 if (bitmap_end)
2148                                         bitmap_endwrite(conf->mddev->bitmap,
2149                                                         sh->sector,
2150                                                         STRIPE_SECTORS,
2151                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2152                                                         0);
2153                         }
2154                 }
2155
2156         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2157                 if (atomic_dec_and_test(&conf->pending_full_writes))
2158                         md_wakeup_thread(conf->mddev->thread);
2159 }
2160
2161 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2162                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2163 {
2164         int rmw = 0, rcw = 0, i;
2165         for (i = disks; i--; ) {
2166                 /* would I have to read this buffer for read_modify_write */
2167                 struct r5dev *dev = &sh->dev[i];
2168                 if ((dev->towrite || i == sh->pd_idx) &&
2169                     !test_bit(R5_LOCKED, &dev->flags) &&
2170                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2171                       test_bit(R5_Wantcompute, &dev->flags))) {
2172                         if (test_bit(R5_Insync, &dev->flags))
2173                                 rmw++;
2174                         else
2175                                 rmw += 2*disks;  /* cannot read it */
2176                 }
2177                 /* Would I have to read this buffer for reconstruct_write */
2178                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2179                     !test_bit(R5_LOCKED, &dev->flags) &&
2180                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2181                     test_bit(R5_Wantcompute, &dev->flags))) {
2182                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2183                         else
2184                                 rcw += 2*disks;
2185                 }
2186         }
2187         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2188                 (unsigned long long)sh->sector, rmw, rcw);
2189         set_bit(STRIPE_HANDLE, &sh->state);
2190         if (rmw < rcw && rmw > 0)
2191                 /* prefer read-modify-write, but need to get some data */
2192                 for (i = disks; i--; ) {
2193                         struct r5dev *dev = &sh->dev[i];
2194                         if ((dev->towrite || i == sh->pd_idx) &&
2195                             !test_bit(R5_LOCKED, &dev->flags) &&
2196                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2197                             test_bit(R5_Wantcompute, &dev->flags)) &&
2198                             test_bit(R5_Insync, &dev->flags)) {
2199                                 if (
2200                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2201                                         pr_debug("Read_old block "
2202                                                 "%d for r-m-w\n", i);
2203                                         set_bit(R5_LOCKED, &dev->flags);
2204                                         set_bit(R5_Wantread, &dev->flags);
2205                                         s->locked++;
2206                                 } else {
2207                                         set_bit(STRIPE_DELAYED, &sh->state);
2208                                         set_bit(STRIPE_HANDLE, &sh->state);
2209                                 }
2210                         }
2211                 }
2212         if (rcw <= rmw && rcw > 0)
2213                 /* want reconstruct write, but need to get some data */
2214                 for (i = disks; i--; ) {
2215                         struct r5dev *dev = &sh->dev[i];
2216                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2217                             i != sh->pd_idx &&
2218                             !test_bit(R5_LOCKED, &dev->flags) &&
2219                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2220                             test_bit(R5_Wantcompute, &dev->flags)) &&
2221                             test_bit(R5_Insync, &dev->flags)) {
2222                                 if (
2223                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2224                                         pr_debug("Read_old block "
2225                                                 "%d for Reconstruct\n", i);
2226                                         set_bit(R5_LOCKED, &dev->flags);
2227                                         set_bit(R5_Wantread, &dev->flags);
2228                                         s->locked++;
2229                                 } else {
2230                                         set_bit(STRIPE_DELAYED, &sh->state);
2231                                         set_bit(STRIPE_HANDLE, &sh->state);
2232                                 }
2233                         }
2234                 }
2235         /* now if nothing is locked, and if we have enough data,
2236          * we can start a write request
2237          */
2238         /* since handle_stripe can be called at any time we need to handle the
2239          * case where a compute block operation has been submitted and then a
2240          * subsequent call wants to start a write request.  raid5_run_ops only
2241          * handles the case where compute block and postxor are requested
2242          * simultaneously.  If this is not the case then new writes need to be
2243          * held off until the compute completes.
2244          */
2245         if ((s->req_compute ||
2246             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2247                 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2248                 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2249                 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2250 }
2251
2252 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2253                 struct stripe_head *sh, struct stripe_head_state *s,
2254                 struct r6_state *r6s, int disks)
2255 {
2256         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2257         int qd_idx = r6s->qd_idx;
2258         for (i = disks; i--; ) {
2259                 struct r5dev *dev = &sh->dev[i];
2260                 /* Would I have to read this buffer for reconstruct_write */
2261                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2262                     && i != pd_idx && i != qd_idx
2263                     && (!test_bit(R5_LOCKED, &dev->flags)
2264                             ) &&
2265                     !test_bit(R5_UPTODATE, &dev->flags)) {
2266                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2267                         else {
2268                                 pr_debug("raid6: must_compute: "
2269                                         "disk %d flags=%#lx\n", i, dev->flags);
2270                                 must_compute++;
2271                         }
2272                 }
2273         }
2274         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2275                (unsigned long long)sh->sector, rcw, must_compute);
2276         set_bit(STRIPE_HANDLE, &sh->state);
2277
2278         if (rcw > 0)
2279                 /* want reconstruct write, but need to get some data */
2280                 for (i = disks; i--; ) {
2281                         struct r5dev *dev = &sh->dev[i];
2282                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2283                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2284                             && !test_bit(R5_LOCKED, &dev->flags) &&
2285                             !test_bit(R5_UPTODATE, &dev->flags) &&
2286                             test_bit(R5_Insync, &dev->flags)) {
2287                                 if (
2288                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2289                                         pr_debug("Read_old stripe %llu "
2290                                                 "block %d for Reconstruct\n",
2291                                              (unsigned long long)sh->sector, i);
2292                                         set_bit(R5_LOCKED, &dev->flags);
2293                                         set_bit(R5_Wantread, &dev->flags);
2294                                         s->locked++;
2295                                 } else {
2296                                         pr_debug("Request delayed stripe %llu "
2297                                                 "block %d for Reconstruct\n",
2298                                              (unsigned long long)sh->sector, i);
2299                                         set_bit(STRIPE_DELAYED, &sh->state);
2300                                         set_bit(STRIPE_HANDLE, &sh->state);
2301                                 }
2302                         }
2303                 }
2304         /* now if nothing is locked, and if we have enough data, we can start a
2305          * write request
2306          */
2307         if (s->locked == 0 && rcw == 0 &&
2308             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2309                 if (must_compute > 0) {
2310                         /* We have failed blocks and need to compute them */
2311                         switch (s->failed) {
2312                         case 0:
2313                                 BUG();
2314                         case 1:
2315                                 compute_block_1(sh, r6s->failed_num[0], 0);
2316                                 break;
2317                         case 2:
2318                                 compute_block_2(sh, r6s->failed_num[0],
2319                                                 r6s->failed_num[1]);
2320                                 break;
2321                         default: /* This request should have been failed? */
2322                                 BUG();
2323                         }
2324                 }
2325
2326                 pr_debug("Computing parity for stripe %llu\n",
2327                         (unsigned long long)sh->sector);
2328                 compute_parity6(sh, RECONSTRUCT_WRITE);
2329                 /* now every locked buffer is ready to be written */
2330                 for (i = disks; i--; )
2331                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2332                                 pr_debug("Writing stripe %llu block %d\n",
2333                                        (unsigned long long)sh->sector, i);
2334                                 s->locked++;
2335                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2336                         }
2337                 if (s->locked == disks)
2338                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2339                                 atomic_inc(&conf->pending_full_writes);
2340                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2341                 set_bit(STRIPE_INSYNC, &sh->state);
2342
2343                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2344                         atomic_dec(&conf->preread_active_stripes);
2345                         if (atomic_read(&conf->preread_active_stripes) <
2346                             IO_THRESHOLD)
2347                                 md_wakeup_thread(conf->mddev->thread);
2348                 }
2349         }
2350 }
2351
2352 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2353                                 struct stripe_head_state *s, int disks)
2354 {
2355         int canceled_check = 0;
2356
2357         set_bit(STRIPE_HANDLE, &sh->state);
2358
2359         /* complete a check operation */
2360         if (test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2361                 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2362                 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2363                 if (s->failed == 0) {
2364                         if (sh->ops.zero_sum_result == 0)
2365                                 /* parity is correct (on disc,
2366                                  * not in buffer any more)
2367                                  */
2368                                 set_bit(STRIPE_INSYNC, &sh->state);
2369                         else {
2370                                 conf->mddev->resync_mismatches +=
2371                                         STRIPE_SECTORS;
2372                                 if (test_bit(
2373                                      MD_RECOVERY_CHECK, &conf->mddev->recovery))
2374                                         /* don't try to repair!! */
2375                                         set_bit(STRIPE_INSYNC, &sh->state);
2376                                 else {
2377                                         set_bit(STRIPE_OP_COMPUTE_BLK,
2378                                                 &sh->ops.pending);
2379                                         set_bit(STRIPE_OP_MOD_REPAIR_PD,
2380                                                 &sh->ops.pending);
2381                                         set_bit(R5_Wantcompute,
2382                                                 &sh->dev[sh->pd_idx].flags);
2383                                         sh->ops.target = sh->pd_idx;
2384                                         sh->ops.count++;
2385                                         s->uptodate++;
2386                                 }
2387                         }
2388                 } else
2389                         canceled_check = 1; /* STRIPE_INSYNC is not set */
2390         }
2391
2392         /* start a new check operation if there are no failures, the stripe is
2393          * not insync, and a repair is not in flight
2394          */
2395         if (s->failed == 0 &&
2396             !test_bit(STRIPE_INSYNC, &sh->state) &&
2397             !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2398                 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2399                         BUG_ON(s->uptodate != disks);
2400                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2401                         sh->ops.count++;
2402                         s->uptodate--;
2403                 }
2404         }
2405
2406         /* check if we can clear a parity disk reconstruct */
2407         if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2408             test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2409
2410                 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2411                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2412                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2413                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2414         }
2415
2416
2417         /* Wait for check parity and compute block operations to complete
2418          * before write-back.  If a failure occurred while the check operation
2419          * was in flight we need to cycle this stripe through handle_stripe
2420          * since the parity block may not be uptodate
2421          */
2422         if (!canceled_check && !test_bit(STRIPE_INSYNC, &sh->state) &&
2423             !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2424             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2425                 struct r5dev *dev;
2426                 /* either failed parity check, or recovery is happening */
2427                 if (s->failed == 0)
2428                         s->failed_num = sh->pd_idx;
2429                 dev = &sh->dev[s->failed_num];
2430                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2431                 BUG_ON(s->uptodate != disks);
2432
2433                 set_bit(R5_LOCKED, &dev->flags);
2434                 set_bit(R5_Wantwrite, &dev->flags);
2435
2436                 clear_bit(STRIPE_DEGRADED, &sh->state);
2437                 s->locked++;
2438                 set_bit(STRIPE_INSYNC, &sh->state);
2439         }
2440 }
2441
2442
2443 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2444                                 struct stripe_head_state *s,
2445                                 struct r6_state *r6s, struct page *tmp_page,
2446                                 int disks)
2447 {
2448         int update_p = 0, update_q = 0;
2449         struct r5dev *dev;
2450         int pd_idx = sh->pd_idx;
2451         int qd_idx = r6s->qd_idx;
2452
2453         set_bit(STRIPE_HANDLE, &sh->state);
2454
2455         BUG_ON(s->failed > 2);
2456         BUG_ON(s->uptodate < disks);
2457         /* Want to check and possibly repair P and Q.
2458          * However there could be one 'failed' device, in which
2459          * case we can only check one of them, possibly using the
2460          * other to generate missing data
2461          */
2462
2463         /* If !tmp_page, we cannot do the calculations,
2464          * but as we have set STRIPE_HANDLE, we will soon be called
2465          * by stripe_handle with a tmp_page - just wait until then.
2466          */
2467         if (tmp_page) {
2468                 if (s->failed == r6s->q_failed) {
2469                         /* The only possible failed device holds 'Q', so it
2470                          * makes sense to check P (If anything else were failed,
2471                          * we would have used P to recreate it).
2472                          */
2473                         compute_block_1(sh, pd_idx, 1);
2474                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2475                                 compute_block_1(sh, pd_idx, 0);
2476                                 update_p = 1;
2477                         }
2478                 }
2479                 if (!r6s->q_failed && s->failed < 2) {
2480                         /* q is not failed, and we didn't use it to generate
2481                          * anything, so it makes sense to check it
2482                          */
2483                         memcpy(page_address(tmp_page),
2484                                page_address(sh->dev[qd_idx].page),
2485                                STRIPE_SIZE);
2486                         compute_parity6(sh, UPDATE_PARITY);
2487                         if (memcmp(page_address(tmp_page),
2488                                    page_address(sh->dev[qd_idx].page),
2489                                    STRIPE_SIZE) != 0) {
2490                                 clear_bit(STRIPE_INSYNC, &sh->state);
2491                                 update_q = 1;
2492                         }
2493                 }
2494                 if (update_p || update_q) {
2495                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2496                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2497                                 /* don't try to repair!! */
2498                                 update_p = update_q = 0;
2499                 }
2500
2501                 /* now write out any block on a failed drive,
2502                  * or P or Q if they need it
2503                  */
2504
2505                 if (s->failed == 2) {
2506                         dev = &sh->dev[r6s->failed_num[1]];
2507                         s->locked++;
2508                         set_bit(R5_LOCKED, &dev->flags);
2509                         set_bit(R5_Wantwrite, &dev->flags);
2510                 }
2511                 if (s->failed >= 1) {
2512                         dev = &sh->dev[r6s->failed_num[0]];
2513                         s->locked++;
2514                         set_bit(R5_LOCKED, &dev->flags);
2515                         set_bit(R5_Wantwrite, &dev->flags);
2516                 }
2517
2518                 if (update_p) {
2519                         dev = &sh->dev[pd_idx];
2520                         s->locked++;
2521                         set_bit(R5_LOCKED, &dev->flags);
2522                         set_bit(R5_Wantwrite, &dev->flags);
2523                 }
2524                 if (update_q) {
2525                         dev = &sh->dev[qd_idx];
2526                         s->locked++;
2527                         set_bit(R5_LOCKED, &dev->flags);
2528                         set_bit(R5_Wantwrite, &dev->flags);
2529                 }
2530                 clear_bit(STRIPE_DEGRADED, &sh->state);
2531
2532                 set_bit(STRIPE_INSYNC, &sh->state);
2533         }
2534 }
2535
2536 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2537                                 struct r6_state *r6s)
2538 {
2539         int i;
2540
2541         /* We have read all the blocks in this stripe and now we need to
2542          * copy some of them into a target stripe for expand.
2543          */
2544         struct dma_async_tx_descriptor *tx = NULL;
2545         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2546         for (i = 0; i < sh->disks; i++)
2547                 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2548                         int dd_idx, pd_idx, j;
2549                         struct stripe_head *sh2;
2550
2551                         sector_t bn = compute_blocknr(sh, i);
2552                         sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2553                                                 conf->raid_disks -
2554                                                 conf->max_degraded, &dd_idx,
2555                                                 &pd_idx, conf);
2556                         sh2 = get_active_stripe(conf, s, conf->raid_disks,
2557                                                 pd_idx, 1);
2558                         if (sh2 == NULL)
2559                                 /* so far only the early blocks of this stripe
2560                                  * have been requested.  When later blocks
2561                                  * get requested, we will try again
2562                                  */
2563                                 continue;
2564                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2565                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2566                                 /* must have already done this block */
2567                                 release_stripe(sh2);
2568                                 continue;
2569                         }
2570
2571                         /* place all the copies on one channel */
2572                         tx = async_memcpy(sh2->dev[dd_idx].page,
2573                                 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2574                                 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2575
2576                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2577                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2578                         for (j = 0; j < conf->raid_disks; j++)
2579                                 if (j != sh2->pd_idx &&
2580                                     (!r6s || j != raid6_next_disk(sh2->pd_idx,
2581                                                                  sh2->disks)) &&
2582                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2583                                         break;
2584                         if (j == conf->raid_disks) {
2585                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2586                                 set_bit(STRIPE_HANDLE, &sh2->state);
2587                         }
2588                         release_stripe(sh2);
2589
2590                 }
2591         /* done submitting copies, wait for them to complete */
2592         if (tx) {
2593                 async_tx_ack(tx);
2594                 dma_wait_for_async_tx(tx);
2595         }
2596 }
2597
2598
2599 /*
2600  * handle_stripe - do things to a stripe.
2601  *
2602  * We lock the stripe and then examine the state of various bits
2603  * to see what needs to be done.
2604  * Possible results:
2605  *    return some read request which now have data
2606  *    return some write requests which are safely on disc
2607  *    schedule a read on some buffers
2608  *    schedule a write of some buffers
2609  *    return confirmation of parity correctness
2610  *
2611  * buffers are taken off read_list or write_list, and bh_cache buffers
2612  * get BH_Lock set before the stripe lock is released.
2613  *
2614  */
2615
2616 static void handle_stripe5(struct stripe_head *sh)
2617 {
2618         raid5_conf_t *conf = sh->raid_conf;
2619         int disks = sh->disks, i;
2620         struct bio *return_bi = NULL;
2621         struct stripe_head_state s;
2622         struct r5dev *dev;
2623         unsigned long pending = 0;
2624         mdk_rdev_t *blocked_rdev = NULL;
2625         int prexor;
2626
2627         memset(&s, 0, sizeof(s));
2628         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2629                 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2630                 atomic_read(&sh->count), sh->pd_idx,
2631                 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2632
2633         spin_lock(&sh->lock);
2634         clear_bit(STRIPE_HANDLE, &sh->state);
2635         clear_bit(STRIPE_DELAYED, &sh->state);
2636
2637         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2638         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2639         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2640         /* Now to look around and see what can be done */
2641
2642         /* clean-up completed biofill operations */
2643         if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2644                 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2645                 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2646                 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2647         }
2648
2649         rcu_read_lock();
2650         for (i=disks; i--; ) {
2651                 mdk_rdev_t *rdev;
2652                 struct r5dev *dev = &sh->dev[i];
2653                 clear_bit(R5_Insync, &dev->flags);
2654
2655                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2656                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2657                         dev->towrite, dev->written);
2658
2659                 /* maybe we can request a biofill operation
2660                  *
2661                  * new wantfill requests are only permitted while
2662                  * STRIPE_OP_BIOFILL is clear
2663                  */
2664                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2665                         !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2666                         set_bit(R5_Wantfill, &dev->flags);
2667
2668                 /* now count some things */
2669                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2670                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2671                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2672
2673                 if (test_bit(R5_Wantfill, &dev->flags))
2674                         s.to_fill++;
2675                 else if (dev->toread)
2676                         s.to_read++;
2677                 if (dev->towrite) {
2678                         s.to_write++;
2679                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2680                                 s.non_overwrite++;
2681                 }
2682                 if (dev->written)
2683                         s.written++;
2684                 rdev = rcu_dereference(conf->disks[i].rdev);
2685                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2686                         blocked_rdev = rdev;
2687                         atomic_inc(&rdev->nr_pending);
2688                         break;
2689                 }
2690                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2691                         /* The ReadError flag will just be confusing now */
2692                         clear_bit(R5_ReadError, &dev->flags);
2693                         clear_bit(R5_ReWrite, &dev->flags);
2694                 }
2695                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2696                     || test_bit(R5_ReadError, &dev->flags)) {
2697                         s.failed++;
2698                         s.failed_num = i;
2699                 } else
2700                         set_bit(R5_Insync, &dev->flags);
2701         }
2702         rcu_read_unlock();
2703
2704         if (unlikely(blocked_rdev)) {
2705                 set_bit(STRIPE_HANDLE, &sh->state);
2706                 goto unlock;
2707         }
2708
2709         if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2710                 sh->ops.count++;
2711
2712         pr_debug("locked=%d uptodate=%d to_read=%d"
2713                 " to_write=%d failed=%d failed_num=%d\n",
2714                 s.locked, s.uptodate, s.to_read, s.to_write,
2715                 s.failed, s.failed_num);
2716         /* check if the array has lost two devices and, if so, some requests might
2717          * need to be failed
2718          */
2719         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2720                 handle_requests_to_failed_array(conf, sh, &s, disks,
2721                                                 &return_bi);
2722         if (s.failed > 1 && s.syncing) {
2723                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2724                 clear_bit(STRIPE_SYNCING, &sh->state);
2725                 s.syncing = 0;
2726         }
2727
2728         /* might be able to return some write requests if the parity block
2729          * is safe, or on a failed drive
2730          */
2731         dev = &sh->dev[sh->pd_idx];
2732         if ( s.written &&
2733              ((test_bit(R5_Insync, &dev->flags) &&
2734                !test_bit(R5_LOCKED, &dev->flags) &&
2735                test_bit(R5_UPTODATE, &dev->flags)) ||
2736                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2737                 handle_completed_write_requests(conf, sh, disks, &return_bi);
2738
2739         /* Now we might consider reading some blocks, either to check/generate
2740          * parity, or to satisfy requests
2741          * or to load a block that is being partially written.
2742          */
2743         if (s.to_read || s.non_overwrite ||
2744             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2745             test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2746                 handle_issuing_new_read_requests5(sh, &s, disks);
2747
2748         /* Now we check to see if any write operations have recently
2749          * completed
2750          */
2751
2752         /* leave prexor set until postxor is done, allows us to distinguish
2753          * a rmw from a rcw during biodrain
2754          */
2755         prexor = 0;
2756         if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2757                 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2758
2759                 prexor = 1;
2760                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2761                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2762                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2763
2764                 for (i = disks; i--; )
2765                         clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2766         }
2767
2768         /* if only POSTXOR is set then this is an 'expand' postxor */
2769         if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2770                 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2771
2772                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2773                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2774                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2775
2776                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2777                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2778                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2779
2780                 /* All the 'written' buffers and the parity block are ready to
2781                  * be written back to disk
2782                  */
2783                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2784                 for (i = disks; i--; ) {
2785                         dev = &sh->dev[i];
2786                         if (test_bit(R5_LOCKED, &dev->flags) &&
2787                                 (i == sh->pd_idx || dev->written)) {
2788                                 pr_debug("Writing block %d\n", i);
2789                                 set_bit(R5_Wantwrite, &dev->flags);
2790                                 if (prexor)
2791                                         continue;
2792                                 if (!test_bit(R5_Insync, &dev->flags) ||
2793                                     (i == sh->pd_idx && s.failed == 0))
2794                                         set_bit(STRIPE_INSYNC, &sh->state);
2795                         }
2796                 }
2797                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2798                         atomic_dec(&conf->preread_active_stripes);
2799                         if (atomic_read(&conf->preread_active_stripes) <
2800                                 IO_THRESHOLD)
2801                                 md_wakeup_thread(conf->mddev->thread);
2802                 }
2803         }
2804
2805         /* Now to consider new write requests and what else, if anything
2806          * should be read.  We do not handle new writes when:
2807          * 1/ A 'write' operation (copy+xor) is already in flight.
2808          * 2/ A 'check' operation is in flight, as it may clobber the parity
2809          *    block.
2810          */
2811         if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2812                           !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2813                 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2814
2815         /* maybe we need to check and possibly fix the parity for this stripe
2816          * Any reads will already have been scheduled, so we just see if enough
2817          * data is available.  The parity check is held off while parity
2818          * dependent operations are in flight.
2819          */
2820         if ((s.syncing && s.locked == 0 &&
2821              !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2822              !test_bit(STRIPE_INSYNC, &sh->state)) ||
2823               test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2824               test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2825                 handle_parity_checks5(conf, sh, &s, disks);
2826
2827         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2828                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2829                 clear_bit(STRIPE_SYNCING, &sh->state);
2830         }
2831
2832         /* If the failed drive is just a ReadError, then we might need to progress
2833          * the repair/check process
2834          */
2835         if (s.failed == 1 && !conf->mddev->ro &&
2836             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2837             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2838             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2839                 ) {
2840                 dev = &sh->dev[s.failed_num];
2841                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2842                         set_bit(R5_Wantwrite, &dev->flags);
2843                         set_bit(R5_ReWrite, &dev->flags);
2844                         set_bit(R5_LOCKED, &dev->flags);
2845                         s.locked++;
2846                 } else {
2847                         /* let's read it back */
2848                         set_bit(R5_Wantread, &dev->flags);
2849                         set_bit(R5_LOCKED, &dev->flags);
2850                         s.locked++;
2851                 }
2852         }
2853
2854         /* Finish postxor operations initiated by the expansion
2855          * process
2856          */
2857         if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2858                 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2859
2860                 clear_bit(STRIPE_EXPANDING, &sh->state);
2861
2862                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2863                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2864                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2865
2866                 for (i = conf->raid_disks; i--; )
2867                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2868                         set_bit(R5_LOCKED, &dev->flags);
2869                         s.locked++;
2870         }
2871
2872         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2873                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2874                 /* Need to write out all blocks after computing parity */
2875                 sh->disks = conf->raid_disks;
2876                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2877                         conf->raid_disks);
2878                 s.locked += handle_write_operations5(sh, 1, 1);
2879         } else if (s.expanded &&
2880                    s.locked == 0 &&
2881                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2882                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2883                 atomic_dec(&conf->reshape_stripes);
2884                 wake_up(&conf->wait_for_overlap);
2885                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2886         }
2887
2888         if (s.expanding && s.locked == 0 &&
2889             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2890                 handle_stripe_expansion(conf, sh, NULL);
2891
2892         if (sh->ops.count)
2893                 pending = get_stripe_work(sh);
2894
2895  unlock:
2896         spin_unlock(&sh->lock);
2897
2898         /* wait for this device to become unblocked */
2899         if (unlikely(blocked_rdev))
2900                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2901
2902         if (pending)
2903                 raid5_run_ops(sh, pending);
2904
2905         ops_run_io(sh);
2906
2907         return_io(return_bi);
2908
2909 }
2910
2911 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2912 {
2913         raid6_conf_t *conf = sh->raid_conf;
2914         int disks = sh->disks;
2915         struct bio *return_bi = NULL;
2916         int i, pd_idx = sh->pd_idx;
2917         struct stripe_head_state s;
2918         struct r6_state r6s;
2919         struct r5dev *dev, *pdev, *qdev;
2920         mdk_rdev_t *blocked_rdev = NULL;
2921
2922         r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2923         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2924                 "pd_idx=%d, qd_idx=%d\n",
2925                (unsigned long long)sh->sector, sh->state,
2926                atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2927         memset(&s, 0, sizeof(s));
2928
2929         spin_lock(&sh->lock);
2930         clear_bit(STRIPE_HANDLE, &sh->state);
2931         clear_bit(STRIPE_DELAYED, &sh->state);
2932
2933         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2934         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2935         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2936         /* Now to look around and see what can be done */
2937
2938         rcu_read_lock();
2939         for (i=disks; i--; ) {
2940                 mdk_rdev_t *rdev;
2941                 dev = &sh->dev[i];
2942                 clear_bit(R5_Insync, &dev->flags);
2943
2944                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2945                         i, dev->flags, dev->toread, dev->towrite, dev->written);
2946                 /* maybe we can reply to a read */
2947                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2948                         struct bio *rbi, *rbi2;
2949                         pr_debug("Return read for disc %d\n", i);
2950                         spin_lock_irq(&conf->device_lock);
2951                         rbi = dev->toread;
2952                         dev->toread = NULL;
2953                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
2954                                 wake_up(&conf->wait_for_overlap);
2955                         spin_unlock_irq(&conf->device_lock);
2956                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2957                                 copy_data(0, rbi, dev->page, dev->sector);
2958                                 rbi2 = r5_next_bio(rbi, dev->sector);
2959                                 spin_lock_irq(&conf->device_lock);
2960                                 if (--rbi->bi_phys_segments == 0) {
2961                                         rbi->bi_next = return_bi;
2962                                         return_bi = rbi;
2963                                 }
2964                                 spin_unlock_irq(&conf->device_lock);
2965                                 rbi = rbi2;
2966                         }
2967                 }
2968
2969                 /* now count some things */
2970                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2971                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2972
2973
2974                 if (dev->toread)
2975                         s.to_read++;
2976                 if (dev->towrite) {
2977                         s.to_write++;
2978                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2979                                 s.non_overwrite++;
2980                 }
2981                 if (dev->written)
2982                         s.written++;
2983                 rdev = rcu_dereference(conf->disks[i].rdev);
2984                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2985                         blocked_rdev = rdev;
2986                         atomic_inc(&rdev->nr_pending);
2987                         break;
2988                 }
2989                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2990                         /* The ReadError flag will just be confusing now */
2991                         clear_bit(R5_ReadError, &dev->flags);
2992                         clear_bit(R5_ReWrite, &dev->flags);
2993                 }
2994                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2995                     || test_bit(R5_ReadError, &dev->flags)) {
2996                         if (s.failed < 2)
2997                                 r6s.failed_num[s.failed] = i;
2998                         s.failed++;
2999                 } else
3000                         set_bit(R5_Insync, &dev->flags);
3001         }
3002         rcu_read_unlock();
3003
3004         if (unlikely(blocked_rdev)) {
3005                 set_bit(STRIPE_HANDLE, &sh->state);
3006                 goto unlock;
3007         }
3008         pr_debug("locked=%d uptodate=%d to_read=%d"
3009                " to_write=%d failed=%d failed_num=%d,%d\n",
3010                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3011                r6s.failed_num[0], r6s.failed_num[1]);
3012         /* check if the array has lost >2 devices and, if so, some requests
3013          * might need to be failed
3014          */
3015         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3016                 handle_requests_to_failed_array(conf, sh, &s, disks,
3017                                                 &return_bi);
3018         if (s.failed > 2 && s.syncing) {
3019                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3020                 clear_bit(STRIPE_SYNCING, &sh->state);
3021                 s.syncing = 0;
3022         }
3023
3024         /*
3025          * might be able to return some write requests if the parity blocks
3026          * are safe, or on a failed drive
3027          */
3028         pdev = &sh->dev[pd_idx];
3029         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3030                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3031         qdev = &sh->dev[r6s.qd_idx];
3032         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3033                 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3034
3035         if ( s.written &&
3036              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3037                              && !test_bit(R5_LOCKED, &pdev->flags)
3038                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3039              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3040                              && !test_bit(R5_LOCKED, &qdev->flags)
3041                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3042                 handle_completed_write_requests(conf, sh, disks, &return_bi);
3043
3044         /* Now we might consider reading some blocks, either to check/generate
3045          * parity, or to satisfy requests
3046          * or to load a block that is being partially written.
3047          */
3048         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3049             (s.syncing && (s.uptodate < disks)) || s.expanding)
3050                 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3051
3052         /* now to consider writing and what else, if anything should be read */
3053         if (s.to_write)
3054                 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3055
3056         /* maybe we need to check and possibly fix the parity for this stripe
3057          * Any reads will already have been scheduled, so we just see if enough
3058          * data is available
3059          */
3060         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3061                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3062
3063         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3064                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3065                 clear_bit(STRIPE_SYNCING, &sh->state);
3066         }
3067
3068         /* If the failed drives are just a ReadError, then we might need
3069          * to progress the repair/check process
3070          */
3071         if (s.failed <= 2 && !conf->mddev->ro)
3072                 for (i = 0; i < s.failed; i++) {
3073                         dev = &sh->dev[r6s.failed_num[i]];
3074                         if (test_bit(R5_ReadError, &dev->flags)
3075                             && !test_bit(R5_LOCKED, &dev->flags)
3076                             && test_bit(R5_UPTODATE, &dev->flags)
3077                                 ) {
3078                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3079                                         set_bit(R5_Wantwrite, &dev->flags);
3080                                         set_bit(R5_ReWrite, &dev->flags);
3081                                         set_bit(R5_LOCKED, &dev->flags);
3082                                 } else {
3083                                         /* let's read it back */
3084                                         set_bit(R5_Wantread, &dev->flags);
3085                                         set_bit(R5_LOCKED, &dev->flags);
3086                                 }
3087                         }
3088                 }
3089
3090         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3091                 /* Need to write out all blocks after computing P&Q */
3092                 sh->disks = conf->raid_disks;
3093                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3094                                              conf->raid_disks);
3095                 compute_parity6(sh, RECONSTRUCT_WRITE);
3096                 for (i = conf->raid_disks ; i-- ;  ) {
3097                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3098                         s.locked++;
3099                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3100                 }
3101                 clear_bit(STRIPE_EXPANDING, &sh->state);
3102         } else if (s.expanded) {
3103                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3104                 atomic_dec(&conf->reshape_stripes);
3105                 wake_up(&conf->wait_for_overlap);
3106                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3107         }
3108
3109         if (s.expanding && s.locked == 0 &&
3110             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
3111                 handle_stripe_expansion(conf, sh, &r6s);
3112
3113  unlock:
3114         spin_unlock(&sh->lock);
3115
3116         /* wait for this device to become unblocked */
3117         if (unlikely(blocked_rdev))
3118                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3119
3120         return_io(return_bi);
3121
3122         for (i=disks; i-- ;) {
3123                 int rw;
3124                 struct bio *bi;
3125                 mdk_rdev_t *rdev;
3126                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3127                         rw = WRITE;
3128                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3129                         rw = READ;
3130                 else
3131                         continue;
3132
3133                 set_bit(STRIPE_IO_STARTED, &sh->state);
3134
3135                 bi = &sh->dev[i].req;
3136
3137                 bi->bi_rw = rw;
3138                 if (rw == WRITE)
3139                         bi->bi_end_io = raid5_end_write_request;
3140                 else
3141                         bi->bi_end_io = raid5_end_read_request;
3142
3143                 rcu_read_lock();
3144                 rdev = rcu_dereference(conf->disks[i].rdev);
3145                 if (rdev && test_bit(Faulty, &rdev->flags))
3146                         rdev = NULL;
3147                 if (rdev)
3148                         atomic_inc(&rdev->nr_pending);
3149                 rcu_read_unlock();
3150
3151                 if (rdev) {
3152                         if (s.syncing || s.expanding || s.expanded)
3153                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3154
3155                         bi->bi_bdev = rdev->bdev;
3156                         pr_debug("for %llu schedule op %ld on disc %d\n",
3157                                 (unsigned long long)sh->sector, bi->bi_rw, i);
3158                         atomic_inc(&sh->count);
3159                         bi->bi_sector = sh->sector + rdev->data_offset;
3160                         bi->bi_flags = 1 << BIO_UPTODATE;
3161                         bi->bi_vcnt = 1;
3162                         bi->bi_max_vecs = 1;
3163                         bi->bi_idx = 0;
3164                         bi->bi_io_vec = &sh->dev[i].vec;
3165                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3166                         bi->bi_io_vec[0].bv_offset = 0;
3167                         bi->bi_size = STRIPE_SIZE;
3168                         bi->bi_next = NULL;
3169                         if (rw == WRITE &&
3170                             test_bit(R5_ReWrite, &sh->dev[i].flags))
3171                                 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3172                         generic_make_request(bi);
3173                 } else {
3174                         if (rw == WRITE)
3175                                 set_bit(STRIPE_DEGRADED, &sh->state);
3176                         pr_debug("skip op %ld on disc %d for sector %llu\n",
3177                                 bi->bi_rw, i, (unsigned long long)sh->sector);
3178                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
3179                         set_bit(STRIPE_HANDLE, &sh->state);
3180                 }
3181         }
3182 }
3183
3184 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3185 {
3186         if (sh->raid_conf->level == 6)
3187                 handle_stripe6(sh, tmp_page);
3188         else
3189                 handle_stripe5(sh);
3190 }
3191
3192
3193
3194 static void raid5_activate_delayed(raid5_conf_t *conf)
3195 {
3196         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3197                 while (!list_empty(&conf->delayed_list)) {
3198                         struct list_head *l = conf->delayed_list.next;
3199                         struct stripe_head *sh;
3200                         sh = list_entry(l, struct stripe_head, lru);
3201                         list_del_init(l);
3202                         clear_bit(STRIPE_DELAYED, &sh->state);
3203                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3204                                 atomic_inc(&conf->preread_active_stripes);
3205                         list_add_tail(&sh->lru, &conf->hold_list);
3206                 }
3207         } else
3208                 blk_plug_device(conf->mddev->queue);
3209 }
3210
3211 static void activate_bit_delay(raid5_conf_t *conf)
3212 {
3213         /* device_lock is held */
3214         struct list_head head;
3215         list_add(&head, &conf->bitmap_list);
3216         list_del_init(&conf->bitmap_list);
3217         while (!list_empty(&head)) {
3218                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3219                 list_del_init(&sh->lru);
3220                 atomic_inc(&sh->count);
3221                 __release_stripe(conf, sh);
3222         }
3223 }
3224
3225 static void unplug_slaves(mddev_t *mddev)
3226 {
3227         raid5_conf_t *conf = mddev_to_conf(mddev);
3228         int i;
3229
3230         rcu_read_lock();
3231         for (i=0; i<mddev->raid_disks; i++) {
3232                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3233                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3234                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3235
3236                         atomic_inc(&rdev->nr_pending);
3237                         rcu_read_unlock();
3238
3239                         blk_unplug(r_queue);
3240
3241                         rdev_dec_pending(rdev, mddev);
3242                         rcu_read_lock();
3243                 }
3244         }
3245         rcu_read_unlock();
3246 }
3247
3248 static void raid5_unplug_device(struct request_queue *q)
3249 {
3250         mddev_t *mddev = q->queuedata;
3251         raid5_conf_t *conf = mddev_to_conf(mddev);
3252         unsigned long flags;
3253
3254         spin_lock_irqsave(&conf->device_lock, flags);
3255
3256         if (blk_remove_plug(q)) {
3257                 conf->seq_flush++;
3258                 raid5_activate_delayed(conf);
3259         }
3260         md_wakeup_thread(mddev->thread);
3261
3262         spin_unlock_irqrestore(&conf->device_lock, flags);
3263
3264         unplug_slaves(mddev);
3265 }
3266
3267 static int raid5_congested(void *data, int bits)
3268 {
3269         mddev_t *mddev = data;
3270         raid5_conf_t *conf = mddev_to_conf(mddev);
3271
3272         /* No difference between reads and writes.  Just check
3273          * how busy the stripe_cache is
3274          */
3275         if (conf->inactive_blocked)
3276                 return 1;
3277         if (conf->quiesce)
3278                 return 1;
3279         if (list_empty_careful(&conf->inactive_list))
3280                 return 1;
3281
3282         return 0;
3283 }
3284
3285 /* We want read requests to align with chunks where possible,
3286  * but write requests don't need to.
3287  */
3288 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3289 {
3290         mddev_t *mddev = q->queuedata;
3291         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3292         int max;
3293         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3294         unsigned int bio_sectors = bio->bi_size >> 9;
3295
3296         if (bio_data_dir(bio) == WRITE)
3297                 return biovec->bv_len; /* always allow writes to be mergeable */
3298
3299         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3300         if (max < 0) max = 0;
3301         if (max <= biovec->bv_len && bio_sectors == 0)
3302                 return biovec->bv_len;
3303         else
3304                 return max;
3305 }
3306
3307
3308 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3309 {
3310         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3311         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3312         unsigned int bio_sectors = bio->bi_size >> 9;
3313
3314         return  chunk_sectors >=
3315                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3316 }
3317
3318 /*
3319  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3320  *  later sampled by raid5d.
3321  */
3322 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3323 {
3324         unsigned long flags;
3325
3326         spin_lock_irqsave(&conf->device_lock, flags);
3327
3328         bi->bi_next = conf->retry_read_aligned_list;
3329         conf->retry_read_aligned_list = bi;
3330
3331         spin_unlock_irqrestore(&conf->device_lock, flags);
3332         md_wakeup_thread(conf->mddev->thread);
3333 }
3334
3335
3336 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3337 {
3338         struct bio *bi;
3339
3340         bi = conf->retry_read_aligned;
3341         if (bi) {
3342                 conf->retry_read_aligned = NULL;
3343                 return bi;
3344         }
3345         bi = conf->retry_read_aligned_list;
3346         if(bi) {
3347                 conf->retry_read_aligned_list = bi->bi_next;
3348                 bi->bi_next = NULL;
3349                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3350                 bi->bi_hw_segments = 0; /* count of processed stripes */
3351         }
3352
3353         return bi;
3354 }
3355
3356
3357 /*
3358  *  The "raid5_align_endio" should check if the read succeeded and if it
3359  *  did, call bio_endio on the original bio (having bio_put the new bio
3360  *  first).
3361  *  If the read failed..
3362  */
3363 static void raid5_align_endio(struct bio *bi, int error)
3364 {
3365         struct bio* raid_bi  = bi->bi_private;
3366         mddev_t *mddev;
3367         raid5_conf_t *conf;
3368         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3369         mdk_rdev_t *rdev;
3370
3371         bio_put(bi);
3372
3373         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3374         conf = mddev_to_conf(mddev);
3375         rdev = (void*)raid_bi->bi_next;
3376         raid_bi->bi_next = NULL;
3377
3378         rdev_dec_pending(rdev, conf->mddev);
3379
3380         if (!error && uptodate) {
3381                 bio_endio(raid_bi, 0);
3382                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3383                         wake_up(&conf->wait_for_stripe);
3384                 return;
3385         }
3386
3387
3388         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3389
3390         add_bio_to_retry(raid_bi, conf);
3391 }
3392
3393 static int bio_fits_rdev(struct bio *bi)
3394 {
3395         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3396
3397         if ((bi->bi_size>>9) > q->max_sectors)
3398                 return 0;
3399         blk_recount_segments(q, bi);
3400         if (bi->bi_phys_segments > q->max_phys_segments ||
3401             bi->bi_hw_segments > q->max_hw_segments)
3402                 return 0;
3403
3404         if (q->merge_bvec_fn)
3405                 /* it's too hard to apply the merge_bvec_fn at this stage,
3406                  * just just give up
3407                  */
3408                 return 0;
3409
3410         return 1;
3411 }
3412
3413
3414 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3415 {
3416         mddev_t *mddev = q->queuedata;
3417         raid5_conf_t *conf = mddev_to_conf(mddev);
3418         const unsigned int raid_disks = conf->raid_disks;
3419         const unsigned int data_disks = raid_disks - conf->max_degraded;
3420         unsigned int dd_idx, pd_idx;
3421         struct bio* align_bi;
3422         mdk_rdev_t *rdev;
3423
3424         if (!in_chunk_boundary(mddev, raid_bio)) {
3425                 pr_debug("chunk_aligned_read : non aligned\n");
3426                 return 0;
3427         }
3428         /*
3429          * use bio_clone to make a copy of the bio
3430          */
3431         align_bi = bio_clone(raid_bio, GFP_NOIO);
3432         if (!align_bi)
3433                 return 0;
3434         /*
3435          *   set bi_end_io to a new function, and set bi_private to the
3436          *     original bio.
3437          */
3438         align_bi->bi_end_io  = raid5_align_endio;
3439         align_bi->bi_private = raid_bio;
3440         /*
3441          *      compute position
3442          */
3443         align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3444                                         raid_disks,
3445                                         data_disks,
3446                                         &dd_idx,
3447                                         &pd_idx,
3448                                         conf);
3449
3450         rcu_read_lock();
3451         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3452         if (rdev && test_bit(In_sync, &rdev->flags)) {
3453                 atomic_inc(&rdev->nr_pending);
3454                 rcu_read_unlock();
3455                 raid_bio->bi_next = (void*)rdev;
3456                 align_bi->bi_bdev =  rdev->bdev;
3457                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3458                 align_bi->bi_sector += rdev->data_offset;
3459
3460                 if (!bio_fits_rdev(align_bi)) {
3461                         /* too big in some way */
3462                         bio_put(align_bi);
3463                         rdev_dec_pending(rdev, mddev);
3464                         return 0;
3465                 }
3466
3467                 spin_lock_irq(&conf->device_lock);
3468                 wait_event_lock_irq(conf->wait_for_stripe,
3469                                     conf->quiesce == 0,
3470                                     conf->device_lock, /* nothing */);
3471                 atomic_inc(&conf->active_aligned_reads);
3472                 spin_unlock_irq(&conf->device_lock);
3473
3474                 generic_make_request(align_bi);
3475                 return 1;
3476         } else {
3477                 rcu_read_unlock();
3478                 bio_put(align_bi);
3479                 return 0;
3480         }
3481 }
3482
3483 /* __get_priority_stripe - get the next stripe to process
3484  *
3485  * Full stripe writes are allowed to pass preread active stripes up until
3486  * the bypass_threshold is exceeded.  In general the bypass_count
3487  * increments when the handle_list is handled before the hold_list; however, it
3488  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3489  * stripe with in flight i/o.  The bypass_count will be reset when the
3490  * head of the hold_list has changed, i.e. the head was promoted to the
3491  * handle_list.
3492  */
3493 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3494 {
3495         struct stripe_head *sh;
3496
3497         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3498                   __func__,
3499                   list_empty(&conf->handle_list) ? "empty" : "busy",
3500                   list_empty(&conf->hold_list) ? "empty" : "busy",
3501                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3502
3503         if (!list_empty(&conf->handle_list)) {
3504                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3505
3506                 if (list_empty(&conf->hold_list))
3507                         conf->bypass_count = 0;
3508                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3509                         if (conf->hold_list.next == conf->last_hold)
3510                                 conf->bypass_count++;
3511                         else {
3512                                 conf->last_hold = conf->hold_list.next;
3513                                 conf->bypass_count -= conf->bypass_threshold;
3514                                 if (conf->bypass_count < 0)
3515                                         conf->bypass_count = 0;
3516                         }
3517                 }
3518         } else if (!list_empty(&conf->hold_list) &&
3519                    ((conf->bypass_threshold &&
3520                      conf->bypass_count > conf->bypass_threshold) ||
3521                     atomic_read(&conf->pending_full_writes) == 0)) {
3522                 sh = list_entry(conf->hold_list.next,
3523                                 typeof(*sh), lru);
3524                 conf->bypass_count -= conf->bypass_threshold;
3525                 if (conf->bypass_count < 0)
3526                         conf->bypass_count = 0;
3527         } else
3528                 return NULL;
3529
3530         list_del_init(&sh->lru);
3531         atomic_inc(&sh->count);
3532         BUG_ON(atomic_read(&sh->count) != 1);
3533         return sh;
3534 }
3535
3536 static int make_request(struct request_queue *q, struct bio * bi)
3537 {
3538         mddev_t *mddev = q->queuedata;
3539         raid5_conf_t *conf = mddev_to_conf(mddev);
3540         unsigned int dd_idx, pd_idx;
3541         sector_t new_sector;
3542         sector_t logical_sector, last_sector;
3543         struct stripe_head *sh;
3544         const int rw = bio_data_dir(bi);
3545         int remaining;
3546
3547         if (unlikely(bio_barrier(bi))) {
3548                 bio_endio(bi, -EOPNOTSUPP);
3549                 return 0;
3550         }
3551
3552         md_write_start(mddev, bi);
3553
3554         disk_stat_inc(mddev->gendisk, ios[rw]);
3555         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3556
3557         if (rw == READ &&
3558              mddev->reshape_position == MaxSector &&
3559              chunk_aligned_read(q,bi))
3560                 return 0;
3561
3562         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3563         last_sector = bi->bi_sector + (bi->bi_size>>9);
3564         bi->bi_next = NULL;
3565         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3566
3567         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3568                 DEFINE_WAIT(w);
3569                 int disks, data_disks;
3570
3571         retry:
3572                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3573                 if (likely(conf->expand_progress == MaxSector))
3574                         disks = conf->raid_disks;
3575                 else {
3576                         /* spinlock is needed as expand_progress may be
3577                          * 64bit on a 32bit platform, and so it might be
3578                          * possible to see a half-updated value
3579                          * Ofcourse expand_progress could change after
3580                          * the lock is dropped, so once we get a reference
3581                          * to the stripe that we think it is, we will have
3582                          * to check again.
3583                          */
3584                         spin_lock_irq(&conf->device_lock);
3585                         disks = conf->raid_disks;
3586                         if (logical_sector >= conf->expand_progress)
3587                                 disks = conf->previous_raid_disks;
3588                         else {
3589                                 if (logical_sector >= conf->expand_lo) {
3590                                         spin_unlock_irq(&conf->device_lock);
3591                                         schedule();
3592                                         goto retry;
3593                                 }
3594                         }
3595                         spin_unlock_irq(&conf->device_lock);
3596                 }
3597                 data_disks = disks - conf->max_degraded;
3598
3599                 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3600                                                   &dd_idx, &pd_idx, conf);
3601                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3602                         (unsigned long long)new_sector, 
3603                         (unsigned long long)logical_sector);
3604
3605                 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3606                 if (sh) {
3607                         if (unlikely(conf->expand_progress != MaxSector)) {
3608                                 /* expansion might have moved on while waiting for a
3609                                  * stripe, so we must do the range check again.
3610                                  * Expansion could still move past after this
3611                                  * test, but as we are holding a reference to
3612                                  * 'sh', we know that if that happens,
3613                                  *  STRIPE_EXPANDING will get set and the expansion
3614                                  * won't proceed until we finish with the stripe.
3615                                  */
3616                                 int must_retry = 0;
3617                                 spin_lock_irq(&conf->device_lock);
3618                                 if (logical_sector <  conf->expand_progress &&
3619                                     disks == conf->previous_raid_disks)
3620                                         /* mismatch, need to try again */
3621                                         must_retry = 1;
3622                                 spin_unlock_irq(&conf->device_lock);
3623                                 if (must_retry) {
3624                                         release_stripe(sh);
3625                                         goto retry;
3626                                 }
3627                         }
3628                         /* FIXME what if we get a false positive because these
3629                          * are being updated.
3630                          */
3631                         if (logical_sector >= mddev->suspend_lo &&
3632                             logical_sector < mddev->suspend_hi) {
3633                                 release_stripe(sh);
3634                                 schedule();
3635                                 goto retry;
3636                         }
3637
3638                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3639                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3640                                 /* Stripe is busy expanding or
3641                                  * add failed due to overlap.  Flush everything
3642                                  * and wait a while
3643                                  */
3644                                 raid5_unplug_device(mddev->queue);
3645                                 release_stripe(sh);
3646                                 schedule();
3647                                 goto retry;
3648                         }
3649                         finish_wait(&conf->wait_for_overlap, &w);
3650                         set_bit(STRIPE_HANDLE, &sh->state);
3651                         clear_bit(STRIPE_DELAYED, &sh->state);
3652                         release_stripe(sh);
3653                 } else {
3654                         /* cannot get stripe for read-ahead, just give-up */
3655                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3656                         finish_wait(&conf->wait_for_overlap, &w);
3657                         break;
3658                 }
3659                         
3660         }
3661         spin_lock_irq(&conf->device_lock);
3662         remaining = --bi->bi_phys_segments;
3663         spin_unlock_irq(&conf->device_lock);
3664         if (remaining == 0) {
3665
3666                 if ( rw == WRITE )
3667                         md_write_end(mddev);
3668
3669                 bio_endio(bi, 0);
3670         }
3671         return 0;
3672 }
3673
3674 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3675 {
3676         /* reshaping is quite different to recovery/resync so it is
3677          * handled quite separately ... here.
3678          *
3679          * On each call to sync_request, we gather one chunk worth of
3680          * destination stripes and flag them as expanding.
3681          * Then we find all the source stripes and request reads.
3682          * As the reads complete, handle_stripe will copy the data
3683          * into the destination stripe and release that stripe.
3684          */
3685         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3686         struct stripe_head *sh;
3687         int pd_idx;
3688         sector_t first_sector, last_sector;
3689         int raid_disks = conf->previous_raid_disks;
3690         int data_disks = raid_disks - conf->max_degraded;
3691         int new_data_disks = conf->raid_disks - conf->max_degraded;
3692         int i;
3693         int dd_idx;
3694         sector_t writepos, safepos, gap;
3695
3696         if (sector_nr == 0 &&
3697             conf->expand_progress != 0) {
3698                 /* restarting in the middle, skip the initial sectors */
3699                 sector_nr = conf->expand_progress;
3700                 sector_div(sector_nr, new_data_disks);
3701                 *skipped = 1;
3702                 return sector_nr;
3703         }
3704
3705         /* we update the metadata when there is more than 3Meg
3706          * in the block range (that is rather arbitrary, should
3707          * probably be time based) or when the data about to be
3708          * copied would over-write the source of the data at
3709          * the front of the range.
3710          * i.e. one new_stripe forward from expand_progress new_maps
3711          * to after where expand_lo old_maps to
3712          */
3713         writepos = conf->expand_progress +
3714                 conf->chunk_size/512*(new_data_disks);
3715         sector_div(writepos, new_data_disks);
3716         safepos = conf->expand_lo;
3717         sector_div(safepos, data_disks);
3718         gap = conf->expand_progress - conf->expand_lo;
3719
3720         if (writepos >= safepos ||
3721             gap > (new_data_disks)*3000*2 /*3Meg*/) {
3722                 /* Cannot proceed until we've updated the superblock... */
3723                 wait_event(conf->wait_for_overlap,
3724                            atomic_read(&conf->reshape_stripes)==0);
3725                 mddev->reshape_position = conf->expand_progress;
3726                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3727                 md_wakeup_thread(mddev->thread);
3728                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3729                            kthread_should_stop());
3730                 spin_lock_irq(&conf->device_lock);
3731                 conf->expand_lo = mddev->reshape_position;
3732                 spin_unlock_irq(&conf->device_lock);
3733                 wake_up(&conf->wait_for_overlap);
3734         }
3735
3736         for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3737                 int j;
3738                 int skipped = 0;
3739                 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3740                 sh = get_active_stripe(conf, sector_nr+i,
3741                                        conf->raid_disks, pd_idx, 0);
3742                 set_bit(STRIPE_EXPANDING, &sh->state);
3743                 atomic_inc(&conf->reshape_stripes);
3744                 /* If any of this stripe is beyond the end of the old
3745                  * array, then we need to zero those blocks
3746                  */
3747                 for (j=sh->disks; j--;) {
3748                         sector_t s;
3749                         if (j == sh->pd_idx)
3750                                 continue;
3751                         if (conf->level == 6 &&
3752                             j == raid6_next_disk(sh->pd_idx, sh->disks))
3753                                 continue;
3754                         s = compute_blocknr(sh, j);
3755                         if (s < (mddev->array_size<<1)) {
3756                                 skipped = 1;
3757                                 continue;
3758                         }
3759                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3760                         set_bit(R5_Expanded, &sh->dev[j].flags);
3761                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3762                 }
3763                 if (!skipped) {
3764                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3765                         set_bit(STRIPE_HANDLE, &sh->state);
3766                 }
3767                 release_stripe(sh);
3768         }
3769         spin_lock_irq(&conf->device_lock);
3770         conf->expand_progress = (sector_nr + i) * new_data_disks;
3771         spin_unlock_irq(&conf->device_lock);
3772         /* Ok, those stripe are ready. We can start scheduling
3773          * reads on the source stripes.
3774          * The source stripes are determined by mapping the first and last
3775          * block on the destination stripes.
3776          */
3777         first_sector =
3778                 raid5_compute_sector(sector_nr*(new_data_disks),
3779                                      raid_disks, data_disks,
3780                                      &dd_idx, &pd_idx, conf);
3781         last_sector =
3782                 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3783                                      *(new_data_disks) -1,
3784                                      raid_disks, data_disks,
3785                                      &dd_idx, &pd_idx, conf);
3786         if (last_sector >= (mddev->size<<1))
3787                 last_sector = (mddev->size<<1)-1;
3788         while (first_sector <= last_sector) {
3789                 pd_idx = stripe_to_pdidx(first_sector, conf,
3790                                          conf->previous_raid_disks);
3791                 sh = get_active_stripe(conf, first_sector,
3792                                        conf->previous_raid_disks, pd_idx, 0);
3793                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3794                 set_bit(STRIPE_HANDLE, &sh->state);
3795                 release_stripe(sh);
3796                 first_sector += STRIPE_SECTORS;
3797         }
3798         /* If this takes us to the resync_max point where we have to pause,
3799          * then we need to write out the superblock.
3800          */
3801         sector_nr += conf->chunk_size>>9;
3802         if (sector_nr >= mddev->resync_max) {
3803                 /* Cannot proceed until we've updated the superblock... */
3804                 wait_event(conf->wait_for_overlap,
3805                            atomic_read(&conf->reshape_stripes) == 0);
3806                 mddev->reshape_position = conf->expand_progress;
3807                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3808                 md_wakeup_thread(mddev->thread);
3809                 wait_event(mddev->sb_wait,
3810                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3811                            || kthread_should_stop());
3812                 spin_lock_irq(&conf->device_lock);
3813                 conf->expand_lo = mddev->reshape_position;
3814                 spin_unlock_irq(&conf->device_lock);
3815                 wake_up(&conf->wait_for_overlap);
3816         }
3817         return conf->chunk_size>>9;
3818 }
3819
3820 /* FIXME go_faster isn't used */
3821 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3822 {
3823         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3824         struct stripe_head *sh;
3825         int pd_idx;
3826         int raid_disks = conf->raid_disks;
3827         sector_t max_sector = mddev->size << 1;
3828         int sync_blocks;
3829         int still_degraded = 0;
3830         int i;
3831
3832         if (sector_nr >= max_sector) {
3833                 /* just being told to finish up .. nothing much to do */
3834                 unplug_slaves(mddev);
3835                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3836                         end_reshape(conf);
3837                         return 0;
3838                 }
3839
3840                 if (mddev->curr_resync < max_sector) /* aborted */
3841                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3842                                         &sync_blocks, 1);
3843                 else /* completed sync */
3844                         conf->fullsync = 0;
3845                 bitmap_close_sync(mddev->bitmap);
3846
3847                 return 0;
3848         }
3849
3850         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3851                 return reshape_request(mddev, sector_nr, skipped);
3852
3853         /* No need to check resync_max as we never do more than one
3854          * stripe, and as resync_max will always be on a chunk boundary,
3855          * if the check in md_do_sync didn't fire, there is no chance
3856          * of overstepping resync_max here
3857          */
3858
3859         /* if there is too many failed drives and we are trying
3860          * to resync, then assert that we are finished, because there is
3861          * nothing we can do.
3862          */
3863         if (mddev->degraded >= conf->max_degraded &&
3864             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3865                 sector_t rv = (mddev->size << 1) - sector_nr;
3866                 *skipped = 1;
3867                 return rv;
3868         }
3869         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3870             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3871             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3872                 /* we can skip this block, and probably more */
3873                 sync_blocks /= STRIPE_SECTORS;
3874                 *skipped = 1;
3875                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3876         }
3877
3878
3879         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3880
3881         pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3882         sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3883         if (sh == NULL) {
3884                 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3885                 /* make sure we don't swamp the stripe cache if someone else
3886                  * is trying to get access
3887                  */
3888                 schedule_timeout_uninterruptible(1);
3889         }
3890         /* Need to check if array will still be degraded after recovery/resync
3891          * We don't need to check the 'failed' flag as when that gets set,
3892          * recovery aborts.
3893          */
3894         for (i=0; i<mddev->raid_disks; i++)
3895                 if (conf->disks[i].rdev == NULL)
3896                         still_degraded = 1;
3897
3898         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3899
3900         spin_lock(&sh->lock);
3901         set_bit(STRIPE_SYNCING, &sh->state);
3902         clear_bit(STRIPE_INSYNC, &sh->state);
3903         spin_unlock(&sh->lock);
3904
3905         handle_stripe(sh, NULL);
3906         release_stripe(sh);
3907
3908         return STRIPE_SECTORS;
3909 }
3910
3911 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3912 {
3913         /* We may not be able to submit a whole bio at once as there
3914          * may not be enough stripe_heads available.
3915          * We cannot pre-allocate enough stripe_heads as we may need
3916          * more than exist in the cache (if we allow ever large chunks).
3917          * So we do one stripe head at a time and record in
3918          * ->bi_hw_segments how many have been done.
3919          *
3920          * We *know* that this entire raid_bio is in one chunk, so
3921          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3922          */
3923         struct stripe_head *sh;
3924         int dd_idx, pd_idx;
3925         sector_t sector, logical_sector, last_sector;
3926         int scnt = 0;
3927         int remaining;
3928         int handled = 0;
3929
3930         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3931         sector = raid5_compute_sector(  logical_sector,
3932                                         conf->raid_disks,
3933                                         conf->raid_disks - conf->max_degraded,
3934                                         &dd_idx,
3935                                         &pd_idx,
3936                                         conf);
3937         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3938
3939         for (; logical_sector < last_sector;
3940              logical_sector += STRIPE_SECTORS,
3941                      sector += STRIPE_SECTORS,
3942                      scnt++) {
3943
3944                 if (scnt < raid_bio->bi_hw_segments)
3945                         /* already done this stripe */
3946                         continue;
3947
3948                 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3949
3950                 if (!sh) {
3951                         /* failed to get a stripe - must wait */
3952                         raid_bio->bi_hw_segments = scnt;
3953                         conf->retry_read_aligned = raid_bio;
3954                         return handled;
3955                 }
3956
3957                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3958                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3959                         release_stripe(sh);
3960                         raid_bio->bi_hw_segments = scnt;
3961                         conf->retry_read_aligned = raid_bio;
3962                         return handled;
3963                 }
3964
3965                 handle_stripe(sh, NULL);
3966                 release_stripe(sh);
3967                 handled++;
3968         }
3969         spin_lock_irq(&conf->device_lock);
3970         remaining = --raid_bio->bi_phys_segments;
3971         spin_unlock_irq(&conf->device_lock);
3972         if (remaining == 0)
3973                 bio_endio(raid_bio, 0);
3974         if (atomic_dec_and_test(&conf->active_aligned_reads))
3975                 wake_up(&conf->wait_for_stripe);
3976         return handled;
3977 }
3978
3979
3980
3981 /*
3982  * This is our raid5 kernel thread.
3983  *
3984  * We scan the hash table for stripes which can be handled now.
3985  * During the scan, completed stripes are saved for us by the interrupt
3986  * handler, so that they will not have to wait for our next wakeup.
3987  */
3988 static void raid5d(mddev_t *mddev)
3989 {
3990         struct stripe_head *sh;
3991         raid5_conf_t *conf = mddev_to_conf(mddev);
3992         int handled;
3993
3994         pr_debug("+++ raid5d active\n");
3995
3996         md_check_recovery(mddev);
3997
3998         handled = 0;
3999         spin_lock_irq(&conf->device_lock);
4000         while (1) {
4001                 struct bio *bio;
4002
4003                 if (conf->seq_flush != conf->seq_write) {
4004                         int seq = conf->seq_flush;
4005                         spin_unlock_irq(&conf->device_lock);
4006                         bitmap_unplug(mddev->bitmap);
4007                         spin_lock_irq(&conf->device_lock);
4008                         conf->seq_write = seq;
4009                         activate_bit_delay(conf);
4010                 }
4011
4012                 while ((bio = remove_bio_from_retry(conf))) {
4013                         int ok;
4014                         spin_unlock_irq(&conf->device_lock);
4015                         ok = retry_aligned_read(conf, bio);
4016                         spin_lock_irq(&conf->device_lock);
4017                         if (!ok)
4018                                 break;
4019                         handled++;
4020                 }
4021
4022                 sh = __get_priority_stripe(conf);
4023
4024                 if (!sh) {
4025                         async_tx_issue_pending_all();
4026                         break;
4027                 }
4028                 spin_unlock_irq(&conf->device_lock);
4029                 
4030                 handled++;
4031                 handle_stripe(sh, conf->spare_page);
4032                 release_stripe(sh);
4033
4034                 spin_lock_irq(&conf->device_lock);
4035         }
4036         pr_debug("%d stripes handled\n", handled);
4037
4038         spin_unlock_irq(&conf->device_lock);
4039
4040         unplug_slaves(mddev);
4041
4042         pr_debug("--- raid5d inactive\n");
4043 }
4044
4045 static ssize_t
4046 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4047 {
4048         raid5_conf_t *conf = mddev_to_conf(mddev);
4049         if (conf)
4050                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4051         else
4052                 return 0;
4053 }
4054
4055 static ssize_t
4056 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4057 {
4058         raid5_conf_t *conf = mddev_to_conf(mddev);
4059         unsigned long new;
4060         if (len >= PAGE_SIZE)
4061                 return -EINVAL;
4062         if (!conf)
4063                 return -ENODEV;
4064
4065         if (strict_strtoul(page, 10, &new))
4066                 return -EINVAL;
4067         if (new <= 16 || new > 32768)
4068                 return -EINVAL;
4069         while (new < conf->max_nr_stripes) {
4070                 if (drop_one_stripe(conf))
4071                         conf->max_nr_stripes--;
4072                 else
4073                         break;
4074         }
4075         md_allow_write(mddev);
4076         while (new > conf->max_nr_stripes) {
4077                 if (grow_one_stripe(conf))
4078                         conf->max_nr_stripes++;
4079                 else break;
4080         }
4081         return len;
4082 }
4083
4084 static struct md_sysfs_entry
4085 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4086                                 raid5_show_stripe_cache_size,
4087                                 raid5_store_stripe_cache_size);
4088
4089 static ssize_t
4090 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4091 {
4092         raid5_conf_t *conf = mddev_to_conf(mddev);
4093         if (conf)
4094                 return sprintf(page, "%d\n", conf->bypass_threshold);
4095         else
4096                 return 0;
4097 }
4098
4099 static ssize_t
4100 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4101 {
4102         raid5_conf_t *conf = mddev_to_conf(mddev);
4103         unsigned long new;
4104         if (len >= PAGE_SIZE)
4105                 return -EINVAL;
4106         if (!conf)
4107                 return -ENODEV;
4108
4109         if (strict_strtoul(page, 10, &new))
4110                 return -EINVAL;
4111         if (new > conf->max_nr_stripes)
4112                 return -EINVAL;
4113         conf->bypass_threshold = new;
4114         return len;
4115 }
4116
4117 static struct md_sysfs_entry
4118 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4119                                         S_IRUGO | S_IWUSR,
4120                                         raid5_show_preread_threshold,
4121                                         raid5_store_preread_threshold);
4122
4123 static ssize_t
4124 stripe_cache_active_show(mddev_t *mddev, char *page)
4125 {
4126         raid5_conf_t *conf = mddev_to_conf(mddev);
4127         if (conf)
4128                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4129         else
4130                 return 0;
4131 }
4132
4133 static struct md_sysfs_entry
4134 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4135
4136 static struct attribute *raid5_attrs[] =  {
4137         &raid5_stripecache_size.attr,
4138         &raid5_stripecache_active.attr,
4139         &raid5_preread_bypass_threshold.attr,
4140         NULL,
4141 };
4142 static struct attribute_group raid5_attrs_group = {
4143         .name = NULL,
4144         .attrs = raid5_attrs,
4145 };
4146
4147 static int run(mddev_t *mddev)
4148 {
4149         raid5_conf_t *conf;
4150         int raid_disk, memory;
4151         mdk_rdev_t *rdev;
4152         struct disk_info *disk;
4153         struct list_head *tmp;
4154         int working_disks = 0;
4155
4156         if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4157                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4158                        mdname(mddev), mddev->level);
4159                 return -EIO;
4160         }
4161
4162         if (mddev->reshape_position != MaxSector) {
4163                 /* Check that we can continue the reshape.
4164                  * Currently only disks can change, it must
4165                  * increase, and we must be past the point where
4166                  * a stripe over-writes itself
4167                  */
4168                 sector_t here_new, here_old;
4169                 int old_disks;
4170                 int max_degraded = (mddev->level == 5 ? 1 : 2);
4171
4172                 if (mddev->new_level != mddev->level ||
4173                     mddev->new_layout != mddev->layout ||
4174                     mddev->new_chunk != mddev->chunk_size) {
4175                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4176                                "required - aborting.\n",
4177                                mdname(mddev));
4178                         return -EINVAL;
4179                 }
4180                 if (mddev->delta_disks <= 0) {
4181                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4182                                "(reduce disks) required - aborting.\n",
4183                                mdname(mddev));
4184                         return -EINVAL;
4185                 }
4186                 old_disks = mddev->raid_disks - mddev->delta_disks;
4187                 /* reshape_position must be on a new-stripe boundary, and one
4188                  * further up in new geometry must map after here in old
4189                  * geometry.
4190                  */
4191                 here_new = mddev->reshape_position;
4192                 if (sector_div(here_new, (mddev->chunk_size>>9)*
4193                                (mddev->raid_disks - max_degraded))) {
4194                         printk(KERN_ERR "raid5: reshape_position not "
4195                                "on a stripe boundary\n");
4196                         return -EINVAL;
4197                 }
4198                 /* here_new is the stripe we will write to */
4199                 here_old = mddev->reshape_position;
4200                 sector_div(here_old, (mddev->chunk_size>>9)*
4201                            (old_disks-max_degraded));
4202                 /* here_old is the first stripe that we might need to read
4203                  * from */
4204                 if (here_new >= here_old) {
4205                         /* Reading from the same stripe as writing to - bad */
4206                         printk(KERN_ERR "raid5: reshape_position too early for "
4207                                "auto-recovery - aborting.\n");
4208                         return -EINVAL;
4209                 }
4210                 printk(KERN_INFO "raid5: reshape will continue\n");
4211                 /* OK, we should be able to continue; */
4212         }
4213
4214
4215         mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4216         if ((conf = mddev->private) == NULL)
4217                 goto abort;
4218         if (mddev->reshape_position == MaxSector) {
4219                 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4220         } else {
4221                 conf->raid_disks = mddev->raid_disks;
4222                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4223         }
4224
4225         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4226                               GFP_KERNEL);
4227         if (!conf->disks)
4228                 goto abort;
4229
4230         conf->mddev = mddev;
4231
4232         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4233                 goto abort;
4234
4235         if (mddev->level == 6) {
4236                 conf->spare_page = alloc_page(GFP_KERNEL);
4237                 if (!conf->spare_page)
4238                         goto abort;
4239         }
4240         spin_lock_init(&conf->device_lock);
4241         mddev->queue->queue_lock = &conf->device_lock;
4242         init_waitqueue_head(&conf->wait_for_stripe);
4243         init_waitqueue_head(&conf->wait_for_overlap);
4244         INIT_LIST_HEAD(&conf->handle_list);
4245         INIT_LIST_HEAD(&conf->hold_list);
4246         INIT_LIST_HEAD(&conf->delayed_list);
4247         INIT_LIST_HEAD(&conf->bitmap_list);
4248         INIT_LIST_HEAD(&conf->inactive_list);
4249         atomic_set(&conf->active_stripes, 0);
4250         atomic_set(&conf->preread_active_stripes, 0);
4251         atomic_set(&conf->active_aligned_reads, 0);
4252         conf->bypass_threshold = BYPASS_THRESHOLD;
4253
4254         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4255
4256         rdev_for_each(rdev, tmp, mddev) {
4257                 raid_disk = rdev->raid_disk;
4258                 if (raid_disk >= conf->raid_disks
4259                     || raid_disk < 0)
4260                         continue;
4261                 disk = conf->disks + raid_disk;
4262
4263                 disk->rdev = rdev;
4264
4265                 if (test_bit(In_sync, &rdev->flags)) {
4266                         char b[BDEVNAME_SIZE];
4267                         printk(KERN_INFO "raid5: device %s operational as raid"
4268                                 " disk %d\n", bdevname(rdev->bdev,b),
4269                                 raid_disk);
4270                         working_disks++;
4271                 } else
4272                         /* Cannot rely on bitmap to complete recovery */
4273                         conf->fullsync = 1;
4274         }
4275
4276         /*
4277          * 0 for a fully functional array, 1 or 2 for a degraded array.
4278          */
4279         mddev->degraded = conf->raid_disks - working_disks;
4280         conf->mddev = mddev;
4281         conf->chunk_size = mddev->chunk_size;
4282         conf->level = mddev->level;
4283         if (conf->level == 6)
4284                 conf->max_degraded = 2;
4285         else
4286                 conf->max_degraded = 1;
4287         conf->algorithm = mddev->layout;
4288         conf->max_nr_stripes = NR_STRIPES;
4289         conf->expand_progress = mddev->reshape_position;
4290
4291         /* device size must be a multiple of chunk size */
4292         mddev->size &= ~(mddev->chunk_size/1024 -1);
4293         mddev->resync_max_sectors = mddev->size << 1;
4294
4295         if (conf->level == 6 && conf->raid_disks < 4) {
4296                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4297                        mdname(mddev), conf->raid_disks);
4298                 goto abort;
4299         }
4300         if (!conf->chunk_size || conf->chunk_size % 4) {
4301                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4302                         conf->chunk_size, mdname(mddev));
4303                 goto abort;
4304         }
4305         if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4306                 printk(KERN_ERR 
4307                         "raid5: unsupported parity algorithm %d for %s\n",
4308                         conf->algorithm, mdname(mddev));
4309                 goto abort;
4310         }
4311         if (mddev->degraded > conf->max_degraded) {
4312                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4313                         " (%d/%d failed)\n",
4314                         mdname(mddev), mddev->degraded, conf->raid_disks);
4315                 goto abort;
4316         }
4317
4318         if (mddev->degraded > 0 &&
4319             mddev->recovery_cp != MaxSector) {
4320                 if (mddev->ok_start_degraded)
4321                         printk(KERN_WARNING
4322                                "raid5: starting dirty degraded array: %s"
4323                                "- data corruption possible.\n",
4324                                mdname(mddev));
4325                 else {
4326                         printk(KERN_ERR
4327                                "raid5: cannot start dirty degraded array for %s\n",
4328                                mdname(mddev));
4329                         goto abort;
4330                 }
4331         }
4332
4333         {
4334                 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4335                 if (!mddev->thread) {
4336                         printk(KERN_ERR 
4337                                 "raid5: couldn't allocate thread for %s\n",
4338                                 mdname(mddev));
4339                         goto abort;
4340                 }
4341         }
4342         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4343                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4344         if (grow_stripes(conf, conf->max_nr_stripes)) {
4345                 printk(KERN_ERR 
4346                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4347                 shrink_stripes(conf);
4348                 md_unregister_thread(mddev->thread);
4349                 goto abort;
4350         } else
4351                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4352                         memory, mdname(mddev));
4353
4354         if (mddev->degraded == 0)
4355                 printk("raid5: raid level %d set %s active with %d out of %d"
4356                         " devices, algorithm %d\n", conf->level, mdname(mddev), 
4357                         mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4358                         conf->algorithm);
4359         else
4360                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4361                         " out of %d devices, algorithm %d\n", conf->level,
4362                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4363                         mddev->raid_disks, conf->algorithm);
4364
4365         print_raid5_conf(conf);
4366
4367         if (conf->expand_progress != MaxSector) {
4368                 printk("...ok start reshape thread\n");
4369                 conf->expand_lo = conf->expand_progress;
4370                 atomic_set(&conf->reshape_stripes, 0);
4371                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4372                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4373                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4374                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4375                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4376                                                         "%s_reshape");
4377         }
4378
4379         /* read-ahead size must cover two whole stripes, which is
4380          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4381          */
4382         {
4383                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4384                 int stripe = data_disks *
4385                         (mddev->chunk_size / PAGE_SIZE);
4386                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4387                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4388         }
4389
4390         /* Ok, everything is just fine now */
4391         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4392                 printk(KERN_WARNING
4393                        "raid5: failed to create sysfs attributes for %s\n",
4394                        mdname(mddev));
4395
4396         mddev->queue->unplug_fn = raid5_unplug_device;
4397         mddev->queue->backing_dev_info.congested_data = mddev;
4398         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4399
4400         mddev->array_size =  mddev->size * (conf->previous_raid_disks -
4401                                             conf->max_degraded);
4402
4403         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4404
4405         return 0;
4406 abort:
4407         if (conf) {
4408                 print_raid5_conf(conf);
4409                 safe_put_page(conf->spare_page);
4410                 kfree(conf->disks);
4411                 kfree(conf->stripe_hashtbl);
4412                 kfree(conf);
4413         }
4414         mddev->private = NULL;
4415         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4416         return -EIO;
4417 }
4418
4419
4420
4421 static int stop(mddev_t *mddev)
4422 {
4423         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4424
4425         md_unregister_thread(mddev->thread);
4426         mddev->thread = NULL;
4427         shrink_stripes(conf);
4428         kfree(conf->stripe_hashtbl);
4429         mddev->queue->backing_dev_info.congested_fn = NULL;
4430         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4431         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4432         kfree(conf->disks);
4433         kfree(conf);
4434         mddev->private = NULL;
4435         return 0;
4436 }
4437
4438 #ifdef DEBUG
4439 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4440 {
4441         int i;
4442
4443         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4444                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4445         seq_printf(seq, "sh %llu,  count %d.\n",
4446                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4447         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4448         for (i = 0; i < sh->disks; i++) {
4449                 seq_printf(seq, "(cache%d: %p %ld) ",
4450                            i, sh->dev[i].page, sh->dev[i].flags);
4451         }
4452         seq_printf(seq, "\n");
4453 }
4454
4455 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4456 {
4457         struct stripe_head *sh;
4458         struct hlist_node *hn;
4459         int i;
4460
4461         spin_lock_irq(&conf->device_lock);
4462         for (i = 0; i < NR_HASH; i++) {
4463                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4464                         if (sh->raid_conf != conf)
4465                                 continue;
4466                         print_sh(seq, sh);
4467                 }
4468         }
4469         spin_unlock_irq(&conf->device_lock);
4470 }
4471 #endif
4472
4473 static void status (struct seq_file *seq, mddev_t *mddev)
4474 {
4475         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4476         int i;
4477
4478         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4479         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4480         for (i = 0; i < conf->raid_disks; i++)
4481                 seq_printf (seq, "%s",
4482                                conf->disks[i].rdev &&
4483                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4484         seq_printf (seq, "]");
4485 #ifdef DEBUG
4486         seq_printf (seq, "\n");
4487         printall(seq, conf);
4488 #endif
4489 }
4490
4491 static void print_raid5_conf (raid5_conf_t *conf)
4492 {
4493         int i;
4494         struct disk_info *tmp;
4495
4496         printk("RAID5 conf printout:\n");
4497         if (!conf) {
4498                 printk("(conf==NULL)\n");
4499                 return;
4500         }
4501         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4502                  conf->raid_disks - conf->mddev->degraded);
4503
4504         for (i = 0; i < conf->raid_disks; i++) {
4505                 char b[BDEVNAME_SIZE];
4506                 tmp = conf->disks + i;
4507                 if (tmp->rdev)
4508                 printk(" disk %d, o:%d, dev:%s\n",
4509                         i, !test_bit(Faulty, &tmp->rdev->flags),
4510                         bdevname(tmp->rdev->bdev,b));
4511         }
4512 }
4513
4514 static int raid5_spare_active(mddev_t *mddev)
4515 {
4516         int i;
4517         raid5_conf_t *conf = mddev->private;
4518         struct disk_info *tmp;
4519
4520         for (i = 0; i < conf->raid_disks; i++) {
4521                 tmp = conf->disks + i;
4522                 if (tmp->rdev
4523                     && !test_bit(Faulty, &tmp->rdev->flags)
4524                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4525                         unsigned long flags;
4526                         spin_lock_irqsave(&conf->device_lock, flags);
4527                         mddev->degraded--;
4528                         spin_unlock_irqrestore(&conf->device_lock, flags);
4529                 }
4530         }
4531         print_raid5_conf(conf);
4532         return 0;
4533 }
4534
4535 static int raid5_remove_disk(mddev_t *mddev, int number)
4536 {
4537         raid5_conf_t *conf = mddev->private;
4538         int err = 0;
4539         mdk_rdev_t *rdev;
4540         struct disk_info *p = conf->disks + number;
4541
4542         print_raid5_conf(conf);
4543         rdev = p->rdev;
4544         if (rdev) {
4545                 if (test_bit(In_sync, &rdev->flags) ||
4546                     atomic_read(&rdev->nr_pending)) {
4547                         err = -EBUSY;
4548                         goto abort;
4549                 }
4550                 /* Only remove non-faulty devices if recovery
4551                  * isn't possible.
4552                  */
4553                 if (!test_bit(Faulty, &rdev->flags) &&
4554                     mddev->degraded <= conf->max_degraded) {
4555                         err = -EBUSY;
4556                         goto abort;
4557                 }
4558                 p->rdev = NULL;
4559                 synchronize_rcu();
4560                 if (atomic_read(&rdev->nr_pending)) {
4561                         /* lost the race, try later */
4562                         err = -EBUSY;
4563                         p->rdev = rdev;
4564                 }
4565         }
4566 abort:
4567
4568         print_raid5_conf(conf);
4569         return err;
4570 }
4571
4572 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4573 {
4574         raid5_conf_t *conf = mddev->private;
4575         int err = -EEXIST;
4576         int disk;
4577         struct disk_info *p;
4578         int first = 0;
4579         int last = conf->raid_disks - 1;
4580
4581         if (mddev->degraded > conf->max_degraded)
4582                 /* no point adding a device */
4583                 return -EINVAL;
4584
4585         if (rdev->raid_disk >= 0)
4586                 first = last = rdev->raid_disk;
4587
4588         /*
4589          * find the disk ... but prefer rdev->saved_raid_disk
4590          * if possible.
4591          */
4592         if (rdev->saved_raid_disk >= 0 &&
4593             rdev->saved_raid_disk >= first &&
4594             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4595                 disk = rdev->saved_raid_disk;
4596         else
4597                 disk = first;
4598         for ( ; disk <= last ; disk++)
4599                 if ((p=conf->disks + disk)->rdev == NULL) {
4600                         clear_bit(In_sync, &rdev->flags);
4601                         rdev->raid_disk = disk;
4602                         err = 0;
4603                         if (rdev->saved_raid_disk != disk)
4604                                 conf->fullsync = 1;
4605                         rcu_assign_pointer(p->rdev, rdev);
4606                         break;
4607                 }
4608         print_raid5_conf(conf);
4609         return err;
4610 }
4611
4612 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4613 {
4614         /* no resync is happening, and there is enough space
4615          * on all devices, so we can resize.
4616          * We need to make sure resync covers any new space.
4617          * If the array is shrinking we should possibly wait until
4618          * any io in the removed space completes, but it hardly seems
4619          * worth it.
4620          */
4621         raid5_conf_t *conf = mddev_to_conf(mddev);
4622
4623         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4624         mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4625         set_capacity(mddev->gendisk, mddev->array_size << 1);
4626         mddev->changed = 1;
4627         if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
4628                 mddev->recovery_cp = mddev->size << 1;
4629                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4630         }
4631         mddev->size = sectors /2;
4632         mddev->resync_max_sectors = sectors;
4633         return 0;
4634 }
4635
4636 #ifdef CONFIG_MD_RAID5_RESHAPE
4637 static int raid5_check_reshape(mddev_t *mddev)
4638 {
4639         raid5_conf_t *conf = mddev_to_conf(mddev);
4640         int err;
4641
4642         if (mddev->delta_disks < 0 ||
4643             mddev->new_level != mddev->level)
4644                 return -EINVAL; /* Cannot shrink array or change level yet */
4645         if (mddev->delta_disks == 0)
4646                 return 0; /* nothing to do */
4647
4648         /* Can only proceed if there are plenty of stripe_heads.
4649          * We need a minimum of one full stripe,, and for sensible progress
4650          * it is best to have about 4 times that.
4651          * If we require 4 times, then the default 256 4K stripe_heads will
4652          * allow for chunk sizes up to 256K, which is probably OK.
4653          * If the chunk size is greater, user-space should request more
4654          * stripe_heads first.
4655          */
4656         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4657             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4658                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4659                        (mddev->chunk_size / STRIPE_SIZE)*4);
4660                 return -ENOSPC;
4661         }
4662
4663         err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4664         if (err)
4665                 return err;
4666
4667         if (mddev->degraded > conf->max_degraded)
4668                 return -EINVAL;
4669         /* looks like we might be able to manage this */
4670         return 0;
4671 }
4672
4673 static int raid5_start_reshape(mddev_t *mddev)
4674 {
4675         raid5_conf_t *conf = mddev_to_conf(mddev);
4676         mdk_rdev_t *rdev;
4677         struct list_head *rtmp;
4678         int spares = 0;
4679         int added_devices = 0;
4680         unsigned long flags;
4681
4682         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4683                 return -EBUSY;
4684
4685         rdev_for_each(rdev, rtmp, mddev)
4686                 if (rdev->raid_disk < 0 &&
4687                     !test_bit(Faulty, &rdev->flags))
4688                         spares++;
4689
4690         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4691                 /* Not enough devices even to make a degraded array
4692                  * of that size
4693                  */
4694                 return -EINVAL;
4695
4696         atomic_set(&conf->reshape_stripes, 0);
4697         spin_lock_irq(&conf->device_lock);
4698         conf->previous_raid_disks = conf->raid_disks;
4699         conf->raid_disks += mddev->delta_disks;
4700         conf->expand_progress = 0;
4701         conf->expand_lo = 0;
4702         spin_unlock_irq(&conf->device_lock);
4703
4704         /* Add some new drives, as many as will fit.
4705          * We know there are enough to make the newly sized array work.
4706          */
4707         rdev_for_each(rdev, rtmp, mddev)
4708                 if (rdev->raid_disk < 0 &&
4709                     !test_bit(Faulty, &rdev->flags)) {
4710                         if (raid5_add_disk(mddev, rdev) == 0) {
4711                                 char nm[20];
4712                                 set_bit(In_sync, &rdev->flags);
4713                                 added_devices++;
4714                                 rdev->recovery_offset = 0;
4715                                 sprintf(nm, "rd%d", rdev->raid_disk);
4716                                 if (sysfs_create_link(&mddev->kobj,
4717                                                       &rdev->kobj, nm))
4718                                         printk(KERN_WARNING
4719                                                "raid5: failed to create "
4720                                                " link %s for %s\n",
4721                                                nm, mdname(mddev));
4722                         } else
4723                                 break;
4724                 }
4725
4726         spin_lock_irqsave(&conf->device_lock, flags);
4727         mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4728         spin_unlock_irqrestore(&conf->device_lock, flags);
4729         mddev->raid_disks = conf->raid_disks;
4730         mddev->reshape_position = 0;
4731         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4732
4733         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4734         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4735         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4736         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4737         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4738                                                 "%s_reshape");
4739         if (!mddev->sync_thread) {
4740                 mddev->recovery = 0;
4741                 spin_lock_irq(&conf->device_lock);
4742                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4743                 conf->expand_progress = MaxSector;
4744                 spin_unlock_irq(&conf->device_lock);
4745                 return -EAGAIN;
4746         }
4747         md_wakeup_thread(mddev->sync_thread);
4748         md_new_event(mddev);
4749         return 0;
4750 }
4751 #endif
4752
4753 static void end_reshape(raid5_conf_t *conf)
4754 {
4755         struct block_device *bdev;
4756
4757         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4758                 conf->mddev->array_size = conf->mddev->size *
4759                         (conf->raid_disks - conf->max_degraded);
4760                 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4761                 conf->mddev->changed = 1;
4762
4763                 bdev = bdget_disk(conf->mddev->gendisk, 0);
4764                 if (bdev) {
4765                         mutex_lock(&bdev->bd_inode->i_mutex);
4766                         i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4767                         mutex_unlock(&bdev->bd_inode->i_mutex);
4768                         bdput(bdev);
4769                 }
4770                 spin_lock_irq(&conf->device_lock);
4771                 conf->expand_progress = MaxSector;
4772                 spin_unlock_irq(&conf->device_lock);
4773                 conf->mddev->reshape_position = MaxSector;
4774
4775                 /* read-ahead size must cover two whole stripes, which is
4776                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4777                  */
4778                 {
4779                         int data_disks = conf->previous_raid_disks - conf->max_degraded;
4780                         int stripe = data_disks *
4781                                 (conf->mddev->chunk_size / PAGE_SIZE);
4782                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4783                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4784                 }
4785         }
4786 }
4787
4788 static void raid5_quiesce(mddev_t *mddev, int state)
4789 {
4790         raid5_conf_t *conf = mddev_to_conf(mddev);
4791
4792         switch(state) {
4793         case 2: /* resume for a suspend */
4794                 wake_up(&conf->wait_for_overlap);
4795                 break;
4796
4797         case 1: /* stop all writes */
4798                 spin_lock_irq(&conf->device_lock);
4799                 conf->quiesce = 1;
4800                 wait_event_lock_irq(conf->wait_for_stripe,
4801                                     atomic_read(&conf->active_stripes) == 0 &&
4802                                     atomic_read(&conf->active_aligned_reads) == 0,
4803                                     conf->device_lock, /* nothing */);
4804                 spin_unlock_irq(&conf->device_lock);
4805                 break;
4806
4807         case 0: /* re-enable writes */
4808                 spin_lock_irq(&conf->device_lock);
4809                 conf->quiesce = 0;
4810                 wake_up(&conf->wait_for_stripe);
4811                 wake_up(&conf->wait_for_overlap);
4812                 spin_unlock_irq(&conf->device_lock);
4813                 break;
4814         }
4815 }
4816
4817 static struct mdk_personality raid6_personality =
4818 {
4819         .name           = "raid6",
4820         .level          = 6,
4821         .owner          = THIS_MODULE,
4822         .make_request   = make_request,
4823         .run            = run,
4824         .stop           = stop,
4825         .status         = status,
4826         .error_handler  = error,
4827         .hot_add_disk   = raid5_add_disk,
4828         .hot_remove_disk= raid5_remove_disk,
4829         .spare_active   = raid5_spare_active,
4830         .sync_request   = sync_request,
4831         .resize         = raid5_resize,
4832 #ifdef CONFIG_MD_RAID5_RESHAPE
4833         .check_reshape  = raid5_check_reshape,
4834         .start_reshape  = raid5_start_reshape,
4835 #endif
4836         .quiesce        = raid5_quiesce,
4837 };
4838 static struct mdk_personality raid5_personality =
4839 {
4840         .name           = "raid5",
4841         .level          = 5,
4842         .owner          = THIS_MODULE,
4843         .make_request   = make_request,
4844         .run            = run,
4845         .stop           = stop,
4846         .status         = status,
4847         .error_handler  = error,
4848         .hot_add_disk   = raid5_add_disk,
4849         .hot_remove_disk= raid5_remove_disk,
4850         .spare_active   = raid5_spare_active,
4851         .sync_request   = sync_request,
4852         .resize         = raid5_resize,
4853 #ifdef CONFIG_MD_RAID5_RESHAPE
4854         .check_reshape  = raid5_check_reshape,
4855         .start_reshape  = raid5_start_reshape,
4856 #endif
4857         .quiesce        = raid5_quiesce,
4858 };
4859
4860 static struct mdk_personality raid4_personality =
4861 {
4862         .name           = "raid4",
4863         .level          = 4,
4864         .owner          = THIS_MODULE,
4865         .make_request   = make_request,
4866         .run            = run,
4867         .stop           = stop,
4868         .status         = status,
4869         .error_handler  = error,
4870         .hot_add_disk   = raid5_add_disk,
4871         .hot_remove_disk= raid5_remove_disk,
4872         .spare_active   = raid5_spare_active,
4873         .sync_request   = sync_request,
4874         .resize         = raid5_resize,
4875 #ifdef CONFIG_MD_RAID5_RESHAPE
4876         .check_reshape  = raid5_check_reshape,
4877         .start_reshape  = raid5_start_reshape,
4878 #endif
4879         .quiesce        = raid5_quiesce,
4880 };
4881
4882 static int __init raid5_init(void)
4883 {
4884         int e;
4885
4886         e = raid6_select_algo();
4887         if ( e )
4888                 return e;
4889         register_md_personality(&raid6_personality);
4890         register_md_personality(&raid5_personality);
4891         register_md_personality(&raid4_personality);
4892         return 0;
4893 }
4894
4895 static void raid5_exit(void)
4896 {
4897         unregister_md_personality(&raid6_personality);
4898         unregister_md_personality(&raid5_personality);
4899         unregister_md_personality(&raid4_personality);
4900 }
4901
4902 module_init(raid5_init);
4903 module_exit(raid5_exit);
4904 MODULE_LICENSE("GPL");
4905 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4906 MODULE_ALIAS("md-raid5");
4907 MODULE_ALIAS("md-raid4");
4908 MODULE_ALIAS("md-level-5");
4909 MODULE_ALIAS("md-level-4");
4910 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4911 MODULE_ALIAS("md-raid6");
4912 MODULE_ALIAS("md-level-6");
4913
4914 /* This used to be two separate modules, they were: */
4915 MODULE_ALIAS("raid5");
4916 MODULE_ALIAS("raid6");